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Preface 

The master's thesis is a part of the requirement of two-year international in master 

program RAMS (Reliability, Availability, Maintainability, and Safety) at the 

Norwegian University of Science and Technology (NTNU) during the spring semester 

of 2019. The student, Sanjay Shah in collaboration with NTNU and EQUINOR, carries 

out the project.  

The report will mainly focus on the Battery management for wireless sensors through 

the main objective is to develop the discharge model for batteries and replacement 

strategies for failed sensors used at different equipment in oil and gas plant.  

The report is targeted to the students and researchers who are researching for the 

development of battery degradation models for monitoring performance of 

equipment, especially for the wireless sensor network system. The readers of the 

report should know condition monitoring and maintenance strategies. 

Trondheim, 11 June -2019 

Sanjay Shah 
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Summary  

Wireless sensor networks (WSNs) becomes an emerging technology and has been 

adopted by several companies for data communication and processing. Many leading 

companies use wireless sensor’s network for different purposes. Each sensor is 

powered by lithium thionyl chloride (LTC) batteries. LTC batteries are non-re-

chargeable. Hence, as and when the battery gets discharged beyond the acceptable 

limits, it must be replaced by a new battery. This thesis aims to find an optimum 

replacement strategy that minimizes the replacement cost without compromising on 

the availability of WSNs.  

A relevant literature review is performed to find out the critical concept of battery 

management and its discharge phenomena for a wireless sensor’s network. Most of 

the available literature is only limited for rechargeable batteries but not for the LTC 

battery which we are searching. One of the research works shows that battery 

replacement and sensor replacement is identically the same in the context of cost. 

Based on this information, a literature search for this thesis is shifted from battery 

replacement to sensor replacement as a part of the maintenance operation.  

Relevant literature review regarding failed sensor node replacement is carried out, 

and only three research articles are found. Those three articles are thoroughly 

summarised in this project. The first articles used the Markov decision process (MDP) 

and proposed a solution with the sensor replacement as the only maintenance 

operation. The second article suggests four different replacement strategies with a 

mathematical model whereas the last article describes the homogenous and 

heterogeneous nature of wireless sensor networks and performs a maintenance action 

by introducing multi-cluster management technique to replace the failed node. 

In this thesis, a probabilistic model is developed to find the optimal policy for node 

replacement by comparing the expected long-run cost of each policies. Long run cost 
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includes replacement cost and performance loss rate in terms of cost. The optimal 

policy is the compromise between replacement cost and performance loss. A 

qualitative study is performed by setting up a hypothetical wireless sensor network 

comprised of ten sensor nodes with assumed parameters. An expected long-run cost 

for each policy is calculated, and the results are plotted. Finally, the sensitivity analysis 

is performed to check the variation of long-run cost by changing the value of different 

parameters. 
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Chapter 1                                                 

Introduction 

1.1 Background 

Since the beginning of the third Millennium, Wireless Sensor Networks (WSNs) 

becomes an emerging technology and has been adopted by several companies for its 

different industrial purposes(Buratti et al., 2009). The usage is not only limited by 

factories and companies, but also used for various other application, for example, 

battlefield surveillance, traffic monitoring, health care services, environmental and 

habitat monitoring, and disaster risk management (Misra et al., 2010).  

Each wireless sensor networks consists of several nodes, which is the crucial 

component for data sensing and processing for communication and requires energy 

to achieve the desired function (Nighot et al., 2014). Generally, the power is supplied 

to the sensor nodes with the help of batteries (Nighot et al., 2014). Many wireless 

sensors are being deployed for various purposes at different facilities in oil and gas 

industries, each powered by the Lithium battery. Lithium technology was first 

commercialized in 1991 (Blomgren, 2017) and was able to receive significant attention 

as a leading source of energy due to its high energy density, high operating voltage, 

sizeable operating temperature range, outstandingly long shelf life and low self-

discharge rate (Jain et al., 1998).  

Although very reliable battery is used for wireless sensor nodes to function well, the 

energy of the battery is discharged after a certain period, and overall performance of 

wireless sensor network is decreased as sensor node fails (Misra et al., 2010). 

Therefore, battery or sensor replacement becomes vital for this critical network. This 

maintenance activity is always associated with some economic loss since it requires 

human resources to perform a certain level of maintenance (Barroso et al., 2004). 
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Financial loss is not only linked with maintenance operation but also with the storage 

of battery. Batteries are being ordered and stored in large stocks. Keeping this 

inventory for a long time reduces the battery capacity through self-discharge 

phenomena (Cheng et al., 2016; Rodrigues et al., 2017). From last few years, battery 

management for sensor nodes is very emerging topic been able to create significant 

interest among researchers (Lajara et al., 2015). 

 

1.2 Problem description 

 

Equinor, the leading Oil, and Gas Company use wireless sensor networks for data 

communication and processing. Sensors are used at different locations on different 

facilities to measure noise level as an output. Each sensor operates differently and uses 

the same battery type. 

There are three different types of sensor with average power consumption at the plant. 

• Type 1: 9 mW - 10 units (2 batteries) 

• Type 2: 4 mW - 30 units (1 battery) 

• Type 3: 2 mW - 60 units (1 battery) 

Some sensors used for long hours and some of them are less, which results in the 

variation in capacity and discharge curve. Degradation rate and a lifetime of batteries 

largely depend upon its usage since LTC battery is the primary battery and it is non-

rechargeable. Sensors are replaced when the battery is completely discharged, each 

time either one sensor is replaced or several but not all of them. It means that the time 

duration for replacement is not fixed; it is on a random basis. There is no observed 

data available for the replacement of batteries. Statistically, one can assume that the 

replacement time follows the random distribution throughout the year, which is one 

of the major constraints of the proper battery management system. Therefore, 

replacement methods/strategies are something to consider. Another main constraint 
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is to keep the batteries for a long time since the long storage time reduce the battery 

life, which is for LTC batteries estimated for 1.5 years (Batteries, 2018; Jain et al., 1998). 

Also, sensors are always connected with power, and they are being operated at 

different temperature ranges from (0-30) ̊  C. Therefore, batteries degradation is highly 

depending upon the temperature variation. Thus, lifetime analysis of batteries 

according to temperature variation is the major problem.  

The constraints, as mentioned earlier, lead to some economic loss and require more 

workers to operate. Therefore, the company is interested in the improvement of their 

replacement strategy and workforce optimization to increase the overall economic 

efficiency. Hence, workforce optimization and possible maintenance strategies are 

essential. The policy can be chosen in a very holistic way, which not only helps to 

improve its performance technically but also economically. In the case of non-

rechargeable batteries, batteries should be disposed of once it gets discharged, so one 

cannot go for the corrective maintenance. It requires periodic inspection and 

predictive maintenance could be the best way to meet the above criteria.  

This thesis focuses on solving the maintenance problem by adopting an appropriate 

probabilistic modelling approach to find an optimum replacement strategy, which 

minimizes the replacement cost without compromising on the availability of WSNs. 

 

1.3 Objectives 

 

The main objective of this master thesis is to use the available information, develop a 

probabilistic model, and provide replacement strategies for the battery management 

for wireless sensor network. The goal can be addressed as the following listed tasks. 

1. Study and present the characteristics of the battery in general and discuss its 

chemistry along with its discharge phenomenon.  
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2. Study and present the specific properties of the LTC battery and its discharge 

phenomenon. The factors (like temperature, voltage, usage of sensors) which 

affects the discharge of the battery 

3. Literature survey for different types of wireless sensor networks and its 

maintenance and replacement strategies 

4. To find out the methods, inputs, and experimental data or parameters to 

develop the model for managing failed battery in a wireless sensor network. 

5. Verify how this model is used for solving the maintenance purpose and 

assessment of replacement cost and performance loss of the network. 

6. Discuss the challenges, opportunities, and future works of the work done in the 

project. 

 

1.4 Limitations  

 

1. Previous research work shows the degradation phenomenon mainly for a 

rechargeable battery, and very fewer studies have been conducted for non-

rechargeable battery (LTC battery). Therefore, the availability of only a few 

research articles shows that this area has not been explored so much. 

2. Due to the limited accessibility of enough data and information, the 

establishment of the physical model seems to be tough. That is the reason we 

decided to move towards developing a probabilistic model. 

3. During modelling, we assume that either replacing a battery or sensor node is 

identically the same. It might not resemble with the real scenario; the cost of 

the battery may not be the same as of sensor nodes. 

4. The reliable data source is rare because the nature of the problem is new; 

Probable values are used for the analysis of the model. Unavailability of actual 

failure data is the biggest obstacle for approaching the exact solution to the 

problem. 
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5. Any experimental data do not support the input parameters used in the model, 

and the parameters considered for a qualitative study is hypothetical. This 

thesis does not target to solve any specific problem but to demonstrate the 

challenges and approach of probabilistic modelling to find out the maintenance 

strategy for managing failed sensor nodes. 

 

1.5 Research Approach 

 

Research approach includes a literature survey about the general operation of 

batteries, basic chemistry, and general characteristics of the battery. LTC Batteries 

performance and discharge phenomenon, including temperature’s variation effect 

and lifetime consideration. Further, different literature is reviewed for the wireless 

sensor networks, including its maintenance approach and replacement strategies. 

Most of the literature is search in oria.no, and different database are used like Scopus, 

Compendex, and Science direct. (Batteries, 2018; Cheng et al., 2016; Jain et al., 1998; 

Linden Reddy, 2002) are the primary source of literature to understand about the 

battery terminologies and its characteristics. These (Dutta et al.; Misra et al., 2010; 

Taboun et al., 2015) are the three main research article is reviewed and studied for the 

wireless sensor network, its types and nature of maintenance and different 

replacement strategies — these literature help to understand the various technology 

and terminologies related to batteries and wireless sensor networks. 

1.6 Structure of the Report 

 

The remaining chapters of the report will be structured in the following way. 

• Chapter 2: Description of batteries 

Chapter 2 includes a theory regarding most of the essential functions of batteries, 

which are being used in wireless sensors. It consists of a bit elaborated description 
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on battery chemistries. Also, it provides theory regarding the aging of batteries, 

performance evaluating its efficiency and capacity change with temperature and 

discharge rate. 

• Chapter 3: Lithium thionyl chloride batteries (Li/SOCL2) 

The characteristics of the LTC battery is described in this chapter, along with their 

chemistry. Also, the lifetime consideration and discharge phenomena of LTC battery 

are well explained. 

• Chapter 4:  Literature review for WSNs 

This chapter includes some explicit description of the type of wireless sensor 

networks, different maintenance strategies, and replacement strategies for failed 

sensor node. Also, cost optimization technique with some mathematical model 

followed by the discussion and comparison of varying replacement strategies is 

presented. 

• Chapter 5: Modelling of wireless sensor networks (WSNs) 

This chapter presents a procedure and guidelines for modeling of wireless sensor 

networks. A detailed explanation of Markov Chains and transition matrix is shown, 

which further used in the estimation of long-run cost. 

• Chapter 6: Numerical Analysis 

This chapter includes the step-by-step calculation procedure to estimate the long-run 

cost and determine the optimal policy for a hypothetical network. Sensitivity analysis 

is performed at the end of this chapter. 

• Chapter 7: Conclusion and further work 

The most important part; discussion and conclusion of the findings and 

recommendations for additional works are presented in chapter 4.



 

 

 

Chapter 2                  

Description of batteries  

This chapter consists of the background theory of the relevant topics, which includes: 

• Types of batteries and its operation principle. 

• Basic terminologies used in battery technology. 

• What are the essential characteristics of batteries? 

• What is the batteries lifetime and how it fails under certain conditions? 

• What are the main influencing factors for failure? 

A battery is a device that utilizes chemical energy present in the active materials and 

converts it into electrical energy through an electrochemical discharge reaction. It is 

composed of either one cell or many depending upon their usage and application 

(Linden Reddy, 2002; Spitzer Spitzer, 2000). The batteries are classified mainly into 

two categories: 

1. Primary batteries: 

These are the batteries which are not rechargeable or capable of quickly recharge 

electrically, and once it is being discharged must be replaced or discarded. Some 

examples of primary batteries are alkaline-manganese, carbon-zinc (dry cell), and 

mercury-zinc, silver-zinc, and lithium batteries. It is very convenient, lightweight, and 

usually very inexpensive. Primary batteries are well known for its useful shelf life and 

high energy density at different discharge rates (from low to moderate). Also, it is 

suitable for maintenance purpose and easy to handle (Linden Reddy, 2002). 

2. Secondary batteries: 

They are rechargeable batteries, and it can be recharge electrically through passing 

direct current through them once its charge is discharged. Examples of secondary 
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batteries are nickel-cadmium, nickel-hydrogen, nickel-iron, nickel-metal hydride, 

lead-lead dioxide, silver-cadmium, silver-zinc, and lithium-ion. It is characterized by 

its high-power density, high discharge rate, and generally have outstanding 

performance even at low temperature (Linden Reddy, 2002; Spitzer Spitzer, 2000).  

 

2.1 Basic operation of a battery 

 

Generally, any battery consists of a metal anode, porous cathode, and a non-aqueous 

electrolyte. The general design and operation of the battery cell are illustrated in below 

figure 2-1, adopted from RWTH, Aachen University (Sauer, 2018). It consists of the 

following primary materials: 

• Current collectors: An inner part of high electrical conductivity used to conduct 

current from or to an electrode during discharge. It must be chemically stable 

and display high conductivity. 

• Active masses: The materials in the electrodes of the battery that which takes 

part in the electrochemical reactions. They are mostly porous substances with 

the large inner surface. 

• Electrolyte: The medium that provides the ion transport mechanism between 

positive and negative electrodes of a cell. An ion conductor and an isolator for 

electrons. There are several kinds of electrolytes available, aqueous electrolytes, 

liquid non-aqueous electrolytes, and solid body electrolytes. 

• Separator: An ionically permeable but electronically non-conductive material 

installed between anode and cathode of a cell. It prevents any electronic 

contact between them. It is used for the electrical isolation of the active masses 

against each other. 
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2.2 Basic characteristics of batteries 

 

There are several characteristics, which help to identify a battery. Batteries are rated 

in terms of their cell chemistry (figure 2-1), nominal voltage, and Ah (ampere hour) 

capacity. The voltage rating is based on the number of cells associated in series and 

the nominal voltage of the individual cell (2.0 V for lead acid, 1.2 V for nickel-cadmium 

and 3.6 for Lithium thionyl chloride) (Communications, 2005; Linden Reddy, 2002). 

