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Description  
Development of an assessment framework for condition of wastewater manholes. The 
aim of the research is the classification of manhole failures through the categorization of 
defects. Innovative contribution of the study is the use of machine learning for visual 
recognition of the manhole defects. The framework and visual recognition will lead to 
automatic classification of manholes from manhole images. The master’s thesis follows 
the work performed by the student in her project work. 
 
Objectives: 

1. Define and describe the general framework for assessing the condition of 
wastewater manholes: 

a. Characterization of relevant functions (hydraulic and structural) of 
manholes. 

b. List the defects with potential to reduce the performance towards the 
described functions. 

c. Define levels of reduction of performance (e.g. in %) and propose a table 
combining % of manhole performance reduction with severity of the 
defects. The severity of the defects could be based on the DANVA 
standard or described based on experience of water operators. 

d. Propose a scoring system to classify condition of manholes depending on 
the impact of existing defects on the performance reduction (e.g. 1 defect 
can produce 10% reduction of hydraulic performance and another 50% of 
the same function. What will be the final score for the manhole and what 
does the score mean in terms of rehabilitation need?) – refer to the 
scoring system for wastewater pipes classification.  

2. Visual recognition of manhole classes: 
a. Investigate further the technique used and described in literature for 

visual recognition of pipe's defects (machine learning approach and 
software applied). 

b. Select the type of manhole to be "recognized" (the master will use only 
one type). 

c. Select defects easy to recognize in images and with potential for easy 
categorization of levels of severity, reflecting the severity define at task c 
and d of the framework described above. 

d. Train the visual recognition software to recognize the severity level of the 
defects and therefore to provide, if possible, the corresponding level of 
reduction of the performance. After the training, it would be interesting to 
test the software with a manhole image including more than one defect 
used for the training, with different levels of severity to test the ability to 
recognize them and give a final score for the manhole. 
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Abstract  
Manholes are important components of the sewer system. They provide access to the 
wastewater pipes for inspection and maintenance, accommodate all geometrical changes 
in the system and ensure convenient layout of the pipelines. However, compared to 
wastewater pipes, their assessment is receiving little attention in Norway. Several 
countries have already developed monitoring guidelines to ensure well-functioning 
manholes. Water agencies in USA and Denmark have developed manhole reports 
describing the execution of manhole inspection and condition assessment. Similar 
approach for standardization of manhole inspection and assessment is necessary in 
Norway. Inspection of manholes has not been prioritized and the information concerning 
the condition of manholes is often available in form of images. The inspection of 
manholes is often performed visually from the ground or by going inside the manhole. 
Therefore, it is time demanding and expensive. As a result, an optimization of this 
procedure is necessary. This could be achieved as the available databases of manhole 
images represent a good basis for the implementation of image recognition software. 
These images can be used to train the software to recognize different manhole defects 
and their severity. Utilization of image recognition software out in the field could be very 
helpful for the Norwegian water utilities.  
 
One of the objectives of this master’s thesis was to develop a framework for the 
Norwegian manhole condition assessment report. The proposed content will be structured 
in a way that ensures proper collection and analysis of the desired data concerning 
wastewater manholes. DANVA manhole manual «Brøndmanualen – Inspektion og 
registrering af brønde», CARE-S report D3 «WP2 – Structural condition. Classification 
systems based on visual inspection” and Norsk Vann report 235:2018 «Dataflyt – 
Klassifisering av avløpsledninger» were used as the basis for both inspection guidelines 
and the classification of manhole condition. The presented manhole condition assessment 
report was based on the principles of Infrastructure Asset Management as it will optimize 
prioritization of future work regarding the improvement of current manhole condition. 
Development of a such report will provide Norwegian water utilities with several benefits. 
Some of them include objective assessment of manhole condition, equal execution of the 
inspection and improved decision-making regarding the maintenance, rehabilitation and 
replacement of manholes.  
 
The second objective of the work presented in this thesis was to train Custom Vision 
model on a set of manhole images showing settled deposits. The goal of the training was 
to acquire a model that can recognize different defect grades of settled deposits. Custom 
Vision is an image recognition application provided by Microsoft. It was trained on a set 
of 344 images and tested with 12 images. The performed classification was a supervised 
classification, where the areas showing settled deposits were marked and tagged 
manually prior to the training of the model. The areas were tagged into one of four 
categories representing the defect grades. After completed training, the trained model 
was tested. Testing images were not a part of the training set and were uploaded to the 
model in order to get predictions. The model was able to predict correctly 38 of 39 
settled deposits areas within the testing images with varying certainty. However, these 
results could be improved with increased image count during training, enhanced image 
manipulation, tagging of additional elements present in the images or labelling of all 
images.  
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Sammendrag  
Kummer er viktige komponenter i avløpssystemet. De gir tilgang til inspeksjon og 
vedlikehold av avløpsrør, imøtekommer alle geometriske endinger i systemet, og sørger 
for en praktisk utforming av ledningene. Sammenlignet med evalueringen av avløpsrør, 
får tilstandsvurderingen av kummer lite oppmerksomhet i Norge. Flere land har allerede 
utviklet retningslinjer som omhandler overvåkning av kumtilstanden for å sikre 
velfungerende kummer i deres systemer. Vann- og avløpsetater i USA og Danmark har 
publisert kumrapporter som beskriver gjennomføringen av inspeksjoner og 
tilstandsvurderinger av kummer. En lignende tilnærming til standardiseringen av disse 
prosedyrene er nødvendig i Norge. Kuminspeksjonene har ikke blitt prioritert de siste 
årene, og informasjonen om deres tilstand er ofte tilgjengelig i form av bilder. Ettersom 
inspeksjonen av kummer ofte blir utført visuelt fra bakken eller ved å gå ned i kummen, 
er gjennomføringen av denne prosedyren både tidskrevende og kostbar. En 
optimalisering er dermed nødvendig. Databasene med kumbildene representerer et godt 
grunnlag for implementering av bildegjenkjenningsprogramvarer. Disse bildene kan 
brukes til å trene slik programvare til å gjenkjenne forskjellige feil og deres 
alvorlighetsgrader. Utnyttelse av bildegjenkjenning for automatisk gjenkjenning av 
kumfeil kan være svært nyttig for norske vann- og avløpsetater.   
 
Ett av målene for denne masteroppgaven var å utvikle et rammeverk for en Norsk 
tilstandsvurderingsrapport for kummer. Den foreslåtte rapporten vil bli strukturert på en 
måte som sikrer riktig innsamling og analyse av ønsket data om avløpskummer. DANVA 
kumrapport «Brøndmanualen – Inspektion og registrering af brønde», CARE-S rapport 
D3 «WP2 – Structural condition. Classification systems based on visual inspection” og 
Norsk Vann rapport 235:2018 «Dataflyt – Klassifisering av avløpsledninger» ble brukt 
som grunnlag for både inspeksjonsretningslinjer og klassifiseringen av kumtilstanden. 
Den presenterte prosedyren for tilstandsvurderingen av kummer ble basert på 
prinsippene for kapitalforvaltningen av infrastruktur (IAM – Infrastructure Asset 
Management), da den vil optimalisere prioriteringen av fremtidig arbeid med forbedring 
av nåværende kumtilstand. Utvikling av en slik rapport vil resultere i flere fordeler for 
norske kommuner. Noen av dem inkluderer en objektiv vurdering av kumtilstand, lik 
utførelse av inspeksjoner og en forbedret beslutningsprosess angående vedlikehold, 
rehabilitering og utskifting av kummer.   
 
Det andre målet for masteroppgaven, var å trene Custom Vision-modellen med et sett av 
bilder som viser ulike typer av avsetning i avløpskummer. Målet med denne opplæringen 
var å erverve en modell som kan gjenkjenne ulike alvorlighetsgrader av avsetning i 
kummer. Custom Vision er en bildegjenkjenningsapplikasjon fra Microsoft. Den ble trent 
med et sett på 344 bilder og testet med 12 bilder. Klassifiseringen utført i denne 
masteroppgaven var en overvåket klassifisering, der områdene som viste avsetningen 
ble merket og tagget manuelt før treningen av modellen. Hvert område ble tagget i en av 
fire mulige kategorier som representerte alvorlighetsgradene. Modellen ble testet etter 
fullført trening med et bildesett som ikke var en del av bildesettet brukt for treningen av 
modellen. Disse bildene ble lastet opp til modellen for å få prediksjoner. Modellen var i 
stand til å forutsi riktig 38 av 39 områder med avsetning vist på bildene. Sikkerheten av 
disse prediksjonene var varierende. Dette resultatet kan forbedres med økt 
bildeopptelling, bildemanipulering, merking av ytterligere elementer som er tilstede i 
bildene eller forbedret merking av bilder brukt til treningen av modellen.   
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1.0 Introduction  
Main pipelines, lateral lines and manholes are all integral components of the wastewater 
system. As all components are deteriorating continuously, proper operation and 
maintenance are very important in order to provide sufficient levels of service (Ugarelli, 
2018). Pipelines represent the largest part of the network and most critical failures 
normally occur in the pipes (Malvik, 2017). Therefore, the condition monitoring and 
assessment of pipes has been prioritized in the recent years. In Norway, several reports 
concerning the evaluation of wastewater pipes were developed and are extensively 
utilized. However, none of them include guidelines regarding the assessment of 
manholes. Development of a manhole condition assessment report should be a priority in 
order to ensure satisfactory condition and performance of these assets. This will also 
contribute to an improved performance of the whole sewer system.  
 
Manholes are important components of the sewer network as they provide access to the 
pipes for inspection and maintenance. In addition, they ensure convenient layout of the 
pipelines and accommodate all geometrical changes in the system (DANVA, 2010). 
Norwegian sewer system consists of a large number of manholes, where the municipality 
of Oslo alone owns nearly 10 000 wastewater manholes (Makuszewska, 2018). Despite 
the essential function and amount, the assessment of manholes has been neglected as 
both inspection and evaluation of manholes are not normally performed. In most of the 
Norwegian municipalities, the inspection and rehabilitation of manholes are often done in 
connection with projects concerning pipes (Malvik, 2017). Only the nearby manholes, 
that are a part of the pipeline evaluated, are assessed. The lack of proper maintenance 
has resulted in an increased number of deteriorated manholes where more frequent 
collapses, blockages, basement backups and overflows may become a major concern. 
Just as any other component of the wastewater system, manholes require regular and 
effective maintenance. Continuous monitoring and conservation of the condition of 
manholes will save money for the water utilities in a long-term time perspective as it will 
identify urgent repairs before total replacements become a necessity (Federtion of 
Canadian Municipalities and National Research Council, 2002). In addition, regular 
maintenance will extend the expected life of these assets, ensure optimal performance 
and maintain their reliability at the demanded level. Systematic monitoring of the 
deterioration will also result in records of deterioration that can help utilities to prioritize 
interventions, plan future rehabilitation and maintenance, and organize budget for the 
repairs. Additionally, systematic monitoring will provide input to risk analyses and 
facilitate asset management programs (Federtion of Canadian Municipalities and National 
Research Council, 2002). Such planning and actions are essential as manholes represent 
a large number of assets within a wastewater system.  
 
As the evaluation and maintenance of pipes is continuously being improved, it is 
important to develop proper procedures for the condition assessment of manholes. These 
assets are susceptible to the similar forms of deterioration as pipes, thus effective 
manhole inspection and maintenance plans are necessary to improve their structural 
integrity. Manholes should be assessed and maintained in a way that guarantees the best 
management of these assets throughout their entire life-cycle. Reasonable management 
of manholes will require a systematic approach that ensures maintenance of their 
reliability and condition under reasonable budget (Ugarelli, 2018). Therefore, the 
condition assessment of manholes should be based on proper Infrastructure Asset 
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Management (IAM). As the sewer network does not solely consist of pipes, water utilities 
should start proper collection of manhole condition data. Further analysis of the data will 
then represent a good basis for proper maintenance and rehabilitation plans for 
manholes (Ugarelli, 2018). Future maintenance and rehabilitation needs might be high 
since the assessment of manholes has not been performed to a large extent in Norway. 
Therefore, a balance between cost, risk and desired level of service will be important. To 
ensure proper prioritization of manhole projects, the evaluation process should include a 
risk assessment. However, as the implementation of IAM is based on the data obtained 
during inspection and further evaluation, the whole process of developing a manhole 
condition assessment report starts at the proper description of how condition monitoring 
and assessment should be performed. This will be the main objective of the proposed 
manhole condition assessment report, with the primary focus on the hydraulic reliability 
of wastewater manholes.   
 
Condition monitoring and assessment are essential elements of IAM. As there is not 
enough of manhole condition data available in Norway today, proper condition monitoring 
will be important. The data can be collected by conducting a visual inspection from the 
ground, by going inside the manhole, or by camera during close circuit television (CCTV) 
inspection of wastewater pipes. The execution of the inspection should be standardized in 
order to ensure proper collection of all desired information. The inspector will then know 
what to look for during an inspection, how the observations should be interpreted and 
thereafter registered. Therefore, all defects that can be observed in a manhole should be 
categorized according to manhole functions, described and coded. As for pipes, all 
defects present in the assessed manhole should also be graded according to their 
severity (Bernhus, et al., 2007). In addition, the inspected manhole must be 
photographed, and the resulting image must be included in the documentation. The 
picture should be of a good quality and reflect accurately the current state of the 
manhole condition. After the collection and registration of needed data, assessment of 
the manhole condition should be performed.  
 
A proposal for the content and structure of a theoretical manhole condition assessment 
report will be presented in this master’s thesis. The proposed method is a reliability-
based condition assessment of manholes, meaning that the possible condition classes are 
defined according to the effect or the impact of the possible defects on to the functional 
requirements of manholes. This allows for a transparent decision-making considering the 
method of rehabilitation or maintenance based on the nature of the worst type of the 
condition class. The goal of the presented manhole report is to guide to data collection 
supporting a proper condition monitoring and assessment of wastewater manholes. The 
rationale behind the followed methodology consists in categorizing and weighting of the 
defects based on their effects on the expected functional requirements of manholes. 
Specifically, the main focus of the proposed report is the effect on the hydraulic functions 
of the wastewater manholes. Therefore, a hydraulic reliability approach will be followed. 
The defects will be selected, described and graded based on the available theory for 
manhole hydraulics. These defects will be a part of the defect category labeled 
“Hydraulics”. In addition, the proposed manhole condition assessment report will contain 
weighting values for all defect grades and present a way to calculate the total score for 
the inspected manholes. The score is designed to reflect the current hydraulic condition 
state of the inspected manhole. Based on the calculated score the manholes will be 
assigned into hydraulic condition classes. Future research should focus on defects that 
have an impact on the structural functions of manholes. These defects will then be a part 
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of a new defect category, which for now will be labelled “Structural condition”. All defects 
should be described, graded and weighted in a similar way as defects in category 
“Hydraulics”. This will lead to new group of total score thresholds which will reflect the 
structural condition of a manhole construction and will consequently assign manholes 
into structural condition classes. The presented manhole report also proposes how to 
assess both hydraulic and structural condition classes together in order to achieve a 
complete assessment of the inspected manholes. Assignment of manholes into condition 
classes according to the critical functions will make the understanding of the calculated 
score much clearer. Additionally, different types of intervention actions should be 
implemented depending on the nature of the function affected by either hydraulic or 
structural defects. Therefore, a structure of the manhole report where manholes are 
assigned to functional condition classes will contribute to easier decision-making 
regarding the implementation of preventive measures. The person performing the 
assessment will know better whether the improvement of the manhole condition requires 
an operational intervention such as flushing, a structural intervention such as 
reconstruction of manhole components, or a combination of both. A flow chart of the 
proposed reliability-based condition assessment procedure is presented in Figure 1.   
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Figure 1: Flow chart of the proposed condition assessment of wastewater manholes. 
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The development of a manhole report will ensure that the Norwegian municipalities 
dedicate more focus to the manholes. As the inspection and assessment of manholes 
have not been performed extensively before, a significant number of manholes needs to 
be inspected. The visual inspection is both time demanding and expensive. Therefore, an 
optimization of this procedure is necessary. Majority of Norwegian water utilities have 
significant databases containing images of manholes. These images represent a good 
basis for the implementation of image recognition software. Recently, similar 
methodology has been implemented on CCTV footage from inspections of wastewater 
pipes. It has shown to be efficient in detecting sewer faults in a range of sewer shapes 
and construction materials (Myrans, et al., 2018). Similar results can be achieved for 
manholes as the image recognition software could be trained to recognize different 
manhole defects and their severity.  
 
