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ABSTRACT Avision system has been developed for automatic quality assessment of robotic cleaning of fish
processing lines. The quality assessment is done by detecting residual fish blood on cleaned surfaces. The
system is based on classification using convolutional neural networks (CNNs). The performance of different
convolutional neural network architectures and parameters is evaluated. The datasets that simulate various
conditions in fish processing plants are generated using data augmentation techniques. Tests using further
augmented training data to increase the performance of the neural network are performed, which results
in a substantial increase in performance both compared to the color thresholding technique and the same
neural network architecture without augmented training data. The performance of the system is validated in
experiments in an industrial setting.

INDEX TERMS Aquaculture, robot vision system, machine learning, computer vision.

I. INTRODUCTION
Process hygiene is important to ensure product quality in
a fish processing plant. Microbiological control of spoilage
bacteria such as Pseudomonas and Shewanella is critical for
the quality and shelf life of fresh fish [1], [2]. Addition-
ally, Listeria monocytogenes contamination during produc-
tion may introduce a health risk to the consumer.

To cope with the risk of bacteria contamination, processing
plants must be thoroughly and frequently cleaned [3]. In the
case of salmon processing, production plants are cleaned
every day. Currently this is done manually by cleaning crews
at night after the production lines have been shut down.
There are strong incentives for automating this process as
it is repetitive and physically demanding, and the costs are
significant for a salmon processing plant. To ensure that an
automatic cleaning system will give a satisfactory result,
it is important to have a system for assessment of cleaning
quality. Moreover, to fully take advantage of an automatic
cleaning system, also the quality assessment system should
be automatic. A potential solution is to use computer vision,
as alsomanual quality assessment is primarily based on visual
inspection. It is considered to be straightforward for human
workers to decide if the cleaning quality is acceptable. In this
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visual inspection, critical tasks include the detection of the
presence of blood, fish debris and fish slime.

An interesting technique for visual inspection of fish pro-
cessing lines is vision systems based on Convolution Neural
Networks (CNN). CNN is well-established as a tool for deep
learning in computer vision, and is well suited for classi-
fication of visual data. Typical applications for CNN are
image classification, object detection, object tracking, pose
estimation and natural language processing [4]. The method
was proposed by LeCun et al. in 1990 [5], who developed
the method further in [6]. In 2005, Steinkrau et al. showed
that Graphic Processing Units (GPUs) could be used to speed
up training times. This was followed up in 2006 [7]–[9] and
2007 [10]. Recently CNN has received much attention in
computer vision, as it has given impressive results on visual
interpretation tasks, e.g. the ImageNet Classification problem
by Krizhevsky et al. [11].
Deep learning techniques rely on training where large

dataset are needed for high accuracy. For this reason, data
augmentation has been adopted to artificially inflate the size
of the datasets and to achieve a more accurate network.
This was done by Flusser et al. where moment invariants
were used for pattern recognition [12]. Another solution
was proposed by Yaeger et al., who used small random
changes in skew, rotation, and linear and quadratic scaling
to augment training data [13]. A more recent example is
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Tao et al., who augmented a 2D image sign language dataset
by viewing 3D images from multiple angles and then con-
verting the viewpoint to 2D images [14]. Such data augmen-
tation techniques makes the CNN less sensitive to changes
in position, orientation, stretching and scaling. A comparison
of various data augmentation schemes applied to a simple
CNN was performed by Taylor and Nitschke [15]. State-
of-the-art classification networks include GoogleNet [16],
AlexNet [11], VGG16 [17] and YOLO [18]. These networks
performwell on large classification problems, andwill handle
large datasets for training. However, a too large network
may be prone to overfitting if the size of the dataset is not
sufficient.

For smaller classification problems with less training
data available, it may be advantageous to develop special-
ized CNN classification networks. This has been done in
research on the classification of images containing blood.
This includes Ferreira et al., who used CNN and a texture
descriptor for detection and diagnosis of glaucoma [19],
while Tiwari et al. used CNN for classifying white blood
cell type [20]. Vogado et al. used pre-trained state-of-the-
art CNN models and Support Vector Machines for diagnos-
ing leukemia in blood slides [21]. An alternative solution
was used in Penna et al., who used color thresholding and
filtering techniques for detecting blood in intestines [22],
while Mackiewicz et al. used color histograms in the HSI
colorspace, which was classified with a Support Vector Clas-
sifier for images of intestines [23]. A system for computer
vision in quality inspection was presented by Benalia et al.,
who used Principal Component Analysis (PCA) and Partial
Least Squares – Discriminant Analysis for sorting dried figs
based on color [24]. Another example was presented by
Iglesias et al., who inspected the quality of slate slabs by 3D
color images [25]. The MangoNet system, based on CNN,
for detecting and counting fruit in images was proposed by
Kestur et al. [26]. However, no specialized CNN has been
developed for classification of images containing blood for a
cleaning system.