The Ah capacity available from a fully charged battery depends on its temperature, 

rate of discharge, and age. The nominal voltage of a cell is fixed by the electrochemical 

features of the active chemicals used in the cell, the so-called cell chemistry. The actual 

Active masses 
Current collector (grid) 

Figure 2-1: basic operation of a battery cell(Sauer, 2018). 
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voltage is emerging at the terminals at any specific time, as with any cell, determined 

by the load current and the internal impedance of the cell and it varies with 

temperature, the state of charge (SOC) and with the age of the cell. 

The figure 2-2 shows typical discharge curves for different batteries cells using a range 

of cell chemistries when discharged. Note that each cell chemistry has its characteristic 

nominal voltage and discharge curve. Some chemistries such as Lithium batteries 

have an almost flat discharge curve while others such as Lead-acid, have a noticeable 

slope(Communications, 2005; Linden Reddy, 2002; Spitzer Spitzer, 2000). 

. 

  
Figure 2-2: Discharge profile of battery systems((Communications, 2005)). 

 

A flat discharge graph simplifies the design of the application in which the battery is 

used since the supply voltage stays constant all over the discharge cycle. A sloping 

curve enables the estimation of the State of Charge (SOC) of the battery; meanwhile, 

the cell voltage can be used as a measure of the residual charge in the cell. Modern 
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Lithium batteries have a very flat discharge curve, and other methods must be used 

to determine the State of Charge (Communications, 2005; Linden Reddy, 2002; Spitzer 

Spitzer, 2001). 

Usually, most of the batteries are rated at room temperature (25°C), the C-rate (1-hour 

rate) and the beginning of life. Batteries, however, often are evaluated in terms of the 

end-of-life capacity, i.e., the minimum capacity before the battery is considered 

unserviceable. The state-of-charge (SOC) of a battery is the percentage of its available 

capacity relative to the fully charged capacity. By this definition, an ultimately 

charged battery has a state of charge (SOC) of 100%, and a battery with 20% of its 

capacity eliminated has a state-of-charge of 80%. For example, a battery evaluated at 

30 Ah, but only capable of delivering 24 Ah when completely charged, will have a 

state-of-health of 24/30 * 100 = 80%. Thus, the state-of-health considers the loss of 

capacity as the battery ages (Communications, 2005; Spitzer Spitzer, 2001).  

https://www.mpoweruk.com/soc.htm
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Chapter 3                                            

Lithium thionyl chloride batteries 

(Li/SOCL2) 

The users very well adopt the lithium thionyl chloride (Li/SOCL2) batteries for its high 

nominal cell voltage of 3.6 V and high energy densities.  Li/SOCL2 batteries have been 

fabricated in a diversity of dimensions and designs. The lowest capacity is as small as 

420 mAh for water or coin cells and large up to 10,000 Ah for prismatic cells. The 

batteries of our interest are the LTC batteries (Tadrian batteries) of size D, and the 

generic name is SL-2780. It is also known as bobbin type cylindrical batteries (figure 

3-1) due to its cylindrical configuration. 

Further, the Tadiran batteries cell is designed with mechanical hermetic seal and 

safety vent. The sealing is designed between positive and negative cell terminals that 

ensure insulation and provides first-rate shelf and operational lives. Besides, a safety 

vent is incorporated with the hermetic seal to prevent from over or burst pressure of 

the cell. The specific energy for the LTC batteries of size D is 720 Wh/Kg, and energy 

density is 1270 Wh/dm3. Some other properties of SL-2780 are mentioned in below 

table 2-1 (Batteries, 2018; Linden Reddy, 2002). 
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Table 3-1: General characteristics of bobbin type SL-2780 batteries (Batteries, 2018; Linden Reddy, 

2002). 

S.no  Characteristics  Values  

1  Nominal Capacity 19.0 Ah 

2 Nominal Current 4 mA 

3 Maximum current for continuous discharge 340 mA 

4 Pulse current capability 600mA 

5 Anode surface area 45 cm2 

6 Lithium content 5 g 

7 Weight  93 gm 

8 Diameter  32.9 mm 

9 Height  61.5 mm 

10 Volume  52.3 cm3 

 

 

Figure 3-1: A cross-section of bobbin type Li/SOCL2 battery (Linden Reddy, 2002). 
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3.1 Chemistry of Li/SOCL2 

 

Lithium thionyl chloride (Li/SOCL2) batteries consist of cells made up of lithium foil 

anode, highly porous cathode Teflon-bonded carbon black as a cathode, and SOCL2: 

LiALCL4 (Lithium Aluminium Tetrachloride) salt is used for the electrolytic solution. 

Thionyl chloride (SOCL2), here served as the dual nature; it acts as an electrolyte 

solvent as well as active cathodic material. For different lithium batteries, the 

proportions of anode, cathode, and thionyl chloride will differ, depending upon the 

required performance characteristics and the manufacturer. General description of the 

material used in the cell for SL-2780 batteries are presented in the below table 3-2: 

 

Table 3-2:  Description of different materials used in the cell of SL-2780 batteries. (Batteries, 2018) 

S.no  Material  Description  

1 Anode Lithium foil is used as the anode for the battery to provide a 

mechanically sound and reliable electrical connection, 

2 Cathode Highly porous Teflon-bonded carbon black is used to transfer 

charge due to its high conductivity property 

3 Electrolyte  A solution of lithium aluminum tetrachloride in thionyl 

chloride is used as an electrolyte, which helps to retain its ionic 

conductivity even at low temperature.  

4 Separator The non-oven glass is used to prevent immediate discharge and 

short-circuit to take place. 
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3.1.1 Performance characteristics of LTC batteries 

 

Battery performance characteristics generally are described by plotting voltage, 

current, or power vs. discharge time and temperature, starting from a fully charged 

condition. Typical discharge performance data for LTC batteries are illustrated in 

Figures 3-2 and 3-3. Figure 3-2 shows the effect of temperature on the capacity when 

discharged. At the same temperature, the internal resistance (IR) shows variation with 

voltage. With high IR, the voltage of the batteries seems to be remained constant 

throughout their lifetime, but by the end, a slight decline in the voltage may occur at 

medium current discharge as shown in figure 3-2. The open circuit voltage of LTC cell 

is 3.6 V; typically, operating voltage ranges between 3.3 and 3.6 V with an end voltage 

of 3.0V (Batteries, 2018; Linden Reddy, 2002).                                                                                                                                                                  

 

Figure 3-2: discharge characteristics of LTC battery at 25˚C at different  

voltage response (Batteries, 2018) 
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Figure 3-3 show the voltage capacity with the current at different temperature ranges 

from -30 to 72˚ C. The performance of a battery shows high capacity at a higher 

temperature. Low-temperature results in more top voltage drops and increase the 

depth of discharge (DOD) by increasing discharge current or drain current. In nominal 

discharge current range, the capacity of battery achieves the maximum value. At the 

lower current range, the self-discharge of the battery become significant due to long 

discharge time and capacity is reduced accordingly. Similarly, at the higher current 

range, capacity is increasing due to a rise in the internal resistance of the battery. 

Figure 3-3: performance characteristic as a function of drain rate at various 

temperature (Batteries, 2018). 
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Figure 3-4: self-discharge phenomena and dependence of capacity on current.(Batteries, 2018) 

 

Self-discharge increases with operation life, shown in figure 3-4. The current flow at 

which a battery brings 76% of its capacity (figure 3-4) is referred to as standard current 

and a further increase in current results in an overload situation. 

Capacity loss can be measured from the shelf life of the battery. Shelf life is the time 

which battery spent in the storage under a specified condition. From figure 3-5, the 

shelf life of battery at 20˚C results in the capacity loss of about 1 to 2 % per year while 

storage at a higher temperature at 70˚C, the loss accounts more which is around 5% 

per year (Linden Reddy, 2002). 
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Figure 3-5: Capacity loss due to storage time of LTC battery in years at a different temperature 

(Linden Reddy, 2002) 

 

3.2 Lifetime consideration of LTC batteries 

 

To estimate the lifetime of the battery, it is crucial to understand the fundamental and 

root cause of failure of the battery. The main factor, which influences the failure rate, 

is: 

• Effect of temperature 

• Shelf life or storage of the battery 

• The depth of discharge or discharge rate  

At higher temperatures, there is intensely more chemical movement inside a battery 

than at lower temperatures. Therefore, the capacity of a battery is lesser when the 

ambient temperature is too small. The hotter the battery, the faster chemical activity 

will occur. High temperatures can thus provide improved performance, but at the 

same time, the rate of an unwanted chemical reaction will rise, ensuing in a 

corresponding reduction of battery life. The shelf life and charge retention rely on the 
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self-discharge rate, and self-discharge is the consequence of an undesirable chemical 

reaction in the cell. Correspondingly, adverse chemical reactions such as passivation 

of the electrodes, corrosion, and gassing are common causes of reduced life. 

Temperature, hence, disturbs both the shelf life and the cycle life in addition to charge 

retention since they are all result of chemical reactions. The Arrhenius temperature 

model can well describe this phenomenon. It states,” the relationship between 

temperature and the reaction rate at which a chemical action proceeds”(Laidler, 1984). 

It shows that the rate of chemical reaction exponentially increases with rising in 

temperature. It is given by: 

𝐾 = 𝐴 ∗ 𝑒(−𝐸𝑎 𝑅𝑇⁄ )     Eq. 3-1 

Where, 

𝐾 is the coefficient which describes the reaction rate.  

A is a frequency factor related to the frequency of collisions among molecules, 

generally taken as a constant over a small temperature range. 

e is the mathematical constant = 2.71828 

Ea. is the activation energy. A constant showing the least energy required for the 

reaction to occur. 

R is the Universal Gas Constant = 8.314 J.mol.K-1.  

T is the temperature in degrees Kelvin. 

RT is the average kinetic energy (K.E.) of the reaction. 

The nominal operating temperature of most elementary series of Tadiran Lithium 

Batteries ranges from -40 °C to +85 °C. The temperature has an impact on the ion 

mobility in the electrolyte and on the morphology of the protective layer. Thus, 

current capability increases with temperature, but the effect is compensated to a 

certain extent by the increase of passivation1 during storage and self-discharge during 

                                                 
1 The phenomenon by which a metal, although in conditions of thermodynamic 

instability, is protected due to the formation of a surface layer(Linden Reddy, 2002). 
 

https://www.mpoweruk.com/history.htm#charles
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operation. So, the temperature above and below room temperature has a profound 

effect on the discharge rate of the battery. It leads to the capacity loss and increases 

the depth of discharge and lifetime of the battery. Moreover, the usage of battery has 

a vital role in increasing the intensity of discharge, the longer the battery works, the 

sooner it fails.  

According to (Cheng et al., 2016), the lifetime prediction of Battery is critical for 

lithium/thionyl chloride cells with a long storage life. This study was to develop 

models for quickly estimating the storage life of Li/SOCl2 cells using the semi-

empirical approach. An accelerated degradation (process shown in figure 3-6) test was 

conducted for LTC cells stored at a different range of temperatures (room temperature 

or RT, 40, 50, 60, and 70 °C) to examine the effect of the storage time and temperature 

on discharge or degradation of the battery. The degradation law can be summarized 

based on the test data for constructing the semi-empirical equation; this law reveals 

that the residual capacity of aging cells exponentially changes with the storage time 

and temperature. 

 

The experiment lasts for several weeks, and the test interval was different for different 

temperatures. The process adopted for the aging test is clearly explained in the above 

figure 3-6. The relationship between the actual capacity rate and storage time was 

examined by using curve-fitting data achieved during the experiment, as shown in 

figure 3-7: 

Figure 3-6: flow diagram for acceleration aging test (Cheng et al., 2016).  
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The ratio 
𝐶𝐴𝑃𝑎𝑐𝑡

𝐶𝐴𝑃𝑖𝑛𝑖
 is the ratio of actual capacity to the initial capacity of the battery. The 

initial capacity is always considered as 100 % (i.e., without any degradation or 

discharge).  

Figure 3-7 clearly shows that degradation is linear, dependent on the increasing 

temperature. The less discharged is observed at room temperature, and further 

increment in temperature shows higher degradation and thus contributes to the 

capacity loss of battery. In this study, the reaction rate K from the Arrhenius equation, 

which is explained above, shows the actual capacity-fading rate. Consequently, the 

reaction rate can be real capacity fading rate, defined in the formula below: 

𝐶𝐴𝑃𝑎𝑐𝑡

𝐶𝐴𝑃𝑖𝑛𝑖
% = 𝐴 ∗ 𝑒(−𝐸𝑎 𝑅𝑇⁄ )    Eq. 3-2 

 

 

 

 

Figure 3-7: curve fitting data showing different trend line at various 

temperature(Cheng et al., 2016). 
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Now by introducing logarithm on both sides, 

ln
𝐶𝐴𝑃𝑎𝑐𝑡

𝐶𝐴𝑃𝑖𝑛𝑖
% = (−

𝐸𝑎

𝑅
) (−

1

𝑇
) + ln 𝐴                    Eq.3-3 

From this formula, it can be assumed that, the 
𝐶𝐴𝑃𝑎𝑐𝑡

𝐶𝐴𝑃𝑖𝑛𝑖
% and 

1

𝑇
 are linearly dependent 

upon each other. Hence, it can be concluded that the effect of temperature on the 

degradation process follows the Arrhenius equation and indicate the exponential 

function. Also, the actual capacity fading rates varies exponentially with storage time. 

 

𝑟̅ = [
𝐶𝐴𝑃𝑖𝑛𝑖−𝐶𝐴𝑃𝑎𝑐𝑡(𝑡,𝑇)

𝐶𝐴𝑃𝑖𝑛𝑖
∗ 100%]  ÷ 𝑡      Eq.3-4 

Where,  

𝑟̅ = the average self-discharge rate 

T = Temperature 

t = storage time 

During the initial aging process, the capacity of Li/SOC12 batteries degraded 

significantly with increasing time in storage. The capacity loss gradually decreased 

compared with that during the primary stage. It is due to the reaction between Li and 

SOCl2 rapidly forming a passivation layer (LiCl), which can effectively slow down the 

reaction between the anode and SOCl2 and plays a crucial role in protecting the anode. 

