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Abstract

Background: For more than a decade, gene expression data sets have been used as basis for the construction of
co-expression networks used in systems biology investigations, leading to many important discoveries in a wide
range of subjects spanning human disease to evolution and the development of organisms. A commonly
encountered challenge in such investigations is first that of detecting, then subsequently removing, spurious
correlations (i.e. links) in these networks. While access to a large number of measurements per gene would reduce this
problem, often only a small number of measurements are available. The weighted Topological Overlap (wTO)
measure, which incorporates information from the shared network-neighborhood of a given gene-pair into a single
score, is a metric that is frequently used with the implicit expectation of producing higher-quality networks. However,
the actual extent to which wTO improves on the accuracy of a co-expression analysis has not been quantified.

Results: Here, we used a large-sample biological data set containing 338 gene-expression measurements per gene
as a reference system. From these data, we generated ensembles consisting of 10, 20 and 50 randomly selected
measurements to emulate low-quality data sets, finding that the wTO measure consistently generates more robust
scores than what results from simple correlation calculations. Furthermore, for the data sets consisting of only 10 and
20 samples per gene, we find that wTO serves as a better predictor of the correlation scores generated from the full
data set. However, we find that using wTO as a score for network building substantially alters several topographical
aspects of the resulting networks, with no conclusive evidence that the resulting structure is more accurate.
Importantly, we find that the much used approach of applying a soft-threshold modifier to link weights prior to
computing the wTO substantially decreases the robustness of the resulting wTO network, but increases the predictive
power of wTO networks with regards to the reference correlation (soft threshold) network, particularly as the size of
the data sets increases.

Conclusion: Our analysis demonstrates that, in agreement with previous assumptions, the wTO approach is capable
of significantly improving the fidelity of co-expression networks, and that this effect is especially evident for cases of
low-sample number gene-expression data sets.
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Background

In recent years, the system-level analysis of gene co-
expression data sets as networks has become a much
used approach to investigate and understand the rapidly
increasing amount of available gene expression data.
Such network analyses have generated important insights,
including the identification of gene clusters involved in
autism [1], different types of pancreatic cancer[2], sea-
sonal differences in the human immune system[3], cardiac
[4] and neural [5, 6] development, as well as evolution [7].

Many different methods have been developed for these
network analyses, typically focused on generating net-
works where the genes are represented as nodes and a
link between a pair of nodes corresponds to a measure of
pair-wise gene expression profile similarities [8]. A variety
of methods exist to attempt to quantify these similari-
ties. The most common common approach, perhaps, is
to determine the strength of a given link as a function of
a correlation score (such as Pearson, Spearman, or sim-
ilar) for the gene expression profiles, but other methods
are also in use, for instance revolving around information
theoretical approaches or Bayesian networks and directed
acyclic graphs, which aim to filter out the strongest pre-
dictors of regulatory mechanisms [9]. As determining
the best Bayesian network is an NP-hard problem, such
methods depend on efficient heuristics, such as Markov
Chain Monte Carlo [10] and steepest hill climbing [11] or
sparsest permutation approaches [12]. From here on out,
we focus on the correlation-based approach, and we will
refer to the original and unmodified correlation between
expression profiles as the 'base correlation’

The nature of the correlation matrix approach, that of
generating a score for all possible pairings of genes in
the set, brings up a significant challenge as typical gene
expression data sets contain simultaneous measurements
of thousands of genes. Consequently, a complete pair-
wise comparison may involve computing correlations for
millions of gene pairs, bringing up the issue of the statis-
tical significance associated with a correlation score due
to necessary P-value adjustments due to multiple test-
ing: when such a large number of comparisons are made,
spurious strong correlations are bound to occur in some
number. This is of particular concern when dealing with
data sets containing only a small number of measurements
for each gene.

While large-scale expression data with measurements
reported on hundreds of individuals are currently avail-
able [13-15], there are still many cases where the number
of available samples are restricted to a dozen measure-
ments per gene or even fewer. This is not unusual when
studying medium to large non-human organisms (for
instance, primates) or rare diseases, where the expense of
maintaining the animals is prohibitive or there is a notable
difficulty in identifying cases. Under such restrictions,
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even perfect or near-perfect correlations are not necessar-
ily indicative of actual co-regulatory mechanisms.