In this paper we develop a system for detecting blood
on a fish processing line using CNN as the classification
algorithm. The proposed solution uses data augmentation to
generate a sufficiently large dataset and to avoid overfit-
ting of the CNN. The data augmentation includes a generic
method to artificially increase the size of the dataset without
changing the complexity, and several methods to increase
the complexity of the dataset. Here the increased complexity
of the dataset is used to make the classification algorithm
more robust, which improves the performance of the algo-
rithm in the classification of an unseen image which deviates
from the original dataset. A comparison with color thresh-
olding techniques is performed. We also test the influence
of network architectures on this problem and how further
augmenting the training set can reduce overfitting of the
network.

The rest of the paper is organized as follows: Section II
presents the cleaning system. In Section III the proposed

approach, the data augmentation techniques and the datasets
are presented. Simple color threshold techniques for estab-
lishing a baseline are presented in Section IV. The experi-
ments and their results are presented in Section V and the
conclusions from the results and proposed future work are
found in Section VI.

FIGURE 1. The robotic cleaning system.

II. SYSTEM OVERVIEW
The robotic cleaning system studied in this paper was docu-
mented in [27] and is shown in Figure 1. The system consists
of a robotic manipulator where the kinematics has been opti-
mized for the task, and where the design is made to withstand
the harsh environment that is present during cleaning of fish
processing plants. Themanipulator is mounted to a horizontal
axis placed underneath the ceiling. The manipulator will be
parked outside of the processing plant during production,
and when the daily production has stopped it will enter the
production facility and start the cleaning process. After the
cleaning has been completed, the vision system will assess if
the requirements for cleaning quality are satisfied. The vision
system can be mounted at the end effector of the manipulator,
which enables the system to locate where the cleaning quality
is not sufficient. The cleaning system can then choose if the
whole cleaning process should be repeated, or if just the
unclean area should be cleaned once more. Alternatively,
the vision system can be arranged with cameras mounted on
predefined positions inside the processing plant.

III. PROPOSED APPROACH
We propose to use CNN with augmented data for process-
ing the images. Due to the power of the CNN solution,
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FIGURE 2. Example of image from the two different classes, one with
blood present and one without. (a) Image without blood. (b) Image with
blood.

we propose to use an area scan camera for acquiring the
images. For testing the proposed approach a dataset was
collected with a Sony IMX214 image sensor. The image
sensor has a resolution of 4160× 2336 pixels. The lens used
was a F2.0 28mmwide angle lens. The images were captured
with a distance of approximately 800 mm. The equipment
used for testing the proposed approach was a conveyor and
an electric stunner, two common machines in fish processing
lines. Both machines have stainless steel belts and plastic
elements as guides and walls which get contaminated with
blood during production. An example of images captured is
shown in Figure 2.

A. CONVOLUTIONAL NEURAL NETWORK
CNN is a feedforward neural network architecture that is a
combination of convolution, pooling/subsampling and fully
connected layers. The output of a convolution is given by

S(i, j) =
∑
m

∑
n

I(i− m, j− n)K(m, n) (1)

where K is the convolution kernel and I is the input from the
previous layer. The output is calculated at locations (i, j) that
are shifted with the stride. After the kernel has traversed the
whole input, the complete feature map is built. A layer may
have multiple kernels, which gives multiple output feature
maps. When multiple feature maps are used as input to a
convolution layer, one output of layer l is:

Il(i, j)=σ (b+
∑
k

∑
m

∑
n

Il−1(i− m, j− n, k)Kl(m, n, k))

(2)

where k is the index of the feature maps in the input Il−1
from the previous layer, b is the bias and σ is the activation
function.

The convolution is usually followed by a nonlinear acti-
vation function, like a Rectified Linear Unit (ReLU), which
reduces computation time without reducing accuracy [11],
[16], [17], [28]. The ReLU function is:

σ (x) =

{
x, x ≥ 0.
0, x < 0.