Furthermore, the passivation film gradually thickened with time. The average self-

discharge rate for each year is defined in below equation Eq. (4). Based on Eq. (4), the 

average self-discharge rate in 10 years for the cells stored at 27 °C is 𝑟̅ =7.181(% per 

Year) 
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Chapter 4                                               

Wireless Sensor Networks. 

In this chapter, the detailed study of relevant literature was carried out, and three 

different research articles were compared and summarised.  

4.1 Introduction  

 

As described in section 1.2, the main problems of this project are: 

1. The battery’s inventory management in the storage room and 

2. The battery replacement strategies that are being used to supply power in 

wireless sensor nodes at different facilities. 

Out of these two problems mentioned above, the first problem is associated with the 

inventory management policy. The number of batteries to be stored in the storage 

room is based on the types and discharge phenomenon of battery at various storage 

temperature. The lifetime consideration concerning the change in temperature is 

described in section 3.2. For inventory management, some basic maintenance policy 

includes: 

• Regular monitoring of the storage room through visual inspection and check 

for any leakage of electrolytic material, since it degrades the battery. Leaking 

battery must be replaced or repaired, 

• The battery should be stored in a pleasant place and dry condition. The storage 

temperature should be at room temperature for extended shelf life. It should 

be monitored using a thermometer. 

• Storage life should not be more than six months since after that it started to lose 

its capacity and increase degradation. 
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• Use of battery in sensors should be monitored after every hour. Continuous use 

increases the temperature and degrades the battery faster. 

The second problem relates to the wireless sensor nodes since it uses the battery for 

power. Therefore, this chapter is mainly focused on the battery or sensor replacement 

strategies to meet the constraints, which require less staff and reduced maintenance 

costs. A maintenance operation is performed once the battery is discharged or sensor 

nodes fail to function. Thus, the primary purpose of this literature study is to find the 

research related to the battery replacement strategies and policy as a part of 

maintenance operation for wireless sensor nodes.  

 

4.2 Related work and further approach 

 

During the search process, the literature found is related to sensor node replacement 

rather than battery replacement since sensor node is cheaper (Misra et al., 2010) and 

takes less time during maintenance, which reduces the mean downtime and 

ultimately minimizes the maintenance cost(Barroso et al., 2004; Taboun et al., 2015). 

Also, various researches have been conducted in the past to optimize and improve the 

sensor network lifetime, but these are limited to optimizing network properties such 

as threshold coverage area and energy efficient methods. Many types of research 

contain maintenance operation where they use a rechargeable battery for sensor 

nodes. The maintenance operation for wireless sensor networks, powered by 

rechargeable batteries, can be achieved by recharging the batteries and is a time-

consuming process. So, this is out of scope for this project, since in our case, it uses 

non-rechargeable batteries (Barroso et al., 2004; Dutta et al.; Misra et al., 2010; Taboun 

et al., 2015). 

Therefore, the above-stated research studies help to limits the search process and 

provide motivation to stick to the problem. Hence, further exploration was conducted 
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by considering the maintenance operation where these parameters are essential. They 

are: 

• Replacement of sensor nodes, not the battery. 

• Minimum mean downtime for maintenance operation. 

• Maintenance Cost optimization and less workforce requirement. 

Further, very less research has been done on this topic, and the availability of only 

three research articles shows that this area has not been explored so much. The central 

theme and approach of these researches are further summarised in below sections 4.3, 

4.4, and 4.5, respectively. 

 

4.3 Maintenance cost optimization for WSN 

 

Here the summarised article is “Probabilistic approach to minimize the conjunctive 

costs of node replacement and performance loss in the management of wireless 

sensor networks”(Misra et al., 2010). 

4.3.1 Introduction  

 

Wireless sensor networks are highly used for data processing and sensing. Each WSN 

consists of several nodes, requires a certain amount of energy to function, which is 

powered by the battery. Although these nodes are cheaper, it is restricted by their 

onboard energy and wireless sensor network (WSN) becomes unable to serve the 

purpose once the energy level of these sensor nodes gets drained. So, the maintenance 

operation is required to encounter this problem. Feasible maintenance operation for 

these failed nodes could be either recharging the battery or replacement of the battery 

and maintenance operation is always associated with maintenance cost(Barroso et al., 

2004). So appropriate cost optimization policies are required to sustain the network.  
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Based on the nature of maintenance operation, WSNs can be two types:  

1. WSNs in which nodes are randomly distributed in the field like battlefield 

surveillance, and replacement or recharging is not feasible once it gets 

exhausting. A new set of nodes is required once it gets exhausted. 

2. WSNs in which nodes are located by manual planting used as fire alarm 

sensors and traffic monitoring are examples of this kind of WSN. These kinds 

of nodes are possible to maintain, and maintenance operation could be done by 

either recharging or replacing of the battery. Recharging process is very slow, 

which increases the mean downtime during maintenance. The second-best 

option is to replace the battery. However, since the sensor nodes are cheaper, it 

is possible to replace the nodes in the network. So, the node replacement and 

battery replacement are identically the same(Misra et al., 2010). 

 

4.3.2 Maintenance operation cost and performance loss cost. 

 

The main objective to conduct maintenance operation for the wireless sensor network 

is to replace the degraded nodes and to find the optimal policy for nodes replacement, 

as a part of maintenance strategies. The maintenance cost in case of node replacement 

consists of hardware cost and non-hardware cost. Total maintenance operation cost 

increases while the cost of maintenance per node decreases with increasing nodes.  

Also, the tasking ability of WSN decreases with the increase in the number of 

exhausted nodes, which is termed as performance loss. Performance loss also accounts 

for monetary loss.  It is the probability that WSN fails to perceive the signal.  

 

4.3.3 Maintenance strategies and modeling approach 

The policy that must be able to explain the desired trade-off between the node 

replacement cost and the performance of the network. So, to determine the optimal 
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strategy, the Markov Decision Process (MDP) is used. Markov decision process is 

further proceeding to estimate this policy which is optimal only in the long run, since, 

it utilizes the statistical data obtained from past behavior of the network and provide 

ultimate solutions through Markov chains (Misra et al., 2010). 

 

4.4 Replacement strategies for WSN 

 

The summarised research article is “Replacement Strategies for Minimizing 

Maintenance Cost and Maximizing Sensor Network Lifetime” (Dutta et al.) . 

4.4.1 Introduction  

 

The main significant issue nowadays for any wireless sensor networks is its repairing 

and replacement for its better functioning. Wireless sensor networks are composed of 

several distributed sensor nodes, and the performance of the sensor nodes highly 

determines the quality of Sensor Networks. Each sensor nodes comprises of four 

functional units: - sensing unit, processing unit, transceiver unit, and the power unit. 

The entire node fails if any of this above-mentioned functional unit fails, and the 

network becomes unstable. Therefore, the better solution to deal with these problems 

is either to replace the faulty nodes or to repair these nodes through proper 

maintenance action. Service agents (SA) for all stationary nodes (SN) can do this 

maintenance task. Repairing of nodes may take a significant time that increases the 

mean downtime and the maintenance cost. On the other hand, replacing these nodes 

reduce downtime, but the price is higher. For that reason, the cost optimization 

technique, which provides the optimal solution for node replacement cost at lower 

maintenance cost, is required. 

There are three factors, which determine the requirements of sensor node 

replacement: 
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• First, the failed node may have become very old and weak in performance so 

that it may not be economical to repair and retain it in the network. 

• Secondly, the failed node may have been destroyed in an accident or otherwise 

or permanently damaged. 

• Thirdly, the degraded node might have become outdated because of the 

availability of better and improved design of equipment and discoveries.  

 

4.4.2 Maintenance strategies 

 

Generally, the efficiency of sensor nodes decreases with age, but it is also observed, 

that sometimes these nodes do not degrade with time and become fails suddenly. So, 

it is a problem for service agents (SA) since it results in the formation of a queue of 

stationary nodes (SNs) waiting for service. Therefore, for each node, the frequency of 

failure is very much necessary to study, and data can be obtained from experience 

through a probability distribution of failure. So, some replacement strategies are 

proposed in this study to minimize the total cost of the system. They are: 

1. Replacement Strategy for sensor node or components whose maintenance cost 

increase with time and money value is not considered: 

Here the only maintenance cost increases with time but not the value of money and 

interest rate is regarded as zero. The calculations are based on an annual basis. (Yearly 

average price). The replacement strategy is based on viewing the time as a continuous 

variable. 

When time ‘t’ is a continuous variable: 

Let, 

C = Capital cost of the sensor node or components of the sensor node. 

S = Scrap value of the sensor node or components of the sensor node. 

n = number of years the sensor node or parts of the sensor node to be in use. 

A(n) = Average annual total cost of the sensor node or components of the sensor node. 
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f (n) = Operating & maintenance cost of the sensor node or elements of the sensor node 

at time t. 

We are to determine the value of n, which minimizes A (n), the cost incurred during 

‘n’ years. 

The annual cost of the sensor node or components of the sensor node at any time  

t = Capital Cost – Scrap Value + Maintenance cost at time t. 

𝑇𝐶 = 𝐶 − 𝑆 + ∫ 𝑓(𝑡)𝑑𝑡
𝑛

0
     Eq.4-1 

Now, the Average annual cost is 

𝐴(𝑛) = (𝐶 − 𝑆)/𝑛 +
1

𝑛
∫ 𝑓(𝑡)𝑑𝑡

𝑛

0
    Eq.4-2 

We shall find out the minimum value of n for which average is minimum. For 

minimum cost at f (n) =A (n), which gives
𝑑2[𝐴𝑛]

𝑑𝑛2 ≥ 0. it suggests that the replacement 

should be done when the average annual cost equals the current maintenance cost. 

2. Replacement Strategy for sensor node or components whose maintenance cost 

increase with time and value of money also changes with time: 

Here the value of money is also considered, and it continually decreases with time 

known as depreciation ratio.  

3. Individual replacement strategy 

Here, immediately replace the sensor node or components of sensor node after its 

failure. Here we are considering the failure of any sensor node as death and the 

replacement of any sensor node on failure at birth. 

4. Group replacement strategy 

Under this scheme, the replacement of all the sensor node or component is replaced 

as a group. It includes the replacement of failing items simultaneously as a group. This 

strategy is implemented irrespective of whether all nodes have failed or not. 
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4.5 Homogenous and heterogeneous WSN 

management 

 

The name of the article is “Distributed Agent-based Approach to Manage Industrial 

Wireless Sensor Networks” (Taboun et al., 2015). 

 

4.5.1 Introduction  

 

Wireless sensor networks (WSNs) are being used in several applications, which 

includes manufacturing industries and factory automation. WSNs are relatively 

cheaper and easy to handle compared to traditional wireless sensor networks. But, 

due to some industrial environmental condition, implementation of WSNs poses some 

challenges. Notably, in any factory, different industrial equipment, and people, are 

inclined to produce noise and disturbances, which can hinder the transmission of the 

signal. For example; hindrance is in the form of reflection, interference, scattering, and 

diffraction. Two types of wireless sensor networks are discussed here. The first is the 

Homogeneous wireless sensor networks, and the second category falls under 

heterogeneous wireless sensor network. Homogenous sensor networks are 

considered good that can provide a system of minimal setup, but also creates 

constraints concerning the consumption of energy and raise an overall reliability issue 

of the network due limited node lifetime caused by depletion of power in the battery. 

To circumvent this problem, heterogeneous wireless sensor networks can be used, 

which consists of two or more than two different types of sensors in the same network. 

As a result, a method to maintain and replace the failed node can be done through a 

distributed, a multi-agent cluster management system that helps to regulate node 

death and encourages a maintenance approach. The significant advantage of this 

system is to eliminate the mean downtime and allows the system network to operate 

continuously. Further, in this work, the Java Agent Development Environment (JADE) 
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simulator was developed to test the design, which provided the platform for the 

management approach for wireless sensor networks, adaptable for heterogeneous 

systems. 

4.5.2 Clustering classification of wireless sensor networks 

 

Due to the different size and complexity of an automation system, wireless sensor 

networks consist of thousands of nodes. One way to manage these nodes is to arrange 

them or group them into clusters. Two types of most common algorithms that are used 

to classify the clustering of wireless sensor networks are: 

1. Algorithms for homogenous and heterogeneous networks 

It is constructed on the functionality and characteristics of sensors in the cluster. In a 

homogenous system, each sensor can act as a cluster head (can be rotated periodically 

to balance the load and to achieve uniform energy consumption throughout the 

network), since all the nodes in the network have similar characteristics in terms of 

their physical hardware and processing functionalities. While in a heterogeneous 

network, generally two or more different kinds of sensors are used; conventional 

sensors (with lower functionality) as well as sensors with higher processing 

capabilities and sophisticated hardware. 

2. Static or dynamic cluster formation 

It is based on the technique used to form or define the cluster. The formation process 

is said to be progressive when re-election procedure of cluster head role is preferred 

in such a way that it can be rotated regularly to achieve energy efficiency throughout 

the network and can be able to adapt with changes in the network topology.  

 

4.5.3 Clustering algorithms  

Two statistical approaches are used to classify the clustering algorithm for wireless 

sensor networks. This classification is based upon the cluster formation criteria and 

parameters used for cluster head election. These two approaches are: 
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1. Probabilistic clustering algorithms  

It is a probability allocated to each sensor node, which is used to determine the initial 

cluster heads. The allocation of possibilities to each node serve as the primary norm, 

helps the nodes to agree on their election as cluster heads. However other secondary 

standards may also be considered either during cluster head election process (i.e., the 

residual energy) or during the cluster formation method (i.e., the proximity of the 

communication cost) to obtain better energy consumption and network lifetime. Some 

example of this category includes; LEACH (Low Energy Adaptive Clustering 

Hierarchy) and EEHC (Energy Efficient Hierarchical Clustering). LEACH is a 

probabilistic, distributed, one-hop, hierarchical algorithm while EECH is a 

distributed, multi-hop hierarchical clustering algorithm. The primary goal of these 

both algorithms is to maximize the lifetime of network and reduction in the energy 

consumption of the nodes in wireless sensor networks. 

• Single hop and multi-hop 

In a single hop, all the sensor nodes send the gathered information directly to the base 

station while in the multi-hop system, data is sent to neighboring nodes also known 

as aggregation node, represented by the blue circle in the figure 4-1.  

