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Preface

This master thesis is conducted within the specialization in Reliability, Availability, Maintain-

ability and Safety (RAMS), at the department of Mechanical and Industrial Engineering (MTP).

The thesis is a part of the five-years program in Mechanical Engineering at NTNU, and is written

during the spring semester 2019.

The project is carried out in cooperation with Norsk Hydro ASA and supervisor Jørn Vatn from

the RAMS department at NTNU. Based on the project thesis written during the fall 2018, where

a comprehensive literature review on Remaining Useful Life was carried out, the topic for this

master thesis was founded. This thesis aims to bridge the gap between the current situation

in the industry today in relation to data availability, and research promoted within the fields of

RAMS, Health Management and Artificial Intelligence.

This report assumes that the reader has some background knowledge within Health Manage-

ment, Lifetime Analysis and Maintenance Optimization, preferably fifth-years RAMS-students

who have taken the courses; TPK4140 - Maintenance Optimization and Safety, TPK4120 - Indus-

trial Safety and Reliability and TPK4450 - Data Driven Prognostics and Predictive Maintenance.

In addition, the reader is assumed to have basic programming knowledge.

Trondheim, 2019-06-11

Simone Heggelund
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Executive Summary

In the context of Industry 4.0, new emerging technologies have enabled a shift within the man-

ufacturing sector, where data extracted from all relevant sources is the key driver to create value.

Deriving value from these streams of continuous time series data is the main focus of this mas-

ter thesis, with the objective of building an unsupervised anomaly detector based on machine

learning. The system under study is a three-stage Centrifugal Air Compressor system, equipped

with in total 21 sensors monitoring the system continuously. The current status in the indus-

try today in relation to data availability is examined, concluding that failure history and data

associated with labels indicating the health of the equipment is hard to obtain for complex sys-

tems. Hence, an unsupervised anomaly detector is required, not relying on labeling or historical

failures. Based on machine learning fundamentals, state-of-the-art machine learning models

and several anomaly detection surveys, it is concluded that the following approaches will solve

the objective; unsupervised anomaly detection based on residuals and unsupervised anomaly

detection based on clustering. A framework for how these approaches can be implemented is

presented, both building on the principle of modelling the normal behavior of the system, and

flagging samples deviating from this behavior as anomalous.

For the residuals based approach, three state-of-the-art machine learning models are reviewed

and implemented, namely the Decision Tree Model, the Random Forest Model and a Feedfor-

ward Neural Network. These models are aiming to predict the target variable, which in this case

is the pressure, based on a learned relationship with the input features. The magnitude of the

residuals between the predicted and actual target variable determines if a sample is classified as

normal or abnormal, depending on a chosen confidence interval. For the clustering based ap-

proach, the K-Means clustering algorithm is reviewed and implemented. This model is aiming

to group the data into clusters with similar patterns, forming a reference pattern for the nor-

mal behavior of the system. Any new sample falling outside this reference pattern is classified

as anomalous, depending on a predefined outlier fraction. Along with this reviews, the basic

framework associated with machine learning is presented, involving training, validating and

testing the algorithms. The objective of building models that perform well on never-before-seen

data is emphasized, mitigating the effects of overfitting and underfitting.

For the residuals based approach, a benchmark is performed between the Decision Tree Model,

the Random Forest Model and the Feedforward Neural Network. It is concluded that the Ran-

dom Forest Model has to overall best performance both on the validation and testing set, pre-

dicting the pressure with an accuracy of 0,98. The results gained from this model is used to

calculate the residuals, giving a result of 180 detected abnormal samples out of 7233 in total. For
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the clustering based anomaly detector, the same result were obtained using an outlier fraction

of 0,02. By comparison of the presented detectors, it becomes evident that approximately the

same samples are classified as anomalous, which are big irregular patterns deviating strongly

from what is assumed to be normal operating behavior. Due to the lack of failure history, it

is concluded that the determination of the decision boundaries for abnormal classification re-

quires expert judgment and system knowledge, such that the risk of false positives and false

negatives are minimized. This thesis aims to pride the gap between theory and practice, intro-

ducing an interdisciplinary collaboration between research promoted within the fields of RAMS

and Health Management and IT and Artificial Intelligence. By such interdisciplinary collabo-

ration, it is believed that the value derived from the continues arriving streams of data can be

maximized.
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Sammendrag

Satsningen på digitalisering og implementering av konsepter som inngår i Industri 4.0 har aldri

vært større, hvor tilstandsovervåkning, implementering av sensorteknologi og prediktive strate-

gier for vedlikehold står i fokus. Denne oppgaven tar sikte på å utvikle en unormalitetsdetektor

basert på maskin læring, gjennom analyse av kontinuerlige tidsseriedata. Systemet som stud-

eres er en tre-trinns sentrifugalkompressor for kompresjon av luft, utstyrt med totalt 21 sen-

sorer som overvåker systemet kontinuerlig. Kritisk produksjonsutstyr monitoreres kontinuerlig

med intensjon om å detektere unormaliteter før systemsvikt oppstår, noe som gjør at tilgan-

gen på data som beskriver feilhistorikk og degraderingsmekanismer er svært begrenset. For

implementering av prediktivt vedlikehold kreves dermed en unormaldetektor som ikke baserer

seg på feilhistorikk og indikatorer som sier noe om utstyrets degraderingsnivå, såkalt uassis-

tert unormalitetsdeteksjon. Med utgangspunkt i fundamentale maskin lærings konsepter, en

rekke maskinlæringsmodeller og litteratur som dekker ulike tilnærminger til uassistert unor-

malitetsdeteksjon, presenteres et rammeverk for implementering av følgende tilnærminger; un-

ormalitetsdeteksjon basert på residualer og unormalitetsdeteksjon basert på gruppering. Begge

de presenterte tilnærmingene baserer seg på å modellere systemets normale atferd ved hjelp av

maskin læring, for så å detektere atferd som avviker fra denne som unormal.

For den residualbaserte tilnærmingen gjennomgås og implementeres tre state-of-the-art maskin-

læringsmodeller, Decision Tree Model, Random Forest Model og Feedforward Neural Networks.

Disse modellene tar sikte på å predikere lufttrykket basert på et lært forhold med de andre sys-

temvariablene. Størrelsen på residualene mellom det predikerte og faktiske trykket avgjør om

atferden klassifiserer som normal eller unormal, med utgangspunkt i et forhåndsbestemt kon-

fidensintervall. For den klyngebaserte tilnærmingen gjennomgås og implementeres K-means

clustering algoritmen, som tar sikte på å gruppere data i klynger med lignende atferd. De grup-

perte klyngene danner et referansemønster for systemets normale oppførsel, hvor data som

ikke overlapper med referansemønsteret klassifiseres som unormal, avhengig av en forhånds-

bestemt fraksjonsprosent. I tillegg presenteres et grunnleggende rammeverk knyttet til maskin-

læring, hvor trening, validering og testing av maskinlæringsmodeller gjennomgås, samt grunn-

leggende konsepter knyttet til overtilpasning, undertilpasning og optimalisering av modellenes

hyperparametre.

Videre gjennomføres en sammenligning av den den oppnådde prestasjonen til både Decision

Tree Model, Random Forest Model og Feedforward Neural Networks. Det konkluderes med at

Random Forest Model presterer best, med evne til å predikere trykket med en nøyaktighet på

0,98. Resultatene som er oppnådd fra denne modellen brukes videre til å beregne residualene,
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og for en testperiode på 6 dager detekteres totalt 180 unormaliteter, ut av totalt 7233 mulige. For

den klyngebaserte unormalitetsdetektoren oppnås samme resultat med en fraksjonsprosent på

0,02. Ved sammenligning av de to presenterte detektorene konkluderes det med at tilnærmet de

samme partiene klassifiseres som unormale, som i hovedsak er store uregelmessige partier som

avviker sterkt fra det som antas å være normal driftsadferd. For å optimalisere beslutningsre-

glene for klassifisering av unormaliteter kreves det domenekunnskap og kunnskap om mulige

feilmoder og unormaliteter, da svikthistorikk ikke er tilgjengelig. Beslutningsgrensene må opti-

maliseres med sikte på å redusere tilfeller av falske positive og falske negative deteksjoner, som

både reduserer reliabiliteten til detektoren og øker risikoen for systemsvikt. Denne oppgaven

bidrar med en tverrfaglig tilnærming til analyse av kontinuerlig tidsseriedata, hvor tradisjonelle

fremgangsmåter fra et RAMS perseptiv kombineres med ny forskning og litteratur fra et IT og

Kunstig Intelligens perspektiv.
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Chapter 1

Introduction

In this chapter, the background for the problem at stake is presented, with a further description

of the problem formulation and the objectives to be solved. In addition, the scope and limita-

tions associated with the project are presented, and the approaches used to solve the objectives.

Finally, a structural overview of the report is given.

1.1 Background

Manufacturing companies are consistently facing high levels of margin pressure, and are aiming

to reduce costs by pushing for remaining untapped potential that has not yet been optimized

(Wee et al., 2015). During the last decade, new emerging technological solutions have enabled

rabid changes in the industry and in the society, which can be regarded as a paradigm shift.

This paradigm shift is forecasted to become the fourth industrial revolution, commonly referred

to as Industry 4.0. The term Industry 4.0 first appeared in an economic policy for Germany

in 2011 (Vasja et al., 2016), and has ever since been used to describe the rabid changes new

emerging technologies have enabled. Industry 4.0 extends the digitization and automation seen

in the third industrial revolution in the late 1900s (Prisecaru, 2017), by further digitization of the

manufacturing sector (Wee et al., 2015).

The vision behind Industry 4.0 is to integrate data extracting tools in every subsystem, from

start to end in the supply chain, including all external and internal operations (Blanchet et al.,

2014). In order for the data extracted from the manufacture and value chain to provide valu-

able information, it must be aggregated to a higher value context, such that all processes can

be simulated and analyzed in real-time (Wee et al., 2015). Industry 4.0 focuses on digital op-

1
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timization instead of physical optimization, with an end-to-end information flow through the

entire life cycle. By implementing the concepts of Industry 4.0, the products will have a digital

representation in the cyber physical world, connected through the Internet of Things (IoT) (Wee

et al., 2015). Dr. Jan Stefan Michels, Head of Standardization and Technology Development at

Weidmüller states that; “Industry 4.0 requires the convergence of business IT and manufactur-

ing IT systems. Applications and different engineering disciplines have to grow together and

collaborate in an interdisciplinary way, in order to create additional value through better usage

of data.” (Wee et al., 2015).

Machinery and assets accumulate significant costs for manufacturing companies, and improved

asset utilization drives significant value in terms of reduced downtime costs and higher as-

set performance while operating. Newly emerging technologies, data availability and the con-

sistently requirements of improving overall equipment effectiveness, have also shifted the fo-

cus within maintenance strategies. The industry aims at reducing and replacing corrective

maintenance actions with preventive and predictive maintenance strategies, in order to reduce

planned and unplanned downtime and increase equipment performance (Wee et al., 2015).

Extracting relevant data from all products and manufacturing equipment through sensors and

monitoring technologies is the core driver for enabling real-time decision support and predic-

tive maintenance actions. Collected data does not have an inherent value itself, and should

arguably be collected with the intention of maximizing value. In a comprehensive survey car-

ried out by McKinsey and Company covering industrial readiness for Industry 4.0, it is stated

that; “Even though we have all the enablers to make Industry 4.0 feasible such as connectivity

technology, affordable IoT hardware, standardized communication protocol, collecting mean-

ingful data and analyzing for implications are still the biggest challenges to driving the impact

from Industry 4.0. “ (Wee et al., 2015).

From a RAMS perspective, Prognostics and Health management (PHM) is widely discussed in

relation to predictive maintenance. Here, the main focus is on the phases involved with diag-

nosing the current system health, predicting future behavior of the system and estimating the

Remaining Useful Life (RUL)(Vachtsevanos et al., 2006). Predicting the the RUL is promoted as

the optimal prognosis output, required for sufficiently implementing predictive maintenance

strategies. Hence, research on approaches to best estimate the RUL has gained a lot of at-

tention. Several researchers have attempted to classify and summarize the existing prognosis

techniques used for RUL-estimation, among them Gao et al. (Gao et al., 2015), Sikorska et al.

(Sikorska et al., 2011) and Peng et al. (Peng et al., 2010). Gao et al. (Gao et al., 2015) classifies

the prognosis techniques into three main categories; Physics-based, Data-Driven and Model

Based approaches. Sikorsha et al. (Sikorska et al., 2011) proposed a classification that distin-
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guish between Knowledge-based models, Life expectancy models, Artificial Neural Networks

and Physical models, whereas Peng et al. (Peng et al., 2010) proposed a classification between

Physical models, Knowledge-based Models, Statistical models and Combination models. These

classifications are somewhat similar, in the sens that all three classifications distinguish between

Physical models, Statistical models and Data-Driven models, such as machine learning. Despite

the available models, there is a huge gap between the theory and practice. In order to predict the

RUL, independent of the chosen model, historical data containing failures with associated labels

indicating the health associated with the data is required. For complex and critical systems, this

information is rarely available, argued by the fact that these systems not are run-until-failure.

In order to derive value from these streams, modeling in an unsupervised fashion is required,

referring to models that do not rely on labeling or historical examples illustrating the run-until-

failure behavior of the system.

Furthermore, as the amount of data grows big, referred to as Big Data, traditional modeling tools

will quickly be inefficient, which rises the need for an interdisciplinary collaboration between IT

and manufacturing disciplines. Machine learning has quickly grown to become the most popu-

lar sub-field of Artificial Intelligence, since it first started flourishing in the 1990s (Chollet, 2017)

(Goodfellow, 2017). This trend is mainly driven by two factors; data availability and faster and

more robust hardware. There exists tight connections between classical mathematical statistics

and machine learning, yet there are some fundamental differences. Classical statistical anal-

yses and physical modeling tend to be impractical for large and complex data sets, whereas

machine learning models tend to increase their performance as the amount of data grows. Fur-

thermore, machine learning models are more engineering oriented than mathematical models,

such that relatively little mathematical theory are available, commonly referred to as the con-

cept of a "black box". Hence, within machine learning, ideas are often proven empirically rather

than theoretically, through a trial-and-error procedure (Chollet, 2017).

From a Health Management and RAMS perspective, the system architecture and system com-

ponents are traditionally analyzed with the intention of assessing potential failure modes and

models appropriate for predicting future degradation and the RUL. From an IT and Artificial

Intelligence perspective, the data steaming from the system is the main focus. From this per-

spective, it is believed that the results gained through data analytics will speak for itself, reduc-

ing the need to truly understand and assess all potential failure modes. Within both fields, the

objective is to assist real-time decision support by giving early warnings if abnormal behavior

is observed. Based on the current status in the industry today in relation to data availability

and promoted research from both the presented fields, an unsupervised anomaly detector is in

reach, whereas predicting the RUL for complex systems still is in the fields of research (Lavin
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and Ahmad, 2015).

Problem Formulation

The problem to address in this master thesis is how valuable insight can be gained from stream-

ing, continuous time series data, with the objective of detecting anomalies at an early stage.

The system under study is a three-stage Centrifugal Air Compressor system located at Hydro

Sunndalsøra, which is continuously monitored by in total 21 sensors. The compressor system

is considered to be highly critical for the production of Aluminum at Sunndalsøra, argued by

the fact that compressed air is used to transport the raw material Alumina. Along with energy,

Alumina is the key ingredient used used to produce Aluminum. Hence, detecting abnormal be-

havior at an early stage is of high interest for Hydro, such that preventive maintenance actions

can be taken before failures progress until system shutdown.

The continuously arriving stream of data is not associated with a label indicating the health of

the equipment and the data does not include run-until-failure measurements. The compressor

system is continuously monitored with the intention of preventing failures and system down-

time, such that historical data containing representative examples of how degradation progress

until failure not is in the near future for this system. Arguably, the problem at hand raise the

need for a model capable of detecting abnormal behavior at an early stage, without relying on

historical failures, commonly denoted an unsupervised anomaly detector.

1.2 Objectives

The main objective of this master thesis is to build an unsupervised anomaly detector based

on machine learning, capable of giving early warnings for real-time decision support. In order

to achieve this objective, the three-stage Centrifugal Air Compressor system is studied in de-

tail, along with the fundamental work flow and concepts of machine learning and unsupervised

anomaly detection on continuous time series data. To reach the main objective, the following

sub-objectives are established;

1. Present the architecture and key components of the three-stage Centrifugal Air Compres-

sor system, along with the associated instrumentation and control system. In addition,

review the problems that can be detected through the instrumentation system.

2. Present the key concepts of Prognostics and Health Management for RUL-estimation,
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along with challenges faced by the industry today in relation to data availability.

3. Perform a literature review on approaches for anomaly detection on continuously time

series data, emphasizing the approaches for unsupervised anomaly detection.

4. Perform an in-depth literature review on the fundamental framework of machine learn-

ing, along with a review of state-of-the-art machine learning models.

5. Establish a work-flow-procedure for building unsupervised anomaly detectors based ma-

chine learning.

6. Build and implement the unsupervised anomaly detectors on the three-stage Centrifugal

Air Compressor time series data.

1.3 Approach

The objectives of this master thesis can be broadly classified into two main parts, a literature re-

view part and a practical implementation part. The literature review covers health management

and prognostics, anomaly detection approaches, machine learning fundamentals and state-of-

the art machine learning models, while the practical implementation part involves performing

descriptive statistics, training, validation and testing the machine learning models and building

the unsupervised anomaly detectors.

The research platforms used to assess the relevant literature were ORIA, ScienceDirect, Engi-

neering Village, IEEE transactions and Google Scholar. In order to assess the most relevant lit-

erature, the publishing date, the number of citations and publishing place were used as guide-

lines. In addition, state-of-the-art articles related to unsupervised anomaly detection and ma-

chine learning were assessed based on expert knowledge from the supervisor in the RAMS-

department, and IT-students more familiar with machine learning and anomaly detection. In

order to get a deeper understanding of each machine learning model, research articles present-

ing both general theory, the mathematical framework associated with the model and a numeri-

cal case study demonstrating the obtained results were weighted highly. In addition, the math-

ematical framework and the key properties related to each model were assess through state-

of-the-art books, covering machine learning fundamentals and unsupervised anomaly detec-

tion.

The practical implementation is based on relevant literature covering the fundamental work

flow of machine learning and unsupervised anomaly detection, focusing on how to build and
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implement these models. In addition, open source tutorials demonstrating how to train, vali-

date and test the machine learning models have been studied. Python is used for programming,

along with the open source libraries Pandas, used for preprocessing the data, Seaborn, used

to perform descriptive statistics and Scikit-Learn, used to train, validate and test the machine

learning models. These open source libraries include all the relevant documentation required

for implementation, which has been heavily used for successfully developing the anomaly de-

tectors.

1.4 Contributions

The main contribution of this master thesis is a comprehensive review on machine learning

fundamentals and unsupervised anomaly detection, along with the development of two suc-

cessful anomaly detectors, from the perspective of a RAMS student. Traditionally, assessing all

potential failure modes and models appropriate for predicting future degradation and the RUL

has been the main focus within RAMS. From an IT and Artificial Intelligence perspective, the

data steaming from the system is the main focus, with the belief that the results gained through

data analytics will speak for itself. This master thesis contributes with a combined perspective,

considering both traditional research promoted within the fields of Health Management and

Prognostics from a RAMS, with emerging trends and research within IT and Artificial Intelli-

gence, such as machine learning. It is of strong beliefs that such interdisciplinary collaboration

will bridge the gap between theory and practice, and within research fields.

In addition, this thesis provides insight on how value can be created from continuous time se-

ries data, which not includes labels or historical failures. The current status in the industry today

in relation to data availability has been highly weighted, with the objective of creating models

capable of detecting anomalies with the current available data. Hence, this thesis provide a

framework, grounded in research withing health management, machine learning and anomaly

detection, for building efficient unsupervised anomaly detectors, capable of detection anoma-

lies at an early stage. The presented modelling framework for machine learning and anomaly

detection is believed to cover all the relevant theory and implementation procedures needed for

a RAMS student to implement similar models, with the only requirement of basic programming

skills.
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1.5 Limitations

Maintenance strategies and maintenance optimization options are not discussed in detail. Op-

timization criteria such as costs, safety and availability, and existing maintenance strategies are

considered to be known for the reader, and is excluded from the main scope of this thesis.

Based on the fact that this thesis considers the whole three-stage Centrifugal Air Compressor

System, with all associated sensors, a FMECA covering all failure modes has not been carried

out in detail. Instead, detectable problems that possibly can be reveled by deviations in air

pressure, air temperature and equipment vibration are discussed.

The data provided by Norsk Hydro ASA only contains measurements from December 2018 to

January 2019. Due to this, possible seasonal, cyclic and trend variations are not included in the

data set. Ideally, the machine learning models should have been trained on an interval for at

least one year, to capture the dynamics over a longer time period. However, the provided data is

sufficient for demonstrating how unsupervised anomaly detectors can be built.

The anomalies detected by the presented models have not been proven to be real-life anoma-

lies. This is due to the fact that the data does not include any known historical failures or label-

ing classifying the data as normal or abnormal. Therefore, irregular patterns observed through

visualization of the data are assumed to be anomalies, such that the anomaly detectors are op-

timized to classify these patterns as anomalous.

As a RAMS student, it is not guaranteed that the code associated with the machine learning

models and anomaly detectors are optimized to the full extend. However, effort has been made

to optimize the code as much as possible, to reduce unnecessary operations and long running

times.

1.6 Outline

The report is structured as follows:

• Chapter 1: Presents the background for this topic, the main objectives to be solved, and

the approaches and limitations related to the work.

• Chapter 2: Presents the architecture and main components of the three-stage Centrifugal

Air Compressor system, along with the instrumentation installed on the system. In addi-

tion, detectable problems related to pressure, temperature and vibration are highlighted.
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• Chapter 3: Introduces the general framework within Health Management and Prognos-

tics, and reviews anomaly detection approaches for continuous time series data.

• Chapter 4: Presents the fundamental framework of machine learning, along with a review

of state-of-the-art machine learning models.

• Chapter 5: Presents the established work-flow-procedure on how to build unsupervised

anomaly detectors based on machine learning.

• Chapter 6: Presents the data preprocessing and descriptive statistics performed on the

data.

• Chapter 7: Presents the trained, validated and tested machine learning models, along with

a performance benchmark between the models.

• Chapter 8: Presents the implementation and optimization of the unsupervised anomaly

detectors.

• Chapter 9: Presents the summary, conclusion and discussion for the master thesis, along

with recommendations for future work.

• Appendix A: Presents acronyms relevant for this thesis.

• Appendix B: Presents the programming codes for the work carried out.