(3)

Pooling is a technique to down-sample the feature maps.
Additionally, the pooling technique makes the network
become less sensitive to translations of the input [4].
Max pooling [29] is a common choice of pooling technique.

Pooling works by sliding a window over the feature maps,
and in the case of max pooling, the maximum value from that
window will be kept. The size of the window and the stride
determines the size of the output maps.

The fully connected layers in a CNN are equal to the layers
in a Multilayer Perceptron (MLP). The output of neuron j of
the intermediate layer l is

alj = σ (z
l
j) (4)

where σ is the activation function, and where the argument is
the weighted sum

zlj = blj +
∑
k

wljka
l−1
k (5)

of the outputs al−1k from neuron k in layer l− 1. Here wljk are
weight factors, and blj is the bias. In the first layer l = 1,
and the input is a0j = xj, where xj, j = 1, . . . ,N are the
inputs of the neural network. As the layer is fully connected,
the weighted sum of the outputs of layer l − 1 is over all
neurons k .

The technique that enable neural networks to generalize on
training data is the supervised learning technique backpropa-
gation. Backpropagation is a method that calculates the error
of the network prediction and thenminimizes it by calculating
the gradient backwards through the network and updating the
weights so that the error decreases. We use the loss function
in terms of the cross entropy [30]

C = −
n∑
j=1

yj log(ŷj) (6)

where ŷj = aLj = σ (zLj ) is the predicted probability value
for class j in the final layer L, and yj is the true probability.
For our classification problems the activation function in the
output layer is the softmax function [4]:

σ (z)j =
exp(zj)∑K
k=1 exp(zk )

(7)

The true probability has a one-hot encoding, i.e. yj = 1 for
the correct class, while yj = 0 for all other values of j [4]. This
error is propagated backwards in the network and the weights
of the neurons are updated to minimize the error. The flow in
a CNN is shown in Figure 3.

B. WEIGHT INITIALIZATION
The initialization of the weights in the network has a high
influence in the networks ability to train, especially as net-
works get deeper. Too small weights and the signal will shrink
as it passes through each layer until it is too small to be useful.
Too large weights will cause the signal to explode in ampli-
tude as it goes deeper. Glorot and Bengio expanded upon this
problem and derived the Xavier weight initialization, which
is given by [31]

Var[w] =
2

nin + nout
(8)
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FIGURE 3. Calculations for a 6 × 6 × 1 input in a simple Convolutional Neural Network consisting of one convolution layer with 3 3 × 3 filters with ReLU
activation, one MaxPool layer with 2 × 2 filter and stride 2 × 2, one fully connected layer with 8 neurons and one output layer with 2 neurons.
Calculations for the fully connected layers are omitted. The light blue planes represent additional filters, convolutions and feature maps.

where nin is the number of connections in to a neuron, and nout
is the number of connections out of a neuron. The equation is
often simplified to

Var[w] =
1
nin

(9)

However, the weight initialization is based on the assumption
that the activation is linear, and have been proven to work
fairly well for traditional nonlinear activation functions such
as hyperbolic tangent and the sigmoid function. For more
recent activation functions, such as ReLU and PReLU, this
assumption no longer applies and the weight initialization
must be tailored according to the activation function, which
makes it possible to ensure that even deeper CNNs con-
verge [32]. The ReLU weight initialization is

Var[w] =
2
nin

(10)

due to a rectified linear unit outputting zero for half its inputs
when the distribution has zero mean.

C. DROPOUT
As proposed by Srivastava et al., dropout may facilitate the
ability of a network to generalize training data and avoid
overfitting [33]. Dropout is a regularization technique, but
instead of adding a penalty to weights in a neuron, it cuts a
certain percentage of the neurons in a layer during a forward
pass. Typically, the layers with dropout will need an increased
number of neurons, which increases the training time.