 

Figure 4-1: single hop and multi-hop system for communication of nodes(Tsitsigkos et al., 2012) 
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2. Non-probabilistic clustering algorithms  

More specific (deterministic) principles for cluster head election and cluster 

development are primarily considered, which are mainly created on the nodes’ 

proximity (connectivity, degree, etc.) and the information received from other closely 

located nodes. The cluster formation technique here is largely based on the 

communication of nodes with their neighbors (one-either hop or multi-hop 

neighbors). Examples of this category include; Energy Efficient Data Collection 

(EEDC) and Clustering Algorithm via Waiting Timer (CAWT).  

 

4.5.4 Multi-agent cluster management 

 

This section is split into three parts; the first part starts with the description of WSN 

architecture; the second part includes the development of battery depletion model, 

and the last part is about node maintenance. 

1. Wireless sensor node Architecture 

For a heterogeneous model, the wireless sensor networks consist of three different 

kinds of nodes: 

• Sink nodes 

• Anchor nodes and  

• Mobile Nodes 

Sink nodes are used in WSNs to receive a physical property of interest that is 

monitored or measured by other nodes. The tangible property of interest is the point-

to-point distance between mobile and anchor nodes. Sink nodes are logically selected 

as the cluster heads given their advanced processing abilities. Anchor nodes and 

mobile nodes are considered as cluster members. However, mobile nodes are a 

temporary associate of the clusters, by definition, as they can move from one cluster 

to another.  
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In the heterogeneous model, two different agents are used to assign the role for sink 

nodes and anchor nodes. However, further, the cluster management for the extension 

of the homogenous network, a single software agent is proposed for performing both 

tasks, but the problem is that it is unable to assign the role to both nodes 

simultaneously. So, Role Assignment and Mediation (RoAM) agent is used to decide 

the role selection criteria and is responsible for assigning tasks to the sink nodes as a 

cluster head, as shown in figure 3-2. 

 

Figure 4-2: Agent classification diagram showing the extension approach for 

homogenous WSNs (Taboun et al., 2015). 

 

All the boxes in the above figure 3-2 represent the software agents, and the number 

indicates the ratio of agent numbers (i.e., one to one, one to many). Finally, node 

maintenance is introduced, as shown in figure 3-2. When the energy level of the sensor 

nodes reaches below the threshold energy ET, this node maintenance agent receives a 

signal from sensor node agents and replace the nodes.  

2. Wireless node depletion model  

To develop this model, the wireless sensors used, which is based on the Cricket 

Sensor described in(Taboun et al., 2015), and the assumption is made where the 

sensor utilizes 2 AA Energizer E91 batteries. There are two types of transducers used 
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in sensors; RF and ultrasonic. If voltage output remains 100%, then the remaining 

power of the sensor node (Pr) can be modeled as follows: 

 

𝑃𝑟 = 𝑃𝑚𝑎𝑥 −  𝐿𝑂𝑃 ∑ 𝑡𝑛𝑂𝑃

𝑛𝑂𝑃
0 − 𝐿𝐼𝐷𝐿𝐸 ∑ 𝑡𝑛𝐼𝐷𝐿𝐸

𝑛𝐼𝐷𝐿𝐸
0 − ∑ 𝐿𝑆𝑅𝐹𝑡𝑛𝑆𝑅𝐹

𝑛𝑆𝑅𝐹
0 − ∑ 𝐿𝑆𝑈𝑆𝑡𝑛𝑆𝑈𝑆

𝑛𝑆𝑈𝑆
0 −

∑ 𝐿𝑅𝑅𝐹𝑡𝑛𝑅𝑅𝐹
𝑛𝑅𝑅𝐹
0 − ∑ 𝐿𝑆𝑈𝑆𝑡𝑛𝑅𝑈𝑆

𝑛𝑅𝑈𝑆
0 − 𝐿𝑅𝐴𝑁𝐷𝑂𝑀     Eq.4-3 

 

Where, 

𝑃𝑚𝑎𝑥 is the total battery capacity 

𝐿𝑂𝑃  is operating current consumption  

𝐿𝐼𝐷𝐿𝐸  is idle current consumption 

𝐿𝑆𝑅𝐹 and 𝐿𝑅𝑅𝐹 is the RF transducer show send and receive current consumption 

𝐿𝑅𝐴𝑁𝐷𝑂𝑀 is power loss due to random factors 

𝐿𝑆𝑈𝑆 is power consumption of ultrasonic transceivers  

nSRF  is the number of sending RF signals 

nSUS  is the number of sent US signals 

nRRF is the number of received RF signals 

nRUS  is the number of received US signals 

tnSRF  is the duration of the sent RF signal 

tnSUS is the duration of the sent US signal 

tnRRF is the duration of the reception of the RF signal 

tnRUS is the duration of the reception of the US signal 

tnOP  is operating time 

tnIDLE is idle time 

3. Simulating wireless node depletion and maintenance  

Here the effect of battery life is only considered on the anchor nodes since wireless 

sensor network that we are looking upon is heterogeneous. The multi-agent system 

has a maintenance agent, which is in direct contact with anchor agents. 
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Once the level of a battery of an anchor node drops below a critical threshold, the 

anchor node sends the signal to its corresponding mediator agent and maintenance 

agent informing them of its low level of the battery. The anchoring agent then 

proceeds to store its status and data and suspend its operations until its battery is 

changed. At this stage, the anchor agent enters a so-called hibernation state. The 

maintenance agent, on the other hand, gathers the maintenance crew to change the 

battery of the dead anchor node. This period is stated as the maintenance time that is 

modeled by a uniformly distributed random variable. Upon the completion of the 

maintenance, the maintenance agent reactivates the anchor agent.  
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Chapter 5                                          

Modelling of WSN. 

This chapter includes a description of the modelling approach for managing wireless 

sensor network (WSN). We intend to develop a model that gives the optimal policy 

for a maintenance operation as a part of maintenance strategies. Following 

assumptions were made to determine the optimal policy: 

• Maintenance operation includes replacement of failed sensor nodes. 

• For each maintenance operation, some cost is associated with the replacement 

of failed nodes. Replacement cost increases with an increase in the number of 

failed nodes. 

• Failed nodes also account for some performance loss in WSN, which is the loss 

of tasking capability of the network due to a smaller number of functioning 

nodes in WSN. This performance loss occurs due to the situation that the 

working sensors in WSN do not detect the event. This performance loss also 

needs to be quantified in terms of monetary loss. In general, it increases with 

the increase in the number of failed sensors in WSN. 

 

5.1 Maintenance operation cost 

 

Maintenance operation includes replacement of failed sensor nodes. For each 

maintenance operation, some cost is associated with the replacement of failed nodes. 

Replacement cost increases with the number of failed nodes. 

The maintenance operation cost for the failed node replacement consists of hardware 

cost and non-hardware cost. Non-hardware cost is the cost associated with personnel 

effort. If there is i number of failed nodes in the WSN, then the total maintenance 
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operation cost of i failed nodes is 𝐶𝑚 (𝑖), is the sum of the total hardware cost 𝐶ℎ (𝑖) and 

total personnel cost 𝐶p (𝑖).  Mathematically, these costs can be expressed as: 

 

𝐶𝑚 (𝑖) = 𝐶ℎ (𝑖) + 𝐶p (𝑖)     Eq.5-1 

Further, the personnel cost 𝐶p (𝑖) includes the cost associated for the personnel who 

assess the sensor field 𝐶l (𝑖) and the personnel involved in the planting the nodes 𝐶a 

(𝑖). So  

𝐶p (𝑖) = 𝐶l (𝑖) + 𝐶a (𝑖)     Eq.5-2 

 

So equation 1 can be written as: 

 

𝐶𝑚 (𝑖) = 𝐶ℎ (𝑖) +𝐶l (𝑖) + 𝐶a (𝑖)         Eq. 5-3 

 

The cost shown in equation 5-3 is for total maintenance operation cost. For i number 

of failed nodes and if all the nodes are identical, 𝐶ℎ (𝑖) and 𝐶a (𝑖) in equation 5-3 is 

reduced to 𝑖* Sh (𝑖) and 𝑖* Sa (𝑖) respectively. While 𝐶l (𝑖) = 𝐶l since this cost is 

independent of the number of failed nodes. Therefore, the total maintenance operation 

cost per node is node is 

           

  
  𝐶𝑚

𝑖
 = Sh + 

  𝐶𝑙

𝑖
+ Sa               Eq.5-4 

 

Equation 5-3 and 5-4 shows that the maintenance operation cost 𝐶m (𝑖) and 

maintenance operation cost per node 
  𝐶𝑚

𝑖
 are increasing and decreasing variables. 𝐶m 
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(𝑖) increases with the increasing number of failed nodes with a decreasing rate. In other 

word, the cost for replacement of one node is higher, but it decreases with the number 

of failed nodes.  

Therefore, from the above equations, it is concluded that the total maintenance 

operation cost of i failed nodes is 𝐶𝑚 (𝑖) is a concave-shaped increasing function. Since 

the maintenance operation is the replacement of failed nodes in the wireless sensor 

network (WSN), we assume, the total maintenance operation cost of i failed nodes 𝐶𝑚 

(𝑖) is equivalent to the replacement cost of i failed nodes 𝐶 (𝑖) 

 

𝐶𝑚 (𝑖) = 𝐶 (𝑖)     Eq.5-5 

Therefore, due to the concavity nature of the maintenance cost, for n number of sensor 

nodes, out of which if there is i failed nodes, the cost function can be assumed and 

defined as: 

𝐶(𝑖) = 𝐶𝑛(
𝑖

𝑛
)𝑝            Eq.5-6 

Where,  

n = total number of nodes 

i = number of failed nodes 

C (i) = replacement cost of i failed nodes 

The replacement cost of i failed nodes satisfies the boundary condition if: 

• The cost of replacing zero nodes is zero, represented as 𝐶 (0) = 0 and  

• The cost of replacing all the 𝑛 nodes is 𝐶𝑛, expressed as C (𝑛) = 𝐶𝑛. 

The Cn and p are the scale parameter of 𝐶 (𝑖) curve, and both shows concavity. So p<1. 

This 𝐶𝑛(
𝑖

𝑛
)𝑝 is the function of proportional of failed nodes. It indicated the percentage 

of failed nodes. The parameter p depends upon the input from practice and can be 

modified in several ways.  
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Verification of cost function: Let us assume the WSN consists of 20 sensor nodes and 

assume a random value of Cn = 100 Nok and plot of Cn at various values of p (p=0.9, 

p=0.7, 5 and p=0.5) shown in figure 5-1.  The value of p is chosen to satisfy its concavity 

nature. Figure 5-1 clearly shows that for different values of p<1, the cost for 

replacement of nodes is increasing with decreasing rate.  

 

 

Figure 5-1: Replacement cost at different p. 

 

In the second case, figure 5-2, the scale parameter p (p=0.9) is kept the same, and the 

different curve is obtained at various Cn (= 100, 200, 300) Nok. Similarly, figure 5-3 

and figure 5-4 are a plot for p (=0.7 and 0.5) at different Cn. For all three values of p, 

the replacement cost is higher for the high value of Cn (=300 Nok) followed by Cn 

(=200 Nok) and Cn (=100 Nok) respectively. 
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Figure 5-2: Replacement cost at p = 0.9. 

 

 

 

 

Figure 5-3: Replacement cost at p=0.7. 
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Figure 5-4: Replacement cost at p=0.5. 

 

5.2 Performance loss cost 

 

The tasking capability of WSN decreases with the increase in the number of failed 

nodes, which is termed as performance loss L (i). It is a rate which increases with time. 

Performance loss rate also accounts for monetary loss.  It is the probability that the 

working sensor nodes in WSN fail to detect the signal. So, the performance loss due 

to i number of failed nodes is 𝐿(𝑖) = (1 − p)𝑛−1. Therefore, the performance loss rate 

increases with the increase in the number of failed nodes. Also, the marginal loss of 

performance increases with the rise in the number of failed nodes. Thus, the 

performance loss rate is a convex-shaped increasing function and, the performance 

loss function 𝑀(𝑖) can be assumed and defines as: 

𝑀(𝑖) = 𝑀𝑛(
𝑖

𝑛
)𝑞    Eq.5-7 

Where the performance loss function 𝑀(𝑖) satisfies the boundary condition if 

• The performance loss rate in terms of cost is zero when no nodes are in a failed 

state, represented as 𝑀(𝑖) = 0 and  
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• The performance loss rate in terms of cost is M𝑛 when all the 𝑛 nodes are in the 

failed state, expressed as M(𝑛) = M𝑛. 

The performance loss cost function Mn and q are the convex shapes increasing 

function and scale parameters of 𝑀(𝑖) so q > 1. 𝑀𝑛(
𝑖

𝑛
)𝑞 is the function of proportional 

of failed nodes. It indicated the percentage of failed nodes in terms of monetary loss. 

The parameter q depends upon the input from practice and can be modified in several 

ways.  

Verification of Performance loss cost function 

Here also we assume a WSN consists of 20 nodes and consider a random value of Mn 

=100 Nok and Mn is plotted for various values of q (q=3, q=5, q=7). Figure 5-5 clearly 

shows that for all values of q, the graph shows an increasing trend. The performance 

loss rate in terms of cost increases with failed nodes.  

 

 

Figure 5-5: Performance loss at same Mn and three different value of q. 

 

Here in figure 5-6, the scale parameter q (=1) is kept the same, and a different curve is 

obtained at various Mn (= 100, 200, 300) Nok. Similarly, figure 5-7 and figure 5-8 is a 
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plot for q (=5 and 7) at different Mn. The Performance Loss cost is higher with higher 

Mn value, as shown in figure 5-8. 

 

 

 

Figure 5-6: Performance Loss for different value of Mn at q=3. 

  

 

 

Figure 5-7: Performance Loss for different value of Mn at q=5. 
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Figure 5-8: Performance Loss for different value of Mn at q=7. 

 

5.3 Optimal policy and long-run cost. 

 

Optimization of cost is the necessary entity for any maintenance strategies. The 

maintenance activities are associated with the maintenance operation cost and 

performance loss cost due to i number of failed nodes. Both operation cost and 

performance loss cost are defined above, but the main problem is to determine the 

policy, which must be able to explain the desired trade-off between the node 

replacement cost and the performance of the network. So, to determine the optimal 

strategy and long-run cost, the Markov Decision Process (MDP) is used. It utilizes the 

statistical data obtained from the past behavior of the network and provides future 

solutions through Markov chains. 

