& NTNU

Innovation and Creativity

Contex-Aware Call Control

Hakon Vestmoen

Master of Science in Communication Technology

Submission date: June 2006
Supervisor: Rolv Braek, ITEM
Co-supervisor:  Arild Herstad, Telenor R&D

Norwegian University of Science and Technology
Department of Telematics






Problem Description

This master assignment is based on the project assignment “Mobile Absentee Marking - Status
Based Call Control” that was carried out at the Department of Telematics, NTNU, fall 2005.

The thesis shall discuss solutions for context-aware call control reflecting the location, the
calendar, the availability and preferences of a user assuming the PATS lab infrastructure and
ServiceFrame as service platform.

A demonstrator using the Ericsson Network Resource Gateway (NRG) shall be designed,
implemented and tested. The Ramses modelling environment shall be used to develop the
demonstrator.

Assignment given: 23. January 2006
Supervisor: Rolv Brak, ITEM






Summary

Today, more and more communication between humans is mediated, where com-
munication is offered as services by applications. The problem with this media-
tion is that the communication richness is decreased because the communicating
humans no longer have knowledge of each others’ contex. The solution to this
is to make the applications context-aware. When subscribers call each other,
the application should be enabled to take the context and preference of the
subscribers, in addition to the network and the terminal statuses, into account
when deciding where to route the call.

Context was defined to be any information that can be used to characterize
the situation of an entity, where an entity is a person, place, or object that
is considered relevant to the communication between two users, including the
users themselves.

A context-computing demonstrator service that took the context of the sub-
scribers into account when performing routing decisions was implemented and
tested using the NRG Simulator.

To be able to compute the context of humans, it is first of all necessary to
have a clear and accurate model to describe it with. There are several ways
to model context, both in terms of content and the modeling technique that
is used. Since context information is temporary, imperfect, highly interrelated
and has varying representation formats, ontologies were found to be the best
modeling technique. OWL was used to specify the ontology because of its ability
to express sophisticated classifications and properties of resources in a formal
fashion.

To be able to infer the context of subscribers and deduce what to do, the demon-
strator needed an architecture for context management that was responsible for
monitoring the modelled and sensed information, perform context reasoning and
forward the refined context information to the service logic. The context rea-
soning was based on five different views resulting in three different (potentially
distributed) levels of reasoning: Ontology reasoning, Primary context reasoning
and Policy reasoning.



Preface

This master’s thesis is written at the end of the study in Master of Technology
at the Norwegian University of Science and Technology (NTNU) in Trondheim,
Norway, and was carried out at the Department of Telematics spring 2006.

I would like to thank my professor Rolv Brak for all the valuable advices during
this semester. I would also like to thank Mazen Malek at the Department of
telematics NTNU for helping me out with the work on ontologies and reading
through the ontology-related chapters of my thesis. Further on, I'd like to thank
Humberto Nicolis Castejon Martinez at the Department of Telematics at NTNU
for developing the policy-managing module in ServiceFrame and helping me out
when it was included in the demonstrator service. Finally, I’d like to thank my
supervisor Arild Herstad at Telenor R&D for reading through my thesis and
giving valuable advices during the work on this thesis.

Trondheim, June 11th 2006

Hakon Vestmoen

ii



Contents

1 Introduction 1
1.1 Motivation . . . .. ... ... .... 1
1.2 Objective . . . . . .. ... ... ... 2
1.3 Scope . ... ... .. ... ... 2
1.4 Related research . ... ... .... 3
1.5 Outline . .. ... .. ......... 4

2 Context-aware computing 5%
2.1 Defining context . .. .. ... ... 5
2.2 Categories of context . . . . ... .. 8
2.3 The nature of contextual information 9

2.3.1 Contextual information has
temporal characteristics . . . 9
2.3.2 Contextual information is im-
perfect . . . . ... ... ... 9
2.3.3 Contextual information has
many alternative representa-
tions . . ... ......... 10
2.3.4 Contextual information is highly
interrelated . . . .. ... .. 10
2.4 Context-aware functions . . . . . . . 10
2.5 Context-aware Communication . . . 12
2.6 Representing context . . . .. .. .. 13

2.7 Acquiring context . ... ... ... 15

iii



2.8 Managing context . . . . . ... ...

2.8.1
2.8.2
2.8.3
2.84
2.8.5

Context Toolkit (1999):
SOCAM (2004): . ......
CoBrA (2003): . .......
CoolTown (2000): . ... ..
Stick-e Notes (1996):

2.9 Context reasoning . . ... ... ..

Ontologies

3.1 About ontology . ... ........
3.2 The Semantic Web . . .. ... ...
3.3 Ontology languages . . . . ... ...

3.4 Context ontologies . .. ... . ...

3.4.1

3.4.2

3.4.3
3.4.4

CoOL - a Context Ontology
Language . ... ... ....
SOUPA - Standard Ontology
for Ubiquitous and Pervasive
Computing . ... ... ...

SOCAM . ...........

The context ontology

4.1 Why represent context through on-
tologies? . . ... ... ... ... ..

4.2 Requirements specification . . . . .

4.3 The context ontology . . . . . . . ..

iv

16
17
18
19
20
21
21

24
24
25
26
28

28

29
31
33

38



5 Demonstrator: the Context Based Call Con-

trol service

5.1 Requirements specification . . . ..
5.1.1 Problem scenario. . . . . . .
5.1.2 User scenario . . . ... ...

5.1.3 Functional requirements for
the CBCC service . ... ..

5.2 System architecture . ... ... ..
5.2.1 System overview . ... ...

5.2.2 The architecture of the CBCC

service when deployed in Ser-
viceFrame . . . ... ... ..
5.2.3 The architecture of the con-
text managing unit . . . ..

5.2.4 Final architecture of the CBCC

service . . . . ... ... ...

53 CBCCconcepts . . ... .......
5.4 Implementation details. . . . . . ..
5.5 Evaluation .. ... ..........
5.5.1 Thedesign . .........
5.5.2 Limitations . ... ... ...
5.5.3 Challenges and problems . .

Simulation of the demonstrator

Discussion
7.1 Presence and Availability .. .. ..

7.2 User Preferences and reasoning ser-
vices ... ..o e e e



7.3 Ontology modification . ... .. .. 91

Conclusion 93
8.1 Achievements ... ... ... .... 93
8.2 Futurework .. ... .. .. ..... 94

vi



1 Introduction

This chapter will give an overall presentation of this thesis related to why it
was performed and what it addresses. In addition, a presentation of related
research is given so that the reader may relate this master’s thesis to other
ongoing research projects. Finally, an outline for the rest of this thesis is given.

1.1 Motivation

Humans are quite successful at conveying ideas to each other and reacting ap-
propriately. There are many reasons to this and among the most important
ones are the richness of the language they share, the common understanding of
how the world works and an implicit understanding of everyday situations. The
quality of the communication between humans can further be improved when
the communicating entities have knowledge of each other’s context. This is pos-
sible due to the fact that the contextual information is interpreted (mostly) in
the same way by all participating parties.

However, a lot of communication does not take place on a face to face basis
anymore. When we want to get hold of somebody instantly, we typically give
them a call. This is especially true in a work setting and contacting people
is typically done by calling them on their cell phone, alternatively by sending
them an SMS or emailing them.

The problem with mediated communication is that it gets difficult for users to
utilize the context information of each other. Communication is offered as ser-
vices by applications owned by service providers. The only context information
that is available for use is the context of the application (e.g. network status),
no information about the context of the users is available. The applications
should be enabled to make use of the users’ contextual information to increase
the communication richness [4, 1]. This is especially true when this information
changes frequently, as is the case for mobile services. When subscribers call
each other, contextual information about them should be utilized in addition
to the contextual information of the network and terminals to decide where to
route the call. In the project assignment “Mobile Absentee Marking - Status
Based Call Control” performed at the Department of Telematics fall 2005, a call
control demonstrator service was developed using Ericsson’s Network Resource
Gateway. The routing decision was based on pre-defined status variables that
was set by the user. This master’s thesis will investigate how to extend this
routing decision by taking the contextual information of the users into account,
thus making it more flexible.

Although context-aware computing have been researched since 1992 [5], there
are still some debate concerning a number of things. First of all, to be able
to utilize context information in applications, it is important to have a clear
model of it. There have been a number of attempts to model context [45, 36,
43, 44, 38, 41], that differ both in representation (how context is defined and
represented) and representation technique (e.g. ontologies, UML). In addition,



context-aware applications need a number of functionalities. These need to be
identified and an architecture that supports them is needed [25, 2]. Finally, ap-
plications need to be able to perform reasoning on a number of levels [26], based
on the context information. Central to these issues is the context information.
A clear definition of context is needed and the characteristics of it needs to be
identified.

1.2 Objective

This master’s thesis shall investigate solutions for context-aware call control
reflecting:

1. The location of the user

N

. The calendar and agenda of the user

w

. The availability and presence of the user

4. The preferences of the user

A demonstrator service shall be designed and implemented using the Ramses
modelling environment and simulated assuming the PATS lab infrastructure
with Ericsson’s NRG Simulator simulating the underlying network and Service-
Frame as service platform.

1.3 Scope

Central to the above-mentioned goals is to investigate:

1. Context information characteristics and definitions
2. Context modelling techniques

3. Principles of context-reasoning

Based on a literature study of context-aware computing, context will be dis-
cussed and defined as a term. In addition, context-aware functions will be
identified, some chosen architectures for context management will be presented
and context-reasoning will be presented and discussed.

A context model, that takes the discussion of context into account, shall be
developed. A discussion about modelling techniques will be given where different
alternatives will be presented. One will be chosen to develop the context model.
In addition, a presentation of different context models that have been developed
in other research projects will be given.

An architecture for managing context shall be developed. The architecture
shall take the context-model that was developed into account. In addition, it



needs to support the necessary context-aware functions to be able to facilitate
context-aware call control.

The demonstrator service shall illustrate context-aware call control by using
different context-sensors developed at the ServiceFrame platform. Further on, it
shall make use of the architecture that was developed for managing context and
implement context reasoning at different levels. Based on the implementation,
a discussion of the context reasoning will be given.

The emphasis of this master’s thesis will be on the representation of context
information and how to facilitate reasoning based on this, and not on how to
actually receive or fetch the context information using real sensors.

1.4 Related research

This section will provide a brief introduction to other related research projects.

DAIDALOS

DAIDALOS! (Designing Advanced network Interfaces for the Delivery and Ad-
ministration of Location independent, Optimised personal Services) is a EU
Framework Programme 6 Integrated Project. Its overall goal is to seamlessly
integrate heterogeneous network technologies that allow network operators and
service providers to offer new and profitable services. Among its four technical
work packages are context-aware service provisioning (developing an architec-
ture for context-awareness that is flexible, scalable, robust and optimised) and
pervasive service enabling (developing a service platform for pervasive services,
where emphasis is put on user centered, flexible, and adaptable service manage-
ment).

SPICE

SPICE? (Service Platform for Innovative Communication Environment) is a
European IST-FP6 project. Its vision is to design, develop, evaluate and pro-
totype an extendable overlay architecture and framework supporting easy and
quick service creation of intelligent and ambient-aware services, cooperation of
multiple heterogeneous execution environments and Pan-European seamless de-
livery of services across operator domains, networks and terminals. Among the
work packages defined are Intelligent Service Enablers which aims at providing
intelligent service platform solutions for user profile and context information
management and for pro-active service adaptation (anticipatory and attentive
middleware functionality).

lhttp://wuw.ist-daidalos.org/default.htm
2http://www.ist-spice.org/



Akogrimo

Akogrimo® (Access to Knowledge through the Grid in a mobile World) is funded
by the EC under the FP6-IST programme. It is aiming to radically advance the
pervasiveness of Grid computing across Europe. Among the features covered by
the Akogrimo framework are mobility and context awareness and the network
middleware layer of the Akogrimo architecture specifically offers functionality
for presence and context management [64].

1.5 Outline

Chapter 2 will provide a discussion of context-aware computing and commu-
nication. In addition, contextual information will be characterized and defined
and some architectures for managing context will be discussed. Finally, context
reasoning will be described.

Chapter 3 will present what ontologies are and what they can be used for.
In addition, several ontology languages are described and finally a discussion
about other context ontologies that have been developed will be given.

Chapter 4 will present the the requirements and different solutions to the
context ontology and the context management architecture. In addition, a short
discussion of why ontologies are well-suited for modelling context will be given.

Chapter 5 will present the demonstrator service illustrating context-based call
control. This includes requirements specification, architecture presentation, im-
plementation details through MSCs and an evaluation of the implementation.

Chapter 6 will provide a presentation of the simulation of the demonstrator
service in the NRG Simulator.

Chapter 7 will present a discussion of the most important parts of this master’s
thesis. These include how the presence and availability information are realised,
how the different levels of reasoning and the user preferences map to each other
and finally how the context ontology that was developed could be modified
during runtime.

Chapter 8 will conclude this master’s thesis by summarizing the achievements
and future research possibilities.

Appendix A presents the state machines of the actors and the configuration
files that are needed in the demonstrator. Appendix B provides a guide on
how to simulate (in terms of what needs to be installed and configured) the
demonstrator. Appendix C will present relevant technologies for the master’s
thesis and Appendix D will present the application platforms on which the
demonstrator was developed.

3http://www.akogrimo.org/



2 Context-aware computing

Mobile devices are getting more and more powerful in terms of processing capac-
ity, memory and functional capabilities, making it possible to run customized
applications on these. Java stands out to be the number one application de-
velopment language, and it has proved to succeed in mobile and distributed
computing as well. Together with the increasing bandwidth capacity in mobile
networks, it is no longer a utopia to make complex context-aware services. Ac-
cording to [5], context-aware computing was pioneered by researchers at Olivetti
Research Ltd. (ORL) in 1992 under the vision of ubiquitous computing, by
many also called pervasive computing. The goal of pervasive computing was to
enhance computer use by making computers available throughout the physical
environment, but making them effectively invisible to the user. Several defi-
nitions of context has been proposed, of which some of them resemble while
others are quite different. The definitions have developed with time and field
of research. For instance, context is in sociology defined as “an actor’s space of
action as it is understood with basis in a certain situation’s opportunities and
limitations”. This chapter will present a discussion about context; how it is
and have been defined. In addition, the nature of context information, context-
aware functions and context-aware communication will be discussed. Further
on, different context types and their formats will be presented, and finally a
presentation of how to acquire, manage and perform reasoning on context in-
formation will be given.

2.1 Defining context

Most people have an idea of what context is. But when they are asked to define
it, few can provide a good answer. Most often, enumerations of examples or syn-
onyms are given instead of a clear definition of the term. However, most would
agree that context describes or complements the description of a situation; it
has something to do with the environment of an object. Context is defined by
[13] as “ That which surrounds, and gives meaning to, something else”. Accord-
ing to [22] context is “the interrelated conditions in which something exists or
occurs”. General definitions of context have been developed since the birth of
context-research, and in this section a summary of various definitions will be
given.

In [7], context is defined as “... the set of all entities that influence human (or
system’s) cognitive behaviour on a particular occasion”. This is a general and
wide definition. The definition claims that context is a set containing entities
that will influence humans cognitive behaviour (conscious intellectual activity,
e.g. thinking, reasoning, remembering, imagining or learning) in a situation.
From a technical point of view, this definition demands too much knowledge
about cognitive science. In relevance to mobile computing, a more technical de-
finition is needed. Each situation (or occasion) will have to be analysed in terms
of what will influence the user’s cognitive behaviour, which for technologists is



not that straight forward.

In [8], it is claimed that when talking about mobile distributed computing sys-
tems, there are three important aspects of context: where the user is, who the
user is with and what resources are nearby. In [6], it is claimed that “A primary
concern of context-awareness in mobile computing is awareness of the physical
environment surrounding a user ...*“. Location is probably the most used repre-
sentation of the user’s physical environment in implementations demonstrating
context-aware services. However, there are many other physical environments
that are of interests, especially if we take the context definition of [7] into ac-
count.

Other definitions have been proposed extending the earlier definitions above,
many of them simply enumerating examples of context (e.g. the user’s emotional
state, focus of attention, location and orientation, date and time, objects, and
people in the user’s environment). However, according to [1] these are difficult
to apply, since when trying to determine whether a type of information that is
not in the definition is context or not, it is not clear how the definition can be
used to solve the dilemma. The definition of context needs to be a lot more
generic to be applicable to different situations, applications and users.

Many of the early definitions of context also differ in the way the environment is
viewed; the user’s or the application’s environment. In [15], context is defined to
be the elements of the user’s environment that the user’s computer knows about.
In [16], it is seen as the situation of the user, without even taking the situation
or environment of the application or terminal into account. In [21], the other
approach is taken by viewing it as the state of the application’s surroundings.
Similarly, [20] sees it as the setting of the application. In [18], the definition is
taken to a new level by defining it as aspects of the current situation thereby
including the entire environment. According to [1], these are all difficult to
apply, since they all merely define context by synonyms.

As noted above, [8] claimed that there were 3 important aspects of context when

relating it to context-aware services in a distributed environment. Context was
defined to be the constantly changing execution environment dividing it into:

e Computing environment (e.g. available processors, devices accessible for
user input and display, network capacity, connectivity, and costs of com-
puting)

e User environment (e.g. location, collection of nearby people, and social
situation)

e Physical environment (e.g. lighting and noise level)

In [17] context is defined to be the user’s physical, social, emotional or informa-
tional state. In [19], it is defined to be the subset of physical and conceptual
states of interest to a particular entity.

According to the authors of [1], two of the most referred-to researchers within
context aware computing, these definitions are good but too specific. They see



context as the whole situation that is relevant to the application and all of its
users. Their definition of context is as follows:

“Context is any information that can be used to characterize the situation of
an entity. An entity is a person, place, or object that is considered relevant to
the interaction between a user and an application, including the user and
applications themselves.”

The definition above has been well-acknowledged and referred to by other
researchers and seems thus to be state-of-the-art. However, it has been
criticized by [2] for not providing a way to view the information at a
meta-level, that is information about the actors common understanding of
situation (e.g. I know that you know that I know... ). In addition, according
to [5] the definition does not deliver the difference between context as
determining the behaviour of mobile applications and context as relevant to
the application but not critical. They believe that context, in mobile
computing, has these two aspects and the definition of context must take this
into account. Their definition of context is as follows:

“Context is the set of environmental states and settings that either determines
an application’s behaviour or in which an application event occurs and is
interesting to the user.”

They define the first part as the active context and the second part as the
passive context. It is entirely up to how a context class is used in an
application that determines whether it is passive or active. They think that
this classification of two types of context is valuable when trying to
understand the use of context in mobile applications.

Although this is valuable when designing applications and trying to understand
the use of context in mobile applications, it does not have to be part of the gen-
eral definition of context. This divide belongs at a later stage of the application
design. It is easier to differ between active and passive contextual information
when the purpose of the application is known. Therefore, the definition should
be more general and wide since this is the true nature of context.



2.2 Categories of context

Although it is important to provide a general definition of context to relate to, it
is perhaps even more important to have a classification of categories of context.

In [6], a context feature space is defined, see Figure 1. For each context, a
set of features is relevant and for each relevant feature, a range of values is
determined (implicitly or explicitly) by the context. It is important to note
that (when trying to establish context models) one of the greatest contribution
by this context feature space is the hierarchical divide; no matter what kind of
contextual information is provided it can be classified as characterizing a human
factor or physical environment.

Level

User

Flickering

Human Factors Social Environment Light

Wave-lenght

Task Pressure

Acceleration

Conditions
Audio

Physical Environment Infrastructure
Temperature

ﬁme

Figure 1: Context feature space, taken from [6]

Location

In [23] location, environment, identity and time are suggested to be the 4 main
context types. In general, context-aware applications look at the who’s, where’s,
when’s and what’s (what the user is doing) of entities and use this information
to determine what actions to perform. According to [1], there are certain types
of context that are, in practice, more important than others. They are defined
as the primary context types for characterizing the situation of a particular
entity and are defined as follows:

e Location
o Identity

o Activity



e Time

The primary context types can help finding secondary context, e.g. given the
identity of a user his/her email address can be found. The primary context types
are considered to be at the first level of contextual information while all other
context is considered to be on the second level, thus constituting a two-tiered
system of contextual information.

As can be seen, the primary context types defined in [1] are not so different
from how [23] defined the different categories of context, the only difference is
that environment was replaced by activity. Although primary and secondary
context types are not mentioned in the context feature space provided in Figure
1, one might think that the primary context types were considered to be human
factors and physical environments. In [1], it is claimed that the primary context
type “environment” is just a synonym for context, which does not help applica-
tion designers to develop context-aware applications nor adds anything to the
investigation of context and should therefore be replaced by activity. Similarly,
one might think that they would say the same about the two primary context
types presented in the context feature space [6], see Figure 1.

The primary context types are not the only ones that can be used in context-
aware applications, e.g. temperature and lux conditions can be used in addition
to time to determine whether or not the user is outside. Although consider-
able information is required to establish useful context, [9] points out that it is
impossible to represent, much less store, it all. Different applications demand
different context types, and so each needs to select the most important ones to
use.

2.3 The nature of contextual information

When developing models for representing context, it is important to take the
nature of contextual information into account. Below is a short description of
each of the characteristics as identified in [25].

2.3.1 Contextual information has temporal characteristics

Contextual information is both static and dynamic, depending on what type of
context you’re looking at. For instance, the date of birth of a user does not vary
while the age of the user will. Since mobile context-aware system’s context will
change frequently, it is important to note that the focus of context-awareness
should not only be on the state of the context but also on the past experience of
context to pro-actively predict future tasks. Consequently, part of the context
description should be formed by the context history.

2.3.2 Contextual information is imperfect

Because of the frequently changing and dynamic environment of context-aware
computing, information can quickly become out of date. This issue scales up



dramatically by the fact that the sources, repositories and consumers of con-
text are distributed, making the time it takes to collect contextual information
increase. In addition, processing of the raw contextual data is necessary be-
cause of the ill-suited formats (see section 2.8). These problems can produce
differences between the present context and the context that is used in the sys-
tem. In addition, the information provided may be faulty. Finally, part of the
contextual information may be missing because of failures or disconnections.

2.3.3 Contextual information has many alternative representations

Different, applications demand different requirements of the contextual informa-
tion. Consequently, a context model must support multiple representations of
the same contextual information in different formats and at different levels of
abstraction. The model must also be able to catch the relationships between
the alternative representations.

2.3.4 Contextual information is highly interrelated

Several relationships are evident between people, their devices and communi-
cation channels. For instance, the ownership is a relationship between a user
and a device. The contextual information may be derived from these depen-
dencies and relationships. Consequently, the properties of the dependencies are
important for the representation of context, since the contextual information is
intimately linked with these.

2.4 Context-aware functions

One of the earliest characterization of context-aware applications were given in
[8]. Four categories are described with respect to two orthogonal dimensions;
whether the task at hand is to obtain information or execute a command and
whether the task is effected manually or automatically. This is illustrated in
Table 1.

’ Task ‘ Effected manually ‘ Effected automatically ‘
Obtaining information | Proximate selection & | Automatic contextual re-
conteztual information configuration
Executing a command | Contextual commands Context-triggered actions

Table 1: Context-Aware Software Dimensions as defined in [8]

Proximate selection is a user interface technique where the located objects
that are nearby are emphasized or otherwise made easier to choose (e.g. when

10



location is used to emphasize the nearest printer). In the case of context-aware
systems, the interesting about automatic contextual reconfiguration is how
context of use might bring about different system configurations and what
these adaptations are, for example a virtual project white board can become
active when the project group is meeting. Contextual information and
commands seek to exploit the fact that there are certain things we regularly
do in certain situations. Finally, context-triggered actions are simple rules
(e.g. IF-THEN) used to specify how context-aware systems should adapt.

In [19], a taxonomy of context-aware functions is proposed. The two
approaches differ in that [8] identified classes of context-aware applications
while [19] identified the main features of context-aware applications. However,
they still do resemble each other. The features are defined as follows:

e Contextual sensing: the ability to detect contextual information and present
it to the user, augmenting the user’s sensory system (maps to proximate
selection)

e Contextual adaptation: the ability to execute or modify a service auto-
matically based on the current context (maps to context-triggered actions)

e Contextual resource discovery: the ability to locate and exploit resources
and services that are relevant to the user’s context (maps to automatic
contextual reconfiguration)

o Contextual augmentation: the ability to associate digital data with the
user’s context (e.g. reminders with respect to location)

As can be seen, the taxonomy defined in [8] support the presentation of com-
mands relevant to the user’s context (contextual commands) which is not sup-
ported by the taxonomy defined in [19]. Similarly, contextual information is not
supported by the taxonomy defined by [8].

In [1], a taxonomy that combines the ideas from the two taxonomies above

is proposed that also takes the major differences into account. It is a list of
features that context-aware applications may support that is defined as follows:

e Presentation of information and services to a user (maps to [19]’s contex-
tual sensing and a combination of [8]’s proximate selection and contextual
commands)

e Automatic execution of a service (maps to [8]’s context triggered actions
and [19]’s contextual adaptation)

o Tagging of context to information for later retrieval (maps to [19]’s con-
textual augmentation)

11



Two distinguishing characteristics stand out from this taxonomy: the integration
of information and service and the removal of the contextual resource discovery
(called automatic contextual reconfiguration in [8]) as a feature. According to
[1], it is usually too difficult to distinguish between a presentation of information
and a presentation of services, since this is entirely up to how the user actually
uses the presentation. If the user simply looks at the presentation, it is merely
a presentation of information. However, if the user chooses to use part of the
presentation, it is considered to be a presentation of services. Further on, [1]
chooses to remove the resource discovery as a feature. They see this as part of
the first two categories and not as a separate feature category, since resource
discovery is nothing more than locating new services according to the user’s
context.

[5] has also defined a taxonomy for context-aware applications. Remember that
they defined context slightly differently than [1]; they differed between active
and passive context. Consequently, they took this into account when defining
their taxonomy:

e Active context awareness: an application automatically adapts to discov-
ered context, by changing the application’s behaviour

e Passive context awareness: an application presents the new or updated
context to an interested user or makes the context persistent for the user
to retrieve later

The active context awareness demands more infrastructure and may, according
to [5], help to eliminate the unnecessary user cooperation and make technology
as ubiquitous and pervasive as possible. As can be seen, [5] has combined [1]’s
Presentation of information and services to a user and Tagging of context for
later retrieval into Passive context awareness. In addition, [5] has removed the
term, and thus divide, between information and service.

