
June 2006
Leif Arne Rønningen, ITEM

Master of Science in Communication Technology
Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Telematics

Composing distributed 3D scenes

Stein Olav Ness

Problem Description
The Distributed Multimedia Plays (DMP) System Architecture provides combined adaptive scene
resolution and traffic control in packet networks, see http://www.item.ntnu.no/~leifarne.

This project focuses on adaptive scene composition declaration, specification and realisation, and
comprises the following:

 * Review of 3D multiview, autostereoscopic object oriented audiovisual scenes theory and
practice
 * Propose extensions to SMIL and SIP to handle adaptive composition of scenes consisting of
distributed objects
 * Propose and demonstrate extensions to SMIL enabling 3D, transparency and custom shapes

Assignment given: 16. January 2006
Supervisor: Leif Arne Rønningen, ITEM

Composing Distributed 3D Scenes

Preface

The Master’s Thesis concludes the 10th and final term of the Master of Science ed-
ucation at the Norwegian University of Science and Technology, NTNU. A Master’s
Thesis is an individual research work counting as 30 ECTS Credits with a normal
duration of 20 weeks.

I’ll use this opportunity to thank my supervisor, professor Leif Arne Rønningen at
Department of Telematics for supervision and guidance throughout the work with this
Master’s Thesis.

Trondheim, June 12th, 2006

STEIN OLAV NESS
Student

i

Composing Distributed 3D Scenes

Contents

Preface i

Contents iii

List of Figures xi

List of Tables xvii

Abbreviations xix

Abstract xxiii

1 Introduction 1

1.1 Background . 1

1.2 Limits of the Work . 1

1.3 Other Works . 2

1.4 Software Tools . 2

1.5 Sources of Material . 2

1.5.1 Wikipedia . 2

1.5.2 Original Specifications and Documentations 2

1.5.3 IETF Standards . 3

1.6 Structure of the Thesis . 4

2 Technology Background 5

2.1 SIP . 5

2.1.1 SIP Architecture . 6

iii

Composing Distributed 3D Scenes

2.1.2 SIP Sessions . 7

2.1.3 SIP Message Method . 9

2.2 SDP . 9

2.3 SIMPLE . 10

2.4 MSRP . 11

2.5 XMPP: The Jabber Project . 12

2.6 XMPP vs. SIMPLE . 13

2.7 Transport Layer Protocols . 15

2.7.1 UDP . 15

2.7.2 TCP . 16

2.8 RTP . 16

2.8.1 RTPMAP . 16

2.9 MIME . 17

2.10 Ambulant Player . 17

2.10.1 Ambulant Design Overview 19

2.10.2 Ambulant Player Interfaces 19

2.11 Gaim . 20

2.11.1 Gaim SIP/SIMPLE Protocol Plugin 21

2.12 XML . 21

2.13 XCAP . 22

2.13.1 XPath . 23

2.14 Scene Graph . 23

2.15 Binary Scene Descriptions . 25

2.16 Section Summary . 25

iv

Composing Distributed 3D Scenes

3 Review of 3D Multiview, Autostereoscopic Object Oriented Audiovisual
Scenes Theory and Practice 27

3.1 Writing Reviews . 27

3.2 X3D . 28

3.2.1 X3D Theory . 28

3.2.2 X3D Practice . 30

3.2.3 X3D Summary . 31

3.3 MPEG-4 Interactive . 31

3.3.1 MPEG-4 Interactive Theory 31

3.3.2 MPEG-4 Interactive Practice 32

3.3.3 MPEG-4 Interactive Summary 32

3.4 SVG . 32

3.4.1 SVG Theory . 32

3.4.2 SVG Practice . 33

3.4.3 SVG Summary . 34

3.5 NVSG . 34

3.5.1 NVSG Theory . 34

3.5.2 NVSG Practice . 35

3.5.3 NVSG Summary . 36

3.6 OSG . 36

3.6.1 OSG Theory . 37

3.6.2 OSG Practice . 37

3.6.3 OSG Summary . 37

3.7 SMIL . 38

v

Composing Distributed 3D Scenes

3.7.1 SMIL Theory . 38

3.7.2 SMIL Practice . 41

3.7.3 SMIL Summary . 41

3.8 LASeR . 41

3.8.1 LASeR Theory . 41

3.8.2 LASeR Practice . 42

3.8.3 LASeR Summary . 42

3.9 Section Summary . 43

3.9.1 Comparison Chart . 43

4 3D, Transparency and Custom Shapes 45

4.1 Embedding and Referencing from SMIL 45

4.1.1 Embedding SVG and X3D Inline 46

4.1.2 Demonstration of Embedded X3D and SVG 47

4.1.3 Referencing External SVG/X3D 49

4.1.4 Demonstration of Externally Referenced Documents 50

4.2 SVG Custom Shapes . 51

4.2.1 Demonstration of Custom Shapes in SMIL+SVG 53

4.3 Transparency . 57

4.3.1 Transparency Theory . 57

4.3.2 Transparency in SMIL . 58

4.3.3 Transparency in RealPlayer 59

4.3.4 Transparency in X3D . 59

4.3.5 Transparency With SVG . 60

4.4 3D with X3D . 62

vi

Composing Distributed 3D Scenes

4.4.1 X3D Shapes and Textures 62

4.4.2 Video Stream Played on 3D Object 64

4.5 Section Summary . 65

5 Composition of Distributed Scenes 67

5.1 Designing What? . 67

5.1.1 User Interaction Use Case Diagrams 69