An attempt of implementation of a such software on manhole images will be presented in 
this thesis. Custom Vision application provided by Microsoft will be used as the image 
recognition software. Images showing manholes with “Settled deposits” defect from 
category “Hydraulics” will be utilized for the training of the software to recognize 
different grades of this defect. After completed training, the software will be tested with a 
new set of manhole images. The trial presented here was successful, as the software 
managed to predict correctly the majority of testing images. Therefore, it is encouraged 
to continue the training of the software to recognize other manhole defects. Currently, 
the Custom Vision software is not able to calculate the total score of the photographed 
manholes and assign them into hydraulic condition classes. Digitalization of the 
assessment procedure will require development of an additional software, which is also 
encouraged as the results from this trail were satisfactory. An application that combines 
image recognition and a digitalized assessment will optimize and simplify both manual 
inspection and assessment of manhole condition out in the field.  
 
The presented work is pioneer in the field of Norwegian wastewater systems as both 
condition assessment of manholes and use of image recognition on manhole images are 
fairly new concepts. However, it represents only the beginning of the development 
process of an official manhole report. The proposed framework of the manhole report 
needs to be verified and adjusted as the weighting values proposed here should be based 
on a sensitivity analysis. This will lead to further adjustments of the proposed total score 
thresholds for hydraulic condition classes. In addition, the list of defects should be 
expanded with defect categories concerning other functions of manholes, such as the 
structural condition. The total assessment of all condition classes together will also 
require adjustments depending on how many defect categories the defects will be divided 
into. As for the image recognition of the manhole defects, the software will require to be 
trained with pictures representing other defects with corresponding grades. In order to 
digitalize the whole assessment, the calculation of the total scores and corresponding 
assignment of manholes into condition classes will require a development of a new 
software that can cooperate with the image recognition software. Hopefully, at the end of 
this process the personnel of the Norwegian water utilities can be equipped with an app 
that can be utilized out in the field. This will make the both inspection and assessment of 
manholes more objective, less time demanding and thus more affordable.  
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1.1 Thesis structure  
The content covering the objectives of this master’s thesis will be presented in two parts 
according to theme. The first part will review the content considering the first objective 
which is the development of a manhole condition assessment report. This part is 
presented through 5 chapters, starting with Chapter 2: Infrastructure Asset Management 
and ending with Chapter 7: Discussion of the proposed manhole condition assessment 
report and recommendations for future research. Chapter 2-4 present the necessary 
background theory, Chapter 5 presents the followed method, Chapter 6 presents the 
obtained results, while Chapter 7 presents the discussion of the presented results.  
 
The second part will review the content considering the second objective which is the 
implementation of the image recognition software on manhole images. This part is 
presented through 4 chapters, starting with Chapter 8: Artificial Intelligence, Machine 
Learning and Deep Learning and ending with Chapter 11: Discussion of the Custom 
Vision performance. Chapter 8 presents the necessary background theory, Chapter 9 
presents the followed method, Chapter 10 presents the obtained results, while Chapter 
11 presents the discussion of the presented results.  
 
The thesis was structured in the following way in order to focus the reader at one 
distinguished theme at a time. This will ensure an easier understanding of the presented 
content, as well as simplified navigation among the chapters.   
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2.0 Infrastructure Asset Management 
Infrastructure Asset Management (IAM) is a discipline that develops, improves and 
provides guidelines for a systematic approach concerning the management of 
infrastructure assets (Too & Tay, 2008). There are several definitions of IAM in use 
today. According to the publication “Implementing Asset Management: A Practical 
Guide”, IAM is: “An integrated set of processes to minimize the life-cycle costs of 
infrastructure assets, at an acceptable level of risk, while continuously delivering 
established levels of service.” (AMWA, NACWA and WEF, 2007). The methodology 
supports the realization of assets’ value while balancing social, financial and 
environmental costs, risk, service quality and assets’ performance (International 
Organization for Standardization, 2014). The overall goal of IAM is to optimize the utility 
of the asset over its life-cycle by intervening at the right time (Ugarelli, 2018). This can 
be done by direct repairs, preventive maintenance and rehabilitation of the asset within 
reasonable budget. The prioritization of assets is based on the quantification and 
assessment of risk produced by the failure or incapability of infrastructure assets to 
provide their intended functions or demanded levels of service (AMWA, NACWA and WEF, 
2007). The risk is assessed based on the probability and consequence levels of risk 
scenarios that are related to the asset. Probability represents the possibility of asset 
failure, while the consequence is the resulting impact on established levels of service. 
Management of infrastructure assets based on the guidelines provided by IAM could 
result in improved satisfaction of the costumers, enhanced governance and 
accountability, managed risk, improved efficiency, effectiveness and sustainability 
(International Organization for Standardization, 2014).  
 
The framework of Asset Management (AM) distinguish between the methodology and 
tools (Alegre & Coelho, 2012). The methodology of AM for water and wastewater 
infrastructure is an integrated approach that is a result of study performed during 
AWARE-P project, which stands for Advanced Water Asset Rehabilitation in Portugal 
(Alegre, et al., 2012). AWARE-P methodology approaches IAM as management process 
that must be adopted at three defined decisional levels (AWARE-P, 2011). The long-term 
direction of the water utility is defined at the strategic level. This level is driven by the 
corporate, long-term views and concerns the whole system at a macro scale (Alegre & 
Coelho, 2012). It results in several strategies aiming at the accomplishment of the 
defined direction. The next step of planning is performed at the tactical level. The 
purpose of this level is to define the path in the medium-term and establishment of 
priorities for possible interventions and solutions (Ugarelli, 2018). The planning at this 
level is implemented on subsystems and results in tactics. The operational level is the 
last planning level where short-term actions, such as operational plans, are planned and 
implemented (Alegre & Coelho, 2012). These actions are implemented on groups of 
components on a detailed scale in order to follow the previously defined path (Ugarelli, 
2018). An overview of the planning levels utilized in the IAM methodology for water and 
wastewater infrastructure is presented in Table 1. In addition to the decisional levels, the 
methodology requires cooperation between the competence of business management, 
engineering and information (Alegre & Coelho, 2012).   
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Table 1: Overview of the three planning levels in Infrastructure Asset Management for water and 
wastewater systems (Ugarelli, 2018). 

 
The AWARE-P approach to IAM planning procedure is based on Plan-Do-Check-Act 
(PDCA) principles (AWARE-P, 2011). Therefore, a PDCA-loop is performed at each 
decisional level. The principle of this cycle is illustrated in Figure 2. The implementation 
of PDCA-cycle throughout the decisional levels is aiming at the continuous enhancement 
of the IAM process (Alegre & Coelho, 2012). During the PDCA-cycle the objectives, 
assessment criteria, planning and analysis of time horizon, scenarios, metrics and several 
other factors are defined in order to ensure proper planning procedure at each level 
(Ugarelli, 2018).  

 
Condition monitoring and assessment are essential elements of Infrastructure Asset 
Management. Proper execution of condition monitoring and assessment will provide a 
large volume of information related to the condition and performance of the asset 
(Ugarelli, 2018). The purpose of the condition monitoring is to identify changes in the 
assets’ condition through systematic collection of data, while the goal of condition 
assessment is to establish the performance of the asset based on the detected conditions 
(Ugarelli, 2018). During this process the collected data is evaluated. The data obtained 
from both processes represents the basis for proper implementation of IAM (AMWA, 
NACWA and WEF, 2007). 
 

Levels Strategic Tactical Operational 
Scale Macro Medium Detail 

Scope Global system Trunk system / 
subsystems 

Groups of 
components 

Type of action Define directions Define path Implement action 

Responsible Asset owner (or 
administrator) Asset manager Head of operations 

Results Strategies Tactics Operational plans 

Time horizon Long term 
(10-20 years) 

Medium term 
(3-5 years) 

Short term 
(1-3 moths) 

Figure 2: Principle sketch of a PDCA-loop (Rokstad, 2018). 
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IAM tools include several types of models that are utilized in order to optimize the 
planning process and ensure the best possible decision-making. Condition-based 
deterioration models are used to predict the future condition and performance of the 
investigated assets (Ugarelli, 2018). They aim at planning of the preventive measures in 
a cost-effective manner to preserve the reliability of the asset. Markovian models are 
some of the models that are used to predict the future conditions. Assets are divided into 
classes according to their current condition state and the models will predict the 
probability of the transition to a worst class (Ugarelli, 2018). The transition is a function 
of numerous influences such as structural condition, construction material and quality, 
and environmental factors that affect the deterioration rate (Ugarelli, 2018). The model 
has to be provided with the information about condition classes of different age, together 
with variables that influence the condition of today’s classes and the deterioration speed 
(Ugarelli, 2018). 
 
Cohort survival models are used for Long-Term Planning (LTP) of strategic rehabilitation 
of urban water and wastewater systems. These models are utilized at the strategic level 
since the model is applied at the network level and not a single pipe (Bruaset, 2018). The 
assets are divided into groups or cohorts according the material, construction year and 
norm, and failure rates (Bruaset, 2018). These models are based on the Herz function 
which allows for prediction and comparison of the network behavior in the long-term time 
horizon. This behavior is provided in terms of the life expectancy and the predicted 
failure rate for each cohort of assets (Bruaset, 2018).   
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3.0 Reliability  
Reliability is a characteristic of an asset or item (Birolini, 2007). It is expressed by the 
probability that an asset or an item will perform its intended functions for a specific 
period of time under given operational and environmental conditions (Gulati & Smith, 
2009). Reliability is generally designated by R and can be determined and quantified 
through the use of several formulae depending on the type of function under analysis. 
From a qualitative point of view, the term can be defined as “the ability of the asset or 
item to remain functional” (Birolini, 2007). Quantitatively, reliability expresses the 
probability that no operational interruptions of the selected function will occur during a 
stated time interval under specified operational conditions (Birolini, 2007).  
 
To be able to analyze reliability of an asset, the concept of reliability has to be 
accompanied by the definition of the required function, failure, failure mode and 
operating environment. Additionally, it is also essential to know whether the asset is 
considered to be new at the start of the mission time (Birolini, 2007).  
 
International Electrotechnical Commission (IEC) defines the term “Required function” as 
“a function or a combination of functions of an item which is considered necessary to 
perform a given service” (International Electrotechnical Commission, 1990). The 
specified functions are often stated with corresponding functional requirements. For 
example, the essential function of a water pump is simply to pump water. However, 
corresponding functional requirement related to this function might be the specification 
of the water output as for instance an interval of 100-110 liters of water per minute. The 
definition of all functions related to an item with associated functional requirements is the 
starting point of any reliability analysis as it is the basis for future identification of 
potential failures and failure modes (Ugarelli, 2018).   
 
The complementary way of studying reliability in probabilistic terms is to analyze it as 
probability of an asset to fail as presented in Equation 1 (Ugarelli, 2018). If an asset is 
90% reliable for a given function/functional requirement, it means that it has a 10% 
probability of failure. In that case, one will be assessing the probability of an asset to fail.  
 
Equation 1: Reliability function (Ugarelli, 2018). 

 
 
 
 
 
 
According to IEC 60050-191:1990, a failure is defined as “the termination of the ability of 
an item to perform a required function” (International Electrotechnical Commission, 
1990). In other words, a failure is simply a nonfulfillment of a functional requirement 
(Ugarelli, 2018). Considering the water pump described earlier, a failure will be observed 
if the output of water is outside the specified interval of 100-110 liters of water per 
minute. 
 
 

𝑹(𝒕) = 𝟏 − 𝑭(𝒕) = ) 𝒇(𝒖)	𝒅𝒖
.

𝒕
										 

where	 
R(t) = the	probability	that	the	item	will	survive	at	least	to	time	𝑡	 
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Failures can occur suddenly or gradually, at varying frequencies (Birolini, 2007). In 
addition, their duration may be intermittent or extended (Ugarelli, 2018). The time 
without occurrence of any failures, also called failure-free time, can be reasonably long or 
relatively short thus it is generally a random variable. Besides the failure frequency, it is 
also important to classify failures according to the mode, cause, effect and mechanism 
(Birolini, 2007). A failure mode is the effect or symptom by which a failure is observed on 
a failed item (Ugarelli, 2018). Possible failure mode of the previously mentioned water 
pump can be the leakage out of the pump. The occurrence of the failure may be caused 
by weaknesses of the item, wear out, or mishandling during the design, manufacturing or 
use (Birolini, 2007). The consequences of a failure can be of different levels of criticality. 
The failures may be classified as not relevant, partial, complete or critical. In addition, 
they can be classified as primary and secondary depending on their ability to cause 
further failures. Lastly, the classification according to the failure mechanism distinguish 
between physical, chemical or other processes that can result in a failure (Birolini, 2007).  
 
Every item is designed with a certain level of reliability (Gulati & Smith, 2009). This 
reliability is defined as inherent reliability and is the maximum level of reliability that can 
be achieved by an asset. Only replacements or redesigning can change or improve the 
inherent reliability of an asset after installation (Gulati & Smith, 2009). However, it can 
be preserved at a certain level by establishment of proper maintenance plans. Such plans 
should include required maintenance and descriptions of additional actions needed to 
identify potential failures before they cause unprepared interruptions or shutdowns 
(Birolini, 2007).  
 
Operating environment also has a significant impact on the reliability as it reflects the 
conditions that the item has to operate under and how it is used (Birolini, 2007). In 
addition, the capability of the operators and maintenance technicians has also to be 
taken under account when considering operating environment. The main reason for this 
is the fact that poorly trained operators and maintenance crew will eventually lead to less 
reliable assets (Gulati & Smith, 2009).  
 
Analysis of the reliability of a single asset does not take into account the redundancy of 
the system the asset belongs to (Ugarelli, 2018). Hence, a failed single asset can be 
stated to be not reliable. However, if the asset under analysis is a part of a system then 
the reliability or function expected by the system has to be defined first. In such case, an 
asset can be a water pipe that is a part of a network, which is an example of a system. 
The expected function of such system can be supplying water demand at every hour in 
all operational conditions. This network/system is created by interconnected assets with 
their own functions and reliability. Here, the inherent reliability is the result of individual 
components’ reliability, the way they are designed and how they interact with each other 
(Gulati & Smith, 2009). Therefore, if the network is redundant it can still be reliable as a 
system even if some of the assets fail. These parts can be repaired but without 
operational interruptions at the system level (Birolini, 2007).  

  



 11 

4.0 Wastewater manhole design and functional 
requirements  

 
4.1 Definition of a wastewater manhole  
A manhole is an access point to an underground utility network, here wastewater 
system. They consist of pipes or half-pipes that go in and out of the manhole. The pipes 
inside the manhole may have additional equipment such as flowmeters. The main 
purpose of a manhole is to provide access to pipes and equipment inside the manhole 
(Buttler & Davies, 2011).  
 
Wastewater manholes are used to carry out inspections, cleaning and removal of 
obstructions in the sewer line. In addition, they serve for maintenance and rehabilitation 
of sewers, aeration and deaeration of flow and as emergency overflow during clogging, 
uncontrolled flooding or flood seasons (Hager, 1999). Manholes are provided at changes 
in pipe direction, changes in pipe size, heads of runs, changes in gradient, points where 
pipes meet and where additional equipment is necessary (Buttler & Davies, 2011). Figure 
3 shows a sketch of a wastewater manhole together with the tags of different parts 
(DANVA, 2010).   
 
Manholes facilitate the laying of pipelines in convenient lengths throughout the system 
(Buttler & Davies, 2011). They are installed at regular intervals depending on the 
diameter of the pipes and the requirements set by the municipality owning the system. 
In Larvik, the highest allowed distance between two wastewater manholes equals 70 
meters for pipes with diameters lower than 200 millimeters, and 100 meters for pipes 
with diameters higher than 200 millimeters (Larvik kommune, 2018).  
 