A possible approach for dealing with the challenges
emerging from small sample sizes, is that of using a
network approach to look for information in the neigh-
borhood of a gene pair [16, 17]- i.e., third-party genes
that also connect to that gene pair. One such method is
based on computing a score known as the weighted Topo-
logical Overlap (wTO) [18]. While wTO is a metric with
established use, in particular by the popular R-package of
WGCNA [19], its original stated purpose is primarily to
identify modules. Additionally, according to the wording
in the original article, the inclusion of topological over-
lap in WGCNA seems to be grounded more in previous
use in a variety of network topics rather than an assess-
ment with respect to gene expression data in specific. To
our knowledge there has not been any study which aims
to investigate the extent to which wTO is an improvement
on base correlations when attempting to determine indi-
vidual co-expressed gene-pairs in low-sample situations.

In this study, we have investigated the merit of wTO
to improve on co-expression networks by first computing
high-confidence networks from large data sets, and sub-
sequently evaluating whether the use of wI'O increases
the predictive power of low-quality data sets artificially
created from the same source.

Methods

In order to perform our tests, we downloaded expres-
sion data from the GTEx consortium [13, 15] (http://
www.gtexportal.org). We chose the “Whole blood” data
set (with data for 23,152 genes), as it contains a very large
amount of measurements per gene (338), which allows us
to use the full data set as a reasonably accurate reference
point. As an auxiliary test set for further confirmation, we
also downloaded a separate data set obtained from mouse
brains from the Gene Expression Omnibus [20], with the
identifier GSE26500 [21]. This set was chosen to serve as
an independent test compared to our human set, while
exhibiting a comparable number of genes (25,698) and
a reasonably large number of samples (198) in order to
evaluate the reference co-expression.

Based on these gene-expression data sets, we simulate
three levels of low-quality data by sampling nested sets of
10, 20 or 50 measurements (which we hereby refer to as
points). The sampling was performed by randomizing the
order of samples in the data sets, after which we simply
picked the first 10, 20, or 50 points (according to ran-
domized order) for each gene, so that all 10 points in the
lowest-quality set are also contained in the 20-point set,
which in turn is entirely contained in the 50-point set. The
rationale for this nested sampling approach is to evaluate
the performance of wTO on a sliding scale of increasing
data quality, in order to identify a potential break-even
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point at which it either begins or ceases to outperform
the base correlation. From here on out, we use the term
“quality” specifically to denote the number of points in
a set.

For a given set of N genes, the computation time of
wTO is longer than that of a simple correlation analy-
sis; O (N3) as opposed to O (Nz). Consequently, in order
to reduce running times of our investigation to a more
manageable duration, we reduce the number of genes in
the simulated low-quality sets (and corresponding refer-
ence sets) to 1000 genes (out of the 23,152 available) in
each set. This reduction in gene-set size also allows us
to create an ensemble of 20 separate groups (without any
shared genes between them) of nested low-quality sets,
with corresponding reference sets, in order to account
for potential variability in the predictive performance of
the low-quality sets. In a procedure somewhat similar to
the nested sampling approach for reducing the number
of data points per gene, we generated the 20 1000-gene
data sets by randomizing the order of genes in our original
set, and dividing it into 20 consecutive sets (the remaining
3152 genes being omitted from the study). This process
is effectively identical to a random draw of 20 separate
1000-gene sets without replacement.

While a variety of different metrics for calculating pair-
wise co-expressions as a starting point for a network anal-
ysis are currently in use, we have focused our efforts on
testing two commonly used types: Spearman correlation
and biweight midcorrelation (bicor) [22—-24].The latter has
been argued to generate more robust similarity measures
for gene co-expression networks [24]. As a further test,
we also evaluate the effect of applying soft thresholding
to the bicor metric, where the bicor value is raised to a
pre-defined exponent in this case chosen to be 6, to accen-
tuate strong correlations and filter out weaker ones. For
each metric, we compute the base co-expression measure
and the corresponding wTO for the simulated low-quality
sets and the reference sets, defined as follows for a gene

pair (i, )):
wij + Zk;éi,j Wik Wi
min (3, wik, > g wik) + 1 — wy’

wTO(i,j) = (1)

where w,;, denotes the absolute value of the correlation
score between genes 4 and b.

We then evaluate the performance of the measures
on low-quality sets against the reference set, using two
rank-based tests: (A) Jaccard index for the top 1000
pairs in each low-quality set as compared to the ref-
erence sets, and (B) Spearman correlation between the
co-expression/wTO scores in the low-quality sets and the
reference sets.