• Bibliography



Chapter 2

The Three-Stage Centrifugal Air Compressor

System

2.1 System Location

The system under study is a three-stage Centrifugal Air Compressor system, running in parallel

with four other compressors. The five compressors are located at Hydro Sunndalsøra, and are

responsible of producing compressed air that is used for transportation of alumina. Each year,

Hydro Sunndalsøra produces four hundred thousand tons of melted aluminum, which further

is cast and used in rolled or extruded products. Aluminum production starts with extraction of

the raw material bauxite, which contains approximately fifteen percent alumina. The bauxite is

then processed in a refinery, where alumina is extracted. Along with energy, alumina is the key

ingredient in the electrolysis process, used to produce aluminum, as seen in Figure 2.1. Hence,

in order for primary melted aluminum to be produced, alumina needs to be transported to the

electrolysis facility. Alumina is transported in pipelines with compressed air, produced by the

five compressors running in parallel. The electrolysis cells producing aluminum are continu-

ously running, such that if the supply of alumina is prevented, the production will be heavily

affected.

9
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Figure 2.1: Illustration of the aluminum life cycle, where alumina is a key ingredient.

2.2 System Description

In the following, the architecture and the key components of the three-stage Centrifugal Air

Compressor system is presented. As seen from the system drawing in Figure 2.2, the air is led in

through a inlet filter, before entering the inlet guide vane valve. The inlet guide vane valve leads

the air flow into the first stage compression, before entering the second stage and third stage

compression. During three stages, the air is compromised from approximately 3,5 bar to 7,2 bar.

A heat exchanger for cooling and an air-water separator are located between each compression.

An electrical motor drives the gear, which drives the impellers inside the compressors to rotate.

Furthermore, oil is used for lubrication, both in the motor system and in the gear, while water

is used as cooling medium in the cooling system. In the following, the function of these sub-

systems and components are explained.
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Figure 2.2: The three-stage Centrifugal Air Compressor system architecture.

2.2.1 Electrical Motor

The electrical motor converts electrical energy into mechanical energy, through the interaction

of a magnetic field and electric current in a wire. The moving part in an electrical motor is

the rotor, which is turning the shaft that delivers mechanical power. Bearings are supporting

the rotor, allowing the rotor to rotate around its own axis. Furthermore, the stator refers to the

stationary part of the electromagnetic circuit associated with the motor (Gottlieb, 1997).

2.2.2 Gear / Mechanical Drive

The Gears, also known as Mechanical Drives, transfer power from a prime mover to an actuator

based on an rotary motion. In this case, an actuator refers to an operational machine or oper-

ational member, such as the impeller located inside the compressor. The gears or mechanical

drives are located between the prime mover and the actuator, and are connecting these through

couplings or clutches. A gearbox contains several gears, each having the function of transmit-

ting and receiving motion from the connected gear-teeth. When gears are meshing with one

another, torque moment is transmitted. In addition, gears have the ability to change both the

speed, direction and torque generated from the power source (Jelaska, 2012).



CHAPTER 2. THE THREE-STAGE CENTRIFUGAL AIR COMPRESSOR SYSTEM 12

2.2.3 Inlet Filter

The inlet filter is responsible of filtering out particles, such as dust and other chemicals, from the

air before entering the system. Dust and chemicals entering the compressor system may dam-

age the other components, which is why the inlet filter is located at the very beginning of the

inlet pipeline (Giampaolo, 2010). In this case, the inlet filter is a three-stage filter, serving differ-

ent purposes. The first stage is a particle filter, the second stage is a chemical filter responsible

for separating out sulfur, while the third stage is a particle filter for even smaller particles.

2.2.4 Inlet Guide Vane Valve and Inlet Butterfly Valve

Inlet guide vane valve and Inlet butterfly valve are the two most common valves used to control

the inlet flow of a centrifugal air compressor, usually mounted at the inlet before the first stage

compression. Both valves are actuated by the compressor control system based on system de-

mand, yet with different operating principles. The butterfly valve directs the airflow straight into

the impeller, in an axial direction, whereas the inlet guide vane valve has adjustable vanes that

can be positioned such that the inlet air is caused to swirl in the same direction as the rotating

impeller. When the inlet air begins rotating before entering the impeller, the first stage impeller

is required to do less work, such that the overall efficiency of the compressor is improved. For

inlet butterfly valves, the drives are responsible of providing all the energy required to rotate the

air with the impellers, without the help of a swirl generated by the valve. It is estimated that

inlet guide vane valves can reduce the energy consumption by 9 percent. However, when the

compressor is working at 100 percent load, the inlet guide vane valve and the butterfly valve op-

erate based on the same principle, without any swirling of the air. Hence, the inlet guide vane

valve only differs from the butterfly valve when the compressor is running in the throttle range

of the compressor, meaning that the compressor not is running at full capacity (Joseph, 2001).

On the compressor system at hand, an inlet guide vane valve is operating in parallel with an inlet

butterfly valve, where the inlet butterfly valve is used as a backup valve.

2.2.5 Compressor Unit

Compressors types can be classified into two distinct categories, namely dynamic and positive

displacement compressors. For dynamic compressors, one distinguish between axial and cen-

trifugal compressors. Centrifugal compressors achieves compression through rotating impellers,

which apply inertial forces to the air. Each compression stage consist of a rotating impeller and a
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stationary diffuser. There exists three types of impeller design, open, semi-enclosed or enclosed

design. Similar for all three is that the impeller consists of radial vanes, which are attached to

a backing plate or disc. As the air enters the impeller, most often perpendicular to the axis, a

centrifugal force is applied through the rotating impeller. Before exiting the impeller, the air en-

ters a diffuser, also known as a flow decelerator. The flow deceleration generated by the diffuser

causes pressure to built up, such that compressed air exits the centrifugal air compressor. The

only element adding energy the the air is the impeller, whereas all the other components are

stationary (Giampaolo, 2010).

2.2.6 Heat Exchanger and Separator

The heat exchangers serve the purpose of cooling the compressed air, in order to prevent equip-

ment from being damaged. As the air pressure increases during the compression, the temper-

ature increases accordingly, described mathematically by for example the Ideal Gas Equation,

pV = nRT (Giampaolo, 2010). High-temperature air has a detrimental effect on the lubrication

and sealing of the equipment material, requiring a heat exchanger to be located as close as pos-

sible to the air compression exists. In addition, the high-temperature air exiting the compressor

contains high levels of moisture vapor, which eventually will condense as the air is cooled natu-

rally throughout the system. If no actions are taken, the condense will cause rust, scale build-up

and possible frost issues during winter operation. Hence, the heat exchangers serve two func-

tions; reduce the air temperature to prevent damage caused by high temperatures itself, and

speed up the condense process such that water can by separated from the air using a separa-

tor. The heat exchangers, also known as after coolers, can either be based on water cooling or

air cooling. In both cases, the air is cooled through heat transferring between the compressed

air and the cold cooling medium, which in this case is water. For a three-stage compressor, a

heat exchanger and a separator are located between each compression stage, to prevent high-

temperature air and water developed through condense damaging the equipment of the pre-

ceding compression stages (Morel, 2017).

2.3 System Demand and Operating Principals

The five compressors running in parallel are responsible for the supply of compressed air at

approximately 7,2 bar, with a total nominal performance equaling 1476 m3/min. Taking into

account reduced efficiency caused by operational wear and other external and internal factors,

it is assumed that the maximum performance equals 1400 m3/min, given that all compressors
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are operating. However, the air demand varies as the production in electrolysis cells varies, from

a demand at approximately 420 m3/min (requiring only 2 compressors to run), to a demand at

approximately 1200-1400 m3/min (requiring 5 compressors to run). Hence, not all the com-

pressors are operated simultaneously to all times.

2.3.1 Control System

The compressors are controlled by an automatic control system regulating the operation based

on a common load distribution principle. This means that several compressors are cooperating

on the supply of compressed air, such that the total capacity in the inlet valve is utilized and the

usage of blow off valves are reduced. When running on the common load distribution principle,

the inlet valve is throttled, such that the amount of air entering the compressor is reduces, which

reduces the motor power consumption, as explained in section 2.2.4. In cases where a further

pressure reduction is required, the blow off valve is activated. The blow of valve drops the air out

at the roof, which is a direct loss. Hence, it is of interest that the compressors are run as much as

possible based on common load regulation and not based on local pressure regulation, due to

economical losses. In order for the compressors to be operating based on the load distribution

principle, at least three of the centrifugal air compressors need to be operating, while two can

be in standby mode. In cases where the demand only requires two compressors to be operat-

ing, the load distribution control will be switch off, and a local pressure control will be turned

on. The common load distribution principle cause the compressors to be automatically loaded,

started, and unloaded, switch off, based on the required demand from the production facilities.

During loading and unloading, there will be irregular patterns in the time series data, deviat-

ing from stable operating behavior. In addition, there will evidently be periods where each of

the compressors are in standby mode, implying that the measurement output values, which are

explained in more detail in section 2.4, equal zero.

2.4 System Instrumentation

Each of the three-stage Centrifugal Air Compressors are equipped with in total 21 sensors, con-

tinuously monitoring the system. The mounted instrumentation automatically sends signals to

the control system, which based on the input signals operates the compressors based on the

common load regulation principle, as described in section 2.3.1. In addition, data extracted

from the instrumentation system is the most powerful tool for detection of abnormal behavior

and faults (Giampaolo, 2010). The mounted instrumentation is presented in Table 2.1, along
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with the function and measurement unit associated with each sensor. The instrumentation is

mounted as close to the source as possible, aiming to capture the true dynamics of the system,

as illustrated in the system drawing with instrumentation in Figure 2.3.

Figure 2.3: The three-stage Centrifugal Air Compressor system architecture with instrumenta-
tion.
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Table 2.1: Instrumentation mounted on the compressor system

Number Sensor name Unit Description

(1) Motor-TemperaturePhase1 C Measures the motor temperature in phase 1.

(2) Motor-TemperaturePhase2 C Measures the motor temperature in phase 2.

(3) Motor-TemperaturePhase3 C Measures the motor temperature in phase 3.

(4) Bearing-TemperatureDE C
Measures the bearing temperature on the

drive-end of the motor.

(5) Bearing-TemperatureNDE C
Measures the bearing temperature on the

non-drive-end of the motor.

(6) Stage1-Vibration µm
Measures the vibration on the rotating im-

peller in stage 1.

(7) Stage1-AirTemperature C
Measures the air temperature after stage 1

compression and cooling.

(8) Stage1-AirPressure kPa
Measures the air pressure after stage 1 com-

pression.

(9) Stage2-Vibration µm
Measures the vibration on the rotating im-

peller in stage 2.

(10) Stage2-AirTemperature C
Measures the air temperature after stage 2

compression and cooling.

(11) Stage2-AirPressure kPa
Measures the air pressure after stage 2 com-

pression.

(12) Stage3-Vibration µm
Measures the vibration on the rotating im-

peller in stage 3.

(13) Stage3-AirTemperature C
Measures the air temperature after stage 3

compression and cooling.

(14) Stage3-AirPressure kPa
Measures the air pressure after stage 3 com-

pression.

(15) BlowOffValve-Position %
Measures the position, opened or closed, of

the pressure relief valve.

(16) InletValve-Position %
Measures the position, openness and angle,

of the inlet guide vane valve.

(-) Oil-Pressure kPa Measures the oil pressure in the system.

(-) VentFanTemperature C
Measures the temperature in the ventilation

fan.

(-) Motor-Current A
Measures the motor current in the electrical

motor driving the rotating impellers.

(-) Capacity m3/min Measures the overall capacity of the system.

(-) PowerConsumption kW
Measures the power consumption used by

the electrical motor.
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2.5 Detectable Problems

In general, faults or anomalies associated with a complex compressor system driven by an elec-

trical motor can be classified into three categories; mechanical problems, electrical problems

and performance problems (Giampaolo, 2010). In the following, the symptoms associated with

the problems in each category are presented;

1. Mechanical problems are associated with damage on the mechanical equipment, and

typical symptoms are vibration, sound or leaks (air, gas, water, oil). The cause may not

always be self-evident, while the symptoms of the problem often are.

2. Electrical problems are related to damage on the electrical equipment, which often is

associated with high voltage to the electrical components, such as motors, motor starter

and switcgear. In addition, electrical problems can appear evident through low voltage to

the instrumentation and control system. In terms of fault diagnosis, electrical problems

are generally harder to diagnose than mechanical problems.

3. Performance problems are usually a result of mechanical faults or degradation within

the mechanical components in the compressor system, such as problems with the heat

exhangers or problems with the rotating impellers. These problems will impact the system

performance, and eventually cause system shutdown. Hence, the system performance is a

strong indication of the systems health, and can therefore be used as an indirect indicator

of equipment condition (Giampaolo, 2010).

The three-stage Centrifugal Air Compressor system is equipped with in total three pressure sen-

sors, three air temperature sensors and three vibration sensors, as presented in Table 2.1. These

sensors are highly important for monitoring both mechanical and performance related prob-

lems, and are therefore considered the main focus of this thesis. In Table 2.2, possible causes

and detection methods for Low System Air Pressure, High Air Temperature and High Vibration

are presented. As seen from Table 2.2, the air pressure, air temperature and vibration are in to-

tal correlated with nearly all the other sensors mounted on the compressors system, which is

revealed trough the possible detection methods for the presented problems.
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Table 2.2: Detectable problems associated with a three-stage Centrifugal Air Compressor system
(Giampaolo, 2010).

Problem Possible Causes Detection

Low

System Air

Pressure

Dirty inlet filter, incorrect valve calibra-

tions, valve malfunctions, air leakages,

degraded or damaged impellers, in-

correct control calibration or system

demand greater than capacity.

Detected directly by air pressure sen-

sors, detected indirectly through valve

positions, high vibration levels, low air

temperature or abnormal power con-

sumption.

High Air

Tempera-

ture

Damaged heat exchangers, inadequate

water flow, high water temperature, wa-

ter flows backwards or plugged water

passages.

Detected directly by air temperature

sensors, detected indirectly through

high vibration and low air pressure,

caused by damaged equipment from

high air temperatures.

High

Vibration

Excessive build-up on impellers, oil

not drained properly from bearings,

high oil pressure, unbalanced motor

rotor, damaged bearings or worn rotor

assembly parts or worn couplings.

Detected directly by vibration sensors,

detected indirectly through low air

pressure and low air temperature, or

increased power consumption to main-

tain system pressure.

2.5.1 Possible Root Causes of Pressure Deviations

The Stage3-AirPressure is considered to be the strongest indication of the overall system health,

argued by its strong correlation to both temperature, valve positions, vibration levels, inlet filter

function and the other pressure sensors. First, the pressure is strongly correlated with tempera-

ture, proven by for example considering the Ideal Gas Equation, pV = nRT , such that deviations

in the pressure also imply temperature deviations (Giampaolo, 2010). High temperature air may

damage the equipment, and effort should be made to detect failures in the cooling system as

soon as possible. Furthermore, low air pressure may be an indication of damaged or degraded

impellers, struggling to compress the air to sufficiently high pressure levels. In addition, dam-

aged impellers cause vibration, such that high vibration on any of the three impellers may even-

tually cause the pressure to drop. Furthermore, dirty inlet filter struggling to filter out dust and

particles from the inlet air may damage the impellers, which further leads to reduced air pres-

sure. Malfunctions in the valve positions, both the inlet valve and blow off valve, are strongly
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correlated with pressure deviations. For example, if the blow off valve fails to open when nec-

essary, the system pressure, and also the Stage3-AirPressure will increase, to levels which can

damage the equipment. In addition, the Stage3-AirPressure is logically strongly correlated with

both the Stage2-AirPressure and the Stage1-AirPressure, argued by the fact that the air is com-

pressed in three-stages (Giampaolo, 2010).

As seen, the pressure sensors, and most importantly the Stage3-AirPressure, are a strong indi-

cation of the overall system health, incorporating deviations in many of the key components in

the systems. In order to successfully chose an appropriate performance variable describing the

system, it is of high importance to be familiar with possible detectable problems and associ-

ated diagnosis. In relation to the fields of RAMS and Health Management, being familiar with

such root causes is promoted as highly important, enabling efficient diagnosis and scheduling

of predictive maintenance (Sikorska et al., 2011).



Chapter 3

Health Management and Anomaly

Detection

3.1 Prognostics and Health Management

In order to prevent equipment from failing unexpectedly, prognosis plays an essential role for

managing business risks such that future outcomes can be accesses in advance (Sikorska et al.,

2011). During the last decade, research on prognostics has been widely promoted by several in-

ternational societies and conferences, such as Center of Advanced Life cycle Engineering, Phm-

society, ESRA and PHM Conference, IEEE Conference on Prognostics and Health Management

and Prognostics and System Health Management Conference (Barros, 2018). Within the fields

of Prognostics and Health Management, various definitions of prognostics have been proposed.

The French normalization ISO 13381 -1 defines prognostics as “Prognostic is the estimation of

the life before failure and the estimation of the risk of existence or of the risk of future appari-

tion of one or several failure modes” (Sikorska et al., 2011). Whereas Byington et al. (Byington

et al., 2002) states that; “Prognostic is the ability to predict the future condition of a machine

based on the current diagnostic state of the machinery and its available operating and failure

history data”, and Buruah et al. (Baruah and Chinnam, 2005) argue that: "Prognostics builds

upon the diagnostic assessment and are defined as the capability to predict the progression of

this fault condition to component failure and estimate the remaining useful life (RUL)". Ac-

cording to these definitions, prognostics is related to both diagnostics of current health states,

based upon condition monitoring data collected either online or off-line, and the prediction of

future health states and failure modes. In order to provide failure prediction, historical informa-

tion, age, current health state, future usage and operating environment need to be considered.

20
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Within Prognostics and Health Management, the RUL is commonly used as a prediction indi-

cator, denoting the remaining useful life of the system at time t , based upon all the available

information up to time t (Barros, 2018).

3.1.1 Remaining Useful Life

Estimation of the RUL is essential within Prognostics and Health Management. The RUL is typ-

ically a random and unknown variable, implying that it must be estimated from available con-

dition and health monitoring information (Si et al., 2011). Similarly as for prognostics, various

definitions of the RUL exists, such as the definitions proposed by Si et al. (Si et al., 2011); "Re-

maining useful life (RUL) is the useful life left on an asset at a particular time of operation", or

"The remaining useful life (RUL) of an asset or system is defined as the length from the current

time to the end of the useful life" (Si et al., 2011). A general definition can be formulated by let-

ting the RU L(t j ) denote a random variable that corresponds to the remaining useful life at time

t j , such that;

RU L(t j ) = i n f
{
h : Y (t j +h) ∈ SL|Y (t j ) < L,Y (s)0≤s≤t j

}
, (3.1)

where Y (t j ) denotes the condition of the unit at time t j , which is related to diagnosis. The

future health state is denoted by Y (t j +h), which is the part related to prognosis. Furhteremore,

SL denotes a set of unacceptable states representing failure and L represents a fixed threshold

limit defining unit or system failure if exceeded. Hence, the RUL of an asset is a random variable

that depends on the current age and condition of the asset, the operational environment and

the available condition monitoring (CM) and health information (Si et al., 2011) (Barros, 2018)

(Gao et al., 2015).

3.2 Prognostics and Diagnostics

Considering the RUL-estimates as an ideal prognostic output, various steps from diagnostics to

prognostics are required. Sikorska et al. (Sikorska et al., 2011) exemplifies this process by inves-

tigating the process a component undergoes from a healthy state to final failure, by answering

the following questions;

i) Is the component in a degraded state?

ii) Which failure mode has initiated the degradation?
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iii) How severe is the degradation?

iv) How quickly is degradation expected to progress from its current state to functional failure?

v) What novel events will change this expected degradation behaviour?

vi) How may other factors, such as the type of model and measurement noise, affect the RUL

estimates ? (Sikorska et al., 2011)

The questions concerning component degradation and current health state are related to anomaly

detection and diagnostics, while future expected degradation behavior and noise effects that

impacts the RUL-estimates are related to prognostics. Furthermore, Sikorska et al. (Sikorska

et al., 2011) define the relationship between diagnostics and prognostics as; “diagnostics in-

volves identifying and quantifying the damage that has occurred (and is thus retrospective in

nature), while prognostics is concerned with trying to predict the damage that is yet to occur.”.

This definition implies that prognostics relies upon the diagnostic outputs, such as fault indica-

tors and degradation rates, which is also demonstrated in the general formalism denoting the

RU L(t j ) in section 3.1.1 (Sikorska et al., 2011).

The french standard ISO1338-1 suggests a broader approach to describe the steps involved in

prognostics (Sikorska et al., 2011). Data pre-processing is described as the first step, which in-

cludes anomaly detection, diagnostics, failure definitions, identifying potential future failure

modes and selecting an appropriate prognostic model. The second step is referred to as existing

failure mode prognosis, which involves estimation of time to failure (ETTF) of all incipient fail-

ures and calculating the system’s or component’s RUL with the failure mode that has the lowest

ETTF. This needs to be done iteratively until the RUL with the desired confidence limit is ob-

tained. This procedure is followed by future failure mode prognosis, which involves assessing

the most likely future failure modes and assessing the RUL with an appropriate confidence for

all future failure modes. Finally, post-action prognosis, which refers to the process of identifying

potential incidents that could eliminate, retard or halt the progression of critical failure modes

and prevent future failure modes. The previous mentioned modelling processes need to be re-

peated with this information. To assess the impact the predicted failures have on operational

and maintenance activities, a system-oriented approach to prognostics needs to be assessed.

A system oriented approach takes maintenance planning options, logistic concerns, inventory

and supply management issues and other non-engineering factors into account. (Sikorska et al.,

2011).

Sikorska et al. (Sikorska et al., 2011) have developed a comprehensive flowchart based upon the

french standard ISO1338-1, covering the steps involved with RUL prediction. As seen in Fig-

ure 3.1, the first steps are related to anomaly detection and diagnostics, while the final steps

are related to prognostics of various complexity. Here, the prognostics are categorized by three
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levels. Level 1 refers to existing failure mode prognostics, Level 2 refers to future failure mode

prognostics and Level 3 refers to post-action prognostics. The different levels indicate the in-

creasing level of modelling complexity which involves in realistic prognosis.

Figure 3.1: Flowchart illustrating the various steps involved in realistic prognostics and RUL-
estimation (Sikorska et al., 2011)
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3.3 Data Availability - Current Status in the Industry Today

Across every industry, an increase in the amount of streaming, time-series data is observed,

produced by connected real-time data sources (Lavin and Ahmad, 2015). Within the fields of

Prognostics and Health Management, predicting the residual useful lifetime is presented as the

optimal prognostics output, with the objective of reducing downtime and improving equipment

efficiency by scheduling predictive maintenance actions. The current status in the industry to-

day indicates that there is still a huge gap between theory and practice. In order to predict the

RUL, the following constraints need to be fulfilled;

1. Historical data containing information that is representative of both past and potential

future system behavior is required, which implies that the data needs to contain relevant

examples of run-until-failure behavior, for all potential failure modes.

2. Labeling: The time series data needs to be associated with a label for each instance of

time, indicating the system health. The RUL is predicted based on the current health of

the system, and historical examples illustrating how a given health status progress until

failure.