D. DATA AUGMENTATION
For some applications it may be difficult to get sufficient
labelled training data. A solution is to use data augmen-
tation, which makes it possible to artificially increase the
training data, which enables the neural network to train better
and achieve higher accuracy on cross validation and test
sets. Initially the training dataset for our approach consisted
of 43 images of class 1 and 57 images of class 2. Since
our image classification is not dependent on the position and
rotation of the characteristic separating the two classes, some

FIGURE 4. The data augmentation process. The end result is a ×16
increase in dataset size.

simple steps can be applied to increase the dataset. First,
the dataset was extended by rotating the images. Each images
was rotated 3 times by 90 degrees, and for each rotation a
copywasmade, thereby increasing the dataset fourfold. Then,
each of the images was cropped four times, retaining 80% of
the corners. The augmentation process is shown in Figure 4.
This process increases the dataset without increasing the
complexity [34].

E. BLURRING
Since the environment in the processing plant after cleaning
is very wet and humid, the lens of the camera may get
tainted. In some cases there can be a visible mist in the plant,
which will reduce the quality of the images. For this reason,
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a dataset with blurred images is also used for training [35].
The blurring technique is Gaussian filtering [36]

I (x, y) =
1

√
2πσ

exp
(
−
d2

2σ 2

)
(11)

where d =
√
(x − xc)2 + (y− yc)2, (xc, yc) is the center of

the filter and σ is the standard deviation. For our experiments
σ = 2 is used. An example of an original and blurred image
is shown in Figure 5.

FIGURE 5. Comparison of an original image, and one which is blurred.
(a) Not blurred. (b) Blurred.

FIGURE 6. Comparison of an original image, and one with reduced
contrast. (a) Original contrast. (b) Reduced contrast.

F. CONTRAST SHIFT
In order to make the CNN more resistant to varying condi-
tions, we generate a dataset using contrast shift [37]. Images
are generated with both higher and lower contrast. For the
images with the lower contrast the contrast is reduced to 50%
of the contrast in the original image. For the images with
increase contrast the images are scaled such that the bottom
and upper 1% of the pixels are saturated. An example of
reduced contrast is shown in Figure 6.

G. ILLUMINATION
The light conditions inside processing plants may vary sig-
nificantly from plant to plant. Additionally, the potential mist
inside the plant after the cleaning procedure may affect the
illumination. In order to achieve tolerance to variation in
lighting conditions, the lighting conditions in the images in
the dataset are manipulated [38]. Both brighter and darker
images are generated. New images can be obtained by

Iout (x, y) = Iin(x, y)+ γ (12)

where γ is the change in illumination. The effect of changing
the illumination is shown in Figure 7.

FIGURE 7. Comparison of a bright and a dark image. (a) Bright image.
(b) Dark image.

H. IMAGE TRANSFORM
To increase the robustness of the trained network and reduce
the problem of overfitting on the training set, experiments
were done using further data augmentation on the training
data. This is hereafter referred to as Image Transform (IT).
The Image Transform consisted of flipping and warping
images [15], [34]. The Image Transform steps are chained
together with different probabilities:

Iout = Iin ∗ Flip(x1) ∗ Flip(x2) ∗Warp(x3) (13)

where x1 is the probability of flipping the image by the first
transform, x2 is the probability of flipping it the second time,
and x3 is the probability of warping the image. The flip
transforms has a equal chance of not flipping it, horizontally
flipping it, vertically flipping it or flipping it both vertically
and horizontally. For the warp transform the function is

Iout (x, y) = Iin

(
M11x +M12y+M13

M31x +M32y+M33
,

M21x +M22y+M23

M31x +M32y+M33

)
(14)

whereM is the transformation matrixtix ′itiy′i
ti

 = M ·

xiyi
1

 (15)

where (xi, yi) are the quadrangle vertices[
0 cols cols 0
0 0 rows rows

]
where cols and rows are the number of columns and rows
in the image, respectively, while (x ′i , y

′
i) are the quadrangle

vertices[
δ ∗ r1 cols+ δ ∗ r3 cols+ δ ∗ r5 δ ∗ r7
δ ∗ r2 δ ∗ r4 rows+ δ ∗ r6 rows+ δ ∗ r8

]
where ri, i = 1 . . . 8, are random numbers that are uniformly
distributed in [−1, 1] and δ is the maximum deviation from
the original position.

I. EARLY STOPPING
Avery simple technique to avoid overfitting is early stopping.
Early stopping means that the training is terminated when the
accuracy on the cross validation data starts to decrease.
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J. DOWN-SAMPLING
Before all the data manipulation steps, the images are down-
sampled to 100× 100 by bicubic interpolation [39] to reduce
the computational cost.

