
 

Am I Eclipsed? A Smart Detector of Eclipse Attacks for Ethereum

Journal Pre-proof

Am I Eclipsed? A Smart Detector of Eclipse Attacks for Ethereum

Guangquan Xu, Bingjiang Guo, Chunhua Su, Xi Zheng, Kaitai Liang,
Duncan S. Wong, Hao Wang

PII: S0167-4048(18)31379-8
DOI: https://doi.org/10.1016/j.cose.2019.101604
Reference: COSE 101604

To appear in: Computers & Security

Received date: 30 November 2018
Revised date: 11 August 2019
Accepted date: 1 September 2019

Please cite this article as: Guangquan Xu, Bingjiang Guo, Chunhua Su, Xi Zheng, Kaitai Liang,
Duncan S. Wong, Hao Wang, Am I Eclipsed? A Smart Detector of Eclipse Attacks for Ethereum, Com-
puters & Security (2019), doi: https://doi.org/10.1016/j.cose.2019.101604

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition
of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of
record. This version will undergo additional copyediting, typesetting and review before it is published
in its final form, but we are providing this version to give early visibility of the article. Please note that,
during the production process, errors may be discovered which could affect the content, and all legal
disclaimers that apply to the journal pertain.

© 2019 Published by Elsevier Ltd.

https://doi.org/10.1016/j.cose.2019.101604
https://doi.org/10.1016/j.cose.2019.101604


Am I Eclipsed? A Smart Detector of Eclipse Attacks
for Ethereum

Guangquan Xua,b, Bingjiang Guoa, Chunhua Suc, Xi Zhengd, Kaitai Liange,∗,
Duncan S. Wongf, Hao Wangg

aTianjin Key Laboratory of Advanced Networking (TANK), College of Intelligence and
Computing, Tianjin University, P.R. China

bBig Data School, Qingdao Huanghai University, P.R. China
cUniversity of Aizu, Aizuwakamatsu, Japan

dDepartment of Computing, Macquarie University, Australia
eDepartment of Computer Science, University of Surrey, U.K.

fCryptoBLK, Hong Kong
gDepartment of Computer Science, Norwegian University of Science and Technology,

Norway

Abstract

Blockchain security has been drawing a tremendous attention from industry and

academic due to its prevalence on real-world applications in these years, such

as distributed blockchain-based storage systems. Since being deployed in dis-

tributed and decentralized network, blockchain applications may be vulnerable

to various types of network attacks. This paper deals with “eclipse attacks”

enabling a malicious actor to isolate a system user by taking control of all

outgoing connections. Although being known from practical blockchain appli-

cations, eclipse attacks, so far, are hard to be detected. To solve this problem,

this paper designs an eclipse-attack detection model for Ethereum platform,

ETH-EDS, based on random forest classification algorithm. Specifically, via the

collection and investigation over the normal and attack data packets (across the

network), we find out that the information in the attack packets includes the

tags packets size, access frequencies and access time, which may help us effec-

tively detect the attack. After training the data packets which we collect from

the network, our ETH-EDS is able to detect malicious actor with high proba-
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bility. Our experimental analysis presents evidence to show that the detection

of malicious network node (i.e., the malicious actor) is with high accuracy.

Keywords: blockchain security, eclipse attacks, detection, malicious actor,

random forest classification.

1. Introduction

The Ethereum, nowadays, has emerged as one of the most successful crypto-

currency platforms. Compared to Bitcoin [1], Ethereum has been seen as the

blockchain 2.0 that is able to extend the distributed ledger technology to support

various decentralized applications via more flexible layers and security mecha-

nisms, like access control and Ethereum smart contracts which can be written

in a turing-complete language. Although being more advanced than the design

of Bitcoin, Ethereum nodes (much like those in Bitcoin) also need to exchange

the state of ledger in a peer-to-peer network via emulating a structured graph

based on the Kademlia DHT [2].

Recent research works [3, 4] have concluded that the security of a proof-of-

work blockchain relies on the security of its underlying peer-to-peer network.