5.1.2 System Parts Interaction Use Case Diagrams 71

5.1.3 Deployment Diagram . 72

5.1.4 Sequence Diagram . 73

5.2 Requirement Specification . 74

5.3 How to Compose Distributed Scenes? 75

5.3.1 SMIL Over MSRP . 76

5.3.2 SMIL Over Gaim . 79

5.3.3 Object Descriptions . 81

5.3.4 Multiparty Sessions . 82

5.3.5 Auto-stereoscopic 3D View 84

5.3.6 Adaptive Datarate of Objects in a Scene 84

5.3.7 Ambulant Playing SMIL Documents 85

5.4 Conformance to Requirement Specification 87

5.5 Section Summary . 88

6 Discussion 89

6.1 Protocols . 89

6.2 XML or Binary Scene Descriptions 89

vii

Composing Distributed 3D Scenes

6.3 Scene Handling . 90

6.4 Different Ways of Writing Scenes 90

6.5 Lack of Present Support . 91

7 Conclusion 93

7.1 Future Works . 94

References 95

A Appendix: SMIL, SVG and X3D Documents I

A.1 SVG Documents . I

A.1.1 Persona.svg . I

A.1.2 Personb.svg . II

A.1.3 Window.svg . III

A.2 X3D Documents . IV

A.2.1 Boxtable.x3d . IV

A.3 Pictures Used in Documents . V

A.4 SMIL documents . VI

A.4.1 Embeddedinline.smil . VI

A.4.2 Referenced.smil . IX

B Appendix: Ambulant Player XIII

B.1 Ambulant Player Interfaces . XIII

B.2 Ambulant Player Objects . XIII

B.3 UML Diagrams . XIV

C Appendix: Namespaces XVII

viii

Composing Distributed 3D Scenes

C.1 Namespaces . XVII

D Appendix: Gaim XIX

D.1 About Gaim . XIX

D.2 Working Functionality . XIX

E Appendix: SIP XXI

E.1 SIP Header Fields . XXI

F Appendix: SIMPLE XXIII

G Appendix: Software Tools XXV

H Appendix: SOSIMPLE XXVII

H.0.1 Keywords About SOSIMPLE XXVII

H.0.2 SOSIMPLE Architecture . XXVII

H.0.3 Future of SOSIMPLE . XXVIII

H.0.4 SOSIMPLE Client . XXVIII

H.1 Operations . XXIX

H.1.1 Join . XXIX

H.1.2 Locate Another Node . XXX

I Appendix: MPEG-4 Interactive XXXIII

I.1 IndexedFaceSet . XXXIII

J Appendix: Directed Acyclic Graph XXXV

K Appendix: X3D Nodes XXXVII

ix

Composing Distributed 3D Scenes

K.1 Abstract Nodes . XXXVII

K.1.1 X3DTextureCoordinateNode XXXVII

K.1.2 X3DTextureNode . XXXVII

K.1.3 X3DTexture2DNode . XXXVII

K.2 Texture Nodes . XXXVII

K.2.1 ImageTexture . XXXVIII

K.2.2 MovieTexture . XXXVIII

L Appendix: XCAP XXXIX

L.1 XCAP Client Operations . XXXIX

M Appendix: SCTP XLI

N Appendix: Attached Files XLIII

x

Composing Distributed 3D Scenes

List of Figures

1 SIP architecture . 7

2 SIP session establishment . 8

3 SDP format . 9

4 SIMPLE architecture . 10

5 JABBER Software Foundation logo 12

6 XMPP architecture . 12

7 OSI model . 15

8 Rtpmap is a SMIL element . 16

9 SMIL Streaming Media Object Module 17

10 Ambulant Player . 18

11 Ambulant overall structure diagram 20

12 Gaim logo and client (version 2.0.0beta3) 21

13 XPath Referenced tag in a SMIL document 23

14 Scene graph tree . 24

15 X3D logo . 28

16 X3D baseline profiles . 30

17 W3C logo . 32

18 NVIDIA’s and NVSG’s logos . 34

19 NVSG viewer application . 35

20 NVSG stereo camera . 36

21 OSG logo . 36

22 Planar SD170, Matrox Parhelia Precision and polarized glasses 38

23 WC3’s SMIL logo . 38

xi

Composing Distributed 3D Scenes

24 SMIL template . 39

25 LASeR workflow . 42

26 Sketch of the SMIL document with SVG and X3D 45

27 SVG and X3D embedded in SMIL 46

28 Embedded SVG document phrase 47

29 Embedded documents . 48

30 External SVG and X3D referenced from SMIL 49

31 Referenced SVG document . 49

32 References to external documents 50

33 Simple polygon example . 51

34 SVG file of the simple polygon example 51

35 Square image . 52

36 SVG file with ClipPath . 52

37 ClipPath result . 53

38 Document structure . 54

39 Result sketch . 54

40 Smilbase.smil . 55

41 Svgshapes.svg . 56

42 Transparency using the z-index . 58

43 Z-index . 58

44 RealPlayer . 59

45 A MovieTexture is constructed from abstract nodes 60

46 Transparency/opacity . 61

47 SVG file with ClipPath and opacity 61

xii

Composing Distributed 3D Scenes

48 A 70% transparent image of a map upon a blue filled circle 62

49 X3D sphere with ImageTexture . 63

50 X3D <Box/> and <Sphere/> with test.png as texture 63

51 X3D box with as MovieTexture . 64

52 X3D box played in Octaga Player 65

53 Initial SMIL document exchange . 68

54 Media streams . 68

55 Use case: Join, leave, invite . 69

56 Use case: Initiate, participate and close a session 70