Some assumptions were made, and state parameters were defined during the Markov 

process analysis. The premises are; 

• During maintenance operation, all failed nodes are identical and 

• All the failed nodes should equally affect the performance of the sensor 

network. 
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• For i number of failed nodes, maintenance operation for node replacement is 

termed as Oi and replacement policy as Pi. it means replacement should be 

done right after at least i number of failed nodes detected. Mathematically it 

can be represented as: 

Pi = (Фi, s) 

Where, Фi = (Oi,…, On ) is the number of maintenance operation from i to n 

and s: Oj+1 is executed only if it is not possible to do Oj, Oj belongs to Oi. 

For example, let’s say a wireless sensor network consists of three sensor 

nodes. Since three nodes are used, three different policies exist, that is P (1), 

P (2) and P (3) respectively. For i number of failed nodes, different policies 

are defined as: 

Policy P (1): When one or more nodes fail i >= 1. A failed node could be either 

Node A, Node B or Node C. 

Second policy P (2): When two or more nodes fails i>=2.  

Third policy P (3): When all three node fails. i>=3. 

• Interval of inspection Δ𝑡, the fixed time between two successive inspections 

since it is not possible to inspect the network constantly. Let the time of the 

inspection is denoted by tm at mth inspection. 

• For i number of failed nodes, we define the state of the wireless sensor 

network to be 𝑆𝑖. Let’s assume state space S containing all possible states and 

n+1 are the possible states for sensor network having n nodes. 

Mathematically, we can represent as: 

S = (S0,…., Sn) 

Now the optimal policy, which sustains minimum cost, is determined by the two 

parameters. The parameters are node replacement cost C and performance loss rate in 

terms of cost, M. so mathematically, the optimal policy can be expressed as: 

 

𝑂𝑝 = 𝐹(𝐶,𝑀) 
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Now to find the expected optimal policy, the probability transition matrix should be 

used to estimate the future state of the network. As a result, we have three parameters 

now, which is to be determined to evaluate the expected optimal policy. 

 

𝑂𝑝 = 𝐹(𝐶,𝑀, 𝑇 ) 

 

Where C is the cost of a node replacement operation, M is the performance loss cost 

since the performance loss is also associated with monetary loss, and T is the state 

transition matrix. The parameters C and M are expressed in vector form, and 

Transition matrix T is determined by using the Markov process and the expected long-

run cost is estimated to determine the optimal policy. The minimum value for the 

expected long-run cost gives the optimal policy. 

 

5.3.1 Explanation of Transition Matrix 

 

It defines the probabilities of failure of “j” node given that “i” node of the sensor 

network has already failed. Let us assumes this transition matrix as fixed 

(independent of time). It can be obtained from the past behavior of the sensor network. 

This matrix is required to define the failure dynamics of sensor nodes. T denotes it. 

       

T = 

00 01 02 ... 0

0 11 12 ... 1

0 0 22 ... 2

0 0 ...

0 0 2 ...

t t t t n

t t t n

t t n

tn tnn

 
 
 
 
 
 
  
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5.3.2 Properties of Transition Matrix 

 

The transition matrix must satisfy the following two conditions: 

• The number of failed nodes either increases or remains the same in the 

subsequent inspection; T is the upper triangular Matrix. 

• In any row, the sum of all the elements must be equal to 1.  

Mathematically, these two properties can be expressed as: 

∑ 𝑡𝑖𝑗
𝑛
𝑗=0 = ∑ 𝑡𝑖𝑗 = 1𝑛

𝑗=1       Eq.5-8 

Now, from the definition of Markov chains, the state probability vector at the mth 

inspection (𝜋𝑚) can be expressed by two identities: 

• The state probability vector at (m-1)th inspection multiplied with state transition 

matrix T. 

𝜋𝑚 = 𝜋(𝑚−1) ∗ 𝑇 

 

• mth power of transition matrix multiplied with initial state probability vector 

(𝜋(0)) 

 

𝜋𝑚 = 𝜋(0) ∗ 𝑇(𝑚) 

 

 

To define this transition matrix most simply, let’s assume WSNs consists of four sensor 

nodes, and the Markov process is used to illustrate the transition of the state. Four 

states are presented with all the possible transition in figure 9. The 4x4 matrix explains 

the transition matrix of these states. 
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Figure 5-9: Markov chains for four state. 
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Explanation of transition matrix: 

• The above matrix shows the transition probability matrix for four states, 

denoted by T. 

• For any inspection, it is possible that there is no node fails. It means the WSNs 

is either in state 0 (no failure reported) or maybe 1 or more node fails (in state 

2 or 3). The probability that no nodes fail denoted by t00, one node fails t01 and 

so on.  

 

5.3.3 Estimation of long-run cost 

 

The total expected long-run cost (𝑒𝑝
𝑚) during mth inspection for policy P is determined 

by summing up the total replacement cost (𝑟𝑝
𝑚)and the total performance loss rate in 

terms of cost (𝑙𝑝
𝑚). Mathematically, it can be expressed as: 

 

T= 
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𝑒𝑝
𝑚 = 𝑙𝑝

𝑚 + 𝑟𝑝
𝑚     Eq.5-9 

 

Further, the total expected long-run cost for one inspection at the mth inspection for 

policy P is: 

𝑒𝑝
𝑚 =  Δt ∗ 𝜋𝑚 ∗ 𝑀 + 𝜋𝑚 ∗ 𝐶𝑃   Eq.5-10 

Now, if there is N number of inspections, the optimization problem for many 

inspections N is to minimize the total expected long-run cost. Let us assume the new 

notation Ep for the total expected long-run cost for N. Mathematically Ep is expressed 

as: 

𝐸𝑝 = Lim
𝑁→∞

∑ [Δt ∗ 𝜋𝑚 ∗ 𝑀 + 𝜋𝑚 ∗ 𝐶𝑃]𝑁
𝑚=0     Eq.5-11 

This equation 5-11 can be further reduced to  

𝐸𝑝 = 𝜋(0) ∗ [𝐼 − 𝑇𝑃]−1 ∗ [Δt ∗ 𝑀 + 𝐶𝑃]   Eq.5-12 

Where,  

𝜋(0) is the initial state probability. For n x n Matrix, it is equal to  

𝜋(0) =  1 0 ... 0  

[𝐼 − 𝑇𝑃]−1 is the square matrix and 𝑇𝑃 is the transition matrix for policy P.  

𝑀 is the performance loss rate in terms of cost and, 

𝐶𝑃 is the replacement cost for policy P. 

Both 𝐶𝑃  and M are a column vector and represent cost. 𝐶𝑃 Varies with policy and 

different for each policy while M be the same for all policies since it is independent of 

policy. The minimum value for Ep gives the optimal policy for the maintenance of a 

wireless sensor network (WSN). 
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5.3.4 Method to obtain a square matrix 

 

[𝐼 − 𝑇𝑃]−1 is the square matrix. 𝐼 is an identity matrix, and Tp is the transition matrix 

for policy P. It is different for different policies. 

The method to obtain  Tp form T is: 

If there is ‘n’ number of total nodes and ‘i’ number of failed nodes in WSN. The Tp 

consists of three matrices: 

1. Rectangle matrix of order i x (n+1) 

2. A column vector of n+1-i elements, all of which are 1’s and  

3. Null matrix of order (n+1-i) x n. 

Taking the inverse of I-TP gives the square matrix.  

 

5.3.5 Estimation of Cp and M. 

 

We described earlier that 𝐶𝑃 depends upon the chosen policy to estimate the long run 

cost. For i number of failed nodes and n number of total nodes, 𝐶𝑃 for policy Pi , should 

be chosen such that, in the column matrix 𝐶𝑃, the top values are kept zeros, and rest 

values should be left intact because replacement is done only if we have i number of 

failed nodes is observed. Accordingly, 

Cp = 

0

0

( )

( 1)

( )

C i

C i

C n

 
 
 
 
 
 
 +
 
 
 
 
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As well as, the column vector M for the range of M (i) is represented as: 

 

M = 

(0)

(1)

(2)

(3)

( )

M

M

M

M

M n

 
 
 
 
 
 
 
 
 

 

 

5.3.6  Determination of optimal policy 

 

We begin from defining the fix inspection interval, the time between two successive 

inspections and assigning values of other variables like a total number of sensor 

nodes, replacement cost C, and performance loss rate M. The second step is to generate 

the transition probability and determine all possible policies, which exists in the 

network. After defining policies, expected long-run cost is estimated by computing 

replacement cost for that policy Cp, initial state probability (a row vector) and square 

matrix.  
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Figure 5-10: Flowchart of the expected long-run cost and optimal policy. 

 

The final step is to check which policy gives the minimum cost, is the optimal policy, 

which can be used as a key decision indicator for conducting maintenance operation. 

Figure 5-10 shows the flowchart that demonstrates the systematic procedure to 

estimate the expected long-run cost and thus determine optimal policy. 
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Chapter 6 Numerical analysis 

In this chapter, a qualitative study is performed to estimate the expected long-run cost 

for various types of policies. A setup of hypothetical Wireless sensor network (WSN) of 

ten sensor nodes is considered for the analysis and assumes all the sensor nodes are identical. 

We divide this study into two parts:  

• The first part is the estimation of expected long-run cost to determine the optimal 

policy and  

• The second part is the sensitivity analysis, a comparative study by changing 

parameters.  

6.1 Qualitative study  

 

The considered value for different parameters for this study are:  

• Replacement cost (Cn)= 500 Nok 

• Performance loss cost per hour (Mn) = 1000 Nok 

• p=0.8 and q=2 

• Δt = c (10, 20, 100) hours (time of interval between two successive inspections). 

The selected sensor nodes have a failure probability of 0.7. The working probability of 

each sensor is 1-0.7= 0.3. The above case is solved systematically via steps: 

• Step1: Define and evaluate transition matrix. 

Since there are ten sensor nodes in WSN, therefore, at each inspection, either one node 

fails, two node fails, or possibly all ten can fails. There exists a transition matrix and 

consider this transition matrix is fixed (independent of time), which explains the 

failure pattern and gives the failure probabilities at a different state. In this case, the 

transition matrix for ten sensor nodes consists of 11x11 matrix, represented by T. 
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T = 

00 01 02 03 04 05 06 07 08 09 010

0 11 12 13 14 15 16 17 18 19 110

0 0 22 23 24 25 26 27 28 29 210

0 0 0 33 34 35 36 37 38 39 310

0 0 0 0 44 45 46 47 48 49 410

0 0 0 0 0 55 56 57 58 59 510

0 0 0 0 0 0 66 67 68 69 610

0 0 0 0

t t t t t t t t t t t

t t t t t t t t t t

t t t t t t t t t

t t t t t t t t

t t t t t t t

t t t t t t

t t t t t

0 0 0 77 78 79 710

0 0 0 0 0 0 0 0 88 89 810

0 0 0 0 0 0 0 0 0 99 910

0 0 0 0 0 0 0 0 0 0 1010

t t t t

t t t

t t

t

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The state transition probability 𝑡00 means all nodes are working, and the state 

transition probability 𝑡01 means one sensor node in the WSN fails, it reaches from 

state 0 to state 1 during the inspection. Similarly, 𝑡02 , 𝑡03, until 𝑡010 is the transition 

probability from state 0 to higher states.  

𝑡11 is the transition probability to remain in state 1. Here at state 1, one of the sensors 

is already failed. 𝑡22 is the probability to remain in state 2; two out of ten sensor nodes 

are already failed here. A similar explanation holds for 𝑡22, 𝑡33, ...,  𝑡1010. 

Since each node is independent of each other, so for ten independent nodes: 

𝑡00 = Working probabilities of all ten nodes= 0.3^10 = 5.90E-06 

𝑡01 means one sensor node in the WSN fails. It reaches from state 0 to state 1 during 

the inspection. However, we do not know exactly which one among three nodes fail. 

It can be calculated by 

𝑡01 = 𝑜𝑛𝑒 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∗ 𝑟𝑒𝑠𝑡 𝑛𝑖𝑛𝑒 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦

∗ 𝑡ℎ𝑒 𝑐𝑜𝑚𝑏𝑖𝑛𝑡𝑖𝑜𝑛 𝐶(10,1)  

𝐶(10,1) =
10!

1! ∗ (10 − 1)!
= 10 
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Now, 

𝑡01 = 0.3 ∗ (0.7)9 ∗ 10 =1,38E-04 

 

A similar method is used to calculate other probabilities. The generalized form to 

calculate the transition probabilities is expressed as follows: 

   

   𝑡𝑖𝑗 = {

𝑡𝑛𝑛 = 1,
𝑡𝑖𝑗 = 0 𝑖𝑓 𝑗 < 1,

𝐶𝑗−𝑖
𝑛−𝑖 ∗  𝑝𝑛−𝑖 ∗  (1 − 𝑝)𝑗−1       𝑗 > 𝑖

 

  

Here and now, the transition probability matrix for our case is: 

 

 

 

T =  

 

 

 

• Step 2: Define the policy. 

 

Since there are ten nodes in WSN, ten different policies exist, that is P (1), P (2),…,P 

(10), respectively. For i number of failed nodes, different policies are presented as in 

table: 
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Table 6-1: Different policy for wireless sensor network. 

P1 If at least one node fails. i >=1 

P2 If at least two node fails. i >=2 

P3 If at least three node fails. i >=3 

P4 If at least four node fails. i >=4 

P5 If at least five node fails. i >=5 

P6 If at least six node fails. i >=6 

P7 If at least seven node fails. i >=7 

P8 If at least eight node fails. i >=8 

P9 If at least nine node fails. i >=9 

P10 All ten node fails. i =10 

 

For different policy, the expected long-run cost can be calculated by: 

 

𝐸𝑝 = 𝜋(0) ∗ [𝐼 − 𝑇𝑃]−1 ∗ [Δt ∗ 𝑀 + 𝐶𝑃] 

 

Where, 

𝜋(0) is the initial state probability. For 11x11 Matrix, it is equal to  

𝜋(0) = [1 0 0 0 0 0 0 0 0 0 0 ] 

[𝐼 − 𝑇𝑃]−1 is the square matrix and 𝑇𝑃 is the transition matrix for policy P.  

𝑀 is the performance loss rate in terms of cost and, 

𝐶𝑃 is the replacement cost for policy P. 

 

• Step 3: Define a square matrix for policy all Policies. 