In other words, if the peer-to-peer network is partitioned and it nodes have

different copies of information about the ledger, these nodes will not come to

any agreement on the unique ledger across the network. This potential risk is

emphasized in [5] by defining and demonstrating the first eclipse attack on the

Bitcoin peer-to-peer network. In the attack, a malicious actor (for simplicity,

hereafter we refer to malicious actor as attacker) can completely control its

target’s access to other network nodes, so that the attacker is able to block the

target’s view of the ledger, and even further make use of the target’s computing

resource for more sophisticated attacks. Eclipse attack can be used as a useful

building block for other attacks to blockchain platform [6]. The work [5] shows

that eclipse attacks can be useful in affecting the mining power of an attack

target (hereafter we refer to target as victim) so as to attack the blockchain

underlying consensus algorithm. [6] further states that Ethereum smart contract
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may be vulnerable in a case where nodes receive inconsistent information of

ledger. Meanwhile, Eclipse attacks can be leveraged as parts of adversarial

strategies for injecting the inconsistency. Later on, Yuval Marcus [2] proves

that the same attack also affects the Ethereum peer-to-peer network to make

the platform unstable.

Although being defined and studied in Bitcoin and Ethereum, this type

of attacks has not been effectively detected yet. In this paper, we propose a

detection model based on machine learning technology to protect Ethereum

network clients from the eclipse attacks. When trying to “eclipse” an honest

node, an attacker needs to send continual connection requests to the target.

Too many unsolicited incoming connections from the attacker will occupy all

incoming connections to the node, which leads to a consequence that the honest

node cannot receive information of the current ledger from others. In addition

to the above attacking mode, the attacker may also send the ping to the target

repeatedly with the carefully-crafted set of node identifiers, which can populate

the target’s table, i.e. the routing table. In this paper, we find out that both

of the attacking approaches may leak information for us to trace the attacks.

We propose a more pervasive and practical eclipse-attack model based on the

eclipse attacks defined in [1]. This model can examine how the target’s states

change during a complete eclipse attack process. Normal and attack packets

can be collected according to the states change in the attack and further, they

are intaken by machine learning algorithms for detection analysis. We select

several features of the packets the target receives, and then train a detection

model to identify the type of new packets [7].

The next of the paper is organized as follows. Section 2 provides an introduc-

tion to the Ethereum network and the eclipse-attack model that we build from

the two eclipse-attack methods. Section 3 presents our detection model based

on random forest classification. Section 4 shows the experimental results of the

detection model w.r.t. the eclipse attacks. Section 5 introduces the existing

related works. Section 6 and section 7 give the conclusions and the discussion

of future work.
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2. Eclipse Attack on Ethereum P2P Network

In this section, we will deal with a detailed investigation of eclipse attack on

the Ethereum peer-to-peer network based on the Geth version 1.6.6 client. Geth

is the command line interface for running a full Ethereum node implemented

in the Go language. The main neighbour discovery protocol of Geth prior to

v1.8.0 is RLPx Node Discovery Protocol v4. This peer-to-peer protocol results

in critical eclipse-attack vulnerabilities.

2.1. Ethereum P2P network

Peer identification. A peer in an Ethereum network is identified by the nodeID,

which is a 512-bit cryptographic ECDSA public key. It is easy for one to lever-

age a computer to launch multiple Ethereum nodes with different nodeIDs. For

a node, what it usually needs to do is to run the ECDSA key generation algo-

rithm [1]. The algorithm, however, will not check if the nodeID corresponds to

a unique network address. Therefore, one can theoretically run the unlimited

number of nodes on a number of machines with the same IP address.