2.5 Context-aware Communication

Communication is by [22] defined as ”a process by which information is ex-
changed between individuals through a common system of symbols, signs, or
behavior” while interaction is defined as “mutual or reciprocal action or influ-
ence”.

Communication is more focused on the process of exchanging information: how
the information is exchanged, between which entities the information is ex-
changed and how the information is represented. The information that is ex-
changed is considered to be the (semantically) same at the receiver and the
sender. How the individuals react or are affected is not a part of the communi-
cation. Interaction is about the activities being performed and how the involved
entities affect each other as a response to the activity that is performed. Com-
munication (at some level) is a prerequisite for interaction. The involved entities
act based on what they register that the other part does.

12



Context aware communication takes place when one or more of the communi-
cating individuals has knowledge of one or more of the other communicating
individuals’ context, and this knowledge affects the way in which the commu-
nication takes place. The individuals of interest could be terminals, humans,
agents and/or services.

Asis described in section 2.4, there are three different type of functions (services)
that can be provided by a context-aware application: presentation of informa-
tion and services, automatic execution of a service and tagging of context for
later use. For this master’s thesis, the service that is offered is automatic execu-
tion of call control. The application needs to compute the context of a user and
perform automatic call control that is based on this whenever two or more users
would like to communicate through telephones. The call control could involve
deciding whether or not the communication is to take place, choosing which
medium the communication shall go through or deciding between which entities
the communication shall take place. Since the application never presents any
information nor services to the user, the communication is never really moti-
vated by the context of any of the parties (e.g. the caller is not motivated to
communicate with the callee because of the context of the callee, nor is the
callee motivated by the caller’s context). Thus, context-aware communication
never really takes place.

The definition of context, as it is defined in [1], is focused on the interaction
between users and applications. In context-aware computing, the interaction
between the user and application is necessarily important. However, this is
not the only important interaction - it can take place between users too. In
this master’s thesis, the important aspect of the context-aware computing is
the communication between two users, where the communication is mediated
through the PSTN and/or cellular (GSM) network.

The definition of context that will be used i this master’s thesis will be:

“Context is any information that can be used to characterize the situation of an
entity. An entity is a person, place, or object that is considered relevant to the
communication between two users, including the users themselves.”

2.6 Representing context

This section presents a short discussion about the most important context types
and how they could be represented.

Location

When working with location information, it is usual to differ between absolute
and relative locations, where relative locations are often represented with an
address (e.g. Innherredsveien 13) or name (e.g. office) while an absolute location

13



is unique within a predefined range (e.g. the earth). A geodetical datum [63] is a
framework for representing absolute locations and it includes the size, shape and
reference points (using a coordinate system) related to a mathematical model
of the surface of the earth. Most of the models use an ellipsoide as the model
of the surface of the earth. There are many different ellipsoids that represent
the surface of the earth, and even more datums (with different ranges) that are
based on these. NGO1948 (Norges Geografiske Oppmaling 1948) is a datum
that can be used within Norway and ED1950 (European Datum 1950) can be
used within Europe. With the development of satellite-technology, a datum that
could be used for the entire earth was developed. It is called WGS84 (World
Geodetic System 1984) and is supported by both GALILEO?* and GPS®.

A position is represented with coordinates (in the coordinate system of the da-
tum) having a longitude, latitude and altitude relative to the ellipsoide. W(GS84
supports both. If the position is represented using latitude and longitude, a
coordinate can be represented using decimal or degree/minute/second represen-
tation, where 1 degree equals 60’ (minutes) and 1 minute equals 60” (seconds).

In addition to datums, relative and absolute locations, there are other interesting
location-related attributes that exist when performing context-reasoning. An
example is the distance to other entities, e.g. the distance to the office.

Time

Time is an important dimension of our everyday lives. Our perception of the
world and ourselves is dominated by time, e.g. a big part of the identity of
a person used by the society is the date of birth of that person. Our lives are
divided into years which are further divided into months. Time can be viewed to
be cyclic (and thus repetitive) or linear (something occurs once) in our everyday
lives. In addition, time can also be measured in intervals and thus describe the
duration of something.

Time is also an important aspect of context computing. This is due to two
reasons. The first reason is that context is by nature constantly changing and
dynamic. Thus, time is a dimension of the context information. However, this
doesn’t mean that context information needs to be characterized by time (as in
values and units) to be meaningful, e.g. location information is (when isolated)
independent of time. The second reason is that people use time to describe their
context - if a person were to describe his/her situation, time would definitively
be a part of it. Thus time needs to be able to be measured (using values and
units) in a context-computing application. Finally, other context information
can be depending on time.

4The Galileo positioning system is a proposed satellite navigation system, to be built by
the European Union (EU) as an alternative to the GPS (which is controlled by the military
of the United States) and the Russian GLONASS.

5The Global Positioning System, usually called GPS, is (as of 2006) the only fully-functional
satellite navigation system in the world

14



Activity

The activity of a person is by far what most automated context-computing is
all about. Trying to find out what the user is supposed to do versus what the
user is actually doing. There are thus two different forms of activities - planned
(or scheduled) activity and current (or from the application’s perspective - de-
duced) activity. Important attributes when describing an activity are start-time,
duration, (relative) location and participants. In addition, category, summary,
description and other information could be added. In general, vCalendar and
iCalendar are well-acknowledged standard formats for describing activities, and
so these should be followed.

Identification

To be able to know which entity a given set of context information applies to,
it is important to have a way to identify it. In addition, it is important to
identify the profile information of the entity, e.g. a person most probably has a
social and/or professional profile. If the entity is a user, he/she may have some
preferences (at several levels, e.g. policy-preferences) that are stored in a profile.
Finally, a user may also have different roles in different situations. All of this
can be deduced based on the identity and additional context information.

Presence and Availability

TIETF has specified a Presence Information Data Format (PIDF) [61] for pres-
ence information (to be used to exchange presence information) in addition to
developing a conceptual model of presence services. The entity who’s presence
is described is defined as a Presentity, and the PIDF contains the following in-
formation: Presentity URL (the current URL of the Presentity), one or more
Presence tuples and a Presentity human readable comment. The Presence tu-
ples contain information about the status, communication address (medium and
address), a relative priority of this communication address and a time stamp.

3GPP has also defined a conceptual model of presence services [62] where pres-
ence information is defined as “... the user’s ability and willingness to be reached
for communication ...”. The Presentity is used (by 3GPP too) to represent the
omitting owner of the presence information, and contains a set of access rules
that define who can have access to his/her presence information and what part
of this information they should have access to (in addition to the presence in-
formation). Presence is viewed as a composition of the user status and location
of the user.

2.7 Acquiring context

According to [6], context can be acquired either explicitly (by requiring the user
to specify it) or implicitly (by monitoring the user and his/her activity). An

15



example of explicit context acquisition is the specification of current location
as required by personal digital assistants to adapt standard location-dependent
applications such as clock, tone-dialing and “world”. Implicit context acquisition
is based on monitoring the entire human-computer system, e.g. monitoring the
user interaction to determine whether the device is idle or not.

In [8], a problem with building context-triggered actions is identified; balancing
the accuracy with predictable behaviour. When the context changes often,
the application designer has to make a choice; let the application display the
information (or executing the command) in accordance with the updated context
or simply ignore the newly updated context to make the application behave
predictably. This problem is also referred to by [3]. In the worst case, the
context might change so frequently that the application (assuming that it adapts
to the constantly changing context) will be perceived as unstable and unreliable
by the user.

There are many sources for contextual information about a certain entity (re-
member the definition of context in 2.1). As noted in section 2.1, context infor-
mation can be used immediately or stored for later retrieval (denoted as active
and passive context in [5]), depending on the relevancy for the application.
Examples of types of sources for contextual information are:

e Sensors (hardware or software)
e Existing information (weather forecast, stock prices etc...)

e User- or task-models

The state of user devices together with the user interaction with the device

Explicit user-defined states (e.g. “I am out for lunch”)

2.8 Managing context

According to [2], there are two extremes when it comes to managing context;
context engine or tight coupling. When dividing the context management from
the applications that are going to use the context and thus protect the context
in an isolated and autonomous system, we call it a context engine. The other
extreme is to let all context that an application needs be an integrated part of
the application.

The context engine approach follows the central engineering principle divide and
conquer, making it possible to hide details about the collection, interpreting,
storing and updating of contextual information from the application developer.
In that way, the developer may concentrate on the service logic and simply
define what kind of contextual information is needed without concerning about
how this information is provided. In addition, letting each application handle
all the context managing on its own reduces the reusability and inter-operable
capabilities of this functionality.

16



Below is a presentation of 4 implemented architectures for context management;
the Context Toolkit, SOCAM, CoBrA, CoolTown and Stick-e Notes. Due to
relevancy issues, the Context Toolkit, SOCAM and CoBrA will be described
more detailed than the latter two.

2.8.1 Context Toolkit (1999):

In [24], a layered framework for the developing of context-aware applications is
described. An implementation, called the Context Toolkit, of the framework was
also provided and is presented in [12, 10, 11]. One of the most fundamental goals
for the framework was to hide details about the collection, interpretation, storing
and collocation of the context for later use by applications. The Context Toolkit
can be seen as a complete and autonomous context engine. The framework has
been used in the Telenor R&D projects Sm@rt. Travel and Sm@rt. FUNK when
developing the context-aware services CAMA and GAID, see [2]. An illustration
of the layered framework is shown in Figure 2.

Context aware application

1 T
¥

Collocating context info that belongs to |«
a specific context

Interpreting context data

Collecting context data Contex memory

<

Figure 2: A layered {ramework for context management, taken from [2].

17



The layer at the bottom consists of different sensors that automatically registers
contextual data from the environment. Above this layer, we find the layer that
is responsible for the collection of the contextual data. One might have claimed
that the registration and collection could be integrated by making the sensors
responsible for both registering and collecting contextual data. However, since
sensors often are designed to handle one task only and lacks processing power
and memory, this divide is necessary. Since the raw contextual data is typically
not suited for presentation in applications and services (for instance the GPS
coordinates is often not suited for presentation to an application), it needs to be
interpreted (for instance interpret GPS coordinated into an address). Finally,
the interpreted data can be stored for later retrieval or used by the application
instantly. The application can either poll the interpreted data or a collocated
representation of the interpreted data. For instance, some applications may
need information from several sensors and so the contextual information needed
is a collocation of the interpreted data provided by all the sensors it needs. This
can be done by having the application poll the information from the different
sensors itself. Alternatively, it can be done by having the application subscribe
to the contextual information from a context engine that will determine the
terms on which context will be delivered.

2.8.2 SOCAM (2004):

The Service Oriented Context-Aware Middleware (SOCAM) architecture aims
to help software engineers design context aware services more efficiently, by
dividing the domain of the service into context providers, context interpreters,
context aware services and a service locating service [36, 37]. This is illustrated
in Figure 3.

The context providers abstract contexts from different sources and can be di-
vided into external and internal ones. The architecture is based on an ontology-
based context model (which is presented in section 3.4.3) implemented using
OWL, so the context providers further convert the different contexts into OWL
representations so that they can be shared and reused by other SOCAM com-
ponents.

The context interpreter consists of the Context Reasoning Engines, providing
reasoning services, and Context KB (Knowledge Base), providing database ser-
vices. The reasoning services provided by the Context Reasoning Engines in-
clude deduced context, resolving context conflicts and maintaining context con-
sistency of Context KB. The database services provided by the Context KB
includes adding, deleting, modifying and querying stored context knowledge.

The Service locating service provides the mechanism for how the context inter-
preters and providers advertise their presences so that users and applications
can access and locate their services.

18



Bt Home
COMEJGI'HWHFE Home Care Cnd@qu Plni;g Surveiltance L
SEMices Service omm, Senvice Servi e

Context Interpreter
& v = ‘__'_F_"'\\
- Cantex Reasoning d {f% Inference
Service I Engines =~ Rules

| ecating e
| Context KB Context
Service | Dalaliase

Outdoor ) 3 Indoor Emvirnnmentsl
L Location L 'ng::l\l“!;r L Location Context

Senvice . . I Service Servica
|
External " Online Device Imternal
Contaxt Zalendar I Manitoring Context
Providers Service | Service Providers
L& _ _ _ _
| i data flow for different : ""'H;I 5 . :hm\ :Jf&i @
Bgam level of context ; I > &

Ubiquitous Sensors

Figure 3: Overview of the SOCAM architecture, taken from [36]

2.8.3 CoBrA (2003):

In [42], an agent based pervasive context-aware computing infrastructure called
the Context Broker Architecture (CoBrA) is presented. It includes a context
broker that is responsible for accepting context related information from internal
(in the same environment) devices and agents in addition to external sources
(e.g. semantic web pages, information servers, databases). The context broker
integrates and reasons over this information to maintain a coherent model of
the space, devices, agents and people in it, and their associated services and
activities. To be able to do all this, a set of common ontologies that undergird
the communication and representation was developed.

As can be seen in Figure 4, the architecture takes a centralized approach of the
broker. This is motivated by the growing demand of context-aware agents and
devices that operate on network enabled computing devices (e.g. cell phones,
Bluetooth enabled PDAs ). Since these devices have very little processing ca-
pacity, it is evident that the precessing-demanding operations should be given to
a resource-rich server agent. The four functional components of the CoBrA ar-
chitecture are the Context Knowledge base, Context Reasoning engine, Context
Acquisition Module and Privacy Management Module.

The knowledge base defines the ontologies of the intelligent meeting domain and
heuristics domain knowledge (e.g. no one person can be physically present in
two different meeting rooms at the same time). The reasoning engine is respon-

19



Information Servers Semantic Web &

(Exchange Server, iCal, Web Services Database
YahooGroups, etc.) (RDF, DAML+OIL & OWL) (MySQL)

Contexts in External Sources

Context-Aware Devices Context-Aware Agents

(0::., 3 =" JOH * 4 .' |
& @ @@, i
e 1 knowledge base
@ m <'EIJ.U.P + ROFOWL Context FIPA-ACL + REFOWL
| Ri ing Engine
= Ethemnet Cortant t
s ‘; Acquisiton Module
N

'1‘ Y | Management iodu‘le
Contexts in the Intelligent Spaces

Ny > -8

Smart Tag Sensors Environment Sensors Device & Gadget Sensors
(Radio Frequency Identification) (Xanboo & X10 technology) (Java Ring, SmartCard etc.)

Figure 4: The CoBrA architecture, taken from the CoBrA web site [46]

sible for reasoning with both static and dynamic information by detecting and
resolving inconsistent knowledge using domain heuristics and apply learning al-
gorithms and pattern recognition mechanisms to learn about inconsistent user
behaviours. The context acquisition module is a collection of pre-defined pro-
gramming modules for acquiring contextual information from different sources
(heterogeneous).

2.8.4 CoolTown (2000):

CoolTown [14] is an infrastructure that supports context-aware services by rep-
resenting physical objects (people, places, equipment) using web pages. The
infrastructure is developed at HP Labs CoolTown-project. Each object is rep-
resented as a web site that dynamically updates when new information about
the object is found. CoolTown is primarily suited for applications that present
context and services to end-users. It is not that well-suited for interpreting and
storing sensory (low level) data nor automatically execution of services based
on context.

20



2.8.5 Stick-e Notes (1996):

Stick-e Notes is a general framework for certain context-aware services. The
purpose of the framework is to provide non-programmers with a way to define
rules for those services. For a given activity, the user can describe, through
individual rules (Stick-e Notes), which context elements that will apply, what
values they should have and which actions the service should perform based on
this. The services are up to the software engineers to develop, they are not
specified. How the context is collected, stored and interpreted is not specified
and neither is the description of how applications can request context. More
information about Stick-e Notes can be found in[15].

2.9 Context reasoning

“The task of using context data in an intelligent way is one of the most
challenging contemporary research tasks and is often referred to as context
reasoning.“[26]

The most important part of a context-aware system is the reasoning, i.e. how
the context is deduced based on the raw context data. This is the most im-
portant part, because the most severe issue and challenge with context-aware
and ubiquitous computing is that the users have to learn to use these systems,
too. [9] goes as far as saying that “Learning to work in a world of increas-
ingly context-aware applications is one of the greatest challenges that we face”
. Consequently, the reasoning in context-aware systems is important, especially
when mappings (forming policies) between contextual information and actions
are used. According to [26], a more precise definition of context reasoning is
deducing new and relevant information to the use of application(s) and user(s)
from the various sources of context-data. The authors further claim that con-
text is by nature hierarchical, where low-level context is raw data and the higher
level contexts are combinations of lower level data sources. For instance, GPS
location can be mapped into abstract locations such as OFFICE. Reasoning in
context-aware computing can be approached from 4 perspectives and below is
a description of each [26].

Low level view

This view is concerned about forming a view of the (user’s) current context.
This includes: context data pre-processing, sensor data fusion and context in-
ference. It is called the low level view because most of these tasks should be
supported either by the hardware (e.g. sensors) itself or by middleware. The
most important questions to be answered in this view are:

1. How can the requested context snapshot be formed (the current values of
relevant context parameters)?

21



2. How should data, that is possibly erroneous or missing, coming from mul-
tiple sources be dealt with?

The low level view can further be divided into 3 tasks:

1. The pre-processing of context data aims to make later processing easier by
recognizing the relevant context attributes, handling missing attributes
and cleaning the data (e.g. removing non-relevant data). It is in other
words concerned about answering the first question.

2. Sensor data fusion is concerned about integrating data from multiple sen-
sors (sources) in a reliable way. There has been a lot of research into this,
and the prime concern has been to reduce the communication costs by the
integration of similar data sources.

3. Context-inference is perhaps one of the most challenging tasks. There
must be some underlying mechanism that makes it possible to map the
lower level context to higher level contexts. One way is to use ontologies
in the process and use logic reasoning for the mapping phase. Another
approach is to use probabilistic reasoning, where variants of Bayesian net-
works are used to produce extensible probabilistic models that are then
used in the mapping phase.

Application view

This view considers how the application can use the context in an intelligent
way, and it is assumed that the raw context data is already obtained. The task
of recognizing relevant attributes is also important in this view. In addition,
the applications can use a wide variety of reasoning methods to use the context
data. The view on this [26], is to consider reasoning components that allow the
application (or user) to make agreements (policies) with the underlying systems
on how to use the data, e.g. using the user feedback learning methodology re-
inforcement learning (taken from the machine learning community). Originally,
the authors don’t mention this in the application view, but in the model mon-
itoring. It is without doubt important when updating the model. However, it
could be applied with great profit in the application view as well. In reinforce-
ment learning, user feedback does not necessarily have to be provided explicitly
(e.g. the user presses yes or no), it can easily be provided implicitly. For in-
stance, if the user is not satisfied by the choice made by the application, he/she
will likely overrun this choice and make their own. This can be interpreted as
a negative feedback to the application, and based on this it is possible to learn
not to make the same choice under the same circumstances again.

Context monitoring

This approach attempts to detect changes in the user’s and application’s context
and to respond to the changes. In addition, it would be favorable to be able

22



to predict when the context is likely to change (under which conditions) and
use the prediction results to pro-actively perform actions, e.g. switching the
type of available services for the user. Context monitoring requires sequential
prediction methods and [26] suggests Kalman filtering and sequential Monte-
Carlo sampling.

Model monitoring

This approach aims at keeping the learned models in a consistent state (in accor-
dance with the monitored context). If some classifier that uses some particular
context is learned, it is likely that the context classes will change at some point.
These changes need to be recognized by the system, and so the models need to
be updated. Decisions made by the system should also be monitored and user
feedback should be used to modify the behaviour of the system (e.g. through
reinforcement learning).

23



3 Ontologies

This chapter will present different context ontologies that have been developed
in other context-aware applications. Section 3.1 describes what ontologies are
and how they are used. Since ontologies have been used and referred to a lot
in the semantic web, a short presentation of it will be given in section 3.2.
Section 3.3 present some languages that can be used to specify ontologies, and
finally section 3.4 presents a language for specifying context ontologies and three
context ontologies that have been developed in other research projects.

3.1 About ontology

Ontology is a term that is defined differently, depending on what field of research
it is applied. It was first applied in philosophy by Plato and Aristotle who
wanted to derive the general structure of the world. Since then, ontology has
evolved and been used in various fields of research [65]. It is defined by [13]
as “(From philosophy) An explicit formal specification of how to represent the
objects, concepts and other entities that are assumed to exist in some area of
interest and the relationships that hold among them”.

When people, organisations, and software systems communicate between and
among themselves, there can be widely varying viewpoints and assumptions re-
garding what is essentially the same subject of matter [35]. The different entities
collaborate to develop a shared understanding of the areas of interest. The same
happens when independently developed software components and sub-systems
have to interact with each other. They need a shared understanding of how the
area of interest is defined and how it works. If they use different modelling meth-
ods, paradigms and languages, the potential for re-use and sharing is severely
reduced. Overall, this leads to much wasted effort in re-inventing the wheel.

The above-mentioned problems can, according to [35], be solved by reducing the
conceptual and terminological confusion by introducing a framework for shared
understanding functioning as the basis for communication and interaction be-
tween different entities. There are several benefits to this scheme, of which the
most important ones are:

e Inter-operability (among systems): facilitated by translating between dif-
ferent modelling methods, paradigms, languages and software tools

e Re-usability: the formal specification of the system (including its entities,
attributes, parameters, processes and their inter relationships) may serve
as the reusable software component in the system

e Reliability: the formal specification makes it easier to apply and develop
good consistency checking, resulting in more reliable software

The above-mentioned framework is referred to as the ontology of a system, and
it entails some sort of world view with respect to a given domain. The world

24



view is often realized as a set of concepts (entities, attributes, processes), their
definitions, and their inter-relationships (often referred to as a conceptualisa-
tion). An ontology includes at a minimum a vocabulary of terms and some
specification of their meaning (e.g. definitions).

3.2 The Semantic Web

“The semantic web is a web of data”[68]

The problem with the original web is that data is controlled and owned by
applications, and each application keeps its data to itself. It is not possible
to collocate information from two different services/applications without the
services/applications actively collaborating to make it happen or involving a
human. The semantic web is about two things; common formats for interchang-
ing data (only interchanging of documents is possible in the original web) and
languages for recording how the data relates to real world objects. Put gener-
ally, the semantic web is about developing languages for expressing information
in a machine-processable form [66] and provide rules for reasoning about data.

Rules Trust
Data Proof %
Self . osie Lg?
desc. Ontology vocabulary E
o RDF + rdfschema a

Unicode

Figure 5: The semantic web stack, obtained from [67].

The architecture of the semantic web will be based on a hierarchy of languages
(see Figure 5), where each language exploits the features and extends the capa-
bilities of the layers below it. The URI is the foundation of the semantic web
by facilitating global identification of entities and resources. RDF is concerned

25



with describing resources in documents, while the Ontology layer contains more
meta information. After the Ontology layer was instantiated with the Web On-
tology Language (OWL), the attention has turned towards specifying logic and
rules [69]. The Logic layer is concerned about providing mechanisms for writing
logic into documents to allow reasoning that can be validated against rules in
the Proof layer, moving the semantic web towards a technology of trust [66].

Although the different languages have been developed for customized purposes,
section 3.3 discusses how well-suited the lower-level languages (XML and XML
Schemas, RDF and RDF Schemas and OWL) are for specifying ontologies.

3.3 Ontology languages

This section presents some of the languages that are relevant when develop-
ing ontologies. A short discussion of how well-suited they are for developing
ontologies will be given.

XML and XML Schemas

The eXtensible Markup Language (XML) [55] version 1.0 was published the
10th of February 1998. It is the de-facto knowledge representation language
used to describe metadata. XML provides mechanisms for structuring docu-
ments (into a root-element, children-elements and attributes of the elements),
but has no mechanism for restricting the semantics of the documents. To restrict
the structure of an XML document, the XML schemas [56] are used. Although
it would be possible to define an ontology using the XML schema, XML and
XML schemas are not really optimized for ontologies. There are several reasons
to this, of which the most important ones are that XML and XML schemas don’t
include functionality to represent the inter-relations between different concepts
nor provide the semantically meaning to the document that is needed if it con-
tains an ontology. To be able to do this, the developer would have to define
these functionalities on his/her own. Thus, new languages based on XML were
developed that included more functionality to represent these things.

RDF and RDF Schemas

The Resource Description Framework (RDF) [58] was released as a W3C rec-
ommendation in February 1999. It is built on top of XML and is intended for
describing resources and the relations that exist between them. In addition, it
provides semantics for these concepts making it possible to reason on the infor-
mation model contained in the document. RDF is better suited than XML to
create ontologies, because it has more built-in functionality for describing the
semantics of concepts and the interrelations between them in a formal fashion.
The RDF Schema [57] provides a vocabulary for describing classes of resources
and the properties that exists between them in addition to providing semantics
of these hierarchies of classes and properties.

26



OWL

The Web Ontology Language (OWL) [52] was released as a proposed W3C rec-
ommendation in December 2003. It is built on top of RDF and is the successor
of DAML+OIL, another language for creating ontologies. OWL deals with the
same issues as DAML+OIL: to express far more sophisticated classifications
and properties of resources than RDFS. It adds more vocabulary for describing
properties and classes. OWL has been used in many context-aware computing
projects (CoOL, CoDAMoS, CoBrA, SOCAM - presented in section 3.4) and
has been reported to be well-suited for creating context ontologies. This is the
main reason as to why OWL was chosen as the language for developing the
context ontology in this master’s thesis. For a more detailed presentation of
OWL, please refer to Appendix D.3.

WSMO and WSML

The Web Service Modeling Ontology (WSMO) [59] was published as a W3C
Member Submission 3 June 2005, and aims at describing all relevant aspects
related to general services which are accessible through a Web service interface.
Tt is a part of the Web Service Modeling Framework (WSMF) and the goal is to
automate (fully or partial) the tasks (e.g. discovery) involved in both intra- and
inter-enterprise integration of Web services. To achieve this, WSMO provides
a meta-model for semantic web services related aspects, where the top-level
elements are Ontologies, Web services, Goals, and Mediators. Ontologies can
be described using the Web Service Modeling Language (WSML), a language
designed to write, store and communicate ontologies. WSML was specifically
designed to express semantic descriptions that are in accordance with the meta-
model, however it can also be used to express general ontologies since it is able
to specify concepts and their inter-related structure. In addition to axioms and
the regular relations, there is a special case called a Function that has a unary
range and a n-ary domain, where the range specifies the return value. WSMO
and WSML are more targeted towards Web services than specifying general
ontologies and will therefore not be used in this master’s thesis.