57 Use case: Change location, change shape, create objects 70

58 Use case: Media server . 71

59 Use case: SMIL player . 71

60 Use case: IM client . 72

61 Use case: Scene synthesizer . 72

62 Deployment diagram . 73

63 Sequence diagram: User loads scene and invites another participant . 74

64 Protocol Layer Stack . 76

65 SDP content . 77

66 Left@participant.com sending an "offer" 77

67 Right@participant.com sending an "answer" back to left@participant.com 78

68 SIP/SDP ACK . 78

69 MSRP SEND . 78

70 MSRP OK . 78

71 Gaim: Sending a message . 80

xiii

Composing Distributed 3D Scenes

72 Region element modification . 81

73 IM client handles the document modification 82

74 New address . 82

75 Participant 1 sending Object Descriptions 83

76 Without rtpmap: One quality level 85

77 With rtpmap: I.e. three quality levels 85

78 Payload vs. available bandwidth . 86

79 Persona.svg . I

80 Personb.svg . II

81 Window.svg . III

82 Boxtable.x3d . IV

83 Referenced images . V

84 UML diagram for player . XIV

85 UML diagram XML parser . XV

86 Namespace . XVII

87 Namespace added to SMIL . XVII

88 Node joining the overlay . XXIX

89 Node allocating another node and starting communication XXX

90 Directed acyclic graph . XXXV

91 X3DTextureCoordinateNode . XXXVII

92 X3DTextureNode . XXXVII

93 X3DTexture2DNode . XXXVII

94 ImageTexture . XXXVIII

95 MovieTexture . XXXVIII

xiv

Composing Distributed 3D Scenes

96 References 1/3 . XLIII

97 References 2/3 . XLIV

98 References 3/3 . XLV

99 Source code . XLV

xv

Composing Distributed 3D Scenes

List of Tables

1 XMPP vs. SIMPLE . 14

2 SVG application areas . 33

3 Review comparison chart . 44

4 RealPlayer’s transparency features 59

5 Embeddedinline.smil . IX

6 Referenced.smil . XI

7 SIP header fields . XXI

xvii

Composing Distributed 3D Scenes

Abbreviations

2D Two-dimensional
3D Three-dimensional
3GPP Third Generation Partnership Project
API Application Programming Interface
CAD Computer-aided design
Call-ID Call Identification
CSeq Command Sequence
DHT Distributed Hash Table
DMP Distributed Multimedia Plays
DNS Domain Name System
DOM Document Object Model
DTD Data Type Definition
DVD Digital Versatile Disc
ETSI European Telecommunications Standards Institute
GUI Graphical User Interface
HTML HyperText Markup Language
HTTP HyperText Transfer Protocol
IETF Internet Engineering Task Force
I/O Input/output
IM Instant Messaging
IMTC Internet Multimedia Telecommunications Consortium
IP Internet Protocol
ISO International Organization for Standardization
LASeR Lightweight Scene Representation
LCD Liquid crystal display
Mbone Internet Multicast Backbone
MMS Multimedia Message Service
MMUSIC Multiparty Multimedia Session Control
MPEG Moving Picture Experts Group
MSRP Message Session Relay Protocol

xix

Composing Distributed 3D Scenes

MTU Message Transfer Unit
NVSG Nvidia Scene Graph
OpenGL Open Graphics Library
OSG Open Scene Graph
P2P Peer to Peer
PDU Packet Data Unit
PNG Portable Network Graphics
PSTN Public Switched Telephone Network
RFC Request For Comment
RGB Red Green Blue
RGBA Red Green Blue Alpha
RTCP Real-time Transport Control Protocol
RTP Real-time Transport Protocol
RTSP Real-time Streaming Protocol
SAP Session Announcement Protocol
SCTP Stream Control Transmission Protocol
SDP Session Description Protocol
SIMPLE SIP for Instant Messaging and Presence Leveraging Extensions
SIP Session Initiation Protocol
SIPS SIP with Security
SMIL Synchronized Multimedia Integration Language
SMTP Simple Mail Transfer Protocol
SOSIMPLE Self Organizing SIMPLE
SS7 Signaling System no. 7
STD Standard
SVCD Super Video Compact Disc
SVG Scalable Vector Graphics
SYMM Synchronized Multimedia
TIPHON Telecommunications and Internet Protocol Harmonization Over Networks
UAC User Agent Client
UAS User Agent Server

xx

Composing Distributed 3D Scenes

UDP User Datagram Protocol
URI Uniform Resource Identifier
URL Uniform Resource Locator
VCD Video Compact Disk
VoIP Voice over Internet Protocol
VRML Virtual Reality Modeling Language
W3C World Wide Web Consortium
X3D Extensible 3D
XCAP XML Configuration Access Protocol
XHTML Extensible HyperText Markup Language
XML Extensible Markup Language
xmlns Extensible Markup Language Namespace
XPath XML Path Language
ZIP Compression File Format