Network Connection. In an Ethereum peer-to-peer network connection, UDP is

used to find other peers and further establish a connection channel to exchange

ledger information [8]. All ledger information is transported through encrypted

and authenticated TCP connection. UDP connection can be made up to 16

concurrently, and the total number of UDP connection is unlimited. The limit of

TCP connection is Maxpeers, which is made to 25 by default. There are 2 groups

of UDP message. A ping message solicits a pong message in return [9]. This

pair of messages is used to check if a neighbour node is alive/active. A findnode

message solicits a neighbour message that contains a list of 16 nodes that have

been found by the responding node. A node will only respond to a findnode

request when the querying node is already in his db, which is a type of network

information storage. To eclipse a node by monopolizing connections, an attacker

must repeatedly occupy all Maxpeers of the victim’s TCP connections [4]. A

TCP connection can be outgoing only if the client allows/sets it in the beginning;
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otherwise, it will be set as incoming connections by default. The outgoing

TCP connections can be initiated up to 1
2 (1 + Maxpeers) with other peers by

the client. However, there is no limit on the number of unsolicited incoming

TCP connections, prior to Geth v1.8, other than Maxpeers. This means that

a node’s Maxpeers of its TCP connections can all be the unsolicited incoming

connections.

Network Information Storage. Neighbour nodes’ information is stored into two

data structures. The db is a long-term database which stores node information

that a client has been bonded. A node will be bonded if it returns a valid and

corresponding pong response after it receives the ping message. There is no

limit on the size of db. Each db entry consists of a nodeID, IP address, TCP

port, UDP port, time of the last ping sent from the node, time of the last pong

received at the node, and the number of times the node failed to respond to a

findnode message. A node’s age is the time elapsed since the last pong received

from the node. Each hour the client runs an eviction process to remove nodes

from the db which are there longer than 24 hours.

Fig. 1. The structure of Table storage

There are 256 buckets in the table, in which each of the bucket consists of
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n = 16 entries. Fig. 1 illustrates the Network Information Storage. Each entry

stores Ethereum node information including nodeID, IP address, TCP port and

UDP port. When a new node is added into a bucket, it’s mapped by logdist

function which is a modification of the XOR metric in the Kademlia protocol.

The logdist function is used to measure the distance between two nodeIDs. First,

each nodeID is hashed to a 256-bit value with the SHA3 algorithm. If the r

most significant bits of the two hash values are identical, but the r + 1st bit

is different, we then say that the logdist of this node is r. A nodeID that has

logdist r is mapped to the bucket 256− r of the client’s table.

2.2. Eclipse-attack methods

To eclipse a node, an attacker has to populate the data structures of the

victim, which makes the victim only obtain ledger information through the

attacker’s nodes [1].

Bonding. The most common way to populate both the db and the table is to

launch the bonding process. When the client bonds with a node, the clients first

checks if

(1) the node exists in his db.

(2) the db records 0 failed responses to findnode requests, and

(3) the db records that the node has responded with a pong within the last 24

hours.

If all the above checks pass, the client tries to add the node to its table.

Note that the node can be added in the table if there is still space in the

table. Otherwise, the client sends a ping to the node to check if it’s alive. The

bonding is made successfully, if the node responds with a pong. If there is a

success bonding, the client updates the node’s entry in its db and its table,

simultaneously.

Unsolicited pings. The client receives unsolicited pings from other nodes, re-

spond with a pong message and further bonds to the node successfully.
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Lookup. The iterative lookup(t) method can be used for clients to discover new

nodes. The lookup(t) method relies on a notion of “closeness” to a target

node t. Much like the Kademlia protocol, the “closeness” is defined by bitwise

XOR between two nodes. The client sends findnode containing target node t to

closest 16 nodes in the table. The nodes receiving findnode will query its table,

and send closest 16 nodes in the table to its sender. Accordingly the client has

the information of the 16 ∗ 16 = 256 nodes.

Selecting connection peers. A task runner is initiated and operated continuously

when an Ethereum client boots up. The task runner creates up to b = 1
2 (1 +

Maxpeers) (by default 13) outgoing TCP connections to other nodes in the

Ethereum network [10]. In general, a half of outgoing TCP connection peers

are selected from look up and another half from its table. The random buffer

can hold 1
2 ( 1

2 (1 +Maxpeers)) nodes. During the task creation stage, the client

node selects peers from the table at random to fill random buffer.

