
Implementation of Simultaneous Coordinated 
Multimodality for Mobile Terminals

Narada Dilp Warakagoda                       Jan Eikeset Knudsen 
  Telenor R&D,  Snarøyveien 30 Telenor R&D,  Snarøyveien 30 
          1331, Fornebu                                                     1331, Fornebu 
               Norway                                                               Norway 
narada-dilp.warakagoda@telenor.com               Jan-eikeset.knudsen@telenor.com 

 
Anders Smeby Lium, 

Norwegian University of Science and Technology,  
Norway   

lium@stud.ntnu.no 

Abstract 
In this paper we will describe a platform for speech centric multimodal dialog applications which 
supports simultaneous coordinated multimodality. The system consists of a light-weight client 
usually running on a mobile device and a server placed in the network.  The client offers a  
HTML/Javascript based graphical interface and a voice interface to the user. Both the client and 
server are described with their architecture, functionality and behavior. In particular we will show 
how the  system has been constructed to support the simultaneous coordinated multimodality that  
allows a maximum freedom for the user.        

1 Introduction 
Speech centric multimodality is often  proposed as a solution for the usability 
problems of the traditional interfaces to the information and communication 
systems of ever increasing complexity. The source of most of the advantages of 
multimodality over speech only or traditional graphics/pointing only systems is 
the possibility that the strengths of one modality can compensate for the 
weaknesses of another modality. For example, speech can be used to construct 
highly complex inputs easily, something which is much more difficult with 
pointing on menus or a soft keyboard. On the other hand, speech is less suitable 
for presenting long descriptive information to the user, whereas graphics is more 
appropriate for such tasks.  But the most interesting possibility here is to combine 
different modalities together to form a single composite input. W3C has tried to 
classify these different types of multimodality in a systematic way (Hickey, 
2000).  According to this, there are three main classes of multimodality: 
Sequential :- One modality at a time is available  
Simultaneous Uncoordinated:- Several modalities are available but only one 
modality is interpreted in a given dialog state. 
Simultaneous Coordinated:-  Several modalities are available and they are 
interpreted together in a given dialog state. 
 Obviously the third class of  multimodality above is the most advanced type 
and  it gives the user the maximum freedom.  The famous article titled “put that 



there”   first introduced this kind of multimodality (Bolt, 1980).  Even though the  
technology has advanced significantly since then, the level of ambition for the 
nature and context of such applications has also increased proportionately. For 
example, nowadays there is a huge interest in multimodality in connection with 
small terminals  such as PDAs  which communicate with  servers over  relatively 
high capacity wireless networks.  This distributed nature is one of the sources of 
challenges in building mobile multimodal systems.  In particular, predictable and 
unpredictable time delays in data transmission and  processing constitute an 
important issue in implementation of real-time simultaneous coordinated 
multimodal systems.  In this paper, we will describe the implementation details of 
a distributed multimodal platform  for small mobile terminals. We are particularly 
concerned of the realization of the functionality of simultaneous coordinated 
multimodality, both in modality fusion and dialog management. The 
implementation, to a large extent, is based on commercially or otherwise available  
and  more or less standard technology.  Further, we have tried to maintain a clean 
separation between  the platform  and the applications the platform will host. This 
makes the platform open for new applications. In addition, the platform has been 
designed in such a way that  different types of on-line and off-line adaptations are 
possible. Especially, adaptation to the nature or capabilities of the terminal and the 
network has been given a careful consideration.                   
 This paper is organized as follows. In section 2 the overall architecture is 
presented.  Details of the modules that handle the voice and graphics modalities 
are described in section 3.  Multimodal integration and dialog management is the 
subject of section 4.  Finally in section 5 we make some concluding remarks.                       