xxi

Composing Distributed 3D Scenes

Abstract

The frontpage description identifies the three main issues answered by this Master’s
Thesis. First a textual review of different 3D scene theories and practices, languages
and standards (X3D, MPEG-4 Interactive, SVG, NVSG, OSG, SMIL and LASeR).
Based on information obtained from documentations and other sources, their respec-
tive application areas, weaknesses and strengths and other properties are first addressed
separately and then compared in a comparison chart. The second issue propose exten-
sions to SMIL and SIP to handle adaptive composition of distributed scenes with dis-
tributed objects (objects may be i.e. video streams of human participants or furniture).
Design goals of the system are established, requirements of distributed scene systems
are identified and various models are presented. The third issue addresses proposals
and demonstrates SMIL extensions allowing 3D, transparency and custom shapes in
SMIL scenes. The goals of this part are to define methods for inclusion of SVG and
X3D features in SMIL and to present methods used by X3D and SVG to allow 3D,
transparency and custom shapes in their respective document environments.

To establish a knowledge base, a separate section describes background technologies,
carries out comparisons between the competing application layer protocols XMPP and
SIP, presents the session layer protocol RTP used to transport real-time media streams
and the underlying transport layer protocols: TCP and UDP, as well as mechanisms,
languages and theories used to send and represent data/documents.

The review section presents theories for representation and creation of 3D scenes, as
well as theories that, despite no 3D options, may be teamed with other theories, allow-
ing rich presentations of scenes. The conclusion deducted from the reviewed theories
is a comparison chart presenting equalities and differences, application areas, etc.

SVG and X3D techniques may be used to represent 3D, transparent and custom shaped
objects, these techniques are presented in a separate section and may be useful to team
with SMIL’s layout functionality when creating distributed 3D scenes. This section
also demonstrates practical use of a number of SVG and X3D features. SVG and
X3D may be embedded or referenced from SMIL documents to exploit their respective
options when creating scenes with SMIL.

A proposal for exchange of SMIL scenes and object descriptions are presented, using
MSRP sessions established with help from SDP/SIP over TCP. MSRP messages may

xxiii

Composing Distributed 3D Scenes

carry MIME content, i.e. SMIL, SVG and X3D documents, over P2P sessions be-
tween peers (the participants of distributed 3D scenes). TCP is a reliable protocol thus
introducing potential problems due to real-time requirements. These problems may be
solved by developing a set of rules addressing legal methods of updating scenes and
exchanging scene descriptions (further work). The rtpmap element allows dynamic
encoding of media streams (restricted to a set of predefined levels) included and de-
scribed from SMIL documents, removing some burdens introduced if SDP used to
describe media streams. Ambulant Player (a SMIL player) and Gaim (instant mes-
sages) are demonstrated to show how two existing applications play and exchange
SMIL documents, despite these two applications’ lack of support of hence SVG, X3D
and real P2P sessions.

The discussion and conclusion parts of this Master’s Thesis discusses the choice of pro-
tocols, binary compared to XML scene representations, and an alternative "hub-like"
approach of scene description handling in contradict to the all-to-all/P2P approach
described earlier. Problems caused by lack of present support, i.e. when SMIL docu-
ments are containing referenced or embedded SVG or X3D documents, are addressed,
and at last proposals for future works.

xxiv

Composing Distributed 3D Scenes

1 Introduction

The first section of this Master’s Thesis presents the background , limits of the work,
other work, criticism of the most important sources used to obtain information, soft-
ware tools and the structure of the thesis.

1.1 Background

The areas of this Master’s Thesis have their foundation as potential parts of Distributed
Multimedia Plays Virtual Dinner [1], a research project initiated by Leif Arne Røn-
ningen at the Department of Telematics at the Norwegian University of Science and
Technology. How to use SMIL and SIP to create and distribute scene descriptions
rises many questions. This Master’s Thesis will try to answer and sketch solutions to
some of these questions and present ideas of how to realize them. "Distributed scenes"
is an expression including the issues of creating scenes consisting of media streams
from participants located at different (geographical) locations, and how to distribute a
mutual scene description to the participants in a scene.

1.2 Limits of the Work

The Master’s Thesis focus at scene description and protocols used to exchange scene
descriptions. There is no focus on how to handle the storage of scenes at different
locations or how participants interact through GUI functionality. To build a complete
application implementing all the functionality of such a distributed system (including
transparency, 3D and custom shaped objects) would be very labor-intensive and take
far more time than available. No players or applications supports the combinations
of document standards introduced in this Master’s Thesis at the present point of time.
Instead of creating a complete demonstrator application, most of the functionality will
be demonstrated separately and in a smaller scale using the principle of divide and
conquer. Security issues like authorization and privacy are not covered.

1

Composing Distributed 3D Scenes

1.3 Other Works

During the work with this Master’s Thesis no other work with precisely the same goals
where discovered. Some of the aspects, like extending SIP with MSRP to get a fully
P2P instant message session, are of course handled by others, but the application areas
of these are not fully overlapping the main ideas of this Master’s Thesis which seems
to be unique.

1.4 Software Tools

The Master’s Thesis are written in LATEX. Editing and examining different types of
documents and code are done using a simple text editor. Testing SMIL and SVG
documents are carried out using several different applications. The full list of software
and applications are listed in Appendix G.