2.3. Eclipse Attack Model

Generally speaking, there are two methods to launch eclipse attacks on

Ethereum network. One is that an attacker eclipses an Ethereum victim by

establishing Maxpeers incoming TCP connections to its own malicious nodes

before the client is going to establish any outgoing TCP connections, and the

other one is to eclipse by owning the table. When rebooting, the victim occu-

pies all thirteen of her outgoing connections to its own adversarial nodes with

high probability [11]. To complete the eclipse, the attacker monopolizes the

remaining connections of the victim with unsolicited incoming connections im-

mediately. Based on the attack methods, we design an eclipse-attack framework

from the view of victim. We define 4 states for node in the framework, and via

the change of the states we can tell if a node is under eclipse attacks at that

very moment [12]. The states are defined as follows.

Running. This state means that the node has already lasted at least for

twenty-four hours, and it has established peer connection. The databases of the
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node, db and table, may have some peer information. db contains the node that

responds to a ping message from the client with a pong message. And the table

is filled with highly-skewed due to the feature of SHA3, because the SHA3 maps

each nodeID to a random 512-bit string. The probability that the second string

has its first r bits identical to that of the first string, and the r + 1st bits are

different, is defined as [10].

pr =
1

2r+1
(1)

Reborn. After a node reboots for some reason (e.g., crash-and-recover), it

will change to a reborn state. We find out an important feature while the node

is in this state. The table is always empty after the reboot. And this gives

an attacker a window to attack the node in such a way that once the victim

reboots, the attacker immediately initiates incoming connections or carefully-

crafted packets to the victim. Note that this may be the best time for collecting

the malicious packets [13].

Submerge. If the attacker establishes Maxpeers incoming TCP connections

of the victim to its own adversarial nodes, we call this state submerge. At this

state, all connections of the victim are forced to be set as incoming connections.

Poisoned. When the table of a victim is inserted much crafted nodeID by

the attacker, we call it poisoned. The victim here forms all outgoing connections

to the nodes of the attacker with high probability.

Fig. 2. Eclipse-attack model
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Fig. 2 illustrates that the states change during an active eclipse attack.

When a node A is active for a while, it’s in the running state. If an attacker

B wants to launch eclipse attacks to the node A, it needs to send many ping

requests to A. Once the victim A changes into the reborn state, (as we say, it

reboots for some reason) it will be eclipsed with high probability. Which the

state, either submerge or poisoned, A goes into, will depend on its connection

configuration. If A doesn’t create outgoing TCP connections, it may switch to

the submerge state. Otherwise, the table of A will be poisoned by a crafted

message from the attacker B.

To train our detection model, we need to collect ground data beforehand [14].

Our victim is designed to be a Geth client (version 1.6.6). We firstly collect

normal access connection packets in the running state and further we make an

attack script that attempts to eclipse the victim by sending ping repeatedly. We

start packets collection before the victim reboots and continuing to the moment

when its incoming connections are fully occupied by us or its table is filled with

our node entries [15].

3. Detection Model based on RFC

To detect the eclipse attacks, we construct a detection tool based on random

forest classification. Recall that to monopolize or poison into a node, the at-

tacker has to send continual connection requests to the victim. To play the role

of a victim, we can collect all UDP packets from the unsolicited node [16, 17].

We can tell if the resources are honest according to the requests sequence which

we receive. As analyzing the packet’s data of eclipse attacks, we find that it

has two “many-to-one” features: 1) The source and destination addresses of the

data flow have a many-to-one relationship [18], 2) The source address of the

data stream has a many-to-one relationship with the destination port. When

attacking a service of the target host, the attacker sends a large amount of data

flow to the fixed port of the target host [19].

The process of training the detection model is illustrated in Fig. 3. First,
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we extract the feature vectors from the training UDP packets. Next, we train a

random forest classifier using the training dataset, which combines the feature

vectors and their corresponding labels. Finally, we test our model with the new

UDP packets. To do so, we perform the same feature extraction process as the

training dataset and feed the feature vector to make the final prediction. We

use these predictions as the expected labels.

Fig. 3. The detection model training process

3.1. The Selection of Classification Features

Information entropy is a measure to describe variable uncertainty [20, 21].