 
Figure 3: Sketch of a wastewater manhole. The illustration is adjusted from DANVA manhole 
manual (DANVA, 2010). 
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Manholes are often divided in three categories; shallow, normal and deep (Buttler & 
Davies, 2011). The type of applied manhole depends on the location and depth of the 
pipeline, the size of the pipeline, and the function that it is supposed to provide. Access 
to manholes is limited to authorized workers with training and necessary safety 
equipment to prevent accidents due to falls, and exposure to harmful gases like methane 
and hydrogen sulfide. Manholes are secured by manhole covers which prevent people, 
objects and debris from entering the system.   
 
 
4.2 Structural and operational requirements for wastewater 

manholes 
Wastewater manholes have to provide several functions according to the current 
Norwegian requirements. One of these is the structural function which requires that a 
manhole is able to carry the loads it is subjected to (Stiftelsen VA/Miljø-blad, 2018). 
Therefore, a manhole structure must have a sufficient structural reliability, which is here 
defined as the ability of sewer manhole components to provide continuing and long-term 
operation without the need for frequent repairs, modifications or replacements. 
Structural reliability of a manhole may also be defined as the probability that the 
component performs its expected function of carrying loads and experiences no 
structural failures for a given period of time in specified environment (Ugarelli, 2018). 
Hence, manholes must have sufficient strength in order to withstand and absorb both 
internal and external loads (Keseler, et al., 2018). In addition, their strength should not 
decrease with time (Loe Rørprodukter AS, 2017). They should also prevent leakage of 
stormwater and sewage, and infiltration of groundwater as these water movements may 
disturb the soil that supports the structure (Keseler, et al., 2018). In order to achieve 
that, the elements of a manhole structure are required to have sufficient material 
density. Furthermore, manholes should have resistance to mechanical wear as well as 
chemical and thermal influences from both inside and outside of the construction (Loe 
Rørprodukter AS, 2017). The expected life time of a wastewater manhole construction is 
100 years (Mosevoll, 2008). 
 
Proper hydraulic design of wastewater manholes is also required and essential for proper 
functionality (Stiftelsen VA/Miljø-blad, 2018). The description of an optimal hydraulic 
design will be provided in the following section together with a definition of hydraulic 
reliability and hydraulic failure. However, the wastewater manholes must have an 
appropriate roughness and flow capacity, as well as a self-cleansing ability (Keseler, et 
al., 2018).  
 
Inside a wastewater manhole, it should be possible to perform maintenance work, take 
necessary flow measurements and samples, and use equipment for pipe inspection and 
flushing (Loe Rørprodukter AS, 2017). Additionally, wastewater manholes have to ensure 
safe working environment for the operational workers of water utilities (Mosevoll, 2008). 
Based on the previously described requirements, the operational reliability is here 
defined as the ability of sewer manholes to provide safe and adequate access to the 
wastewater pipes to carry out inspections and maintenance, as well as take necessary 
flow measurements and samples.  
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4.3 Hydraulic design of wastewater manholes  
Manholes are very important for the hydraulic capacity of the whole wastewater system. 
However, they are often undervalued parts of the system when it comes to contribution 
to the roughness and flow capacity of the system (Hafskjold, 2009). The pressure loss 
caused by the surcharged manholes may be in the same order of magnitude as the 
pressure loss caused by the pipe friction. This depends mainly on the distance between 
the manholes, as well as the condition and design of the manholes (Hafskjold, 2009). A 
water and wastewater system with manholes of a good hydraulic design may have up to 
15% greater hydraulic capacity than a system with manholes of a bad hydraulic design 
(Lindholm, et al., 2012).  
 
The hydraulic performance of a wastewater manhole may be affected by factors such as 
number and angles of incoming streams, water level in incoming pipes and changes in 
roughness coefficients (Malvik, 2017). Invert channels in manholes represent nodes that 
ensure availability to the pipes; therefore, it is important that they are designed 
appropriately. Inadequate hydraulic design can lead to deposition and increased singular 
losses (Keseler, et al., 2018). Hence, it is important to account for proper design of 
channels with proper depth and curve radius in order to ensure good hydraulic properties 
of the manhole (Hafskjold, 2009). Dimension, direction, material or cross-sectional 
transition from incoming to outgoing pipes will also have an impact on the manhole 
hydraulics as it will contribute to increased singular losses. Consequently, the proper 
hydraulic design of wastewater manholes should contribute to minimalization of these 
losses (Hafskjold, 2009). 
 
There are several important factors to consider when designing a wastewater manhole 
with the optimal hydraulic design (Hafskjold, 2009). Norsk Vann report 172:2009 
“Trykktap i avløpsnett” outlines following factors as the most important: 

- Depth of the channels in wastewater manholes must be equal to or greater than 
the diameter of the connected pipe. 

- A conical fitting outside the manhole at the inlet and outlet to increase the 
diameter of the channel in the manhole reduces headloss.  

- Whenever two flows meet in a manhole, even a relatively small flow from either 
side will negatively affect the main flow going straight through the manhole, 
increasing pressure loss.  

- A directional change in the manhole is better directed through the manhole in a Y-
manhole with 45-degree angles than an X-manhole with 90-degree angles.  

 
An illustration of the important factors for proper hydraulic design described above is 
presented in Figure 4. In addition to the elements presented in this figure, the elevation 
to the bottom side channel should be greater than the elevation of the main inlet 
whenever it is possible (Hafskjold, 2009). Manholes without slope are not recommended. 
Preferably, the slope through the manhole should be greater than or equal to the slope of 
the outlet pipe (Hafskjold, 2009).  
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Figure 4: Important factors for proper hydraulic design of a wastewater manhole. The illustration is 
adjusted from Norsk Vann report 172:2009 "Trykktak i avløpsnett", 2009. 

 

4.3.1 Hydraulic reliability of wastewater manholes  
Hydraulic reliability has not been defined for wastewater manholes in the available 
literature. Therefore, a definition for hydraulic reliability has been formulated based on 
the theory presented in the sections 4.2 Structural and operational requirements for 
wastewater manholes and 4.3 Hydraulic design of wastewater manholes. Here, the 
hydraulic reliability is the ability of sewer manholes to interconnect and assist wastewater 
pipes in meeting the disposal capacity of wastewater from the users. The optimal 
interconnection of wastewater flow between the sewers by manhole invert channels is 
specified in terms of proper hydraulic design, which include specifications of; (i) channel 
depth, (ii) channel roughness, (iii) minimalization of energy and singular losses, (iv) self-
cleansing ability, (v) flow capacity. Hydraulic failures occur when one or several features 
of the proper hydraulic design of invert channels are altered, thus the wastewater flow 
through the manhole is retarded, interrupted or blocked totally. As a result, the outgoing 
sewer is not receiving the flow capacity that it was designed to convey further down the 
system.  
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4.4 Wastewater manhole defects 
Table 2 presents several defects that can be observed during an inspection of a 
wastewater manhole and that might lead to hydraulic and structural failures. The failures 
are divided into two failure categories named “Hydraulic failures” and “Structural 
failures”, respectively. The defects assigned into category “Hydraulic failures” have a 
direct impact on the hydraulic reliability of the wastewater manholes, while defects from 
category “Structural failures” have an impact on their structural reliability. The list of 
hydraulic defects is more comprehensive than the list concerning the structural defects, 
since the hydraulic reliability is in the main focus of the research presented in this thesis. 
Some defects appear in both categories since they have different impacts on both 
hydraulic and structural reliabilities. Therefore, these defects are described twice, but 
according to the considered failure category. Each defect is presented with a short 
description which refers to the elements constituting the manhole structure as depicted 
in Figure 3: Sketch of a wastewater manhole (DANVA, 2010). In addition, several of the 
presented defects are visualized through a picture example. The majority of the pictures 
presented in Table 2 are taken from the DANVA manhole manual “Brøndmanualen – 
Inspektion og registering af brønde”, with exception of the pictures showing the “Water 
level”, “Obstacle”, “Sings of overflow” and “Transition during change of construction” 
defects. These pictures were taken from the database of the municipality of Trondheim. 
The descriptions of defects were determined based on the descriptions presented in 
DANVA manhole manual and the CARE-S report D3 “WP2 – Structural condition. 
Classification systems based on visual inspection”. The descriptions presented in both 
reports were used interchangeably and were additionally adjusted in order to focus on 
the failure category that the described defects were assigned into.  
 
Table 2: Hydraulic and structural defects observed in wastewater manholes. 

Failure category: HYDRAULIC FAILURES 

Defect Description Picture example 
Water level The observed level of water inside 

the manhole. Intense turbulences in 
the water flow through the manhole 
can occur when the water level rises 
over the top of the channel resulting 
in the suction of air and 
consequently giving high energy 
losses (Hafskjold, 2009).  
 
 
  

Roots Roots of trees or other plants are 
growing into the manhole through 
joints, defects or connections 
resulting in reduced cross-sectional 
area of the invert channel and/or 
increase of the invert channel 
roughness. 
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Infiltration  Ingress of water through the wall of 
the manhole, joints or defects in the 
wall, benching or channel of the 
manhole resulting in increase of the 
flow through the manhole. 
 
 
 
 
 
  

Settled 
deposits  

Deposited material such as 
sediments or other bottom deposits 
are observed in the invert channels, 
resulting in the reduction of the 
cross-sectional area of the invert 
channel and/or increase of the 
invert channel roughness. 
 
 
 
  

Attached 
deposits  

Materials that stick to the invert 
channel resulting in the reduction of 
the cross-sectional area of the 
invert channel and/or increase of 
the invert channel roughness. 
 
 
 
 
 
  

Obstacles Foreign objects in the bottom 
section of the manhole resulting in 
the reduction of the cross-sectional 
area of the invert channel. 
 
 
 
 
 
 
  

Surface 
damage of 
the channel 

Inner side of the manhole channel is 
affected by aggressive media 
(corrosion) or wear (erosion) 
resulting in increased invert channel 
roughness.   
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Manhole 
bottom  

Condition assessment of the bottom 
section including benching, invert 
channels and corresponding slopes. 
A poor condition of the bottom 
section can contribute to operational 
disturbances, as well as inadequate, 
reverse or a complete lack of slope.   
 
 
 
  

Transition 
during 
change of 
construction  

Transition during change of 
material, dimension, direction or 
cross-section resulting in 
contribution to operational 
disturbances. Depending on the 
type of observed change, the 
resulting impact may involve the 
reduction of the cross-section, 
increase of the channel roughness, 
and/or contribution to infiltration, 
exfiltration or build-up of inputs.  
  

Signs of 
overflow  

Visible signs of overflow of 
wastewater into stormwater pipe or 
vice versa inside the manhole. The 
resulting impact on manhole 
hydraulics include increased flow in 
one pipe and decreased flow in the 
other pipe.  
 
 
 
  

Exfiltration  Visible leakage of flow out of the 
manhole resulting in decreased flow 
through the manhole and worsen 
self-cleansing properties.  
 

 

Deformation 
of bottom 
section  

The cross-sectional shape of the 
manhole bottom has been deformed 
from its original cross-section shape 
resulting in flawed transition 
between the inlet pipe and invert 
channel, and consequently reduced 
cross-sectional area of the invert 
channel.  
 

 

Fissure/ 
fracture in 
bottom 
section 

A fracture occurs in the material of 
the bottom section of the manhole 
resulting in contribution to 
infiltration or exfiltration of 
wastewater, or build-up of 
inappropriate or unwanted inputs. 
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Failure category: STRUCTURAL FAILURES 

Defect Description Picture example 
Fissure/ 
fracture 

A fracture occurs in the manhole 
material as a result of the exceeded 
load bearing capacity or the 
structure is physically fractured, 
resulting in compromised integrity 
of the manhole structure.  
 

 
Surface 
damage  

Inner side of the manhole structure 
is affected by aggressive media 
(corrosion) or wear (erosion) 
resulting in compromised integrity 
of the manhole material.   
 
 
 
 
 
  

Displaced 
joint  
 

One of the manhole chamber 
elements is not centered. Adjacent 
chamber elements are displaced in 
relation to each other. The resulting 
impact represent compromised 
integrity of the manhole structure. 
 
 
 
 
  

Intruding 
sealing 
material  
 

All of or part of the material used to 
seal a joint between two adjacent 
chamber elements is visible and 
intruding into the manhole.  
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Production 
failure  

A production failure is occurring in 
the manhole resulting in 
compromised integrity of the 
manhole material. Such failures 
include, but are not limited to, 
casting defect, honeycombing of 
concrete, defective lining, defective 
weld, porous material etc.  
 
 
  

Deformation  The cross-sectional shape of the 
manhole has been deformed from 
its original cross-section shape.  
 

 

 
All hydraulic and structural defects are presented with their corresponding failure modes 
in Table 3 based on the descriptions presented in Table 2. Many of these defects can be 
observed through several failure modes. Therefore, several of the described manhole 
defects appear beside more than one failure mode. The failure mode of “Production 
failure” defect is not presented in Table 3. This defect represents several different defects 
that occur as a result of an inadequate manufacturing process. Therefore, it has to be 
categorized further in order to be able to assign it to a failure mode. This is out of the 
scope of this thesis.   
 
Table 3: Hydraulic and structural manhole defects with corresponding failure modes. 

Failure category: HYDRAULIC FAILURES 

Failure mode Defect 

Formation of 
turbulences in the 
water flow through 
the manhole. 

Water level, Infiltration 

Reduction of the 
cross-sectional area 
of the channel. 

Roots, Settled deposits, Attached deposits, Obstacles, 
Deformation of bottom section, Transition during change of 
construction 

Increased 
roughness of the 
channel. 

Roots, Settled deposits, Attached deposits, Obstacles, Surface 
damage, Transition during change of construction 

Leakage of water Fissure/fracture in bottom section, Surface damage, Manhole 
bottom, Exfiltration, Signs of overflow 

Altered direction of 
the flow through 
the manhole. 

Manhole bottom, Transition during change of construction 

Infiltration of water Infiltration, Water level 
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Insufficient self-
cleansing Manhole bottom, Exfiltration 

Traces of 
wastewater on the 
benching or bottom 
section of the 
manhole  

Signs of overflow 

Failure category: STRUCTURAL FAILURES   

Failure mode  Defect 

Reduced bearing 
capacity  Fissure/fracture, Deformation  

Loss of soil support  Fissure/fracture, Deformation, Displaced joint  

Chemical attack, 
biological attack, 
wear  

Surface damage  
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5.0 Method for classification of manholes   
Currently, there is no official Norwegian report for classification of manhole condition. 
One of the purposes of the work presented in this master’s thesis was to develop a 
framework for a manhole condition assessment report. The report will focus on only one 
of the required functions of wastewater manholes; the hydraulic reliability. A literature 
study has been performed in order to establish the possible content of a such report. The 
proposed framework for the report will be grounded on the principles of IAM. The 
purpose of the procedure based on such guidelines is to ensure a balance between costs, 
risk, and desired level of service. It will improve the decision-making regarding the 
prioritization of future manhole projects and also support the decisions on how to 
intervene.  
 
Based on the research performed during the literature study it was established that there 
are several published reports that could be used as a basis for the content and structure 
of a manhole report dedicated to hydraulic defects. DANVA manhole manual 
“Brøndmanualen – inspektion og registrering af brønde” is one of such reports. It was 
published in 2010 by Danish Water and Wastewater Association, also known as DANVA, 
and was revised in 2016. It contains descriptions of several manhole defects and their 
severity. All defects are categorized and coded, and their severity is graded on a scale 
form 1 (not severe) to 4 (crucial) or from 0 to 4 (DANVA, 2010). This system could be 
adjusted and utilized during inspections of Norwegian manholes. Therefore, it will be 
used as the basis for the descriptions and grading of the hydraulic defects. The 
descriptions and types of the defects were additionally based on the literature presented 
in the CARE-S report D3 “WP2 – Structural condition. Classification systems based on 
visual inspection”. CARE-S stands for Computer Aided Rehabilitation of Sewer Networks 
and represents a research and technological project of European community. This report 
is one of several reports developed during this initiative. It presents and compares 
several national and international standards, guidelines etc. for both wastewater pipes 
and manholes (Knolmar & Szabo, 2003).  
 