Our motivation for the choice of rank-based tests is
as follows: For a given threshold, the proportion of false

Page 3 of 11

positives within a given selection is essentially deter-
mined by the proportion of factually uncorrelated genes
above a given rank in the data set. Any perturbation
(e.g. due to differences in methodology or sample size)
of the co-expression matrix that does not alter the
order of pairs could, in principle, be counteracted by an
appropriate change in the cut-off, yielding the desired
reference network. On the other hand, if spuriously
correlated (low-rank in the reference set) gene-pairs
suddenly exhibit larger edge weights (i.e., higher rank in
the low-quality set) than the factually correlated genes,
false positives become inevitable. Identifying changes
in ranking of pairs between sets is therefore critical.
Our intention with the Spearman test is to identify this
across the entire gene set, while the purpose of the Jac-
card test is to focus on the most strongly co-expressed
pairs, which are usually of main interest for a biological
study.

In order to test the impact of wI'O usage on network
structure, we generated unweighted networks from each
of the complete matrices using the 1000-gene sets for all
of the chosen data quality levels by retaining all edges
above a given cut-off. Determining an appropriate cut-off
threshold for building networks from correlation matrices
is a major field of gene co-expression analysis in par-
ticular and network science in general, and a variety of
criteria have been proposed for this purpose. One might,
for instance, set it to correspond to a desired p-value
under the null hypothesis that the data is independent.
Other proposed methods specifically suggesting bicor,
Spearman or Pearson correlations as the co-expression
metric involve choosing a cut-off so that the network
follows a scale-free topology [19], or setting the cut-off
near abrupt transitions in the nearest neighbour spacing
distribution [25]. A detailed investigation in the choice
of cut-off and impact thereof is, however, outside the
scope of this paper. To build networks from our complete
correlation and wTO matrix, we therefore opted for the
straightforward approach of selecting the top 0.2% of gene
pairs (from the 500,000 pairs per set). Community detec-
tion on these networks was conducted using the Louvain
algorithm [26].

Software

Computation of base correlation matrices (both Spear-
man and bicor) was conducted using in-house software
written in C++. Soft-thresholded correlation and wTO
matrices were computed from the base correlation matri-
ces using in-house software written in Python. Perfor-
mance evaluation was conducted in Python using the
libraries scipy [27] and NetworkX [28]. All box plots were
generated in Python, using matplotlib [29]. The code used
has been made available on GitHub (https://github.com/
andrevo/DiffCoEx-WTOQO).
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Results

Accuracy of pair interactions

We assess the predictive power of a low-quality set with
respect to the complete high-quality human whole blood
set by computing the Spearman correlation between the
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low-quality and high-quality link scores. Figure 1 shows
the predictive power of base gene co-expression corre-
lation and the wTO computed from lower-quality data
sets using the 20 ensembles. We clearly see that for all
reduced quality levels, the low-quality wTO predicts the
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Fig. 1 Comparison of fidelity to full-sample data between non-modified pairwise correlations (biweight midcorrelation) and wTO of the bicor
network, according to two tests: Spearman rank correlation of edge pairs and Jaccard similarity of the top 1000 edge pairs
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reference wTO significantly better than the low-quality
correlation (using bicor) is able to predict the reference
correlation. We observe similar results in the mouse data
set (Additional file 1). In other terms: wTO networks are
substantially less sensitive to small sample sizes (in terms
of measurements per gene) than a network based on sim-
ple pairwise correlations. We also find that the choice
of Spearman or biweight midcorrelation as the base co-
expression measure has minimal effect on performance
fidelity (see Additional file 2: Performance test of wTO
against base Spearman).

However, wTO is not a direct measure of co-expression,
and we ask ourselves: if one is only interested in actually
quantifying the direct relationship between the expression
levels of two genes, is wTO a more accurate measure for
this? Figure 1 shows that while there is a very strong cor-
relation between the pairwise correlation and the wTO,
it is not absolute. Interestingly, for the lowest quality (10
measurements per gene), low-quality wI'O outperforms
the low-quality correlation as a predictor of the reference
(high-quality) correlation, with a mean Spearman corre-
lation of 0.465 between the pairwise low-quality wTO
and reference bicor (vs 0.382 for low-quality bicor and
reference bicor).

This effect weakens with increasing data quality: while
the mean performance is still marginally improved at
the 20-point quality, (Spearman test: 0.532 for wTO ver-
sus 0.51 for bicor), the distributions overlap substantially,
lying in the range of [0.508;0.547] for the wIO and
[0.482;0.532] for the base bicor. However, we observe
that within our ensemble of low-quality sets, the highest-
performing sets tend to be the same for wT'O and for base
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bicor. This is demonstrated in Fig. 2, where we plot the
spread in net difference between each pair of Spearman
tests for bicor vs. wT'O over the three test set quality levels.