In this paper, we consider to leverage information entropy of data stream to de-

scribe the characteristics of the eclipse attacks [22]. According to the definition,

the information entropy of variable Y is calculated via the following Eq. (2),

where p(yi) is the prior probability of variable Y.

H(Y ) = −
∑

i

p(yi) log2(p(yi)) (2)

The information entropy of the variable Y about X is shown in the Eq. (3),

where p(yi|xj) is the posterior probability of yi with respect to xj

H(Y |X) = −
∑

j

p(xj)
∑

i

p(yj |xi) log2(p(yi|xj)) (3)
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The “SourceIP”, “DestinationIP” and “DestinationPort” are used to represent

the source address, destination address and destination port of the data flow,

respectively. The information entropy of SourceIP to DestinationIP (SIDI) and

SourceIP to DestinationPort (SIDP) are used to characterize two kinds of fea-

tures [20, 23]. The two information entropy constitutes the information entropy

of data flow (DSIE), which reflects the uncertainty of SIDI and SIDP. We here

take SIDI as an example, and it is defined in the Eq. (4). The calculation of

DSIE is defined as follows. Suppose the total number of data streams sampled is

S, and the set of source addresses in these data streams is {sii|i = 1, 2, · · · , N},
and the destination address set is {dij |j = 1, 2, · · · ,M}. We define the vector

A[M ] and the matrix B[N ][M ], where Aj represents A[j], the number of data

streams whose destination address is dij , and Bij represents B[i][j], the number

of data streams whose source address is sii and the destination address is dij .

According to the Eq. (3), we have

SIDI = −
∑

j

p(dij)
∑

i

p(sii|dij) log2(p(sii|dij))

= −
M∑

j=1

Aj
S

N∑

i=1

Bij
Aj

log2(
Bij
Aj

)

(4)

In the following, we define other features which can be calculated directly

from data packets and help us identify the eclipse attacks.

The packets size represents the size of access packets. The main difference

between normal access and attack packets is that the latter one has much more

number of ping-pong than findnode-neighbors. And the size of these two kinds

of UDP packets are different as well. From the above evidence, we may identify

the feature of attack data.

The access frequencies represents the node visit frequency. In order to eclipse

a victim, an attacker needs to send ping request repeatedly. The busy traffic

flow can be used as one of the features to examine the eclipse attacks.

The access time represents the connection time. When a node cannot re-

spond with a pong to its sender on time, the sender may cancel this connection
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immediately. As for the attack scenario, the attacker, on the contrary, prefers

to wait till the reply rather than giving up easily.

These statistical features are much simpler and more intelligible, while the

information entropy approach is based on a destination set that contains many

victims. To simplify our experiment, we make use of the above statistical fea-

tures.

3.2. Random Forest Classification

The random forest classification is a machine learning algorithm which im-

proves the detection accuracy without significant cost for computational com-

plexity. Random forest can overcome several problems with decision trees, in-

cluding a reduction in overfitting and less variance. It is used to establish a

forest in a random way [24]. The forest is composed of a large number of de-

cision trees. There is no correlation between the trees in the random forest.

When a new input sample enters the forest, the decision trees are judged re-

spectively, and the sample category is determined according to the decision.

Combined with the characteristics and advantages of Bagging and random sub-

space algorithms, the random forest takes decision tree as the classifier to carry

out training without putting backing sampling of Bagging algorithm. At the

same time, the random subspace algorithm takes only part of the samples in

the training set for training, and the results are determined by decision tree

voting. In the random forest, each classification tree is a binary tree that fol-

lows the principle of recursion division. The binary tree divides the training set

successively from the root node, and its generation follows the top-down princi-

ple. The root node that contains all training data is divided into left and right

nodes according to the principle of minimum purity, and it contains a subset

of training data. The node continues to split according to the same rule, and

stops growing when the branch stop rule is satisfied. The implementation of the

algorithm is designed as follows.

(1) To initialize the data set D, the Bootstrap method is used to randomly

extract k sample sets each time from the data set, so as to generate k
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classification trees.