2 Architecture 
The system presented in this paper is an improved version of the MUST system 
(Almeida et al., 2002).  This is based on the Galaxy communicator (Galaxy 
Communicator, n.d.) and thus has a hub-spoke type architecture as shown in 
Figure 1.  As seen from this figure, the server part of the system consists of five 
separate modules which can communicate with one another through the central 
facilitator module “hub” . The hub and inter-module communication facility are 
provided by the Galaxy communicator infrastructure. Other modules in the server, 
except for the voice server which is written in C++,  are custom made  using Java. 
The communication among the modules are based on messages, each of which 
consists of a set of attribute-value pairs.  Note that all the server side modules can 
be run even on a moderately powerful  PC. In our experiments we used a PC with 
a Pentium II, 450 MHz processor and 128 MB RAM.  The client part of the 
system consists of  two main components. These components are the counterparts 
of the server-modules handling voice and GUI modalities. The client is usually 
run on  a PDA  having   Windows CE/PocketPC 2002 operating system. However, 
it  can also be run on a usual portable or stationary PC  with Windows 2000 
operating system.   



Data
baseHUB

Multi-
modal 
Server

Dialog 
Server

Database 
Server

Voice
Server

GUI 
Server

SERVER

GUI 
Client

Voice
Client

CLIENT

WLAN

 
Figure 1: Architecture of the system. 

 
 The information flow through the system in a typical user query which 
contains both voice and pointing inputs is shown in  Figure 2.  As seen from this 
figure, the client collects the pointing and voice signals and transfers to the server 
over the wireless connection, which in our case is a wireless local area network 
(WLAN) based on the IEEE 802.11b protocol.  The GUI server and voice server 
collect these signals respectively. While the GUI server annotates the pointing 
signal in a suitable way, voice server performs a speech recognition operation to 
extract the concepts carried by the speech signal.    
 Then both the voice server and GUI server  pass the concept values further to 
the multimodal server. The  purpose of the multimodal server is to combine the 
information coming from the voice server and the GUI server. It uses a simple 
timer mechanism to bundle all the information that arrive in during a predefined 
time window.  In that sense it does not perform a complete multimodal 
integration, but only a partial integration based on temporal information.   
 The combined information are passed to the dialog manager which actually 
completes the multimodal integration process and interprets it to perform the 
necessary action depending on the current dialog state. In a typical situation the 
appropriate action would be to contact the  database server with a request for 
certain information. The database server is merely a wrapper to a SQL-compatible 
database. Therefore, its task is to convert the request from dialog manager to a 
well formed SQL-query, perform the database-lookup and send back the result 
back to the dialog manager.  Note that the database server returns information in 
XML format, and this includes only the names of the involved image files. The 
actual image files are stored in the GUI server.  
 



Data
base

Multi-
modal 
Server

Dialog 
Server

Data-
base 

Server

Voice
Server

GUI 
Server

SERVER

GUI 
Client

Voice
Client

CLIENT

WLAN

 
Figure 2: Information flow through the system 

 
 Dialog server processes the result from the database server, in order to make it 
more human understandable, and send further to the multimodal server.  In this 
case, the multimodal server performs a simple “ fission”  operation by splitting the 
feedback from the dialog server into a voice part and a GUI part. These parts are 
then sent further to the voice client and the GUI-client, where these are presented 
to the user.              

3 Voice and GUI Subsystems 

3.1 Voice subsystem 
The voice subsystem consists of  voice-client running on the mobile terminal and 
the voice server running on the server side.  The client-server separation of the 
voice subsystem makes it possible to be less dependent on the computational 
capability of the mobile terminal.    
 Since the terminals we mainly target our service for, such as PDAs, do not 
usually possess a high computational capacity, the voice client has been made 
very simple. From the input side, it simply reads the audio input device of the 
terminal and copies the speech data to the IP socket connection between the voice 
client and the voice server. From the output side, it just performs exactly the 
opposite operation. Even though this strategy works most of the time especially 
with lightly loaded network connections, it is not optimal by any means.  One 
possible improvement is to transfer voice activity detection (VAD) and feature 
extraction to the client from server, as proposed in distributed speech recognition 
(DSR homepage, n.d.). However, at this time this is not possible because we use 
Philips ASR engine (SpeechPearl homepage, n.d.)  which is a closed system and 