Within the industry, critical equipment is continuously monitored with the objective of detect-

ing abnormal behavior before the equipment is damaged, to prevent system downtime. The

monitoring is in most cases performed based on economical initiatives and for safety reasons,

implying that the systems rarely are run-until-failure. Furthermore, real-time sensor data does

not contain labels indicating the current health associated with the equipment, logically argued

by the fact that this information either needs to be based on expert judgment or historical expe-

rience of similar cases. Hence, the constraints required to predict the RUL for complex systems

are rarely fulfilled. However, the continuously monitoring creates huge amount of time series

data, which has an inherent value itself, if aggregated to a higher value context. In order to derive

value from these streams, modeling in an unsupervised fashion is required, referring to models

that do not rely on labeling or historical failures. Based on the status in the industry today, an

unsupervised, real-time anomaly detector is in reach, whereas predicting the RUL for complex

system still is in the fields of research.

3.4 Anomaly Detection

Anomaly detection, also known as outlier detection, is used within several fields for detecting

critical events, such as within cyber security, credit card fraud, health care and system break-
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down (Olson et al., 2018) (Chandola et al., 2009a). According to Chandola et al. (Chandola

et al., 2009a), "anomalies are patterns in data that do not conform to a well-defined notion of

normal behavior.”, while Hawkins (Hawkin, 1980) states that; "an outlier is an observation that

deviates so much from other observations as to arouse suspicion that it was generated by a dif-

ferent mechanism.". Hence, anomalies, also known as outliers, correspond typically to newly

observed, unknown and often extreme data (Olson et al., 2018), such that an effective anomaly

detector can be built by modeling what is normal, in order to discover what is not (Dunning and

Friedman, 2014), (Chandola et al., 2009a). Chandola et al. (Chandola et al., 2009a) carried out

a comprehensive survey covering existing approaches to detect anomalies, concluding that the

nature of the input data determines the applicability of the anomaly detection technique. The

input data associated with the compressor system is continuous, multivariate time series data

without labeling, most probably exposed to both trend, seasonal and cyclic variation.

3.5 Time Series Modelling and Forecasting

Time series data is defined as a set of observations xt , each one being recorded at a specific time

t . One distinguish between discrete time series, where the observations xt are made at discrete

times in a given interval, and continuous time series, denoting observations that are recorded

continuously over a given time period (Brockwell and Davis, 2002). An univariate time series

denotes a time series only consisting of one variable, whereas a time series consisting of several

variables is denoted multivariate time series (Hyndman and Athanasopoulos, 2018). In addi-

tion, the times series may be stationary or non-stationary. For stationary time series, the statis-

tical properties do not vary with time, such that the mean and variance is constant, whereas for

non-stationary time series, which is mostly exhibited in the real world, these statistical proper-

ties vary with time. Hyndmand et al. (Brockwell and Davis, 2002) define time series modelling as

the procedure of approximating the joint distribution of which the observed set of observations,

[xt ], are generated from, which is tightly linked to time series forecasting. Time series forecasting

aims to estimate how the sequence of observations will continue into the future, which in the

context of fault detection, anomaly detection and diagnosis, plays an essential role. In order to

model and forecast time series, the components associated with time series observations need

to be interpreted (Hyndman and Athanasopoulos, 2018) (Chandola et al., 2009b).
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3.5.1 Time Series Components

Time series data often includes trend, seasonal and cyclic variations. A trend denotes the phe-

nomena of a long-term increase or decrease in the data, which can be caused by external or

internal changes, such as changes in operating conditions, environmental changes or equip-

ment wear. Seasonal variations occur when the time series is affected by seasonal factors, such

as the time of the year or specific months. Seasonal variations are commonly assumed to ap-

pear by a fixed and known frequency. Cyclic variations denote fluctuations in the time series

data through rises and falls that not occur by a fixed frequency. Examples of such cyclic behav-

ior is the business cycle, where economic conditions rise and fall within a cycle of a given time

period. In order to properly analyze the time series data, these patterns need to be identified,

argued by the fact that the system dynamics is highly affected by these variations. In addition,

a model capable of capturing these dynamics are required. Mathematically, these components

can be explained by a trend component, Tt , a cyclic component, Ct , a seasonal component, St ,

and a reminder, Rt , denoting the stochastic variations not captured by the other components.

These components can be combined by an additive decomposition or by an multiplicative de-

composition. The additive decomposition assumes that the components are independent of

one-another, such that Yt = Tt +St +Ct +Rt , whereas the multivariate decomposition assumes

that the components are dependent, Yt = Tt ∗St ∗Ct ∗Rt (Hyndman and Athanasopoulos, 2018),

(Brockwell and Davis, 2002), (Adhikari and Agrawal, 2013).

3.6 Anomaly Detection Approaches

Several researchers have attempted to classify existing approaches for anomaly detection, among

them Chandola et al. (Chandola et al., 2009a), Sanz-Bobi (Sanz-Bobi, 2016) and Patcha and Park

(Patcha and Park, 2007). Chandola et al. (Chandola et al., 2009a) suggest to distinguish between

the following approaches; classification based, nearest neighbor-based, clustering based, statis-

tical based and spectral anomaly detection techniques. Sanz-Bobi (Sanz-Bobi, 2016) suggests to

distinguish between physical models, statistical models, neural networks models and clustering

based models. Similarly, Patcha and Park (Patcha and Park, 2007) suggest techniques based on

statistical approaches, machine learning based approaches and data mining based approach.

For the last classification, the machine learning based approach includes regression tasks and

the data mining approach includes classification based and clustering based approaches.

These suggested approaches all include a separation between unsupervised and supervised anomaly

detection. The supervised approaches include classification based anomaly detection, where
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the anomaly detector relies on labeled data to classify the data as anomalous or normal. The un-

supervised approaches include statistical models, physical models and machine learning models,

not relying on labels. For the unsupervised approaches, the main idea is to model the normal

behavior of the system, and declare any observation in the data that does not belong the the nor-

mal region as an anomaly (Chandola et al., 2009a), (Sanz-Bobi, 2016), (Patcha and Park, 2007).

Both statistical models, physical models and machine learning models are capable of model-

ing the normal behavior of the system, yet with different constraints. In the following, these

unsupervised approaches to anomaly detection are explained.

3.6.1 Physical Models

Physical models refer to mathematical models that describe the normal operating behavior

of the process based on established physical relationships between the variables (Sanz-Bobi,

2016). For a compressor system, the ideal gas equation, pV = nRT , is one example of such

physical model (Giampaolo, 2010). In an abnormal situations, the established relationship be-

tween these variables may change or stop yielding, such that the physical model does not longer

describe the model behavior. Hence, an anomaly detector can then be build by calculating the

residuals between the monitored process behavior, and the modeled process behavior expected

in a normal situation. If the magnitude of the residuals exceeds a given threshold, there is ev-

idence implying that the established relationship between the variables no longer yields, such

that something abnormal has occurred. Physical modelling is also known as modelling based

on the first principal (Sanz-Bobi, 2016). For complex systems, a physical model capable of cap-

turing the true dynamics of the system is hard to obtain (Gao et al., 2015). In addition, modelling

the normal behavior based on the first principal assumes that the input variables are correlated

in a specific way, which may not be the case in the real-world.

3.6.2 Statistical Models

Similar as for physical models, a statistical model can be applied to model the normal behav-

ior of the system, for example through linear or non-linear regression model, or by fitting a

probability distribution to data associated with normal operating behavior. An anomaly de-

tector can then be created by calculating the residuals between the estimated output from the

statistical model and the actual measured output, or by considering the probability distribu-

tion to newly available data. For distribution based methods, anomalies are detected when the

probability distribution corresponding to normal operating behavior no longer represents the
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newly available data (Sanz-Bobi, 2016). The main drawback with this method is that the data

characterizing normal behavior is assumed to follow a specific distribution, or the variables are

assumed to be correlated in a specific way through a regression model. Similar as for physical

models, one may fail to capture the true dynamics of the system. Comprehensive reviews cover-

ing anomaly detection based on statistical models are presented by Markou and Singh (Markou

and Singh, 2003a), Chandola et al. (Chandola et al., 2009a) and Patcha and Park (Patcha and

Park, 2007).

3.6.3 Machine Learning Models

Machine learning can be applied to model the normal behavior of the system, either based on

regression or based on clustering. For regression tasks, the relationship between a given tar-

get variable, such as for example the Stage3-AirPressure, and the input features is learned and

approximated by some function. The established relationship makes it possible to predict the

target variable, only by considering newly available samples from the input features. Examples

of such models are the Decision Tree model, The Random Forest model and Neural Networks. The

anomaly detector can accordingly be established by calculating the residuals between the pre-

dicted and actual target variable, using the predicted variable as a reference describing normal

behavior. This approach is in the following chapters referred to as anomaly detection based on

residuals. For clustering based approaches, the main idea is to group the data belonging to nor-

mal operating behavior into clusters. Any new sample not belonging to a cluster, or belonging

to small clusters, is classified as anomalous, depending on a predefined distance requirement

(Sanz-Bobi, 2016). This approach is in the following chapters referred to as anomaly detection

based on clustering.

Several case studies have been presented on anomaly detection based on clustering, among

them Breunig et al. (Breunig et al., 2000), using the local outlier factor, Schölkopf et al. (Schölkopf

et al., 2000) using support vector machines and Bezdek et al. (Bezdek et al., 1984), applying a K-

means clustering algorithm. These are well-known machine learning clustering algorithms, all

grouping the data into distinct patterns, known as clusters. For anomaly detection based on

Neural Networks, Ryan et al. (Ryan et al., 1998), Vasconcelos et al. (Vasconcelos et al., 1995),

Markou and Singh (Markou and Singh, 2003b) and Augusteijn and Folkert (Augusteijn and Folk-

ert, 2002) illustrate relevant examples. These examples all build on the principal of modeling

the relationship between a target variable and the input features for normal operating behav-

ior, and flagging anomalies when these relationships stop yielding. The same anomaly detector

procedure can be applied by using other machine learning algorithms capable of predicting the
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target variable based on a learned relationship with the input features, such as the Decision Tree

model and the Random Forest model (Chollet, 2017).

3.7 Requirements for Anomaly Detection in Streaming Data

The Numenta Anomaly Benchmark is the first temporal benchmark designed for anomaly detec-

tion in streaming time series data. The benchmark has been design such that open source algo-

rithms for anomaly detection can be compared and ranked according to an established scoring

system. Numenta was founded in 2005, and excels on modeling and predicting patterns in con-

tinuously streamed data. In the past, there existed no such common scoring mechanism that

properly evaluated algorithms for anomaly detection on time series data (Lavin and Ahmad,

2015). In order to develop the scoring system, the ideal characteristics of an anomaly detection

algorithm for time series data have been identified, concluding the following;

1. Anomaly detection must be made online and in real time, implying that the algorithm

must fit the data in real time and not based on historical data only.

2. Due to seasonal and cyclic variations, possible drifts, noise and other factors causing the

normal behavior of the system to change, the algorithm must have the ability to continu-

ously learn and adapt itself to newly available data.

3. The algorithm needs to continuously learn without needing to store the entire stream,

argued by the fact that this would require an infinitely large storage capacity.

4. The anomaly detection model can not rely no labeled or reconstructed data, such that the

algorithm needs to run in an unsupervised fashion.

5. Anomalies should be detected as early as possible.

6. The number of false positives and false negatives should be minimized (Lavin and Ahmad,

2015).

Numenta argues that algorithms capable of giving early detections of anomalies and contin-

uous learning new and normal patterns should be given extra credit, such that anomalies are

detected in real-time. Within traditional methods, such as for physical and statistical models,

these aspects have not been the main focus (Lavin and Ahmad, 2015), and arguably, machine

learning based methods for anomaly detection are suggested for the problem at hand.



Chapter 4

Machine Learning Framework and

Models

In order to build anomaly detectors based on machine learning, the basic concepts of machine

learning are introduced. This includes the difference between machine learning categories, ap-

proaches for training, validating and testing the algorithms, handling the challenge of overfit-

ting and underfitting and the performance matrices needed to properly evaluate the model per-

formance. In addition, four machine learning models are presented, namely the Decision Tree

model, the Random Forest model, Feedforward Neural Networks and the K-means clustering al-

gorithm. These models are chosen based on their capability to perform well on a wide range

of problems, proven through various machine learning competitions and highlighted in state-

of-the-art machine learning literature (Chollet, 2017) (Goodfellow, 2017) (Ketkar, 2017). More-

over, these four models will later on be used to build the anomaly detector based on residuals

and the anomaly detector based on clustering. Three state-of-the-art machine learning books

are mainly used to presented the reviewed literature, which are the work presented by Chollet

(Chollet, 2017), Goodfellow (Goodfellow, 2017) and Ketkar et al. (Ketkar, 2017).

4.1 Machine Learning Fundamentals

Machine Learning has quickly grown to become the most popular sub-field of Artificial Intel-

ligence, since it first started flourishing in the 1990s (Chollet, 2017) (Goodfellow, 2017). This

trend is mainly driven by two factors; data availability and faster and more robust hardware.

Machine learning has opened a new programming paradigm, and there are distinct differences

30
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between the fundamental concepts of classical programming and machine learning. In classi-

cal programming, established rules describing how to treat the data are the main input, among

with the data itself, and the output is the answers. For machine learning, the main input is the

data itself and the answers, and the output is the rules linking the answers to the input data.

This difference is clearly illustrated in Figure 4.1. These rules can then again be applied to new

input data, such that answers close to the original ones can be obtained. As stated by Chollet;

"A machine-learning system is trained rather than explicitly programmed. It’s presented with

many examples relevant to a task, and it finds statistical structure in these examples that even-

tually allows the system to come up with rules for automating the task." (Chollet, 2017).

Figure 4.1: The main difference between machine learning and classical programming (Chollet,
2017).

4.2 Machine Learning Categories

Machine Learning can be broadly classified into two main categories, namely supervised and

unsupervised learning (Chollet, 2017) (Goodfellow, 2017) (Ketkar, 2017). In the following, the

main difference between these categories is presented, along with the associated application

areas for each category (Goodfellow, 2017).

4.2.1 Supervised Learning

Supervised learning builds on the principle of learning the relationship between the input fea-

tures and known targets variables, by giving the algorithm a set of examples demonstrating the

relationship (Chollet, 2017). A prerequisite for performing supervised learning is a data set con-

taining features that are associated with a label or target value. For the problem at hand, the
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target variable could potentially be the Stage3-AirPressure for each instance of time, and the in-

put features are then all the other sensor measurements. Mathematically, the input features are

denoted by a set of random vectors x, with associated target values denoted by the vector y .

The main objective is then to learn the relationship between the input features x and the target

variable y , such that the future behavior of the target variable y can be predicted by only consid-

ering new never-before-seen input features. The origin of the term supervised learning is related

to the though of an instructor or guide giving the machine learning algorithm examples of how

the input features are linked to known targets (Goodfellow, 2017).

4.2.2 Unsupervised Learning

Unsupervised learning builds on the principal of learning interesting transformations and cor-

relations in the data at hand, instead of attempting to learn the relationship between the input

features and the target variable directly. Mathematically, only examples of random vectors x

are considered, with the objective of learning the properties and characteristics associated with

these random vectors (Goodfellow, 2017). For the problem at hand, a random vector x could

for example be the St ag e3− Ai r Pr essur e or any of the other features. In contradiction to su-

pervised learning, there exist no such instructor or guide illustrating the relationships between

the input features and target variable, due to the fact that no target values are defined or given

(Chollet, 2017) (Goodfellow, 2017).

4.2.3 Application Areas for Supervised and Unsupervised Learning

The two categories can roughly be used to categorize the various tasks that can be solved with

machine learning, even though the line between supervised and unsupervised learning is not

that distinct. In general, regression, classification and structured output tasks are classified as

supervised learning problems, while density estimation commonly is classified as unsupervised

learning (Goodfellow, 2017). Density estimation can be performed to better understand the data

at hand, and for purposes of data denoising, data compression and data visualization. Cluster-

ing, which groups the data into smaller subsets containing similar patterns, and dimesionality

reduction are other examples of unsupervised learning (Chollet, 2017). However, real-world

data sets do not always correspond directly with the prerequisite of any of these two categories,

such that other variants of learning paradigms also exists. Among them, semi-supervised learn-

ing, multi-instance learning and reinforcement learning (Goodfellow, 2017). To limit the scope,

these categories will not be discussed further in detail. In addition, it is worth mentioning that
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unsupervised anomaly detectors include all approaches not relying on labeled data, associating

the feature with a normal or abnormal mark. Hence, the anomaly detector can be unsupervised,

despite the fact that the machine learning algorithm itself is supervised, such as for regression

tasks.

4.3 Machine Learning Framework

In order to build a machine learning model capable of predicting the target variable based on

the input features, known as supervised learning, the algorithm needs to to trained, validated

and tested. In the following, the basic machine learning framework associated with such tasks

is emphasized, along with the challenge of optimizing the algorithm to perform well on never-

before-seen data. Similar framework is relevant also for the unsupervised learning tasks, such as

clustering based approaches, yet with some key differences presented at the end of this chap-

ter.

4.3.1 Training, Validation and Testing Data Sets

The main objective for any supervised learning task is to perform well on never-before-seen data,

requiring the machine learning model to be trained, validated and testing on three different data

set. The training set is used to learn the relationship between the input features and the target

variable, implying that the algorithm is allowed to see both the input features and the target

variable.

The validation set is used to optimize the hyperparameters of the machine learning model. All

machine learning models have a set of hyperparameters that are decided outside of the learning

process. Examples of such hyperparameters are the number of hidden layers in a Neural Net-

work or the number of trees in a Random Forest model, which are explained in detail in section

4.4.3 and 4.9. The validation set is then used to evaluate the model’s performance, given a fixed

set of hyperparameters. During this optimization process, data characteristics or information

stored in the validation set leak into the model, known as information leaks, due to the fact that

the model is optimized to best predict the target variable of the validation set. The process of

hyperparameter optimization is iterative, and the more the model is adjusted based on the per-

formance on the validation set, the more information from the validation set is leaked into the

model. If the hyperparameters are adjusted only to fit the validation data set, the problem of

overfitting occurs, while if the data set fails to capture phenomenas that are necessary to de-
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scribe important relationships between the input features and the target variable, the problem

of underfitting occurs. Hyperparameter optimization is considered to be a part of the training

process, which is why an additional test set is required.

The testing set is used to evaluate the performance of the trained and optimized machine learn-

ing algorithm. Here, the algorithm is fitted to only never-before-seen input features, attempting

to predict the target variable based on the learned relationship. The model is evaluated by com-

paring the predicted output of the target variable and the actual target variable belonging to the

test period (Chollet, 2017), (Ketkar, 2017), (Goodfellow, 2017).

4.3.2 Capacity, Overfitting and Underfitting

In machine learning, generalization refers to the ability to perform well on never-before-seen

data, mitigating the phenomenas of overfitting and underfitting (Goodfellow, 2017) (Chollet,

2017). In order to evaluate the generalization capability of a machine learning model, a gen-

eralization error is required, often referred to as the testing error. The generalization error is

measured by evaluating the performance of the machine learning algorithm on the testing set,

which for regression and classification is achieved by comparing the predicted output with the

actual output (Chollet, 2017).

Goodfellow (Goodfellow, 2017) states that there are two factors determining how well a machine

learning algorithm performs; i) the algorithms ability to make the training error small, ii) the al-

gorithms ability to make the gap between the testing and training error as small as possible.

The challenges of overfitting and underfitting are directly linked to these to factors. Underfit-

ting occurs when the model fails to capture key characteristics and relationships between the

input features and the target variable, making the model too general. In this case, the machine

learning model does not have the ability to generate a sufficiently low error on the training set.

Overfitting refers to the phenomena of learning the characteristic relationship between the in-

put features and the target variable in a too detailed level, which generates a gap between the

training and testing error that is too big. The challenge associated with overfitting and under-

fitting can be controlled by considering the model capacity. In this context, capacity refers to

the model’s ability to fit a wide range of functions. If the model capacity is too high, overfitting

might occur, such that properties that only are associated with the training set are weighted too

high. On the other side, models with too low capacity will struggle to capture the true charac-

teristics of the training set (Goodfellow, 2017). The phenomenas of overfitting and underfitting

are illustrated in Figure 4.2.
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Figure 4.2: Illustrative example of the concept of underfitting and overfitting when the model’s
capacity is adjusted (Goodfellow, 2017).

Regularization refers to the process of fighting overfitting, and can be defined as "any modica-

tion we make to a learning algorithm that is intended to reduce its generalization error but not

its training error" (Goodfellow, 2017). There exists several regularization techniques, among the

most common; i) Add more training data, to increase the number of examples demonstrating

the true relationships between the input features and the target variable, ii) Reduce the model’s

capacity iii) Add constraints on what information the model is allowed to learn, by adjusting the

model’s hyperparameters (Goodfellow, 2017).

In relation to capacity, the following yields; "machine learning algorithms will generally perform

best when their capacity is appropriate for the true complexity of the task they need to perform

and the amount of training data they are provided with" (Goodfellow, 2017). In other words, the

capacity of the model needs to be adjusted to the complexity of the task, implying that complex

tasks require high capacity, while simple tasks require reduced capacity.

In general, the training error reduces as the capacity increases, such that the training error

asymptotically approaches the minimum training error value. The generalization error is typ-

ically a U-shaped curve, as a function of the model’s capacity (Goodfellow, 2017). These phe-

nomenas are illustrated in Figure 4.3, where the optimal capacity is located at the point of the

U-curve where the generalization error is minimized.
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Figure 4.3: Balancing the training and generalization error to obtain the optimal level of capacity
(Goodfellow, 2017).

4.3.3 Hold-Out Validation and K-Fold Validation

There exist several ways to split the data set into training, validation and testing sets, such that

the model can be evaluated and optimized to obtain a required level of generalization. The most

common ways are Hold-out validation are K-fold cross-validation (Chollet, 2017).

Hold-Out Validation

Hold-out validation builds on the principle of setting apart a fraction of the data for training and

validation, while testing on the remaining part. From a broad perspective, the training data then

contains a training set to train on and a validation set used to optimize the hyperparameters of

the model (Chollet, 2017). As seen in Figure 4.4, the data set is divided between a training and

validation set, and in addition comes a never-before-seen test set to evaluate the performance of

the algorithm. Before testing the algorithm on the test set, the model is commonly trained on

the on both the training and validation data set (Chollet, 2017).
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Figure 4.4: Illustrative example of simple hold-out-validation on the training and validation set,
where the label refers to the target variable (Chollet, 2017).

The main drawback with this method arises when the amount of data available is small, such

that the validation or testing data not are statistically representative of the true data characteris-

tics. In order to address this problem, K-fold cross-validation can be applied (Chollet, 2017).

K-Fold Cross-Validation

K-fold cross-validation builds on the principle of splitting the data in K partitions of equal size,

using one of these partitions for validation while using the rest for training. The hyperparame-

ters of the model are then optimized on the one partition used for validation. The model perfor-

mance is obtained by taking the average of the K scores obtained on the validation sets (Chollet,

2017). For three-fold validation, the data is split into three subsets, and the procedure of opti-

mizing and evaluating are applied three times, as illustrated in Figure 4.5.
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Figure 4.5: Illustrative example of K-fold cross-validation on the training and validation data
sets (Chollet, 2017).

In cases where the amount of data available is small, K-fold cross-validation is beneficial, due

the the fact that this approach does not require to use a distinct validation set for optimizing the

hyperparameters (Chollet, 2017).