(2) S variables are randomly obtained from the nodes of each tree in k clas-

sification trees [20]. The most representative variables are selected from

these variables. The threshold of classification is determined by multiple

classification points.

(3) Do not trim classified trees to make them grow indefinitely [25].

(4) The new samples are divided into the random forest through the constructed

random forest, and the classification results are determined by the classifier

vote.

3.3. RFC Model Training

Each node of the random tree in the RFC model can be considered as a

weak classifier [11]. A classification criterion h(x, θ) ∈ {0, 1} is obtained by

calculating the training sample set that reaches the node of Ω. Here we let

x ∈ Rm represent a training sample, θ ∈ {φ, ψ} be the parameter of this weak

classifier, φ(ψ) be a filter function, ψ be a column vector parameter or a matrix

parameter, and θ determine the pattern of the classification hyperplane of the

weak classifier.

a) The nonlinear classification [26] surface is defined in the Eq. (5), where

φ(·) is an indicator function. For the sample x = (x1, x2, x3) ∈ R3, we let

φ(x) = (x1, x3, 1)T , ψ = (w1, w2, τ), and h(·) represent a classification surface.

h(x, θ) = δ(φT (x)ψφ(x) > 0) (5)

b) Linear classification is defined in the Eq. (6), where ψ is a parameter

matrix.

h(x, θ) = δ(φT (x)ψ > 0) (6)

When the sample is satisfied with h(x, θ) = 1, it falls into the left subtree.

This is regarded as a rational behaviour. Otherwise, it is regarded as irrational

(falling into the right subtree).

It runs recursively until the number of sample falling is below the threshold

or reaches the specified maximum depth. At the end of the recursion, this node
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is called the leaf node [27]. The optimal coefficient θ∗ can be found at each

node, which makes the training sample achieve the best effect, as shown in the

Eq. (7).

θ∗ = argmaxIGθj∈Γsub
(θj |Ω), (7)

where Γ is the subset of complete parameter space Γ. Each node Γsub is ran-

domly selected from Γ, which reflects the randomness in the process of node

split. IG(·) represents information gain, being used to measure the decrease of

sample impurity after splitting. It is defined as

IG(θ|Ω) = H(Ω)−
∑

i∈{l,r}

|Ωi(θ)|
Ω

H(Ωi(θ)) (8)

We further let Ω = {(xi, yi)}Ni=1 represent the set of all samples that fall

into the node (where |Ω| = N), Ωl(θ) and Ωr(θ) represent the sample set that

falls into the left and right child nodes under the argument θ, H(Ω) denote the

impurity of the sample set that falls into a node. H(Ω) can be represented by

information entropy shown in the Eq. (9).

Hentropy(Ω) = −
Nc∑

c=1

p(c|Ω) log p(c|Ω) (9)

Our RFC model training process works as follows. In the model training

process, we train n decision trees. We firstly get the sample set T ′ by resampling

p samples from training set T using the function sample withResample, and

then we obtain the feature set Att. Secondly, we sample k features without

replacement from the feature set Att. And T ′ remains the features which the

Att′ contains. Eventually, we can build the decision array DT .

3.4. Classification of RFC Models

After the RFC model training, the test sample x passes through each tree to

reach a certain leaf node [28]. Therefore the probability that sample x belongs

to c can be defined in the Eq. (10).

p(c|x) =
1

T

T∑

t=1

pt(c|x) (10)
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Algorithm 1: RFC model training process

Input: T,p,k

Output: DT

1 for i = 1; j ≤ n; i+ + do

2 T ′ = sample withResample(T, p);

3 Att = getAttributes(T ′);

4 Att′ = sample withoutResample(Att, k);

5 T” = remainAttributes(T ′, Att′);

6 DT [i] = createDecisionTree(T”);

7 return DT;

where T is the number of random trees in the forest [19], and pt(c|x) is the

category distribution of leaf nodes. The decision for the x category can be also

defined as the Eq. (11).

c = argmaxc∈{1,··· ,Nc}pt(c|x) (11)

The classification process of the RFC model is a majority voting process [16].