not compliant with the DSR-standard.  Another improvement which we could 
have tried was the transfer of time-stamping to the client. This is very important 
for multimodal integration, especially when the network introduces unpredictable 
delays to the speech signal. 
 Voice server, on the other hand, contains all the heavy components; namely 
the automatic speech recognition (ASR) engine, text-to-speech (TTS) engine, in 
addition to the VAD and the handler of socket connection with the voice client. 
As mentioned earlier the ASR engine is based on the Philips SpeechPearl, and the 
TTS can make use of any Microsoft SAPI-4.0 compliant system (SAPI homepage, 
n.d.). Note that each of the four components mentioned above run in its own 
thread, making asynchronous operation possible and contributing highly to the 
real time operation.   
 The operation of the voice server is as follows. When an input signal is 
received through the socket connection it is tested by VAD  on a frame-by-frame 
basis. If speech activity is detected, then the signal is fed to the ASR engine, 
otherwise the signal is discarded.  The ASR-engine operates in the so called “open 
grammar”  mode, meaning that the ultimate result of the ASR operation consists of 
a set of concepts, their values and corresponding confidence scores. For example, 
a speech signal corresponding to “I would like to travel from here to Lysaker at 
two o’clock in the evening”  would  result in a structure like: 
 

�
�
�

�

�

�
�
�

�

�

9001400_

700ker_

600

TIMEDEPARTURE

LysaSTATIONTO

travelACTION

 

The voice server then packs this structure in a Galaxy-compliant message 
and sends further to the multi-modal server. On the other hand, when a message 
from the multimodal server is received, the voice server passes the intended text 
string to the TTS-engine to generate a speech waveform, which in turn is copied 
to the socket connection with the client.     

3.2 GUI subsystem 
The GUI subsystem consists of the the GUI-client on the mobile terminal and the 
GUI-server on the application server.  Figure 3 shows the GUI subsystem. 



XSLT

Galaxy 
Inter-
face

Socket Server

Apache 
Web  

Server

GUI-SERVER

Socket Server

Button

GUI-CLIENT

WLAN

HTML File

Text-field

Touch sensitive 
HTML page

Web Browser

URL/Events
URL

Events

URLEvents

 
Figure 3: GUI-subsystem 

 
 The GUI-client consists of  a Web Browser (Internet Explorer) and an IP 
socket server. The web browser uses specially developed ActiveX controls to 
construct usual GUI-components such as buttons, text areas and lists etc. or to 
make the whole web page a hot-spot sensitive to pointing. Therefore it is possible 
to programmatically collect the events generated in those components and divert 
them to the socket server. The socket server sends the collected events to the GUI 
server. It can also receive the URL of the web page to be displayed from the GUI 
server. Once the URL is received, the actual web page is fetched from the web 
server component of the GUI-server using the HTTP protocol in the usual way.   
 The GUI server consists of four main components. First component of this 
module is the interface to the Galaxy compliant messages. When such a messages 
arrives, this interface receives it and passes the definition of the graphical output 
in a device independent XML format to the extensible style sheet transformer 
(XSLT). At the same time, the Galaxy interface generates a suitable URL and 
passes it to the socket server which sends it to the GUI client. The XSLT in the 
meantime converts the XML page to a HTML file and saves in accordance with 
the generated URL, in the document area of the web server. Then the GUI client 
fetches this as described earlier and sends back user generated events, such as 
tapping on a button, selecting an item of a list etc.. The socket server collects them 
and sends further to the rest of the system via the Galaxy interface.  

4 Multimodal Integration and Dialog Management  
In literature there are several different strategies for multimodal integration 
(Johnston et al., 1997; Oviatt et al. 2000; Wu et al. 1999). But initially we have 
chosen a simple integration process which is distributed over  two modules; dialog 
server and multimodal server.  



4.1 Multimodal Server 
The integration algorithm implemented in the multimodal server is specifically 
targeted for inputs that contain a maximum of two pen inputs and a simultaneous 
speech input. For example, saying “I will travel from here to there”  and at the 
same time pointing at two locations on a displayed map will generate such an 
input.  The integration algorithm in a given dialog state is as follows. As soon as 
an input from the voice server or the GUI server arrives at the multimodal server,  
it starts a timer set to a predetermined time. Then it waits until the timer expires, 
unless a total of two GUI tapping inputs and a voice input arrive before that, in 
which case it exits waiting immediately. At the end, the multimodal server 
bundles the information collected during the waiting period, and sends the result 
to the dialog server. Note that this is only a temporal integration and no 
consideration is given  to the semantics of the inputs.  