SWSO AND SWSL

The Semantic Web Services Framework [60] contains the Semantic Web Services
Ountology (SWSO) and the Semantic Web Services Language (SWSL) and was
published as a W3C Member Submission 9 September 2005. SWSO provides a
conceptual model in which Web Services can be described and a formal charac-
terization of that model. SWSL is used to specify Web service concepts and cre-
ate descriptions of individual services in a formal fashion. It is a general-purpose
language (its features are not service-specific), but is designed to support the
needs of Semantic Web Services. WSMO has focused more on the meta-model
and OWL compatibility than SWSO. Although SWSL focuses more on extend-
ing the functionality of the rule language than WSML, and is thus better suited

27



as a general-ontology description language, it is still targeted at semantic web
services. In addition, it hasn’t been reported to be used much.

3.4 Context ontologies

Context ontologies can be specified using different languages. This section
presents a language for developing context ontologies followed by a presenta-
tion of a general ontology for ubiquitous and pervasive computing. Finally, 2
context ontologies are presented. The main features of each ontology will be
presented, followed by a short evaluation of it.

3.4.1 CoOL - a Context Ontology Language

This presentation of CoOL is based on the contents of [38, 39]. CoOL is a
context ontology language that is derived from the Aspect-Scale-Context (ASC)
model ([39, 38]) and it can be used to enable context-awareness and contextual
interoperability during service discovery and execution in a distributed system
architecture.

Context information is defined as “any information which can be used to char-
acterize the state of an entity concerning a specific aspect”, where an entity is a
person, place or in general an object. This definition of context resembles the
definitions provided in [4, 6, 8] a lot, however by introducing the term aspect, it
refines the expressiveness of the view on context.

The ASC model is named after the core concepts of the model, which are as-
pect, scale and context information, see Figure 6. An aspect is a set of one
or more related scales, it is a dimension of the situation space being used as
a collective term for information objects having the same semantic type. A
scale is an unordered set of objects defining the range of valid context infor-
mation. Thus, a valid context information with respect to an aspect is one of
the elements of the aspect’s scales. For instance, the aspect “GeographicCoor-
dinateAspect” may have two scales, “WGS84Scale” and “GaussKruegerScale”,
and a valid context information may be an object instance of one of these (e.g.
valid_context _information = new GaussKruegerCoordinate(x, y)).

Aspect Scale Contextinformation
ottt e B Aspect b, = .
" hasDefaultScale: | Scale " [T charactizea: |Enfity
ectProp. 20 —— % constructedBy: <Centextinformation> -
T2 = hasScale: Scale 4 hasScale
|Coeetrep. =1 asUnit: (Qepetrr 20 inrror: Contextinformation
,,,,,,,,,,,,,,,,,, |OofectProp. =1 o berCheck: (QepdPre 0 meanError, Contextinformation
1
type cardinality . " OtjectP =1 .
yeE Y predioan ! | OtiecProp. 20 e intraOperation: [ IntraOperation Qe 1 fmestamp: Contextinformation
_________________ ] OtjecProp. =0 pcinterOperation: | InterOperation hasQuality: Contextinformation

Figure 6: The Aspect-Scale-Context model, from [38]

28



Although CoOL is a language for describing context ontologies (and one might
therefore claim that it is not an ontology itself), it is built on a general, high
level context ontology, namely the ASC model. Due to the purpose of the ASC
model (provide a basis for a context ontology language), it is the context model
that supports the characteristics of context information (see section 2.3) the
best. Although several aspects and scales have been defined [39], it is still a
bit too general and vague to serve as a context ontology for applications. The
context ontology shall serve as the context model (the learned context), which
will be the basis for the reasoning. The ASC model is too abstract and general
for this purpose, instead a new model (ontology) that is based on the ASC
model can be developed (which is what CoOL is made for).

3.4.2 SOUPA - Standard Ontology for Ubiquitous and Pervasive
Computing

In [45], a shared ontology for pervasive computing called Standard Ontology for
Ubiquitous and Pervasive Computing (SOUPA) is presented, and is specified
using OWL.

As can be seen in Figure 7, SOUPA consists of two ontologies; the SOUPA Core
and the SOUPA Extension. They are distinct, but related. The core ontologies
define general vocabularies that are common for different pervasive computing
applications, while the extension ontologies extend from the core ontologies and
define additional vocabularies for supporting specific applications.

SOUPA Core provides vocabularies for expressing concepts about:
e Person: contact information, social profile, professional profile
e Agent: properties representing what the agent believes, desires and intends

e Belief-Desire-Intention: fact, desire and intention classes that is used in
the agent document®

e Action: vocabularies for describing the entity that performs the action
(actor), the entity that receives the effect of the action (recipient), the
object that the action applies to (target), the location at where the action
is performed (location), the time at which the action is performed (time),
the thing that the actor uses to perform the action (instrument)

e Policy: security and privacy issues related to actions and reasoning func-
tionality about this

e Time: time, time-interval and temporal properties

e Space: symbolic representation of space and spatial relations

When ontologies are expressed in OWL, they are usually placed on the web servers as
web documents, which can be referenced by other ontologies and downloaded by applications

29



e Geo-Measurement: longitude, latitude, altitude, distance, surface area

e Event: what, where, when

For a reference to the SOUPA Extension, please refer to [45].

SOUPA Ontology (2004-06)
http://pervasive.semanticweb.org /font /2004/06/ e Dor.llmlent ~
e [dhoc] ""“--.___‘_
= _endll s - Digital Do %
- e > [ddc] \
g P Person %

3 of [per] \

o S |

- £ Agent - |

£ Meeting
¢ [agt] s
o ‘ Policy 1
/ [ ¥ [pol] \
/ Device [ 5
- [dev] i A0l \
/ |III (b Event ; ". ImgCapture
/ ] [eve] Action 1 [icap]
/ Region \ [act] ]
'l Conn Cale |
.."r [rec] Space
[spc]
Time - 7
Location (tme] J
=] 3 "

< Geo-M e

b [geo]
Schedule - =
[sch]

-— owl:imports
(2} soupa core
() souPA Extension
[ ] XML Hamespace

Figure 7: The SOUPA ontology, taken from [45].

Although the SOUPA ontology is not customized for context, it can definitively
serve as the basis for developing one. In the agent-based pervasive context-aware
computing infrastructure called the Context Broker Architecture (CoBrA) [42],
it is used as the super-ontology for context knowledge sharing. CoBrA has
defined its own context ontology called the COBRA-ONT, targeted at mod-
elling contexts in smart meeting rooms. In addition SOUPA has been used
in MoGATU, a framework for handling pro-active peer-to-peer semantic data
management in a pervasive computing environment.

The SOUPA ontology has a very flat structure divided in two layers: the core
and the extension. Time, Action, Person, Agent, BDI and Space stand out to be
the most important ones, since they all are in the core and are the ones that have
imported fewest and is imported by most other documents. One might look at
these as the primary context types of the ontology. The ontology is also good at
taking onto account that contextual information is highly interrelated and has
many alternative representations. This is achieved through the divide between
the core and the extension, in addition to exploiting the import functionality
of OWL. In addition, the temporal characteristics of contextual information is

30



taken into account by importing the Time document into Event and Location.
However, there is no quality property that can help in setting the reliability of
the contextual information (remember that contextual information is imperfect,
see section 2.3).

3.4.3 SOCAM

In [36, 37], the Service-Oriented Context-Aware Middleware (SOCAM) archi-
tecture, which specifies a context ontology using OWL. The context definition
that is used is equal to the one defined by [1].

The context ontology models the basic concepts of person, location, computa-
tional entity and activity and how these concepts are interrelated. Different
contexts are classified and relationships are modelled using dependency tags
on the classes’ properties. The sensed context is also annotated with quality
constraints capturing the quality of the context.

—_
f STt
..-"""--f----- "I! x %H-h“"n
Upper | GComPENtly > ClLocation>  CPerson > CAcivity >
[ C_SJEWGE“ i o il
——— TndoorSpace _DeducedActivity >—
Ontology —— Application —[COTr=pEeE, ——
L Devies ' Sudoorspact>] | |cSeheETACIT>
—C:I\letwori;,"'
| <CAgent D]
Y R R st v i
Specific | . o .. 2 .. o .
Ontologies|

Legand: f,q__:) owlClass  —= rdfs;subClassOf

Figure 8: Class hierarchy diagram for the SOCAM context ontology, taken from
[36]

Specifying the context in one domain in which a specific range of context is of
interest is referred to as the separation of domain. As can be seen in Figure 8,

31



the context ontology is divided into upper ontology and domain specific
ontologies. The upper ontology is a high level ontology, capturing general
context knowledge about the physical world, whereas the domain specific
ontologies are a collection of low-level ontologies which define the details of
general concepts and their properties in each sub-domain. With this scheme,
the low-level ontologies can be plugged into and unplugged from the upper
ontology when the environment changes, making it possible to represent a
great variety of context information.

The ContextEntity provides an entry point of reference for declaring the upper
ontology, where one instance of ContextEntity exists for each distinct user,
agent or service. Each instance of ContextEntity presents a set of descendant
classes of Person, Location, Computational Entity and Activity, which are all
detailed in the domain specific ontologies. They have defined all the
descendant classes of these basic classes in a smart home environment with a
set of properties and relationships that are associated with these classes.

¢BuaktyConstraint ~TnalityConstraint,
" —:D S~ Location ./
E
-
.
i _ _
Parameer > Coouraorio)  Eesoloionlod
:: Metric _:_:) {g’r_andardErr_cEr:} (:r-_RE'sI'JMIiﬂrT-}

- T - T —

F }7 vV

r 1 ¥

| null | |ﬂu.=:t || 0.79 | |meter ||irﬂE!]Er|

ay A Quality Ontology b) An Example Instance for Location Information

Legend: (> owiClass ¢ 5 individual [ ] datatype value

— owlProperty ——= pdfsisubClassOf

Figure 9: Quality Constraint in the SOCAM ontology, taken from [36]

To set the quality of the context, the OWL properties of entities can be
associated with quality constraints. As can be seen from Figure 9a), quality
constraints are associated with a number of quality parameters that capture
the relevant quality aspects of the attributes of entities and relationships

32



between them. The parameters are in turn made up of one or more quality
metrics, which define how to measure or compute context quality with respect
to the parameter. In addition to value, the metric has a type and a unit. The
SOCAM ontology has defined 4 types of quality parameters (see Figure 9a));
accuracy, resolution, certainty and freshness. An example is shown in Figure
9b).

The greatest advantage of the SOCAM ontology is that it facilitates “the
sharing of common understanding of the structure of context information
among users, devices and services to enable semantic interoperability” [36].
This is achieved through abstractions when separating the domains.
Contextual information has many alternative representations, and so any
model of context must support this fact. The SOCAM ontology supports this,
through multiple levels of abstraction making it possible to represent the same
contextual information in various formats for different applications. In
addition, the ontology models the interrelationships and dependencies between
different contextual information through OWL properties (using the tag
-rdfs:dependsOn). The ontology also provides mechanisms to model the
temporal and imperfect characteristics of contextual information using the
quality constraints, see Figure 9.

The primary context types in the SOCAM ontology are computational entity,
location, person and activity. Time is not mentioned, which is (according to
[1, 23]) a significant characteristic of a situation of an entity. In other words,
time should be, if not a primary context type, a part of the ontology. In addition,
user preferences are not part of the ontology. Although these could be a part
of the service descriptions, they could with great success be modelled in the
ontology as well. This is because user preferences could include not only service
preferences, but, context reasoning preferences too.

3.4.4 CoDAMoS

In [40], an adaptable and extensible context ontology for creating context-aware
computing infrastructures is presented. The ontology is developed for use in
Ambient Intelligence, where devices will communicate and interact indepen-
dently without immediate user interaction making decisions based on a variety
of factors (including user preferences and the presence of other users).

Four main entities (denoted as primary context types by[1]) were considered to
be the most important aspects in context information, and so the ontology is
built around these (see Figure 10). The main entities are User, Service, Platform
and Environment and below is a description of each.

The user (illustrated in Figure 11) is perhaps one of the most important entities.
The application or service should adapt to the user and not vice versa. Impor-
tant properties include a user’s profile, preferences, mood and current activity.
An important thing to note is the distinction between a user’s preference (e.g.

33



sevice

Uses3eryice”

user

providesSemnvice®

usesPlatform®

hasEnvironment

-«

platform

B

environment

Figure 10: The CoDAMoS overall ontology, taken from [40]

hasProfile

preference
profile

isa
hasProfile

activity

role

—

]

profile

mood

A

hasActivity*

1---\-\--'\-\.

—
e

hasProfile

S

hasRole™

hasMood

task |-

LsesSenice”

hasTask®

user

useslODevice®

—»

semvice

i'o
device

e

Figure 11: The User ontology, taken from [40]

34



preference in font type) and profile (containing facts such as gender, name, date
of birth). The profile is more or less static while the preference profile is more
subject to the current situation.

platform
hasEnvironment
N temperature
environment
- hasEnviranmental Conditjon™
hasLocation pressure
. , hasTime~
IsRelative Tor Y emironmental isa
location time condition o] hurmidity
isa
lighting
relative absolute
T isa noise
address

Figure 12: The Environment ontology, taken from [40]

The environment (illustrated in Figure 12) is where the user interacts, consist-
ing of time, location information and environmental (physical) conditions such
as temperature and lighting. It is important to note that the environment is
always sensed through a platform (device), which is why the user is not di-
rectly associated with the environment. Remember that contextual information
is both temporal and imperfect. In the CoDAMoS ontology, this is only taken
into account when the information is about the environment by delegating the
responsibility to the devices that sense this information (denoted as the Low
level view, see section 2.9).

The platform (illustrated in Figure 13) is the description of the hardware which
specifies the resources of the device and software that is available on the device
for the user or other services to interact with. Because certain hardware or
software elements in devices can vary or be temporal, only the most relevant
entries of the context is specified.

The service (illustrated in Figure 14) provides specific functionality or informa-
tion to the user. A well-specified semantic and syntactic service interface (or
description) sustains easy service discovery and service interaction. Each device
is responsible for having a full description of its own services, including how it
can be interfaced by other services. The service profile provides a human read-

35



supporisModality”

- - - | power

re"::le.n"g operating wirtual middlewars P ——
engine syshem machmne
Y |
resourcs
rmodality o3
; S — cpu
1=a resource resourcs
i3
providesSenicg— %

service |if software hardware i rescurce
nefwork
requiresPlatform® provides Softwdre” ==

. ifo i =3 input

_ -- i providesHardwa rer | device device

hasEnvircnment uses {)De-.'ize'i
| output
environment| user device
Figure 13: The Platform ontology, taken from [40]
| task | | software |
_ e ]
LusesSernvice” providesService”

= service (e

hasServiceProfile—" | ——_ hasServiceGrounding

-

T hasServicehathel._
F - . r -
service service sanice
profile model grounding

Figure 14: The Service ontology, taken from [40]

36



able description of what kind of functionality the service offers by specifying the
inputs and outputs, the service provider and quality ratings that can be used
for service discovery. The service model describes, more detailed, what happens
when the service is carried out, including control- and data-flow specifications.
The service grounding specifies implementation details such as communication
protocols and message formats.

When describing the activity of a user, an application needs to be able to dis-
tinguish between different types. Some are planned (which can be sensed from
an agenda), others are spontaneous (which can be deduced from location and
time). With the User ontology in Figure 11, it is not possible to extract this
divide. In addition, a task is associated with a service, which is not always the
case (e.g. meetings). This should be handled by the ontology.

37



4 The context ontology

Context can be modelled using several techniques, of which ontologies were
chosen as opposed to the others. As was described in section 2.3 and 2.2, there
exists different main types of context that all share some general characteristics.
Based on this, some requirements that the context ontology needs to support
can be extracted. This also imposes some requirements to the context-managing
architecture.

This chapter will provide a discussion of why ontologies were chosen to model
context and extract the requirements to the context ontology. Finally, the con-
text ontology will be presented.

4.1 Why represent context through ontologies?

According to [45], a lot of the previous attempts to make context aware appli-
cation prototypes share that they all lack support for knowledge sharing and
reasoning. The source for this is that they are not built on a foundation of
common ontologies with explicit semantic representation. There have also been
some attempts to define context and its inter-relationships using graphical ori-
ented approaches.

According to [36], there are 3 types of context modeling approaches.

1. The Application-oriented approaches tailor the context model to each spe-
cific application, making the context models proprietary. These models
lack formality and expressiveness and do not support knowledge sharing
across different systems.

2. The Model-oriented approaches use conceptual modeling approaches to
represent, context, e.g. modelling context using ER diagrams or UML dia-
grams and managing it with relational databases. These models are better
than the application oriented models because they support formality and
capture the temporal characteristics of context information. However,
they do not address knowledge sharing and context reasoning.

3. The Ontology-oriented approaches use ontologies to represent context,
have great formality and facilitates context reasoning.

Remember that context information has a great variety, is inter-related, tempo-
ral and imperfect. The modelling approach thus needs to be flexible enough to
handle all of this.

As was described in section 3.1, an ontology entails some sort of world view
with respect to a given domain by defining a vocabulary that formalizes the
domain into semantic terms. The semantic is achieved by describing entities,
attributes and the inter-relationships between them. Ontologies are thus well
suited to store the knowledge concerning context, because it minimizes the for-
mality gap [38] much more than the other context modelling approaches. And

38



with formality comes inter-operability, stability (easier to validate and check the
consistency resulting in a more stable model) and reusability, which is desirable
for any information model.

Ountologies can be specified using a number of different languages (see section
3.3). They all have their strengths and weaknesses related to different criteria
(e.g. how much it has been used), but one thing they have in common is the ca-
pability to represent information with both soft (few restrictions and properties)
and strict (many restrictions and properties) constraints, making it possible to
describe (with varying degree) inter-operability and hierarchies between entities.
For instance, with OWL the developer is able to create both defined and un-
defined classes, making it possible to describe information with varying degree
of precision. Thus, ontologies are very flexible for creating information models
and thus well-suited for representing contextual information.

OWL expands RDF by adding more vocabulary for describing classes and prop-
erties among them (see section 3.3). Although WSML and SWSL also handle
these things, OWL was chosen since it has been used, and reported to be suc-
cessful for developing ontologies, far more than WSML and SWSL. In addition,
ontology editors and developer guides are not that accessible for WSML and
SWSL, making it time-demanding to use them.

4.2 Requirements specification

This section will present the requirements to the context ontology, which are
based on the discussion of context in chapter 2.

The context ontology will be the information model of context to be used in
the CBCC application and it is vital that it takes the nature of contextual
information into account. Remember from 2.3 that contextual information has
four general characteristics.

First of all, contextual information is temporal making the contextual informa-
tion that is used by applications vary a lot. Thus, the model needs to be able to
be updated frequently. Further on, contextual information is imperfect in three
ways; it may be out of date (as a result of the temporal nature), faulty (er-
rors on transmitted context data) or missing (loss of transmitted information).
Consequently, the ontology needs to take all of these issues into account.

In addition, it has many alternative representations. The same contextual in-
formation can be represented in many different formats in different applications
forcing the model to facilitate alternative representations of contextual informa-
tion. Finally, contextual information is highly interrelated. A lot of contextual
information depends on other contextual information, requiring the ontology to
be able to represent this.

In section 2.2, it was pointed out that when classifying contexts into types, some
types are more important (in terms of generality and uniqueness) than others.
The former was denoted as primary information while the latter was denoted
as secondary information. In this master thesis, the primary information will

39



not be viewed as more important than the secondary information - instead it
shall be the basis of the secondary information. The secondary information will
be deduced from the primary information. Thus, the model needs to take this
type of hierarchy into account.

4.3 The context ontology

This section presents the context ontology that was developed in OWL using
Protégé-OWL. Several suggestions were developed, of which two of them stood
out to be the best. They both provide a hierarchy of classes and properties
between them, describing the interrelations and hierarchy of the context infor-
mation. Below is a presentation of each, followed by a discussion explaining
why the chosen one was preferred. Figure 15 contains (to the left) the legend
of the graphical representations. Before continuing, the reader is encouraged to
consult Appendix D for more information on OWL and the Protégé-OWL API.

Alternative 1 - Initial ontology-approach The first solution has defined
Context and Entity as the topmost classes in the ontology (the top-most class
when using Protégé-OWL is Thing, which represents the set containing all indi-
viduals). Remember that context is defined as any information that can be used
to characterize the situation of an entity. Consequently, Context and Entity are
the most important concepts (see Figure 15).

Legend:

==QOWL property
» rdfs:subClassOf Owl:Thing

value XML Schema Datatype
Value or RDF Literal
L)
lass_name| OWL class defined another
place in this ontology Entity
OWL class defined in

this ontology

U The Union Operator

Figure 15: Alternative 1, owl:Thing

Further on, Information is considered to be the most natural sub-class of Context
(illustrated in Figure 16). The main context information types are primary
(sensed, raw-data) and secondary information (refined, deduced). In addition,
one of the requirements to the ontology is to be able to represent quality aspects
of the context information. This is achieved by QualityInfo (quality aspect of a
certain type of information, e.g. time freshness), ParametersInfo (parameters
that are needed by the QualityInfo, e.g. Freshness) and MetricInfo (the metric
of the parameters, e.g. type=integer, unit=seconds and value=500).

The primary information is described in Figure 17. As can be seen, Activity and
PhysicalEnvironment are the two main types of primary information. Activity

40



Owl:Thing

x
‘ Context | ‘ Entity ‘

Information

u

[ I
| Qualitylnfo ‘Me{riclnfo ISecondaryInformation||Primarylnformation| |Parametersinfo
VE:
hasType hasUnit hasValue
|
s [
%sd:String Accuracy Freshness

v A
| xsd:String ‘ xsd:String

Reliability ‘

Figure 16: Alternative 1, Context

can be further divided into Status (explicit user-defined state e.g. “I am out for
lunch”), Scheduled Activity (typically registered in the calendar on the terminal)
and DeducedActivity (activity that is deduced based on some other information).
The PhysicalEnvironment contains among others information about the space
that the entity is in, including distance, surface area and physical location of
the user. There are two type of locations: Relative (described by an Address)
and Absolute (described by a Coordinate). One might argue that the Relative
location should be placed under SecondaryInformation, since it is often deduced
based on the Absolute location. This will be discussed in the evaluation of the
demonstrator, see section 5.5.

The secondary information (illustrated in Figure 18) is typically more refined
and based on primary information. It includes the presence of the user (describes
a deduced version of the location of the user) and the degree of how available
the entity is (Availability).

Alternative 2 - Final ontology The previous suggestion has several nega-
tive features, that are improved in this ontology. The quality-describing infor-
mation is no longer a subclass of the ContextInformation, instead it is related to
the ContextInformation through an object property (illustrated in Figure 19).

The Entity (see Figure 20) is realised as having three disjunct sub-classes: Com-
putationalEntity, PlaceEntity and PersonEntity. By making all the subclasses
disjunct from each other and stating that the Entity is a union of the three
subclasses, means that the Entity represents the set of individuals that includes
all the individuals belonging to ComputationalEntity, PlaceEntity and Perso-
nEntity. In addition, each Entity has a unique identity that is represented
through an XML Schema String value. The PersonEntity has the subclasses
PreferenceProfile, ProfessionalProfile and SocialProfile.

It is now possible to define whether the PrimaryInformation (see Figure 21) is

41



Owl:Thing

£
I I 1
Contextinformation Entity ] Qualitylnformation | [QualityParameter Metric
ut
[
Primarylnformation
Gl
PhysicalEnvironment
u u
[ 1
‘Status ScheduledActivity DeducedAclivity‘
[ I I I
| Time H Humidity H Noise | ‘ Space LuxConditions ||Temperature| | Pressure
I i I U I T
hasMetric hasMetric hasMetric hasMetnc hasMetrlc
W v v
I |
| 1
PersonEntity containsPerson# Location | Distance I SurfaceArea
v 1 \ I
hasMetric hasMetric

| |
] v i
Absolute Metric ‘ ‘ Metric
hasAddress
g
hasHuur halenute hasSewnd

Figure 17: Alternative 1, Primary information

Owl:Thing

A
[ I 1

Qualitylnformation ‘Qua\ityParameter ‘Memc

[
ContextIinformation

Entity ‘

Secondarylnformation

Primaryinformation

Figure 18: Alternative 1, Secondary information

42



Owl:Thing

Contextinformation ‘ Entity ‘ Qualitylnformation || QualityParameter hasMetri
L j A v /
characterizes T—has@uahlyF‘ammeter hasType hasUnit
hasQuality - /
I v

I I
Accuracy ‘ ‘Freshness Reliability ‘

Figure 19: Alternative 2, owl: Thing

Owl:Thing

ry
I

QualityInformation

I ]
QualityParameter || Metric

I
Entity
—characterizes-

[VIE S

N
hasldentity
-
ComputalianalEntity‘ ‘ PlaceEntity | PersonEntity
u

U

[ 1
’ Device H Network HAppIi::alinn ’F‘referenceProfile ProfessionalProfile ’Socia\Proﬁle

Figure 20: Alternative 2, Entity

43



explicitly or implicitly acquired and whether it is actively used or stored for later
user. The Activity is realised with two subclasses in this scheme; InstantStatus
(a renamed version of the Status from Alternative 1) and ScheduledActivity.
DeducedActivity is still a part of the ontology, however it is moved to secondary
information. This is because it is refined and based on other information, making
it more of a secondary information than a primary.

Owl:Thing

L

Contextinformation Qualitylnformation | | QualityParameter Metric

Entity |

Ut
|

econdaryinformation PrimaryInformation V_,isExplicH"" | '
isActive e
u T - xsd:boa

PhysicalEnvironment Activity hasPriority—
1
InstantStatus . ScheduledActivity

beginsAlTime "

hasLocation

hasDescription hasSurrirﬁraryhas»C"éegory hasParticipant __" isDcngAtTime

xsd:String | | xsd:String | | xsd:String

PersonEntity || Time H Time Location

Figure 21: Alternative 2, Primary information - Activity

The Space class is also changed in Alternative 2 (Figure 22), the Destination is
moved to secondary information because of the same reason as DeducedActivity
was moved. In addition, Relative has an XML schema string value to represent
the address instead of having an Address class representing it. This is because
there really is not point in having a separate class represent the address of a rel-
ative location, since the address class would need to contain a string value of the
address. The reason for having classes is to be able to represent different individ-
uals (e.g. homeAddress and houseAddress) that potentially has the same content
(homeAddress="Innherredsveien 13” and “houseAddress="Innherredsveien 13”).
This is not needed here, if the string values of the addresses are equal, then the
addresses must be equal. In addition, to be able to define a Relative location,
it can be given an Altitude, Longitude and Latitude. With this information, it
is possible to map between Absolute locations and Relative locations. Further
on, absolute locations can be expressed in many different, formats using different
geographical coordinate systems (called a datum). To be able to fully describe
an absolute location, a property specifying this is added. In addition, three
subclasses of AbsoluteLocation is added that each has a metric describing it.