We define the test sample set as E = {e1, e2, · · · , em}, the set of decision

tree obtained by training as DT = {dt1, dt2, · · · , dtn}, the subscript array

that records the classification results of each decision tree as CIR[n], the cat-

egory set as C = {c1, c2, · · · , cn}, and the classification result set as CR =

{CR1, CR2, · · · , CRm}, respectively. Our classification process of the RFC

model is presented in the Algorithm 2.

4. Our Experiment

In this section, we present our experiment to highlight the accuracy and

effectiveness of our detector of eclipse attacks to Ethereum network. The ex-

periment mainly consists of four steps.

Step 1: Data collection. We firstly collect normal access connection

packets during the running state and then we use attack script that attempts
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Algorithm 2: The RFC model classification process

Input: DT,E

Output: CR

1 for i = 1; i ≤ m; i+ + do

2 for j = i; j ≤ n; j + + do

3 CIR[j] = 0;

4 for j = 1; j <= n; j + + do

5 classifyResultIndex = classify(E[i], DT [j])

CIR[classifyResultIndex] + +;

6 maxIndex = getMaxAppeared(CIR);

7 CR[i] = C[maxIndex];

8 return CR;

to eclipse a victim by sending ping repeatedly. We start to collect eclipse-attack

packets before victim reboots till its incoming connections occupied by us or

its table is filled by our node entries. At this step, we make use of wireshark

to collect the UDP packets from the victim. The process to capture sample

data by wireshark is shown in Fig. 4. We also add Ethereum devp2p protocol

dissector plugin in wireshark to help us analyze the collected UDP packets.

Step2: Data pre-processing. The data collected is with 4 types includ-

ing ping, pong, findnode and neighbors. The packet structure is described as

follows[29].

(1). All packets are signed with ECDSA-secp256k1 keys (representing a node

ID).

- For authenticity

- Signature: sign(privkey, sha3(packet-type || packet-data))

- 65-byte compact ECDSA signature containing the recovery ID as the last ele-

ment.

- Please refer to the code [30] for more information on how NodeID is recovered

from the signature.
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Fig. 4. The packets collected by Wireshark

(2). All packets are prepended with the SHA3-256 hash of the underlying data

of the packet.

- For integrity

- Hash: sha3(signature || packet-type || packet-data)

- 32 bytes.

(3). Packet Type: Single byte < 2 ∗ ∗7 // valid values are in [1, 4].

(4). Full UDP Packet Payload: hash || signature || packet-type || packet-

data [29].

At this stage, we use an Ethereum UDP packet dissector for discovery pro-

tocol v4 to decode a pcap file of captured Ethereum packets into a readable

format.

The data decoded are illustrated in Fig. 5. Each packet has its packet type,

source IP and destination IP. The sampling period of attack traffic increases

from 5ms to 25ms, with a single increase by 5 ms, while the sampling period

of background traffic is fixed at 5s. Among the five sets of data obtained, each

set of data takes 1,000 samples continuously, and each group of 50 samples is a

sample sequence, with a total of 20 sample sequences.

Step3: Training model. Firstly, we take a statistical analysis for a direct
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Fig. 5. The distributions of different packets size

view of UDP packets distribution in two states. They are presented as follows.

Fig. 6. The distributions of different packets size

As shown in Fig. 6, honest and malicious packets have different packets

of size distribution. To eclipse an honest node, an attacker has to send many

ping requests to the victim. The packets in the type of ping, pong will have

less data information compared to those with the types of findnode, neighbors.

Accordingly, their sizes have different distributions.

Fig. 7 shows that attack access consumes higher time complexity. This

indicates that a normal access is built for short connection. When a victim

cannot respond with a pong to an attacker on time, the attacker may stay
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Fig. 7. The distributions of different request time

longer for waiting.

Fig. 8. The distributions of different access frequency

Fig. 8 depicts that there exists much higher visit frequency while a node

is under eclipse attacks. Recall that in order to eclipse a victim, ping requests

must be sent to the victim repeatedly. A busy traffic flow may be seen as a sign

of eclipse attacks. Using these features, we train the data with random forest

classification.