Further assessment of manhole condition will be based on the procedure presented in 
NORVAR report 150/2007 “Dataflyt – Klassifisering av avløpsledninger” and its revised 
version published in Norsk Vann report 235:2018 “Dataflyt – Klassifisering av 
avløpsledninger”. These reports were published by Norsk Vann, which is a national 
association representing Norwegian water industry (Bernhus, et al., 2007). Both reports 
are based on the principles of IAM and describe the condition assessment of Norwegian 
wastewater pipes (Haugen, 2018). Procedure for condition assessment of wastewater 
pipes has also been adjusted and implemented on wastewater manholes in the USA. It 
has proved to be successful as the workers were already known with the procedure 
(NASSCO, 2015). DANVA manhole manual and Norwegian condition assessment reports 
for wastewater pipes were also used as the basis for the classification of Norwegian 
manholes proposed by Sigurd Malvik in his specialization project “Implementing Asset 
Management and Inspection Procedures to Wastewater Manholes” (Malvik, 2017). This 
report was also utilized during the whole development process of the theoretical report 
presented in this thesis. 
 
Weighting values were determined based on the weighting values for defects observed in 
Norwegian and Danish wastewater pipes. Norsk Vann report 235:2018 contains 
weighting values that are utilized for wastewater pipes during CCTV-inspections. These 
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values are based on the Danish weighting values presented in DANVA report number 66 
“Fotomanualen – Beregning af fysisk indeks ved TV-inspektion”. However, the numbers 
presented in Norsk Vann report 235:2018 are adjusted to the Norwegian conditions. Both 
reports were utilized during the determination of weighting values for hydraulic defects 
observed in wastewater manholes. Table 4 shows the weighting values utilized for 
Norwegian wastewater pipes (Haugen, 2018), whereas Table 5 shows the weighting 
values utilized for Danish wastewater pipes (DANVA's Afløbskomité, 2005). English 
translations of both Norwegian and Danish terms are provided below each term in blue 
font.   
 
The concept of assigning manholes into condition classes according to pre-defined 
thresholds of total scores was inspired by the literature presented in Norsk Vann report 
235:2018. Whereas, the proposed registration scheme was based on the appendix 
presented in the DANVA manhole manual.  
 
Table 4: Weighting values utilized for defects observed during CCTV-inspections of Norwegian 
wastewater pipes. Translated from “Dataflyt – Klassifisering av avløpsledninger”, 2018. 
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Table 5: Weighting values utilized for defects observed during CCTV-inspections of Danish 
wastewater pipes. Translated from “Fotomanualen – beregning af fysisk indeks ved TV-inspektion”, 
2005. 
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6.0 Proposed manhole condition assessment report  
 
6.1 Structure of the proposed manhole report  
The proposed framework for manhole condition assessment report will accompany 
operators in the field from the beginning of an inspection to a finalized assessment of the 
manhole condition. The framework will help the operators to select codes, grades and 
weights for the observed defects, and guide them to follow the specified rules of the 
condition assessment procedure. The proposed manhole report will also provide 
instructions on how to collect data during inspections. This is suggested here in form of a 
registration scheme that reflects the rules and tables provided in the proposed 
framework. The hydraulic reliability of wastewater manholes is in the main focus of the 
presented manhole report. The content concerning the defects having an impact on this 
reliability will be presented in the next section of this chapter, together with a 
corresponding registration scheme. In this section, the structure of the proposed 
framework will be presented.  
 
In order to present the general layout of the proposed manhole report, it will for now be 
distinguished between two defect categories; “Hydraulics” and “Structural condition”. The 
first category will comprise of defects that have an impact on the hydraulic reliability of 
the inspected manhole. These defects will be listed, described, graded and weighted. 
Total score ranges with corresponding hydraulic condition classes will also be presented. 
The “Structural condition” category is not in the focus of this study and will not be 
described as comprehensively as the category “Hydraulics”. Theoretical defects from this 
category will have an impact on the structural reliability of manholes. Some of the 
structural defects will only be used here as examples to present the structure of the 
proposed manhole condition assessment report. However, similar procedure of defect 
description, coding, grading, weighting, total score aggregation and condition class 
determination should be performed in the future for structural defects.  
 
As mention previously, all defects presented in a defect category should be described, 
coded and graded. Table 6 presents the structure that will be used for presentation of the 
defects with corresponding defect codes. The proposed defect codes will comprise of 3 
capital letters where the first letter will represent the defect category, as “H” for 
“Hydraulics” or “S” for “Structural condition”. The following two letters are an 
abbreviation for the defect observation as the codes shown in Table 6. Additionally, each 
of the defects from “Hydraulics” defect category will be presented with a short 
description. 
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Table 6: Example of categorization and coding of manhole defects in category “Structural 
condition”. The table is adjusted from “Implementing Asset Management and Inspection 
Procedures to Wastewater Manholes”, 2017.  

 
Each of the listed defects will be graded according to their severity. Table 7 presents 
grading of defect “Fissure/rupture” on a scale from 1 to 4 (DANVA, 2010). Grade 1 
represents a not severe defect, while grade 4 represents a crucial observation. Similar 
grading scale will be utilized for the defects from category “Hydraulics”. Additionally, 
each of the grades will be described in order to indicate which specific observation should 
be appointed to a grade.  
 
Table 7: Grading of defect “Fissure/rapture” with corresponding description of each grade (DANVA, 
2010). 

 
Each of the defect grades will be assigned a weighting value in order to reflect their 
criticality in the calculated total score. Table 8 presents weighting values for grades of 
the defects “Fissure/rupture” and “Surface damage” observed in Norwegian wastewater 
pipes. Equal setup will be utilized for presentation of the weighting values for the 
hydraulic defects in wastewater manholes.  
 
Table 8: Weighting values for defects “Fissure/rupture” and “Surface damage” observed in 
wastewater pipes (Haugen, 2018). 

 
The grade of each observed defect will be multiplied with corresponding weighting value. 
This will be repeated for all registered defects within a defect category. In order to obtain 
a total score for the inspected manhole, the products of all multiplications will be 
summed up into one score for each category. The obtained total score will then be 

Category:  
Structural condition 

Defect code 
(Malvik, 2017) 

Defect code  
(Haugen, 2018) 

Fissure/rupture FR SB 
Surface damage SD KS 

Manufacturing defects MF PF 
Deformation DF DF 

Displaced joints ME FS 
Intruding sealing material IM ST 

Defect Defect 
code 

Grade  Grade description  

Fissure/ 
rupture 

FR 1 Crack are lines visible. 
2 Crack is open. 
3 A piece of the manhole material is gone, little hole in the 

manhole structure.   

4 A large piece of the manhole material is gone, the hole is 
deep and reaches the soil layer.  

Defect Defect 
code 

Weight 
Grade 1 Grade 2 Grade 3 Grade 4 

Fissure/rupture SB 0,01 0,1 2 10 
Surface damage KS 0,02 0,06 0,6 10 
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compared against pre-defined thresholds in order to assign manholes into condition 
classes. A flow chart summarizing the described process is presented in Figure 5.  
 

 
Figure 5: Flow chart summarizing the proposed manhole condition assessment. 

 
Table 9 presents condition classes utilized for wastewater pipes with corresponding 
thresholds of total scores (Haugen, 2018). The total scores for wastewater pipes 
comprise of summation of defects from all defect categories. This will not be 
implemented for wastewater manholes in the report presented here, as the total score 
ranges will be determined separately for all defect categories. Here, the condition classes 
and total score ranges will be presented only for defects from category “Hydraulics”. 
Similar table should be obtained in the future for the defects from category “Structural 
condition” in order to complete all steps of the manhole condition assessment as 
described in this section. Based on such structure of the assessment, the condition 
classes will describe the condition of the inspected manhole according to one specific 
function. This will result in simplified determination of proper maintenance and/or 
rehabilitation actions.  
 
Table 9: Condition classes for wastewater pipes presented in Norsk Vann report 235:2018 
(Haugen, 2018). 

 
 
 
 
 
 

 
When manhole condition classes for both “Hydraulics” and “Structural condition” defect 
categories are obtained, they should be compared. A comparison of both condition 
classes should result in an idea of needed preventive action as it will be clear what is the 
dominant malfunction of the assessed manhole. Figure 6 and 7 present visualizations of 
such comparisons together with some guidelines on the type of needed preventive 
measure. The first figure presents a case where the obtained hydraulic class is H1, which 
represents a very good hydraulic condition, is paired together with different structural 

Assign a grade to each observed defect. 

Multiply each grade with corresponding weighting value. 

Sum all of the products into one total score. 

Compare the obtained score against predefined thresholds. 

Assign the inspected manhole into a hydraulic condition class. 

Condition 
class 

Total score 
thresholds 

Condition description 

S1 0-5 Very good 
S2 6-10 Good 
S3 11-20 Questionable 
S4 21-50 Bad 
S5 >50 Very Bad 
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condition classes. The second figure presents another case where the obtained hydraulic 
class is changed to H5, which represents a very bad hydraulic condition.  
 

 
Figure 6: Hydraulic condition class H1 paired with different structural condition classes resulting in 
different types of desirable preventive actions.  

 

Figure 7: Hydraulic condition class H5 paired together with different structural condition classes 
resulting in different types of desirable preventive actions. 

 
According to the figures presented above, it can be assumed that wastewater manholes 
within condition classes H1/S1 or H1/S2 do not require any actions in form of 
rehabilitation. Condition class H3/S3 might require improved monitoring of the condition 
with additional consideration of precautionary operational or structural interventions. 
Manholes within condition classes H4/S4 and H5/S5 will require immediate actions either 
in form of maintenance, rehabilitation or replacement. It should be noted that if any 
defect with grade 4 (most severe) is observed in any of the condition classes above, the 
manhole should be maintained or rehabilitated immediately.  
 
The last section of the proposed manhole condition assessment procedure will present a 
suggestion for a registration scheme that should be utilized out in the field during 
inspections. The purpose of this scheme is to ensure that all necessary information is 
registered and available for the person performing the assessment of the manhole 
condition. The proposed registration scheme includes only the template for defect 
registration in order to use the proposed condition assessment approach.  
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6.2 Assessment of the hydraulic reliability of wastewater manholes  
 
6.2.1 Defects with potential to affect the hydraulic reliability  
There are several defects that have a potential to affect negatively the hydraulic 
reliability of wastewater manholes. The most common defects with high potential to 
reduce this reliability are presented in Table 10. The selected defects are listed with 
corresponding defect code, description and types. In addition, some of the defects 
presented in Table 10 are visualized through a picture example in the first part of Table 2 
in section 4.4 Wastewater manhole defects. The descriptions of defects and types were 
determined based on the descriptions presented in DANVA manhole manual and the 
CARE-S report D3.  
 
Table 10: Description of the defects from defect category “Hydraulics” with corresponding defect 
codes and types. 

Defect Defect 
code Description Type 

Water level HWL The observed level 
of water inside the 
manhole. 

D: Drinking water 
S: Stormwater 
W: Wastewater 
 

Roots HRO Roots of trees or 
other plants are 
growing into the 
manhole through 
joints, defects or 
connections. 
 

F: Independent fine roots 
M: Complex mass of roots 
T: Tap root  
 

Infiltration  HIN Ingress of water 
through the wall of 
the manhole, joints 
or defects in the 
wall, benching or 
invert channels of 
the manhole. 
 

S: Sweating; slow ingress of water, no 
visible drips. 
D: Dripping; water is dripping in, not 
continuous flow. 
F: Flowing; a continuous flow of water. 
G: Gushing; water is entering under 
pressure. 
 

Settled 
deposits  

HSD Deposited material 
such as sediments 
or other bottom 
deposits are 
observed in the 
invert channels, 
water line or on the 
benching. 
 

O: Other 
F: Fine (e.g. sand, silt) 
C: Coarse (e.g. gravel, rubble)  
H: Hard or compacted material (e.g. 
concrete) 
P: Paper/faeces 
 

Attached 
deposits  

HAD Materials that stick 
to the invert 
channel. 

O: Other 
G: Grease 
F: Fouling (e.g. organic material) 
P: Precipitated inorganic materials (e.g. 
iron, lime, ochre)   
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Obstacles HOB Foreign objects in 
the bottom section 
of the manhole. 

O: Other objects 
D: Dislodged brick or masonry unit  
P: Pieces of broken pipe  
 

Deformation 
of bottom 
section  

HDB The cross-sectional 
shape of the 
manhole bottom has 
been deformed from 
its original cross-
section shape. 
 

G: General deformation; affects a large 
portion of the wall of the manhole. 
P: Point deformation; affects a relatively 
small portion of the wall. 
 

Surface 
damage  

HSF Inner side of the 
manhole is affected 
by aggressive media 
(corrosion) or wear 
(erosion).   

O: Other  
A: Visible/missing aggregate 
C: Corrosion  
V: Visible reinforcement  
 
 

Fissure/ 
fracture in 
bottom 
section 

HFF A fracture occurs in 
the material of the 
bottom section of 
the manhole. 
 

S: Spalling  
B: Break/fracture  
C: Circular – crack extends 
perpendicular to the manhole axis. 
L: Longitudinal – crack extends along 
the manhole axis. 
M: Composite – combination of both 
circular and longitudinal cracks.  
 

Manhole 
bottom  

HMB Condition 
assessment of the 
bottom section 
including benching 
and invert channels. 
 

B: Defective benching  
C: Defective channel 
S: Sand trap 
 

Transition 
during 
change of 
construction  

HTC Transition during 
change of material, 
dimension, direction 
or cross-section.  
 

D: Change in dimension. 
M: Change in material. 
T: Change in direction. 
C: Change in cross-section.  
 

Signs of 
overflow  

HOV Visible signs of 
overflow inside the 
manhole.  
 

S: Stormwater  
W: Wastewater 

Exfiltration  HEX Visible leakage of 
flow out of the 
manhole. 
 

D: Drinking water 
S: Stormwater 
W: Wastewater 
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6.2.2 Grading of the hydraulic defects   
Grades and corresponding grade descriptions of all hydraulic defects described in section 
6.2.1 Defects with potential to affect the hydraulic reliability are presented in Table 11. 
Majority of the defects is graded on a scale from 1 to 4, where grade 1 represents a not 
severe observation, while grade 4 represents a crucial observation. Thus, grade 4 is 
assigned to the defect observations that have the most negative effect on the hydraulic 
reliability of the inspected manhole. However, defects such as “Water level”, “Manhole 
bottom”, “Transition during change of construction”, “Signs of overflow” and “Exfiltration” 
have an additional grade 0. Both grade scales and grade descriptions were based on the 
ones presented in the DANVA manhole manual. The descriptions presented in this report 
were occasionally rewritten in order to focus more on the potential impact on the 
hydraulic reliability of wastewater manholes. 
 
The grades of defects such as “Roots”, “Settled deposits”, “Attached deposits”, 
“Obstacles”, and “Deformation of bottom section” are described through the percentage 
reduction of the cross-sectional area of the invert channels. The “Water level” defect was 
graded based on the different water heights that could be observed in a manhole, while 
the “Infiltration” defect was graded based on the nature of the water penetrating the 
manhole construction. The grades of the defect “Surface damage” were based on the 
observed condition of the surface and corresponding roughness of the channel, while the 
“Manhole bottom” defect was graded based on the observed slope of the benching and 
bottom section of the manhole. The grades of the defect “Fissure/fracture in bottom 
section” were described based on the nature of the observed fissure. “Transition during 
change of construction” defect was graded based on the percentage change of the 
manhole shape.  
 