4.3.4 Performance Metrics

There exists several performance metrics that are appropriate for evaluating the performance of

supervised machine learning models, more specifically, regression tasks. Among the most com-

mon are The Mean Absolute Error (MAE), The Mean Absolute Percentage Error (MAPE), The

Mean Squared Error (MSE) and The Root Mean Squared Error (RMSE) (Brockwell and Davis,

2002), (Janacek, 2010), (Adhikari and Agrawal, 2013), (Hyndman and Athanasopoulos, 2018). In

the following, these five performance metrics are explained, emphasizing their key properties

and main drawbacks. For all metrics described, yt depicts the actual value, ft depicts the pre-

dicted value and et = yt − ft describes the prediction error.

The Mean Forecast Error (MFE)

The Mean Forecast Error (MFE) measures the average deviation between the predicted values

and the actual values, and is also known as the Forecast Bias, defined by Equation 4.1.

MF E = 1

n

n∑
t=1

et , (4.1)
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The MFE gives an indication of the direction of the error, positively or negatively, which can be

used when optimizing the hyperparameters of the algorithm. Furthermore, the effects of the

positive and negative errors cancel out, while extreme errors not are weighted higher such as

for the MSE. In addition, MFE is dependent on the data transformation and the scale of the

data, which should be taken into account when comparing models using different input data.

Having a minimum bias is desirable for high prediction accuracy, which is obtained when the

MFE is approaching zero (Brockwell and Davis, 2002), (Janacek, 2010), (Adhikari and Agrawal,

2013).

The Mean Absolute Error (MAE)

The Mean Absolute Error (MAE), also referred to as the Mean Absolute Deviation, measures the

average absolute deviation of the predicted values compared to the actual values (Brockwell and

Davis, 2002), and is defined by Equation 4.2.

M AE = 1

n

n∑
t=1

| et |, (4.2)

The MAE describes the magnitude of the overall error between the predicted and true values,

without canceling out the effect of positive and negative errors. Furthermore, the MAE does not

indicate any direction of the error and is dependent on the data transformation and scale of the

input data. In order to verify if the predicted values are close to the true values, the MAE should

be minimized (Brockwell and Davis, 2002) (Adhikari and Agrawal, 2013).

The Mean Absolute Percentage Error (MAPE)

The Mean Absolute Percentage Error (MAPE) measures the absolute average percentage error

between the predicted value and the actual value, defined by Equation 4.3

M APE = 1

n

n∑
t=1

| et

yt
|∗100, (4.3)

In contradiction to the MFE and MAE, the MAPE is independent of the scale of the input data,

while dependent on the data transformation. Similar as for the MAE, MAPE does not indicate

any direction of the error and positive and negative errors does not offset each other (Brockwell

and Davis, 2002), (Janacek, 2010).
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The Mean Squared Error (MSE)

The Mean Squared Error (MSE) depicts the average squared error between the predicted and

actual values, defined by Equation 4.4.

MSE = 1

n

n∑
t=1

e2
t , (4.4)

The MSE is heavily affected by large individual errors, implying that few large errors cause the

MSE to grow quickly compared to many small errors. Similar as for MAE and MAPE, MSE does

not provide any idea of the direction of the error and is dependent on both the scale and data

transformation of the input data (Brockwell and Davis, 2002), (Janacek, 2010).

The Root Mean Squared Error (RMSE)

The Root Mean Squared Error (RMSE) has the same properties as the MSE, except from the fact

that it is squared (Brockwell and Davis, 2002), as given by Equation 4.5.

p
MSE =

√
1

n

n∑
t=1

e2
t , (4.5)

4.3.5 Data Representativeness

In order for the model to properly learn and predict the target variable, the data used for train-

ing, validation and testing needs to be representative of the true data characteristics. When ap-

plying machine learning for classification and regression, the issue of data representativeness

needs to be dealt with in different manners. For classification on data containing for example

ten different classes/labels, ordered from class one to class 10, random shuffling needs to per-

formed on. Without random shuffling the data, one risk to have a training and validation set

containing input data with only the first classes, while the final classes are stored in the testing

data set.

For time series, the arrow of time needs to be taken into account, which makes random shuffling

inappropriate. For time series data, the goal is often to predict the future given the past. By

random shuffling the data before splitting it into training, validation and testing set, a temporal

leak will be created, such that the time space is reorganized causing the model to train on data

from the "future". Hence, the data in the training and validation set should be collected from
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a time interval before the time interval in the testing set. In this way, properly evaluating the

model’s performance by comparing the predicted values to the true values in the testing set is

possible.

In addition, data redundancy needs to be considered for both regression and classification tasks.

Data redundancy refers to the phenomena of data points or data intervals appearing twice or

several times in the data set, which is common in real-world data sets. In this case, random shuf-

fling will increase the risk of having redundant data in the training and validation set, which in

practice cause the model to be validated on the training data. Hence, the training, validation and

testing set need to be disjoint, implying that no samples are overlapping (Chollet, 2017).

4.4 Machine Learning Models

In the following, three supervised machine learning models are presented, namely the Decision

Tree model, the Random Forest model and Feedforward Neural Networks. The main objective is

to highlight how these models are built and optimized, which forms the framework for building

the anomaly detector based on residuals. In addition, the unsupervised learning algorithm K-

means clustering is presented, which forms the framework for building the anomaly detector

based on clustering.

4.4.1 Decision Tree Model

Decision Tree models are powerful supervised learning algorithms, which can perform both

classification, regression and multioutput tasks. In addition, the Decision Tree model is a fun-

damental component in the Random Forest model, such that the understanding one single de-

cision tree is required to build a Random Forest model (Géron, 2017).

The Decision Tree model builds on the principle of predicting the target variable based on a de-

cision tree. The decision tree is built based on a learned relationship between the target variable

and the input features, and forms a set of decision rules for prediction of the target variable. The

input features are represented in the branches of the tree, while the target variable is presented

in the leaf nodes of the tree. The root node refers to the top branch of the tree, while the interior

nodes refer to the nodes in the tree located in-between the root node and the leaf nodes (Géron,

2017). Furthermore, the depth of the tree is defined by the number of layers containing nodes

in the same hierarchical level, while the width of the tree refers to the number of interior nodes

located at the lowest hierarchical level. In Figure 4.6, a decision tree for regression is visualized,
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having a depth of three, a with of four and eight leaf nodes containing possible target values

depending on the decision outcome.

Figure 4.6: Illustrative example of a Decision Tree model for regression tasks.

There are some main differences between Decision Tree models used for classification and re-

gression. For decision tree classification, the decision tree leafs represent the predicted class/la-

bel, while the tree branches represent the input feature conjunction leading to each specific

class. For decision tree regression, the leafs of the tree represent the predicted target variable,

as shown in figure Figure 4.6 (Géron, 2017). However, the learning process for decision tree

classification and regression builds on the same procedure.

Building a Decision Tree Model

The training of Decision Tree models, known as "growing" trees, builds on the principal of first

splitting the training set in two subsets based on one single feature k, with a given threshold

tk . For example, as illustrated in the root node in Figure 4.6, the training set is split at "Stage2-

AirPressure<= 281.7". The pair (k, tk ) that produces the purest subsets is chosen by the algo-

rithm, such that the training set is split in a way that minimizes the Mean Squared Error (MSE).

After splitting the training set in two subsets, each subset is again split based on the same logic,

which again is performed on the sub-subsets. This is a recursive process that continues until

reaching a specified maximum depth of the tree. Hence, the Decision Tree model has a top-

down learning approach, where the features in each hierarchical level in the tree are chosen such

that a "best split" procedure is applied. Generally, the homogeneity of the predicted target val-

ues provided by the tree for different subsets is used to determine the "best split" (Abu-Mostafa
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et al., 2019), (Géron, 2017). For regression tasks, the following costs function is minimized dur-

ing the splitting procedure;

J (k, tk ) = mleft

m
MSEleft +

mright

m
MSEright, (4.6)

where

MSEnode =
∑

i∈node
(ŷnode − y (i ))

2
, (4.7)

and

ŷnode =
1

mnode

∑
i∈node

y (i ). (4.8)

The predictions suggested in each leaf node are based on the average calculated target value

of the number of samples associated with this node. In addition, the MSE is given for each

predicted target value, based on the number of samples for this leaf node (Abu-Mostafa et al.,

2019),(Géron, 2017).

Hyperparameter Optimization

One of the key characteristics of a Decision Tree model is that few assumptions are made about

the input training data, in contradiction to for example a linear statistical regression models,

assuming that the features and targets have a linear relationship. Similar yields for the Random

Forest model and a Feedforward Neural Network. If few constraints are specified, the decision

tree will fit itself closely to the training data, leading to overfitting. In order to prevent overfit-

ting, regularization needs to be performed, by reducing the freedom associated with the deci-

sion tree during training. For decision trees, reducing the maximum allowed depth of the tree

is a powerful regularization tool that will increase generalization and reduce the risk of over-

fitting. In addition, the minimum number of sample leafs, the minimum number of sample

splits, the maximum number of leaf nodes and maximum number of features that are evaluated

for splitting at each node are hyperparameters that can be adjusted to prevent overfitting and

underfitting. In general, by reducing the maximum level of any hyperparameter containing a

"maximum" limit, or increasing the minimum level of any hyperparameter containing a "min-

imum" level will regularize the model, such that optimization and generalization are balanced

(Géron, 2017).
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Decision Tree Performance

The Decision Tree model have several advantages, such as its good ability to handle tabular

data containing numerical features or categorical features (Abu-Mostafa et al., 2019). In addi-

tion, these models are simple to understand and interpret, versatile and powerful. However, the

Decision Tree model suffers from some limitations. The performance of the algorithm is sensi-

tive to rotations in the training set and variations in the training data. The problem of instability

is limited by the Random Forest model, as explained in the following (Géron, 2017).

4.4.2 Random Forest Model

The Random Forest model is capable of performing both classification and regression, and

builds on an ensemble learning method. Ensemble learning refers to the principle of aggre-

gating the predictions of a group of predictors, with the thought that a group of predictors will

gain better results than one individual predictor (Géron, 2017). Random Forests models are

based on an ensemble of decision trees, where each decision tree provides specific target pre-

dictions. For regression, the final output are obtained by taking the average of all outputs given

by the predictors in the ensemble, as illustrated in Figure 4.7. For classification, the final output

is based on the class getting the most votes in total by the decision trees in the ensemble (Géron,

2017).

Figure 4.7: Illustrative example of the Random Forest model building on ensemble learning with
a group of predictors (Géron, 2017).
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Building a Random Forest Model

The Random Forest algorithm is based on bootstrap aggregation, also known as bagging (Géron,

2017). Bootstrap aggregation builds on the principle of random sampling with replacement,

meaning that B random samples of the same training set are taken. Decision trees are fitted to

each of these samples (James et al., 2013), described by the following procedure;

i) A training set, with input features x = x1, ..., xn and targets Y = y1, ..., yn is sampled with re-

placement B times, such that b = 1, ...,B . In this way, n training subsets are obtained, denoted

Xb and Yb .

ii) A decision tree, fb , is then built from each of this subsets Xb , Yb .

The target variable predictions, denoted x ′, are then obtained by taking the average value of all

the predictions generated from the decision trees (James et al., 2013), as illustrated in Figure 4.8.

This is defined mathematically by;

f̂ = 1

B

B∑
b=1

fb(x ′) (4.9)

Figure 4.8: The target value is obtained by taking the average value of the predicted output from
several decision trees (Donges, 2018).

Hyperparameter Optimization

The hyperparameters to optimize for a Random Forest model are similar to the hyperparame-

ters associated with a Decision Tree model, which was explained in section 4.4.1. In addition,

hyperparameters that are specifically intended to control the bootstrap aggregation with the
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ensemble of predictors need to be optimized. For example, the hyperparameter controlling the

maximum samples in each training set in the ensemble and the maximum number of individual

decision trees to grow (Géron, 2017).

Random Forest Performance

Bootstrap aggregation leads to increased prediction performance, in terms of reduced variance

and reduced risk of overfitting. As explained in section 4.4.1, one single decision tree is sen-

sitive to variations and rotation in the training set, whereas the average prediction generated

by many trees does not suffer from the same limitation. However, there are some factors to be

considered when building a Random Forest model that can limit the performance. As the num-

ber of trees grow, such that many trees are built from the same training set, the risk of strongly

correlated trees grow. The risk of highly correlated trees is reduced through the introduction of

extra randomness when growing trees, known as "feature bagging". Feature bagging refers to

the concept of considering only a random subset of the input features for each candidate split

during training, instead of searching for the very best feature for the split among all features.

Features having strong correlations to the target variable will be selected in many cases, such

that many of the B trees contain the exact same splits. Hence, by considering only a random

subset of features for each split, the correlation between the trees is reduced, and the algorithm

is forced to consider all features (James et al., 2013).

Feature Importance

Decision Tree models and Random Forest models make it possible to measure the relative im-

portance of each input feature, which for complex problems with many features is highly valu-

able information. The feature importance is calculated by considering how much all the nodes

in a decision tree using on specific feature contribute to reducing the average error. Hence, the

feature importance in based on a weighted average, calculated based on the consideration of the

number of training samples associated with each node. The feature importance result obtained

after training and optimization is often scaled, such that the sum equals 1 (Géron, 2017).

4.4.3 Deep Learning - Feedforward Neural Networks

Deep learning is a specific subfield of machine learning, where the deep in deep learning refers

to the idea of learning successive layers of increasingly meaningful representations. The depth of
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of the model denotes the number of layers contributing to map the relationship between the in-

put features and the target variable. In deep learning, Neural Networks are most commonly ap-

plied to learn these layered representations, where the relationship between the input features

and target variable is learned via deep sequences of simple data transformations, performed by

the layers. From the 2010s, deep learning models, more princely Neural Networks, have shown

remarkable results within complex fields, such as speech recognition, image classification, au-

tonomous driving and text-to-speech conversion. However, researchers are still exploring the

full extent of what deep learning models can accomplish. Feedforeward Neural Networks, also

known as Multilayer Perceptrons (MLP), are the building blocks of all types of Neural Networks,

among them Recurrent Neural Networks (RNN), Long-Short-Term Memory (LSTM) and Gated

Recurrent Neural Networks (GRNN). For the problem at hand, a Feedforward Neural Network

will be investigated, based on the fact that these models in its simple form have proven to ac-

complish complex tasks (Ketkar, 2017),(Goodfellow, 2017), (Chollet, 2017).

Building a Feedforward Neural Network

The main objective of a Feedforward Neural Network is to approximate some function f ∗, such

that the input x is linked to the output y through y = f ∗(x). The parameters of the network, θ,

are adjusted in the learning process, in order to obtain the learned model defined by f (x;θ) that

best approximates the true target function f ∗. This relationships are defined by f (x;θ) = ŷ ≈
f ∗(x) = y .

Feedforward Neural Networks can be represented by the composition of different functions,

which is why they are denoted networks. A directed acyclic graph is used to describe how these

functions are composed together in a chain with different layers L, denoted mathematically by

f (x,θ) = f (L)( f (L−1)(... f (2)( f (1)(x;θ(1)))). For each layer in the network, the input data is trans-

formed to an output by these functions. The depth of the model is defined by the overall length

of the chain, or by the number of layers in the network.

For Neural Networks, one distinguish between input layer, hidden layers and output layer. The

main function of the input layer is to pass the input data into the network, without making any

transformations on the data. The input and output layer are connected by a sequence of hidden

layers, l = 1,2, ...L −1, where transformations are made on the data. The type of transformation

made in each hidden layer depends on the activation function specified to used for the neurons

in each layer. Examples of such activation functions are presented in section 4.4.3. The output

layer is connected to the last hidden layer in the sequence of hidden layers, and its main function

is to convert the signal to the final output, denoted ŷ .
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The architecture of the Neural Network is defined by how the layers in the network are com-

posed, such as the number of neurons in each layer. Weights or synapses connects the neurons

in one layer, li , to the neurons in layer li+1, which are commonly stored in a layer specific ma-

trix denoted W(l ). The neurons in a layer receives input data from the neurons in the preceding

layer, where the input signal to a neuron is the output signal of the neurons in the preceding

layers multiplied by their weights, with an added bias term. The input signal is defined math-

ematically as z(l )
i = W(l )h(l−1) +b(l )

i , where h(l−1) denotes the vector of signal outputs from the

neurons in the preceding layer and b(l−1)
i denotes the bias term for neuron i . The input signal,

z(l )
i , received by the neurons are then transformed by an activation function σ, before the signal

is passed on to the neurons in the next layer. Hence, each neuron has a specific output, a(l )
i ,

which is calculated based on the input signal, weights, bias and activation function, defined

mathematically by a(l )
i = σ(z(l )

i ) (Goodfellow, 2017), (Ketkar, 2017), (Chollet, 2017). A Feedfor-

ward Neural Network with two hidden layers is illustrated in Figure 4.9, where the input layer

and hidden layer have 3 neurons, and the output layer consists of a single neuron.

Figure 4.9: A Feedforward Neural Network with two hidden layers, demonstrating the concept
of input signals, output signals and final prediction ŷ (Goodfellow, 2017).

The name feedforeward originates from the basic concept of these models, where information

flows through the network from the input layer, to the intermediate hidden layers and finally
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to the output layer. Hence, there are not any feedback connections where the model’s output

is fed backwards in the model. Feedforward Neural Networks can be extended to include such

feedback connections, such as for example a Recurrent Neural Networks (Goodfellow, 2017),

(Chollet, 2017), Ketkar (2017).

Hyperparameter Optimization

Neural Networks have high flexibility, which is also one of their main drawbacks when it comes

to hyperparameter optimization. The hyperparameters to optimize are related to three main

factors, namely the architecture of the network, the activation function and the signal weights

associated with each neuron in the network. In relation to the architecture, the number of hid-

den layers and the number of neurons in each hidden layer need to be optimized, which de-

pends on the complexity of the task and the time and resources available. A Feedforward Neural

Network with only one hidden layer can accomplish to model complex tasks, provided that each

layer have enough neurons. However, a Neural Network with several hidden layers can model

complex functions with exponentially fewer neurons in each layer, which has proven to reduce

the time required to train the network. In addition, the choice of activation function relies to

some extent on the problem at hand (Goodfellow, 2017), which is emphasized further in section

4.4.3.

In order to optimize the hyperparameters of a Neural Network, such that the predicted output ŷ

is as close as possible the true output y , a cost function, also known as loss function, is used to

map the progress (Goodfellow, 2017). The loss function, C ( f (x;θ), f (x;θ)), aims to evaluate the

performance of a set of given hyperparameters, θ, such that the distance between the predicted

output ŷ and the true output y can be minimized. Furthermore, the loss function should be

chosen depending on the type of problem at stake. For time series forecasting, also known as

sequential modelling, the Mean Squared Error, the Root Mean Squared Error, the Mean Absolute

Error, and the Mean Absolute Percentage Error are well known loss functions, as presented in

section 4.3.4 (Goodfellow, 2017).

An epoch denotes one training round, where the parameters in the Neural Network are adjusted

to minimize the loss function. As explained in section 4.3.2, there is always a trade of between

optimization and generalization. As the number of epochs increase, the risk of overfitting the

training set increases, whereas the risk of underfitting increases if the number of epochs is too

low. In addition, computational resources and time also impacts the number of epochs used on

training and optimization (Goodfellow, 2017) (Chollet, 2017).

For Feedforward Neural Networks, the information flows forward in the network, from the input
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layer to the the output layer, as explained in section 4.4.3. Back-propagation on the other hand,

refers to the concept of feeding information obtained from the loss function back into the Neu-

ral Network, with the aim of reducing the predicting error. For more advanced Neural Networks,

such as Recurrent Neural Networks, back-propagation has proven to improve the performance

significant. In order to perform back-propagation, the chosen activation function needs to be

differentiable, such that gradients indicating the direction of the error can be obtained. This is

referred to as gradient-based methods, where the gradient is used to minimize the loss by ad-

justing the weights in the Neural Network, depending in the direction of the error (Goodfellow,

2017) (Ketkar, 2017).

Activation Functions

The transformations made on the signals by each of the neurons in a Neural Network are per-

formed by an activation function, σ(x), as explained in section 4.4.3. Unfortunately, there ex-

ist no simple guide providing clear information on when to use a specific activation function,

due to the fact that this is still an area of research. Hence, testing several activation functions

and estimating the generated error between the predicted and true values is therefore the most

common approach. However, there are several properties of interest for activation functions

that should be taken into account. Theory claims that by choosing a non-linear activation func-

tion, a Neural Network consisting of only two layers will be able to approximate any function

between the input and output signal, given by the fact that the hidden layer consists of a suffi-

cient amount of neurons. Furthermore, choosing a continuously differential activation function

is a prerequisite for gradients to be computed, such that back-propagation can be applied. In

addition, activation functions with finite ranges have proven to give more stable performance

when gradient-based methods are applied, and empirical evidence prove that smooth functions

are preferred (Goodfellow, 2017).

The most commonly used activation functions are the Linear, Sigmoid, Tanh and ReLU func-

tions, all having in common that they are continuously differentiable such that gradient-based

learning can be applied (Goodfellow, 2017). A linear activation function is the simplest, trans-

forming the input signal by the following equation;

σ(x) = ax, (4.10)

where x denotes the input signal and a denotes a constant. Due to its simplicity, a linear activa-

tion function makes gradient-based learning simple (Ketkar, 2017).
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The Sigmoid activation is often used to transform the signal in the output layer, due to the fact

that the output is a scalar value often regarded as a probability (Ketkar, 2017), (Goodfellow,

2017), (Chollet, 2017). The following equation defines the Sigmoid activation function:

σ(x) = ex

1+ex
(4.11)

The hyperbolic tangent activation function is commonly used for hidden layers and outputs a

value between -1 and 1 (Ketkar, 2017), (Chollet, 2017), defined mathematically by:

σ(x) = tanh(x) (4.12)

The Rectified Linear Unit (ReLU) has recently been used as the default function for hidden lay-

ers, and results show that the ReLU activation function is specifically useful for gradient-based

learning, due to the fact that the ReLU function gives large and consistent gradients (Ketkar,

2017). Furthermore, the ReLU function zeros out negative values, and is defined mathemati-

cally by:

σ(x) = max(0, x) (4.13)

4.4.4 Clustering Based Machine Learning Models

Clustering based models build on the principle of unsupervised learning, where the main objec-

tive is to classify the data at hand into separated groups with similar patterns, where each group

is a cluster. As explained in section 4.2.2, unsupervised learning is usually performed to gain

insight about the data at hand, classify and compress the data, without mapping the relation-

ship between input features and a target variable. Since the early 1950s, a variety of clustering

based algorithms have been proposed, which generally can be classified into two main groups;

hierarchical and partitional clustering (Celebi, 2015). Clustering based on hierarchical algo-

rithms work in a recursively manner, by finding nested cluster from a top-down or bottom-up

approach. Partitional algorithms on the other, do not impose an hierarchical structure, meaning

that all clusters are found simultaneously as a partition of the provided input data. Due to lower

complexity, partitional algorithms are better suited to handle large data sets than hierarchical

algorithms. The K-means clustering algorithm is the most widely used partitional clustering al-

gorithm, mainly due to is simplicity and robustness (Wu, 2012). For the problem at hand, the

K-means clustering algorithm can potentially contribute to mapping outliers and anomalies not

located in a specific cluster.
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The K-Means Clustering Algorithm

The K-Means clustering algorithm is attempting to find K non-overlapping clusters of data. Each

of the K clusters are represented by a centroid, which generally is the mean of all samples gath-

ered in one specific cluster, as illustrated in Figure 5.3. The data set to be clustered is defined

by D = {xi , ..., xn}, where xi represents one sample of measurement. The number of clusters K

with individual centroids are specified by the user in advanced. The K-Means algorithm builds

on the principle of assigning all sample measurements to the closest centroid. Once all samples

are assigned to a centroid, the samples surrounding the centroid form a cluster. Through an

iterative process, the centroid of each cluster is updated based on the assigned data, until no

samples change cluster (Wu, 2012), (Celebi, 2015).