K. DATASETS
Using the techniques described, several datasets are gen-
erated. Dataset 1 is the base dataset where rotation and
cropping has been applied to increase the size, without
increasing the complexity of the dataset. Dataset 2 consists
of blurred images obtained by the technique explained in
Subsection III-E. Dataset 3 has both images with higher and
with lower contrast as explained by Subsection III-F, and thus
has twice as many elements compared to dataset 1 and 2.
Similarly, dataset 4 also has twice asmany elements as dataset
1 and 2, using the technique described in Subsection III-G.
Dataset 5 is a combination of dataset 1, 2, 3 and 4, and thus
the largest and most complex. An overview of the datasets is
shown in Table 1.

TABLE 1. Datasets.

L. PERFORMANCE EVALUATION
For our performance evaluation we use accuracy:

Acc =
TP+ TN
P+ N

(16)

where TP is true positive, TN true negative, P all the images
with blood and N all the images without blood.

The datasets are divided into 80% training data and 20%
cross validation data for the proposed CNN approach. The
CNN approach is trained on the training data and evalu-
ated both on the training data and the cross validation data.
An important problem in machine learning is overfitting.
Overfitting is when the machine learning algorithm learn
the quirks and noise of the training data instead of general
trends. When this occurs the network achieves a much higher
accuracy on the training data than on the cross validation data.
Therefore, the accuracy on the cross validation data is the
most important performance measurement as it shows how
well the network is able to predict on data it has never seen
before.

IV. ALTERNATIVE TECHNIQUES
To investigate the performance of the proposed approach,
a comparison with alternative techniques is done in the exper-
iments. The alternative techniques used are based on color
thresholding.

A. COLOR THRESHOLD TECHNIQUE
An argument could be made that the classification could sim-
ply be solved with a color threshold algorithm. Two different

color threshold techniques, one in RGB color space and one in
HSV color space, are presented to give a robust comparison.
The threshold function for each pixel using the RGB color
model is

σ =

{
1, R ≥ G+ θG and R ≥ B+ θB

0, otherwise.
(17)

where θG and θB are the green and blue color threshold,
respectively, R is the red color value, G green and B blue.
For the HSV color model the threshold function is

σ =

{
1, θHL ≤ H ≤ θHH , S ≥ θS and V ≥ θV
0, otherwise.

(18)

where θ are the different thresholds. The number of pixels
above the threshold, as well as the thresholds themselves can
then be tuned in order to achieve the highest accuracy on the
classification problem.

RGB is the most common color model. RGB stand for Red,
Green and Blue, and a color is represented by three numbers,
one for each of the base colors. An alternative to RGB is
the HSV color space as it is more intuitive. HSV stands for
Hue, Saturation and Value, where hue is the color, saturation
decides how intense the color is (0 saturation is white), and
value determines the shade of the color.

B. CNN AS COLOR THRESHOLD TECHNIQUE
The color threshold technique described in the previous
section checks every single pixel independently, and the same
threshold values is used on all the pixels regardless of the
location of the pixel. This is similar to how a 1 × 1 fil-
ter of a CNN operates, with the exception that the output
is continuous for the CNN instead of binary as with the
threshold. Then, in the thresholding technique, all the pixels
above the thresholds are summed to determine which class
the image belongs to. Therefore one can argue that with the
correct weight initialization, a CNN with a single layer with
1 × 1 filters, a max pooling layer with a kernel size that
result in a 1 × 1 output feature map and ReLU activation
could do a similar operation as the color threshold technique
presented in the previous section performs. The proposed
network architecture is shown in Figure 2.

V. EXPERIMENTS
A. BASELINE EXPERIMENTS USING COLOR THRESHOLD
In order to establish a baseline for performance evaluation
of the proposed method, a number of tests were done with
the color thresholding technique, which is an alternative
technique. The best parameters of the thresholding technique
were found by an exhaustive search. All the experiments on
the color thresholding technique used 100% of the dataset.
This is because the color thresholding technique does not
have the same ability to overfit compared to a machine learn-
ing algorithm. The results of the color thresholding technique,
which are shown in Table 3, will be compared to the results
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TABLE 2. Network architecture of CNN as color threshold technique.
Variations of the network use different number of filters.

TABLE 3. Accuracy using color threshold.

TABLE 4. Accuracy using CNN color threshold on dataset 1.

TABLE 5. Accuracy using CNN color threshold on dataset 2.

TABLE 6. Accuracy using CNN color threshold on dataset 3.