The grading of the defects “Signs of overflow” and “Exfiltration” required implementation 
of a smaller grade scale, where the first defect was graded on a scale from 0 to 2 and the 
second defect was graded on a scale from 0 to 1. For these two defects the grade 0 
stands simply for none visible observation of either defect. The grades 1 and 2 for “Signs 
of overflow” defect stand for visible observations of the defect, where the grade 1 reflects 
the observation of stormwater overflow and grade 2 reflects the observation of 
wastewater overflow. Grade 1 of defect “Exfiltration” stands for visible observation of 
leakage. Both “Signs of overflow” and “Exfiltration” defects were not graded in the 
DANVA manhole manual.  
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Table 11: Grades of hydraulic defects with corresponding description of each grade. 

Defect Defect 
code Grading 

Water level HWL 0: Water is not observed inside the manhole.  
 
1: Water is observed in the invert channels. The observed 
water level is below the level of benching. 
 
2: Observed water level is on the benching, above the 
highest point of the main invert channel, but below the 
highest point of the benching. 
 
3: Observed water level is above the highest point of the 
main invert channel, but below the adjusting construction 
and cover frame. 
 
4: Observed water level reaches the manhole taper, 
adjusting construction or cover frame. 
 

Roots HRO 1: Roots represent up to 10% of the cross-sectional area of 
the channel. The reduction is observed either from the 
bottom or top section of the channel.  
 
2: Roots represent from 10% and up to 50% of the cross-
sectional area of the channel. The reduction is observed 
either from the bottom or top section of the channel. 
 
3: Roots represent from 50% and up to 90% of the cross-
sectional area of the channel. The reduction is observed 
either from the bottom or top section of the channel. 
 
4: Roots represent over 90% of the cross-sectional area of 
the channel. The reduction is observed either from the 
bottom or top section of the channel. 
 

Infiltration  HIN 1: Manhole element is humid which is an indication of 
infiltration. No visible signs of penetrating or dripping 
water. Can often be observed as “shiny spots” on the 
manhole wall.  
 
2: Water is penetrating the manhole construction, dripping 
inside the manhole.  
 
3: Water penetrates continuously though the manhole wall 
or joints as pressurized flow in a thin water jet.  
 
4: Water penetrates tremendously though the manhole 
wall or joints as pressurized flow in a thick water jet. 
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Settled deposits  HSD 1: Settled deposition represents up to 10% of the cross-
sectional area of the channel. 
 
2: Settled deposition represents from 10% and up to 50% 
of the cross-sectional area of the channel.  
 
3: Settled deposition represents from 50% and up to 90% 
of the cross-sectional area of the channel. 
   
4: Settled deposition represents over 90% of the cross-
sectional area of the channel.   
 

Attached 
deposits  

HAD 1: Attached deposits represents up to 10% of the cross-
sectional area of the channel. 
   
2: Attached deposits represents from 10% and up to 50% 
of the cross-sectional area of the channel. 
    
3: Attached deposits represents from 50% and up to 90% 
of the cross-sectional area of the channel. 
   
4: Attached deposits represents over 90% of the cross-
sectional area of the channel.   
 

Obstacles HOB 1: Obstacle represents up to 10% of the cross-sectional 
area of the channel.   
 
2: Obstacle represents from 10% and up to 50% of the 
cross-sectional area of the channel.    
 
3: Obstacle represents from 50% and up to 90% of the 
cross-sectional area of the channel.   
 
4: Obstacle represents over 90% of the cross-sectional 
area of the channel.   
 

Deformation of 
bottom section  

HDB 1: The invert channels overlap well with the pipe 
inlet/connected pipe. Deformation represents up to 10% of 
the cross-sectional area of the channel.  
 
2: The transition between the inlet pipe and invert 
channels is displaced. Deformation represents from 10% 
and up to 50% of the cross-sectional area of the channel.  
 
3: The invert channels overlap poorly with the inlet pipe. 
Deformation represents from 50% and up to 90% of the 
cross-sectional area of the channel. 
   
4: The invert channels do not overlap with the inlet pipe. 
Deformation represents over 90% of the cross-sectional 
area of the channel. 
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Surface damage  HSF 1: The roughness of the manhole element is increased.  
The inspector can observe starting exposure of stones in 
concrete manholes.  
 
2: The roughness of the manhole element is visibly 
increased.  
The stone material is visibly exposed.  
The surface of the bricks is attacked, or grout is partially 
removed in brick manholes.   
 
3: The roughness of the manhole element is increased 
considerably. Parts of the stone material are missing, or 
the reinforcement is exposed to the environment.  
 
4: Parts of the manhole elements’ inner side are corroded 
or eroded away. Soil and/or holes are visible.  
 

Fissure/fracture 
in bottom section 

HFF 1: Fissure lines are visible on the bottom section.  
 
2: Fissure is open in the bottom section.  
 
3: A piece of the manhole bottom material is gone or 
displaced (range: under clock position 4).   
 
4: A piece of the manhole bottom material is gone or 
displaced (range: clock position 4 or more).   
Masonry is collapsed, or the bottom section has sat down 
in relation to the masonry.  
 

Manhole bottom  HMB 0: Cross-section of the bottom is uniform with slope 
towards outlet.  
The slope of the benching is towards outlet.  
The bottom is a sand trap.  
 
1: Cross-section of the bottom can contribute to 
operational disturbances (expansions/narrowing).  
 
2: The bottom section does not have a slope.  
Benching is installed without slope.  
 
3: The bottom section has a reverse slope.  
Benching is partially gone.  
 
4: Bottom or benching is gone.  
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Transition during 
change of 
construction  

HTC 0: The transition is carried out with prefabricated transition 
piece without any imperfections and without change in the 
shape of the manhole cross-section.  
 
1: The transition is smooth and close to the manhole wall, 
without imperfections. The change in the shape of the 
manhole cross-section is less then 10% of the cross-
sectional area.  
 
2: Seemingly tight transition with minor imperfections. The 
change in the shape of the manhole cross-section is from 
10% and up to 50% of the cross-sectional area over the 
highest point of the main channel. 
 
3: Seemingly tight transition with minor imperfections. The 
change in the shape of the manhole cross-section is from 
10% and up to 50% of the cross-sectional area under the 
highest point of the main channel. 
 
4: Over 50% change in the shape of the cross-section in 
the transition. The soil is visible.  
 

Signs of overflow  HOV 0: None visible signs of either stormwater or wastewater 
overflow. 
 
1: Yes, visible signs of stormwater overflow.  
 
2: Yes, visible signs of wastewater overflow.  
 

Exfiltration  HEX 0: None visible signs of exfiltration. 
 
1: Yes, visible signs of exfiltration.  
 

 
 
6.2.3 Weighting values for hydraulic defects  
Weighting values for the defect grades described in section 6.2.2 Grading of the hydraulic 
defects are presented in Table 12. The proposed weighting values were based primarily 
on the values presented in the Norsk Vann report 235:2018. Numbers proposed in this 
report were based on the values from the DANVA report number 66. However, they were 
additionally adjusted to the Norwegian conditions. Weighting values for Norwegian 
wastewater pipes were presented in Table 4, while the Danish values were presented in 
Table 5. Not all defect grades from Table 12 were weighted in the Norsk Vann report 
235:2018, therefore the DANVA report number 66 was also utilized.  
 
The weighting values presented in Table 12 are higher than the values given to defects 
observed in Norwegian pipes. During calculation of the total score for wastewater pipes, 
the sum of all defects multiplied by the weighting value is divided by the length of the 
pipe in order to distribute the defects throughout the whole pipe length. This will not be 
performed during calculation of the total score for manholes since manholes represents 
nodal points in the system. Therefore, higher weighting values for manhole defects will 
ensure total score ranges that are easier to work with.  
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Weighting values for defects “Roots”, “Settles deposits”, “Attached deposits”, “Obstacle”, 
“Deformation of the bottom section” and “Transition during change of construction” were 
decided to be equal. The definitions of grades for these defects are all based on the same 
scale of percentage reduction of the cross-sectional area of the invert channel due to 
presence of these defects. The weighting values for the defect “Water level” were based 
on the values presented in the DANVA report number 66. These values are lower than 
the values assigned to previously mentioned defects since the theoretical consequences 
of the defect “Water level” are assumed to be less crucial for the hydraulic reliability. 
Defects “Signs of overflow” and “Manhole bottom” were not weighted in both Norsk Vann 
and DANVA reports. However, the weighting values for these defects were determined 
based on an assessment of theoretical consequences and already established values for 
other defects. Defect “Manhole bottom” was assigned equal weighting values as the 
defects defined by the cross-sectional reduction of the invert channel since it was difficult 
to assess the extent of consequences of “Manhole bottom” defect in relation to the other 
defects. 
 
The weighing values of defect “Infiltration” were decided to be lower than the values for 
defects such as “Settled deposits” and “Obstacles”. The problem of infiltration is well 
known in Norway and represents smaller issues than defects that contribute to the 
buildup of deposits in the invert channels. The values for grades 3 and 4 of defects 
“Surface damage” and “Fissure/fracture in bottom section” are equal to the ones given to 
defects such as “Roots” and “Obstacles”. However, for grades 1 and 2 the values are 
lower as the impacts of these defects according to their grade descriptions are 
theoretically less significant.  
 
Table 12: Weighting values for hydraulic defect grades. 

Observation  
Weight 

Grade 0 Grade 1 Grade 2 Grade 3 Grade 4 

Water level 0 0 0,1 1 2 

Roots  0,5 2 4 6 

Infiltration  0,1 0,3 0,5 2 

Settled 
deposits  0,5 2 4 6 

Attached 
deposits  0,5 2 4 6 

Other 
obstacles  0,5 2 4 6 

Deformation 
of the 
bottom 
section 

 0,5 2 4 6 

Surface 
damage  0,5 1 4 6 
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Fissure/ 
fracture in 
bottom 
section 

 
 0,1 0,5 4 6 

Manhole 
bottom 0 0,5 2 4 6 

Transition 
during 
change of 
construction 

0 0,5 2 4 6 

Signs of 
overflow 0 2 4 

  

Exfiltration 0 3  
  

 
 
 
6.2.4 Hydraulic condition classes with corresponding total score thresholds 
Total score for an inspected manhole will be calculated by multiplying the grades of the 
observed defects with their corresponding weighting values and summarizing all of the 
resulting products. The formula for the calculation of the total score is presented in 
Equation 2. In addition, the defect grades that are observed several times in a manhole 
should be multiplied with the number of the observations. 
 
 
 

 

 

 

 
After the calculation of the total score, the score must be compared against the pre-
defined thresholds presented in Table 13. The comparison will result in allocation of the 
inspected manhole into a hydraulic condition class. The manholes can be assigned into 
one of five proposed condition classes, where the hydraulic condition class “H1” 
represents a very good hydraulic condition while class “H5” represents a very bad 
hydraulic condition. The letter “H” stands for “Hydraulics” which is the name of the defect 
category that is being assessed. The total score thresholds shown in Table 13 are 
proposed as a first attempt. They are obtained by simulating multiple combinations of 
defects with different grades. Only the availability of a large amount of inspection data 
can verify and eventually adjust the proposed thresholds. This has been attempted here 
through assessment of a small number of wastewater manhole images. However, these 
images do not represent enough variation in order to fairly state whether the proposed 
thresholds are accurate and thus do not require further adjustments. Two of the 
assessed images are presented in Appendix 1.    
 
 

𝑻𝑺 = (𝑮𝟏 ∗𝑾𝟏) + (𝑮𝟐 ∗ 𝑾𝟐) + ⋯+ (𝑮𝒏 ∗𝑾𝒏)														 
where	 
TS = 	Total	score	for	the	inscpected	manhole	 
	𝐺Q = Grade	of	the	nST	observed	defect	 
𝑊Q = Corresponding	weighting	value	for	the	grade	of	the	nST	observed	defect	 
 

Equation 2: Proposed calculation of the total score. 



 37 

Table 13: Hydraulic condition classes with corresponding total score thresholds. 

Hydraulic condition  
class 

Condition class 
description 

Total score  
thresholds 

H1 Very good 0 – 6,7 

H2 Good 6,8 – 20,4  

H3 Questionable 20,5 – 48,7  

H4 Bad 48,8 – 66  

H5 Very bad > 66 

 
 

6.2.5 Registration scheme  
Completion of the whole assessment of the hydraulic condition of a manhole depends on 
a proper registration of data out in the field. Table 15 present a suggestion for the layout 
of the registration scheme. However, the full report should include requirement for 
registration of additional information. Such data should include records of the address 
and/or ID-number of the inspected manhole, reason for the inspection, date of the 
inspection, method by which the inspection was conducted, name of the inspector etc. In 
addition, the official registration scheme should include a requirement of proper picture 
documentation of the inspected manhole. It should underline that the images must be of 
a good quality and represent accurately the current state of the manhole condition.  
 
The registration scheme presented in Table 15 includes only the template for defect 
registration in order to use the proposed condition assessment approach. It consists of 
seven columns where the first four focus on the registration of the defect, defect code, 
defect type and defect grade. The following column is dedicated to the registration of the 
location of the observed defect. The location will be specified by numbers as presented in 
Figure 8. The proposed numbers are defined in Table 14.  
 

 
Figure 8: Possible locations of defects observed in a manhole labeled by numbers. The illustration 
is adjusted from DANVA manhole manual (DANVA, 2010). 
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Table 14: Definitions of the locations labeled by numbers. 

Location number Definition of the location 
1 Cover 
2 Frame 
3 Adjusting construction 
4 Taper 
5 Chamber 
6 Benching 
7 Inlet 
8 Outlet 
9 Channel 
10 Bottom section  
11 Silt pit 

 
The subsequent column is dedicated to the registration of the circumferential location of 
the observed defects. This location should be registered for all defects, whenever it is 
possible. The position around the circumference of the manhole should be recorded using 
the clockface references. A defect distribution of 1 hour corresponds to 30 degrees 
measured in relation to the manhole center (DANVA, 2010), as presented in Figure 9. 
Circumferential location is named “CF location” in Table 15. 

 
Figure 9: Clockface references for circumferential location of manhole defects (DANVA, 2010). 

 
The last column is dedicated to additional remarks related to each observed defect, 
whereas the last row of the scheme is dedicated to the remarks related to the overall 
observed condition of the manhole. This row should be utilized when the condition of the 
inspected manhole is visibly bad or very bad. The person performing the assessment will 
then know that the condition is not satisfying and should be improved even if the 
calculated total score would suggest otherwise.  
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Table 15: Registration scheme. 

Defect Code Type Grade Location 
(1-11) 

CF 
location 

Remarks 

Water level HWL D 
S 
W 
  

0 
1 
2 
3 
4 

 
 

 The height of the 
observed water level 
should be recorded.  

Roots HRO F 
M 
T 
  

1 
2 
3 
4 

 
 
 
 
 

  

Infiltration HIN S 
D 
F 
G 
 

1 
2 
3 
4 

  The means of entry 
of the infiltration 
should be recorded 
with circumferential 
location.  

Settled 
deposits 

HSD O 
F 
C 
H 
P 
 

1 
2 
3 
4 
 

  If type O; further 
details should be 
recorded.  

Attached 
deposits 

HAD O 
G 
F 
P 
 

1 
2 
3 
4 

  If type O; further 
details should be 
recorded. 

Other 
obstacles 

HOB O 
D 
P 

1 
2 
3 
4 

  If type O; further 
details of the 
observed obstacle 
should be recorded.   

Deformation 
of the 
bottom 
section 

HDB G 
P 

1 
2 
3 
4 

 
 
 
 
 

 If type P: additional 
record of 
circumferential 
location is required.  
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Surface 
damage 

HSF O 
A 
C 
V 
 
 
 
 
 
 

1 
2 
3 
4 

  The cause of the 
damage should be 
recorded: 
K: chemical damage 
(e.g. corrosion of 
reinforcement)  
B: biochemical 
attack due to sulfuric 
acid (e.g. damage 
above the water)  
M: mechanical 
damage  
A: attack by 
wastewater (e.g. 
damage below the 
water level)  
E: cause not evident  
 

Fissure/ 
fracture in 
bottom 
section 

HFF S 
B  
C 
L 
M 

1 
2 
3 
4 

   

Manhole 
bottom 

HMB B 
C 
S 

0 
1 
2 
3 
4 
 

  This observation 
must be recorded in 
all manholes where 
the bottom section is 
visible.  