The K-Means clustering algorithm can be expressed by an objective function, which depends on

the proximities of the data points belonging to the centroids of the clusters (Wu, 2012), expressed

by the following equation;

mi nmk ,1≤k≤K

K∑
k=1

∑
x∈Ck

πxdi st (x,mk ), (4.14)

where πx is the weight of the samples x and nk is the number of samples assigned to cluster

Ck . Furthermore, mk = ∑
x∈Ck

πxx
nk

denotes the centroid of cluster Ck , while K is a predefined

number of cluster decided by the user. The distance between the samples x and the centroid

mk is computed by the "di st" function. There exist several options regarding the choice of

function to compute this distance. However, the most commonly used function is the squared

Euclidean distance, denoted by ‖x−m‖2 (Wu, 2012) (Celebi, 2015)

Figure 4.10: Illustrative example of clusters generated by a K-Means clustering algorithm
(Trevino, 2016).
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The K-Means algorithm is sensitive to outliers, due to the fact that the centroids are adjusted

based on the samples assigned to each centroid through an iterative process (Trevino, 2016).

However, the K-means algorithm is simple, robust and easy to implement, and are applicable

for a variety of data types (Wu, 2012).



Chapter 5

Unsupervised Anomaly Detection

Framework

In this chapter, two suggested work-flow-procedures for building unsupervised anomaly de-

tectors based on machine learning are presented, namely the unsupervised anomaly detector

based on residuals and the unsupervised anomaly detector based on clustering. The presented

frameworks are based on reviewing the anomaly detection surveys presented by Chandola et

al. (Chandola et al., 2009a), Sanz-Bobi (Sanz-Bobi, 2016) and Patcha and Park (Patcha and

Park, 2007), and practical case studies implementing similar models. For the anomaly detector

based on residuals, Ryan et al. (Ryan et al., 1998), Vasconcelos et al. (Vasconcelos et al., 1995),

Markou and Singh (Markou and Singh, 2003b) and Augusteijn and Folkert (Augusteijn and Folk-

ert, 2002) illustrate relevant examples, implementing Neural Networks to model the normal be-

havior of the system. For the anomaly detection based on clustering, the following case studies

are weighted highly; Breunig et al. (Breunig et al., 2000), using the local outlier factor, Schölkopf

et al. (Schölkopf et al., 2000), using support vector machines, and Bezdek et al. (Bezdek et al.,

1984), applying a K-means clustering algorithms. In addition, the machine learning fundamen-

tal framework presented in Chapter 4 is included in the work-flow-procedure for anomaly de-

tection, involving training, validation and testing the machine learning models (Chollet, 2017),

(Ketkar, 2017), (Goodfellow, 2017).

54
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5.1 Unsupervised Anomaly Detection Based on Residuals

For this approach, a supervised machine learning model is applied to model the normal behav-

ior of the system, by approximating the relationship between a given target variable, such as

for example the Stage3-AirPressure, and the input features. The established relationship make

it possible to predict the target variable, only by considering newly available samples from the

input features, as emphasised in Chapter 4. The anomaly detector can accordingly be estab-

lished by calculating the residuals between the predicted and actual target variable, using the

predicted variable as a reference describing normal behavior (Chandola et al., 2009a), (Sanz-

Bobi, 2016), (Patcha and Park, 2007). In the following, the procedure for building an anomaly

detector based on residuals is presented;

1. Model the normal behavior of the system based on a chosen machine learning model,

such as the Decision Tree model, the Random Forest model or a Feedforward Neural Net-

works. This involves all steps associated with machine learning models aiming to predict

the target variable based on a learned relationship with the input features, such as;

(a) Preprocessing the raw data, involving cleaning, filtering, filling out missing values,

denoising and possible scaling the data.

(b) Identify time frames where the input data appears to follow normal operating be-

havior, usually done thorough data visualization, descriptive statistics and based on

expert judgments.

(c) Split the continuous time series data associated with normal operating behavior into

a training, validation and testing data set, allowing for hyperparameter optimization

on the validation set and testing the model performance on never-before-seen data.

(d) Evaluate the model performance on both the validation and testing set, by consider-

ing appropriate performance metrics for regression tasks, such as the MAE, MAPE,

MSE and RMSE. The objective is to build a model that generalize well, meaning a

model that performs well on never-before-seen data.

2. Calculate the residuals between the predicted target variable by the machine learning

model, denoted estimated output, and the actual target variable belonging to the testing

period, denoted real measured output. In Figure 5.1, the calculation of residuals between

the estimated and measured output is visualized. The magnitude of the residuals for each

instance of time is used to determine if a sample is classified as normal or abnormal.

3. Perform descriptive statistics on the calculated residuals, in order to investigate the dis-
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tribution of the residuals. In normal operating behavior, the expected and mean value of

the residuals should approach zero, and in most cases, the residuals will approximate a

normal distribution having a fairly low standard deviation.

4. Decide on a confidence interval to use for establishing an upper control limit and lower

control limit, such that samples exceeding these limits in either direction are classified

as anomalies (Sanz-Bobi, 2016), (Dunning and Friedman, 2014). Considerations for de-

termining these confidence bounds for decision making is further emphasized in section

5.1.1.

Figure 5.1: Residuals between the measured output and the estimated output from the machine
learning model (Sanz-Bobi, 2016).

The main requirement for this approach is that the training and validation set are as representa-

tive as possible of the normal operating behavior of the system. Hence, the process of cleaning,

visualizing and performing descriptive statistics on the input data is of high importance. If the

algorithm is trained on data containing high levels of abnormal samples or patterns not cor-

responding to normal behavior, the anomaly detector will fail to classify these as anomalous

when similar cases appear in new streaming data (Sanz-Bobi, 2016). If the learned relationship

between the target variable and the input features in a normal situation stops yielding, evidence

is indicating that something abnormal has occurred, argued as followed by Hawkins (Hawkin,

1980); "An outlier is an observation that deviates so much from other observations as to arouse

suspicion that it was generated by a different mechanism.". In this case, the mechanism cause

the relationship between the target variable and the input features to stop yielding.

5.1.1 Establishing Confidence Bounds for Decision Making

In order to determine if anomalous behavior is observed, an upper and lower control limit for

the magnitude of the residuals need to be established, referred to as confidence bounds. The

confidence bounds can be established based on the principles of Statistical Process Control,
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where an upper and lower control limit are placed a specific number of standard deviations

from the mean value in either direction, for example three standard deviations (Oakland, 2007).

In Figure 5.2, an illustrative example of established control limits with three standard deviations

from the mean value is visualized, where the population of samples is assumed to follow a nor-

mal distribution. For three standard deviations, there is a 99,7% chance that any new sample

belonging to the same distribution falls within the upper and lower control limit, or there is 0,3%

chance of finding a value beyond three standard deviations.

Figure 5.2: Illustrative example of established confidence bounds at three standard deviations
from the expected value of the residuals (Oakland, 2007).

In order to established control limits that are suitable for this specific case, the following factors

need to be considered;

1. Minimize the occurrence of false alarms and non-detection, which in statistical hypothe-

sis testing is known as minimizing the occurrence of false positives, type I error, and false

negatives, type II error (Lehmann, 2005), defined accordingly;

(a) type I error refers to the rejection of the true null hypothesis, such that a false pos-

itive is detected. In this case, this implies that the target variable is characterized as

abnormal when in reality the behavior is normal.

(b) type II error refers to the failure of rejecting a false null hypothesis, such that a false

negative is concluded. In this case, this implies that the target variable is character-

ized as normal when abnormal behavior should have been detected

2. False positives and false negatives are associated with both time, costs and risk, such that

the following needs to be determined;

(a) The optimum amount of time spent on inspection, taking into account that time

spent on inspection increases as the number of false positives increases, which both

can distract the operator and reduce the trustworthiness of the anomaly detector.

(b) The acceptable level of risk associated with false negatives, taking into account both

the costs associated with damaged equipment and production downtime if anoma-
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lies not are detected. In addition, false negatives can potentially expose both the

environment and humans to damage.

5.2 Unsupervised Anomaly Detection Based on Clustering

Clustering based on machine learning is categorized as unsupervised learning, where the model

not relies on relevant examples demonstrating the relationship between the target variable and

input features. For anomaly detection based on clustering, the aim is to classify the input data

according to some reference pattern that are learned and extracted from the training data. The

extracted pattern can either represent the entire vector of measurements for a variable or a

reduced vector, generated through compression of the measurements. An anomaly detector

based on clustering is said to be based on information entropy reduction, due to the fact that

the input data is transformed into clusters of data having smaller dimensions than the original

number of samples. In this way, observed sample redundancy is eliminated, while the discrim-

inatory associated with the data is preserved (Sanz-Bobi, 2016). An anomaly detector based in

clustering can be built based on the following procedure;

1. A sub set of the input data representing normal operating behavior is chosen, and a clus-

tering algorithm is applied to group the input data into smaller groups with internal simi-

larities. The generated clusters represents the pattern to expect in normal operating con-

dition, and are used as reference pattern. The procedure of clustering depends on the

chosen algorithm, for K-Means, the following yields;

(a) Decide on the number of clusters, K , appropriate for describing the variance in the

chosen variables. In order to determine K , the Elbow Curve is often used, which de-

scribes the score obtained by the clustering algorithm for different number of clus-

ters. A sufficient score is given when the number of clusters accomplish to capture

all the relevant patterns observed in the data (Wu, 2012), (Celebi, 2015).

(b) Fit the K-Means clustering algorithm with sufficient number of K clusters to the data

characterizing normal operating behavior, such that the reference pattern is created.

2. Once new data becomes available, the clustering procedure is again performed, and a

measured pattern is generated. The anomaly detector is created by comparing the ref-

erence pattern, describing normal operating behavior, to the measured pattern, repre-

senting newly available data. The comparison of the reference and measured pattern is

visualized in Figure 5.3. This comparison is usually performed based on a computation of
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distance measurement, where the measured pattern is assigned to the reference pattern

that are closest in distance.

3. Classification of anomalies is based on a predefined acceptance level of distance between

the measured and preference pattern. The samples having the longest distance to any of

the centroids in the reference pattern are classified as abnormal, depending on a prede-

fined outlier fraction. For example, an outlier fraction of 0,02, classifies 2% of the samples

with longest distance to any centroid as abnormal (Sanz-Bobi, 2016). The outlier fraction

should be optimized such that the risk of false positives and false negatives are minimized,

taking into account the considerations presented in section 5.1.1.

Figure 5.3: Comparison between the reference pattern representing normal behavior and mea-
sured pattern (Sanz-Bobi, 2016)

Similar as for the anomaly detector based on residuals, the main requirement for the detector

based on clustering is that the reference pattern is created based on data describing normal

operating behavior (Sanz-Bobi, 2016).

5.3 Comparison of the Unsupervised Anomaly Detectors

The main difference between the approach based on residuals and the approach based on clus-

tering, is that the clustering approach is more limited by the number of features it considers.

For regression tasks, such as the Decision Tree model, the Random Forest model and Feedfor-

ward Neural Networks, all the input features are examined, aiming to incorporating all variables

affecting the target variable. For clustering approaches, a chosen number of variables are exam-

ined, often maximum two or three. However, the clustering approach requires little modeling

effort, and are known to be relatively easy to build and implement (Sanz-Bobi, 2016).
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According to the Numenta Benchmark Requirements, as presented in Chapter 3, the following

constraints are weighted highly; i) the algorithm must have the ability to continuously learn in

an adaptive manner, to capture seasonal and cyclic variations, and possible drifts, ii) anomaly

detection must be made online and in real time, requiring the algorithm to fit the data in real

time, iii) Anomalies should be detected as early as possible, based on decision rules minimizing

the risk of false positives and false negatives (Lavin and Ahmad, 2015). In relation to the Nu-

menta Benchmark Requirements, the two anomaly detectors fulfill different constraints. Both

detectors are capable of detection anomalies at an early stage, to which degree, depends on the

established confidence bounds and the defined outlier fraction. Furthermore, the Numenta

Benchmark highlights the need for detecting anomalies in real time. The anomaly detector

based on residuals has the advantage that the algorithm easily can be trained to capture sea-

sonal and cyclic variations, where the relationship between the target variable and input fea-

tures for different seasons is captured, assuming that the data is available. For clustering, which

only considers a limited number of features, these variations are harder to capture, and one

might need to create several reference patterns depending on the season (Chandola et al., 2009a).

However, the presented work-flow-procedures demonstrate how unsupervised anomaly detec-

tors for continuous time series data can be built, not relying on historical failures or label-

ing.



Chapter 6

Data Preprocessing

In the following chapter, the preprocessing performed on the raw data is presented, along with

time series visualization and descriptive statistics performed on data characterizing normal op-

erating behavior. In addition, the open source libraries and tools used to build the unsupervised

anomaly detectors based on residuals and based on clustering are presented.

6.1 Data

As presented in Chapter 2, the compressor system is equipped with in total 21 sensors, send-

ing automatic signals to the remote control system. The instrumentation equipment serves

two main purposed; assist the automatic control system such that actions can be automatically

taken if control limits are exceeded and monitor the system for detection of abnormal behavior.

In Table 6.1, the sensors are presented with associated control limits established by the system

manufacturer, Ingersoll Rand. Depending on the sensor, the following control limits are given;

Low trip, Low alarm, High alarm and High trip. The trip control limits, either high or low, de-

notes the limit for which the compressor system is automatically switch of, argued by the fact

that further use will damage the system equipment. The alarm limits, either low or high, indi-

cates the level at which it is of serious belief that damage to the system equipment has occurred,

argued by the fact that these limits are set further out than the trip limits. In cases where the

system not shuts automatically down when the trip limits are exceeded, alarms will be given to

inform the operator. For anomaly detection at an early stage, such as argued in the Numenta

Benchmark Requirements in Chapter 3 (Lavin and Ahmad, 2015), these control limits fail to cap-

ture early degradation and small fluctuations that eventually can cause system damage. Hence,

61



CHAPTER 6. DATA PREPROCESSING 62

in order to successfully implement a predictive maintenance strategy, an anomaly detector with

finer granularity than these boundaries are required.

Table 6.1: Sensors with associated control limits provided by the equipment producer Ingersoll
Rand

Sensor name Unit Sampling Low trip Low alarm High alarm High trip

Motor-TemperaturePhase1 C 1s - - 155 170

Motor-TemperaturePhase2 C 1s - - 155 170

Motor-TemperaturePhase3 C 1s - - 155 170

Bearing-TemperatureDE C 1s - - 90 95

Bearing-TemperatureNDE C 1s - - 90 95

InletValve-Position % 1s - - - -

Stage1-Vibration µm 1s - - 28 33

Stage1-AirTemperature C 1s - - 46 49

Stage1-AirPressure kPa 1s - - - -

Stage2-Vibration µm 1s - - 24 29

Stage2-AirTemperature C 1s - - 46 49

Stage2-AirPressure kPa 1s - - - -

Stage3-Vibration µm 1s - - 22 27

Stage3-AirTemperature C 1s - - 190 195

Stage3-AirPressure kPa 1s - - - -

BlowOffValve-Position % 1s - - - -

Oil-Pressure kPa 1s 140 155 - -

VentFanTemperature C 1s - - - 50

Motor-Current A 1s - - - -

Capacity m3/min 1s - - - -

PowerConsumption kW 1s - - - -

6.1.1 Raw Data

The system has been continuously monitored by the sensors since first day of operation, while

the storing and collection of the data began in October 2018. Hence, only sensor data from the

end of October 2018 to the end of January 2019 were available for the analyses. The sensor data

is sampled with a granularity of 60 seconds, implying that the sensor data from each feature is

extracted every 60 second. Furthermore, the data is provided as raw, unsorted and unfiltered
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csv files, where one csv file contains the sensor measurements for all five compressors in the

system, for one hour. Having a granularity of sixty seconds, the amount of data quickly grows

big. Each hour, a new csv file is generated containing all samples from all compressors and

their associated features, implying that 672 separate csv files are stored each month. For three

months, this adds up to 2016 separate csv files, requiring in total 60 000 MB of memory capacity.

In order for the data to be valuable, it must be preprocessed (Chollet, 2017).

6.2 Data Preprocessing

Data preprocessing is one of the fundamental steps involved in data analytics, independent of

the chosen modelling approach. Hence, in order to build the unsupervised anomaly detectors,

the raw data needs to be filtered, sorted and down-scaled as much as possible, such that noisy

data impacting the performance of the algorithm and long running times are reduced (Chollet,

2017) (Ketkar, 2017). As presented in Chapter 2, only one of the five compressors are to be con-

sidered, namely Compressor 31, such that all the samples from the other compressors are treated

as irrelevant. Based on the raw data structure, scale and content, the following procedure was

used to preprocess the data;

1. Append files: All the csv files were appended together in one big file for the entire time

period, allowing for reorganization, filtering and sorting the continuous time series data

for the entire period at once.

2. Split columns and reorganize: In the appended csv file, all the sensor measurements were

stored in one single column, making it impossible to sort and filter the data. Hence, this

column was split, such that each feature with associated time stamp was given a unique

column.

3. Filter: Only data from the features belonging to Compressor 31 was kept, while the rest

was filtered out to reduce the size of the file.

4. Sort: The data was sorted according to time and date, required both for continuous time

series visualization and for machine learning based on regression.

5. Missing values: The data was investigated to detect single instances or time frames of

missing values that needed to be filled in or filtered out.

6. Re-sample: The data was re-sampled for each minute, such that the average value for

each minute where calculated based on the samples from each second, in order to reduce

the amount of data.
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6.2.1 Libraries and Tools Used for Analysis

The two presented anomaly detectors with all associated analysis are programmed in Python

version 3.7.1. The code for descriptive statistics, machine learning models and the two unsuper-

vised anomaly detectors are presented in Appendix B. In addition to well known open source li-

braries, such as NumPy and Matplotlib, the following libraries were used to preprocess the data,

perform descriptive statistics and train, validate and test the machine learning models;

• Pandas: is an open source library providing easy-to-use data structures and data analysis

tools for Python (McKinney, 2010). The Pandas library provides functions simplifying the

process of data preprocessing, by storing the big amounts of data in Pandas Dataframes.

For Pandas Dataframes, easy implementable functions for splitting, sorting, filtering, re-

sampling, visualization and descriptive statistics are available.

• Seaborn: is a Python data visualization library, which provides a high level interface for

informative, statistical graphics (Waskom, 2019). For the problem at hand, the Seabron

library was used to create the heatmap presented in section 6.3.4, demonstrating the cor-

relations between the input features.

• Scikit-Learn: is an open source Python library providing efficient tools for data mining

and data analysis, and inbuilt functions for machine learning classification, regression

and clustering. In addition, Scikit-Learn offers inbuilt performance metrics for the var-

ious machine learning models, such as MAP, MAPE, MSE, RMSE and a scoring metrics

returning the accuracy (Pedregosa et al., 2011). For the problem at hand, Scikit-Learn was

used to train, validate and test all the presented machine learning models, along with their

associated performance metrics.

6.2.2 Data Transformations During Preprocessing

In the following, the steps involved with the data preprocessing are demonstrated, emphasizing

the main transformations made on the data. As stated by several authors, data preprocessing

often takes up 80 % of the total time spent on a machine learning project, which is also demon-

strated by the weight it is given in this report (Chollet, 2017) (Goodfellow, 2017).

Raw Data Structure

The raw csv-files containing measurements from one hour each lack the structure required for

analyzes, as visualized in the dataframe below. As seen, both the date, time, compressor num-
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ber, sensor name and value are stored in the same column, named "timestamp|device|tag|value".

In order to save time on splitting, reorganizing, filtering and sorting the raw csv files, they were

all appended together, and stored in one dataframe.

timestamp|device|tag|value

0 2019-01-01T00:00:00.0000000Z|Compressor 11|Loa...

1 2019-01-01T00:00:00.0000000Z|Compressor 11|Unl...

2 2019-01-01T00:00:00.0000000Z|Compressor 13|Set...

3 2019-01-01T00:00:00.0000000Z|Compressor 13|Cap...

4 2019-01-01T00:00:00.0000000Z|Compressor 14|Set...

5 2019-01-01T00:00:00.0000000Z|Compressor 15|Set...

6 2019-01-01T00:00:00.0000000Z|Compressor 31|Set...

7 2019-01-01T00:00:00.0000000Z|Compressor 14|Sta...

8 2019-01-01T00:00:00.0000000Z|Compressor 31|Oil...

9 2019-01-01T00:00:00.0000000Z|Compressor 14|Sta...

Splitting, Filtering, Reorganizing and Sorting

The main part of the data preprocessing consisted of splitting, reorganizing, filtering and sorting

the appended raw-data file. First, the data was split, such that time, date, compressor number,

sensor name and values were stored in separate columns. Secondly, the data steaming from the

irrelevant compressors was filtered out, such that only data from Compressor 31 was kept, giving

the result demonstrated in the dataframe below.

Compressor Measure Value Date Time

6 Compressor 31 SetPoint 746.529900 2019-01-01 00:00:00

8 Compressor 31 Oil_Pressure 233.783300 2019-01-01 00:00:00

28 Compressor 31 Stage2_AirTemperature 11.153866 2019-01-01 00:00:00

29 Compressor 31 Stage3_AirTemperature 49.597940 2019-01-01 00:00:00

39 Compressor 31 Stage1_AirPressure 2.898613 2019-01-01 00:00:00

42 Compressor 31 Motor_TemperaturePhase2 51.632523 2019-01-01 00:00:00

56 Compressor 31 System_AirPressure 749.968600 2019-01-01 00:00:00

65 Compressor 31 BlowOffValve_Position 100.000000 2019-01-01 00:00:00

67 Compressor 31 Stage1_Vibration 0.269890 2019-01-01 00:00:00

70 Compressor 31 Motor_TemperaturePhase3 51.449980 2019-01-01 00:00:00
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Furthermore, the filtered dataframe was reorganized, such that the samples from each specific

sensor were listed in the same column. In order to easily access the sample date and time, the

Datetime was set as the index in the dataframe. By setting Datetime as index, Pandas enables

re-sampling of data, making it possible to easily reduce the amount of data. Hence, a new re-

organized dataframe was created, where specific sensor values at specific dates and times were

easily accessible, as displayed in the dataframe below for three of the sensors.