Finally, the secondary information (see Figure 23) is expanded with three classes.
First, Distance is moved from primary information and given a property that
can describe which entity the distance it related to. Second, DeducedActivity

44



Owl:Thing

L)

1
Metric

I
QualityParameter,

Contextinformation

Qualitylnformation

I
Entity ]

iSAC‘iVeV-/T-
Yt-

isExplicit
PhysicalEnvironment
u
[ [ [ [
| Time H Humidity H Noise | \ Space LuxConditions ||Temperature| | Pressure
T e T U I e i
hasMetric hasMetric hasMetric hasMetric hasMetric hasMetric
] vl v T
I Metric ‘ Metric H Metric ’ Metric ‘ ‘ Metric H Metric
PersenEniity “-containsPerson-
u |
k ‘ hasMetric
Relati Dat Absolut
| elative ‘ -atum | | solute ‘
N hasDatum
% hasMetric ] | |
% : Longitude | Latitude ’ Alitude
! \ g \"\
/ A i
ff p ‘\\
f hasAltitude has'L\ongilude\QasLatiluda
i 3 :

&

| X pay
Altitude HLung:tuds Latitude

Figure 22: Alternative 2, Primary information - Physical information

45



is moved from primary information and given properties so that it is able to
specify the participants and the description of it. Third, PersonRole is added
so that it is possible to explicitly specify what kind of role a person has in a
situation. The Presence is related to a relative location in addition to having an
Availability that specifies the degree of availability given the entity’s presence.

Owl:Thing

Iy

| |
Contextinfaormation Qualitylnformation

‘ Entity ‘ QualityParameter’ \ Metric
“
[ 1
PrimaryInformation Secondarylnformation
’1
[ [ 1
[ Distance PersonRole DeducedActivity ‘ Presence Availability‘
/ hasDescription LhaSAVailabilily—’C‘ |
toEntity hasDescription hasParticipant hasLocation hasMetric
‘ v ki
Relative

’ Metric

| [PersonEntity

Figure 23: Alternative 2, Secondary information

46



5 Demonstrator: the Context Based Call Control
service

This chapter will present the demonstrator service. First, an overall description
of it will be given followed by a requirements analysis. Further on, the archi-
tecture of the application will be presented together with the implementation
details. Finally, an evaluation of the implementation will be given.

5.1 Requirements specification

This part will first present a problem scenario that highlights the issues that the
CBCC service will cope with. Secondly, a user scenario is given to illustrate how
the CBCC service will cope with the issues that are presented in the problem
scenario. Finally, based on the problem and user scenario, the explicit functional
requirements for the CBCC service will be presented.

5.1.1 Problem scenario

John is a salesman in a telecom company, located in the middle of Trondheim.
It is 8:30 a.m. and he is on his way to the office in his car. This morning has
so far been really bad; he got up too late, spilled a cup of milk on the floor
and fell on the slippery pavement when walking to his car. As if that was not
enough, the news on the radio has announced that there will be some traffic
this morning.

Suddenly, his cell phone starts ringing. He mutes the radio and picks it up.
It turns out that its a customer that he talked to yesterday afternoon. The
customer has talked with his superiors and is interested in buying one of the
products that he talked with John about yesterday. However, he needs more
information about another product before he makes a decision. John tells the
customer that he unfortunately is in the car right now but that he will be in the
office in 5 minutes and can call the customer back then. The customer is not
too positive about this, since he will be in meetings till 2 p.m. John therefore
suggests that they call each other then.

After hanging up, his spouse calls him to let him know that she will be late
today because of a meeting in the afternoon. They agree on postponing dinner
till 7 p.m.

Thirty minutes later, John finally arrives at the office. The traffic was a lot
worse than assumed due to a traffic accident. While walking into the office
building, John checks his agenda on the cell phone. It turns out that he was
supposed to be in a meeting with Jane, one of his co-workers, at 9 a.m. in the
meeting room. So instead of going to his office, he runs down the hall to the
meeting room.

It turns out that Jane was also a bit late, so they arrive almost at the same
time. Ten minutes into the meeting, John’s phone starts ringing. He picks it up

47



to find out that it’s the same customer that called him this morning while he
was on his way for work. Since it looks like it’s OK with Jane that he answers
the phone call, he takes the liberty to inform the customer about the product
right now. After 5 minutes, he hangs up and gets back to the meeting with
Jane. She hasn’t been idle, so they’re able to finish the meeting a bit earlier
than planned.

At the office, his desk phone is ringing. He picks it up to find out that it is the
same customer that called him this morning. He informs John that he tried to
get hold of him on his cell phone, but that nobody answered so he had to try
this phone number instead. John politely apologizes for this inconvenience. The
customer then informs John that his company have decided to go for the product
they talked about yesterday and would like for John to email him the necessary
documents. After hanging up, John fills out the contracts and documents before
emailing them to the customer. Suddenly, his desk phone rings again. It is his
spouse calling to remind him about buying the present for their friend Paul that
has a birthday party this weekend. After hanging up, he wants to make a memo
about this on his cell phone. Unfortunately he can’t find his cell phone so he
starts thinking about where he used it the last time. Strangely, he can’t think
of having used it more recently than the time he was in the meeting. He walks
to the meeting room, to find out that not only has the phone been lying there
since the meeting with Jane, but in addition 2 people have tried to reach him
while he was in his office. He checks to find out that it was his spouse and the
customer from yesterday that called. After making the memo, he calls one of
his other customers to schedule a meeting at 1:30 p.m.

At noon, John goes to a restaurant to have lunch with some friends. They have
made it into a tradition to have lunch together once a week, and he really enjoys
this since they don’t get together much more beyond that. On his way there,
he calls his secretary to let her know that he is out for lunch.

When they have gotten the main course, his phone starts ringing. He picks it
up to find out that it is a customer on the line. He has some questions about
the different products that the company offers, and although feeling forced,
John decides to answer the customer. Five minutes later he agrees to send the
customer an email with some product sheets and hangs up. He gets back to his
meal to find out that his friends are almost done with theirs.

When returning to his office, John stops by his secretary to let her know that
he’s back again. He checks his schedule and starts preparing for the meeting at
1:30 p.m.

In the middle of the meeting, his cell phone starts ringing. He chooses to hang
up instead of answering the phone call. When the meeting is done, he retrieves
his phone and finds out that it was his spouse that was trying to call him. He
calls her back and finds out that her meeting was cancelled so they can have
dinner earlier still.

48



5.1.2 User scenario

John is a salesman in a telecom company, located in the middle of Trondheim.
It is 8:30 a.m. and he is on his way to the office in his car. This morning has
so far been really bad; he got up too late, spilled a litre of milk on the floor
and fell on the slippery pavement when walking to his car. As if that was not
enough, the news on the radio has announced that there will be some traffic
this morning.

At the same time, his secretary gets a phone call destined for John. It turns out
that it is a customer that John talked to yesterday afternoon. John has defined
a policy that forwards all phone calls for his cell phone to his secretary if he
hasn’t arrived work yet and the call origins from a phone number that John has
defined as work. The customer has talked with his superiors and is interested in
buying one of the products that he talked with John about yesterday. However,
he needs more information about another product before he makes a decision.
Since John is not in, his secretary forwards the customer to another salesman
that is able to give him the information he needs.

A couple of minutes later, John’s spouse tries to call him on his cell phone.
Since the call origing from his spouse’s phone number, which John has defined
as family, the call is forwarded to his cell phone. She lets him know that she will
be late today because of a meeting in the afternoon. They agree on postponing
dinner till 7 p.m.

Thirty minutes later, John finally arrives at the office. The traffic was a lot
worse than assumed due to a traffic accident. While walking into the office
building, John checks his agenda on the cell phone. It turns out that he was
supposed to be in a meeting with Jane, one of his co-workers, at 9 a.m. in the
meeting room. So instead of going to his office, he runs down the hall to the
meeting room.

It turns out that Jane was also a bit late, so they arrive almost at the same
time. They work well together and are able to finish the meeting 10 minutes
earlier than planned.

On his way to the office, he passes his secretary’s desk. She tells him that a
customer called this morning and so she forwarded him to Dave, one of John’s
colleagues. John then makes a detour to Dave’s office to ask him about what
the customer wanted. Dave tells him that the customer only wanted to see
the product sheet of another product, and so Dave sent him this in an email,
including John as a recipient. John thanks Dave for the favor, and heads for
his office. At the office, his desk phone is ringing. It is the same customer that
tried calling him this morning that is calling. Since John is at the office, the call
is forwarded to his desk phone. The customer has decided to go for the product
they talked about yesterday and would like for John to email him the necessary
documents. After hanging up, John fills out the contracts and documents before
he emails them to the customer. Suddenly, his desk phomne rings again. This
time it is his spouse that is calling to remind him about buying the present for
their friend Paul that has a birthday party this weekend. After hanging up, he

49



wants to make a memo about this on his cell phone. Unfortunately he can’t
find his cell phone so he starts thinking about where he used it the last time.
Strangely, he can’t think of having used it more recently than the time he was
in the meeting this morning. He walks to the meeting room, to find out that the
phone has been lying there all the time. He doesn’t bother to check if somebody
tried calling him while he was in his office, since he knows that all phone calls
will be forwarded to his desk phone in the office. After creating the memo, he
calls one of his customers and schedules a meeting at 1:30 p.m.

At noon, John goes to a restaurant to have lunch with some friends. Forgetful
as he is, he has scheduled and stored his lunch appointment in his calendar on
his cell phone. They have made it into a tradition to have lunch together once a
week, and he really enjoys this since they don’t get together much more beyond
that.

They are left unbothered throughout the whole meal and get to talk about old
times and enjoy the food jointly. John has defined a policy that will forward
all work-related calls to his secretary, so that he is left unbothered during his
lunch time.

At the office, John is informed by his secretary that a customer tried to get hold
of him but that she forwarded the call to Dave. John then goes to talk to Dave,
and gets to know that it was a new customer that had some questions about
some of the products and that Dave made him one of his customers. Feeling
bitter that he missed out on a new customer, John heads back to his office.
After all, they work on provision. Back in his office, he is in a better mood -
after all the customer did call in the lunch break. He checks his schedule again
and starts preparing for the meeting at 1:30 p.m.

The meeting goes as planned since John has registered a policy that forwards all
calls to his voicemail so that he and the participant are left unbothered. After
escorting the customer out, he checks his voicemail to find out that his spouse
has left him a message informing him that her meeting was cancelled so they
can have dinner earlier still.

5.1.3 Functional requirements for the CBCC service

This section will present the functional requirements of the CBCC service that
is based on the User scenario presented in section 5.1.2. Table 2 provides a
summary of the functional requirements of the CBCC service.

In addition, the contextual information will be sent from various sources (called
sensors) in varying formats. Consequently, the system needs both to be able to
represent the information in varying formats and cope with the varying formats.
In addition, it needs to be able to receive context information from different
types of sensors. This is what requirement 1 describes.

In R3 it is claimed that there are different levels of context information. Remem-
ber from section 4.3 that there are (among others) sensed context information,
deduced context information, primary context information and secondary in-
formation. These are all different types of context information, and also go

50



in different levels in terms of how understandable they are to the user. It is
important that the system is able to distinguish between the different levels of
the context information in addition to the different types of context, so that
it is possible to map the current context to the context values that are used
in the policy predicates. This is what requirement 4 describes. For instance,
a user would define a policy as “Forward all calls to my cell phone when I am
in a meeting” and not “Forward all calls to my voicemail when I am present
at longitude X, latitude Y, altitude Z and I have a scheduled activity at the
current date and time”.

’ Requirement Description

R1 The system must be able to update different kinds of context
information

R1.1 The system must be able to fetch and receive context information

R1.1.1 The system must be able to fetch and receive time

R1.1.2 The system must be able to fetch and receive location information

R1.1.21 The system must be able to fetch and receive location information
from several types of location sensors

R1.1.3 The system must be able to fetch and receive information from
the user-agenda about scheduled activities

R2 The system must be able to distinguish between different kinds of
callers

R2.1 The system must be able to distinguish between phone numbers
that the user has defined as work- and family-related

R3 The system must be able to distinguish between different levels of
context, information

R3.1 The system must be able to distinguish between primary (sensed)
and secondary (deduced /reasoned) information

R4 The system must be able to reason on the context information to
map it to context information that is understandable for users

R4.1 The system must be able to map primary context information to
secondary context information

R5 The users of the system must be able to define call control policies
that are based on user-understandable context predicates

Table 2: Functional requirements of the CBCC service

5.2 System architecture

This section will present the architecture of the CBCC service. Issues when
designing the system architecture was how it could be deployed in ServiceFrame
and how the context managing unit could be realised.

o1




5.2.1 System overview

As was described in section 2.4, there are three isolated types of context-aware
functions that can be supported by an application: presentation of information
and services, automatic execution of a service and tagging of context for later
retrieval. As for the CBCC application, it supports automatic execution of a
service - namely call control. Routing decisions shall be made based on the user
defined policies and the context of the users, where calls origin from different
types of telecom networks. To achieve this, the application interacts with NRG
to fetch location and perform call control. An overview of the CBCC service is
given in Figure 24.

ServiceFrame

CBCCUserAgent NRGCCEdge

S0 ?

@ ‘ @ &
& 1t

Figure 24: Overview of the CBCC service

5.2.2 The architecture of the CBCC service when deployed in Ser-
viceFrame

This section will present the different alternatives of the architecture of the
CBCC service related to deployment in ServiceFrame. There are two main
alternatives: a service oriented one and an agent oriented one. The different ap-
proaches as to how the context managing unit could be realised will be presented
in section 5.2.3.

Alternative 1: Service oriented approach In the first main approach (il-
lustrated in Figure 25), the context engine is realised as a standalone node in

52



ServiceFrame. Remember from section 2.8 that most of the architectures for
managing context (Context Toolkit, SOCAM, CoBrA) are realised as stand-
alone nodes where other services can subscribe to the context information that
is collected, interpreted and collocated. In ServiceFrame, it is also possible that
the UserAgent itself can receive or fetch context information from the context
engine. The services are realised as standalone actors interacting with UserA-
gents, TerminalAgents and technology-specific edges for communication. Since
the CBCC application shall collaborate with the NRGCCEdge that was de-
signed in the project assignment “Status Based Call Control” and therefore only
is to make a routing decision, terminal agents are not needed. With this ap-
proach, the ContextReasoner would administer OWL models (see section 5.2.3)
for all the UserAgents.

ServiceFrame

UserAgent ContextEngine

Push/Pull

A

r'y
Push/Pull

A 4
ContextBasedCallController | | ContextBasedSMSController | | ServiceActor_1

NRGCCEdge
| NRGCallControlFeature |

SMSReceiverEdge SMSSenderEdge

Figure 25: Alternative 1 of the CBCC service when deployed in ServiceFrame

A consequence of this scheme, is that some sort of context manager is needed.
There could be a number of services or UserAgents that are subscribing to
context information from the context engine. There needs to be some sort of
managing agent that is responsible for mapping context information with the
correct UserAgent.

53



ServiceFrame

UserAgent ContextEngine

UserContextManager

NRGCCEdge

Figure 26: Alternative 1 - including the user-context-managing unit

This can be solved by including the managing functionality as a part of the
ContextEngine. With this scheme, it is assumed that the context engine knows
the identity of the service- and user agents. This is a good solution, because
contextual information in general is tightly coupled with identity. The context
engine thus needs to be able to map between contextual information and the
identity of the owner entity.

Alternative 2: Agent oriented approach In the second approach (illus-
trated in Figure 27), the service logic and context engine is placed within the
UserAgent, making it a specialised case of a UserAgent (and is therefore re-
named to CBCCUserAgent) that has Context Based Call Control capabilities.
In ServiceFrame, the UserAgent is considered to represent the user of a service,
including the information that the user knows about himself (profile, context,
preferences), and is supposed to make service related decisions on behalf of the
user. This is in accordance with the agent paradigm of pervasive computing
[47]. ServiceFrame (see Appendix D.1) consists of agents that are defined in
ActorFrame (see Appendix D.2) as actors, and actors play roles to create a ser-
vice. The inner parts of CBCCUserAgent are defined in ActorFrame as actors,
each playing their distinct part of the CBCC service that is provided by the
CBCCUserAgent.

The first approach needed some sort of managing actor mapping sensed context
identities with ServiceFrame identities. This requirement is gone with the second

54



ServiceFrame

CBCCUserAgent NRGCCEdge
ContextEngine NRGCCFeature
CallController NRGCCProcessor

Figure 27: Alternative 2 of the CBCC service when deployed in ServiceFrame

approach. Since each UserAgent contains a context engine, the sensed context
identity will be easy to map to the service-related identity, since there is a 1-to-1
mapping - the entities are the same. With this approach, the ContextReasoner
would administer only one OWL model - namely the model of the UserAgent.

5.2.3 The architecture of the context managing unit

As was described in section 2.9, there are four views to context reasoning: the
low level (sensors making error controls and inferring context), model monitoring
(keeping the learned models consistent and valid), context monitoring (detect
context changes and react to these) and application view (refinement of raw
data and reasoning methods allowing policy forming). The different views divide
context reasoning into different parts, where each part is responsible for offering
a part of the context reasoning. The two architectures presented below are
based on these views. Both of them focus on the context management, and
not on how the unit is deployed in ServiceFrame (which is addressed in section
5.2.2).

Alternative 1 - initial approach The first alternative (see Figure 28) has a
number of classes that are put in the 4 views, each providing a part of the func-
tionality for the omitting view. For instance, it is assumed that the classes in the
model monitoring view shall collaborate to keep the learned models consistent
and valid.

The low level view is where the sensors are placed. Each sensor implements the
ContextSensor’s methods so that they’re able to validate, format and forward

35



the received information. In addition, they all extend from the ContextMonitor
making them able to fetch context data in addition to receiving it. Thus, the
sensors should be able to both passively receive and actively fetch (thereby
monitoring) context data from their environment.

In the model monitoring, we find the OWLModel class, which contains the
ontology and all the individuals that are created during runtime. In addition
we find the OntologyReader that is able to instantiate the model from the disk
and read from it during runtime. The OntologyPopulator is able to write the
model to the disk when the application shuts down and modify it during runtime,
while the OntologyValidator is supposed to validate the model when changes
are done.

The ContextReasoner is a part in all the views, and is the most central class in
the ContextEngine. It receives information from the sensor and is responsible
for deducing what the secondary information will be based on the primary infor-
mation it receives. In addition, it manages the OWLModel by keeping a virtual
model of it during runtime (instead of writing the information to the disk, which
is quite time-consuming). This is achieved by requesting the OntologyReader to
fetch the model at startup and requesting the OntologyPopulator to update the
model whenever new information is received. Thus, it is both responsible for
handling information from multiple sources (low level), keeping the model up to
date (model monitoring) and refine the data that is received from the sensors
(application view).

Alternative 2 - second and final approach The second alternative of the
architecture (illustrated in Figure 29) is a modification of Alternative 1. The
most important change is that the interaction between the ContextReasoner
and the sensors are made more general. This is why Alternative B is preferred.
In Alternative 1, if a sensor were to send context updates to the reasoner,
it would invoke specialised methods that suited it specifically (and no other
sensor), where the context information would be represented by string values.
In the same way, the ContextReasoner had no way of populating the model
during runtime. The model needs to be populated with the type of individuals
that are needed by the different types of information provided by the sensors.
This means that with Alternative 1, the reasoner needed to know what kind of
individuals that was needed in the model at the time it is instantiated, meaning
that it needs to know what kinds of sensors to support before they send any
updates.

Whenever a sensor wants to be able to provide context information to the Con-
textReasoner, it is requested to register. The ContextReasoner is informed of
what kind of sensor that is registering with it through the parameter. It is
assumed that the sensor knows what kind of information it provides. When a
sensor registers with the reasoner, the reasoner is able to populate the model
with the individuals that are necessary for the type of information the sensor
provides. With this approach, the reasoner doesn’t have to know what kind of
sensors it needs to support before it receives any information from them. In ad-

56



ContextEngine

Application view

ContextReasoner

updateTime(String)
updateActivity(String)
updateLocation(String)

store()
Model monito;ing Context munitoring
= ContextReasoner
OntologyReader | | OntologyValidator updateTime{String)
updateActivity(String)
fetchOntology() updateLocation(String)
getClass() validate() store()
getindividual .
GuPERerA] ContextMonitor
fetch(Object)
OWLModel OntologyPopulator
writeOntology()
addClass()
addindividual()
addProperty()} Sastandes
Low level
ContextReasoner
updateTime(String}
updateActivity(String)
updateLocation{String)
store()
ContextSensor
validate{Object)
forward(Object)
format(Collection)
‘? <implements>
[ | 1
TimeSensor ActivitySensor LocationSensor

Figure 28: Alternative 1 to the ContextEngine

57




dition, instead of having sensor-specific methods for context updates, a general
method can be invoked to update the context with the reasoner. To be able to
do this, some value objects are created in the model view of the ContextEngine
that the sensors can format the received context information into and forward
to the reasoner. They are simple objects that contain context information of a
certain type (e.g. time-information will be carried in a Time value object). A
value object is created for all the classes defined in the ontology, so that new
type of sensors are able to notify the reasoner about context updates. The Con-
textReasoner has also a new supportive class that helps it in deducing secondary
information from primary information (RuleReasoner).

In addition, the OntologyPopulator and OntologyReader are combined into the
OntologyOperator, the OWLModel is substituted with the JenaOWLModel be-
cause of technicalities in the Protégé-OWL API (JenaOWLModel is more func-
tional than OWLModel).

Finally, a new view is created in which the ContextReasoner and RuleReasoner
is placed: context administration. In Alternative 1, the view in which the Con-
textReasoner should be placed was not settled. This was because it provides
(coordinates) functionality that is provided by three of the views, and so it was
difficult to place it in one. However, the views do not compose separate lay-
ers of the service, offering different kinds of functionality. They simply provide
different views on which tasks that are done in context reasoning - making it
possible that a class is responsible for performing several tasks. The reasoner
is not really directly responsible for any of the tasks that the 4 views should
perform, the tasks that are supported by the reasoner are more of a manag-
ing or administrating character. This is why the context administration view
was created, offering a junction for context updates, primary/secondary context
reasoning and model-managing.

The application view is not really a part of the context engine, it belongs to
the omitting or subscribing (depending on the architecture being used) service
actors containing service-specific logic.

5.2.4 Final architecture of the CBCC service

Of the two architectures presented in section 5.2.2, alternative 2 is the preferred
one. The reason for this is that it is in accordance with the paradigm of actors
and agents that is imposed by ActorFrame and ServiceFrame. With this ap-
proach, each user agent is responsible for knowing as much as possible about the
context of the user that it represents and make decisions related to call control
on behalf of this user. All of this functionality is integrated in the user agent,
instead of having a standalone node collecting context information about all
users and entities.

The CBCCUserAgent (illustrated in Figure 30) will contain functionality for
collecting context information and make call control decisions based on the con-
text information and user defined policies (that are registered when the system

58



ContextEngine

Application view

Model monitoring

OntologyOperator

fetchStructure()
storeUserinformation()
assignProperty()
individualExists()

Value_object

Context administration Context monitoring

RuleReasoner

inferRule(String, String,

assignindividual boolesn) ContextMonitor
modifyProperty()
getindividuals()
P rt:
jotProperty() fetch(Object)
JenaOWLModel ContextReasoner |
register(String) i
updateinformation(Object)|
store() i
<extends>
Low level
ContextSensor
validate(Object)
forward(Object)
format{Collection}
registerWithReasoner()
‘? <implements>
[ | 1
TimeSensor ActivitySensor LocationSensor

Figure 29: The final architecture of the ContextEngine

59




starts up). It contains 6 actors providing this functionality, and below is a
description of each.

CBCCuUserAgent
ContextEngine ProfileEditor
CallController PolicyManager
familyCallers: List
workCallers: List
cellPhone: String
deskPhone: String
voicemail: String
secretary: String
PolicyEditor PolicyStore
UserProfile
deducedActivity: String
homeAvailability:String
officeAvailability: String
meetingRoomAvailability:String

Figure 30: The structure of CBCCUserAgent

The policy management consists of 4 actors: the PolicyManager, the Policy-
Store, the PolicyEditor and the ProfileEditor. A detailed description of these
actors can be found in [48]. The PolicyManager is responsible for checking if
the policies are satisfied for a given role. In addition, it interacts with the Pro-
fileEditor to get notifications whenever the UserProfile changes. The PolicyStore
manages storing and retrieval of policies from disk. Whenever the PolicyMan-
ager is to check the policies for a given role, it requests the PolicyStore for all the
existing policies for that role. The PolicyEditor is a service actor that is used to
register new policies with the PolicyStore. The ProfileEditor is responsible for
updating the UserProfile (containing the secondary context information) when-
ever it receives updates from the ContextEngine. Whenever this happens, the
PolicyManager is being notified of the change, so that the context information
is up to date.

60



Finally, the CallController is the actor that receives route requests from the
NRGCCEdge whenever a call is made to the user. It is then responsible for
finding a route, and this is done by first checking what type of caller is calling
the user (work or family), and then request the PolicyManager to check if there
is a policy given the type of caller and the user’s context.

Since the ContextEngine will only be serving 1 UserAgent, it only needs to
manage 1 context model during runtime (see section 5.2.3).