1.5 Sources of Material

A large number of sources are used during the work with this Master’s Thesis. The
sources are (with no exceptions) listed in the Reference section, and the URL sources
are also made available offline (as attached files, see Appendix N). Critics of the most
often referenced sources are carried out below.

1.5.1 Wikipedia

Wikipedia is used to obtain more information about words or a topics than a regular
dictionary or encyclopedia can tell. Wikipedia is only used to get information about
"simple" topics where the political ideas and ideology of the article writer does not
color the article in any way, and the accuracy of the article is undisputable.

1.5.2 Original Specifications and Documentations

Original specifications and documentations are first hand documents written by the
creators and inventors of a specific subject. There are differences when it comes to

2

Composing Distributed 3D Scenes

the level of detail in the specifications, but the majority of the specifications are well
written and the content of the specifications and/or documentations reflect the subject
described in a fair way as the writers most often want the subject to be described in a
representative and objective manner.

1.5.3 IETF Standards

The most important sources of this Master’s Thesis, IETF RFCs need their own section
for explanation. It is important to know the difference between the IETF standards,
how the IETF standardization process are carried out and the types of papers published
by IETF. The general subjects of the IETF standards are protocols and mechanisms of
the Internet [2].

"At each stage of the standardization process, a specification is repeatedly
discussed and its merits debated in open meetings and/or public electronic
mailing lists, and it is made available for review via world-wide on-line
directories."

RFC2026 [2]

All the documents passing through the IETF standardization process are publicly avail-
able as "Request for Comments (RFCs)".

• Proposed Standard: First level, generally stable but still immature and may be
changed. Implementation is not required at this level.

• Draft Standard: Second level, well understood and quite stable. At least two
independent implementations exist, and these implementations should be inter
operable.

• Internet Standard: Technically mature, well implemented. A standard also get
a STD number in the Standards Track (still keeping the RFC number).

• Experimental: Not on the standards track, a part of some research.

3

Composing Distributed 3D Scenes

• Informational: Not on the standards track, general information for the Internet
community.

• Historic: Not on the standards track, a specification that has been superseded
by a more recent specification.

RFC2026 [2]

The Master’s Thesis incorporate protocols and protocol proposals having reached dif-
ferent levels of the IETF standardization process, or even not become a Proposed Stan-
dard yet.

1.6 Structure of the Thesis

After the formal sections of the thesis a number of important background technologies
employed in the work are presented to give the reader a certain knowledge base. A
review study of different 3D multiview, autostereoscopic object oriented audiovisual
scenes theory and practice are then carried out.

The following sections address the questions from the description and the additional
questions respectively. Theories and demonstrations of SMIL (with extensions allow-
ing 3D, transparency and custom shapes) techniques enabling more advanced and exit-
ing scenes than scenes composed using SMIL only are presented in Section 4. The next
section (Composition of Distributed Scenes) address the requirement specifications of
a system and how it is modeled.

The Discussion part discuss how different approaches towards solutions are taken,
alternative approaches, if the proposed system conform with the requirement speci-
fications presented in the previous section, as well as experience gained concerning
issues worked with in the Master’s Thesis.

4

Composing Distributed 3D Scenes

2 Technology Background

This section describe the fundamentals of protocols, standards, languages and software
used or considered used in this Master’s Thesis. The task of exchanging SMIL docu-
ments apparently have many issues quite similar to instant messaging situations where
people are writing text messages to each other, the main difference is that commu-
nicating applications shall exchange the SMIL documents and interpret the received
documents using parsers. The overall delays and latencies introduced by the network
have to be short, in fact as close to real-time as possible.

This section look deeper into, compare and discuss two IETF projects for instant mes-
saging purposes: JABBER/XMPP and SIP/SIMPLE, and discuss which of them is the
most suitable protocol carrying SMIL documents between scene participants. Proto-
cols are discussed, two software clients: Gaim and Ambulant, the XML language and
short introductions to scene graph theory and binary encoding.

2.1 SIP

To exchange SMIL documents between the participants an IM approach may give a
well defined suite of protocols and methods. There are currently two protocols being
developed by IETF supporting the services of instant messaging and presence aware-
ness. The instant messaging version of SIP is shortened SIMPLE (Session Initiation
Protocol for Instant Messaging and Presence Leveraging Extensions). There is also
work on a SOSIMPLE protocol, a completely distributed variant of SIMPLE without
any servers at all. The Jabber Software Foundation has developed the XMPP (eXten-
sible Messaging and Presence Protocol).

SIP is a signaling protocol used to establish communication sessions between two or
more endpoints. These endpoints could be IP-telephones, IM clients or other applica-
tions [3]. Communication sessions that may include various types of data, multimedia,
etc [4]. SIP is a text based protocol, similar to HTTP and SMTP.

"SIP supports five facets of establishing and terminating multimedia com-
munications:

5

Composing Distributed 3D Scenes

• "User location: Determination of the end system to be used for com-
munication.

• User availability: Determination of the willingness of the called
party to engage in communications.

• User capabilities: Determination of the media and media parame-
ters to be used.

• Session setup: "Ringing", establishment of session parameters at
both called and calling party.

• Session management: Including transfer and termination of ses-
sions, modifying session parameters, and invoking services."