Step4: Detection. Our input is the UDP data that has been processed

according to a statistical distribution. Our detection model is constructed with

sklearn, and the test data is split from the collected data in Step1 with a 3:7

ratio. Our node will reboot while it receives many new UDP connections from

19

                  



adversarial nodes. Our detection can identity an adversary connection request

that the eclipse attacks have launched with a high probability.

Table 1: Graph result of RFC detection

Precision Recall F1-score Support

Normal visit 0.68 0.98 0.80 158

Attack visit 0.72 0.93 0.78 127

Avg/Total 0.71 0.95 0.62 285

With the random forest classification, the precision rate and recall rate of

our detection are 72% and 93%, which are relatively high in practice. The

experimental results show that about one third checked attack data can hit to

its ground label. Meanwhile, more than 90 percent of all malicious data can be

identified correctly, which means most of attack packets can be blocked by our

detection model. In the experiment, it costs 1.301s for us to test 2,608 packets

on a Thinkpad with Intel Core i5 at 2.5GHz and 8GB RAM.

We note that the eclipse attack was initially defined in the early 2018. There

has been few relate work presenting the detection method/framework for the

attack. It may be difficult for us compare this work with others in the literature.

5. Related Work

The eclipse attacks on peer-to-peer networks have been studied in these

years. [31] presents a survey on the security issues to distributed hash table

which is an important building block for peer-to-peer network. A research line

of eclipse attack has been discussed in the research works [32, 33] and [34].

The first eclipse attack on a blockchain peer-to-peer protocol, Bitcoin, was

presented in [5]. Later, the research work [35] considered to launch eclipse

attack by exploiting Ethereum block propagation algorithm. In the attack, an

20

                  



attacker sends a bogus blockchain to a victim and further exploits a flaw in the

block propagation algorithm to prevent the victim from connecting to others.

Most recently, the work [1] was agnostic to its block propagation algorithm,

and further exploited the attacks to the Ethereum peer-to-peer network. The

attack focuses on isolating an Ethereum node from the rest in the blockchain

network. The paper discusses two ways to launch eclipse attacks to an Ethereum

node - monopolizing connection and table poisoning. Some countermeasures (to

the eclipse attacks on Ethereum) are also mentioned in [1]. However, the pre-

condition of these solutions is that system users have to frequently update their

Ethereum clients to the latest version. Namely, the solutions strongly depend

on the update frequency of users. This may not scale well in practice.

The aforementioned research works have not considered an effective detec-

tion mechanism for eclipse attacks. In this paper, we propose an effective model

to detect eclipse attacks via data flow, which can safeguard the clients who

cannot afford frequently update.

6. Conclusion

To protect Ethereum node from eclipse attacks, we have defined the features

of attack connection flow, and further proposed a novel eclipse-attack detec-

tion model ETH-EDS. Specifically, we have defined the state change during

eclipse-attack process. Our detection model makes use of the fusion context of

the model and the stability of fitting degree with traffic increasing to detect

malicious connection request. Four types of data packets of UDP are charac-

terized according to the features, namely packets size, access frequencies and

access time. The simulation results show that our model can distinguish the

normal traffic from the attack one accurately with a high detection rate and a

low false alarm rate.

7. Future Work

Some of our future works are introduced as follows.

21

                  



Design new features for detection. We believe that there will be more features

that can be utilized to train our detection model to identify eclipse attacks.

We have investigated two kinds of features, including information entropy and

statistical features. In future, we will collect larger scale of data flow and define

new features to enhance scalability.

Real-time analysis. Our current model has to collect and store the related

data in advance before identifying the classification label of new incoming pack-

ets. A real-time detection model based on runtime data flow may provide more

practicability.

About using other classifiers. Our detection model has been designed based

on the random forest classification. We believe that there must be some other

classifiers that may outperform the random forest algorithm. In future, we

will consider to leverage various classifiers to make detection comparison w.r.t.

accuracy and effectiveness.

We leave the above as the interesting open problems of this work.
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