[𝐼 − 𝑇𝑃]−1 is the square matrix. 𝐼 is an identity matrix and 𝑇𝑃 is the transition matrix 

for policy P. It is different for different policies.  The method to obtain  𝑇𝑃 form T is 

explained in section 5.3.4. Matlab is used for the calculation of a square matrix. The 

Matlab code is presented in Appendix A. 
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• Step 4: Calculate Replacement cost for individual policies 𝐶𝑃 and performance 

loss rate in terms of cost 𝑀. 

First, we compute replacement cost 𝐶(𝑖) and performance loss rate in terms of cost 

𝑀(i) for all failed nodes. Both 𝐶𝑃 and 𝑀 are a column vector and computed for policies 

after computing 𝐶(𝑖) and𝑀(𝑖). 𝐶𝑃  is different for different policies since it is 

dependent upon the number of failed nodes, while 𝑀 is similar for all policies; it is 

independent of policy.  

For i number of failed nodes and n number of total nodes, replacement cost 𝐶(𝑖) can 

be determined by using the below cost function  

𝐶(𝑖) = 𝐶𝑛(
𝑖

𝑛
)𝑝 

Also,  𝑀 can be determined by using the performance loss function.  

𝑀(𝑖) = 𝑀𝑛 (
𝑖

𝑛
)

𝑞

 

In our case, we have 10 sensor nodes. So for different i, 10 different cost exist. These 

costs are illustrated in table 6-2. 

Table 6-2: values for C(i) and M(i) for all failed nodes. 

 Number of failed nodes, i  Replacement cost C(i) in  Performance loss rate M(i) 

For i =1 
79,24 NOK 10,00 NOK 

For i =2 
137,97 NOK 40,00 NOK 

For i =3 
190,84 NOK 90,00 NOK 

For i =4 
240,22 NOK 160,00 NOK 

For i =5 
287,17 NOK 250,00 NOK 

For i =6 
332,27 NOK 360,00 NOK 

For i =7 
375,88 NOK 490,00 NOK 
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For i =8 
418,26 NOK 640,00 NOK 

For i =9 
459,58 NOK 810,00 NOK 

 

Now to estimate the expected long-run cost for different policies, we need 

replacement cost 𝐶𝑃 for policy. Therefore, for different policies, the replacement cost 

will be different. The method to obtain replacement cost 𝐶𝑃 for policy P is explained 

in chapter 5. The 𝐶𝑃 for all policies is calculated in Matlab. The matlab code is 

presented in Appendix 1. 

 

• Step 5: Expected long-run cost for all policies  

In this step, expected long run cost is calculated for individual policy. The replacement 

cost and performance loss cost is used to calculate the Expected long run cost for all 

policies at three different inspection intervals.  

For P1 at Δt = 10 hours 

𝐸𝑝1 = 𝜋(0) ∗ [𝐼 − 𝑇𝑃1]−1 ∗ [Δt ∗ 𝑀 + 𝐶𝑃1] =1,35E+07 Nok 

For P1 at Δt = 20 hours 

𝐸𝑝1 = 𝜋(0) ∗ [𝐼 − 𝑇𝑃1]−1 ∗ [Δt ∗ 𝑀 + 𝐶𝑃1] =2,61E+07 

For P1 at Δt = 100 hours 

𝐸𝑝1 = 𝜋(0) ∗ [𝐼 − 𝑇𝑃1]−1 ∗ [Δt ∗ 𝑀 + 𝐶𝑃1] =1,53E+08 

 

Similarly, expected long-run cost for other policiesis calculated and for timesaving 

purpose, the calculations are performed in Matlab. The code to estimate is given in 

Appendix A. The result of all policies is presented in the table 6-3. 
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Table 6-3: Expected long-run cost at three-different inspection interval for all policies. 
 

Δt=10 hr Δt=20 hr Δt=100 hr 

EP1 1,35E+07 2,61E+07 1,53E+08 

EP2 1,35E+07 2,61E+07 1,53E+08 

EP3 1,35E+07 2,61E+07 1,53E+08 

EP4 1,38E+07 2,66E+07 1,56E+08 

EP5 1,50E+07 2,90E+07 1,41E+08 

EP6 1,63E+07 3,16E+07 1,54E+08 

EP7 3,18E+07 6,19E+07 3,03E+08 

EP8 4,20E+07 8,22E+07 4,04E+08 

EP9 5,69E+07 1,12E+08 5,53E+08 

EP10 8,71E+07 1,72E+08 8,54E+08 

 

• Step 6: Determine the optimal policy 

For 10 policies, in figure 6-1, at three different inspections, the cost is lower and 

remains constant until P6.  

 

 

Figure 6-1: Expected long-run cost for all policies 

 

The network seems to be working although having six nodes fails out of 10. The cost 

starts to increase after P6 and reaches a maximum at P10 (figure 6-1). The reason for 
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the higher cost after policy 6 is due to a decrease in performance of the network, and 

the performance loss cost increases after P6.  Consequently, the best strategy for 

maintenance operation is after six nodes fail. Therefore, with these supporting 

reasons, we can choose P6 as the optimal policy.  

 

6.2 Sensitivity Analysis 

 

Sensitivity Analysis is a method used to study and examine the impact of input 

variables on output, where the output is a function of several inputs. The aim of 

sensitivity analysis in our model is to determine how the long run cost is changed 

when we change the other scale parameters. Here the results are compared by varying 

each of the parameter – Cn, Mn, p, q, and the probability of failure- while other 

parameters are kept the same as we considered in a qualitative study. The chosen time 

of interval between two successive inspections is 100 hours. 

 

6.2.1 Changing of parameter Cn. 

Three different values of Cn is chosen to estimate the expected long run cost. The 

obtained results are illustrated in figure 6-2.  

 

Figure 6-2: The expected long-run cost with 𝛥𝑡 = 100 is plotted for different values of Cn= 

(100, 500, and 5000). 
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Decreasing and increasing the scale parameter Cn does not show any significant 

changes in the calculation of the expected long-run cost.  

6.2.2 Changing of parameter Mn. 

 

Here the scale parameter Mn is changed, keeping another parameter constant and 

obtained the result is shown in figure 6-3. As the Mn decreases, the performance loss 

cost is less significant in the calculation of expected long-run cost, and it becomes more 

significant at a higher value of Mn.  Hence, the plot of Ep for Mn= 500 and Mn= 1000 

lies below the plot of Ep at Mn=5000. The variation is more significant with higher 

policies.  

 

Figure 6-3: The expected long-run cost with 𝛥𝑡 = 100 is plotted for different values of Mn= 

(500, 1000 and 5000). 

 

6.2.3 Changing of parameter p. 

 

Here the concavity parameter p is changed, keeping other parameters constant.  

Figure 6-4 shows that increasing and decreasing in p does not have any major changes 

in the long run cost.  
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Figure 6-4: The expected long-run cost with 𝛥𝑡 = 100 is plotted for different values of p= 

(0.001, 0.8 and 0.009). 

6.2.4 Changing of parameter q. 

 

Increasing and decreasing of convexity parameter q, has clear effect in the long run 

cost as presented in figure 6-5. Long run cost increases with a decrease in q, and the 

opposite result is observed with a higher value of q. The variation is more at higher 

policies due to decline in performance loss cost. 

 

Figure 6-5: The expected long-run cost with 𝛥𝑡 = 100 is plotted for different values of q= (1.2, 

2, and 8). 
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6.2.5 Changing probability of failure. 

 

Figure 6-6: The expected long-run cost with 𝛥𝑡 = 100 is plotted for different failure 

probability (0.3, 0.5, and 0.7). 

Finally, we change the failure probability to observe the changes in the long run cost. 

Figure 6-6 shows that the long-run cost is less with good quality of sensor nodes (at 

low failure probability), and the cost increases with higher failure probability. At 

higher failure probability, the cost is higher due to more failure of sensor nodes 

occurring within less interval of time. The variation of Ep with failure probability is 

less significant until P6; the effect is more meaningful after P6. 

Sensitivity analysis concludes that the expected long-run cost increases with the 

increasing failed nodes. At the lower policies, the long run cost is minimum and follow 

the same trend until the policy P6, and the cost is more significant with higher policies. 

0.00E+00

2.00E+08

4.00E+08

6.00E+08

8.00E+08

1.00E+09

1.20E+09

0 2 4 6 8 10 12

Ep

Policy

pr=0,3 pr=0,5 pr=0,7



65 

 

  

Chapter 7                                        

Conclusion and future works 

This chapter presents the essential discussions and conclusions about all the task done 

in this thesis. Finally, future recommendations are presented. 

7.1 Discussion and conclusion 

 

This thesis has performed an in-depth literature survey to check the degradation 

phenomena of LTC batteries. First, the relevant study of battery technology is 

conducted to know much about the performance characteristics of the battery, 

including discharge phenomena and lifetime consideration of the battery. Through 

literature, it can be concluded that the operating temperature and storage temperature 

profoundly influence the lifetime of the battery. The temperature effect follows the 

Arrhenius law, which describes the behavior of the battery at a different temperature. 

At higher temperature, the ratio 
𝐶𝐴𝑃𝑎𝑐𝑡

𝐶𝐴𝑃𝑖𝑛𝑖
 ( the ratio of actual capacity to the initial 

capacity of the battery ) shows a higher discharge rate than at lower temperature. 

Similarly, the shelf life of a battery at room temperature shows a loss of 2 % capacity 

per year while at a higher temperature at 70°C, it accounts for 5 % capacity loss per 

year.  

The second part of a literature study is conducted for maintenance of the failed battery 

in a WSN. Most of the found literature is limited for rechargeable batteries and not for 

the LTC battery which we are searching. One study shows that battery replacement 

and sensor replacement is identically the same since sensor nodes are cheaper. 

Therefore, a literature survey for this thesis is shifted from the idea of battery 

replacement to sensor replacement as a part of the maintenance operation. Many types 

of research have been conducted on past to optimize and improve wireless sensor 
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networks lifetime, but almost all the research is limited only to optimize threshold 

coverage area and energy efficient methods. Hence, after further exploration, three 

relevant studies regarding the replacement of sensor nodes is found and is 

summarised in this project. 

 The first article provides insight into the optimal replacement policy of degraded 

nodes as a part of a maintenance strategy. The researcher adopts a probabilistic 

approach and establish the mathematical model by using the Markov decision process 

to solve the maintenance problem. The second articles proposed four different 

replacement strategies with a mathematical model. The last article describes the 

homogenous and heterogeneous nature of wireless sensor networks and performs a 

maintenance action by introducing a multi-cluster management technique to replace 

the failed node. Thus, the availability of only three research articles shows that this 

area is not explored well and need further research. 

The third part of this thesis begins with an intention to develop a probabilistic model 

that provides the optimal policy for a maintenance operation, as a part of maintenance 

strategies. The reliable data source is rare because the nature of the problem is new, 

and due to the limited accessibility of enough data and information, the establishment 

of the physical model seems to be tough. That is the reason we decided to move 

towards developing a probabilistic model. A general probabilistic model is 

established to find the expected long-run cost for different policies. Markov decision 

process is used for this purpose. Two costs are considered to develop a model. The 

first cost includes the failed node replacement cost (Hardware and personnel cost) and 

second cost accounts for performance loss in WSN due to the failed nodes.  

Replacement cost function and performance loss cost function are defined, and the 

concavity and convexity nature of these functions are verified with clear assumptions. 

Further transition probability matrix is generated and defined with the help of 

Markov chains.  In addition, with the help of the cost functions and transition 
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probability matrix, a model is developed to estimate the expected long-run cost. The 

systematic procedure is established to determine the optimal policy. 

For analysis of this model, some inputs and experimental data is required. Since we 

do not have any specific information from the company, it is decided to verify this 

model by setting up a hypothetical wireless sensor network comprised of 10 identical 

sensor nodes. A qualitative study is performed to calculate the expected long-run cost 

for all policies that exist in WSN. The results obtained from the study concludes that 

it is appropriate to do the maintenance operation only after six failure nodes in a 

wireless sensor network. Therefore, P6 is the optimal policy that gives the minimum 

cost without comprising much with the performance of the network. 

Finally, the sensitivity analysis is performed to examine how the long-run cost is 

changed when other parameters; replacement cost (Cn), performance loss cost (Mn), 

failure probability, and concavity and convexity scale parameters (p and q) are 

changed. There is no significant change observed with the variation of the parameters 

except performance loss cost (Mn) and convexity parameter q. Ep is increasing with 

the decreasing value of q, whereas Ep is rising with the increasing value of Mn.  

 

7.2 Recommendations for future work  

 

This thesis focused on finding the replacement strategies for failed battery in wireless 

sensor nodes. The developed empirical model is based on many general assumptions 

that are not enough, and further research is necessary. Hence, this project will be 

continued, and the opportunity for additional work lies within the following 

activities: 

• It would be more interesting to choose the network for either one specific 

purposes for example used for noise measurement or gas detection, Where the 
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network should be considered as working state, although 50 % of its sensor 

nodes shows failure. 

• Where wireless sensor networks (WSNs) depends upon the critical nodes, the 

increased cost due to Performance loss of network depends upon critical nodes. 

Failure of only this critical node shows the complete network failure. 

• The present model is based on the fixed (time independent) transition 

probability. The replacement cost and strategy could be different with a time-

dependent probability matrix. 

• The present strategy is based on only two states either working or fail, but a 

replacement could be performed not only when a node fails, but also when 

remaining useful life (RUL) is small, provided there is an opportunity for the 

third state. The three states will be now working or degraded or failed, 

respectively. The replacement strategy and expected long-run cost will be more 

realistic in this case. 
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Appendix  

Appendix A  

Matlab code for long-run cost. 