Javvin network management and security [5]

SIP was created by IETF’s MMUSIC (Multiparty Multimedia Session Control) work-
ing group in 1996 and is adopted and recognized as a de-facto standard by many com-
panies and organizations, naming 3GPP, IMTC, ETSI TIPHON. SIP is a common pro-
tocol used in VoIP and IP telephony. SIP initiates, modifies and terminates a session
and provides services present in PSTN and SS7. SIP behaves as a transporter for the
Session Description Protocol, SDP. SDP describes the media content of the session,
i.e. the kind of codecs and IP ports that are used.

2.1.1 SIP Architecture

In addition to the hardware or software endpoints SIP also requires "Proxies" and "Reg-
istrars" to work. The SIP architecture is described in Figure 1.

• Proxy Server: Routes requests to the user, authenticates and authorizes users
for services, implements call-routing policies and provides some features to the
users.

• Registrar: SIP provides a registration service that allows users to upload their
current locations to a register for use by proxy servers.

6

Composing Distributed 3D Scenes

• Redirect Server: Redirects the request back to the server in case the request
does not reach the recipient. In case recipient have moved temporarily or per-
manently.

• Location Server: The Location Server handles the addresses registered to the
Registrar.

• User Agent Client: The UAC represents the end system who sends requests.

• User Agent Server: The UAS represents the end system who responds to the
requests from the UAC.

Figure 1: SIP architecture

The user agent clients acts and sends a request after a stimulus from a user (the user
may for instance click a mouse button). The UAS then receives the request and re-
sponds to it. The message passes a number of proxies on the way from the UAC to
the UAS. The request from the UAC must at least contain these header fields: To,
From, CSeq, Call-ID, Max-Forwards, and Via. These header fields are
mandatory in all SIP requests.

2.1.2 SIP Sessions

• "INVITE: Invites a user to a call.

• ACK: Acknowledgment is used to facilitate reliable message ex-
change for INVITEs.

7

Composing Distributed 3D Scenes

• BYE: Terminates a connection between users.

• CANCEL: Terminates a request, or search, for a user. It is used if
a client sends an INVITE and then changes its decision to call the
recipient.

• OPTIONS: Solicits information about a server’s capabilities.

• REGISTER: Registers a user’s current location.

• INFO: Used for mid-session signaling."

e-Multimedia [6]

Figure 2: SIP session establishment

The "Media Session" only create a sense of a session in the case of i.e. VoIP or RTP
transfer. Transfer of IM messages or SMIL documents are not convenient because

8

Composing Distributed 3D Scenes

there is only a sense of an imaginative session where all the messages an fact stand
completely alone. Each message require setup and tear down for itself, meaning all
the messages stand alone. This is mostly suitable for paging services (sending one
stand alone message) and similar. Each message represent a complete SIP transaction,
and there is no sense of each message as a part of a whole/a session.

2.1.3 SIP Message Method

The Message Method is an extension to SIP allowing transfer of instant messages, it
inherits SIP, thus SIP’s request routing and security features [7]. The Message Method
carry the content in form of MIME body parts. Exchanging messages does not create a
dialog, each message still stands alone and there are no interconnection between mes-
sages. Each message has to pass one or more proxies following the SIP signaling path,
this implicates a rather long time for passing the message. Desired performance of a
real-time distributed system may be difficult to satisfy using the SIP method message,
that is why SIMPLE is taken into consideration.

2.2 SDP

The Session Description Protocol (SDP) describes "real-time multimedia session de-
scription purposes" [8]. SDP or the Session Description Protocol is an Internet Stan-
dard developed by IETF’s Network Working Group. The purpose of SDP is to convey
advertisement of conference sessions and to pass communication setup information to
participants of a communication session. SDP is a protocol which subject is to de-
scribe sessions, it is not a transport protocol. SDP is based on a textual description.
The recipient of the SDP message decides to participate in the session after making a
decision upon the containments of the SDP message. SDP may use different transport
protocols, including SIP [8]. The format of a SDP message are shown in Figure 3.

m=<media> <port> <protocol> <format list>

Figure 3: SDP format
[9]

9

Composing Distributed 3D Scenes

2.3 SIMPLE

SIMPLE solves the issue of the bad real-time performance of message delivery intro-
duced by message paths following the signaling path. In the SIMPLE protocol, content
(e.g. video streams) flow peer to peer and only the signaling travel through proxies.
Compared to SIMPLE, SIP offer no special message session implicating that text mes-
sages also follow the signaling path. A SIMPLE message session is treated just like
any other type of multimedia session. The sender and the receiver negotiates a session
using the same SIP mechanisms as when a multimedia session is negotiated. When the
session is initiated the messages with MIME content (MIME is described in Section
2.9) travel directly from the sender to the receiver without passing through a number
of proxies. This will solve the issue of bad real-time performance using the original
SIP Method Message (Section 2.1.3). A result achieved using SIMPLE is a message
session treated just like any media stream. If the MIME type indicates for instance
content with SMIL documents, this media stream can be considered as a SMIL stream
(one independent media stream in each direction between two parts) [10].

Figure 4: SIMPLE architecture

SIMPLE messages follow the same route as the RTP streams between the user agents
and the user clients (peer to peer on Figure 4). The most popular implementation of
SIMPLE today is perhaps Microsoft Windows Messenger.