Transition 
during 
change of 
construction 

HTC D 
M 
T 
C 

0 
1 
2 
3 
4 
 

  If possible, 
circumferential 
location should be 
recorded. 
 

Signs of 
overflow 

HOV S 
W 

0 
1 

   

Exfiltration HEX D 
S 
W 

0 
1 

  The means of 
leakage should be 
recorded with 
circumferential 
location. 

Additional 
overall 
remarks 
regarding 
the 
manhole 
 

Short description of the overall condition of the manhole if it is visibly 
bad or very bad. 
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7.0 Discussion of the proposed manhole condition 
assessment report and recommendations for future 
research   

The research work presented in this master’s thesis deals with the development of a 
framework for condition assessment of wastewater manholes. It covers the first two 
steps of the development process of an official manhole report as shown in Figure 10. 
Despite the availability of other reports that can be used as a basis for the Norwegian 
manhole condition assessment report, its development will not be an easy task as it is 
starting from scratch. As indicated in Figure 10, the path, starting from the work 
presented here and ending with an official manhole report, is long and will require 
coordination, research and more inspections of wastewater manholes. The framework for 
the condition assessment of wastewater manholes has been described in this thesis. 
However, it will require validation. The process of defect description, grading and 
weighting has been performed for the defects that have an impact onto the hydraulic 
reliability of wastewater manholes. As shown in the figure below, the presented research 
has to be continued by including the structural defects into the condition assessment. In 
addition, a decision has to be made whether the hydraulic and structural defect 
categories cover all defects that can be observed in a manhole or if the number of defect 
categories should be expanded. When the previously mentioned factors are dealt with, 
the work can continue with adjustments of all weighting values and total score thresholds 
for determined condition classes, respectively. Only when this process is completed, an 
official condition assessment report can be formulated and published.  
 

 
Figure 10: Flow chart for development of an official condition assessment report for Norwegian 
wastewater manholes. 

 
The development of a manhole condition assessment report that includes both inspection 
and classification guidelines for manholes will result in several benefits for the Norwegian 
water utilities. It will increase the focus on condition monitoring of manholes and data 
availability, and consequently ensure that the water utilities dedicate more time and 
resources to manholes. The report will highlight the importance of well-functioning 
manholes as they have a significant impact on the whole system. Therefore, they should 
be evaluated and maintained in a similar manner as wastewater pipes, with aim to 
ensure proper condition and performance throughout their lifecycle. The report will 
provide the means to execute appropriate inspection and assessment of manhole 
condition. Nowadays, the inspection of manholes is performed visually by qualified 
personnel in the water utilities. However, the execution of inspection varies, and the 
interpretation of observations might often be subjective. Guidelines will ensure proper 
collection of desired data and will subsequently objectify the registration of information. 
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It will also guarantee that employees within water utilities inspect and assess wastewater 
manholes equally. As a result, the collected data will become more reliable and accurate 
as the report will consist of proper descriptions of defects and their severity, leading to a 
more knowledge-based approach in the decision-making concerning the maintenance. 
Manholes are buried assets, thus both visual inspection and assessment of manholes are 
time demanding and expensive. Guidelines on how they should be performed will 
optimize and simplify both procedures. As a result, proper manhole condition assessment 
report will help Norwegian water utilities to accurately identify, register and assess the 
condition of these assets. Extensive condition monitoring and assessment of manholes 
will result in large databases. The report system will ensure that all manholes are 
classified, photographed and described in a way that reflects the accurate condition of 
each manhole class. With data describing the current condition and existing defects, 
appropriate preventive measures can be properly planned and implemented. Based on 
this information the infrastructure owners can make proper decisions in order to optimize 
the utility of the manholes over their lifecycle. Knowledge of the condition and 
performance will support decision-makers in implementation of adequate actions such as 
maintenance and rehabilitation. Establishment of plans for proper maintenance and 
repair can be optimized further as the database will get more comprehensive with time.  
 
The main features of the proposed assessment approach will result in additional benefits 
for the water utilities as: 

- It is reliability-based: the proposed manhole condition assessment is based on 
reliability. This means that the proposed condition classes are defined according 
to the effect or the impact of the possible defects on to a specific functional 
requirement of wastewater manholes; this research work has been focused on the 
hydraulic reliability. In order to ensure correct functionality of the proposed 
assessment system, further research should focus on defects that have an impact 
on the structural reliability. This must be done in order to perform the last step of 
the assessment which is the comparison and analysis of both hydraulic and 
structural condition classes together, see section 6.1 Structure of the proposed 
manhole report. Such structure of the manhole condition assessment procedure 
will make the obtained total scores, for both hydraulic and structural functional 
requirements, easier to understand as they will reflect the current state of the 
inspected manhole much clearer considering the assessed function. The condition 
assessment procedure proposed here represents also an improvement of the 
approach currently used to assess condition of pipelines from inspections, since 
the current approach in use for pipes mixes the different defects in a score 
regardless the effect to specific functional requirements. The overview and 
evaluation of the effect of a given defect onto one or another function is relevant 
and helpful when selecting the type of intervention needed. The proposed 
assessment process will indeed simplify the understanding of the required 
interventions as it does not allow to lose the information concerning the reason 
for the obtained condition of the inspected manhole. This is mainly due to the fact 
that the defects are separated according to either hydraulic or structural 
functional requirements. As a result, the person performing the assessment will 
know better whether the improvement of the manhole condition requires an 
operational intervention such as flushing, a structural intervention such as 
reconstruction of manhole components, or a combination of both.  
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- It supports operators from condition monitoring to condition assessment: the 
proposed approach covers all the aspects from defect definitions, grading, 
weighting and class assessment. However, several simplifications had to be made 
in order to attempt to validate and exemplify the proposed report. Consequently, 
the results presented here will require further analysis in future studies. The 
explanations of the defects, grading, weighting and calculation of the total score 
represent a good starting point for the development of an official manhole 
condition assessment report. However, as mentioned previously, the proposed 
report must be expanded with at least one additional defect category considering 
structural defects.  

 
- It provides a coding system for unique identification of defects: the design based 

on abbreviations and numbers will ensure good collaboration with software 
programs. The coding and grading of the defects will provide good basis for the 
labelling of manhole images, which can be further used in image recognition 
software. A such system provides also a good basis for development of a software 
that can assess the manholes and assign them automatically into condition 
classes.  

 
 

7.1 Suggestions for future work 
The work presented here is far from being finished since the field is new from both a 
theoretical point of view (the reliability-based condition assessment approach) and the 
operative point of view (the machine learning approach presented further on). Therefore, 
suggestions for further research concerning the theoretical point are here presented as 
guidance for the future studies on this field. Suggestions concerning the operative point 
will be discussed in chapter 11.0 Discussion of the Custom Vision performance.  
 
It is suggested that in the future work: 

o The defects that have an impact on the hydraulic reliability and are here 
described, will also be assessed in terms of their eventual impact on the structural 
reliability. Therefore, defects impacting both reliabilities will have to appear in 
both defect categories. However, their description, grading and weighting should 
be defined separately according to the potential impact they have onto each 
defect category, i.e. a defect can impact both types of reliability, but the effect 
can be very different in terms of severity and thus cannot be analyzed with 
regards to a combined effect. Consequently, this will require the assessment of 
one defect in two separate ways; one from the hydraulic point of view, and the 
other from the structural point of view. Performance of a manhole inspection in 
the proposed way will be more time demanding and thus expensive in the 
beginning of the application as the qualified personnel of the water utilities will get 
familiar with the process. However, the possible benefits of the more precise 
inspection and assessment of manholes should out weight these additional 
expenses since they will result in better decisions on how to rehabilitate and 
maintain manholes.  

 
o The proposed descriptions of the defects and defect grades will be validated by a 

qualified group of people with long experience with wastewater manholes. These 
descriptions were based mainly on the descriptions provided in the DANVA 
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manhole manual and the CARE-S report D3. As a result, they might require 
additional adjustments, to the ones done here, in order to reflect the Norwegian 
conditions even more accurately. In addition, the grading of defects such as 
“Signs of overflow” and “Exfiltration” might be done in a way that imitate their 
severity more precisely. Here, they are graded with simple visible or none visible 
signs of the defect. However, experienced professionals might have an improved 
approach to grade these defects. Similar concerns apply to the proposed 
weighting of the hydraulic defects. The proposed weighting values were based 
primarily on the values utilized for the defects observed in wastewater pipes. As a 
result, the weighting values proposed here cannot be directly applied onto the 
hydraulic defects out in the field as they require thorough analysis. In the future 
research work, the official weighting values should be obtained by carrying out a 
sensitivity analysis.  

 
o The proposed formula for the calculation of the total score will be analyzed. 

During the calculation of the total score for a wastewater pipe, the person 
assessing the pipe multiplies the defect grade with its corresponding unit. For 
defects such as surface damage, the grade is multiplied with the number of 
meters that the observed defect spreads over. In addition, the formula for the 
total score for wastewater pipes includes also a division by the length of the 
inspected pipe. This is not incorporated in the formula proposed here (see 
Equation 2), mainly due to the fact that the manholes simply represent nodal 
points joining the incoming sewer or sewers with the outgoing sewer. Therefore, a 
such distribution of the manhole defects over a manhole length should not be 
necessary theoretically. However, analyses confirming or denying a such 
assumption should be performed in order to validate it.  

 
o The total score thresholds must be validated as the thresholds presented here 

were obtained based on a simulation performed in Excel. Several combinations of 
different defect grades were multiplied with their corresponding weighting values 
and summed up together in order to obtain the proposed thresholds. As a result, 
these ranges of total scores are not reliable and thus will require adjustments. 
This work will demand execution of several inspections of wastewater manholes in 
order to test the performance of the proposed assessment procedure. The 
experiences from the inspections together with the obtained total scores will 
represent a good basis for the adjustment process. These observations will help to 
obtain total score thresholds that reflect accurately the state of the condition 
classes that the inspected manholes are supposed to be assigned into.  

 
o Norwegian water utilities are a part of the previously described processes as they 

have most experience with manholes and thus can provide lots of valuable input. 
In addition, external factors that could have an impact on the condition of 
manholes cannot be neglected and should also be included into the assessment 
process. Factors such as soil type and traffic load have an influence on the state 
of the manhole condition as they are related to the infiltration problems and loads 
that a manhole is subjected to (Malvik, 2017). This additional data is also 
important in order to understand the failure modes occurring in manholes.  

 
 
 



 45 

o The development of IAM tools used for modeling of deterioration is researched 
and attempted for manholes. Execution of proper inspections will result in 
comprehensive databases containing massive amounts of information concerning 
the state of the manhole condition. Theoretically, this data could be used for 
modelling of the evolution with time of the manhole condition classes. Recently, 
this type of modeling is performed for wastewater pipes by utilization of 
Markovian models (Myrans, et al., 2018). Theoretically, the same type of 
modelling could be performed for manholes. Markovian models will predict the 
probability of transition from one manhole condition class to a worse condition 
class (Ugarelli, 2018). Future database can also be utilized for development of 
deterioration curves through identification of trends in the obtained dataset. 
These curves are determined based on the current state of the manhole condition. 
Deterioration curves will use this data to predict the expected end of life of the 
manhole (Ugarelli, 2018). Such information will optimize further the planning of 
maintenance and rehabilitation. In addition, registered information together with 
labelled images might be used for Long-Term Planning (LTP) of manhole 
rehabilitation. Images and information about the construction year, manhole type 
and material could be utilized to decide criteria for cohorts or groups of manholes 
with similar features. 

 

7.2 Position of this work with regards to other national initiatives  
As mentioned, several times throughout this thesis, the focus of Norwegian water utilities 
and the wastewater industry has always been primarily dedicated to the wastewater 
pipes. This point of view has to change as the work regarding the assessment and 
rehabilitation of pipes is constantly being improved. It is now time to place part of this 
focus onto manholes and their condition. The work regarding the structure and content of 
the report proposed in this thesis is pioneer in the field of Norwegian wastewater 
systems. However, it is only a start of the process regarding the development of an 
official manhole condition assessment report. Norsk Vann, the Norwegian national 
interest organization for water and wastewater industry, has already started the 
development of a manhole report. However, the extent to which they plan to cover the 
actual assessment procedure is unknown. Anyhow, the work presented here should 
inspire the developers to formulate an assessment procedure that is at least equally 
comprehensive. They should analyze the procedure proposed here and try to include 
something similar in their version of the report. Several of water utilities that provided 
information for this thesis, have expressed a request for an assessment procedure for 
manholes. This demand cannot be neglected and should be addressed in the official 
report as it will have an impact not only on the manhole condition, but also on the 
condition of the whole wastewater system.  
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8.0 Artificial Intelligence, Machine Learning and Deep 
Learning  

Artificial Intelligence (AI) is an academic discipline with a goal “to create smart machines 
that think and act like humans, with the ability to simulate intelligence and produce 
decisions through processes in a similar manner to human reasoning” (Salvaris, et al., 
2018). The study field of AI focuses on development of algorithms for tasks previously 
performed only by intelligent beings in order to enable machines to learn, respond to 
feedback and engage in abstract thought (Salvaris, et al., 2018). Several practical 
applications and active research topics have made AI to a well-established and 
prosperous field (Goodfellow, et al., 2016). Continuous progress within AI has 
contributed to development of areas where computers already outperform humans, as 
for instance the execution of a vast amount of computations in a relatively short amount 
of time (Wolfgang, 2012). However, there are still several areas where the human 
remains superior due to the adaptivity of human intelligence. Still, over the years the AI 
research has contributed to automatization of routine labor through intelligent software, 
understanding of images and speech, determination of medical diagnoses, and support of 
other scientific research (Goodfellow, et al., 2016).  
 
Machine learning (ML) is a central subfield of AI where computers are learned to process 
information and make decisions based on this information (Varone, et al., 2018). The 
term refers to automated recognition of meaningful patterns in data (Shalev-Shwartz & 
Ben-David, 2014). ML enables the systems to learn automatically from the data without 
human assistance (Varone, et al., 2018), where the “learning” of the system refers to the 
procedure of transforming the experience into expertise or knowledge (Shalev-Shwartz & 
Ben-David, 2014). The process of learning is often called training. Based on the learned 
patterns, the system will make data driven decisions without being explicitly 
programmed to carry out a certain task (Varone, et al., 2018). Machine learning tools are 
concerned with providing programs the ability to learn and adapt (Shalev-Shwartz & Ben-
David, 2014). Typical ML tasks include classification, object detection, regression, 
recommendations, ranking and clustering (Salvaris, et al., 2018). Recently, ML has 
become a common tool in almost any task that requires information withdrawal from 
large datasets (Shalev-Shwartz & Ben-David, 2014). Technology based on machine 
learning has become a large part of the society as it represents the basis for search 
engines, anti-spam software, smart phones etc. ML is also broadly utilized in scientific 
fields such as biology, medicine and astronomy (Shalev-Shwartz & Ben-David, 2014).  
 
Machine learning uses a variety of algorithms which utilize statistical techniques to give 
computer systems ability to learn from input, describe it and predict outcomes (Rouse & 
Burns, 2018). The algorithms are trained by using great amount of data, and the 
understanding is improved over time as new data become available. As the model is 
constantly fed with new input, the predicted output is constantly updated (Rouse & 
Burns, 2018). Based on these algorithms, machines learn how to model the relationships 
among several sets of input features and the outcome they are supposed to predict 
(Salvaris, et al., 2018). Machine learning algorithms are classified as supervised or 
unsupervised. The class of supervised algorithms is the most common type of ML and 
require a data specialist to provide the algorithm with the input and desired output. The 
specialist will also decide which factors should be analyzed and used to develop 
predictions (Rouse & Burns, 2018). A model with such features will have labels that 
represent the outcome against which the model is learned (Salvaris, et al., 2018). 
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Desired outcome data is not required for training of the unsupervised algorithms. In 
order to analyze data and derive conclusions computers utilize an iterative approach 
called “Deep Learning”. These algorithms are used for more complex applications such as 
processing speech, languages and images (Rouse & Burns, 2018).  
 