In other words, while we do see some base bicor sets
outperform some wTO sets (at 20-point quality), wTO
will generally outperform base bicor for the same set. Out
of 20 sets, only three demonstrate a lower performance
using wT'O, and in all three cases the difference is marginal
(0.003 being the largest difference in favor of base bicor
on the Spearman test). As we increase the data quality to
50 points per gene, the positive effect of wTO has van-
ished entirely, and we see that the low-quality data set with
only bicor correlation is in fact a better predictor of the
reference correlation (Fig. 2).

As our wTO and base bicor values can be paired (since
we compute both of them for each individual sample),
we can apply the Wilcoxon signed-rank test to establish
the level of statistical significance related to the improve-
ments shown in Fig. 2. As shown in Table 1, we find a
p-value of 4.0-10~* in favor of wTO at 20-point quality. For
the other two low-quality sets, the Wilcoxon test returns
p = 131074 thus in favor of wTO at 10 points, and in
favor of base bicor at 50 points. We note that the equal
p-values at 10 and 50 points are a consequence of the
nature of the Wilcoxon test as a non-parametric test, and
that for these two qualities the same measure performs
best in each of the 20 samples (WTO at 10 points, base
bicor at 50).

The lower panel of Fig. 1 shows the Jaccard test for the
top 1000 strongest edge pairs when comparing the test
sets with the reference set. Somewhat surprisingly, in the
test of low-quality correlation as predictor of reference
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Fig. 2 Net advantage of wTO over base bicor in terms of estimating reference bicor, as measured by difference in Spearman correlation. Boxes
represent the spread of results for each of the 20 sets of 1000 genes at each given quality
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Table 1 Wilcoxon test results for wTO versus base bicor
performance using non-soft-thresholded networks, as shown in
Fig.?2

Quality (points)  # of sets with superior wTO performance  P-value
10 20 13-107
20 17 4.107*
50 0 13-107

correlation, the top-1000 strongest links when using a
sub-sample set of size 50 shows a maximum Jaccard score
of only 0.046. For the wT'O-based networks, the Jaccard
test accentuates the fidelity difference we have already
observed, with a median score of 0.42.

Figure 3 shows, using both the Spearman test (upper
panel) and the Jaccard test (lower panel), that applying a
soft threshold to the bicor has some negative impact on the
consistency of the wT'O for all three low-quality sets. This
is particularly evident for the 10- and 20 point measure-
ment sets. Note that, since soft thresholding does not affect
the relative ranking of network links (gene pairs), it does
not affect the consistency of the non-wTO bicor network.

However, we see that soft-thresholding significantly
increases consistency between wTO and base correla-
tion for all low-quality sets. The improvement from
soft thresholding is greater for higher-quality sets, par-
tially off-setting the loss in predictive power seen in
the non-soft-thresholded sets. Notably, soft-thresholded
wTO consistently outperforms base bicor at 50-point
quality, but not as much as it does for lower qualities.
This is in contrast to the non-soft-thresholded case, where
basic bicor outperforms wT'O with regards to predicting
reference bicor at 50-point quality. Similar to the non-
soft-thresholded case, we find that despite the overlap for
50-point quality, the best-performing gene sets for base
bicor are also the best-performing for soft-thresholded
wTO, with soft-thresholded wTO outperforming base
bicor for each of the 20 tested gene sets (as shown
in Table 2, p = 1.3 - 107%, Wilcoxon test; see also
Additional file 3: Performance improvement from WTO
in a soft-thresholded network).

As an additional test, we evaluated the performance
of wI'O by determining the expected number of false
positives on gene expression sets consisting of identi-
cally distributed random data points. As we had previ-
ously determined that the choice of bicor or Spearman
as the base correlation measure had a minimal impact on
performance, we decided to use Spearman as the base
correlation measure for this test. The major benefit of
this choice was that since the Spearman correlation is a
non-parametric measure, and only takes into account the
relative ranking of genes, we could generate random data
by any distribution we saw fit (requiring only that each
data point was independent) without impacting the result.
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For the sake of simplicity, expression data was therefore
drawn from a uniform distribution on [0, 1]. By this pro-
cess, we generated 20 groups of randomized data sets,
containing 1000 genes (effectively, fixed numerical labels
serving no other purpose than identification). In order to
remain comparable to our analysis of whole-blood data,
each of these 20 groups consist of four nested sets of 10,
20, 50 and 338 data points per gene.