For policy 1: 

%define Cp 
Cp = [0;50.12;100.16;150.18;200.18;250.17;300.15;350.12;400.09;450.05;500]; 
%define M 
M = [0;10;40;90;160;250;360;490;640;810;1000]; 
%define delta_t 
delta_t = 100; 
% define pi 
pi=[1 0 0 0 0 0 0 0 0 0 0]; 
%define Tp 
Tp= [5.9e-06 0.121 0.233 0.267 0.2 0.103 0.0368 0.009 0.00145 0.000138 

0.0282;1 0 0 0 0 0 0 0 0 0 0;1 0 0 0 0 0 0 0 0 0 0;1 0 0 0 0 0 0 0 0 0 0;1 

0 0 0 0 0 0 0 0 0 0;1 0 0 0 0 0 0 0 0 0 0;1 0 0 0 0 0 0 0 0 0 0;1 0 0 0 0 0 

0 0 0 0 0;1 0 0 0 0 0 0 0 0 0 0;1 0 0 0 0 0 0 0 0 0 0;1 0 0 0 0 0 0 0 0 0 

0]; 
I=eye(11); 
%calculation 
A = I - Tp; 
Inv_A = inv(A); 
% pi(INV of A) 
Firstpart = pi*Inv_A; 
% second part 
Secondpart = delta_t*M + Cp; 
% Ep calaculation 
Ep = Firstpart*Secondpart 

 

For policy 2: 

%define Cp 
Cp = Cp = 

[0;0;100.16;150.18;200.18;250.17;300.15;350.12;400.09;450.05;500]; 
%define M 
M = [0;10;40;90;160;250;360;490;640;810;1000]; 
%define delta_t 
delta_t = 100; 
% define pi 
pi=[1 0 0 0 0 0 0 0 0 0 0]; 
%define Tp 
Tp =[5.9e-06 0.121 0.233 0.267 0.20 0.103 0.0368 0.009 0.00145 0.000138 

0.0282;0 1.97e-05 0.156 0.267 0.267 0.172 0.0735 0.021 0.00386 0.000413 

0.0404;1 0 0 0 0 0 0 0 0 0 0;1 0 0 0 0 0 0 0 0 0 0;1 0 0 0 0 0 0 0 0 0 0;1 

0 0 0 0 0 0 0 0 0 0;1 0 0 0 0 0 0 0 0 0 0;1 0 0 0 0 0 0 0 0 0 0;1 0 0 0 0 0 

0 0 0 0 0;1 0 0 0 0 0 0 0 0 0 0;1 0 0 0 0 0 0 0 0 0 0]; 
I=eye(11); 
%calculation 
A = I - Tp; 
Inv_A = inv(A); 
% pi(INV of A)



 

 

 

Firstpart = pi*Inv_A; 
% second part 
Secondpart = delta_t*M + Cp; 
% Ep calaculation 
Ep = Firstpart*Secondpart 

 

 

For policy 3: 

%define Cp 
Cp=[0;0;0;150.18;200.18;250.17;300.15;350.12;400.09;450.05;500 
M = [0;10;40;90;160;250;360;490;640;810;1000]; 
%define delta_t 
delta_t = 100; 
% define pi 
pi=[1 0 0 0 0 0 0 0 0 0 0]; 
%define Tp 
Tp=[5.90000000000000e-06 0.000138000000000000 0.00145000000000000 

0.00900000000000000 0.0368000000000000 0.103000000000000 0.200000000000000 

0.267000000000000 0.233000000000000 0.121000000000000 0.0282000000000000;0 

1.97000000000000e-05 0.000413000000000000 0.00386000000000000 

0.0210000000000000 0.0735000000000000 0.172000000000000 0.267000000000000 

0.267000000000000 0.156000000000000 0.0404000000000000;0 0 

6.56000000000000e-05 0.00122000000000000 0.0100000000000000 

0.0467000000000000 0.136000000000000 0.254000000000000 0.296000000000000 

0.198000000000000 0.0576000000000000;1 0 0 0 0 0 0 0 0 0 0;1 0 0 0 0 0 0 0 

0 0 0;1 0 0 0 0 0 0 0 0 0 0;1 0 0 0 0 0 0 0 0 0 0;1 0 0 0 0 0 0 0 0 0 0;1 0 

0 0 0 0 0 0 0 0 0;1 0 0 0 0 0 0 0 0 0 0;1 0 0 0 0 0 0 0 0 0 0]; 
I=eye(11); 
%calculation 
A = I - Tp; 
Inv_A = inv(A); 
% pi(INV of A) 
Firstpart = pi*Inv_A; 
% second part 
Secondpart = delta_t*M + Cp; 
% Ep calaculation 
Ep = Firstpart*Secondpart 

 

For policy 4: 

%define Cp 
Cp = 

[0;0;0;0;200.180000000000;250.170000000000;300.150000000000;350.12000000000

0;400.090000000000;450.050000000000;500]; 
%define M 
M = [0;10;40;90;160;250;360;490;640;810;1000]; 
%define delta_t 
delta_t = 100; 
% define pi 
pi=[1 0 0 0 0 0 0 0 0 0 0]; 
%define Tp 
Tp=[5.90000000000000e-06 0.000138000000000000 0.00145000000000000 

0.00900000000000000 0.0368000000000000 0.103000000000000 0.200000000000000 

0.267000000000000 0.233000000000000 0.121000000000000 0.0282000000000000;0 

1.97000000000000e-05 0.000413000000000000 0.00386000000000000 

0.0210000000000000 0.0735000000000000 0.172000000000000 0.267000000000000 

0.267000000000000 0.156000000000000 0.0404000000000000;0 0 

6.56000000000000e-05 0.00122000000000000 0.0100000000000000 

0.0467000000000000 0.136000000000000 0.254000000000000 0.296000000000000 



 

 

 

0.198000000000000 0.0576000000000000;0 0 0 0.000219000000000000 

0.00357000000000000 0.0250000000000000 0.0972000000000000 0.227000000000000 

0.318000000000000 0.247000000000000 0.0824000000000000;1 0 0 0 0 0 0 0 0 0  

 

0;1  0 0 0 0 0 0 0 0 0 0;1 0 0 0 0 0 0 0 0 0 0;1 0 0 0 0 0 0 0 0 0 0;1 0 0 

0 0 0 0 0 0 0 0;1 0 0 0 0 0 0 0 0 0 0;1 0 0 0 0 0 0 0 0 0 0]; 
I=eye(11); 
%calculation 
A = I - Tp; 
Inv_A = inv(A); 
% pi(INV of A) 
Firstpart = pi*Inv_A; 
% second part 
Secondpart = delta_t*M + Cp; 
% Ep calaculation 
Ep = Firstpart*Secondpart 

 

For policy 5: 

%define Cp 
Cp = 

[0;0;0;0;0;250.170000000000;300.150000000000;350.120000000000;400.090000000

000;450.050000000000;500]; 
M = [0;10;40;90;160;250;360;490;640;810;1000]; 
%define delta_t 
delta_t = 100; 
% define pi 
pi=[1 0 0 0 0 0 0 0 0 0 0]; 
%define Tp 
Tp=[5.90000000000000e-06 0.000138000000000000 0.00145000000000000 

0.00900000000000000 0.0368000000000000 0.103000000000000 0.200000000000000 

0.267000000000000 0.233000000000000 0.121000000000000 0.0282000000000000;0 

1.97000000000000e-05 0.000413000000000000 0.00386000000000000 

0.0210000000000000 0.0735000000000000 0.172000000000000 0.267000000000000 

0.267000000000000 0.156000000000000 0.0404000000000000;0 0 

6.56000000000000e-05 0.00122000000000000 0.0100000000000000 

0.0467000000000000 0.136000000000000 0.254000000000000 0.296000000000000 

0.198000000000000 0.0576000000000000;0 0 0 0.000219000000000000 

0.00357000000000000 0.0250000000000000 0.0972000000000000 0.227000000000000 

0.318000000000000 0.247000000000000 0.0824000000000000;0 0 0 0 

0.000729000000000000 0.0102000000000000 0.0595000000000000 

0.185000000000000 0.324000000000000 0.303000000000000 0.118000000000000;1 0 

0 0 0 0 0 0 0 0 0;1 0 0 0 0 0 0 0 0 0 0;1 0 0 0 0 0 0 0 0 0 0;1 0 0 0 0 0 0 

0 0 0 0;1 0 0 0 0 0 0 0 0 0 0;1 0 0 0 0 0 0 0 0 0 0]; 
I=eye(11); 
%calculation 
A = I - Tp; 
Inv_A = inv(A); 
% pi(INV of A) 
Firstpart = pi*Inv_A; 
% second part 
Secondpart = delta_t*M + Cp; 
% Ep calaculation 
Ep = Firstpart*Secondpart 

 

For policy 6: 

%define Cp



 

 

 

Cp = 

[0;0;0;0;0;0;300.150000000000;350.120000000000;400.090000000000;450.0500000

00000;500]; 
%define M 
M = [0;10;40;90;160;250;360;490;640;810;1000]; 

 

%define delta_t 
delta_t = 100; 
% define pi 
pi=[1 0 0 0 0 0 0 0 0 0 0]; 
%define Tp 
Tp=[5.90000000000000e-06 0.000138000000000000 0.00145000000000000 

0.00900000000000000 0.0368000000000000 0.103000000000000 0.200000000000000 

0.267000000000000 0.233000000000000 0.121000000000000 0.0282000000000000;0 

1.97000000000000e-05 0.000413000000000000 0.00386000000000000 

0.0210000000000000 0.0735000000000000 0.172000000000000 0.267000000000000 

0.267000000000000 0.156000000000000 0.0404000000000000;0 0 

6.56000000000000e-05 0.00122000000000000 0.0100000000000000 

0.0467000000000000 0.136000000000000 0.254000000000000 0.296000000000000 

0.198000000000000 0.0576000000000000;0 0 0 0.000219000000000000 

0.00357000000000000 0.0250000000000000 0.0972000000000000 0.227000000000000 

0.318000000000000 0.247000000000000 0.0824000000000000;0 0 0 0 

0.000729000000000000 0.0102000000000000 0.0595000000000000 

0.185000000000000 0.324000000000000 0.303000000000000 0.118000000000000;0 0 

0 0 0 0.00243000000000000 0.0284000000000000 0.132000000000000 

0.309000000000000 0.360000000000000 0.168000000000000;1 0 0 0 0 0 0 0 0 0 

0;1 0 0 0 0 0 0 0 0 0 0;1 0 0 0 0 0 0 0 0 0 0;1 0 0 0 0 0 0 0 0 0 0;1 0 0 0 

0 0 0 0 0 0 0]; 
I=eye(11); 
%calculation 
A = I - Tp; 
Inv_A = inv(A); 
% pi(INV of A) 
Firstpart = pi*Inv_A; 
% second part 
Secondpart = delta_t*M + Cp; 
% Ep calaculation 
Ep = Firstpart*Secondpart 

 

For policy 7: 

define Cp 
Cp = 

[0;0;0;0;0;0;0;350.120000000000;400.090000000000;450.050000000000;500]; 
%define M 
M = [0;10;40;90;160;250;360;490;640;810;1000]; 
%define delta_t 
delta_t = 100; 
% define pi 
pi=[1 0 0 0 0 0 0 0 0 0 0]; 
%define Tp 
Tp=[5.90000000000000e-06 0.000138000000000000 0.00145000000000000 

0.00900000000000000 0.0368000000000000 0.103000000000000 0.200000000000000 

0.267000000000000 0.233000000000000 0.121000000000000 0.0282000000000000;0 

1.97000000000000e-05 0.000413000000000000 0.00386000000000000 

0.0210000000000000 0.0735000000000000 0.172000000000000 0.267000000000000 

0.267000000000000 0.156000000000000 0.0404000000000000;0 0 

6.56000000000000e-05 0.00122000000000000 0.0100000000000000 

0.0467000000000000 0.136000000000000 0.254000000000000 0.296000000000000 

0.198000000000000 0.0576000000000000;0 0 0 0.000219000000000000 



 

 

 

0.00357000000000000 0.0250000000000000 0.0972000000000000 0.227000000000000 

0.318000000000000 0.247000000000000 0.0824000000000000;0 0 0 0 

0.000729000000000000 0.0102000000000000 0.0595000000000000 

0.185000000000000 0.324000000000000 0.303000000000000 0.118000000000000;0 0 

0 0 0 0.00243000000000000 0.0284000000000000 0.132000000000000  

 

0.309000000000000 0.360000000000000 0.168000000000000;0 0 0 0 0 0 

0.00810000000000000 0.0756000000000000 0.265000000000000 0.412000000000000 

0.240000000000000;1 0 0 0 0 0 0 0 0 0 0;1 0 0 0 0 0 0 0 0 0 0;1 0 0 0 0 0 0 

0 0 0 0;1 0 0 0 0 0 0 0 0 0 0]; 
I=eye(11); 
%calculation 
A = I - Tp; 
Inv_A = inv(A); 
% pi(INV of A) 
Firstpart = pi*Inv_A; 
% second part 
Secondpart = delta_t*M + Cp; 
% Ep calaculation 
Ep = Firstpart*Secondpart 

 

For policy 8: 

%define Cp 
Cp = [0;0;0;0;0;0;0;0;400.090000000000;450.050000000000;500]; 
%define M 
M = [0;10;40;90;160;250;360;490;640;810;1000]; 
%define delta_t 
delta_t = 100; 
% define pi 
pi=[1 0 0 0 0 0 0 0 0 0 0]; 
%define Tp 
Tp=[5.90000000000000e-06 0.000138000000000000 0.00145000000000000 

0.00900000000000000 0.0368000000000000 0.103000000000000 0.200000000000000 

0.267000000000000 0.233000000000000 0.121000000000000 0.0282000000000000;0 

1.97000000000000e-05 0.000413000000000000 0.00386000000000000 

0.0210000000000000 0.0735000000000000 0.172000000000000 0.267000000000000 

0.267000000000000 0.156000000000000 0.0404000000000000;0 0 

6.56000000000000e-05 0.00122000000000000 0.0100000000000000 

0.0467000000000000 0.136000000000000 0.254000000000000 0.296000000000000 

0.198000000000000 0.0576000000000000;0 0 0 0.000219000000000000 

0.00357000000000000 0.0250000000000000 0.0972000000000000 0.227000000000000 

0.318000000000000 0.247000000000000 0.0824000000000000;0 0 0 0 

0.000729000000000000 0.0102000000000000 0.0595000000000000 

0.185000000000000 0.324000000000000 0.303000000000000 0.118000000000000;0 0 

0 0 0 0.00243000000000000 0.0284000000000000 0.132000000000000 

0.309000000000000 0.360000000000000 0.168000000000000;0 0 0 0 0 0 

0.00810000000000000 0.0756000000000000 0.265000000000000 0.412000000000000 

0.240000000000000;0 0 0 0 0 0 0 0.0270000000000000 0.189000000000000 

0.441000000000000 0.343000000000000;1 0 0 0 0 0 0 0 0 0 0;1 0 0 0 0 0 0 0 0 

0 0;1 0 0 0 0 0 0 0 0 0 0]; 
I=eye(11); 
%calculation 
A = I - Tp; 
Inv_A = inv(A); 
% pi(INV of A) 
Firstpart = pi*Inv_A; 
% second part 
Secondpart = delta_t*M + Cp; 
% Ep calaculation