5.3 CBCC concepts

The Context Based Call Control service consists of a centralized service agent
that makes routing decisions on behalf of the subscribers of the service. The
service agent is supposed to make these decisions in accordance with the user
defined policies that are made up of several predicates containing secondary
context information. For the CBCC application, the context information that
is available to the user for defining policies are deduced activity, presence and
availability. In addition, the type of caller is also a part of the predicate making
it possible to have different policies for different types of callers (e.g. family or
work) given the same context information. The policies that are used for the
simulator are written in a separate property file which is described in Appendix
AT

The ContextEngine will gather contextual information about the user, and de-
duce the secondary contextual information that is to be used when checking
policies. Thus, reasoning rules are also defined for the ContextReasoner so that
it is able to deduce the secondary information based on the sensed primary in-
formation. These rules are written in a separate property file which is described
in Appendix A.8. As can be seen, the rules contain information about the
primary context types time, relative location and whether or not a scheduled
activity is registered (at the current time). For each of the rules, the deduced
activity, home availability, office availability and meeting room availability val-
ues are specified, given the specific primary information. The relative locations
(home, office, meeting room and restaurant) are defined in the property file for
the OWL individuals. The time describes whether or not there is registered a
scheduled activity at the current time (officeTime or activityTime). Thus, one
might claim that the boolean variable describing whether or not a scheduled
activity is registered at the current time is superfluous. However, other types of
time may be defined that are independent of whether or not a scheduled activity
is registered making the boolean variable necessary.

There are 3 levels of context reasoning in the CBCC application, performed by
different actors.

1. Ontology reasoning - this reasoning is being done by the ContextReasoner.
The ContextReasoner needs to recognize what type of information the sensor
is sensing and recognize where to put this in the OWL model. The ontology
reasoning is performed whenever a sensor registers with the ContextReasoner
(the ContextReasoner needs to create the necessary individuals in the OWL

61



model) and whenever new information is received from the sensors (which in-
dividuals shall be updated in the OWL model). This reasoning also include
potential ontology validation (validation of the model if it is changed during
runtime). The ontology reasoning is thus concerned about finding out what the
sensed information means to the modelled information.

2. Primary context reasoning - whenever new primary information is received
from the sensors, the ContextReasoner needs to deduce what the secondary
contextual information will be. The primary context reasoning is thus concerned
with what the primary information means.

3. Policy reasoning - the PolicyManager is responsible for deducing which policy
ig prevailing at all times and the policy contains information that can be used
to deduce where the call shall be routed. This kind of reasoning is performed
whenever a call notification is received from NRG. The policy reasoning is thus
concerned with deciding what to do based on the context information.

5.4 Implementation details

This part will present the major MSCs for the CBCC application. The actors
and classes are explained above and in section 5.2.3. Since some of the entities
in the diagram are actors or agents while others are regular java classes, the
messages that start with small letters are method invocations while the messages
that start with capital letters are ActorFrame messages (denoted as signals in
Ramses). Before continuing, the reader is encouraged to consult Appendix
C for more information on NRG and Appendix D for more information on
ServiceFrame and ActorFrame.

Initializing the connection to NRG

The entities that collaborate to initiate the connection with NRG are the NRGCall-
ControlFeature and the NRGCCProcessor for the call controlling part of the
CBCC service (illustrated in Figure 31), while it is the NRGLocationFeature
and the NRGLocationProcessor that collaborates for the location fetching part
(illustrated in Figure 32). As it is described in Appendix C, the NRGCallCon-
trolFeature requests a reference to the SCS (IpMultiPartyCallControlManager)
for call control from the proxy. From then on, service requests can be sent to
the SCS. In addition, the call control processor is instantiated with a reference
to the SCS for call control so that it is able to request and receive call noti-
fications from the SCS. Further on, NRGCCProcessor is requested to register
the call notifications with the SCS. For the CBCC application, it is only inter-
esting to get notifications for 1 subscriber (the user that is represented by the
CBCCUserAgent) so this will only be done once.

In the same manner, the NRGLocationFeature requests a reference to the SCS
for user location (IpUserLocation). The processor for location fetching (NR-
GLocationProcessor) is also instantiated with a reference to the SCS for location
fetching.

62



NRGCaIIConImIFealure| l\pMuItiParlyCaIIConlroIManager| lFWproxy‘ l NRGCCProcessor

obtainSCF("P_MULTI_PARTY_|

CALL_CONTROL")

Create(IPMultiPartyCallControlManager)

startMotifications(ghoneNumberList)

Repeat for each subscriber

createNotifications(TpCal|NotificationRequest nequest)

Figure 31: Initializing NRG connection for the call controller

NRGLocationFeature |

‘ IpUserlLocation |

‘ FWproxy ‘ | NRGLocationProcessor

obtainSCF("P_USE

R_LOCATION")

Create(IH

UserLocation)

Figure 32: Initializing the NRG connection for the location fetcher

63



Starting up the UserAgent and registering the policies

The first thing that happens when the CBCCUserAgent is started up is that
it requests the CallController to register the policies that are defined for it.
As can be seen in Figure 33, the CallController interacts with the PolicyEdi-
tor to achieve this. This is done for all the policies that are defined for this
CBCCUserAgent.

Secondly, the ContextEngine is requested to start up. The parameters in the
signal refers to the interval size of how often the location shall be requested in
hours, minutes and seconds respectively. As for the demonstrator, seconds is
the only valid unit.

CBCCUSerAgentl ‘ CallController ‘ | PolicyEditor |ContextEngine

StartUp
I StartUp
AddOnRRPalicyMsg(parameters)
Al | AddPolicyOKMsg
Alt 2

_ AddPolicyNOKMsg

StartUpContextingine(0. 0, sec)

Figure 33: Starting up the UserAgent

Starting up the context engine

When the ContextEngine is requested to start up (see Figure 34), it requests
all the sensors to register with the ContextReasoner. All the sensors invoke
the ContextReasoner with the same method only with different parameters.
The parameter in the method tells the ContextReasoner what kind of sensor
that is currently registering with it. This is necessary so that the reasoner can
update the OWL model with the proper individuals that is needed when new
information from the sensor is received. The ContextReasoner has 1 instance
of the OWL model that contains the context ontology (with all the classes and
properties and the relationships between these) and the individuals of the OWL
classes that is to be updated by the different sensors. The sensors therefore need
to know what kind of context information they are providing.

Because the LocationSensor is an actor and that sending a signal to it is per-
formed asynchronously, the ContextEngine is forced to wait for an acknowledge-

64



ment (LocationSensorRegistered) from the LocationSensor when it has regis-
tered with the ContextReasoner.

Finally, the LocationSensor is requested to start fetching the location as often
as was stated in the StartUpContextEngine signal and the ActivitySensor is
requested to fetch the scheduled activities that is stored for the user.

ContextEngine | |ContextReasoner| |ActivitySensor| ‘ TimeSensor l | LocationSensor

StartUpContextEngine
> register\}ithReasoner() |

_ register("Time")
registerWithReasoner()
_register("ScheduledAcdtivity”)

StartUp _

register("AbsoluteLocation”)

_LocationSensorRegjstered

StartFetching(hour, minute, second)

fetch()

Figure 34: Starting up the context engine

Fetching the scheduled activities

The scheduled activities for the user are fetched from a property file (see Ap-
pendix A.9). The only information about each scheduled activity that will be
used is the time at which it begins and ends. After the information is fetched,
it is formatted (by constructing a ScheduledActivity object of it) and finally it
is forwarded to the ContextReasoner (see Figure 35).

The ContextReasoner then updates the OWL model with the newly received
activity and then requests the TimeSensor to fetch the time at the time when
the activity begins and ends. In the demonstrator, the only times that the time
needs to be updated is when a scheduled activity begins and ends. Remember
from section 5.3 that the time is either after a scheduled activity has started
and before it has ended (the activity is taking place now) or before an activity
has started or after it has ended (no activity is taking place now) . Thus, the
ContextReasoner requests the TimeSensor to send an update of the time when
an activity starts (an activity is taking place right now) and when an activity
ends (no activity is taking place right now).

65



| ActivitySensor | ContextReasoner ‘ ‘ TimeSensor

fetch()

] format(activityInformation)

forward(ScheduledActivity)

updatelnformation({ScheduledAgtivity)

jupdateScheduledActivity{S theduledActivity)
fetch(Time)

-

fetch(Time)

L

Figure 35: Fetching the scheduled activities

Updating the time

When the TimeSensor is requested to fetch the time (see Figure 36), it is also
given a Time value object containing the actual date and time at which the
ContextReasoner needs to get an update. It therefore creates a reminder that
will invoke receiveReminder() when the date and time is reached. When re-
ceiveReminder() is invoked, the TimeSensor fetches the current date and time,
formats it (creates a Time value object containing the current date and time)
and forwards the information to the ContextReasoner. Since the information
that is received at the ContextReasoner is of the type Time, updateTime() is
invoked by the ContextReasoner.

When the ContextReasoner updates the time it performs four steps. First, it
updates the OWL model with the current date and time. Second, it retrieves the
current (or most recent) location and all the activities of the user that is stored in
the OWL model. Third, it deduces the secondary context information (deduced
activity, presence and availability) based on the current primary information.
This is done by requesting the RuleReasoner to infer the secondary context (see
Figure 37). This reasoning is done by having a file containing the secondary
information reasoning rules (see Appendix A.8) and checking whether or not
there is a rule for the current primary context. If there is, the rule will be
followed. If there isn’t, all of the secondary information will be set to ’nil’ which

66



| TimeSensor I [ ContextReasoner

fetch(Tjme) ‘ TimeReminder |
—

Create(hour, min)|

receiveReminder()

j format(timelnformation)
:l forward(Time)

updatelnformation(Time)_

ElxjateTime(Ti me)

Figure 36: Fetching the time

means that they’re undefined. Finally, the secondary information is sent to the
omitting ContextEngine.

| ContextReasoner ‘ RuleReasoner | [ ContextEngine

updateTime(Time)

inferRule(time, location, activityRegistered)

ContextUpdate(deducedActivity, hAvail, oAvail, mrAvail)

Figure 37: Updating the time

Updating the location

When the LocationFetcher is started up, it first request the NRGLocationFea-
ture to fetch the location (see Figure 38). Second, it starts up a timer that is
responsible for letting the LocationSensor know when the time for the next lo-
cation fetching is (in the specified amount of time that is stated in the StartUp
signal) to take place. After the location is received from NRG it is forwarded
all the way back to the LocationSensor. However, this is not the only signal

67



that may be received by the LocationSensor first. Depending on how often the
location shall be fetched, a TimelsUp signal may be received before the location
fetch response, making the LocationSensor fetch the location again (see Figure
39).

|L0cation8ensor ‘ |NRGLocationFeature| | NRGLocationProcessor | ||PUserL0cati0n |

StartFetching(h, m, s)
—_—

FetchLocationReq(slibList)
> requestLocation(sublist)

TimeReminder i extendedLocationReportReq

Create(se_f'onds)

extendedLocationReportRes(reportList)
_LocationReceived(reportList)

Alt1 | FetchLocqtionRes(reportList)

EAIIZ TimelsUp .

Figure 38: Fetching the location

When the location fetching response is received, the information is formatted
into a Location value object and forwarded to the ContextReasoner (see Figure
39). Since the newly received context information is of the type Location, the
reasoner will invoke updateLocation.

When the ContextEngine invokes updateLocation, it performs 4 things. The
first thing it does is to check whether or not the newly sensed location in-
formation is different from the modelled one. If it is, it updates the location
information in the OWL model. The three next steps are the same as the ones
performed when it updates the time. Updating the location is shown in Figure
40.

Updating the context

When the ContextEngine receives a context update, it requests the ProfileEd-
itor to update the user profile of this CBCCUserAgent (see Figure 41). The
ProfileEditor updates the profile by writing it to the disk and notifying the
PolicyManager about the change.

Handling calls

When a call to the cell phone of the user is made, a notification of this is sent
to the NRGCCProcessor (see Figure 42). When it receives the notification, it

68



LocationSensorl |TimeReminder| |NRGLocationFeature| | ContextReasoner

: At FetchLocaﬁonReerepodList)
format(userLocationinfo)
]
forward(Location)
-~ upgatelnformation(Location)
A2 | TimelsUp updgglocaﬁon
5 FetghLocationReq(subList)
| >
a2t TmeReminer
Figure 39: Waiting for location updates
| ContextReasoner I I RuleReasoner | | ContextEngine

updateLocation(Location)

inferRule(time, location, activityRegistered)

ContextUpdate(deducedctivity, hAvail, oAvail, mrAvail)

Figure 40: Updating the location

69



ContextEngine ‘ ‘ ProfileEditor | | PolicyManager

ContextUpdate(deducedActivity, hAvail, oAvail,|mrAvail)
ProfileUpdateMsg(UsernProfile)

ProfileMsg(UserProfile)

Figure 41: Updating the context

also gets a reference to the call in progress, the call-legs associated with the call
and additional information about the notification. The additional information
is used to retrieve the address of the destination (callee) and the source(caller).
The call processor then spawns a new thread that requests the NRGCallCon-
trolFeature to handle the call.

When the NRGCallControlFeature is requested to handle a call, it temporarily
stores the information about the call (the caller, the call and the call leg),
requests the CallController to find a route and awaits the CallController to
return a route for the call. Based on the route returned from CallController,
the NRGCallControlFeature requests the NRGCCProcessor to route the call
and the call legs. Finally, the NRGCCProcessor is requested to deassign the
call and the information that was stored about the call (the caller, the call and
the call leg) is removed. When the call is deassigned, it is not released, but
simply forwarded into the network by letting the core network handle the call.

When the CallController is requested to calculate the route of a call, it requests
the PolicyManager to check whether or not there exist any policies, given the
type of caller (work- or family-related). The PolicyManager then requests the
PolicyStore to return all the policies for the requested role (cell phone). After
receiving all the policies, the PolicyManager checks the condition of each policy
to see if it matches the current secondary context information in the UserProfile
and the current type of caller. For a detailed presentation of how the policy
checking works, please see [48].

When the policy check is performed, the PolicyManager returns a PolicyCheckOKMsg
to the CallController with directions on which role that is to be played (where

to route the call). This is illustrated in Figure 43. Since the role to be played

is a string representing the destination name, the CallController needs to map

this to the destination phone number (see Appendix A.10).

If an error occurred while checking the policies, the PolicyManager will return a
PolicyCheckNOKMsg. Upon receiving this, the CallController will forward the
call to the original destination (the cell phone of the user).

70



NRGCCProcessor l | IpMultiPartyCallControlManager ” NRGCallControlFeature ” CallController

TpCallNotificat

reportNotification(TpMultiParfyCallldentifier, TpCallLegldentifier]],

onlnfo, assignmentlD)

| Thread |

> TpAdd

Start() HandleCall(TpMultiPartyCallldentifier, TpCallLegldentifier,

ress caller, TpAddress callee)

route(TpMultiPartyCallldentifier, String caller, String destinatiol

3

RouteReq(String caller,
String calleg

RouteRes(String caller,
String dest)

contingeProcessing(TpCalllLegldentifier)

deassign(TpMultiPartyCallldentifier)

Figure 42: Receiving call notification from the NRG

CallController

RouteReq(caller, callee)

PolicyManager |

| PolicyStore

PolicyCheckOnRRReqMsg(roletype, SessionDescription)

. RguteRgsraller, destination)

Figure 43: Handling route requests

71




5.5 Evaluation

This section will present an evaluation of the implementation of the demon-
strator service. The evaluation will be based on how it is realised (design),
limiting aspects of it and challenges and problems that were encountered when
implementing it.

5.5.1 The design

This section evaluates the implementation of the CBCC service with respect to
how it is designed. Key issues are how it handles exceptional scenarios, how
well it scales and how the three levels of context reasoning are solved.

Exceptional scenarios First of all, every time any information is requested
from the OWL model, the ContextReasoner needs to interact with the Ontolo-
gyOperator. Sometimes, the reasoner might request information from the model
that hasn’t been set yet. For instance, if the reasoner gets an update about the
time, the ContextReasoner needs to retrieve the location from the model to be
able to deduce what the secondary information will be. If the location has not
been set yet, the OntologyModel needs to be able to cope with this so that it
doesn’t return a reference to the null value. This is achieved by setting the in-
formation that is requested from the model (the location in the example above)
equal to “undefined”.

When the ContextReasoner gets a time update, there are four main exceptional
scenarios that might happen. First, when the current absolute location is not
recognized as any of the defined relative locations, the ContextReasoner still
needs to define the location for primary reasoning purposes. Therefore, it sets
the location equal to “nil”, meaning that the observed location is valid but un-
defined. Second, if the location has not been set in the OWL model yet (equal
to “undefined”), the reasoner sets it to be equal to “nil”. Since the location in
the primary reasoning rules might be defined as nil (meaning that the current
absolute location doesn’t map to any relative locations), this case will be in-
terpreted as the first exception. This is not optimal, and should be handled
in a different manner. Instead of setting it to be equal to “nil”, it should be
set to something else (e.g. “not set in model”) so that this case would not be
mixed up with the first one. The first exceptional case is valid and will happen
every time the user is located at an undefined location, while the second case is
not valid for reasoning purposes. The third exceptional case is when there are
no activities registered in the OWL model. This should in theory not happen,
since the time fetching is only based on the scheduled activities’ beginning and
end time. However, as is discussed below in the Limitations section, time could
also be based on some user defined policy. Therefore, whenever there are no
scheduled activities registered and the ContextReasoner receives a time update,
the time should be set to something else than “nil” for primary reasoning (e.g.
lunch). The fourth exceptional scenario that might happen is when the sensed

72



time is different from any of the activities’ beginning and end time. The Con-
textReasoner then sets the time equal to “nil”, so that it is able to deduce what
the secondary information shall be. However, as was the case above, the time
might depend on something else than only the scheduled activity, and should
therefore be set to something else than “nil”.

When the ContextReasoner gets a location update, there are four exceptional
scenarios, of which three of them are equal to the ones that might happen when
the time is updated. These are the second, third and fourth exceptional case
above. The first exceptional case is when the time has not been set in the
OWL model yet. The ContextReasoner then sets the time to be equal to “nil”,
meaning that the time is currently undefined.

Whenever the ContextReasoner is to deduce what the secondary information
will be, it requests the RuleReasoner to infer this based on the current time
and location and the scheduled activities that the user has registered. The
RuleReasoner then checks whether or not the observed time and location and
the registered activities match with any of the secondary rules. If they do, the
rule is followed and so the secondary information is set to what the rule defines
it to be. If not, all of the secondary information is set equal to “nil”, so that it
is still possible to perform policy reasoning. After all, there could be a policy
with a condition where none of the secondary information is defined (equal to
Mnilﬂ).

When the CallController receives a route request and the callee of the call is
not equal to the cell phone number of the user, a route response is simply
sent back to the NRGCallControlFeature with the same caller and callee as
parameters. In this way, the call is not processed by the policy managing part
nor prevented from being routed to the intended destination. This is not likely
to happen, since this would mean that it is NRG that made an error. However,
it is important to cope with the possibility of the error happening. If the policy
checking produces an error, the CallController receives a PolicyCheckNOKMsg.
When this happens, the call is routed to the cell phone of the user so that an
error made by the service doesn’t prevent the user from communicating.

Scalability Scalability is by [13] defined to be "How well a solution to some
problem will work when the size of the problem increases". One might say that
the scalability of a system is the degree of how well it performs when the task it
handles grows in size. For the CBCC application, the task is to perform context
based call control; to make a routing decision based on the current context of the
user and the user-defined call control policies. So how well does the application
handle lots of route requests at the same time?

The NRGCCEdge can handle multiple call notifications at the same time, since
whenever a call notification is received by the NRGCCProcessor, it spawns a
new thread to make the routing decision in. In that way, it is still able to receive
new call notifications at the same time as the first one is being processed by the
system. Further on, NRGCallControlFeature is implemented using one state

73



only (see appendix A.6). This is done so that it is able to receive more requests
from the NRGCCProcessor to handle a call at the same time as the first call
is being processed by the system. In addition, all the information about the
calls that are being processed is being stored so that after a routing decision is
made by the CallController, the NRGCallControlFeature is still able to route
and process the call. It is vital that the NRGCCEdge is scalable, since it is
thought to serve not only one UserAgent but all the UserAgents that need call
control.

When the CallController receives a route request, it requests the PolicyManager
to decide where the call is to be routed. This decision is based on two things:
the current context of and the policies defined by the user. The CallController
is implemented to only handle 1 call at a time, meaning that if it receives a new
route request while another is being processed the new one will be neglected.
However, the routing decision scales well. When the PolicyManager requests
all the policies for the given role, the PolicyStore never performs any time con-
suming tasks (like reading from the disk) since the policies are kept virtually
in objects. The list of policies is simply sent back to the PolicyManager. The
PolicyManager then goes through all the policies to see if any of them match
with the current context of the user. This may be a time consuming task for
a large amount (meaning millions) of policies. However, the number of policies
registered by a user would most probably not be high at all (compared to the
scale that is used in this discussion), due to the resulting complexity of the
service. Thus, the route decisioning part of the CBCC application scales well.

In addition to making routing decisions, the system shall also gather context
information from multiple sources. The most important class of the Contex-
tEngine is definitively the ContextReasoner. It is responsible for interacting
with the ContextEngine (that forwards the context updates to the UserAgent)
and all of the sensors in addition to collocating the information received from
the sensors. New sensors register with the ContextReasoner at startup telling
the reasoner what kind of information they deliver. This is made general so that
a large amount of sensors can register with the reasoner. In addition, whenever
a sensor wants to send new information to the reasoner, it invokes the general
update information method. The method takes the an Object as input so that
all the sensors can use the same method. This is possible because the infor-
mation they provide (e.g. Location) are subtypes of Object. In this way, the
ContextReasoner is designed to handle a lot of different context information
from different types of sensors.

Context reasoning As is described in section 5.3, there are three levels of
reasoning in the CBCC service: ontology reasoning, primary context reasoning
and policy reasoning.

When a sensor registers with the ContextReasoner, the ContextReasoner will
populate the OWL model with the individuals that are needed for the type of
information that the sensor delivers. For instance when the TimeSensor reg-
isters, the ContextReasoner populate its OWL model with a Time (the OWL

74



class Time that is defined for the context ontology) individual. The name of this
individual is contained in a separate configuration file (called individualConfig-
uration.properties and can be found on the electronic attachment). Whenever
the reasoner receives a time update, it needs to retrieve the name of the Time
individual to be able to update this Time individual in the OWL model. This
goes for all the other individuals that are needed too.

This fashion is good because if, for some reason, the name of the individuals
were to be changed, the change only needs to be done in the configuration
file. However, if new individuals were to be added, they would first need to be
added in the configuration file and secondly some code that adds them to the
OWL model would have to be written in the ContextReasoner’s register code.
For instance, if a new relative location (e.g. the gym) were to be added, the
name of the Relative location would first have to added to the configuration file
(in addition to the Latitude-, Longitude-, Altitude- and their respective Metric
individuals) and then some code that added this information to the OWL model
would need to be written. Instead of this hard-coded schema, the configuration
file could contain information about how many Relative locations there were,
and have some general code that added all of them in a loop. In this way,
the only thing that needed to be added were the names of the new Relative
individuals.

Adding new individuals will also have to be done if the context reasoning of
the application were expanded to involve new types of context information (e.g.
pressure). This means that new sensors register with the ContextReasoner, and
so in addition to adding new individual names to the configuration file - code for
this type of information would need to be added in the reasoner’s register- and
update information code. In addition, the file containing the rules for primary
context reasoning would have to be modified to take the new kind of context
information into account. Finally, the policy reasoning would also need to be
changed so that the user is able to define policies that take the new type of
context information into the condition field. This is achieved by adding the new
type of context information to the policy vocabulary (in addition to writing code
that both adds and evaluate this information in the policies). Please consult
[48] for a presentation of how the policy vocabulary is defined.

The three levels of reasoning are very dependant on each other, but there is
no functionality for coping with this. If one of them is expanded, there is no
functionality that expand the other two. Instead, the other two need to be
expanded manually.

5.5.2 Limitations

This section evaluates the implementation of the CBCC service with respect to
the limitations of it. In general, most of the implemented sensors have limited
functionality. However, their sole purpose is to illustrate how real sensors would
behave. The core of the demonstrator is the ContextReasoner and how it man-
ages and refine context information. In addition, due to the limited functionality

(0]



of the sensors - quality aspects of the received information is never taken into
account. Finally, the sensors and reasoner are assumed to be deployed on the
same node. To be able to deploy them on different nodes, they should be imple-
mented on ActorFrame (using the ActorRouter for routing purposes) or using
RMI.

The activity sensor The implementation of the activity sensor is only read-
ing the scheduled activities from a file. A full implementation of an activity
sensor should provide mechanisms to synchronize calendar information from
(mobile) terminals, such as cell phones, PDAs, laptops and desktops. In addi-
tion, the activity sensor lacks validation functionality of the received data.

In ServiceFrame, a calendar synchronizer is already developed that synchro-
nizes the information contained in the calendar of mobile terminals with the
UserAgent using Sync4j. The vCalendar format is used in the synchronization
messages. This module would fit into the ContextEngine as an activity sen-
sor. The only thing that needs to be modified, is that instead of updating the
information directly in the UserAgent, the information should be reformatted
into a ScheduledActivity object (which has all the fields that is needed to be in
accordance with vCalendar).

In addition, NRG contains a PIM Calendar module that can retrieve calen-
dar information from users. However, it does not provide any synchronization
capabilities itself - this is assumed to be handled by a synchronization service.

The time sensor The time is totally dependant on the scheduled activities.
If the user were to define a policy that forwards all work related calls to the
voicemail when he/she is at home at lunch time, there are no functionality for
this.

The reason for this is that the time will only be updated when an activity begins
or ends, and is thus discrete. There should be some functionality for updating
the date and time not only when a scheduled activity begins or ends, but also
based on a user defined policy. This can be solved in two ways. In the imple-
mentation of the CBCC service, it is assumed that the interaction between the
UserAgent and the ContextEngine is one-directional; from the ContextEngine
and to the UserAgent. This is obviously not good enough, and so the first solu-
tion is to allow the UserAgent to request the ContextEngine to update the date
and time in accordance with the user defined policy. The second solution to
this is to implement a different type of time sensor that constantly updates the
time, so that the CBCCUserAgent constantly knows what the time is (making
the time continuous as opposed to discrete).

In addition, time is not a part of the policy reasoning. As described in section
2.6, time is important in context-computing applications because time is used
by people when describing their situation. In addition, time is used when people
set their preferences (and thus service-policies), and so the time should therefore
not only be a part of the information-model but also the policy-reasoning. To

76



make this work, time should be added as a term in the predicate vocabulary of
the context reasoning. In that way, the UserAgent would also know what the
time is and not only the ContextEngine.