4.2 Dialog Server 
The dialog manager server consists of four main components that were 
implemented as separate classes: Context Manager, User input processor, System 
response generator and XML processor 
 Context manager  is the basic framework of the whole module. It is a finite 
state machine that contains several states possibly having physical interpretations. 
Each of these states defines a  particular context in the dialog. That is the reason 
why this state machine is called context manager.  When the user generates an 
event, a state transition can occur. The route of the transition is dependent upon 
both the current user input I t and  the current state St . Each state transition will 
trigger an action set such as looking up a database to generate an output  Ot.  A 
chain of such state transitions defines the dialog-flow.    
 User input processor basically operates on a table which has two columns; 
one for the concepts and the other for the corresponding values of the concepts.   
The concept table is filled using the values coming from the multimodal server 
after its temporal integration. During the filling operation, input ambiguities are 
solved, in this way completing a late fusion. Once filled, the concept table defines 
the current input I t: If the values in the concept table are I t(1), I t(2),…….I t(n), then 
the N-tuple (I t(1), I t(2), I t(n)) is the current input I t. The number of different inputs 
can be prohibitively large, even if the length of the concept table (M) and the 
number of values a given concept can take (K) is moderate. In our case we have 
reduced the number of inputs by employing a many-to-one mapping from the 
original input space to a new smaller sized input space. This mapping is analysis 
based and therefore not optimal. If one had enough amount of data, the mapping 
could have been trained.  
 System response generator is responsible for the generating Ot. It is 
essentially a mapping from the space formed by the tuples (St, I t).  It looks at the 
current state St and the input I t, and generates an output Ot that contains both 
speech and graphic contents. The output can contain three different components: 



pre-stored state dependent strings, parameters extracted from the input it self and 
data obtained from the back-end  database.  Speech output is generated simply by 
concatenating these components appropriately. Graphical output is generated as 
an XML string. Since it is difficult to generate an XML string through simple 
concatenations, it is maintained a DOM (Document Object Model) tree which 
always represents the (graphical component of the) current output.  The current 
tree is  generated from the previous DOM-tree by tree-operations such as 
deletions and insertions. The graphical output is then obtained by converting the 
DOM tree to a string.  Actually, these XML operations are performed using the 
fourth class mentioned above, the XML processor.  

4.3 Combining Multimodal Integration and Dialog Management 
The multimodal integration strategy described in subsection 4.1 has one main 
disadvantage. Namely, this strategy does not represent a full integration in the 
sense that a final concept set and its values are not extracted and processed to 
represent the information arrived through all modalities.  Actually, this is 
completed later in the dialog server itself. It is important to consider both temporal 
and semantic information simultaneously to achieve a good alignment between 
different modalities. This is especially true, because the above procedure is 
entirely dependent on the arrival times of the information through different 
modalities. But alignment based on arrival times alone is not reliable because of 
the numerous network and processing delays as well as the fact that  voice is a not 
a “point event”  in time whereas tapping is nearly such an event.  However, all 
those problems can be solved to a greater extent if one can combine semantic and 
temporal considerations, by either embedding multimodal integration in the dialog 
manger itself or making available the information about the current dialog state to 
the multimodal server. From an implementation point of view the first alternative 
is more convenient as it requires a simpler housekeeping and message passing 
strategy. Even though it goes against the principle of modularity, we decided to 
try it out.   
 Our implementation of the combined multimodal integration and dialog 
management is based on an extension of the finite state machine (FSM) 
representation of the latter. A typical fragment of the extended  FSM is shown in 
Figure 4.  
 In Figure 4, states S1,S2,S3, and S4 are “normal”  states, in which the system 
waits for an input indefinitely. The modification of the FSM is mainly due to the 
introduction of the states which are associated with timers; i.e. waiting for an 
input in such a state is time limited. While in a such a state, if an input arrives 
within the associated time-window and it is from a valid modality, the system 
jumps to the next state to continue the process. Otherwise the system tries to 
interpret the information arrived so far, and depending on the result of this, it 
either jumps to a “normal”  state or an error handling state represented by small 
circles.  Note that the FSM fragment shown in Figure 4, has three different paths 
extending from a “normal”  state to another “normal”  state. These three paths 



correspond to the different combinations of  modalities for a valid query, namely 
two tapping inputs and a speech input. 
 