Stage1_AirPressure Stage1_AirTemperature Stage1_AirVibration

Datetime

2019-01-01 00:00:00 2.898613 11.916216 0.269890

2019-01-01 00:00:01 2.898613 11.916216 0.269890

2019-01-01 00:00:02 2.898613 11.916216 0.269890

2019-01-01 00:00:03 2.927958 11.923943 0.265956

2019-01-01 00:00:04 2.959737 11.923578 0.274159

2019-01-01 00:00:05 2.939639 11.927032 0.270537

2019-01-01 00:00:06 2.927373 11.943260 0.271669

2019-01-01 00:00:07 2.882026 11.925222 0.276107

2019-01-01 00:00:08 3.038895 11.924143 0.274634

2019-01-01 00:00:09 2.937302 11.923943 0.272421

Detecting Missing Values

Having an evenly spaced time index, where each feature have a valid value for all instances of

time, is required for further analysis of the time series data (Chollet, 2017) (Goodfellow, 2017).

Instances of missing values can be handled by varies techniques, among them forward filling,

backward filling or simply by deleting the features containing numerous missing values (Ketkar,

2017). Descriptive statistics is performed on all the features for the whole time period, to identify

time instances or time intervals containing missing values. As illustrated in Table 6.2, the follow-

ing features contained only zero values; Capacity, InletValvePosition, PowerConsumption, and

MotorCurrent. Consequently, they were removed from the data set. In addition, all the sensor

measurements from November and October equaled zero. This might either be due to the fact

that the compressor was switched off during this period, or that the measurements not were

collected and stored in the right manner. Due to this, only data from December and January

were available for the analysis.
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Table 6.2: Features with missing values

Statistics Capacity InletValve Position PowerConsumption InletValvePosition

Count 1440 1440 1440 1440

Mean 0 0 0 0

Std 0 0 0 0

Min 0 0 0 0

25 % 0 0 0 0

50 % 0 0 0 0

75 % 0 0 0 0

max % 0 0 0 0

Re-sampling

In order to reduce the size of the dataframe, re-sampling was performed, by calculating the av-

erage value for each minute. As displayed in the dataframe below, the Datetime index now has a

granularity of 1 minute instead of 1 second. The re-sampled version reduced the size and mem-

ory required to process the data by 60 %, which highly influenced the time spent on training,

validating and testing the machine learning models.
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Stage1_AirPressure Stage1_AirTemperature Stage1_AirVibration

Datetime

2019-01-01 00:00:00 2.904993 11.922803 0.268253

2019-01-01 00:01:00 2.906916 11.927518 0.270891

2019-01-01 00:02:00 2.910251 11.926206 0.268822

2019-01-01 00:03:00 2.892509 11.926567 0.269541

2019-01-01 00:04:00 2.867792 11.932126 0.269693

2019-01-01 00:05:00 2.881382 11.926801 0.269652

2019-01-01 00:06:00 2.882400 11.927943 0.271043

2019-01-01 00:07:00 2.873145 11.927783 0.270391

2019-01-01 00:08:00 2.888669 11.934224 0.268263

2019-01-01 00:09:00 2.888479 11.947697 0.271433

6.3 Mapping Normal Operating Behavior

In order to build the unsupervised anomaly detectors, the machine learning models need to be

trained and optimized on data characterizing normal operating behavior, as clearly emphasized

in Chapter 5. Through data visualization, time periods with normal and stable operating behav-

ior can easily be identified. In addition, by performing descriptive statistics on time periods with

normal and stable operating behavior, a good indication of what to expects when the system is

in good health can be obtained.

6.3.1 Data Visualization

In the following, the preprocessed time series data for Air Pressure, Air Temperature and Vibra-

tion are visualized. These features are a good indication of the overall system health, as ex-

plained in Chapter 2, and are therefore potential target variables.

Time Series Visualization for the Whole Period

In Figure 6.1 and Figure 6.2, the Air Pressurefor all three stages are visualized, similarly for Air

Temperature in Figure 6.3 and Figure 6.4 and for Vibration in Figure 6.5 and Figure 6.6.
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Figure 6.1: Air Pressure for all three stages
from December and January.

Figure 6.2: Stage3-AirPressure from De-
cember and January.

Figure 6.3: Air Temperature for all three
stages from December and January.

Figure 6.4: Stage3-AirTemperature from
December and January.

Figure 6.5: Vibration for all three stages
from December and January.

Figure 6.6: Stage3-Vibration from Decem-
ber and January.

By investigating the time series plot from beginning of December until the end of January, there
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is clearly some stable and unstable time periods. From 14. - 30. December and 8.- 16. Jan-

uary, both the Air Pressure, Air Temperature and Vibration appear to be stable, while the other

time periods seem to have irregularities. The irregular patterns could potentially be a result of

the load distribution principle controlling the five compressors simultaneously. As explained

in Chapter 2, this control system cause the compressors to be automatically switch off and on,

such that the capacity is utilized to the full extent. However, due to lack of data, it is assumed

that the identified stable periods characterize the normal operating behavior of the system. In

order to get a deeper understanding of the characteristics of the normal operating behavior, the

time period from 8. - 16. of January was investigated in more detail, both through visualization

and through descriptive statistics.

Visualization of Normal Operating Behavior

In Figure 6.7 and Figure 6.8, the Air Pressure for all three stages characterizing normal operat-

ing behavior are visualized, similarly for Air Temperature in Figure 6.9 and Figure 6.10 and for

Vibration in Figure 6.11 and Figure 6.12.

Figure 6.7: Air Pressure for all three stages
characterizing normal behavior.

Figure 6.8: Stage3-AirPressure characteriz-
ing normal behavior.
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Figure 6.9: Air Temperature for all three
stages characterizing normal behavior.

Figure 6.10: Stage3-AirTemperature char-
acterizing normal behavior.

Figure 6.11: Vibration for all three stages
characterizing normal behavior.

Figure 6.12: Stage3-Vibration characteriz-
ing normal behavior.

6.3.2 Time Series Data with Alarm Bounds

In addition, time series data for Stage3-AirTemperature and Stage3-Vibration with established

alarm bounds are visualized, as seen in Figure 6.13 and Figure 6.14. Clearly, both the High trip

and High alarm limits are set far from the normal operating behavior, making it hard to detect

anomalies at an early stage, as explained in section 6.1.



CHAPTER 6. DATA PREPROCESSING 72

Figure 6.13: Stage3-AirTemperature from
December and January with alarm bounds

Figure 6.14: Stage3-Vibration from Decem-
ber and January with alarm bounds.

6.3.3 Descriptive Statistics

Descriptive statistics is generally known as brief descriptive coefficients summarizing a given

data set, broken down to measures of variability and central tendencies. Measures of variabili-

ties refers to measures such as standard deviations, variance, maximum and minimum sample,

while measures of central tendencies refers to measures such as the mean and median of the

samples (Goos, 2015). As presented in the dataframe below, descriptive statistics character-

izing normal behavior for the Stage3-AirPressure, Stage3-AirTemperature and Stage3-Vibration

are presented. These statistics are generated from the time period from 8. - 16. January. In addi-

tion, the histogram for each of these features characterizing the spread around the mean value

are presented in Figure 6.15, Figure 6.16 and Figure 6.17.

Stage3_AirPressure

count 12961.000000

mean 758.982022

std 20.236454

min 371.251963

25% 752.976328

50% 760.328561

75% 768.434696

max 797.360843

Stage3_AirTemperature

count 12961.000000

mean 108.251146

std 2.117979

min 79.292979

25% 106.959304

50% 108.746151

75% 109.744919

max 113.058494

Stage3_AirVibration

count 12961.000000

mean 2.794423

std 0.241546

min 2.317837

25% 2.612897

50% 2.737162

75% 2.953905

max 3.467410
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Figure 6.15: Histogram of
the Stage3-AirPressure in
normal operating behavior.

Figure 6.16: Histogram of
the Stage3-AirTemp in nor-
mal operating behavior.

Figure 6.17: Histogram of
the Stage3-Vibration in nor-
mal operating behavior.

As seen from both the time series visualization of the normal behavior in section 6.3.1 and the

descriptive statistics presented in the dataframe, the selected features have a fairly low spread

around the mean value. The Stage3-AirPressure has a standard deviation of 20,23, while the

Stage3-AirTemperature and Stage3-Vibration have a standard deviation of 2,11 and 0,24 respec-

tively. The selected period appears to have a stable operating behavior, and is therefore appro-

priate for modelling the normal behavior of the system.

6.3.4 Correlations Between Features

As explained in Chapter 4, machine learning regression builds on the principal of mapping the

relationship between the target variable and the input features. Therefore, estimating the cor-

relations between the features is of great interest, with the aim of understanding which features

that will be used and weighted highly when the target variable is to be predicted.

Pearson Correlation Coefficient

Correlations between the features can be calculated in several ways, such as by the Pearson,

Spearman’s and Kendall’s Tau Correlation Coefficient (Dalinina, 2017). The Pearson Correlation

Coefficient is the most widely used coefficient, which measures the linear association between

continuous variables. In other words, the degree to which the relationship between two contin-

uous variables can be described by a line is quantified by the Pearsons Correlation Coefficient,

denoted mathematically by;

pX ,Y =
∑

(Xi −X )(Yi −Y )√∑
(Xi −X )

2
(Yi −Y )

2
, (6.1)
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where X and Y denotes two continuous variables and X and y denotes the mean value of these

variables. As the Pearson Correlation Coefficient approaches 1, the more an increase in for ex-

ample variable X will associate to an increase in variable Y . Hence, if the Pearsons Coefficient

is close to 0, the variables are independent. However, the coefficient can be small even if the

variables are strongly correlated (Dalinina, 2017).

In Figure 6.18, the correlations between all features are presented in a heatmap, ranging from

−1 to 1, with an associated color to visualize the degree of correlation. These correlations are

calculated based on the Pearson Correlation Coefficient, where a positive correlation implies

that an increase in one variable associates to an increase in the other variable, while opposite

for the negative correlations. In the Dataframes below, the Top Positive Correlations and the Top

Negative Correlations between the features in normal operating behavior is presented.
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Figure 6.18: Heatmap ranging from -1 to 1, displaying the correlations between the features.
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Top Positive Correlations

Bearing_TemperatureDE Bearing_TemperatureDE 1.000000

Motor_TemperaturePhase1 Motor_TemperaturePhase3 0.999866

Motor_TemperaturePhase2 0.999794

Motor_TemperaturePhase3 Motor_TemperaturePhase2 0.999631

Stage1_AirPressure Stage2_AirPressure 0.992661

Stage1_AirTemperature Stage2_AirTemperature 0.955611

Bearing_TemperatureNDE Bearing_TemperatureDE 0.866704

Stage1_AirPressure Stage1_AirTemperature 0.794880

System_AirPressure Stage2_AirPressure 0.788569

Bearing_TemperatureDE Motor_TemperaturePhase3 0.784996

Motor_TemperaturePhase1 0.782808

Stage2_AirPressure Stage1_AirTemperature 0.777574

Motor_TemperaturePhase2 Bearing_TemperatureDE 0.775492

System_AirPressure Stage1_AirPressure 0.753601

Stage2_AirPressure Stage3_AirVibration 0.742864

Top Negative Correlations

System_AirPressure BlowOffValve_Position -0.857139

Stage3_AirPressure BlowOffValve_Position -0.714155

BlowOffValve_Position Stage2_AirPressure -0.679315

Stage1_AirPressure -0.640748

Stage3_AirTemperature Stage1_AirPressure -0.633218

Stage2_AirPressure -0.584294

Stage2_AirTemperature -0.528234

Stage1_AirTemperature Stage3_AirTemperature -0.507298

BlowOffValve_Position Stage3_AirVibration -0.500736

Stage2_AirTemperature Stage2_AirVibration -0.494868

Motor_TemperaturePhase2 BlowOffValve_Position -0.486654

BlowOffValve_Position Motor_TemperaturePhase1 -0.483102

Motor_TemperaturePhase3 BlowOffValve_Position -0.480565

Stage1_AirVibration Stage1_AirTemperature -0.472319

Stage1_AirTemperature BlowOffValve_Position -0.467950
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Regression Line and Pearsons Correlation Coefficient

There is a clear connection between the slope of a line and the Pearsons Correlation Coefficient,

such that the calculated correlation coefficients can be displayed through the slope of the line

between the variables X and Y (Dalinina, 2017). In Figure 6.19, Figure 6.20, Figure 6.21, Fig-

ure 6.22, Figure 6.23 and Figure 6.24, the scatter plots between the Stage3-AirPressure and the

Stage1-AirTemperature, Stage2-AirTemperature, Stage3-AirTemperature, System-AirPressure and

BlowOffValve-Position are visualized.

Figure 6.19: Correlation
between Stage3-AirPressure
and BlowOffValve-Position.

Figure 6.20: Correlation
between Stage3-AirPressure
and Stage2-AirTemperature.

Figure 6.21: Correlation
between Stage3-AirPressure
and System-AirPressure.

Figure 6.22: Correlation
between Stage3-AirPressure
and Stage3-AirTemperature.

Figure 6.23: Correlation
between Stage3-AirPressure
and Stage1-AirTemperature.

Figure 6.24: Correlation
between System-AirPressure
and BlowOffValve-Position.

As seen, the Stage3-AirPressure is strongly correlated with both the Stage2-AirPressure (and Stage1-

AirPressure) and the System-AirPressure. This can logically be explained by the fact that for
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each stage in the three-stage Centrifugal Air Compressor system, the air is compressed, imply-

ing that the Stage3-AirPressure strongly depends on the exit air pressure from stage 1 and 2.

In addition, the air pressure is strongly correlated with the air temperature, which is explained

mathematically by thermodynamic laws such as the Ideal Gas Equation, pV = nRT (Giampaolo,

2010). Hence, as the pressure increases, the temperature will also increase. Furthermore, the

level of openness in the BlowOffValve heavily affects the air pressure, argued by the fact that

as the BlowOffValve opens, the compressed air is blown out over the roof, and the air pressure

drops. This explains the negative correlation displayed in Figure 6.19 and Figure 6.24 between

the Stage3-AirPressure and the BlowOffValve-Position and between the System-AirPressure and

the BlowOffValve-Position.

6.4 Conclusion Normal Operating Behavior

From the analysis presented in this chapter, it can be concluded that the continuous time series

data contains both stable and unstable time periods. The time periods from 14. - 30. December

and 08. - 16. January were identified as stable, and assumed to characterize normal operating

behavior. Through descriptive statistics on the data characterizing normal operating behavior,

it was concluded that the standard deviations of the Stage3-AirPressure, Stage3-AirTemperature

and Stage3-Vibration are fairly low. Furthermore, correlations between the features in normal

operating behavior were presented, concluding that the Stage3-AirPressure is strongly correlated

with both the air temperature, valve position and the system air pressure. This correlations were

also presented in Chapter 2, assessed through system knowledge. The presented correlations

give important guidelines to the relative importance of the features, which is highly valuable

when the target variable is to be predicted. Based on the Stage3-AirPressur’s strong correla-

tions with the other sensors, and its ability to give an indication of the overall system health, the

Stage3-AirPressure is chosen as the target variable to be predicted.
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Machine Learning Modelling

In the following chapter, the practical implementation of the Decision Tree Model, the Random

Forest Model and a Feedforward Neural Network are presented. As explained in Chapter 4, these

models are all capable of predicting a chosen target variable based on the input features, and

once trained on a period with normal operating behavior, the predicted target variable can be

used to build the anomaly detector based on residuals. The main focus in this chapter is to train,

validate and test the three models, with the objective of building a model that performs well on

never-before-seen data. The Stage3-AirPressure is chosen as the target variable to be predicted,

while the remaining sensors are used as input features. Furthermore, the theoretical framework

associated with the basic machine learning work flow was presented in Chapter 4, such that only

the practical implementation will be presented here.

7.1 Creating Training, Validation and Testing Data Seta

In order to evaluate if the models perform well on never-berfore-seen data, a training set for train-

ing, a validation set for hyperparameter optimization and a testing set for evaluating the model’s

performance are established, as presented in Table 7.1. These sets are established based on the

principal of hold-out validation, without random shuffling the data, which was explained in

Chapter 4. The training set compromises approximately 60% of the data, while the data for vali-

dation and testing compromise approximately 20% each. There exists no such clear guide on the

amount of data to use in each set, except that the process of training often requires more data

than the process of validation and testing (Chollet, 2017). Most importantly, the training and

validation sets are established based on time intervals where the Stage3-AirPressure appears to
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follow normal operating behavior, which was identified in Chapter 6. Furthermore, the test set

is allowed to contain more irregular and unstable patterns, in order to test if the models are ca-

pable of capturing also these. Both the Random Forest model, the Decision Tree model and the

Feedforward Neural Network are trained, validated and tested on these established sets.

Table 7.1: Training, validation and testing data sets

Training set Validation set Test set

Datetime 2019-01-08 00:00:00 -

2019-01-16 00:00:00

2018-12-14 00:00:00 -

2018-12-18 00:00:00

2019-01-22 00:00:00 -

2019-01-27 00:00:00

Percent 60 % 20 % 20%

7.2 The Decision Tree Model and The Random Forest Model

In the following, the hyperparameter optimization performed both on the Decision Tree model

and the Random Forest model are presented, along with the model performance and feature

importance for each of the trained models. As the Random Forest model compromise several

independent decision trees, the two models are tightly connected and therefore also presented

in parallel.

7.2.1 Hyperparameter Optimization for Decision Trees and Random Forest

The hyperparameters to optimize for one single decision tree include the maximum allowed

depth of the tree, the minimum number of sample leaves, the minimum number of sample

split, the maximum number of leaf nodes and maximum number of features that are evaluated

for splitting at each node. For the Random Forest Model, the number of trees used to grow

the forest and the maximum number of samples in each ensemble can be tuned in addition to

the hyperparameters for one single decision tree (Géron, 2017). For decision trees, the depth

of the tree appears to impact the performance significantly more than the tuning of the other

hyperparameters, while for Random Forest, the number of trees have the highest impact on the

performance (Géron, 2017). Evidently, these hyperparameters became the main focus during

the optimization process. In Figure 7.1, the performance obtained on the validation set for the

Decision Tree model with varying tree-depth is visualized. As seen, the best performance is ob-

tained with Max-depth = 8, with Mean Absolute Error (MAE) equal to 2,38. For Random Forest,
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the best performance on the validation set is obtained with Number of trees = 25, having Mean

Absolute Error (MAE) equal to 2,18, as visualized in Figure 7.2. As emphasized in Chapter 4, the

objective is to optimize the hyperparameters such that the effects of overfitting and underfitting

is mitigated.

Figure 7.1: Optimizing the depth of the
tree for the Decision Tree model

Figure 7.2: Optimize the number of trees for
the Random Forest model

7.2.2 Model Performance - The Decision Tree and Random Forest Model

In order to evaluate the models performance, the Mean Absolute Error (MAE), the Mean Squared

Error (MSE) and the Root Mean Squared Error (RMSE) are calculated based on the predicted tar-

get variable and the true target variable, which in this case is the Stage3-AirPressure. In addition,

the accuracy is calculated based on an inbuilt score function in Scikit-Learn. In Table 7.2 and

Table 7.3, the calculated performance metrics for the Decision Tree model, having a tree depth

equal to 8, and the Random Forest model, with 25 trees, are presented.
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Decision Tree Performance

Table 7.2: Performance of the Decision Tree model with Max-depth = 8 on the validation and
testing set

Validation set Testing set

Accuracy 0,982 0,976

Mean Absolute Error 2,38 3,58

Mean Squared Error 23,73 79,42

Root Mean Squared Error 4,87 8,91

Random Forest Performance

Table 7.3: Performance of the Random Forest model with Number of trees = 25 on the validation
and testing set

Validation set Testing set

Accuracy 0,984 0,980

Mean Absolute Error 2,18 3,49

Mean Squared Error 21,26 77,14

Root Mean Squared Error 4,61 8,78

For both models, the trained model performs better on the validation set than the testing set,

which can be explained logically by the following; i) as the algorithm’s hyperparameters were op-

timized based on the performance on the validation set, one would in general expect a higher

performance on the validation set, due to the fact that information stored in the validation set

leaks into the model during the optimization, ii) the validation set contains data belonging to

normal operating behavior, while the testing set contains more irregular patterns that not were

introduced during the training and optimization process. In cased where the gap between the

validation and the testing error is too big, one risk to have overfitted the training and valida-

tion set, such that transformation only stored in these sets are weighted too high. Based on the

obtained results, this seems not to be the case here, implying that the hyperparameters are ap-

propriate for the problem at hand. Furthermore, the Random Forest model performs slightly
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better than the Decision Tree model, which can be explained by the fact that the Random Forest

model takes the average value of the predicted output of 25 trees, instead of trusting the output

of one single decision tree.

Visualization of Predicted Target Variable - Random Forest model

In Figure 7.3 and Figure 7.4, the predicted Stage3-AirPressure by the Random Forest model and

the actual Stage3-AirPressure are visualized. In addition, aligning and smoothing is performed

on both the predicted and actual output, to reduce the noise associated with the data. As

seen, the predicted pressure accomplishes to follow the actual measured pressure, which is also

proven by the high performance given by the MAE, MSE and RMSE.

Figure 7.3: Predicted Stage3-
AirPressure by the Random Forest
model during the testing period.

Figure 7.4: Predicted Stage3-
AirPressure by the Random Forest
model during the testing period.

7.2.3 Feature Importance Decision Tree and Random Forest model

In contradiction to statistical and physical models, machine learning models do not make any

predefined assumptions about the relationship between the target variable and the input fea-

tures. This implies that the weight given to each input feature in relation to the target variable

not is given in advanced, nor is any direction on which features to use, as emphasized in Chapter

3. For Decision Tree models and Random Forest models, Scikit-Learn offers easy implementable

functions to access the relative importance of each feature used when predicting the target vari-

able. In Table 7.4, the features used to predict the Stage3-AirPressure are presented, along with

their relative importance, which also are visualized in Figure 7.5. As seen, for both models, the

Stage2-AirPressure, the System-AirPressure and the BlowOffValve-Position are the only features

used to predict the Stage3-AirPressure. This result can be explained mathematically by the cor-

relations calculated in Chapter 6, where the relationship between the Stage3-AirPressure and the
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highly important features given here was close to linear. This information is extremely useful,

serving two main purposed; i) enabling feature engineering, which refers to the concept of only

letting the model train on input features that are known to add useful information, ii) deeper

understanding the dynamics of the system, which is a requirement when diagnosis and actions

are to be taken. For systems containing hundreds of sensors, feature engineering may be a pre-

requisite, to reduce the scope and time used on training and testing (Chollet, 2017).

Table 7.4: Feature Importance for the Decision Tree and Random Forest model

Feature DT-importance RF-importance

Stage2-AirPressure 0,67 0,62

System-AirPressure 0,27 0,31

BlowOffValve-Position 0,06 0,06

Figure 7.5: Feature importance for the Decision Tree and Random Forest model.