The location sensor The implementation of the location sensor only fetches
the GSM location of the users, which is based on which Base Station that the
user is connected to. Needless to say, the granularity of the location results is
not very high (200 m - 10 km). However, newer GSM equipment can use more
advanced location-measuring algorithms, making the accuracy less than 50 m,
see [51].

In the scenario, GSM location sensing would not be enough to be able to repre-
sent all the locations. For outdoor locations, GPS should be used as the location
method because of its accuracy (10 - 20 m), see [50]. For indoor locations there
are several possibilities: infrared (20 cm - 2 m), radio frequency (with a range
up to 20 m) or ultrasonic technologies. The most common radio frequency
technologies are Radio Frequency ID, Wireless LAN and Bluetooth.

In addition, the location sensor could have some validating functionality that
validates the received location with respect to some criteria, making the sensor
more intelligent. The criteria could for instance be whether or not the sensed
absolute location can be mapped to a known relative location. This would
require the sensor to know the name and coordinates of the relative locations -
making the sensor capable of performing reasoning. This kind of sensor would
have to register with the ContextReasoner declaring that the kind of information
it provides is relative location (which is supported by the demonstrator). This is
the reason for declaring the Relative location as a subclass of Location instead
of declaring it to be a subclass of SecondaryInformation.

The User Profile In the CBCC application, the context information is kept
in the user profile. This is not optimal, since the user profile normally contains
information of a more permanent character (e.g. contact information, date of
birth etc.) and not context information, which varies a lot. Instead of putting
the context information in the user profile, each UserAgent should have a context
profile containing the context information about the user.

5.5.3 Challenges and problems

As is described in section 5.2.3, the information that is updated with the rea-
soner by the sensors need to be in suitable formats and the solution that was
chosen was to have value objects containing the context information. In this
way, it is possible to generalize the interaction between the sensors and the
reasoner. One value class is needed per ontology class. Protégé-OWL actually
contains a functionality for generating Java classes based on the ontology that
is developed, and it was initially thought that these classes could be used as
value classes. However, they all extend DefaultRDFIndividual, which is a class

7



that implements RDFIndividual (see Appendix D.4 for an overview of the most
important interfaces in the model package of the Protégé-OWL API). This will
not work, because all of these classes cannot be instantiated without being hav-
ing a model (the JenaOWLModel, see section 5.2.3) to be referenced to, which
is not possible for the demonstrator - the sensors are assumed to have no infor-
mation about the model (that contains all the context information of a user).
The only option left was therefore to modify the classes that were generated
by Protégé into not implementing or extending any classes from the Protégé-
OWL APL In this way, the only hierarchy (in terms of sub- and super-classes)
is the one imposed by the hierarchy in the ontology (e.g. Time is a subclass of
ContextInformation).

When the ContextEngine requests its sensors to register with the reasoner (see
section 5.4) it needs to make sure that the reasoner has populated its model with
all the necessary individuals before it can request the sensors to start fetching
information. This was necessary so that when new information is received from
any of the sensors and the reasoner tries to update this information in the model,
the individuals need to be contained in the model. If they are not, the reasoner
assumes that the kind of sensor that provides this kind of information hasn’t
registered yet and so this kind of information should not be possible to add.
This could have been solved in another fashion (e.g. if the individual hasn’t
been added yet, then simply add it before updating the information received).
To be able to be sure that the individuals are populated before any sensors
can start fetching information, the ContextEngine needs to wait on an explicit
acknowledgement from the LocationSensor. This was not implemented at first,
but is necessary because the ActivitySensor and the TimeSensor is implemented
in a synchronous fashion while the LocationSensor is implemented in an asyn-
chronous fashion (because the LocationSensor is an actor, see Appendix D.2).

When simulating the service, it is really important to pay attention with the
time when making phone calls and changing the location of the subscriber. If
the location is not changed at the right time, the policies can not be validated
when simulating the demonstrator since the primary and secondary information
will not be what they are defined to be in the scenarios. This doesn’t mean that
there are errors in the demonstrator, it simply means that to be able to validate
the context reasoning and policy reasoning it is important (and challenging) to
change the location and make the phonecalls in accordance with how they are
defined in the simulation scenarios.

The location fetching part of the system uses the GSM location request function-
ality in NRG. As can be read in [49], there are two ways to implement location
fetching: the application requests the location when it is needed (polling) or
the application can subscribe to periodic location reports (pushing) from NRG.
The latter was first chosen. It turned out that the location report subscription
doesn’t work with this version of the NRG. Consequently, the former was cho-
sen instead. Because of the nature of the CBCC service, a timer needed to be
implemented telling the LocationSensor when (how often) to request location
reports from the NRG (as is illustrated in section 5.4). Nevertheless, the code

78



for requesting location report subscriptions from NRG is kept in the source code,
because the location report subscription functionality of NRG may be added in
future implementations. If desirable, the reader is encouraged to take a look at
the code for this in the attached electronic attachment.

79



6 Simulation of the demonstrator

The demonstrator service will be validated by setting up some simulation sce-
narios that are in accordance with the user scenario described in section 5.1.2.
Table 3 describes these simulation scenarios, and the screenshots of the results
from the simulation in the NRG simulator are pictured below.

Before simulating, the policy- (see appendix A.7) and primary (see appendix
A.8) reasoning rules were defined in addition to setting the agenda (see Appendix
A.9) of the user. The phonenumbers that were used for the user’s cellphone,
voicemail, secretary, desk phone and the work- and family-related phonenumbers
were also specified (see Appendix A.11). In the maps shown in the screenshots
from the simulation the upper-left corner is assumed to be the coordinates for
an unspecified location, the upper-right corner is assumed to be the coordinates
for the meeting room, the lower left corner is assumed to be the coordinates for
the office and the lower-right corner is assumed to be the coordinates for the
restaurant at which the user is having lunch.

Nmbr | Caller Location Scheduled Expected
activity result

la Family Undefined No Cellphone
1b Work Undefined No Secretary
2a, Family Meeting room Yes Voicemail
2b Work Meeting room Yes Voicemail
3a Family Office No Desk phone
3b Work Office No Desk phone
4a Family Restaurant Yes Cellphone
4b Work Restaurant Yes Secretary

Table 3: Simulation scenarios

80



Y

& @ n Calling

: 24 ‘111t
Call from W ~ Ringve Cancel
LD adgy D._M:l =
Aocept? = !

‘Trondheim

Figure 44: Scenario la - Family-related call is made while the subscriber is on
his way for work. The call is directed to his cellphone.

81



Figure 45: Scenario 1b - Work-related call is made while the subscriber is on
his way for work. The call is directed to his secretary.simulated in the NRG

Simulator

82

el
Calling
1110
Cancel




e pl
Calling
IEEEL

Cancel

e Ril_'_lu\re‘l W
’%D‘"\

iy e
!
B @R
Call from
tano!
Aocept?
| No Yes
i

Figure 46: Scenario 2a - Family-related call is made while the subscriber is in
the meeting room having a planned meeting with Jane. The call is directed to
his voicemail.

83



el
Calling
L

Cancel

el
Call from
400!
Accept?

No Yes

Figure 47: Scenario 2b - Work-related call is made while the subscriber is in the

meeting room having a planned meeting with Jane. The call is directed to his
voicemail.

&4



0Ny Ercsson
e al
Calling
(L RO
Cancel

e
Call from
1300
dzeept?

| No ves

Figure 48: Scenario 3a - Family-related call is made while the subscriber is in
the office and no meeting is scheduled at the current time. The call is directed
to his desk phone.

85



Trondheim

o g )

Calling
1110
Call from Cancel
400! —
-lccep‘t’_:?' :
No Yes

Figure 49: Scenario 3b - Work-related call is made while the subscriber is in the

office and no meeting is scheduled at the current time. The call is directed to
his desk phone.

86



ool
Call from
t300!
hecepr?

No Yes

Figure 50: Scenario 4a - Family-related call is made while the subscriber is
having lunch with his friend at the restaurant. In addition, the lunch was
scheduled and stored in the subscriber’s agenda. The call is directed to his
cellphone.

87



o el
Call from
' 4DD '

Arrentd

)

sk zoa|l N

h%aé

Calling
Iiii 3

Cancel

o ol

Figure 51: Scenario 4b - Work-related call is made while the subscriber is having
lunch with his friend at the restaurant. In addition, the lunch was scheduled
and stored in the subscriber’s agenda. The call is directed to his secretary.

88



7 Discussion

This chapter will present a discussion about the work that has been done in
this master’s thesis. Central to this is how the presence information and the
user preferences and reasoning services have been realised. In addition, a short
discussion of how the ontology can be modified during runtime will be given.

7.1 Presence and Availability

The CBCC application never presents the context information (see section 2.4)
to the users, it performs an automatic service execution. As was discussed in
section 2.5, the communication taking place is not motivated by any of the par-
ties’ knowledge of the other party’s context. Both 3GPP and IETF have defined
their own models of presence information, as was described in section 2.6. It is
defined differently in the CBCC application, see section 4.3. The Presence class
is composed of having a relative location and an availability (instead of a status
variable). A presence-individual for each relative location will be populated in
the model, meaning that the relative location for each presence-individual never
changes. It is the availability of each presence-individual that changes during
the runtime. The other approach is to, at all times, have 1 presence individual
(that can have different values for location and availability) describe the cur-
rent presence of the user. The presence information in the CBCC application
is thus of a more static character. The ability and willingness of the user to be
reached for communication is expressed using both the static presence and the
dynamic availability of the user, making it possible for the application (when
receiving route requests) to go through all the presence-individuals defined for
the user and check where he/she is most available. Based on this evaluation,
a route is calculated expressing the presence and availability of the user to the
requesting party. In the conceptual models provided by IETF and 3GPP, it
is more important to have the presence information (location and status) be
more human readable since this information is to be presented to a human. The
presence information in the CBCC application is more complex (made up of
several presence-individuals, that each has a location and an availability) and
not designed for being presented to users. Instead, it is designed to be used in
automatic service execution. However, a similar representation that is used by
3GPP and IETF is possible to express (if needed) using the existing presence
information format of the CBCC application.

7.2 User Preferences and reasoning services

One of the most challenging issues with pervasive and context-aware computing,
is to make the system act in accordance with the preferences of the user. To be
able to do this, it needs to both be able to describe the situation of the user as
accurate as possible in addition to having policies that are in accordance with
the users’ preferences given the current context.

89



In the demonstrator, the context information that is used to model the situation
of the user is time, location and scheduled activities. These are important
attributes to the context of the user, however other attributes could be used
in addition - making the model more complex. The issue with specifying the
context of a user is that the amount of attributes that are needed to do this
varies a lot. More attributes could always be used to make the model more
accurate. However, the complexity-level of the context model should not be too
high. The complexity level of the model (and thus the behaviour of the system)
doesn’t correlate with the usability of the system.

Not all context information is updated automatically - some information can be
updated by the users. The modelled context will most probably differ with the
user-perceived context a lot. In addition, the system is also doomed to make
some wrong decisions now and again. According to [4], it is the end-users that
are best suited for specializing context-aware applications to their own needs.
Users are not able to set their preferences at runtime in the demonstrator, but
should be able to do so. This can be achieved through machine learning tech-
niques (statistical models, Bayesian networks, reinforcement learning), requiring
the system to be able to store context information, decisions and feedback in
addition to be able to reason on this information.

When both the user and system is able to specify the context and the resulting
behaviour, one might ask who is in control? Is it the system that is controlling
the user or is it the user that is controlling the system? A prerequisite for any
technical service or artifact in general, is that the user is able to understand it.
Users need to be able to make up a mental model (not necessarily a complex
one) of how the system works to be able to use it. If the system surprises the
user with a decision - he/she will not be satisfied since it gets difficult to under-
stand its behaviour. The behaviour of context-aware applications may become
unstable because of the frequent context-changes, and this may encourage the
user to change the policies of the system - which may lead to even more frequent
changes. The result is a service that will not be used. Thus the system need
to be able to cope with this, making its behaviour stable enough. This can be
achieved by introducing user-modeling, making it possible to differ between an
experienced user and a novice and thus react to user-changes differently based
on the type of user that is performing the change.

According to [43], rule-based synthesizers require explicit definition of rules
by humans. These rules are not flexible enough to adapt to changing user-
preferences, because the possibility of ending up with rules that are contradic-
tory to each other becomes large with time. The reasoning used in the CBCC
application (service-policies and primary-context reasoning) are written in first
order logic. Instead, the demonstrator could make use of temporal logic, fuzzy
logic and learning mechanisms.

The fetching of information from the different sensors can be automated more
by introducing predictability models of when the specific type of context will
change. In the demonstrator, the location is fetched in pre-defined intervals
independent of how likely it is that the location has changed since the last time.

90



This could have been solved in a different fashion, for instance the location could
have been fetched more often when there are no scheduled activities registered
and the time is between 08:00 and 16:00.

Finally, one of the issues when designing the demonstrator service was whether
or not the sensors should be able to perform context reasoning (ontology reason-
ing or primary context reasoning). This alternative was rejected, because it was
assumed that the sensors have no knowledge of the context ontology and should
therefore not be able to perform reasoning based on the context information
and the ontology. This assumption is too strict. Context-aware applications
should be able to interact with not only simple sensors, but intelligent ones too.
In addition, the different views of context reasoning are merely views - they
are not separate layers. Consequently, the sensors may also be able to perform
context reasoning, which means that the context ontology should be able to be
shared among different entities. Although context reasoning may be performed
by different entities in different places of the service domain, the reasoning can
always be divided into ontology reasoning (or context model reasoning), primary
context reasoning (or lower level reasoning) and policy reasoning. The different
levels may, however, be distributed over the service domain.

7.3 Ontology modification

There is no such thing as a perfect ontology - there are always room for improve-
ments. In addition to changing the user-preferences and policies of the system,
it could be desirable to make it possible to change the context ontology during
runtime. Although this is not provided by the demonstrator, a discussion of
how this could be achieved will be given.

To modify an ontology, there are 5 steps that need to be performed (see Figure
52). First, the structure of the ontology needs to be fetched (contained in the
JenaOWLModel, see section 5.2.3). After the modifications are performed, the
structure needs to be validated by a reasoner, and depending on the outcome
the structure is either stored or the inconsistencies of the structure needs to be
resolved.

91



Fetch
structure
Modify
structure
Validate NO
structure
isStructureValid
YES

Store
structure
locally

Figure 52: Modifying an ontology

How to resolve the inconsistencies is a vital and tricky question. To be able to
do this, the outcome of the reasoner first needs to be interpreted semantically.
Secondly, a set of policies that can map the outcome from the reasoner onto
some (resolving) actions need to be specified. Finally, the actions need to be
performed followed by re-validation of the structure.

Since the ontology only is kept centrally and not shared with other services, no
more steps are necessary in the demonstrator. However, if it was shared with
other service domains, the ontology needs to be synchronized with these. This
introduces synchronization issues, e.g. a prerequisite for updating the structure
is that the structure is up to date.

92



8 Conclusion

This chapter will conclude this master’s thesis by providing a short presentation
of the achievements related to the objectives and scope. Finally, some issues
that could be investigated in future research will be presented.

8.1 Achievements

This master’s thesis has investigated principles for context-aware call control. A
demonstrator service for context-aware call control was designed, implemented
and tested using the NRG Simulator. The types of context information that
were to be used in the demonstrator were explicitly specified to be the location,
agenda, availability and presence of a user. However, these are not the only
context information that could be useful. The call control could be expanded
to include new types of context information. To be able to do this, a definition
and clear model of context was needed. Because of these issues, 3 sub-goals
were defined to scope the tasks of this master’s thesis. Below is a description of
each.

reflecting the location, the agenda, availability, presence and preferences of the
user.

First, context needed to be defined as a term and characterized. Before this
could be done, a thorough discussion of what context information is was needed.
Context has been defined in many ways, of which many come from HCl-related
research. Many previous attempts of defining context merely enumerated exam-
ples, which makes the definition too static, non-reusable and strict. Others were
too general, by not restricting the definition of context enough. The definition
need to restrict the term according to some criteria. The definition that was
adopted in this master’s thesis was:

“Contezt is any information that can be used to characterize the situation of
an entity. An entity is a person, place, or object that is considered relevant to
the communication between two users, including the users themselves.”

Second, an information model of context was needed. This can be (and have
been) solved in many ways, both in terms of content and technique. The
technique that was adopted in this master’s thesis for modeling context was
ontology-based. Ontologies were found be well-suited for modeling context be-
cause they are good at representing and modeling inter-related and hierarchi-
cal information in a formal fashion. The ontology-based context model was
implemented using OWL, where the content was based on the definition and
characteristics of context. The demonstrator service implements functionality
for context management that takes the model into account. It is responsible
for monitoring the modelled and sensed information, perform context reasoning
and forward the refined context information to the application.

93



Third, in context-aware applications there are different levels of reasoning taking
place. When implementing the demonstrator, the reasoning were divided into 4
different views; the low-level view, the model monitoring, the context monitor-
ing and the application view. A fifth view was added that performed context
reasoning and coordinated the tasks in the four other views. This resulted in 3
different levels of reasoning; Ontology reasoning (mapping sensed and modelled
information), Primary context reasoning (refining and collocating the received
context data) and Policy reasoning (deduce what shall be done, given the con-
text information). Although these levels can be distributed over the service
domain, they are believed to apply for context reasoning in any context-aware
service domain.

8.2 Future work

One of the most challenging tasks of any service, is to behave in accordance with
the current user preferences. Context-aware applications try to optimize their
decisions with respect to the users’ preferences. This is achieved by learning
and describing as much as possible about the context of the users and having
user-defined policies representing their preferences. In this master’s thesis, the
policies are defined as predicates using first order logic. However, not many users
would like to specify their preferences using predicates. They would like to be
able to specify their preferences using their spoken and/or written language.

The above-mentioned issue could be handled by having a separate system that
interprets the user preferences in natural language and maps these down to
machine-understandable policies, see Figure 53. It is not possible to add policies
during runtime in the demonstrator, thus a protocol for this would have to be
developed. The protocol simply needs to make sure that the format of the
interpreted policies are in accordance with the format of the policies specified in
the policy-configuration file (see Appendix A.7). The rest (context management
and reasoning) is supported by the demonstrator service.

94



MobiLing system

Matural
Language Grammar Ontology
Interface

Configuration
Actions

:
}

Users and user Service providing agent system

communities

Positioning

Terminals Terminal User Community and
Agents Agents Agents Lacating
Agents

Figure 53: User preferences configuration, obtained from R. Braek

Further on, when users are able to express their preferences, the system would
have to be able to validate these before they are put into effect. This is because
the probability of a user specifying preferences that are in conflict is quite high.
The validation functionality should be handled by the application offering the
service and not the natural language interpreting system, since this would force
the natural language-interpreting system to have a list of all the policies for all
the services that it manages. With the former approach, the same information
is not kept two different places in the same system domain, which is preferable.

95



References

[1]

2]

13l

4]

[5]

[6]

7]

18]

9]

A. K. Dey and G. D. Abowd: Towards a Better Understanding of Context
and Context-Awareness (2000)

(Available at: http://www.csse.monash.edu.au/courseware/cse5610/
Students-only/Readings/dey-abowd-99.pdf)

S. Akselsen, W. Finnset, J. Grav, B. Kassah, F. Kileng: MOBIKON - Mobile
Tjenester og kontekst. Telenor FoU Scientific Document (2002)
(Available at: http://www.telenor.com/rd/pub/not02/N_17_2002.pdf)

J. Floch, S. Hallsteinsen, A. Lie and H. I. Myrhaug: A Reference Model for
Context-Aware Mobile Services. SINTEF Telecom and Informatics (2001)
(Available at: http://folk.uio.no/nik/2001/06-floch.pdf)

A. K. Dey: Understanding and Using Context (2001)

(Available at: http://citeseer.ist.psu.edu/cache/papers/cs/17489/
http:zSzzSzwww.cc.gatech.eduzSzfcezSzctkzSzpubszSzPeTeb5- 1. pdf/
deyOlunderstanding.pdf)

G. Chen and D. Kotz: A Survey of Context-Aware Mobile Computing
Research (2000)

(Available  at: http://citeseer.ist.psu.edu/cache/papers/cs/
18650/ftp:zSzzSzftp.cs.dartmouth.eduzSzTRzSzTR2000- 381 .pdf/
chenOOsurvey.pdf)

A. Schmidt, M. Beigl, and H. W. Gellersen: There is more to Context than
Location (1998)

(Available at: http://www.comp.lancs.ac.uk/~albrecht/pubs/pdf/
schmidt_cug_elsevier_12-1999-context-is-more-than-location.

pdf)

B. Kokinov: A Dynamic Approach to Context Modeling (1995)
(Available at: http://citeseer.ist.psu.edu/kokinov95dynamic.html)

B. Schilit, N. Adams, R. Want: Context-Aware Computing Applications
(1994)

(Available  at: http://citeseer.ist.psu.edu/cache/papers/cs/
16662/ftp:2z8zzSzftp.cse.ucsc.eduzSzpubzSzwmc-94zSzschilit.
pdf/schilit94contextaware.pdf)

J. Grudin: Desituating Action: Digital Representation of Context (2001)
(Available at: http://www.leaonline.com/doi/abs/10.1207/
S15327051HCI16234_10)

[10] D. Salber, A. K. Dey, G. D. Abowd: The Context Toolkit: Aiding the

Development, of Context-Enabled Applications. Proceedings of CHI'99,
Pittsburgh, ACM Press (1999)
(Available at: http://citeseer.ist.psu.edu/

96



cache/papers/cs/17489/http:zSzzSzwww.cc.gatech.
eduzSzfcezSzcontexttoolkitzSzpubszSzchi99.pdf/salber99context.
pdf)

[11] A. K. Dey, G. D. Abowd, D. Salber: A Conceptual Framework and a
Toolkit for Supporting the Rapid Prototyping of Context-Aware Applica-
tions (2001)

(Available at: http://citeseer.csail.mit.edu/
cache/papers/cs/32861/http:zSzzSzwww.cc.gatech.
eduzSzfcezSzctkzSzpubszSzHCIJ16.pdf /deyOlconceptual . pdf)

[12] A. K. Dey, G. D. Abowd: The Context Toolkit: Aiding the Development
of Context-Aware Applications (1999)
(Available at: http://citeseer.ist.psu.edu/cache/papers/cs/13819/
http:zSzzSzwww.cs.washington.eduzSzsewpczSzpaperszSzdey. pdf/
dey99context.pdf)

[13] The Free On-line Dictionary of Computing http://foldoc.org/

[14] P. Debaty, D. Caswell: Uniform Web Presence Architecture for People,
Places, and Things. Internet and Mobile Systems Laboratory HP Labora-
tories Palo Alto HPL-2000-67. (June, 200)

(Available at: http://www.hpl.hp.com/techreports/2000/
HPL-2000-67.pdf)

[15] P.J. Brown: The Stick-e Document: a Framework for Creating Context-
Aware Applications (1996)
(Available at: http://cajun.cs.nott.ac.uk/compsci/epo/papers/
volume8/issue2/2pointl.pdf)

[16] D. Franklin, J. Flaschbart: All Gadget and No Representation Makes Jack
a Dull Environment, (1998)
(Available  at: http://www.infolab.northwestern.edu/infolab/
downloads/papers/paper10072.pdf)

[17] A. K. Dey, G. D. Abowd, A. Wood: CyberDesk: A Framework for
Providing Self-Integrating Context-Aware Services (1998)
(Available at: http://citeseer.ist.psu.edu/cache/papers/cs/17489/
http:zSzzSzwww.cc.gatech.eduzSzfcezSzctkzSzpubszSzKBS11-1.pdf/
dey98cyberdesk. pdf)

[18] R. Hull, P. Neaves, J. Bedford-Roberts: Towards Situated Computing
(1997)
(Available  at: http://wwwl.cs.columbia.edu/graphics/courses/
mobwear/resources/hull-iswc97.pdf)

[19] J. Pascoe: Adding Generic Contextual Capabilities to Wearable Computers
(1998)
(Available  at: http://wwwl.cs.columbia.edu/graphics/courses/
mobwear/resources/pascoe-iswc98.pdf)

97



[20] T. Rodden, K. Cheverst, K. Davies, A. Dix: Exploiting Context in HCI
Design for Mobile Systems (1998)
(Available at: http://citeseer.ist.psu.edu/cache/papers/cs/2480/
ftp:25zzSzftp.comp.lancs. ac.ukzSzpubzSzmpgzSzMPG-98-23. pdf/
rodden98exploiting.pdf)

[21] A. Ward, A. Jones, A. Hopper: A New Location Technique for The Active
Office (1997)
(Available at: http://citeseer.ist.psu.edu/cache/papers/
cs/26981/http:2zSzzSzwww-2.cs. cmu. eduzSzafszSzcs . cmu.
eduzSzuserzSzsatyazSzWebzSzMCSALINKzSzPAPERSzSzward97 . pdf/
ward97new.pdf)

[22] Merriam-Webster’s Collegiate Dictionary http://www.m-w.com/

[23] N. Ryan, J. Pascoe, D. Morse: Enhanced Reality Fieldwork: the Context-
Aware Archaeological Assistant (1997)
(Available  at: http://www.cs.kent.ac.uk/projects/mobicomp/
Fieldwork/Papers/CAA97/ERFldwk.html)

[24] A.K. Dey: Providing Architectural Support for Building Context-Aware
Applications. Ph.D thesis 2000.
(Available at: www.cc.gatech.edu/fce/ctk/pubs/dey-thesis.pdf)

[25] K. Henrichsen, J. Indulska, A. Rakotonirainy: Modeling context informa-
tion in Pervasive Computing Systems. In Proceedings Pervasive 02 - Zurich
August 2002 Springer Verlag, LNCS.