In order to provide an equal basis for comparison of
wTO and base correlation, we chose three pairs of cut-offs,
corresponding to the 90th, 95th and 99th percentile of
each of the Spearman correlation and wTO across our 20
reference (338-point) whole blood datasets. Any gene pair
in the correlation and wTO networks produced from the
randomized data sets (which, naturally, contains no true
positives) was then flagged as a false positive if it exceeded
the corresponding cut-offs.

As shown in Table 3, while base correlation returns a
substantial number of false positives at lower qualities
(predictably decreasing as the quality increases and the
cut-off becomes more stringent), wTO performs far bet-
ter, returning no false positives, even at the lowest cut-off
chosen and lowest quality.

Resulting networks

In order to assess how the choice of wTO versus base
correlation affects higher-order network characteristics
rather than edge-wise characteristics, we calculated sev-
eral properties of unweighted networks generated from
the strongest 0.2% of gene pairs in each of our sets (using
the Spearman correlation as the base correlation). We
found that both the choice of score and the quality of the
data have a strong effect on the number of nodes in the
network (Additional files 4 and 5).

As the number of edges is constant across all networks,
these differences also correspond to differences in aver-
age degree of each node. Notably, we see that the choice
of applying wTO as link weight reduces the number (and
therefore increases the average connectivity) of nodes in
the network. Interestingly, while the results are reasonably
similar for the full-quality sets (median of 451 nodes for
correlation, 515 for wT'O), a reduction in quality has the
opposite effect for wT'O and base correlation: the former
sees a reduction in the number of nodes, while the latter
an increase. In order to evaluate how this might affect the
top hubs present in each network, we identified the top
100 nodes by degree in each network and evaluated the
proportion of these also present in the top 100 nodes of
each of the reference networks. As shown in Fig. 4 and
Additional file 6, we find that the choice between wTO and
base bicor has minimal effect on the ability to replicate the
top hubs by this approach.

Since community detection is one of the main motiva-
tions for WGCNA’s use of wTO, it is important to assess
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Table 2 Wilcoxon test results for wTO versus base bicor
performance using soft-thresholded base correlation networks

Quality (points)  # of sets with superior wTO performance  P-value

10 20 13-107*
20 20 13-107%
50 0 13.107%

the community structure of the resulting networks. In
fact, we find that using wTO has a dramatic impact on
the community structure of the resulting network, with a
substantial reduction of the number of modules identified
across all set qualities. Furthermore, the wTO-based net-
works contain fewer distinct modules (and this number
remains low and constant across our tested quality lev-
els) than the when using the base correlation, for which
the number of identified modules increases as the data
quality is reduced (Additional files 7 and 8). We also note
that the modularity of the best partition, as identified by
the Louvain algorithm [26], is lower for high-quality base
correlation sets, and for wT'O-based networks as a whole
(Additional files 9 and 10). A possible explanation for this
is that wTO tends to filter smaller isolated gene groups
(whether the result of noise or not) in favor of densely
interconnected cores, in which boundaries between com-
munities are less clear.

We also note substantial differences in local topologies,
with the wT'O-based networks predictably exhibiting sub-
stantially higher clustering (tendency for nodes to share
neighbors) than the base correlation networks (Additional

Table 3 False positive rates (FPR) for wTO and Spearman
correlation networks obtained from random gene expression
data

Percentile Cut-off Cut-off Quality ~ FPR FPR (WTO)
value value (points)  (Spearman)
(Spearman) (wTO)

90 .5879 4826 10 73-1072 0

95 6848 5202 10 35-1072 0

99 8303 6321 10 47-1073 0

90 5879 4826 20 7410730

95 6848 5202 20 12-1072 0

99 8303 6321 50 92-1077 0

90 .5879 4826 50 10-107° 0

95 6848 5202 50 10-1077 0

99 8303 6321 50 0 0

90 5879 4826 338 0 0

95 6848 5202 338 0 0

99 8303 6321 338 0 0

The “Percentile” column refers to the basis for false positive threshold, as the
corresponding percentile of each metric in the whole-blood data set
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files 11 and 12). Finally, we find a marked difference
between correlation and wTO-based networks with
respect to degree assortativity: the correlation-based net-
works exhibit positive assortativity (well-connected nodes
connect to well-connected nodes, indicating a rich-club
structure), in particular for the lower-quality sets, while
the wTO-based networks exhibit a more consistent neg-
ative assortativity across the board, indicating a hub-and-
spoke structure in the network (Additional files 13 and 14).