A future alternative to SIMPLE may be SOSIMPLE. SOSIMPLE means Self Organiz-
ing SIMPLE, the whole acronym is written "Self Organizing Session Initiation Proto-
col for Instant Messaging and Presence Leveraging Extensions". SOSIMPLE is a fully

10

Composing Distributed 3D Scenes

distributed 3D scene-system with no central entities, all the tasks are taken care of by
the peers in the network. Having no central servers introduce the SOSIMPLE protocol
version of SIP as an option and may become a realistic alternative in the future when
the standard is ready. SOSIMPLE is described in Appendix H.

2.4 MSRP

"MSRP (Message Sessions Relay Protocol) is a protocol for near-real-
time, peer-to-peer exchange of binary content without intermediaries, which
is designed to be signaled using a separate rendezvous protocol such as
SIP."

Relay Extensions for Message Sessions Relay Protocol (MSRP) [11]

MSRP is a session-oriented instant message transport protocol developed by the IETF
Simple Working group [9]. The Message Method of SIP introduces large overhead and
poor real-time performance, and XMPP (despite lower overhead) also introduce poor
performance as message travel through intervening servers. MSRP solve some of these
problems and works in a similar fashion to RTP or other media streams, delivering
message streams between clients. MSRP is not a stand alone protocol, but works
together with i.e. SIP.

"MSRP sessions are managed using the Session Description Protocol (SDP)
offer/answer model carried by a signaling protocol such as the Session Ini-
tiation Protocol (SIP)."

The Message Session Relay Protocol [9]

The alternative to MSRP, using SIP to pass SMIL documents, makes all the mes-
sages traverse through intervening servers. In contradict, exchanging several SMIL
documents over MSRP (the whole MSRP session) will need fewer SIP requests than
a SMIL document portioned and send over a regular SIP network. The intervening
servers are also removed the burden of all the signaling, client to client operations are
faster and security are easier to apply.

11

Composing Distributed 3D Scenes

2.5 XMPP: The Jabber Project

Figure 5: JABBER Software Foundation logo

The Extensible Messaging and Presence protocol (XMPP) is a protocol for streaming
and exchanging XML data between network entities [12].

"The Extensible Messaging and Presence Protocol (XMPP) is an open Ex-
tensible Markup Language [XML] protocol for near-real-time messaging,
presence, and request-response services."

RFC3920 [12]

XMPP has a client-server architecture (see Figure 6) where clients access servers over
TCP connections. The server manages session(s) and handles the XML streams be-
tween clients. Information may be any kind of text messages or XML documents. All
the messages in a session must traverse through intervening servers.

Figure 6: XMPP architecture

"XMPP uses XML namespaces to extend the stanzas for the purpose of
providing additional functionality."

12

Composing Distributed 3D Scenes

RFC3921 [13]

IETF has approved XMPP, meaning it is a robust standard upon which developers
can rely, and be confident that it won’t change in the nearest future. There are also
gateways to SIP/SIMPLE which enables transport between these two (different) IETF
standards. XMPP may suit a number of distributed systems exchanging XML data
well, but as Figure 6 shows, all messages have to pass through a number servers along
the path from the sender to the receiver, introducing significant delay and results in
poor real-time performance.

2.6 XMPP vs. SIMPLE

Basically, SIP negotiates, manages and terminates media sessions. These media ses-
sions may be comprised by i.e. RTP streams. SIMPLE provides extensions to SIP
giving the possibilities of IM and presence services. The initial message goes via a
server, but later all messages are transported peer-to-peer. SIMPLE is not a particular
protocol, but an extension to SIP. XMPP has been stable since 1999 and the IETF ap-
proval in 2004 makes it the first IETF-approved messaging and presence standard. The
protocols operates by negotiating an XML stream between a client and a server. Once
the XML stream is established and authenticated the user may send XML fragments
over the XML stream to operate IM and presence data [14].

13

Composing Distributed 3D Scenes

Name Jabber/XMPP SIP/SIMPLE
Source code Open Open
Transport XML data transport Signaling and media

streams
Organization Jabber Software Foundation SIP for Instant Messaging
behind and Presence Leveraging

Extensions Working
Group

Standardization IETF IETF
organ
Focus of IM, presence Mobile phone, PDA,
services IP telephone, IM,

general purposes
Communication Slower, via server Real-time, P2P,

Signaling via server(s)
Size of Unlimited Undefined, portioned
transported data into chunks
Need of bandwidth Low Low when session is

established
Extensible Yes Yes
IM functionality Chat, contact list, group chat, Chat session, MIME

file transfer, contact sharing content
Underlying TCP TCP or UDP
protocols
Application May be extended across SIP Clients

applications
Message transport Through server(s) Through server(s), P2P

with MSRP
Message size No limit No limit
Companies behind Hewlett Packard, Intel, IBM, Microsoft, Novell,

Sony, Hitachi Sun Microsystems
Application Mostly in the Big vendors
developers open source community
Status Finished Under development
Addresses User@host Flexible

(sip:user@host.domain)

Table 1: XMPP vs. SIMPLE
[14], [15]

14

Composing Distributed 3D Scenes

A conclusion deduced from comparing XMPP and SIP/SIMPLE is that real-time de-
mands in a distributed multimedia system requires a peer-to-peer transport system for
scene descriptions, excluding XMPP with all its messages traveling through interven-
ing servers leaving behind SIP/SIMPLE/MSRP as the only option between these two
protocols.