S2

Speech

Speech

Tapping

Tapping

Tapping Tapping

Tapping
Speech

S1

S3 S4

Timer

Timer Timer

Timer

Timer

 
Figure 4:  FSM fragment  for dialog management combined with multimodal 

integration 
 
 As an example consider a composite user input which is comprised of two pen 
tappings and a speech component. If the order of arrival of these components at 
the multimodal integrator is “pen speech pen”  and their arrival times lie within the 
timer values, then the system jumps from state S1 to S2. However, if their arrival 
order is “pen pen speech”, then the system’s final state would be S3. The system 
can even jump to S4 from S1 in the case where the order of arrival is “speech pen 
pen” .  
 Another example is that the user input contains only one pen tapping and a 
speech component. If their arrival order is “speech pen” ,  the system  will be stuck  
at the right-bottom timer state. In this case, the system can try to interpret the 
these two input  components together.  If the interpretation makes any sense then 
the necessary action set is triggered and the system goes to another waiting state. 
Otherwise, the system will jump to an error handling state.                   
 One disadvantage of this approach the high number of states. But, for an 
application of a moderate size, the number of states is manageable without any 
major difficulty.  

5 Concluding Remarks 
The multimodal system described in this paper, has been tested within the 
corporate local area network (LAN). Within this infrastructure the system works 
well and exhibits a near real time responsiveness. However, it is yet to be tested 
through a network path that goes beyond the corporate LAN. In that case we 
expect increased delays and therefore we may need more robust strategies for 
multimodal integration.  Another issue which may need attention under highly 



unpredictable network delays is the multimodal fission. Currently the information 
sent to the terminal are not tested for synchronism. But this has to be  changed for 
obtaining an enhanced  robustness.        
 However, for the time being, the main source of errors in the system is the 
automatic speech recognition. For example, wrong results from ASR causes the 
system to jump to inappropriate states causing many instabilities.  Improving the 
dialog management can help reduce such problems. 
 Even though we have maintained a fairly good separation between the 
platform and applications, still the effort required to build a new application is not 
low. This is due to fact that there is no script-like API available for the 
development of applications. We plan to build an overlay which provides this 
facility of dialog specification using for example XML.   

6 References 
Almeida, L. et al., 2002. The MUST guide to Paris, in: Proceedings of  ISCA  Tutorial 

and research workshop on Multi-Modal Dialogue in Mobile Environments, 
IDS’2002, pp 49-51, Kloster Irsee, Germany. 

Bolt, R., 1980. Put That There, Voice and Gesture at the Graphics Interface, in: Computer 
Graphics, 14(3),  pp 262-270, ACM Press, New York. 

DSR homepage. Retrieved August 02 2003 from: 
 http://www.etsi.org/frameset/home.htm?/technicalactiv/DSR/dsr.htm. 
Galaxy Communicator homepage. Retrieved August 02 2003 from:  
 http://communicator.sourceforge.net/. 
Johnston, M., Cohen, P. R., McGee, D., Oviatt, S. L., Pittman, J. A. & Smith, I., 1997. 

Unification-based multimodal integration, in: Proceedings of the 35th Annual 
Meeting of the Association for Computational Linguistics, Association for 
Computational Linguistics Press. 

Oviatt, S.L., Cohen, P.R., Wu, L.,Vergo, J., Duncan, L., Suhm, B., Bers, J., Holzman, T., 
Winograd, T., Landay, J., Larson, J. &  Ferro, D., 2000. Designing the user interface 
for multimodal speech and gesture applications: State-of-the-art systems and research 
directions, in: Human Computer Interaction, 15(4), ACM press, New York. 263-322 

SAPI homepage. Retrieved August 02 2003 from: 
 http://research.microsoft.com/srg/sapi.aspx. 
SpeechPearl homepage. Retrieved August 02 2003 from:  
 http://www.scansoft.com/speechpearl/ 
Hickey M., 2000. Multimodal requirements for Voice Mark-up languages, Retrieved 

August 02 2003 from:  http://www.w3.org/TR/multimodal-reqs. 
Wu, L., Oviatt, S. L., & Cohen, P. R., 1999.  Multimodal integration:  A statistical view, 

in: IEEE Transactions on Multimedia, 1(4), IEEE, Piscataway, New Jersey. 334-341. 
 
 

 
 
 