7.2.4 Visualizing Decision Tree

Finally, in order to illustrate how the Stage3-AirPressure is predicted, a decision tree with max-

depth = 3 is generated from the Decision Tree model, as seen in Figure 7.6. As for any decision

tree, the feature having highest importance is located in the roof node, which in this case is

the Stage2-AirPressure, with children nodes of lower importance, such as the System-AirPressure

and the BlowOffValve-Position. Depending on the constraints presented in each node, the tree

predicts the target variable based on the true or false statements associated with each con-

straint.
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Figure 7.6: Visualization of a decision tree with max-depth = 3.

7.3 Feedforeward Neural Network

In the following, the Feedforeward Neural Network model is presented, including hyperparame-

ter optimization, evaluating the model performance on both the validation and testing data set

and visualizing the predicted output in relation to the actual measured output.

7.3.1 Hyperparameter Optimization

For Feedforward Neural Networks, the number of hidden layers, the number of neurons in each

layer, and which activation function to use are among the most important hyperparameters to

be optimized, as presented in Chapter 4. In contradiction to Decision Trees and Random Forest

models, the optimization process is not straight forward, due to the fact that the combinations

of hyperparameters to optimize approaches infinity. Hence, to most common approach is to

test several models on the validation set, each having a unique combination of hidden layers,

neurons and activation functions. As seen in Figure 7.7, 6 different models were evaluated on

the validation set, where Model 6 obtained the lowest MAE. This model had an input layer con-

sisting of 4 neurons, one hidden layer consisting of 6 neurons and an output layer consisting

of 4 neurons. The ReLU function was used as activation function, which is known to generally

provide high performance, as emphasized in Chapter 4. The combinations of hyperparameters

for the other models are presented in Appendix B.2.1.
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Figure 7.7: Hyperparameter optimization for the Feedforward Neural Network

7.3.2 Model performance - Feedforward Neural Network

Similarly as for the Decision Tree and Random Forest model, the MAE, MSE and RMSE are cal-

culated to estimate the model’s performance on the validation and testing set, along with the

accuracy provided by Scikit-Learn. As seen in Table 7.5, the model’s performance is higher on

the validation set than on the testing set, which was explained to be logical in section 7.2.2.

However, the gap between the validation and testing error is not as big as to rise suspicion about

overfitting the training data. As seen, the Feedforward Neural Network struggles to predict the

target variable, both on the validation and testing data set. This implies that the model is under-

fitting the data, and is struggling to capture the relationship it is attempting to learn. In order to

reduce the problem of underfitting, other combinations of hyperparameters are required.

Table 7.5: Feedforward Neural Network, Model 6, performance on the validation and testing set

Validation set Testing set

Accuracy 0,54 0,42

Mean Absolute Error 7,73 13,70

Mean Squared Error 657,59 1956,23

Root Mean Squared Error 25,64 44,23
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Visualization of Predictions - Feedforward Neural Network

As seen in Figure 7.8 and Figure 7.9, the Feedforward Neural Network struggles to predict the

Stage3-AirPressure, as the actual value deviates from the predicted value. This is also highlighted

through the calculated performance metrics presented in Table 7.5.

Figure 7.8: Predicted and actual
Stage3-AirPressure by the Feedforward
Neural Network during the testing pe-
riod.

Figure 7.9: Predicted and actual
Stage3-AirPressure by the Feedforward
Neural Network during the testing pe-
riod.

7.4 Model Benchmark

To conclude, to performance obtained on the validation and testing set for both the Decision

Tree model, the Random Forest model and the Feedforward Neural Network is compared, as pre-

sented in Table 7.6 and Figure 7.10. As seen, the Random Forest model has the overall best per-

formance, both on the validation set and the testing set, followed by the Decision Tree model.

The Feedforward Neural Network struggles both on the validation and testing set, and suffers

from underfitting the data. This can be explained by several reasons; i) the combinations of hy-

perparameters to tune in a Neural Network are higher, such that the model performance could

have been improved if more combinations were tested, ii) Neural Networks are in general more

sensitive to the scale of the data, and standardization and normalization of the data is often

recommended (Chollet, 2017). Due to lack of time and competence, this was not performed.

Based on the obtained results, the Random Forest model with 25 trees will be used to build the

unsupervised anomaly detector based on residuals.
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Table 7.6: Validation and testing set performance for the Decision Tree (DT), Random Forest
(RF) and Feedforward Neural Network (MLP) model

Validation set Testing set

RF DT MLP RF DT MLP

Accuracy 0,98 0,98 0,54 0,98 0,97 0,42

MAE 2,18 2,38 7,73 3,49 3,58 13,70

MSE 21,26 23,73 657,59 77,14 79,42 1956,23

RMSE 4,61 4,87 25,64 8,78 8,91 44,23

Figure 7.10: Mean Absolute Error obtained by the three models.

Comparison of the Predicted Target Variable

In Figure 7.11, Figure 7.12, Figure 7.13 and Figure 7.14, the predicted and average predicted

Stage3-AirPressure generated by all three models are visualized, along with the actual and aver-

age actual Stage3-AirPressure. As seen, the Random Forest model manages to predict the Stage3-

AirPressure with highest performance, followed by the Decision Tree model and the Feedforward

Neural Network.
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Figure 7.11: Predicted and actual
Stage3-AirPressure by the three mod-
els for the testing period.

Figure 7.12: Predicted and actual
Stage3-AirPressure by the three mod-
els for the testing period.

Figure 7.13: Close up one day, pre-
dicted and actual Stage3-AirPressure
by the three models.

Figure 7.14: Close up one day, pre-
dicted and actual Stage3-AirPressure
by the three models.



Chapter 8

Unsupervised Anomaly Detection

Implementation

In this chapter, the anomaly detector based on residuals and the anomaly detector based on

clustering are presented. The anomaly detectors are built based on the framework presented

in Chapter 5 and relevant machine learning theory presented in Chapter 4, using the Stage3-

AirPressure as target variable.

8.1 Anomaly Detection Based on Residuals

The procedure of building an unsupervised anomaly detector based on residuals can be sum-

marized as follows; i) predict the target variable,Stage3-AirPressure, by a machine learning re-

gression model, which is trained on normal operating behavior, ii) calculate the residuals be-

tween the predicted and the actual measured target variable, denoting the error of the predic-

tions iii) establish confidence bounds for decision making, which balance the trade off between

false positives and false negatives (Sanz-Bobi, 2016), (Chandola et al., 2009a). For a more de-

tailed description of the steps involved, refer to Chapter 5.

8.1.1 Calculating the Residuals

The Random Forest model presented in Chapter 7 achieved the highest performance both on

the validation and testing data set, and is therefore used to predict the Stage3-AirPressure. The

residuals are calculated based on the following formula;

90



CHAPTER 8. UNSUPERVISED ANOMALY DETECTION IMPLEMENTATION 91

rt = yt − ft , (8.1)

where yt denotes the actual value and ft denotes the predicted value, which in this case is the

actual and predicted Stage3-AirPressure.

The residuals denote the error between the predicted and actual Stage3-AirPressure for each in-

stance of time. Calculated for the testing period from 22.- to 27. January, the results presented

in Table 8.1 are obtained. As seen, the mean error is 0,41, which indicates that the predicted

Stage3-AirPressure accomplishes to follow the actual Stage3-AirPressure in most instances of

time. However, both the maximum value of the error, equal to 63,62, and the minimum value

of the error, equal to −71,10, indicate that there are instances of time where the error is far from

zero. In Figure 8.1 and Figure 8.2, the plot and the histogram of the residuals are visualized

respectively. The residuals are assumed, after inspection of the histogram, to follow a normal

distribution.

Figure 8.1: Calculated residuals
between the actual and predicted
Stage3-AirPressure during the testing
period.

Figure 8.2: Histogram of the residu-
als between the actual and predicted
Stage3-AirPressure during the testing
period.
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Table 8.1: Descriptive statistics on the residuals between the predicted and actual Stage3-
AirPressure.

Descriptive statistics Value

Count 7322,00

Mean 0,38

Std 7,59

Min -71,10

25% -2,23

50% -0,69

75% 0,39

Max 63,63

8.1.2 Establishing Confidence Bounds for Decision Making

In order to determine if abnormal behavior is observed, an upper and lower control limit for the

magnitude of the residuals need to be established, which is done by the principles of Statisti-

cal Process Control, as explained in Chapter 5. A sample is classified as abnormal if either the

actual Stage3-AirPressure exceeds the upper control limit or if the actual Stage3-AirPressure is

lower than the lower control limit. The upper control limit is established based on the predicted

value plus the standard deviation of the residuals, multiplied by a chosen constant, while the

lower control limit is established based on the predicted value minus the standard deviation of

the residuals, multiplied by a constant. Mathematically, a sample is classified as abnormal if

either;

yt > ft +x ∗σ, (8.2)

yt < ft −x ∗σ, (8.3)

where yt denotes the actual value, ft denotes the predicted value, σ denotes the standard devi-

ation of the residuals and x denotes a constant.
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Optimizing the Confidence Bounds

In order to minimize the risk of false positives and false negatives, the confidence bounds need

to be optimized for the problem at hand. In Figure 8.3, the number of detected anomalies are

plotted with respect to increased confidence bounds, ranging from an upper control limit at 1σ

to 10σ and a lower control limit from −1σ to −10σ. As the confidence bounds are increased,

the number of detected abnormal samples decrease. In addition, the residuals are visualized

with upper and lower control limit equaling 3σ and −3σ respectively. Any samples crossing

these control limits are then classified as anomalous. This can also be illustrated by plotting

the predicted and actual St ag e3− Ai r Pr essur e with confidence bounds, as seen in Figure 8.5,

where the green area denotes the confidence are. In this case, anomalies are detected when the

actual St ag e3− Ai r Pr essur e starts moving outside the green confidence area.

Due to lack of historical data containing failures and anomalies, checking the occurrence of false

positives and false negatives for difference confidence bounds is impossible. Therefore, it is as-

sumed that the big spics exceeding the upper and lower control at 3σ are true anomalies that

need to be detected. For an upper and lower control limit at 3σ, it can be read from Figure 8.3

that approximately 180 abnormal samples are detected during the testing period, out of in total

7322 samples. As seen in Figure 8.4, many of the abnormal samples occur in the same time in-

terval, such that they most probably are caused by the same phenomena. In reality, these spics

may be a result of the load distribution principle, causing irregular patterns that were excluded

from the training data. In addition, the individual spices exceeding the control limits at the end

of the testing interval can be a result of the phenomena of lagging between the sensors mea-

surements. Lagging may occur when there is a delay between the measurements of correlated

sensors, such that when for example the St ag e1− Ai r Pr essur e decreases, it takes some time

before the St ag e3− Ai r Pr essur e sensor measures the decrease, causing deviations between

the predicted and the actual St ag e3− Ai r Pr essur e. Hence, more attention should be payed to

samples that are continuously exceeding the control limits for several minutes or hours. How-

ever, these spics are treated as anomalies to demonstrate how an anomaly detector can be built

based on residuals.
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Figure 8.3: Number of detected abnormal samples during the testing period with different con-
fidence bounds.

Figure 8.4: Residuals between the pre-
dicted and actual Stage3-AirPressure
with confidence bounds at 3σ.

Figure 8.5: Predicted and actual
Stage3-AirPressure with confidence
bounds at 3σ.

8.2 Anomaly Detection Based on Clustering

The procedure of building an anomaly detector based on K-means clustering can be summa-

rized as follows; i) determine the optimal number K clusters needed to capture the variance in

the target variable, ii) create the reference pattern by fitting the K-means clustering algorithm

to the training set characterizing normal operating behavior, iii) Fit the K-means algorithm to

the testing set to create the measured pattern, and compute the distance between the refer-

ence and measured pattern, iv) decide on an outlier fraction that minimizes the risk of false

positives and false negatives. For a more detailed description of the steps involved, refer to

Chapter 5. For clustering based procedures, the data belonging the target variable itself is the

main focus, yet other features can be included in the data set to assist describing the variance

observed in the target variable. Hence, in addition to the target, St ag e3− Ai r Pr essur e, the
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St ag e2− Ai r Pr essur e is included in the data set, argued by the fact that these features are

strongly correlated, as proven in Chapter 6. Despite this, the time frame for training and testing

is the same as established in Chapter 6.

8.2.1 Establishing the Reference Pattern

In order to establish the reference pattern, the number clusters K needs to be determined, which

should be sufficiently high to capture the variance in the target variable, yet not higher than

necessary Wu (2012). In order to determine the optimal number of K clusters, the K-means al-

gorithm is fitted to the training data describing normal operating behavior, with K ranging from

1− 20. For each fitting, a score is calculated, indicating at which level the algorithm accom-

plished to assign all sampled in the training set to an established cluster. This optimization pro-

cedure is visualized by the Elbow Curve, describing the score obtained by the K-means algorithm

for different clusters, as seen in Figure 8.6. From the Elbow curve, is is evident that the graph lev-

els off after approximately 8 clusters, which implies that any additional cluster would not con-

tribute further to describe the variance in the St ag e3− Ai r Pr essur e. The K-means algorithm

with 8 clusters is fitted to the training set containing data from both the St ag e3− Ai r Pr essur e

and the St ag e2−Ai r Pr essur e, as seen in Figure 8.7, where each color denotes a specific cluster.

These clusters forms the reference pattern. The data here is scaled and normalized, explaining

why the axis values in Figure 8.7 deviates from the true measured pressure values.

Figure 8.6: The Elbow Curve indicat-
ing the score for different clusters.

Figure 8.7: Visualization of the 8 clus-
ters forming the reference pattern

8.2.2 Establishing the Measured Pattern

In order to detect anomalies, the K-means algorithm with 8 clusters characterizing the normal

operating behavior is used as a reference pattern. The algorithm is fitted to the never-before-
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seen samples in the testing set, where samples classified as normal will belong to any of the

established 8 clusters, while samples classified as abnormal not will belong to any of the clusters.

In order to determine if a sample can be assign to any of the clusters, the distances between each

sample and its nearest cluster centroid is calculated. Based on a predefined outl i er f r acti on,

which needs to be optimized, the samples with the biggest distances to a centroid is classified

as abnormal.

Optimizing the Outlier Fraction

The outlier fraction determines the percentage of samples that are classified as abnormal, among

the samples with biggest distance to their closets centroid (Chandola et al., 2009a). As seen in

Figure 8.8, the number of detected anomalies increase linearly as the outlier fraction increase,

which logically can be explained by the percentage increase in the fraction of distances that are

classified as cluster outliers. The outlier fraction needs to be determined such that the risk of

false positives and false negatives are minimized, which also here requires historical data con-

taining known failures and anomalies.

Figure 8.8: Number of detected abnormal samples during the test period with different outlier
fractions

To illustrate the principle, the time series plot of the Stage3-AirPressure with detected anoma-

lies for an outlier fraction = 0,02 and outlier fraction = 0,04 are visualized, as seen in Figure 8.9

and Figure 8.11. In addition, the histogram for each case representing the Stage3-AirPressure

spread is visualized in Figure 8.10 and Figure 8.12, along with the samples classified as abnor-

mal. Through visual inspection, it becomes evident that the big spikes are classified as anoma-

lous, to which extent, depends on the predefined outlier fraction. For an outlier fraction = 0,02,
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approximately 180 samples out of 7322 samples in total are classified as abnormal, while for an

outlier fraction = 0,04, approximately 350 anomalies are detected.

Figure 8.9: Stage3-AirPressure plot
with detected anomalies with outlier
fraction=0,02

Figure 8.10: Histogram of Stage3-
AirPressure with detected anomalies
with outlier fraction=0,02.

Figure 8.11: Stage3-AirPressure plot
with detected anomalies with outlier
fraction=0,04.

Figure 8.12: Histogram of Stage3-
AirPressure with detected anomalies
with outlier fraction=0,04.

8.3 Comparison of the Implemented Anomaly Detectors

For the anomaly detector based on clustering, an outlier fraction at 0,02 gives the result of 180

detected abnormal samples. Similar results were obtained for the anomaly detector based on

residuals, with confidence bounds equaling 3σ, giving 180 detected abnormal samples, out of

in total 7322 samples. By visual inspection of the residuals plot with confidence bounds in sec-

tion 8.1.2, and the time series plot with detected anomalies in section 8.2.2, approximately the

same samples are classified as anomalous by the two detectors. As emphasized in Chapter 2,

Low System Air Pressure, and evidently deviations in the Stage3-AirPressure, may have the the

following root cause; incorrect valve calibrations, valve malfunctions, air leakages, degraded or
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damaged impellers, incorrect control calibration or high temperature air damaging the equip-

ment. In relation to the fields of RAMS and Health Management, being familiar with such root

causes is promoted as highly important, enabling efficient diagnosis and scheduling of predic-

tive maintenance. However, the the big spics may be caused by the load distribution principle

or be a result of lagging between the sensor measurements, as explained in section 8.1.2. In

order to minimize the risk of false positives and false negatives, expert judgment or data includ-

ing known anomalies should be considered. By only establishing the decision rules based on

results revealed through modeling of what is assumed to be normal, one face the risk of estab-

lishing decision boundaries that are misleading.

For the Centrifugal Air Compressor system operating continuously during the year, seasonal

and cyclic variations, and possible drifts may impact the data. For the presented anomaly de-

tectors, only measurements from December and January were considered, which not may be

representative of the spring, summer and fall season. Outside temperature and air humidity are

examples of factors that may cause seasonal variations, whereas cyclic variations may be caused

by economical variations impacting the production demand of compressed air. Furthermore,

possible drifts may cause the normal operating characteristics to change with time. Environ-

mental changes increasing the outdoor temperature permanently and permanently changes in

the air composition are example of factors causing drifts. The air cooling system and the inlet

filter are examples of sub-systems that are directly impacted these possible seasonal variations

and drifts, which again impacts the other sub-systems of the compressor system as whole. As

the characteristics of normal operating behavior change, the decision boundaries need to be

updated, most preferably in an adaptive manner, reducing the risk of false positives and false

negatives. According to the Numenta Benchmark Requirements, as presented in Chapter 3, the

algorithm must have the ability to continuously learn in an adaptive manner, to capture sea-

sonal and cyclic variations, and possible drifts (Lavin and Ahmad, 2015). The residuals based

approach is better suited to handle such variations than the clustering based approach, which

is limited by the number of features it considers, as emphasized in Chapter 5. In addition, the

machine learning models used for the residuals based approach can accomplish to learn all this

variations, whereas several reference patterns may need to be crated to capture the variations

for the clustering based approach (Lavin and Ahmad, 2015) (Sanz-Bobi, 2016). However, for

both the presented anomaly detectors, manual tuning may be required to optimize the decision

boundaries if drifts occur, requiring expert and system knowledge.



Chapter 9

Conclusions, Discussion, and

Recommendations for Further Work

In this final chapter, a summery and conclusion is provided, along with a discussion of the pre-

sented findings. In addition, recommendations for further work are provided.

9.1 Summary and Conclusions

The main objective for this master thesis was to build an unsupervised anomaly detector based

on machine learning, capable of detecting abnormal behavior in continuous time series data,

not including labeling or failure history. The system under study was a three-stage Centrifu-

gal Air Compressor system, which is continuously monitored by 21 sensors. In order to reach

the objective, several approaches to unsupervised anomaly detection were reviewed, conclud-

ing that anomalies can be detected either by calculating the residuals between the predicted

target variable and the actual measured target variable, or by comparing new samples to an

established reference pattern, generated through clustering. For both the approaches, it is a

requirement that the machine learning model is trained and optimized on data characterizing

normal operating behavior, such that any new sample deviating from this modeled behavior is

classified as anomalous. The framework on how to build an anomaly detector for each of these

approaches is presented in Chapter 5, which is used as a foundation for the practical imple-

mentation presented in Chapter 8. In contradiction to physical and statistical models, machine

learning models do not not make any predefined assumptions about the relationship between

the variables in the system, which for complex systems, may enable the incorporation of all the
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variables affecting the dynamics of the system into the model. However, machine learning mod-

els may suffer from both overfitting and underfitting, requiring the models to be trained, tested

and validated on three different data sets, as emphasized in the machine learning framework

presented in Chapter 4. The main objective is to build a model that generalize well, referring to

the model’s ability to perform well on never-before-seen data, where hyperparameter optimiza-

tion plays an essential role.

Three state-of-the art supervised machine learning models were reviewed and implemented on

the compressor data, namely the Decision Tree model, the Random Forest model and a Feedfor-

ward Neural Network, along with the unsupervised machine learning model K-Means clustering,

which all were presented in Chapter 4. In order to predict the target variable, Stage3-AirPressure,

each model were trained, validated and tested based on the data sets established in Chapter 6,

after visual inspection of the data at hand and the results from descriptive statistics. The per-

formance benchmark presented in Chapter 7 revealed that the Random Forest model predicts

the Stage3-AirPressure with highest performance, having an accuracy equal to 0,98, followed by

the Decision Tree model and Feedforward Neural Network. Arguably, the Random Forest model

was used to build the anomaly detector based on residuals. Using an upper control limit and

lower control limit at respectively 3σ and −3σ, in total 180 samples out of 7322 samples were

classified as anomalous. Similar results where obtained by the anomaly detector based on clus-

tering, using an outlier fraction at 0,02. By comparing the two anomaly detectors, is it evident

that both the detectors classify the large irregular patterns in the middle of the test period as

anomalous, similar yields for the big spics at the end of the test period. As emphasized in Chap-

ter 8, this can either be caused by the load distribution principle controlling the compressors,

the phenomena of lagging between the sensor measurements or detection of true anomalies.

In order to minimize the risk of false positives and false negatives, these decision boundaries for

detection need to be optimized based on expert judgment or failure history containing known

anomalies, which raise the need for converging the fields of Health Management and Artificial

Intelligence.

According to the Numenta Benchmark Requirements, it was concluded that an unsupervised

anomaly detector based on residuals is more capable of learning in an adaptive manner, cap-

turing possible seasonal and cyclic variations, than the clustering based approach. However,

both the presented unsupervised anomaly detectors accomplish to detect anomalies and at an

early stage, without relying on labels or failure history, such that it can be concluded that the

main objective with associated sub-objectives for this master thesis are met.
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9.2 Discussion

The results from the descriptive statistics revealed that the Stage3-AirPressure is strongly corre-

lated with both the System-AirPressure, Stage3-AirTemperature, Stage2-AirTemperature, Stage2-

AirPressure and BlowOffValve-Position, which also was visualized by the linear regression line

between the Stage3-AirPressure and these sensors in Chapter 6. Based on this, it can be dis-

cussed if a simple linear regression model could have been applied to model the normal be-

havior of the system, instead of a machine learning model. Similarly, a physical model, such

as the ideal gas equation, pV = nRT , would most probability manage to capture the deviations

seen in the Stage3-AirPressure if the temperature deviates. However, as highlighted in chapter

3, the main limitation of statistical and physical models, is that it is hard to determine if all the

variables affecting the target variable actually are incorporated into the model. Establishing a

regression model that incorporates all the 21 sensors are impractical, such that assumptions

about which variables affecting the target variable the most would have been necessary. How-

ever, the feature importance presented from the Random Forest model and the Decision Tree

model in Chapter 7 indicates that only these highly correlated sensors were used to predict the

the Stage3-AirPressure. Hence, for the three-stage Centrifugal Air Compressor system, a statis-

tical regression model including only these correlated sensors could have managed to capture

the same dynamics as a machine learning model.