(Available  at: http://diuf.unifr.ch/softeng/seminars/SE2003/
resources/Pervasive2002.pdf)

[26] P. Nurmi, P. Floréen: Reasoning in Context-Aware Systems (Nov. 2004)
(Available  at: http://www.cs.helsinki.fi/u/ptnurmi/papers/
positionpaper.pdf)

[27] Ard-Jan Moerdijk and Lucas Klostermann: Opening the networks with
OSA /Parlay: Standards and aspects behind the APIS Network IEEE, Vol-
ume: 17, Issue:3, May-June 2003

[28] Ericsson Network Resource Gateway Programmers Guide by Ericsson AB,
2003, 2005

[29] J. Scourias: Overview of the Global System for Mobile Communications,
University of Waterloo, May 19 1995

[30] The documentation of Ericsson Network Resource Gateway Simulator by
Ericsson

[31] The NRG SDK, downloaded from Ericsson’s Mobility World
http://www.ericsson.com/mobilityworld/sub/open/technologies/
parlay/docs/parlay_cd

98



[32] G. Melbye: ActorFrame Developer’s guide, NorARC, ARTS version P1
[33] A. Herstad, G. Melby: ServiceFrame version 1, ARTS
[34] UML 2.0 Superstructure Specification published by the OMG group

[35] M. Uschold & M. Gruninger: Ontologies: Principles, Methods and Appli-
cations, Knowledge Engineering Review, Volume 11 Number 2, June 1996

[36] T. Gu, X. H. Wang, H. K. Pung, D. Q. Zhang: An Ontology-based
Context Model in Intelligent Environments (2004)
(Available  at: http://www.comp.nus.edu.sg/ “gutao/gutao_NUS/
CNDS2004 _gutao . PDF)

[37] T. Gu, H. K. Pung, D. Q. Zhang: A service-oriented middleware for build-
ing context-aware services (2004).
(Available at: http://www.comp.nus.edu.sg/ gutao/gutao_NUS/SOCAM_
gutao.pdf)

[38] T. Strang, C. Linnhoff-Popien, K. Frank: CoOL: A Context Ontology
Language to enable Contextual Interoperability (2003).
(Availale at: http://springerlink.metapress.com/media/
3djnnnyugkqnsbméek0j/contributions/d/j/n/h/djnhu2gvpv7cqltv.
pdf)

[39] T. Strang, C. Linnhoff-Popien, K. Frank: Applications of a Context
Ountology Language (2003).
(Available at: http://citeseer.ist.psu.edu/
cache/papers/cs/30448/http:zSzzSzwww.kn.op.dlr.
dezSz"strangzSzpaperzSzsoftcom2003zSzSoftCom2003CameraReadyVersion.
pdf/strang03applications.pdf)

[40] D. Preuveneers, J. Van den Bergh, D. Wagelaar, A. Georges, P. Rigole, T.
Clerckx, Y. Berbers, K. Coninx, V. Jonckers and K. De Bosschere: Towards
an extensible context ontology for Ambient Intelligence (2004).
(Available at: http://research.edm.luc.ac.be/tclerckx/eusai2004.

pdf)

[41] D. Preuveneers and Y. Berbers: Semantic and syntactic modeling of
component-based services for context-aware pervasive systems using OWL-s
(2005).

(Available at: http://www.cs.kuleuven.ac.be/~davy/publications/
mcmp05 . pdf)

[42] H. Chen and T. Finin: An Ontology for Context Aware Pervasive Comput-
ing Environments (2003)
(Available at: http://www.cs.vu.nl/ heiner/IJCAI-03/Papers/Chen.

pdf)

99



[43] A. Ranganathan, R. H. Campbell: A Middleware for Context-Aware
Agents in Ubiquitous Computing Environments (2003).
(Available at: http://choices.cs.uiuc.edu/ "ranganat/Pubs/
MiddlewareForContext-FinalVersion.pdf)

[44] A. Ranganathan, R. E. McGrath, R. H. Campbell, M. D. Mickunas:
Ontologies in a Pervasive Computing Environment (2003).
(Available  at: http://www.cs.vu.nl/ heiner/IJCAI-03/Papers/
Ranganathan.pdf)

[45] H. Chen, F. Perich, T. Finin, A. Josh: SOUPA: Standard Ontology for
Ubiquitous and Pervasive Application (2004).
(Available at: http://ebiquity.umbc.edu/_file_directory_/papers/
105. pdf)

[46] The CoBrA website http://cobra.umbc.edu/about.html

[47] M. J. Woolridge and N. R. Jennings: Intelligent agents: Theory and prac-
tice. Knowledge Engineering Review, 10(2): 115-152, June 1995.
(Available at: http://www.csc.liv.ac.uk/ mjw/pubs/ker95.pdf)

[48] H. N. Castejon Martinez: Policies in ServiceFrame
(Available in the electronic attachment)

[49] Ericsson H-OSA Interface Specification Mobility Management, User Loca-
tion 2003-10-06 revision A. (Available from the NRG SDK)

[50] Assistant Secretary of Defence for Command, Control, Communications,
and Intelligence: Global Positioning System, Standard Positioning Service,
Performance Standard. October, 2001.

(Available at:http://www.navcen.uscg.gov/gps/geninfo/
20018PSPerformanceStandardFINAL. pdf)

[51] Levijoki, S.: Privacy vs Location Awareness, Tik-110.501 Seminar on Net-
work Security.
(Available at: http://www.tml.tkk.fi/Opinnot/Tik-110.501/2000/
papers/levijoki.pdf)

[52] OWL Web Ontology Language Reference, W3C Recommendation. 10 Feb-
ruary, 2004
(Available at: http://www.w3.org/TR/owl-ref/)

[53] M. Horridge, H. Knublauch, A. Rector, R. Stevens, C. Wroe: A Practical
Guide To Building OWL Ontologies Using The Protégé-OWL Plugin
and CO-ODE Tools Edition 1.0, University of Manchester & Stanford
University. August 27, 2004.

(Available at: http://www.co-ode.org/resources/tutorials/
ProtegeOWLTutorial.pdf)

100



[54] H. Knublauch: The Protégé-OWL API - Programmer’s Guide. June 02,
2005.
(Available at: http://protege.stanford.edu/plugins/owl/api/guide.
html)

[55] Extensible Markup Language (XML) 1.1, W3C Recommendation. 04 Feb-
ruary, 2004 (edited in place 15 April 2004).
(Available at: http://www.w3.org/TR/2004/REC-xm111-20040204/)

[56] XML Schema Part 0: Primer Second Edition, W3C Recommendation. 28
October, 2004.
(Available at:http://www.w3.org/TR/xmlschema-0/)

[57] RDF Vocabulary Description Language 1.0: RDF Schema, W3C Recom-
mendation. 10 February 2004.
(Available at: http://www.w3.org/TR/rdf-schema/)

[58] RDF Primer, W3C Recommendation. 10 February 2004.
(Available at: http://www.w3.org/TR/rdf-primer/)

[59] D. Roman, U. Keller, H.Lausen, J. de Buijn, R. Lara, M. Stollberg, A.
Polleres, C. Feier, C. Bussler and D. Fensel: Web Service Modeling Ontology.
Applied Ontology 1 (2005) 77-106, IOS Press.

[60] Semantic Web Services Framework (SWSF) Overview, W3C Member Sub-
mission. 9 September 2005.
(Available at: http://www.w3.org/Submission/SWSF/)

[61] RFC 3863 - Presence Information Data Format (PIDF)

[62] 3GPP TS 22.141: 3rd Generation Partnership Project; Technical Specifica-
tion Group Services and System Aspects; Presence Service; Stage 1 (Release
7). 2005-12.

[63] US Marine Corps: Marine Artillery Survey Operations. 13. February 2004
(Available at: http://www.tpub.com/content/USMC/mcwp3167/css/
mcwp3167_45.htm)

[64] Akogrimo D4.2.2 Final Integrated Service Design and Implementation Re-
port Version 1.0. 31.10.05.

[65] Notes on the History of Ontology http://www.formalontology.it/
history.htm

[66] T. Berners-Lee: Semantic Web Road Map. September 1998.
(Available at: http://www.w3.org/Designlssues/Semantic.html)

[67] T. Berners-Lee: Semantic Web on XML. XML 2000 Washington DC.
(Available  at: http://wuw.w3.0rg/2000/Talks/1206-xm12k-tbl/
slidel-0.html)

101



[68] W3C: Semantic Web.
(Available at: http://www.w3.org/2001/sw/)

[69] I. Horrocks, B. Parsia, P. Patel-Schneider, J. Hendler: Semantic Web Ar-
chitecture: Stack or Two Towers? 2005.
(Available at: http://www.cs.man.ac.uk/ horrocks/Publications/
download/2005/HPPHO5 . pdf)

102



List of Figures

0 I O Ut ok W=

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

Context feature space, taken from [6] . . . . . . .. .. ... ... 8
A layered framework for context management, taken from [2]. . . 17
Overview of the SOCAM architecture, taken from [36] . . . . . . 19
The CoBrA architecture, taken from the CoBrA web site [46] . . 20
The semantic web stack, obtained from [67]. . . . . . ... . ... 25
The Aspect-Scale-Context model, from [38] . . . .. ... . ... 28
The SOUPA ontology, taken from [45]. . . . . . . ... ... ... 30
Class hierarchy diagram for the SOCAM context ontology, taken

from [36] . . . . . . 31
Quality Constraint in the SOCAM ontology, taken from [36] . . . 32
The CoDAMoS overall ontology, taken from [40] . . ... .. .. 34
The User ontology, taken from [40] . . . . .. .. ... ... ... 34
The Environment ontology, taken from [40] . . ... ... . ... 35
The Platform ontology, taken from [40] . . . . . . .. ... .. .. 36
The Service ontology, taken from [40] . . . . . . . ... ... ... 36
Alternative 1, owl:Thing . . . . . . ... ... ... 40
Alternative 1, Context . . . . . . . . . .. ... ... 41
Alternative 1, Primary information . . . . ... ... ... .... 42
Alternative 1, Secondary information . . . . . . . ... ... ... 42
Alternative 2, owl:Thing . . . . . .. .. ... ... ... ... .. 43
Alternative 2, Entity . . . . . .. ... oL 43
Alternative 2, Primary information - Activity . . . . ... .. .. 44
Alternative 2, Primary information - Physical information . . . . 45
Alternative 2, Secondary information . . . . . .. ... ... ... 46
Overview of the CBCC service . . . .. ... ... ... ..... 52

Alternative 1 of the CBCC service when deployed in ServiceFrame 53
Alternative 1 - including the user-context-managing unit . . . . . o4

Alternative 2 of the CBCC service when deployed in ServiceFrame 55

Alternative 1 to the ContextEngine . . . . . . ... ... ... .. 57
The final architecture of the ContextEngine . . . . . ... .. .. 59
The structure of CBCCUserAgent . . . . ... ... ....... 60
Initializing NRG connection for the call controller . . . . . . . .. 63
Initializing the NRG connection for the location fetcher . . . . . 63
Starting up the UserAgent . . . . . . .. ... . ... ... ... . 64
Starting up the context engine . . . ... ... ... ... .... 65

Fetching the scheduled activities . . . . ... .. ... ... ... 66



36
37
38
39
40
41
42
43
44

45

46

47

48

49

50

o1

52
53
54
35
56
57
58

Fetching the time . . . . . . . .. .. ... . L. 67

Updating the time . . . . . . .. . ... .. oL 67
Fetching the location . . ... ... ... ... ... . .... 68
Waiting for location updates . . . . .. ... ... ... ... 69
Updating the location . . . . . . ... ... ... ... ...... 69
Updating the context . . . . . . . .. ... ... ... ..., 70
Receiving call notification from the NRG . . . ... ... .. .. 71
Handling route requests . . . . . .. .. ... ... oL 71

Scenario la - Family-related call is made while the subscriber is
on his way for work. The call is directed to his cellphone. . . . . 81

Scenario 1b - Work-related call is made while the subscriber is on
his way for work. The call is directed to his secretary.simulated
in the NRG Simulator . . . . .. ... ... .. ... ... .... 82

Scenario 2a - Family-related call is made while the subscriber is
in the meeting room having a planned meeting with Jane. The
call is directed to his voicemail. . . . . . . ... .. Lo 83

Scenario 2b - Work-related call is made while the subscriber is in
the meeting room having a planned meeting with Jane. The call
is directed to his voicemail. . . . . . . . ... ... . ..., 84

Scenario 3a - Family-related call is made while the subscriber is
in the office and no meeting is scheduled at the current time. The
call is directed to his desk phone. . . . . . . .. ... 85

Scenario 3b - Work-related call is made while the subscriber is in
the office and no meeting is scheduled at the current time. The
call is directed to his desk phone. . . . . . .. ... ... 86

Scenario 4a - Family-related call is made while the subscriber is
having lunch with his friend at the restaurant. In addition, the
lunch was scheduled and stored in the subscriber’s agenda. The
call is directed to his cellphone. . . . . . . .. ... ... ... .. 87

Scenario 4b - Work-related call is made while the subscriber is
having lunch with his friend at the restaurant. In addition, the
lunch was scheduled and stored in the subscriber’s agenda. The

call is directed to his secretary. . . . . . . ... ... .. 88
Modifying an ontology . . . . . . . . .. .. L. 92
User preferences configuration, obtained from R. Braek . . . . . . 95
State diagram for actor CallController . . . . . ... ... .. .. 109
State diagram for actor CBCCUserAgent . . . .. ... ... .. 110
State diagram for actor ContextEngine . . . . . . . .. ... ... 111
State diagram for actor LocationSensor . . . ... .. ... ... 112

State diagram for actor NRGLocationFeature . . . . ... .. .. 113



39
60
61
62
63
64
65
66
67
68
69
70
71

State diagram for actor NRGCallControlFeature . . . .. .. .. 113

The OSA/Parlay Logical Architecture, taken from [27] . . . . . . 125
The NRG big picture, taken from [28] . . .. ... ... ... .. 126
Overview of the NRG SDK, taken from [28] . . . . ... ... .. 127
NRG architecture overview, taken from [28] . . . . . ... .. .. 129
The framework Proxy . . . ... .. ... ... ... .. ... 130
Communication between NRG and an application . . . . . . . .. 131
ServiceFrame, taken from [32] . . . . . . ... ... 132
Ericsson’s service creation architecture, taken from [32]. . . . . . 133
ServiceFrame UML model, taken from [33] . . . . . .. .. .. .. 134
The Actor class, taken from [32] . .. .. ... ... ....... 135
Multiple role requests, taken from [32] . . . ... ... ... ... 136

UML model of the most central interfaces used . . . . .. .. .. 139



List of Tables

1 Context-Aware Software Dimensions as defined in [8] . . . . . . .

2 Functional requirements of the CBCC service

3 Simulation scenarios . . . . .. ... ... ..



List of Abbreviations

CBCC - Context Based Call Control

NRG - Network Resource Gateway

API - Application Programming Interface

MPCC - Multi-Party Call Control

OSA - Open Service Access

H-OSA - High level OSA

SDK - Software Development Kit

3GPP - 3rd Generation Partnership Project

ETSI - European Telecommunication Standardization Institute

ITU-T - International Telecommunication Union Telecom Standardization Sec-
tor

CORBA - Common Object Request Broker Architecture
GSM - Global System for Mobile communications
XML - eXtensible Markup Language

XSD - XML Schema

OWL - Web Ontology language

RDF - Resource Description Framework

RDFS - RDF Schema

WSMF - Web Service Modeling Framework
WSMO - Web Service Modeling Ontology
WSML - Web Service Modeling Language

SWSF - Semantic Web Services Framework
SWSO - Semantic Web Services Ontology

SWSL - Semantic Web Services Language



List of Definitions

Caller - the user or person that is trying to make a phonecall
Callee - the user (person) that is being called, that the phonecall is for

Call object - A relation between a number of parties. It relates to the entire
call view from the application

Call leg object - Represents a logical association between a call and an address.
The relationship includes at least the signalling relation with the party. The
relation with the address is only made when the leg is routed. Before that the
leg object is IDLE and not yet associated with the address.

Address - Logical representation of a party in the call

E.164 phone number - E.164 numbers are globally unique, language independent
identifiers for resources on Public Telecommunication Networks that can support
many different services and protocols. E.164 numbers are used to identify e.g.
ordinary phones, fax machines, pagers and data modems.

Policy - a definite course or method of action selected from among alternatives
and in light of given conditions to guide and determine present and future
decisions

Context - Context is any information that can be used to characterize the sit-
uation of an entity. An entity is a person, place, or object that is considered
relevant to the communication between two users, including the users them-
selves.



Appendix A - Design and Implementation details

This appendix will provide the reader with some of the details of the implemen-
tation of the demonstrator service. First, the state machines of the actors are
presented (as screenshots from the Ramses modelling tool). Further on, the con-
figuration files for the policies, the primary reasoning rules, the user’s scheduled
activities and the phone numbers used in the simulation are presented. Finally,
the code for calculating the route of a call after the policy check is performed
successfully.

A.1: State diagram for actor CallController

[ idle ]

StartUp |

[ @ startp |

|

[ active ]

AddPalicyMOKMsg |

[ © handlePolicysddErrar |

|

[ active ]

AddPalicyOkMsg |

[ @ handlePolicyAddsuccess |

|

[ active ]

RouteReq |

[ © handieRouteReq |

[ waitForPolicyCheckRephy

PaolicyCheckOKMsg | PalicyCheckMOKMsg |
|

[ © handlePolicyCheckol | [ @ handlePalicyCheckhok |

[ active ] [ active ]

Figure 54: State diagram for actor CallController



A.2: State diagram for actor CBCCUserAgent

b4

[ idle 1
|

% StartUp |
|

| @ Startlp |

[ artive 1

yRoleReleaseMsg |

| @ kelMyParts |

[ <Final= 1

Figure 55: State diagram for actor CBCCUserAgent



A.3: State diagram for actor ContextEngine

b

[ idle )

}StartLlpCu:untextEngine

| @ startUpSystem |

[ waitingForLocationSensorack. |

yLocationSensorRegistered |

[ @ startSensorFetching |

[ wattingForContextpdates |

}CnntextUpdate |

| @ ForwardContextpdate |

[ waitingForContextlUpdates |

|
! |
|

| @ storelnformation |

[ <Final= )

Figure 56: State diagram for actor ContextEngine



A .4: State diagram for actor LocationSensor

?

[ idle ]
StartpContextEngine |
|
[ @ activate |
active ]
SkarkFetching | SkartSubscriptions |
|
[ © fetch | [ @ startSubscribing | [ © shutDownSystem
[ watingFarResponse ] [ waitingForSubscriptionfepo.. | [ <Final=
FetchLocationRes | LocationSubscriptionRepart |
| |
[ @ receive | [ @ receivesubscriptionInfo |
[ watingFarResponse ] [ waitingForSubscriptionRepa,, )
TimelsUp | StopSubscriptions |
[ @ Fetchagain | [ @ stopSubscribing |
[ waitingFarResponse ] [ active ]
StopFetching |
+
[ active ]

Figure 57: State diagram for actor LocationSensor



A.5: State diagram for actor NRGLocationFeature

[ idle ]

| FetchLocationReq | RegisterLocationReqsubscri, |
| |

[ @ stop | [ @ requestlocation | [ @ registerLocationRequests |
[ <Finals ) [ waitingForLocationResults ) [ waitingForSubscriptionRepo., |
LocationReceived | LocationSubscriptionRepork |
[ © Forwardlocation | [ @ ForwardiocationReport |
[ idle: ] [ waitingForSubscriptionFepo.. |

StoplocationReqsubscriptions |

[ @ stopsubscriptions |

|

[ idle ]

Figure 58: State diagram for actor NRGLocationFeature

A.6: State diagram for actor NRGCallControlFeature

RoleReleasefMsg

@ releaseNRGConnection

<final=

Figure 59: State diagram for actor NRGCallControlFeature



A.7: The policy definitions (policies.properties)

This file contains the policies that will be used in the simulation of the CBCC
service.

numberOfPolicies=8
! Important to follow this scheme when modifying or adding policies

II' The availabilities need to be on this format: prefix {low, medium, high},
where

I!' the prefix names where the availability exists(o=office, mr=meeting room,
h=home)

1subjectRole=cell

1deduced Activity=nil
lhomeAvailability=h _low
lofficeAvailability=o0_low
1lmeetingRoomAvailability=m low
lcallType=~family
lalternativeRole=cell
2subjectRole=cell

2deduced Activity=nil
2homeAvailability=h_low
2officeAvailability=o0_low
2meetingRoomAvailability=m low
2callType=work
2alternativeRole=secretary
3subjectRole=cell

3deduced Activity=meeting
3homeAvailability=h_low
3officeAvailability=0_low
3meetingRoomAvailability=m medium
3callType=family
3alternativeRole=voicemail
4subjectRole=cell
4deducedActivity=meeting
4homeAvailability=h _low
4officeAvailability=o0_low
4meetingRoomAvailability=m medium
4callType=work

4alternativeRole=voicemail



5subjectRole=cell

5deduced Activity=working
S5homeAvailability=h low
5officeAvailability=o high
5meetingRoomAvailability=m _low
5callType=family
5alternativeRole=desk
6subjectRole=cell

6deduced Activity=working
6homeAvailability=h_low
6officeAvailability=o high
6meetingRoomAvailability=m low
6callType=work
6alternativeRole=desk
7subjectRole=cell
7deducedActivity=lunch
7homeAvailability=h _low
TofficeAvailability=o0 low
TmeetingRoom Availability=m low
7callType=family
7alternativeRole=cell
8subjectRole=cell

8deduced Activity=lunch
8homeAvailability=h_low
8officeAvailability=o0_low
8meetingRoomAvailability=m low
8callType=work
8alternativeRole=secretary



A.8: The primary reasoning rules (secondaryInformationRules.properties)

I!' Contains the rules for mapping between primary information and secondary
information

numberOfRules = 4
1Time=officeTime

1Location=nil

1Scheduled Activity—=false

1Deduced Activity=nil
lhomeAvailability=h _low
lofficeAvailability=0_low
1lmeetingRoomAvailability=m _low
2Time=activityTime
2Location=meetingRoom
2Scheduled Activity=true
2DeducedActivity=meeting
2homeAvailability=h_low
2officeAvailability=o0 low
2meetingRoomAvailability=m medium
3Time=officeTime
3Location=office

3Scheduled Activity=false
3DeducedActivity=working
3homeAvailability=h_low
3officeAvailability=o high
3meetingRoomAvailability=m low
4Time=activity Time
4Location=restaurant

4Scheduled Activity=true
4DeducedActivity=lunch
4homeAvailability=h _low
4officeAvailability=0_low

4meetingRoomAvailability=m low



A.9: The scheduled activities for the user (userScheduledActivites.properties)

numberOfMeetings=3
! NBNB!I!!

' IMPORTANT TO FOLLOW THIS SCHEMA WHEN USING TIME AND
DATE: XX.XX:XX XX:XX

I where the format is day.month.year and the time is written with 24 hours
and not AM/PM

' This first one is only to set the beginTime of the application and so the
begin/IsDone times

I! should be equal so that the officetime is the one that begins - in accordance
with the User scenario

1Summary=null

1Description=null
1BeginsAtTimeMetricValue=22.05.06 15:51
1IsDoneAtTimeMetricValue=22.05.06 15:51
1Location—=null

1Participant=null

1Category=null

1Priority=null

2Summary=Meeting with Jane

2Description=Meeting with Jane to discuss something. Remember to bring
computer

2Begins At TimeMetricValue=22.05.06 15:52
2IsDoneAtTimeMetricValue=22.05.06 15:53
2Location=0ffice

2Participant=Jane

2Category=Business

2Priority=Medium

3Summary=Lunch with friends
3Description=Lunch with friends. Remember to bring photos
3BeginsAtTimeMetricValue=22.05.06 15:55
3IsDoneAtTimeMetricValue=22.05.06 15:56
3Location=Restaurant

3Participant=null

3Category=Private

3Priority=Low



A.10: Calculating the route after the policy check was successful

public static void handlePolicyCheckOK (Policy CheckOKMsg signal,
CallControllerSM asm) {

String roleToPlay = signal.roleType;

String destination = null;

String caller = asm.currentCaller;

if (roleToPlay.equals("cell")) {

destination = asm.cellPhone;

} else if (roleToPlay.equals("secretary")) {

destination = asm.secretary;

} else if (roleToPlay.equals("voicemail")) {

destination = asm.voicemail;

} else if (roleToPlay.equals("desk")) {

destination = asm.deskPhone;

} else {

// an error occurred because the role( or destination) was not recognized
//need to forward the call to the original destination

destination = asm.currentCallee;

}

RouteRes res = new RouteRes(caller, destination);

asm.sendMessage(res, asm.myCallControlFeature);

}



A.11: The configuration of the phonenumbers used in the simulation
(default CBCCProperties.properties)

terminal AgentPhonenumber=111
deskPhone = 112

user Voicemail=113
secretary=200

familyCaller=300
workCaller=400



Appendix B - Developer’s guide

This appendix provides information on how to simulate the demonstrator ser-
vice. First, the structure of the electronic attachment will be presented followed
by an installation guide of the required tools and libraries. Finally, some notes
on simulating the demonstrator service is given.

B.1 - Structure of the electronic attachment

This section presents the structure and the content of the attachment. Only the
most important files (in terms of relevancy to the simulation and modification
of the system) will be presented. The files that are not mentioned should not
be modified.

1. ontology/

o finalContextOntology.owl - contains the context ontology developed in this
master’s thesis, written in OWL

¢ finalContextOntology.pprj - contains the context ontology Protégé project
to be used by Protégé to view the context ontology
2. demonstrator/

CBCC/ - contains the Ramses model files of the CBCC module of
the system. The CBCC module includes the CBCCUserAgent except
the ContextEngine and the policy managing actors.

e bin/ - contains the compiled source code of the CBCC module

e lib/ - contains the necessary jar files for the CBCC module

e src/ - contains the source code of the CBCC module

e config.ini - contains the NRG configuration settings for the CBCC module

e model.uml - contains the Ramses modelling information of the CBCC
module

o defaultCBCCProperties.properties - contains the configuration of the dif-
ferent phonenumbers used during simulation in the NRG Simulator

e policies.properties - contains the policies



ContextEngine/ - contains the Ramses model files of the Contex-
tEngine. The ContextEngine includes the sensors, the ContextRea-
soner and the different ontology-related functionality.

bin/ - contains the compiled source code of the ContextEngine

lib/ - contains the necessary jar files for the ContextEngine

src/ - contains the source code of the ContextEngine

config.ini - contains the NRG configuration settings for the ContextEngine

model.uml - contains the Ramses modelling information of the Contex-
tEngine

defaultContextEngineProperties.properties - contains configuration set-
tings for the location sensor

finalContextOntology.owl - the context ontology written in OWL

individualConfiguration.properties - contains configuration settings for the
OWL individuals

SecondaryInformationRules.properties - contains the primary reasoning
rules

userConfiguration.properties - contains the configuration settings for the
user agent that is the owner of the context model

userScheduledActivities.properties - contains information about the sched-
uled activities of the user

exeCBCCcode/ - contains the simulation code for the demonstrator
that is generated by Ramses. It contains all the functionality of the
demonstrator service.

bin/ - contains the compiled source code of the demonstrator

lib/ - contains the necessary jar files for the demonstrator

src/ - contains the source code of the demonstrator

config.ini - contains the NRG configuration settings for the demonstrator

defaultContextEngineProperties.properties - contains configuration set-
tings for the location sensor

finalContextOntology.owl - the context ontology written in OWL

individualConfiguration.properties - contains configuration settings for the
OWL individuals



e SecondaryInformationRules.properties - contains the primary reasoning
rules

o userConfiguration.properties - contains the configuration settings for the
user agent that is the owner of the context model

e userScheduledActivities.properties - contains information about the sched-
uled activities of the user

o default CBCCProperties.properties - contains the configuration of the dif-
ferent phonenumbers used during simulation in the NRG Simulator

e policies.properties - contains the policies

3. documentation/

policiesInServiceFrame.doc - Equal to reference [48]: “Policies in ServiceFrame”
by Humberto Nicolds Castejon Martinez. This is reference.