Deep Learning is another subfield of both AI and ML (Salvaris, et al., 2018). A 
relationship between the Artificial Intelligence, Machine Learning and Deep Learning is 
presented in Figure 11. Deep Learning is broadly utilized in applications where the data 
does not comprise of easily extractable features (Goodfellow, et al., 2016). Such data 
include text, audio and images. Utilization of deep learning algorithms allow computers to 
not require human assistance to specify all the knowledge that they need to perform a 
certain task. The computer is able to learn complex concepts by creating them out of 
simpler concepts. This is possible through a hierarchy of concepts embedded in the deep 
learning algorithms (Goodfellow, et al., 2016). As a result, a deep learning model based 
on such algorithms has the goal to map from an input to an output, e.g. audio to text, 
pixels in a picture to a predefined classification of this picture (Salvaris, et al., 2018). 
Approaches featuring deep learning involve application of a multilayer deep neutral 
network (DNN) to massive quantities of data. DNN models include many layers that allow 
the automatic learning of high-level abstractions through the hierarchy of patterns 
embedded in these layers (Salvaris, et al., 2018). As the deep learning models normally 
have millions of parameters, they require vast training sets to avoid overfitting (Salvaris, 
et al., 2018).  
 
 

 
Figure 11: Representation of relationship between Artificial Intelligence, Machine Learning and 
Deep Learning (Salvaris, et al., 2018). 
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8.1 Microsoft Azure Cognitive Services and Custom Vision 
Microsoft Azure Cognitive Services are a collection of ML algorithms, deep learning 
models and application programming interfaces (APIs) developed by Microsoft in order to 
solve problems in the field of AI (Windows App Team, 2017). An API allows an 
application to correspond with another application or a database, network or operating 
system, etc. (Conrad, et al., 2016). The Cognitive Services are easily available online for 
people to use in their own applications. They are divided into two main types; pretrained 
models available as REST APIs and bring-your-own-data services. The first type does not 
require any customization in order to consume in end applications (Salvaris, et al., 
2018). Custom Vision is an example of a bring-your-own-data service. The application 
allows the user to develop a customized image classification model without any 
background in AI (Salvaris, et al., 2018). The development of the model is done by 
simple upload of images and clicking a button to train the model. There are five 
categories of the Cognitive Services APIs available today:  

• Vision – image and video analysis  
• Speech – speech recognition and identification of the speaker  
• Language – understanding of sentences and intent  
• Knowledge – tracking of scientific knowledge  
• Search – application of ML to web searches  

  
Custom Vision is one of the Vision Cognitive Services. The main page of the application is 
presented in Figure 12. This application allows the users to customize, deploy and 
improve their own state-of-the-art computer vision models based of a prebuild model 
developed by Microsoft (Microsoft Azure, 2018). The development of a customized 
Custom Vision model requires a relatively small set of labelled images. The provided 
background model has been trained with thousands of images. As a result, it is already 
familiar with the concepts of images, pixels, edges, color etc. Custom Vision utilizes 
transfer learning and data augmentation techniques to train the customized model for 
chosen scenario (Salvaris, et al., 2018).  
 

 
Figure 12: Custom Vision main page (www.customvision.ai). 
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An image classifier is an artificial intelligence service that classifies the images according 
to some defined characteristics. Classifiers developed in Custom Vision can be based on 
one of two types of features; image classification or object detection (Microsoft Azure, 
2018). Image classification tags whole images, while object detection finds the location 
of content within the image. In image classification classifiers, the user can also choose 
between two types of classifications. These include multilabel and multiclass 
classification. Multilabel classification allows to assign one or several tags to each image, 
while in multiclass each image is assigned one single tag. Both image classification and 
object detection classifiers must be assigned a domain, which is an algorithm optimized 
for different subject material (Microsoft Azure, 2018). The domains enable the user to 
customize the background model that is most relevant for the chosen scenario (Salvaris, 
et al., 2018). The available domains for both image classification and object detection are 
presented in Table 16. Compact domains allow the model to be exported to run locally on 
mobile devices such as iPhones, iPads or Android tablets (Microsoft Azure, 2018). 
Embedment of compact domains into the model will provide the user with a prediction 
URL which is used further for the development of the application that allows the model to 
be utilized on mobile devices (Salvaris, et al., 2018).   
 
Table 16: Available domains for image classification and object detection classifiers accessible in 
Custom Vision (Microsoft Azure, 2018). 

Image classification domains Object detection domains 
General General 

Food Logo 
Landmarks  

Retail  
Adult  

General (compact)  
Landmarks (compact)  

Retail (compact)  
 
After the described features are decided, the user can upload the images used for 
training of the model. Each uploaded image must be given a single tag or multiple tags, 
depending on the type of classification. Tags are defined by the user according to the 
purpose of the developed classifier. The model must be trained with several pictures in 
order to learn the characteristics of each used tag. Generally, 50 images per each tag 
can give good results (Microsoft Azure, 2018). However, the number of images per tag 
depends strongly on the complexity of the image feature to be classified or detected. 
After sufficient number of images has been uploaded and tagged in each category, the 
model must be trained. The training of the model is obtained through a click on a button 
labelled “Train”. During this process, the algorithm in the model will split the tagged 
dataset in two. One part is utilized for the training of the model, while the other part is 
used for cross-validation of the trained model (Microsoft Azure, 2018). The accomplished 
performance of the trained model based on object detection is given by three values; 
precision, recall and mAP (Microsoft Azure, 2018). The last value is not obtained for 
image classification projects. The precision value shows the likelihood that the tags are 
predicted correctly. The recall value presents the percentage of how many tags the 
model identified correctly out of the tags that should have been predicted correctly. mAP 
value is defined by Microsoft Azure as “the mean average precision which is the overall 
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object detector performance across all of the tags” (Microsoft Azure, 2018). The model 
can be retrained until the desired values of precision, recall and mAP are obtained.   
 
The model can be tested after finished training. The testing of the model is performed by 
uploading several pictures that have not been used during the training process. The 
model will run the uploaded image through the trained model and return the suspected 
tag/tags with a confidence score for each predicted tag. The score is given on a scale 
from 1 to 100% certainty (Microsoft Azure, 2018). The user can also set a threshold for 
displayed predictions, also called probability threshold. Predictions with confidence score 
below this value will not be presented for the user. In object detection classifiers, the 
location of the object to be detected must be marked in the image with a bounding box 
during the training. Several areas can be marked and tagged in a single picture. As a 
result, a trained classifier with features of object detection will predict the suspected tag 
with additional location in the tested image (Microsoft Azure, 2018).  
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9.0 Training and testing process of the Custom Vision 
model  

The selection of image recognition software has been based on results obtained in the 
specialization project “Image recognition applied to condition assessment of wastewater 
manholes”. This project was written by the writer of this thesis and represented the 
foundation for the work presented here. The performed categorization with Custom 
Vision model was a simple binary categorization, where the images were divided into two 
categories; “Invert channel” and “No invert channel”. The model obtained promising 
results by predicting correctly 13 out of 14 testing images with considerably high 
certainty (Makuszewska, 2018). Based on these results, it was decided to continue the 
training of Custom Vision to recognize grades of manhole defects. Custom Vision model 
was described in section 8.1 Microsoft Azure Cognitive Services and Custom Vision.  
 
One of the main benefits of Custom Vision is the fact that it already has been trained 
with thousands of pictures. Therefore, it is already familiar with the concept of images, 
pixels, edges, color etc. As a result, the model requires less pictures for training of the 
last layer, which will here represent the concept of recognizing different grades of 
“Settled deposit” defect in the wastewater manholes.  
 
The Custom Vision trial performed during this study was a supervised classification where 
the user provided the features that should be associated with each tag category. 
Therefore, the model was trained on a set of manhole pictures with easily recognizable 
features. The areas in training images uploaded to the model were tagged by the user 
into one of four separate categories that they visualized. The categories represented the 
four grades that the “Settled deposits” defect may be assigned into during an inspection 
of wastewater manholes. The description of the grades was presented in section 6.2.2 
Grading of the hydraulic defects. Based on these descriptions, the areas in the training 
images showing settled deposits could be tagged into one of the following categories; 
“HSD 0-10%”, “HSD 10-50%”, “HSD 50-90%” and “HSD over 90%”. HSD is the defect 
code for the hydraulic defect “Settled deposits”, while the percentages represent the 
cross-sectional reduction of the invert channel which is associated with the four grades. 
The project type was set to object detection. Therefore, areas representing the settled 
deposits had to be marked manually with a boundary box in all of the images used for 
the training of the model. Picture set in all four categories had to represent enough 
variation in order to achieve better predictions. Therefore, pictures showing different 
cases of deposition have been used in all categories.  
 
After the completed training process, the model was tested on an additional set of 
images. This set was not a part of the image set used for the training and contained 
images representing all four categories of settled deposits. The set with testing images 
was analyzed manually before they were uploaded to the model. The areas that were 
expected to be recognized by the model were marked by the user. The expected tag was 
also noted. These images are presented in Appendix 2. Afterwards, the images were 
uploaded into the model and resulting prediction of which category each area 
represented was quickly obtained. After testing and prediction of all images was 
completed, the results and further use of Custom Vision was evaluated.  
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9.1 Case: The municipality of Trondheim  
The images used for the training and testing of the Custom Vision model were provided 
by the water utility of Trondheim. The database owned by the water utility consists of 
nearly 7 000 images of wastewater manholes (Makuszewska, 2018). The images within 
this database are of varying quality. Therefore, the images had to be carefully analyzed 
in order to be selected by the user of the Custom Vision model. Out of nearly 4 000 
analyzed images, only 386 pictures were selected for the Custom Vision trial performed 
here. An additional visual analysis of these images resulted in a database with a total of 
356 images suitable for the Custom Vision model. 344 images were used for the training 
and the remaining 12 images were used for testing of the model.  
 
The majority of the images in the database of the Trondheim water utility showed clear 
and good representation of the condition of photographed wastewater manholes. 
However, not all of the manholes had settled deposits within the manhole invert 
channels. In addition, some of the images showing settled deposits included some 
additional elements such as CCTV-robot, pointing arrows, ladder and gaskets. The use of 
these images was reduced to a minimum as such additional elements might have an 
impact on the performance of the model. Images that were blurry and of poor quality 
were excluded from the image sets used for training and testing of the Custom Vision. 
Some of the images had to be re-sized to a size under 6 MB in order to be able to upload 
them to the Custom Vision model.  
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10.0 Custom Vision results 
The purpose of this trial was to train the Custom Vision model to recognize all four 
grades of the defect “Settled deposits”. The project type performed in this trial was set to 
object detection with general domain. This allows the model to detect objects inside an 
image with their locations, instead of just being a simple classifier. The model was 
trained with 344 images. Regions that showed the objects to be detected have been 
tagged and marked with a boundary box in all images. The majority of training images 
showed several grades of settled deposits within one image. All of the grades shown in a 
picture were tagged into the corresponding categories as shown in Figure 13. Therefore, 
the image count in all categories together was higher than 344 images. The areas were 
tagged into one of four possible categories. The category “HSD 0-10%” consisted of 238 
tagged images, category “HSD 10-50%” consisted of 147 tagged images, category “HSD 
50-90%” consisted of 79 images, while category “HSD over 90%” consisted of 45 
images.  
 

 
After the images were tagged into correct category, the model was trained. During the 
training process the image set is divided in two, where one of them is used for training 
and other for the validation of the trained model. After completed training, the model 
obtained overall precision value of 87,0%, recall value of 37,8% and mAP value of 38,1% 
as shown in Figure 14. For the explanation of each value, see section 8.1 Microsoft Azure 
Cognitive Services and Custom Vision. The performance of the model per category is 
shown in Table 17.   

 
Figure 13: Training image tagged into category "HSD over 90%" and "HSD 0-10%". 

Figure 14: Overall performance of the trained Custom Vision model. 
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Table 17: Performance per category. 

Category Precision Recall 
Average 
precision 

Image count 

HSD 0-10% 82.4 % 16.9 % 46.6 % 238 

HSD 10-50% 27.3 % 8.6 % 13.3 % 147 

HSD 50-90% 75.0 % 12.5 % 22.8 % 79 

HSD 90% and 
more 

75.0 % 25.0 % 46.5 % 45 

 
The trained model was tested with 12 images that showed manhole invert channels with 
all four grades of “Settled deposits” defect. The probability threshold was set to 50% for 
all predictions. Predictions obtained both above and below this threshold will be 
discussed in the next chapter. As for the training images, the majority of images selected 
for testing included several grades of the settled deposits within one image. All 12 
images showed a total of 39 separate areas representing different grades of the selected 
defect. These areas were expected to be detected by the model and are shown in 
Appendix 2 together with the expected tag. Out of 39 areas, 38 were predicted correctly 
with varying tag certainty. However, 1 area was not predicted at all. Appendix 3 present 
all testing images together with the obtained predictions. A summary of all predictions 
and the corresponding probability range is presented in the Table 18. The results from 
the testing have been divided into three categories, where each represent different 
probability range. The total number of images assigned within each probability range is 
also presented. As shown in the table below, 23 out of 39 areas were predicted correctly 
with a probability over 50%. The distribution of predicted areas within the probability 
range of 50-100% is presented in Figure 15. 
 
Table 18: Summary of all predictions with corresponding probability ranges. 

Prediction  Number of areas 

Predicted correctly above 
probability threshold of 50% 

23 

Predicted correctly with 
probability between 10-50% 

12 

Predicted correctly with 
probability value below 10% 

3 

Not predicted  1 
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Figure 15: Distribution of areas with prediction above probability threshold of 50%. 
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11.0 Discussion of the Custom Vision performance 
The results obtained from the trained Custom Vision model are promising. The model 
managed to recognize correctly 38 of 39 areas in the testing images, where 23 areas 
were predicted with a certainty above 50%. Only one area was never detected. However, 
this case of deposition was very small. It is assumed that the model did not detect this 
area because there were not enough of similar areas within the training images. 
Therefore, the model was not trained properly to detect all areas with similar cases of 
insignificant deposition.  
 
The presented results show that an image recognition software is indeed able to detect 
different grades of manhole defects. Therefore, it is encouraged to continue the training 
of the model to recognize not only the “Settled deposits” defect grades, but also the rest 
of the defects from the future hydraulic and structural defect categories. The process of 
development of an application for image recognition of manhole defects should be 
performed by IT-companies that provide current IT-systems for Norwegian water 
utilities. The development of an application that is able to recognize all manhole defects 
by grade will not be an easy task. It will be time and resource demanding as it will 
require a massive amount of training images. The image recognition software on its own 
is only able to optimize the inspection of the manholes as it only can grade the observed 
defects. Therefore, it could be reasonable to integrate manhole assessment into the 
image recognition software and thus additionally optimize the assessment procedure. The 
digitalization of the manhole assessment will require development of an additional 
software that can utilize the results from image recognition software, weight them, 
calculate a score for the inspected manhole and assign it into a condition class. However, 
this will require expertise from several data scientists that are able to transform the 
image recognition software and assessment procedure from the manhole report into an 
application for mobile devices. Such digitalization of both inspection and assessment of 
manholes will make both processes less time demanding, cheaper to perform, more 
objective and executed equally out in the field by the personnel within Norwegian water 
utilities. Flow chart of the development process of an application that inspects and 
assesses the condition of manholes is presented in Figure 16. 
 

 
Figure 16: Flow chart of the development of an application that can inspect and assess the 
condition of manholes. 