TABLE 7. Accuracy using CNN color threshold on dataset 4.

from the proposed approach. It is seen from the table that
the color thresholding technique performed well on dataset
1 and 2, and not as well on dataset 3, 4 and 5.

Also CNN as a color thresholding technique was evaluated
as a baseline. The network is shown in Table 2. The results on
the different datasets are presented in Tables 4, 5, 6, 7 and 8.
Using CNN as strictly a color threshold technique achieved
approximately the same accuracy as using a conventional
threshold technique. The exception is dataset 3, where color
threshold using CNN performed better when the number of
filters were increased.

TABLE 8. Accuracy using CNN color threshold on dataset 5.

The complexity of the datasets increase from dataset 1 to 5,
with 1 being the least complex and 5 being the most complex.
On the least complex dataset, dataset 1, the best result
achieved by a color threshold technique was 98.9%. In con-
trast to this, the best result achieved by a color threshold
technique on the most complex dataset, which is dataset 5,
was 88.7%. An important observation is that the most com-
plex dataset will be the dataset that best reflect the variations
in images captured in a real world application. It is therefore
an important performance indicator for a method that it has a
high accuracy for dataset 5.

B. EXPERIMENTAL VALIDATION OF PROPOSED
APPROACH WITHOUT IT
Next, the proposed CNN method was tested in experiments.
Dataset 5 was chosen for all the experiments on the pro-
posed approach due to its size and complexity. The exper-
iments were performed on 10 different CNN architectures.
These CNN architectures had 6-8 layers, where the two last
layers were FCN. The size of the kernels and the number
of neurons were changed in the different network architec-
tures. The architectures are characterized by the parame-
ters given in Table 9, while the hyperparameters are given
in Table 10. The results for the 10 CNN networks are
documented in Table 11.

C. EXPERIMENTAL VALIDATION OF
PROPOSED APPROACH WITH IT
Next, we did experiments using the Image Transform (IT)
technique on the training data. In the experiments without IT
the best result were obtained with Architecture 1, which is
seen from Table 11. Therefore this architecture was selected
for the experiments with IT. Different versions of IT were
tested. Each experiment on the use of IT was run three
times, and the average values for the cross validation accuracy
and training time measured in epochs are presented in the
following. First, experiments with different values for the
warp δ in the WarpTransform were performed. The rest of
the settings of the IT were selected as 0.9 probability for Flip-
Transform 1, 0.8 for FlipTransform 2 and 0.5 probability for
the WarpTransform. The cross validation accuracy is shown
in Figure 8.
The next experiment was performed to investigate the

optimal value of the probability of the WarpTransform. The
best value for the Warp δ of the previous experiment, which
was δ = 30, was used in this experiment. The cross valida-
tion accuracy as a function of warp probability is shown in
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TABLE 9. Various network structures tested. Ouput layer omitted. TABLE 10. Hyperparameters for the proposed CNN approach.

TABLE 11. Accuracy using network architectures shown in table 9 and
hyperparameters shown in table 10 on dataset 5. All networks trained
without Image Transform.

FIGURE 8. Accuracy on cross validation as a function of warp δ on
architecture 1 with Image Transform. 0.5 probability for WarpTransform,
0.9 probability for FlipTransform 1 and 0.8 probability FlipTransform 2. The
training time measured in epochs is also shown. Average of 3 trainings.

Figure 9. A warp probability over 0.5 seemed to reduce the
cross validation accuracy.

Finally, experiments were performed to study the effect
of different values of the probability of the FlipTransforms.
In the first FlipTransform experiment the effect of vary-
ing the probability of one of FlipTransform 1 was studied.
The remaining parameters were 0.8 probability of FlipTrans-
form 2, 0.5 probability of WarpTransform and warp δ = 30.
The resulting cross validation accuracy as a function of the
flip probability is shown in Figure 10. The best result was a
cross validation accuracy of 99.27%. This result was obtained
with 0.0 probability for FlipTransform 1. This indicated that
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FIGURE 9. Accuracy on cross validation as a functions of percentage of
warp in the training set. Warp δ set to 30. 0.9 and 0.8 probability for
FlipTransform 1 and 2, respectively. The training time measured in epochs
is also shown. Average of 3 trainings.