Discussion

Our study confirms that by including information from
the local neighborhood of a pair of correlated genes, wTO
has the potential for being a substantial improvement on
pairwise correlations as a measure of co-expression, in
particular for data sets with very few measurements per
gene. While this is in line with common practice, it is not a
trivial finding: certainly, wTO is often found to be strongly
correlated to edge weights, such as social networks [30].
The latter is generally a consequence of transitivity of
edges: for instance, if person A is friends with person B
and with person C, B and C are usually more likely to be
friends.

In many cases, such as the aforementioned social
networks, this edge-transitivity is a reflection of the
dynamics forming the system. Examples of such could
be similar interests and geographical proximity, them-
selves being transitive attributes). However the expecta-
tion of transitivity is not an absolute in these systems,
as it is certainly conceivable for A to be very good
friends with both B and C, without B or C hav-
ing ever met each other. Similarly, we could certainly
expect similar topological cases in co-expression net-
works, consisting of sets of three or more genes involved
in similar processes, which would rely on the expres-
sion of all these genes to function and, thus, form-
ing cliques with the result being noticeable topological
overlap.

For correlations, however, the transitivity does not just
reflect the dynamics behind the data, but it is also math-
ematically necessary by nature. Consider the case of gene
A being strongly correlated with both of genes B and C.
In this situation, genes B and C must necessarily be
strongly correlated as well. What this means is that, even
for links which are coincidentally correlated, one would
expect a large topological overlap, as coincidental corre-
lation with another node necessarily implies some degree
of (similarly coincidental) correlation with its neighbors.
Consequently, we would expect that spuriously correlated
gene pairs could also show high topological overlap, and as
adirect effect, that the topological overlap measure should
be just as vulnerable to noise resulting from low sam-
ple sizes. Because of this, it might not immediately follow
that the benefits of using topological overlap, as seen in a
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Fig. 4 Similarity between low-quality hub nodes and hubs in the reference correlation network. The top 100 highest-connectivity (by node degree)
nodes in each network were compared to the reference top 100 nodes in the full-quality network built from the base correlation matrix

wide variety of network analyses, also apply to correlation
networks.

However, we find that topological overlap network
is much more robust than a base correlation network.
Additionally, for the case of low-quality data sets, wTO
is a substantially better predictor of reference correla-
tion than the correlation itself (despite the fact that it
actually estimates a separate variable). The effect weak-
ens with increasing quality. For very high-quality sets,
it appears that wI'O becomes a worse estimator of the
“infinite-set” correlation. Since the wI'O measure is a
non-linear transformation of a correlation link-weight by
drawing upon the joint neighborhood two genes, this is as
expected.

In terms of network structure, our results show a
complex reality where it is necessary to evaluate mul-
tiple effects against each other. Notably, we find that
many of the key network characteristics show substan-
tial change when building networks from wTO scores
rather than base correlations, and hence, that choos-
ing one over the other may have a notable impact on
certain types of results. This effect is most marked
at low qualities (few data samples), as many system-
level scores in correlation-based networks (assortativ-
ity, clustering, modularity) exhibit values more similar
to the wI'O networks as the quality increases. How-
ever, these metrics (most notably the assortativity) still
show clear differences between both types of networks
at full quality, and there is no evidence that further

increase in quality would result in convergence to a single
value.

Conclusions

In this paper, we have investigated the ability of the
weighted topological overlap method to generate gene
co-expression networks with improved fidelity in situa-
tions of low measurement numbers. We find that, with
respect to edge interactions, the wI'O method is sys-
tematically able to improve upon low-quality data, even
to provide a better prediction of reference correlations
for sample sets consisting of only 10 or 20 measure-
ments per gene. These results reinforce the credibil-
ity of wTO as a valuable metric when evaluating gene
co-expression networks, as is customary by established
software packages such as WGCNA. However, we also
find that using wTO as a replacement for correlation
with respect to building networks when employing a cut-
off value can have substantial effects on the topology
of the resulting networks, particularly with respect to
modularity.

Interestingly, we find that soft-thresholding reduces
the robustness of wTO for low-quality sets, despite oth-
erwise increasing its predictive power with regards to
base correlation. While this demonstrates the potential
usefulness of the well established combined wTO/soft-
thresholding approach, it also highlights a potential
weakness, which might be of concern for certain
applications.
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