 
Despite the great detection of the areas showing the settled deposits, the certainty of 
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performance is shown in Figure 14, while the performance per category and 
corresponding image count in each category is shown in Table 17. However, these values 
can be improved by increasing significantly the number of images used for the training of 
the model. The training process requires high quality images that show defect grades in a 
way that makes them easily recognizable. Finding such images will not be an easy task 
as the quality of pictures is varying in the current databases. Therefore, the process will 
demand merging of several databases from different water utilities in order to acquire an 
adequate number of images showing different grades of manhole defects. It is assumed 
that at least 400-500 images in each category should be enough for the model to learn 
the complexity of each grade, and thus achieve sufficient training and a good model 
performance. The water utility of Trondheim provided images for the training and testing 
performed here. Out of nearly 4000 images only 344 were considered adequate for the 
purpose of this training. This relationship between the available and acceptable images 
underlines the importance of coordination among the Norwegian water utilities in sharing 
their image databases. In addition, a proper picture documentation during future 
manhole inspections should be encouraged by the Norwegian manhole report as the 
implementation of image recognition software on good quality images will optimize the 
inspections of manholes. Theoretically, the trained software could also be used for 
sorting and classification of the images in the current databases.  
 
The low overall performance of the model resulted in multiple tagging of the same areas 
in the images used for testing. During testing, the probability threshold was set to 50% 
for all predictions. This means that for a tag to be shown, the model had to be very 
certain that the predicted tag is really present in the image. The probability threshold 
was set to 0% at the end of the testing process in order to acquire all of the predicted 
tags for each tested image. The image on the right side of Figure 17 shows one of the 
images with several tag predictions when probability threshold was set to 0%. The same 
image is shown on the left side of the Figure 17 when the probability threshold was set to 
40%.  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 17: One of the manhole images used for testing. Predictions above the probability 
threshold of 0% are shown on the image to the left, while predictions above probability 
threshold of 40% are shown in the image to the right. 



 58 

In the left image in Figure 17, the model tags all of the areas where it detects presence 
of settled deposits. It ignores the fact that it is supposed to focus on the areas within the 
invert channels and ends up with also tagging the deposits present on the benching. 
However, the probability of these additional tags was very low. It was enough to increase 
the threshold to 40% in order to acquire two out of three predictions for the areas the 
model was supposed to detect, as shown in right image in Figure 17. The third area, 
which is the smaller area showing the deposition in the middle of the invert channels, 
was also detected and assigned to correct defect category. However, the certainty of this 
prediction was 1,6 % and thus very low. Beside the low model performance, another 
reason for the multiple tagging of images might be the additional elements present in 
both training and testing image sets. Objects such as ladders, gaskets, CCTV-robots and 
pointing arrows will confuse the model when the distribution of training images that 
include these elements is uneven between the defect categories. As a result, the model is 
then trained to think that these elements are a part of the feature to be detected. During 
future applications of Custom Vision, this problem must be avoided through additional 
training of the model to recognize these elements into their own categories. The model 
will then distinguish correctly between the four original defect categories without being 
disrupted by unknown or unspecified elements. 
 
Prior to the future training of the model, it is encouraged to develop criteria that guide 
the user on which training image or areas within the images should be assigned to a 
distinctive defect grade. The tagging process of training images has proven to be difficult 
as it was often hard to distinguish between the tag categories. Here, the person 
performing the tagging had no previous knowledge on the real cross-sectional reduction 
of the invert channel displayed in the training images. Therefore, the decision concerning 
the assignment of tags was indeed subjective as it was based only on the users’ 
interpretation of the settled deposits state visualized in the images. As a result, it was 
often hard to decide whether an area showing settled deposits should be categorized as 
“10-50% reduction” or “50-90% reduction”. The endpoints such as “0-10% reduction” or 
“over 90% reduction” were somehow easier to determine as they differed more in 
relationship to the two previously mentioned categories that are in the middle spectrum 
of the classification. Based on these experiences, it is encouraged to analyze images prior 
to the training in order to decide some criteria that describe how the users should 
distinguish between the defect grades. For the case of settled deposits recognition 
performed here, the descriptions of the grades provided by the proposed manhole report 
were simply not enough as they barely related to the two-dimensional representation of 
settled deposits displayed by the images. 
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12.0 Conclusion  
As of today, there is no Norwegian manhole report for inspection and classification of 
wastewater manholes. Lack of guidelines has resulted in limited evaluation and 
rehabilitation of manholes. However, the focus on manhole assessment is increasing and 
the need of a report has been expressed by several municipalities. The theoretical 
content and structure of a such report has been proposed in this master’s thesis, and 
covers all the aspects from defect definitions, grading, weighting and class assessment. 
The evaluation method proposed here is a reliability-based condition assessment of 
manholes, where the proposed condition classes were defined according to the effects of 
the possible manhole defects on to the functional requirements of wastewater manholes. 
This research work focused on the hydraulic reliability of manholes. However, the 
importance of future addition of structural reliability into the assessment procedure has 
also been discussed and encouraged. An assessment procedure based on the proposed 
features will allow for a transparent decision-making on the way of rehabilitation or 
maintenance based on the nature of the worst type of the condition class. Such structure 
of the manhole condition assessment procedure will make the obtained total scores, for 
both hydraulic and structural functional requirements, easier to understand as they will 
reflect the current state of the inspected manhole much clearer considering the assessed 
function. The overview and evaluation of the effect of a given defect onto one or another 
function is relevant and helpful when selecting the type of needed intervention. The 
proposed assessment procedure will indeed simplify the understanding of the required 
interventions as it does not allow to lose the information concerning the reason for the 
obtained condition of the inspected manhole. As a result, the person performing the 
assessment will know better whether the improvement of the manhole condition requires 
an operational intervention such as flushing, a structural intervention such as 
reconstruction of manhole components, or a combination of both. 
 
Based on the presented research, the official manhole report should consist of guidelines 
on how to inspect the manholes, register the necessary information and utilize it further 
for assessment of the manhole condition. Inspection guidelines are needed in order to 
ensure objective collection of all desired information. The procedure should be presented 
with examples of how defects with varying severity should be registered in order to 
minimize human subjectivity and misunderstandings. The assessment procedure for 
wastewater manholes should be grounded on the principles of IAM, as proposed here. 
This procedure is already known for the workers as it is also utilized for the condition 
assessment of wastewater pipes. As the maintenance and rehabilitation of manholes 
have been limited in the recent years, the future investments in upgrading the current 
state of manholes might be high. Classification approach based on IAM will optimize the 
prioritization of such interventions through integration of a risk assessment procedure.  
 
An attempt on implementation of image recognition software on manhole images has 
also been performed during the study conducted for this thesis. Custom Vision was the 
utilized model. A set of 344 images was uploaded to Custom Vision in order to train the 
model to recognize the four distinguished grades of the “Settled deposits” defect. As a 
result, the training images were divided into four categories where each category 
represented one of the four possible grades. After completed training, the model 
obtained overall precision value of 87,0 %, recall value of 37,8% and mAP value of 
38,1%. It was tested with 12 images with several areas showing settled deposits in 
manhole invert channels. The model was able to predict correctly 38 out of 39 areas, 
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where 23 of these were predicted with a certainty above the probability threshold of 
50%. These results are promising as they show that the software is able to recognize 
correctly different defect grades. Based on these results, it is encouraged to continue the 
training of the software with other defects and their corresponding grades. Despite the 
correct recognition of the defects, the certainty of these predictions varied significantly. 
This can be improved in the future through increased number of training images, 
enhanced image manipulation, tagging of additional elements present in the images and 
labelling of all training images. Further training of the Custom Vision model to recognize 
manhole defects will be challenging, but achievable as several municipalities showed 
interest in providing images for the development of a such application. The image 
recognition software on its own is only able to optimize the inspection of the manholes as 
it only can grade the observed defects. However, it could be reasonable to attempt to 
integrate manhole assessment into the image recognition software and thus additionally 
optimize the assessment procedure. The digitalization of the manhole assessment will 
require development of an additional software that can utilize the results from image 
recognition software, weight them, calculate a score for the inspected manhole and 
assign it into a condition class. This will require expertise from data scientists that are 
able to transform the image recognition software and assessment procedure from the 
manhole report into an application for mobile devices. Such digitalization of both 
inspection and assessment of manholes will optimize and simplify both processes as it 
will make them less time demanding, cheaper to perform, more objective and executed 
equally out in the field by the personnel within Norwegian water utilities. 
 
The research presented here is pioneer in the field of Norwegian wastewater systems. 
However, it is only the starting point of development of both an official manhole report 
and a digital application that can inspect and assess manholes. Several suggestions for 
the future research have been presented in this thesis. The purpose of these suggestions 
is the validation and further improvement of the concepts presented here. Continuation 
of this research is important as it will result in an improvement of the condition and 
performance of manholes, and consequently contribute to enhanced condition of the 
whole wastewater system.   
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Appendix 1: Condition assessment of two wastewater manholes 
visualized through images provided by the water utility of 
Trondheim 
 
This appendix contains two examples of condition assessment of wastewater manhole 
images. The condition of these manholes was evaluated based on the assessment 
procedure presented in the proposed manhole condition assessment report. The 
observed defects were graded and weighted, the total score was calculated and used for 
the assignment of each manhole into a hydraulic condition class. The pictures were 
provided by the water utility of Trondheim.  
 
Example 1  
 

 

 
 
Observed failures with corresponding grades, weights and calculation of the total score: 
 
Observation  

Grade Weight Grade*Weight Type  Code 

Water level HWL 1 0 0 

Infiltration HIN 1 0,1 0,1 

Settled deposits HSD 2 2 4 

Surface damage HSF 2 2 4 

Manhole bottom HMB 1 0,5 0,5 

TOTAL 8,6 

 
Total score of 8,6 places this wastewater manhole into hydraulic condition class H2.  
 



 
 

Example 2  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Observed failures with corresponding grades, weights and calculation of the total score: 
 
Observation  

Grade Weight Grade*Weight Type  Code 

Water level HWL 1 0 0 

Settled deposits HSD 3 4 12 

Attached deposits HAD 1 0,5 0,5 

Surface damage HSF 2 2 4 

Manhole bottom HMB 1 0,5 0,5 

TOTAL 17 

 
Total score of 17 places this wastewater manhole into hydraulic condition class H2.  
 
  



 
 

Appendix 2: Images used for testing of the Custom 
Vision model with marked areas that were expected to 
be detected  
 
The images presented in this appendix were used for the testing of the trained Custom 
Vision model. All images were analyzed prior to the upload to the model. The areas that 
were expected to be detected by the model were marked separately by the user of the 
model. They were also assigned a tag that the model should predict for these areas. This 
was done in order to track the performance of the model and simplify its evaluation.  
 

Image Description  

 

 
Four areas to be detected. Three smaller 
areas are expected to be predicted as 
“HSD 0-10%”, while the largest area 
should be predicted as “HSD over 90%”. 

 

 
Five areas to be detected. All five are 
expected to be predicted as “HSD 10-
50%”. 



 
 

 

 
Four areas to be detected. Three smaller 
areas are expected to be predicted as 
“HSD 0-10%”, while the largest area on 
the top of the image should be predicted 
as “HSD over 10-50%”. 

 

 
One area to be detected. This area is 
expected to be predicted as “HSD over 
90%”. 

 

 
Five areas to be detected. The largest 
area in the middle is expected to be 
predicted as “HSD 10-50%”, while the 
four other areas are expected to be 
predicted as “HSD 0-10%”.  



 
 

 

 
Four areas to be detected. The two 
smaller areas are expected to be detected 
as “HSD 0-10%”, the area on the left/top 
is expected to be detected as “HSD 50-
90%”, while the area to the right/bottom 
is expected to be tagged as “HSD 10-
50%”.  

 

 
Four areas to be detected. All four are 
expected to be predicted as “HSD 0-
10%”. 

 

 
Two areas to be detected. The area to the 
left is expected to be detected as “HSD 
10-50%”, while the area to the right is 
expected to be detected as “HSD 0-10%”.  



 
 

 

 
Two areas to be detected. The area on 
the top of the image is expected to be 
tagged as “HSD 0-10%”, while the area 
on the bottom of the image is expected to 
be tagged as “HSD 10-50%”. 

 

 
Three areas to be detected. All are 
expected to be tagged as “HSD 10-50%”.  

 

 
Two areas to be detected. The area to the 
left is expected to be predicted as “HSD 
over 90%”, while the area to the right 
should be predicted as “HSD 10-50%”.  



 
 

 

 
Three areas to be detected. All of the 
areas are expected to be predicted as 
“HSD 0-10%”.  

 
 
 
  



 
 

Appendix 3: Custom Vision predictions of the testing 
images 
 
The images presented in this appendix show the predictions obtained during the testing 
of the trained Custom Vision model. Each image is presented with a short description of 
the displayed predictions. 
 

Manhole image with predicted tags Description of predictions 

 

Three out of four areas were recognized 
and tagged correctly. The “HSD over 
90%” defect grade was predicted with 
94.2% certainty, which is the highest 
obtained among all predictions. The two 
other “HSD 0-10%” tags received 58.1% 
and 54.7% certainty, respectively. 
However, one additional area of type 
“HSD 0-10%” in the other side channel, 
was not recognized by the model.  

 

Five out of five areas were predicted 
correctly. All of the tags represent the 
“HSD 10-50%” defect grade. Starting 
from the prediction on the top of the 
image, the tags received following 
percentages of certainty; 65.8%, 85.9%, 
46.3%, 38.4% and 56.2%.  
 
 
 
 
 
 
 
 



 
 

 

All of the areas were recognized and 
tagged into correct defect categories. 
However, some of the areas were also 
tagged several times when the 
probability threshold was decreased in 
order to obtain all of the expected 
predictions. As shown here, the tag “HSD 
0-10%” was predicted twice in the same 
area with 33.6% and 18.8% certainty. In 
addition, another area is also tagged 
twice but with different defect grades, 
“HSD 50-90%” and “HSD 10-50%”, 
where the last tag is the correct one. The 
fourth area that was expected to be 
predicted received “HSD 0-10%” tag with 
2.9% certainty and is not shown in the 
image. 
 

 

The area was predicted correctly with 
“HSD over 90%” tag and a high certainty 
of 84.6%.  
 
 
 
 
 
 
 

 

Five out of five areas were predicted 
correctly. Four of the tags represented 
the “HSD 0-10%” defect grade. The 
certainty of these tags varied, where 
three of the tags received high certainty 
(84.2%, 83.8% and 72.3%) and one 
received very low certainty (only 5.1%). 
The area in the middle of the invert 
channels was predicted with “HSD 10-
50%” with a certainty of 76.2%.  
 
 
 



 
 

 

Four out of four areas were predicted 
correctly. Two of the tags represented 
the “HSD 0-10%” defect grade. The 
obtained certainty of these tags was 
16.1% and 36.8%, respectively. The 
area tagged into “HSD 50-90%” received 
60.9% certainty and the “HSD 10-50%” 
tag received 21.7% certainty.  
 
 
 

 

Four out of four areas were predicted 
correctly. All of the tags represent the 
“HSD 0-10%” defect grade. Starting from 
the prediction on the top of the image, 
the tags received following percentages 
of certainty; 61.2%, 85.3%, 60.1% and 
84.1%.  
 

 

Both areas were predicted and assigned 
into correct defect grade. The tags have 
been predicted with varying certainty. 
One of the tags received 47,2% 
certainty, which is slightly below 
probability threshold of 50%, while the 
other tag received 84,1%. 
 



 
 

 

Both areas were predicted correctly. 
However, the certainty of predictions 
varied greatly. One tag has been 
predicted with high certainty of 87,4%, 
where the other tag received only 
18,3 % certainty. 
 
 
 
 
 

 

Areas with tags “HSD 0-10%: 52.5%” 
and “HSD 0-10%: 18.9%” are additional 
areas that the model tagged during 
testing. The first area is correct because 
it tagged a rock. However, the second 
area tagged parts of the rock and 
wastewater as deposits, which is wrong. 
 
The three other areas were expected to 
be detected by the model. All three are 
tagged into correct grade category “HSD 
10-50%” with 73.2%, 12.7% and 58.7%, 
respectively.  

 

Both areas were predicted correctly. Both 
tags have been predicted with high 
certainty of 82.4% and 86.7%, 
respectively.  



 
 

 

Both areas were predicted correctly. The 
tags have been predicted with varying 
certainty of 41.7% and 69.6%, 
respectively. 
 
The deposition in the middle of the invert 
channels was also predicted with tag 
“HSD 0-10%”. However, the certainty of 
this prediction was very low (1.6%).  
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