 

 

 

Ep = Firstpart*Secondpart 

 

For policy 9: 

%define Cp 

 

Cp = [0;0;0;0;0;0;0;0;0;450.050000000000;500]; 
%define M 
M = [0;10;40;90;160;250;360;490;640;810;1000]; 
%define delta_t 
delta_t = 100; 
% define pi 
pi=[1 0 0 0 0 0 0 0 0 0 0]; 
%define Tp 
Tp=[5.90000000000000e-06 0.000138000000000000 0.00145000000000000 

0.00900000000000000 0.0368000000000000 0.103000000000000 0.200000000000000 

0.267000000000000 0.233000000000000 0.121000000000000 0.0282000000000000;0 

1.97000000000000e-05 0.000413000000000000 0.00386000000000000 

0.0210000000000000 0.0735000000000000 0.172000000000000 0.267000000000000 

0.267000000000000 0.156000000000000 0.0404000000000000;0 0 

6.56000000000000e-05 0.00122000000000000 0.0100000000000000 

0.0467000000000000 0.136000000000000 0.254000000000000 0.296000000000000 

0.198000000000000 0.0576000000000000;0 0 0 0.000219000000000000 

0.00357000000000000 0.0250000000000000 0.0972000000000000 0.227000000000000 

0.318000000000000 0.247000000000000 0.0824000000000000;0 0 0 0 

0.000729000000000000 0.0102000000000000 0.0595000000000000 

0.185000000000000 0.324000000000000 0.303000000000000 0.118000000000000;0 0 

0 0 0 0.00243000000000000 0.0284000000000000 0.132000000000000 

0.309000000000000 0.360000000000000 0.168000000000000;0 0 0 0 0 0 

0.00810000000000000 0.0756000000000000 0.265000000000000 0.412000000000000 

0.240000000000000;0 0 0 0 0 0 0 0.0270000000000000 0.189000000000000 

0.441000000000000 0.343000000000000;0 0 0 0 0 0 0 0 0.0900000000000000 

0.420000000000000 0.490000000000000;1 0 0 0 0 0 0 0 0 0 0;1 0 0 0 0 0 0 0 0 

0 0]; 
I=eye(11); 
%calculation 
A = I - Tp; 
Inv_A = inv(A); 
% pi(INV of A) 
Firstpart = pi*Inv_A; 
% second part 
Secondpart = delta_t*M + Cp; 
% Ep calaculation 
Ep = Firstpart*Secondpart 

 

For policy 10: 

%define Cp 
Cp = [0;0;0;0;0;0;0;0;0;0;500]; 
%define M 
M = [0;10;40;90;160;250;360;490;640;810;1000]; 
%define delta_t 
delta_t = 100; 
% define pi 
pi=[1 0 0 0 0 0 0 0 0 0 0]; 
%define Tp 
Tp=[5.90000000000000e-06 0.000138000000000000 0.00145000000000000 

0.00900000000000000 0.0368000000000000 0.103000000000000 0.200000000000000 

0.267000000000000 0.233000000000000 0.121000000000000 0.0282000000000000;0



 

 

 

1.97000000000000e-05 0.000413000000000000 0.00386000000000000 

0.0210000000000000 0.0735000000000000 0.172000000000000 0.267000000000000 

0.267000000000000 0.156000000000000 0.0404000000000000;0 0 

6.56000000000000e-05 0.00122000000000000 0.0100000000000000 

0.0467000000000000 0.136000000000000 0.254000000000000 0.296000000000000 

0.198000000000000 0.0576000000000000;0 0 0 0.000219000000000000  

 

0.00357000000000000 0.0250000000000000 0.0972000000000000 0.227000000000000 

0.318000000000000 0.247000000000000 0.0824000000000000;0 0 0 0 

0.000729000000000000 0.0102000000000000 0.0595000000000000 

0.185000000000000 0.324000000000000 0.303000000000000 0.118000000000000;0 0 

0 0 0 0.00243000000000000 0.0284000000000000 0.132000000000000 

0.309000000000000 0.360000000000000 0.168000000000000;0 0 0 0 0 0 

0.00810000000000000 0.0756000000000000 0.265000000000000 0.412000000000000 

0.240000000000000;0 0 0 0 0 0 0 0.0270000000000000 0.189000000000000 

0.441000000000000 0.343000000000000;0 0 0 0 0 0 0 0 0.0900000000000000 

0.420000000000000 0.490000000000000;0 0 0 0 0 0 0 0 0 0.300000000000000 

0.700000000000000;1 0 0 0 0 0 0 0 0 0 0]; 
I=eye(11); 
%calculation 
A = I - Tp; 
Inv_A = inv(A); 
% pi(INV of A) 
Firstpart = pi*Inv_A; 
% second part 
Secondpart = delta_t*M + Cp; 
% Ep calaculation 
Ep = Firstpart*Secondpart 

 

Appendix B 

Long run calculation for two sensor nodes 

Question 2:  

Let’s assume the WSN with two sensor nodes A and B. The given Values are same as 

question one. Calculate the Long run Cost. 

• Δt= 5 hours (time of interval between two successive inspections) 

• Probability of failure Pr (FA) =0.3 = Pr (FB) 

• Mission Time (T) = 10000 hours 

• Replacement Cost (C)= 500 Nok 

• Performance loss cost per hour (M)= 1000 Nok/hour 

• p = 0.8 and q= 2 

Solution:  

There are two sensor nodes in WSN. So at each inspection, either one node fails or 

both.



 

 

 

 

 

Figure 7: Markov Chains for 2 sensor nodes. 

The transition matrix is: 

 

𝑇 =
𝑡00 𝑡01 𝑡02

0 𝑡11 𝑡12
0 0 𝑡22

 

Now we have to find the states probability, 

The probability of failure for both sensor is: 

Pr (FA) =0.3 = Pr (FB)  

And the working probability for both sensor is: 

Pr (WA) =1- Pr (FA) = 1-0.3 = 0.7 = Pr (WB) 

Now, the state transition probability t00 means both nodes are working. For independent 
nodes,  

𝑡00 = Pr (WA)* Pr (WB) = 0.7*0.7= 0.49  

Similarly, the state transition probability 𝑡01 means one sensor nodes in the WSN failed. 
It reaches from state 0 to state 1 during inspection. 

𝑡01 = Pr (WA) * Pr (FB) + Pr (WB)* Pr (FA) = 0.7*0.3+0.7*0.3=0.42 

𝑡02 is the transition probability from state 0 to state 2, which means both sensor nodes 
in the WSN failed. 

𝑡02 =0.3*0.3= 0.09 

𝑡11 is the transition probability to remain in state 1. Here at state 1, one of the sensor is 
already failed. So only one out of two is working and the probability to remain in same 
state is the working probability of that sensor which is: 

𝑡11 = 0.7 

𝑡12 is the probability of moving from state 1 to state 2. 

𝑡12 = 0.3 

𝑡22 = 1



 

 

 

 

Now,  

𝑇 =
0.49 0.42 0.09

0 0.7 0.3
0 0 1

 

To calculate the expected long run cost under policy P, let’s define the policy first. 

Since there are two nodes are used, two policy exists.  

Policy P (1): When one or more nodes fails i >= 1. Failed node could be either Node A 

or Node B. 

Second policy P (2): When both nodes fails i>=2.  

The long run cost for policy one is: 

𝐸𝑝 = 𝜋(0) ∗ [𝐼 − 𝑇𝑃]−1 ∗ [Δt ∗ 𝑀 + 𝐶𝑃] 

 

Where, 

• 𝜋(0) is the initial state probability. For 3x3 Matrix, it is equal to  

𝜋(0) = [1          0            0] 

• [𝐼 − 𝑇𝑃]−1 is square Matrix. 

Now let’s define Tp.  

Tp is a square matrix under certain policy. If we have ‘n’ number of total nodes 

and ‘i’ number of failed nodes in WSN. The method to obtain Tp from transition 

matrix T under policy P is consists of three matrices: 

1. Rectangle matrix of order i x (n+1) 

2. Column vector of n+1-i elements, all of which are 1’s and  

3. Null matrix of order (n+1-i) x n. 

Now, let’s assign the value of Tp for Policy 1. 

Step 1: under policy 1, the number of failed nodes is 1. So i =1 and n=2. So 

rectangular matrix i x (n+1) =1 x (2+1) = 1 x 3 matrix. 

𝑇𝑝 = [0.49 0.42 0.09] 

Step 2:  column vector of n+1-i elements. So it is 2+1-1= 2 elements. So we 

change the first two elements of second and third row with 1. 

𝑇𝑝 =
0.49 0.42 0.09

1 0.7 0.3
1 0 1

 

 

 



 

 

 

Step 3: Null matrix of order (n+1-i) x n. which is (2+1-1) x 2= 2 x 2. Now we 

replace the last two row of second column and third column with 0.  

 

𝑇𝑝 =
0.49 0.42 0.09

1 0 0
1 0 0

 

Now, [𝐼 − 𝑇𝑃]−1 can be obtained by calculating the inverse of the square matrix by 

using Gauss Jordan Elimination method. 

[𝐼 − 𝑇𝑃] =  [
1 0 0
0 1 0
0 0 1

] − [
0.49 0.42 0.09

1 0 0
1 0 0

] =
0.51 −0.42 −0.09
−1 1 0
−1 0 1

 

Now,  

[𝐼 − 𝑇𝑃]−1=

3,60287970189640e+16 1,51320947479649e+16 3,24259173170676e+15

3,60287970189640e+16 1,51320947479649e+16 3,24259173170676e+15

3,60287970189640e+16 1,51320947479649e+16 3,24259173170676e+15

 
 
 
  

 

 

Similarly for policy 2, we have  

Step 1: under policy 2, the number of failed nodes is 2. So i =2 and n=2. So rectangular 

matrix i x (n+1) =2 x (2+1) = 2 x 3 matrix. 

𝑇𝑝 = [ 
0.49 0.42 0.09

0 0.7 0.3
 ] 

Step 2:  Column vector of n+1-i elements. So it is 2+1-2= 1 elements. So we change the 

first elements of third row with 1. 

𝑇𝑝 =
0.49 0.42 0.09

0 0.7 0.3
1 0 1

 

Step 3: Null matrix of order (n+1-i) x n. which is (2+1-2) x 2= 1 x 2. Now we replace the 

two elements of last row of second column and third column with 0.  

 

𝑇𝑝 =
0.49 0.42 0.09

0 0.7 0.3
1 0 0

 

Now, 



 

 

 

 
[𝐼 − 𝑇𝑃]−1

=

7,68532359619539e+15 1,07594530346735e+16 3,91951503405965e+15

7,68532359619539e+15 1,07594530346735e+16 3,91951503405965e+15

7,68532359619539e+15 1,07594530346735e+16 3,91951503405965e+15

 
 
 
  

 

• Δt ∗ 𝑀 + 𝐶𝑃, it’s a column vector 

𝐶𝑃 is the cost under policy P. 𝐶𝑃 can be determined by using the below cost function  

𝐶(𝑖) = 𝐶𝑛(
𝑖

𝑛
)𝑝 

For i=1, 

C(1)= 500*(1/2) ^0.8 = 287,17 Nok  

For i=2, 

C (2) = 500 Nok 

So for policy 1, we have 1 sensor node fails. In this case  

 

𝐶𝑃1 = [

𝐶(0)
𝐶(1)
𝐶(2)

] = [
0

287,17
500

] 

 

Similarly, for policy 2, two nodes fails. In this case 

So  

𝐶𝑃2 = [
0
0

500
] 

 

Δt ∗ 𝑀, here 𝑀 can be determined by using the function 

𝑀(𝑖) = 𝑀𝑛 (
𝑖

𝑛
)

𝑞

 

For i=1, 

𝑀(1) = 1000(1/2)^2 = 250 Nok and  

For i=2,  

𝑀(2) = 1000 𝑁𝑜𝑘 

𝑀 = [
0

250
1000

] 



 

 

 

 

Δt ∗ 𝑀 = [
0

250 ∗ 5 = 1250
1000 ∗ 5 = 5000

] 

Now,  

Long run cost for policy 1, 

𝐸𝑝 = 𝜋(0) ∗ [𝐼 − 𝑇𝑃]−1 ∗ [Δt ∗ 𝑀 + 𝐶𝑃1] 

   
= [1          0            0]

∗

7,68532359619539e+15 1,07594530346735e+16 3,91951503405965e+15

7,68532359619539e+15 1,07594530346735e+16 3,91951503405965e+15

7,68532359619539e+15 1,07594530346735e+16 3,91951503405965e+15

 
 
 
  

∗ [
0

1250 + 287,17 = 1537,17
5000 + 500 = 5500

] 

= 4.1095e+19 Nok 

Long run cost for policy 2, 

𝐸𝑝 = 𝜋(0) ∗ [𝐼 − 𝑇𝑃]−1 ∗ [Δt ∗ 𝑀 + 𝐶𝑃2] 

= 3.5007e+19 Nok  

Policy 2 is adopted for the optimal policy, since the long-run  cost for the second policy 
is minimum. Both the calculation is performed in Matlab.  

Matlab Code: 

For policy 1, 

%define Cp 
Cp = [0;287.17;500]; 
%define M 
M = [0;250;1000]; 
%define delta_t 
delta_t = 5;  
% define pi 
pi= [1 0 0]; 
%define Tp 
Tp=[0.49 0.42 0.09; 1 0 0; 1 0 0]; 
I=eye(3); 
%calculation 
A = I - Tp; 
Inv_A = inv(A); 
% pi(INV of A) 
Firstpart = pi*Inv_A; 
% second part 
Secondpart = delta_t*M + Cp; 
% Ep calaculation 
Ep = Firstpart*Secondpart 

 

 

For policy 2, 

%define Cp



 

 

 

 
Cp = [0;0;500]; 
%define M 
M = [0;250;1000]; 
%define delta_t 
delta_t = 5; 
% define pi 
pi=[1 0 0]; 
%define Tp 
Tp=[0.49 0.42 0.09; 0 0.7 0.3; 1 0 0]; 
I=eye(3); 
%calculation 
A = I - Tp; 
Inv_A = inv(A); 
% pi(INV of A) 
Firstpart = pi*Inv_A; 
% second part 
Secondpart = delta_t*M + Cp; 
% Ep calaculation 
Ep = Firstpart*Secondpart 

 

 

 