B.2 - Installation

To be able to simulate or modify the demonstrator, the following sections pro-
vides information about the things that need to be installed.

Install Java 1.4.2

Install Java 1.4.2 (or a later version), available from http://java.sun.com/
j2se/downloads.html. It is recommended to install the full SDK, as opposed
to just the JRE (Java Runtime Environment).

Sett JAVA HOME to to point to the directory containing your Java installation
(e.g. "c:\jdk1.4.2"). Note that the directory specification cannot contain any
spaces, so if you have installed Java in "Program Files" under Windows, for
example, you will need to specify this using the DOS format "PROGRA™1".

Verify your installation by bringing up a shell window and typing "java -version".
The response should indicate that 1.4.2 (or later) is installed. For example:

C:\Documents and Settings\Student>java -version

java version "1.5.0 04"

Java(TM) 2 Runtime Environment, Standard Edition (build 1.5.0 _04-b05)
Java HotSpot(TM) Client VM (build 1.5.0 04-b05, mixed mode, sharing)

Install Ericsson’s NRG SDK

To be able to utilize the services provided by NRG, you need to download and
install the NRG SDK (for this master’s thesis, version 4.0 was used). This can
be downloaded from Ericsson’s Mobility World http://www.ericsson.com/



mobilityworld/sub/open/technologies/parlay/docs/parlay_cd. Just fol-
low the download- and installation instructions. The SDK also contains the
NRG Simulator [30] that simulates the underlying network resources, and thus
makes it possible to simulate the demonstrator service.

Protégé and the Protégé-OWL API

To develop the context ontology using OWL, Protégé” 3.1 with the OWL plug-in
was used as the ontology-editor. It contains all the necessary tools through the
plug-in facility, in addition to including the Protégé-OWL APT [54]. Protégé
and the Protége-OWL API doesn’t need to be installed to be able to run or
modify the demonstrator service, since all the necessary resources (contained
in jar-files) are included in the demonstrator’s lib folder. However, to get a
more human-readable presentation of the context-ontology that was developed,
Protégé-OWL should be used.

B.3 - Simulation

To simulate the demonstrator service, (after installing Java and the Ericsson’s
SDK) the scheduled activities of the user need to be modified to the time-range
of the simulation scenarios. This is achieved by modifying the activity property
file (see Appendix A.9). In addition, when configuring the NRG simulator with
telephones and their phonenumbers, the reader should consult the file containing
this configuration (see Appendix A.11). Tt is also vital that the configuration
of the different relative location-coordinates are followed. This file is described
in Appendix B.1. The reader is on a general basis encouraged to consult this
section when simulating the demonstrator service.

7 Available at: http://protege.stanford.edu



Appendix C - Relevant Technologies

This appendix will present the relevant technologies that the demonstrator ser-
vice interacts with. The demonstrator actually only uses the resource provided
by Ericsson’s Network Resource Gateway (NRG). However, since NRG is Eric-
sson’s implementation of OSA /Parlay, a brief introduction to OSA /Parlay will
also be given.

Appendix C.1 - OSA /Parlay

Below is a brief presentation of OSA /Parlay. It is mostly based on the contents
of [27, 28].

C.1.1 - Background

Traditionally, telecommunication networks, applications and services were a part
of the network operator’s domain. Services and applications were developed us-
ing Intelligent Network (IN) technology. This was well suited for simple mass-
market and carrier class applications, but with the introduction of mobility and
IP in the networks, easy creation and rapid deployment of innovative applica-
tions became a challenge beyond the capability of IN.

In 1998, the Parlay group was formed as a response to this trend. It was initiated
by a community of operators, IT vendors, network equipment providers and
application developers. They wanted to develop APIs that combined the best
of the two worlds (telecom and IP), because telecommunication applications
and services were traditionally developed using specialized telecom technology.
The overall goal was to develop 1 API for 1 developer community. Today, the
APIs are standardized by the Joint Working Group, a collaboration between
the Parlay Group, 3GPP, ETSI and ITU-T, and the Parlay group has grown
twelve-fold.

C.1.2 - Logical architecture

The OSA /Parlay architecture consists of three layers; the Connectivity Layer,
the Control Layer and the Service Layer. The OSA/Parlay APIs are located
at the service layer, or Service Enabling Layer [27], and they interact with the
control layer and the connectivity layer, thereby hiding the network-specific
complexities.

To put this in context, let us have a look at GSM. [29] defines the Base Station
Subsystem (BTS and BSC) as the Connectivity Layer. This is where the radio
link is controlled and coverage for the terminals are provided. The Network
Subsystem (MSC, HLR, VLR) is defined as the Control layer, and this is where
the signaling takes place. It handles switching of calls and mobility issues,
thereby controlling the Connectivity Layer.



The point with the OSA /Parlay Architecture is that as an application developer,
you do not need to concern yourself with detailed network complexities. The
APIs are located at the Service Enabling Layer, simply offering some of the
functionality of the underlying network elements as service features or service
capabilities. Below, a brief introduction to the logical architecture (illustrated
in Figure 60) of OSA /Parlay is given and it is mostly based on [27]. It consists
of Applications, Application Servers (AS), Service Capability Servers (SCS), the
OSA /Parlay Framework and core network elements.

_- Application Server
Ty Ty T N
o 0 < } R '::_ A e _)‘ --------- Application

054 | Paray interface

S Y -]

[ ] | | l—l—-‘i- == Interface class
framework User location  Call Control i . -
Service Capability Server(s)

HLR ‘ ‘ MSC ‘ S5P ‘ Servers

E.g. billing servers

Figure 60: The OSA /Parlay Logical Architecture, taken from [27]

Applications are defined as the client-side implementation of the APIs and
they use the capabilities offered through the OSA /Parlay APIs. They are
deployed on Application Servers. The Application Server could either be
provided by a telecom network operator or a third party company. The SCSs
represents the server-side implementations of the APIs and they provide the
capabilities that the Applications use. Further on, they communicate with
network specific components, e.g. the HLR in GSM, and serves thus as a
gateway to the core network. They are logical entities, and could be
distributed in the network or implemented directly on a network element, e.g.
the MSC. The SCSs are typically provided by network operators.
Communication between the Application and the SCSs is done through some
sort of middleware infrastructure, e.g. CORBA. The OSA /Parlay Framework
provides controlled access to the APIs on the SCSs. Applications that need
access to service capabilities in the SCS therefore first need to authenticate
themselves and request access for the requested capability from the

OSA /Parlay Framework.

Appendix C.2 - Network Resource Gateway

The Ericsson’s Network Resource Gateway (NRQG) is a framework that provides
a set of APIs. It can be seen as Ericsson’s implementation of an OSA /Parlay



Gateway, see section C.1.2. Below, a presentation of the NRG is given. Through-
out this presentation, the term application and service will be used in the fol-
lowing manner; an application runs on top of the NRG and uses the services
within the NRG. Most of the information is taken from [28].

C.2.1 - Overview

The NRG is located at the Service Layer in the OSA /Parlay Architecture as an
application gateway. It follows the goal of OSA /Parlay; to simplify the telecom
network complexities by hiding the low layers and providing a standardized
interface for the application developer. In section C.1.1 it was stated that the
OSA /Parlay APIs connect applications with the Service Layer. Figure 61 shows
how NRG and the NRG service relate to OSA /Parlay.

fﬁ Application Servers

| Open APls (OSA/Parlay and HOSA/Parlay) via CORBA

| Ericsson Network Resource Gateway (NRG)

D O

GPRS

Figure 61: The NRG big picture, taken from [28]

The following things are possible with the OSA /Parlay defined services in the
NRG:

Obtain access to a service by requesting it from the Framework service

Create or route phone calls using the Multi Party Call Control (MPCC)

Play announcements and collect digits during a phone call by using the
User Interaction (UI) service

Request the location of mobile phones by using the User Location (UL)
service

In addition to the standard OSA /Parlay APIs, the NRG has been enhanced by
a superset of these, the High level Open Service Access (H-OSA) APIs. These
provide extended services and functionality and each interface specification will
extend from the OSA /Parlay specification. The following are possible with the
H-OSA defined services in NRG:

e Receive SMS and MMS messages and send SMS, MMS, WAP-push and
E-mail messages by using the Messaging service



Read E-mail by using the Message Retrieval service

Request the status of mobile phones by using the User Status service

Handle subscriber contacts by using the Personal Information Manage-
ment (PIM) Contact service

Handle subscriber calendars by using the PIM Calendar service

C.2.2 - The NRG Software Development Kit

The above all most important part of the NRG is the SCSs (Service Capability
Servers). Note that the NRG is often seen as both the SCSs and the whole NRG
product. In a sense, this is correct since the most fundamental part of the NRG
is the SCSs. However, the NRG product contains not only the SCSs but also
the NRG Software Development Kit (SDK).

-
| Application 4 Application
Application
g Java Server(s)
corea B | SDK APIs |
CORBA
NRG

Figure 62: Overview of the NRG SDK, taken from [28]

The SDK offers software libraries to Java application developers so that no
detailed CORBA knowledge is needed to use the NRG services. This is done
by using one of the features of these software libraries; its CORBA
abstraction. Method calls are translated from Java to CORBA and then back
again when received from NRG. It also offers functionality to support network
redundant NRG systems, that is when two NRG nodes operate in parallel and
can take over each other’s work. Besides standard content like documentation,
the SDK contains an automated test tool, making it easy for the developer to
test an application against a simulated NRG with automatically generated



traffic. In addition, it contains the NRG Simulator. The Simulator simulates
the NRG node and the underlying network (with resources). It has a graphical
user interface where peripherals, e.g. phones, are simulated facilitating testing
of services in a user-friendly and dynamic environment. From an application’s
point of view, it is transparent whether it is communicating with an actual
NRG node or the NRG Simulator. For a complete reference to the NRG SDK
and its Simulator, please refer to [31, 30].

C.2.3 - The Framework service

NRG contains a Framework and one or more services (SCSs), see Figure 63.
Services can be seen as the functional entity providing a standard interface
toward an application. So by this definition, the Framework can be seen as
a NRG service. The big difference between the Framework service and the
other services is that the Framework is mandatory. It acts in many ways as the
OSA /Parlay framework does (see section C.1.2) namely as a gatekeeper to the
NRG services. When an application wants to use a NRG service, the application
first has to request it from the Framework.

C.2.4 - The NRG enabled Application Life Cycle

The application life cycle looks as follows:

1. Obtain access to the Framework
2. Obtain access to needed services

3. Handle multiple transactions (e.g. phone calls, messages) by using the
services

4. Release the used services

5. End the access to the Framework

When an application requests access to services, it can get multiple instances of
the same service type. By specifying service properties, the right instance of a
service type can be selected.

The application can be located in the operator domain as well as somewhere
on the Internet. If it is not located in the operator domain, an agreement with
the operator is needed where authentication and authorization data is defined.
The agreement is called a Service Level Agreement (SLA). It describes what
services the application is able to use through functional-based properties (e.g.
types of allowed triggers, what API methods are allowed) and performance-
based properties (e.g. maximum number of calls per second, maximum number
of messages).



Client Application

User User Tlsar
Framework e Location || Stams | | Interaction

Bazisterad Services

Figure 63: NRG architecture overview, taken from [28§]

The first that happens when an application wants to use some of the services
in NRG, is mutual authentication between the Framework and the application.
When this is done, the application can request the Framework for access to
services by signing the SLA. Further on, when the SLA has been established,
the Framework requests the service to create a service manager and the
reference to this service manager is returned to the application. The service
manager is the proxy of the service that the application interacts with. The
application is now ready to access the service and start using its resources
through the service manager.

C.2.5 - Getting access to a service

When an application needs access to a service, it needs to follow a certain
sequence of actions. This sequence is almost the same for each service the
application needs access to, so the SDK Software Libraries contain a component
that simplifies the needed interaction with the Framework to get access to the
service. This component is called the framework Proxy. Instead of having to
invoke 13 method calls, the application developer only needs to invoke one.
Figure 64 illustrates this.

When requesting a service from the framework proxy, all the application needs
to specify is which service it needs. This is done by specifying the name of the
service. An example of the name of a service is

"SP HOSA USER_STATUS" for the User Status service. The name of a
H-OSA service can be found in the Ericsson specification of the given service,
which can be found in the documentation of the NRG SDK, see [31]. The rest
of the information that the framework proxy needs, e.g. authentication
information, is located in a configuration file.



Application

frarmework
Proxy Service Manager

| T - P
1 15 &
i | J g &

Framework

Figure 64: The framework Proxy

C.2.6 - Callback objects

In section C.2.4, it was explained that applications need some special inter-
faces called service managers to use a service. In addition, the service manager
needs callback objects to communicate with the application, since almost all
OSA /Parlay and H-OSA methods are asynchronous.



Application domain

Application

Callback
object

Service Manager

KRG domaen

Figure 65: Communication between NRG and an application

When an application requests something from the service manager, the response
is returned asynchronously. Each service manager has a special kind of callback
object with predefined methods that can be invoked by the service manager
when it is ready to return a response.
have to await the response of the Service Manager.

In this way, the application will not
The callback object is

implemented as a part of the application, see Figure 65.




Appendix D - Application platforms

This section will present the different platforms that were used to develop the
demonstrator service. The demonstrator uses ServiceFrame as service platform
running on top of ActorFrame. In addition, OWL and the Protége-OWL API
were used to, respectively, specify and populate the context ontology.

Appendix D.1 - ServiceFrame

This section will provide a presentation of ServiceFrame. An overall description
will be given followed by a presentation of its architectural support and the
framework model. The content of this presentation is taken from [32, 33].

D.1.1 - Overall description

ServiceFrame is a service creation and execution environment and can be seen
as an application server in the service network (see Figure 66). It provides
users on different terminals to communicate with each other and provides access
to network resources through the OSA/Parlay API. Although ServiceFrame
can be used as an application server, it does not offer all functionality that a
commercial application server, e.g. Bea Weblogic, such as management and
database storage. However, it can communicate with different resources in the
network, e.g. Parlay’s SCSs, clients and regular servers. It can be used to deploy
and run services in the service network.

ServiceFrame: RootActor

Users Communities
user[*]: User comtmnity| *]
Agent Community

Agent

Terminas Applications
terminal[ *]: application[*]:
Terminal Application
Agent Actor

Appliances ServiceEnahlers
appliance[*] se[*]: Enabler
Appliance Agent
Agent

Adaptation t

To other ServiceFrame instances

Figure 66: ServiceFrame, taken from [32]



D.1.2 - The architectural support

The most important characteristic of ServiceFrame is its architectural support
for service creation, service deployment and service execution from an applica-
tion’s point of view. It is the applications, when deployed on ServiceFrame, that
constitute the end-user services. The applications can make use of predefined
ServiceFrame classes, extend their behaviour as well as define their own classes
that interact with the framework classes. In this context, ServiceFrame can
be seen as a framework providing class libraries, architectural design-guidelines
and functionality for easy deployment of services. As Figure 67 shows, the ar-
chitectural support of ServiceFrame is provided as three layers. In this view,
ServiceFrame is itself an application of ActorFrame.

Appllcation:
MyUsersgent, MyTerminalagent,
MyCommunifyAgent,.... My Raoles

ServicaFrama: 2rovides Application
Useragents, Terminalagents, Communiyageants, domain cancepts
Appiicaticnactars, ...

“rovides Role modeling

LctoFrama: :
Actors, Roles, Plays, Paliems, .. conceptE
JavaFrama: 2rovides UMLZ.D

Compostedblecis, StateMachines, Medators, e

ComposkeSiates, Asynchronows communication,

Java VM

Figure 67: Ericsson’s service creation architecture, taken from [32]

ServiceFrame consists of agents, that are defined in ActorFrame as actors, and
actors play roles to create a service. It is layered on top of ActorFrame and
JavaFrame. For further information about ActorFrame, see Appendix D.2.
JavaFrame is both an environment for execution and a class-library used to
implement state machines and asynchronous communication between state
machines. The idea of ServiceFrame is that service developers shall be relieved
from having to deal with technicalities that are not service specific.
ServiceFrame has therefore defined a lot of general service-specific
functionality. Classes and their respective behaviour are modelled using UML
2.0. For a presentation of UML 2.0, please refer to [34].



D.1.3 - The framework model

As already described, ServiceFrame provides architectural support through class
libraries. The main actor is ServiceFrame and contains inner actors in a pre-
defined structure. By extending ServiceFrame, an actor can extend the basic
behaviour of ServiceFrame (e.g. add new parts that interact with the predefined
inner parts of ServiceFrame). Figure 68 shows the structure of ServiceFrame
with its inner actors. For a detailed description of these, please refer to [33].

¢d ServiceFrame

«Actor
ServiceFrame

uzerrofileDataBase: Vector

cc :ThirdPartyCallEdge sfw : arts :
11 ServiceFileWatcher [1] ExtAddressManager [1]

receiver:
SmsReceiverEdge [1]

agent :NameServer[1]

J_‘ nameServerPart
L

Users :UserAgent [0.."]

ektemalPort

]

sms :SmsEdge [1]

pms :PositionEdge [1]

PostionServerPart

Figure 68: ServiceFrame UML model, taken from [33]

Appendix D.2 - ActorFrame
D.2.1 - The service view

ActorFrame makes use of the “Actors play service roles” concept, which means
that a service is made up of collaborating actors each playing a role and offering
specific functionality that form a part of the service. The role that an actor
plays can be seen as a service role and the collaboration and interaction of these
specify the service functionality. A service may be seen as a play made up of
actors playing service-roles. Below, a presentation of the Actor concept and the
ActorFrame protocol will be given. It is based on the information found in [32].



D.2.2 - The Actor

The Actor is, above all, the core concept of ActorFrame. It has a predefined
behaviour (state machine) and structure, and can contain a number of inner
parts (actors). These can be static and follow the life cycle of the enclosing
Actor or be dynamic and follow their own life cycle in an ad-hoc manner. The
inner parts are roles that the Actor may play. The predefined behaviour is re-
alised through a generic state machine, where the Actor can send and receive
predefined messages, e.g. request inner parts to play a certain role. The com-
munication between the Actor, its environment and its inner parts takes place
through ports (in Figure 69 called in and out) or actor addresses. The actor
address is made up of the actor name and the actor type. The actor name has to
be unique within the name scope (among actor instances) of a requested actor.

=g iiir==
Actor
| In out
| n ousk |
InrrAcorActo]

Figure 69: The Actor class, taken from [32]

Other actors can inherit and extend the base class Actor. They will then
inherit the generic behaviour and structure of the Actor class, making it
possible to define inner parts playing certain roles and extend the state
machine and functionality of the Actor class. The Actor class provides
management functionality that makes it possible to control the life cycle of
actors extending it. It knows the available roles its inner parts may play and
the rules for role invocation, role adding and role removal, see section D.2.3.

D.2.3 - The ActorFrame protocol

The ActorFrame protocol specifies how to request actors to play roles, interact to
perform a service or a play and release them from playing these roles. The idea
is that an actor can request other actors to initiate new roles to do a service, see
Figure 70. In section D.2.1, it was stated that services are realised as a number
of actors playing roles, each providing a part of the service functionality. The



ActorFrame protocol makes it possible to request a service actor that contains
inner parts (actors). The service actor requests its inner parts to play their
roles without the application’s knowledge of this. This makes it possible to
dynamically request roles when needed from the service actor’s point of view.
All an application needs to know is how to request the service actor.

:-{ ]
L IE:I -\ﬁc eRegquesl ,-*' E:]

L L
Ml Rioe e et

a
RokRecusst e
Rol=Regquest
Aiord Acforz Aciors Ariord Actors

Figure 70: Multiple role requests, taken from [32]

Appendix D.3 - The Web Ontology Language

The Web Ontology Language (OWL) makes it possible to describe and define
concepts with a rich set of operators. In addition, the logical model allows a
reasoner to be used to check the consistency of the statements and definitions
in the ontology and recognize which concepts fit under which definitions.

OWL comes in 3 sub-languages: OWL Lite, OWL-DL (Description logics) and
OWL-Full. OWL-Lite is the least expressive sub-language while OWL-Full
is the most expressive. OWL-DL falls in between OWL-Lite and OWL-Full.
Automated reasoning is offered by OWL-DL, making it possible to compute
the classification hierarchy and consistency checking. This is not possible with
OWL-Light (too simple) nor OWL-Full.

Below is a presentation of the most important concepts of OWL and it is based
on the contents of [52, 53].

D.3.1 - OWL individuals

Individuals represent entities in the domain of interest and can be seen as being
instances of classes. OWL does not use the unique name assumption, which
means that two different names can refer to the same individual. For example,
“now _time”, “oslo_time” and “trondheim-time” might all refer to the same in-
dividual. In OWL, it must be stated explicitly that two individuals are different
or else they might be the same as each other or they might be different to each

other.



D.3.2 - OWL Properties

Properties are binary (between two things) relations on individuals, e.g. two
individuals are linked together with a property. There are different types of
properties, and the most important ones are Object properties, Datatype prop-
erties and Functional properties. Object properties link an individual to another
individual, while Datatype properties link an individual to an XML Schema
Datatype value® or an RDF literal®. If an individual has a Functional prop-
erty, then there can be at most one individual that is related to the individual
through the property. This implies that, if the individual “A” is linked with the
individual “B” via the functional property “p” and “A” is linked via “p” to “C”,
then the individuals “B” and “C” are the same individual.

D.3.3 - OWL Classes

OWL classes are interpreted as sets that contain individuals and can be viewed
as a concrete representation of a concept. They are described using formal de-
scriptions that state precisely the requirements for an individual to be a member.
The classes may be organised into hierarchies of super- and sub-classes, where
the sub-classes specialise their superclasses. So when a class A has a superclass
B, all individuals of A are also individuals of B. Alternatively, the fact that an
individual is a member of the class A implies that it is also an individual of
the class B. These superclass-subclass (called a taxonomy) relationships can be
automatically computed by a reasoner when OWL-DL is used.

An OWL class can be defined to be disjoint from other OWL classes, making
it impossible for individuals of the first class to be individuals of the disjoint
classes. Again, in OWL, classes are assumed to overlap each other meaning
that one cannot assume that an individual is not a member of a particular class
simply because it has not been asserted to be a member of that class. This is
why it is necessary to make classes disjoint from each other, which ensures that
an individual of a class (A) that has been asserted to be disjoint from another
class (B) cannot be a member of the other class (B). In addition, classes can be
asserted to be intersections, unions and complements of each other to further
increase the accuracy of the descriptions.

D.3.4 - Describing and defining OWL classes

One of the most powerful features of OWL is the property restriction, which
can be divided into value constraints and cardinality constraints. In OWL,
properties are used to compose restrictions (that restrict individuals belonging
to a class). Properties may have a range and a domain, where individuals from
the domain are linked to individuals from the range.

8See http://www.w3.org/TR/xmlschema-2/ for information on this
9See http://wuw.w3.org/TR/Tdf- concepts/#section-Literals



The types of value constraints are owl:someValueFrom, owl:allValuesFrom and
owl:hasValue. A value constraint is used to restrict an individual via a prop-
erty to some other individual. For instance the class “Child” could be linked
via the property “hasParent” to the class “Physician” through the value con-
straint owl:someValuesFrom. This restriction describes the set, or the class, of
individuals that have at least one parent that is an individual from the class
Physician. If the value constraint was owl:allValuesFrom and the range was the
class “Human”, then the restriction would describe the set, or the class, of indi-
viduals that have parents that only are individuals from the class Human. If the
value constraint owl:hasValue was to be used, then the range of the property
would have to be an individual. For instance, if the expression was the same
except that the value constraint was owl:hasValue and the range was the indi-
vidual “George Bush”, the restriction would describe the set of , or the class, of
individuals that have the individual referred to as George Bush as their parent.

The cardinality constraints are owl:maxCardinality, owl:minCardinality and
owl:cardinality, and can be used to describe the class of individuals that (re-
spectively) have at least, at most and ezactly a specified number of relationships
(properties) with other individuals or datatype values.

Classes may be described using necessary and/or sufficient conditions (restric-
tions). Necessary conditions can be read as “if something is a member of this
class then it is necessary to fulfil these conditions”. With necessary conditions
alone, it is not possible to say “if something fulfils these conditions, then it must
be a member of this class”. With sufficient conditions, this is possible. Thus, if
a class is described using at least set of necessary and sufficient conditions, it is
considered to be defined. If it only is described using necessary restrictions, it
is not considered to be defined (denoted as primitive in Protégé-OWL).

Appendix D.4 - The Protégé-OWL API

To develop the OWL ontology, Protégé version 3.1'° was used as an editor. It
contains the Protégé-OWL plug-in that facilitates the creation of OWL ontolo-
gies using their implementation of OWL. In addition, the RACER!! reasoner
was used to check the consistency and classify the taxonomy of the ontology.

Figure 71 shows a UML model representing the most important interfaces that
are used in the implementation of the CBCC application. They are all contained
in the model package of the Protégé-OWL API, and can be obtained from the
JenaOWLModel (see section 5.2.3) that is used in the demonstrator.

10 Available at http://protege.stanford.edu
1 Available at http://wuw.sts.tu-harburg.de/"r.f.moeller/racer



RDFResource

7y
] ]

OWLCardinalityBase

OWLQuantifierRestriction | |OWLHasValue

RDFIndividual RDFSClass RDFProperty
OWLIndividual OWLClass RDFSNamedClass OWLProperty
Iy r 3 Fy
OWLNamedClass
I
OWLAnonymousClass | |[OWLObjectProperty| |OWLDatatypeProperty
OWLRestriction

Figure 71: UML model of the most central interfaces used