Form a Health Management and RAMS perspective, assessing potential failure modes and cor-

relations based on system knowledge are in focus. Through the presented descriptive statistics,

and based on the feature importance, the correlations and relationships between the system

components were also revealed. From a data mining perspective, where the failure modes and

internal system relationships not are assessed in advanced, it is questionable why such detailed

examination of the system actually needs to be carried out. One could argue that the data ana-

lytics speaks for itself, reducing the need to truly understand the system in advance. However,

by combining the two approaches, hypothesis may be proven twice, increasing the trustwor-

thiness of the results. In addition, by only considering the data at hand, correlations between

features could be found, which in the real world not are true correlations. Examples of such

phenomena could be that the price in the stock market increases, evidently at the same time

as birds return home after spending time in warmer countries. By only considering the results

gained through data analytics, one could have been concluding that the stock price increases

as the amount of birds increases, which would be a big mistake. This example strengthens the

belief that an interdisciplinary collaboration between the fields of Health Management and IT

is required, to maximizing the value that possible can be created through data analytics.
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The same theory also yields for optimizing the decision rules used to classify samples as abnor-

mal or normal. If no failure history is available, expert knowledge is required to determine if

the algorithm actually manages to detect true anomalies. By only relying on the results believed

to be normal from machine learning, the risk of misplacing the decision boundaries increases,

which again increases the risk of false positives and false negatives.

9.3 Recommendations for Further Work

In the following, possible extensions and recommendations for future work are presented, with

the aim of providing some guidance for further analysis and topics that needs to be addressed

for successfully implementing an unsupervised anomaly detector.

• In order to develop an unsupervised anomaly detector capable of detecting anomalies

in real time during the whole year, the machine learning model needs to be trained and

validated on data for a longer time period. Seasonal and cyclic variations, and possible

drifts, most probably impacts the normal operating behavior of the system, which needs

to be incorporated into the model for online, real time detection.

• For Neural Networks, hyperparameter optimization is a complex task, due to the num-

ber of possible hyperparameter combinations. In order to improve the performance of

the Feedforward Neural Network presented, more attention should be payed to the op-

timization process. In addition, Neural Networks with back-propagation can be consid-

ered, such as Recurrent Neural Networks, which assists the optimization process by giving

indications on how the weights should be adjusted to obtain high performance.

• In order to establish decision rules that minimize the risk of false alarms and false posi-

tives, expert judgment is required. In addition, the anomaly detector should run in parallel

with the system while operating, such that the decision rules for determining if a sample

actually is abnormal can be tuned.

• Taking into account that only one out of five possible compressors was considered, an

anomaly detector analyzing the data from all the compressors should be considered. The

load distribution principle causes irregular patterns, such that by considering all the com-

pressors simultaneously, one can verify or reject if the irregular patterns are caused by the

load distribution principle, or if actual abnormal behavior is observed.



Appendix A

Acronyms

RUL Remaining useful lifetime

MTTF Mean time to failure

ETTF Estimation of time to failure

ML Machine Learning

AI Artificial Intelligence

RF Random Forest

DT Decision Tree

NN Neural Network

MLP Multilayer Perceptron

MFE Mean Forecast Error

MAE Mean Absolute Error

MAPE Mean Absolute Percentage Error

MSE Mean Square Error

RMSE Root Mean Square Error
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Appendix B

Listings of Codes for the Presented

Analysis

B.1 Descriptive Statistics on Normal Operating Behavior

Descriptive statistics on normal operating behavior

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

Data = pd.read_csv(’JanuarDesember−sorted−appended.csv’, index_col = 0, parse_dates=True

,→ )

x_col=Data.columns.values

#Timeinterval − Normal operating behavior

time_start_date = ’2019−01−08 00:00:00’

time_end_date = ’2019−01−16 00:00:00’

df=Data.loc[time_start_date:time_end_date,:]

#Calculate the correlations between all the features

Dataframecorr=pd.DataFrame(data=df.corr().unstack().sort_values().drop_duplicates())
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Dataframecorr[’Correlation’]=Dataframecorr[0]

Dataframecorr=Dataframecorr.drop([0], axis=1)

#Create dataframes with top positive and top negative correlations

Topneg=Dataframecorr.head(15)

Topneg[’Top Negative Correlations’]=Topneg[’Correlation’]

Topneg=Topneg.drop([’Correlation’], axis=1)

Toppos=Dataframecorr.tail(15)

Toppos[’Top Positive Correlations’]=Toppos[’Correlation’]

Toppos=Toppos.drop([’Correlation’], axis=1)

Toppos.sort_values(’Top Positive Correlations’, inplace=True, ascending=False)

#Create heatmap for the correlations between all the features

fig, ax = plt.subplots(figsize=(15,15))

sns.heatmap(df.corr(), square=True, annot=True, fmt=".2f")

fig.savefig(’snsheatmap.png’)

#Create scatter plots between hihly correlated features

Correlation1= sns.pairplot(df, x_vars= [’BlowOffValve_Position’],

y_vars=[’Stage3_AirPressure’], diag_kind="kde", kind="reg")

Correlation2= sns.pairplot(df, x_vars= [’Stage2_AirPressure’],

y_vars=[’Stage3_AirPressure’], diag_kind="kde", kind="reg" )

Correlation3= sns.pairplot(df, x_vars= [’System_AirPressure’],

y_vars=[’Stage3_AirPressure’], diag_kind="kde", kind="reg" )

Correlation4= sns.pairplot(df, x_vars= [’BlowOffValve_Position’],

y_vars=[’System_AirPressure’], diag_kind="kde", kind="reg" )
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Correlation5= sns.pairplot(df, x_vars= [’Stage1_AirTemperature’],

y_vars=[’Stage3_AirPressure’], diag_kind="kde", kind="reg" )

Correlation6= sns.pairplot(df, x_vars= [’Stage3_AirTemperature’],

y_vars=[’Stage3_AirPressure’], diag_kind="kde", kind="reg" )

B.2 Machine Learning Regression Models

Machine learning models

#Importing the relevant libraries

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

from sklearn.tree import DecisionTreeRegressor

from sklearn.ensemble import RandomForestRegressor

from sklearn.neural_network import MLPRegressor

from sklearn import metrics

#Importing the appended and preprocessed CSV file

Data = pd.read_csv(’JanuarDesember−sorted−appended.csv’, index_col = 0, parse_dates=True

,→ )

#Prepairing Data for Machine learing

col = Data.columns.tolist()

Data_ts = pd.DataFrame(data=Data[col].values.tolist(), index=Data.index, columns=col)

Data_ts.sort_index(inplace=True)

Data_tmp = Data_ts.copy()

Data_tmp[’Datetime’] = Data_ts.index
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Data_tmp = Data_tmp.dropna()

def encode(x):

if (x.dtype is np.dtype(’O’) and x.name != ’Stage3_AirPressure’) or x.name == ’Datetime’:

return x.astype(’category’).cat.codes

return x

Data_tmp = Data_tmp.apply(encode)

x_col = Data_tmp.columns.values[Data_tmp.columns.values != ’Stage3_AirPressure’]

#Creating training, validation and test set

train_start_date = ’2019−01−08 00:00:00’

train_end_date = ’2019−01−16 23:59:00’

validate_start_date = ’2018−12−14 00:00:00’

validate_end_date = ’2018−12−18 23:59:00’

test_start_date = ’2019−01−22 00:00:00’

test_end_date = ’2019−01−27 00:00:00’

Xtrain=Data_tmp.loc[train_start_date:train_end_date,x_col].values

Ytrain= Data_tmp.loc[train_start_date:train_end_date,’Stage3_AirPressure’].values

Xvalidate=Data_tmp.loc[validate_start_date:train_end_date,x_col].values

Yvalidate= Data_tmp.loc[validate_start_date:train_end_date,’Stage3_AirPressure’].values

Xtest = Data_tmp.loc[test_start_date:test_end_date,x_col].values

Ytest= Data_tmp.loc[test_start_date:test_end_date,’Stage3_AirPressure’].values

#Training and Testing with optimized hyperparameters

#DecisionTreeRegressor:

dsr = DecisionTreeRegressor(random_state = 0, min_samples_split = 10, max_depth = 8)

dsr.fit(Xtrain, Ytrain)

pre_y_by_dsr = dsr.predict(Xtest)
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#RandomForestRegressor:

rfr = RandomForestRegressor(n_estimators = 24, random_state =0)

rfr.fit(Xtrain, Ytrain)

pre_y_by_rfr = rfr.predict(Xtest)

#MLPClassifier − Feedforward Neural Network − Model 6 obtained best performance

mlpc = MLPClassifier(hidden_layer_sizes=(4, 6, 4), activation=’relu’, alpha=0.05, solver="adam

,→ ")

mlpc.fit(Xtrain, Ytrain)

pre_y_by_mlpc = mlpc.predict(Xtest)

#Extract featyre importance for Decision Tree and Random Forest

feature_importance_RF=rfr.feature_importances_

feature_importance_RF=dsr.feature_importances_

#Creating dataframe with predicted and actual values

Data_test=Data_tmp.loc[test_start_date:test_end_date,x_col]

df = pd.DataFrame(index=Data_test.index)

df[’pred_by_decision_tree_regressor’] = pre_y_by_dsr

df[’pred_by_random_forest_regressor’] = pre_y_by_rfr

df[’pred_by_MLP_regressor’]= pre_y_by_mlpc

df[’actual’] = Ytest

#Smoothing and averaging the time series data

df[’ewmaDT’] = df[’pred_by_decision_tree_regressor’].ewm(com=25).mean()

df[’ewmaRF’] = df[’pred_by_random_forest_regressor’].ewm(com=25).mean()

df[’ewmaMLP’] = df[’pred_by_MLP_regressor’].ewm(com=25).mean()

df[’actual_value_ewma’] = df["actual"].ewm(com=25).mean()

# Changing column names

df.columns = ["pred_by_decision_tree_regressor", "pred_by_random_forest_regressor", ’

,→ pred_by_MLP_regressor’, "actual", "average_pred_by_decision_tree_regressor", "
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,→ average_pred_by_random_forest_regressor", "average_pred_by_MLP_regressor", "

,→ average_actual"]

#Calculate Performance Metrics

print(’Mean Absolute Error DSR:’, metrics.mean_absolute_error(Ytest, pre_y_by_dsr))

print(’Mean Squared Error DSR:’, metrics.mean_squared_error(Ytest, pre_y_by_dsr))

print(’Root Mean Squared Error DSR:’, np.sqrt(metrics.mean_squared_error(Ytest,

,→ pre_y_by_dsr)))

print(’Mean Absolute Error RFR:’, metrics.mean_absolute_error(Ytest, pre_y_by_rfr))

print(’Mean Squared Error RFR:’, metrics.mean_squared_error(Ytest, pre_y_by_rfr))

print(’Root Mean Squared Error RFR:’, np.sqrt(metrics.mean_squared_error(Ytest,

,→ pre_y_by_rfr)))

print(’Mean Absolute Error MLP:’, metrics.mean_absolute_error(Ytest, pre_y_by_mlpc))

print(’Mean Squared Error MLP:’, metrics.mean_squared_error(Ytest, pre_y_by_mlpc))

print(’Root Mean Squared Error MLP:’, np.sqrt(metrics.mean_squared_error(Ytest,

,→ pre_y_by_mlpc)))

# Plotting predicted and actual values

predictions_df_average = df[[’pred_by_decision_tree_regressor’, ’

,→ pred_by_random_forest_regressor’, "pred_by_MLP_regressor", ’actual’]]

predictions_plot = predictions_df_average.plot(title=’Random Forest, Decision tree and

,→ MLP predicted and actual values’)

predictions_plot.set_xlabel("Date")

predictions_plot.set_ylabel("Stage3_AirPressure")

fig = predictions_plot.get_figure()

fig.savefig("RF−DT−MLP−actual33.png")

# Plotting avergae predicted and average actual values

predictions_df_average = df[[’average_pred_by_decision_tree_regressor’, ’

,→ average_pred_by_random_forest_regressor’, "average_pred_by_MLP_regressor", ’

,→ average_actual’]]

predictions_plot = predictions_df_average.plot(title=’Comparison of predicted and actual

,→ values after aligning & smoothing’)
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predictions_plot.set_xlabel("Date")

predictions_plot.set_ylabel("Stage3_AirPressure")

fig = predictions_plot.get_figure()

fig.savefig("RF−DT−MLP−average−actual33.png")

#Ploting feature importance Random Forest

n_features = Data_ts.shape[1]

plt.barh(range(n_features), rfr.feature_importances_, align=’center’)

plt.yticks(np.arange(n_features), Data_tmp.columns.values[Data_tmp.columns.values != ’

,→ Stage3_AirPressure’])

plt.xlabel(’Feature Importance Random Forest Regressor’)

plt.ylabel(’Feature’)

plt.show()

B.2.1 Hyperparameter Optimization - Feedforward Neural Network

Hyperparameter Optimization for Feedforward Neural Networks

#Hyperparameter Optimization − Feedforward Neural Network

#Model1

mlpc = MLPClassifier(hidden_layer_sizes=(20, 30, 20), activation=’tanh’, alpha=0.05, solver="

,→ adam")

#Model2

mlpc = MLPClassifier(hidden_layer_sizes=(10, 15, 10), activation=’tanh’, alpha=0.05, solver="

,→ adam")

#Model3

mlpc = MLPClassifier(hidden_layer_sizes=(5, 10, 5), activation=’relu’, alpha=0.05, solver="

,→ adam")

#Model4

mlpc = MLPClassifier(hidden_layer_sizes=(4, 8, 4), activation=’relu’, alpha=0.02, solver="adam

,→ ")

#Model5
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mlpc = MLPClassifier(hidden_layer_sizes=(2, 4, 2), activation=’relu’, alpha=0.005, solver="

,→ adam")

#Model6 − Highest performance on validation and testing data set

mlpc = MLPClassifier(hidden_layer_sizes=(4, 6, 4), activation=’relu’, alpha=0.005, solver="

,→ adam")

B.3 Unsupervised Anomaly Detection Based on Residuals

Anomaly detector based on residuals

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

from sklearn.ensemble import RandomForestRegressor

Data = pd.read_csv(’JanuarDesember−sorted−appended.csv’, index_col = 0, parse_dates=True

,→ )

#Prepairing Data for Machine learing

col = Data.columns.tolist()

Data_ts = pd.DataFrame(data=Data[col].values.tolist(), index=Data.index, columns=col)

Data_ts.sort_index(inplace=True)

Data_tmp = Data_ts.copy()

Data_tmp[’Datetime’] = Data_ts.index

Data_tmp = Data_tmp.dropna()

def encode(x):

if (x.dtype is np.dtype(’O’) and x.name != ’Stage3_AirPressure’) or x.name == ’Datetime’:

return x.astype(’category’).cat.codes

return x
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Data_tmp = Data_tmp.apply(encode)

x_col = Data_tmp.columns.values[Data_tmp.columns.values != ’Stage3_AirPressure’]

#Creating testing and training data sets

train_start_date = ’2019−01−08 00:00:00’

train_end_date = ’2019−01−16 00:00:00’

test_start_date = ’2019−01−22 00:00:00’

test_end_date = ’2019−01−27 00:00:00’

Xtrain=Data_tmp.loc[train_start_date:train_end_date,x_col].values

Ytrain= Data_tmp.loc[train_start_date:train_end_date,’Stage3_AirPressure’].values

Xtest = Data_tmp.loc[test_start_date:test_end_date,x_col].values

Ytest= Data_tmp.loc[test_start_date:test_end_date,’Stage3_AirPressure’].values

Data_test=Data_tmp.loc[test_start_date:test_end_date,x_col]

df = pd.DataFrame(index=Data_test.index)

#Training and predicting with the RandomForestRegressor

rfr = RandomForestRegressor(n_estimators = 10, random_state =0)

rfr.fit(Xtrain, Ytrain)

pre_y_by_rfr = rfr.predict(Xtest)

df[’pred_by_random_forest_regressor’] = pre_y_by_rfr

df[’actual’] = Ytest

# Establishing confidence bounds to determine abnormalites

df[’error’] = df[’actual’]− df[’pred_by_random_forest_regressor’]

df[’Upperbound’]= df[’pred_by_random_forest_regressor’] + df[’error’].std()*3

df[’Lowerbound’]= df[’pred_by_random_forest_regressor’] − df[’error’].std()*3

errorstd= df[’error’].std()
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errorinfo=df[’error’].describe()

# Labeling the actual Stage3_AirPressure as abnormal or normal to count the number of

,→ detected anomalies

df.loc[df.actual > df.Upperbound, ’anomaly’] = ’True’

df.loc[df.actual < df.Lowerbound, ’anomaly’] = ’True’

df.loc[(df.actual > df.Lowerbound) & (df.actual < df.Upperbound), ’anomaly’] = ’False’

print(df[’anomaly’].describe())

print(df[’anomaly’].isnull().sum())

#Plotting the residuals between the predicted and actual Stage3_AirPressure with confidence

,→ bounds

ax = plt.gca()

df.plot(kind=’line’, y=’error’, ax=ax, title=’Residuals between predicted and actual with

,→ confidence bounds at $3\sigma$’)

ax.axhline(y=errorstd*3, color=’r’, linestyle=’−−’, lw=1)

ax.axhline(y=−errorstd*3, color=’r’, linestyle=’−−’, lw=1)

ax.legend(["Residuals", "3$\sigma$"])

ax.set_xlabel("Date")

ax.set_ylabel("Error")

plt.show()

#Histogram of the error between the predicted and actual Stage3_AirPressure

fig, ax = plt.subplots()

df.hist(column=’error’, bins=20, ax=ax)

fig.savefig(’error−hist.png’)

#Ploting the predicted and actual Stage3_AirPressure with confidence bounds to detect

,→ anomalies

predictions_df_average = df[[’pred_by_random_forest_regressor’,’actual’]]

predictions_plot = predictions_df_average.plot(title=’Random Forest predicted and actual

,→ with confidence bounds equal 3$\sigma$’)

predictions_plot.fill_between(df.index, df[’pred_by_random_forest_regressor’]+errorstd*2, df[’

,→ pred_by_random_forest_regressor’]−errorstd*2, facecolor=’green’, alpha=0.4)
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predictions_plot.set_xlabel("Date")

predictions_plot.set_ylabel("Stage3_AirPressure")

fig = predictions_plot.get_figure()

B.4 Unsupervised Anomaly Detection Based on Clustering

Anomaly detector based on clustering

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

from sklearn.preprocessing import StandardScaler

from sklearn.cluster import KMeans

import pylab as pl

df = pd.read_csv(’JanuarDesember−sorted−appended.csv’, index_col = 0, parse_dates=True)

# Standardize the features

data = df[[’Stage3_AirPressure’, ’Stage2_AirPressure’]]

min_max_scaler = StandardScaler()

np_scaled = min_max_scaler.fit_transform(data)

data = pd.DataFrame(np_scaled)

#Creating training and testing data set

train_start_date = ’2019−01−08 00:00:00’

train_end_date = ’2019−01−16 00:00:00’

test_start_date = ’2019−01−22 00:00:00’

test_end_date = ’2019−01−27 00:00:00’

dftrain = df.loc[train_start_date:train_end_date,:]

dftest = df.loc[test_start_date:test_end_date,:]

#Standardized training and testing set

train = data.loc[train_start_date:train_end_date,:]

test = data.loc[test_start_date:test_end_date,:]
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# Creating the Elbow curve to determine the number of clusters required to capture the variance

Y = train[[’Stage3_AirPressure’]]

X = train[[’Stage2_AirPressure’]]

Nc = range(1, 20)

kmeans = [KMeans(n_clusters=i) for i in Nc]

score = [kmeans[i].fit(Y).score(Y) for i in range(len(kmeans))]

plt.figure()

pl.plot(Nc,score)

pl.xlabel(’Number of Clusters’)

pl.ylabel(’Score’)

pl.title(’Elbow Curve’)

pl.show();

# Cluster the training data in 7 clusters with the K−means algorithm

n_cluster=7

kmeans = [KMeans(n_clusters=i).fit(train) for i in n_cluster]

df[’cluster’] = kmeans[7].predict(train)

dftrain[’principal_feature1’] = train[0]

dftrain[’principal_feature2’] = train[1]

dftrain[’cluster’].value_counts()

#plot the different clusters for the Stage3_AirPressure and Stage2_AirPressure

fig, ax = plt.subplots()

colors = {0:’red’, 1:’blue’, 2:’green’, 3:’pink’, 4:’black’, 5:’orange’, 6:’cyan’}

ax.scatter(dftrain[’principal_feature1’], dftrain[’principal_feature2’], c=dftrain["cluster"].apply

,→ (lambda x: colors[x]))

plt.title(’7 Cluster K−Means’)

plt.xlabel(’Stage2_AirPressure’)

plt.ylabel(’Stage3_AirPressure’)

plt.savefig(’K−meanscluster.png’)

plt.show();

# Calulate the distance between each point in the testing set and the nearest centroid, the

,→ samples with biggest distance are classified as anomalies
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def getDistanceByPoint(data, model):

distance = pd.Series()

for i in range(0,len(data)):

Xa = np.array(data.loc[i])

Xb = model.cluster_centers_[model.labels_[i]−1]

distance.set_value(i, np.linalg.norm(Xa−Xb))

return distance

outliers_fraction = 0.02

distance = getDistanceByPoint(test, kmeans[7])

number_of_outliers = int(outliers_fraction*len(distance))

threshold = distance.nlargest(number_of_outliers).min()

# Store the series classifying the samples as abnormal og normal (0:normal, 1:anomaly)

dftest[’anomaly1’] = (distance >= threshold).astype(int)

#Convert the datetime to datetime integer

Getdates=dftest.index.tolist()

dftest[’date_time’]=Getdates

dftest = dftest.sort_values(’date_time’)

dftest[’date_time_int’] = dftest.date_time.astype(np.int64)

#Visualisation of time series plot with anomalies

a = dftest.loc[dftest[’anomaly1’] == 1, [’date_time_int’, ’Stage3_AirPressure’]] #anomalies

fig, ax = plt.subplots()

ax.plot(dftest[’date_time_int’], dftest[’Stage3_AirPressure’], color=’blue’, label=’Normal’)

ax.scatter(a[’date_time_int’],a[’Stage3_AirPressure’], color=’red’, label=’Anomaly’)

plt.xlabel(’Date Time Integer’)

plt.ylabel(’Stage3_AirPressure’)

plt.title(’Stage 3 Air Pressure time series plot with detected anomalies based on

,→ clustering’)

plt.legend()

plt.show();

#Visualization of anomalies in a histogram plot
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a = dftest.loc[dftest[’anomaly1’] == 0, ’Stage3_AirPressure’]

b = dftest.loc[dftest[’anomaly1’] == 1, ’Stage3_AirPressure’]

fig, axs = plt.subplots()

axs.hist([a,b], bins=32, stacked=True, color=[’blue’, ’red’])

plt.title(’Histogram of time series data with detected anomalies based on clustering’)

plt.show();

#Count the number of anomalies for varying outlier fraction

print(dftest[’anomaly1’].sum())

print(dftest[’anomaly1’].count())
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