FIGURE 10. Accuracy on cross validation as a function of probability of
FlipTransform 1 in the training set. 0.8 probability for FlipTransform 2,
Warp δ set to 30. 0.5 probability for WarpTransform.The training time
measured in epochs is also shown. Average of 3 trainings.

only one FlipTransform is required to achieve the best accu-
racy. Therefore, the next FlipTransform experiment used only
one FlipTransform. The parameters for the WarpTransform
were 0.5 probability and warp δ = 30. The resulting cross
validation accuracy as a function of the flip probability is
shown in Figure 11. The highest cross validation accuracy
was 98.93%, which was achieved with 40% probability of
FlipTransform. With the same parameters as in the experi-
ment documented in Figure 10, where the cross validation
accuracy was 99.27%, this experiment achieved 98.55%.

The experiments showed that the inclusion of at least one
FlipTransform gave better accuracy. For all the various net-
work architectures the average training time for one epoch
on Dataset 5 was 7143 ms with a Nvidia Geforce GTX
1070 GPU card. The total training time for the network
configurations varied substantially due to early stopping.

FIGURE 11. Accuracy on cross validation as a function of probability of
flip in the training set. Only one FlipTransform. Warp δ set to 30.
0.5 probability for WarpTransform. The training time measured in epochs
is also shown. Average of 3 trainings.

VI. CONCLUSION AND FUTURE WORK
The best result achieved by the proposed CNN approach on
the most complex dataset were 99.27%. The best result of
the color threshold techniques on the most complex dataset
were 88.7%. This is a reduction in error rate of 93.5%. This
shows that the proposed CNN approach is superior to the
color threshold techniques on the most complex dataset. The
most complex dataset best accounts for variations in images
captured in a real world application. Therefore it is desirable
to achieve a high accuracy on this dataset.

Regarding the alternative methods that were used for com-
parison with the proposed method, the results of using CNN
as strictly a color threshold technique achieved approximately
the same accuracy as using a conventional threshold tech-
nique. The exception is dataset 3, where color threshold
using CNN performed better when the number of filters were
increased.

Data augmentation techniques were used to increase the
size and complexity of the dataset. The increased complexity
became obvious when using simple color threshold tech-
niques. The proposed CNN approach is able to learn more
complex datasets, thus producing an algorithm that is more
robust to blurring, variation in contrast and poor illumination.
This enables the proposed approach for real world applica-
tion. The increased accuracy of the proposed CNN approach
compared to color threshold techniques may be due to spatial
information in the blood stains. This enables CNN to better
distinguish between blood and other sources of red color
compared to a color threshold technique.

An important problem in machine learning is overfit-
ting. As is evident in Table 11, the CNN solution was
able to achieve very good training accuracy on dataset 5,
even without IT. However, some overfitting is present,
limiting the accuracy on the cross validation dataset.
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The experiments with IT showed that this technique enables
the CNN system to better generalize trends in the train-
ing data, instead of overfitting. In several of the experi-
ments the accuracy on the cross validation set reached over
99% accuracy.

The best result ever achieved was 99.94%. This was with
Architecture 1 using IT. The settings for the IT were one
FlipTransform with 0.8 probability, and one WarpTransform
with δ = 30 and probability of 0.5. However, due to the ran-
domness involved in the neural network training procedure,
both related to weight initialization and to the transforms, it is
important to note that the average of 3 runs with the same
settings achieved 99.27%. This is shown in Figure 10. The
randomness also explains why the same settings in Figure 11
results in 98.55% accuracy.

For the relatively shallow networks used in all the exper-
iments, the difference between Xavier and ReLU weight
initialization turned out to be negligible.

Future work will include the use of UV light and spec-
tral imaging for detecting biofilm on the cleaned surfaces.
This will give a more accurate classification of which of
the surfaces are sufficiently clean and which are not, as the
absence of blood will not necessarily exclude the presence
of biofilms. Biofilms is a more true sign of whether a sur-
face is clean or not in a food-contact context. Detection of
fish debris will also be necessary to decide if the equip-
ment is sufficiently cleaned, as fish debris may be present
after conventional cleaning. The CNN and data augmen-
tation approach will still be applicable for biofilm detec-
tion in spectral images. Some work has already looked at
using CNN for spectral images [40] and some work has
looked at using hyperspectral imaging for detecting micro-
bial biofilm on food contact surfaces [41]. Combining CNN
and spectral images for biofilm detection is a promising
approach.
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