2.7 Transport Layer Protocols

Figure 7: OSI model

Transport protocols are intermediate protocols between the application above and the
underlying IP layer (network layer). The type of suitable transport protocol depends on
the application/session type above the transport layer. Figure 7 shows the location of
the transport layer in the ISO OSI protocol stack [16]. Both of the presented transport
protocols work in cooperation with the underlying (at the network layer) IP protocol.

2.7.1 UDP

The User Datagram Protocol (UDP) is a transport layer protocol providing a fast and
unreliable way to send packets called datagrams. Packets may arrive out of order or be
lost, and the receiver does not acknowledge received datagrams. UDP is suitable as a
transport protocol for media (i.e. as an underlying protocol for RTP) which does not
suffer if a small number of packets are discarded or arrive out of order [17].

15

Composing Distributed 3D Scenes

2.7.2 TCP

The Transmission Control Protocol (TCP) is a reliable stream based protocol that can
guarantee that all packets arrive to the destination and that they arrive in order. TCP
provides acknowledgement of received packets and retransmission of lost packets. [18]
An alternative to TCP is the Stream Control Transmission Protocol offering some ad-
vantages if the network connection is unreliable or suffer from a large amount of loss
(see Appendix M).

2.8 RTP

The Real-time Transport Protocol (RTP) is an IETF protocol standard used to trans-
port audio and video over the internet. RTP only transports data, session control (call
setup and tear-down) are usually controlled by SDP/SIP [19]. RTP are often used to-
gether with RTSP (Real-time Streaming Protocol) which is a protocol allowing users
to remotely control the streaming of media from a server [20]. The RTCP (Real-time
Transport Control Protocol) is used to provide feedback of the quality of the services
provided by RTP [21].

2.8.1 RTPMAP

Rtpmap is an element available in the SMIL Streaming Media Object Module. The
Synchronized Multimedia Integration Language (SMIL) is discussed in the review sec-
tion.

Figure 8: Rtpmap is a SMIL element

If dynamic video resolution or quality of audio is desired in a SMIL document the

16

Composing Distributed 3D Scenes

SMIL streaming media object module requires the use of rtpmap elements. This at-
tribute is contained in the media object element and encodes parameters needed to
decode the dynamic payload type.

Rtpmap has two attributes, payload and encoding. Payload is listed in the
parent’s attribute and lists the optional encodings. The payload may be any kind of
MIME type (Section 2.9). The following example gives the client the option to choose
among three different quality levels of a rtsp stream:

<audio src="rtsp://www.example.org/foo.rtp" port="49170"
transport="RTP/AVP" rtpformat="96,97,98">
<rtpmap payload="96" encoding="L8/8000" />
<rtpmap payload="97" encoding="L16/8000" />
<rtpmap payload="98" encoding="L16/11025/2" />

</audio>

Figure 9: SMIL Streaming Media Object Module
[22]

2.9 MIME

"MIME defines mechanisms for sending other kinds of information in e-
mail, including text in languages other than English using character en-
codings other than ASCII as well as 8-bit binary content such as files con-
taining images, sounds, movies, and computer programs."

Wikipedia [23]

SIMPLE and MSRP messages may contain MIME (Multipurpose Internet Mail Exten-
sions) data in their message bodies [7]. A message with the header: MIME-Version:
1.0 indicates that the body of the message contains content of the type described as
Content-type: text/plain [24]. The MIME type of a SMIL document is:
Content-type: application/smil.

2.10 Ambulant Player

17

Composing Distributed 3D Scenes

Figure 10: Ambulant Player

"Ambulant is an extensible cross-platform multimedia playback engine in
C++, aimed primarily at playback of SMIL documents."

SourceForge [25]

Ambulant version 1.1 is an open source player with full support of SMIL 2.1, the
player is designed with the ability to be extended when additional functionality is
needed. There are currently two implementations of the Ambulant Player, one playing
SMIL 2.1 and another only playing MMS documents, a strict subset of SMIL 1.0.
Both RealNetworks’ RealPlayer, Apple’s Quicktime, Microsoft’s Internet Explorer 6
and Mozilla Firefox (with a plugin) support some kind of SMIL, but at this point of
time only Ambulant supports SMIL as it is specified in the SMIL 2.1 Specification
[26]. A potential drawback of Ambulant compared to another application, X-Smiles,
is that the latter one also support SVG, X3D, CSS [27] and XHTML [28] (but some
problems due to version support are introduced when using X-Smiles).

"The Ambulant player will use open-source media codecs and open-source
network transfer protocols."

18

Composing Distributed 3D Scenes

The Ambulant Team [29]

The player is basic and the idea is that developers can develop extensions to it when
they need additional functionality instead of creating a new player from scratch. De-
velopers can concentrate on their own extensions and integrate them with the baseline
player. Ambulant Player is open source, not a commercial product [29].

2.10.1 Ambulant Design Overview

• "Global playback engine that controls the playback of a single SMIL document.

• The global playback engine object has all the others hanging off it.

• Other factories for creating renderers, file readers, parsers and windows.

• The application itself is responsible for the graphical user interface, GUI, open-
ing and closing URLs and creating the playback engine when needed.

• There is an API between all the parts of the system.

• Machine dependency is handled by creating a machine-independent abstract
base class and machine-dependent subclasses. A factory then creates a machine-
dependent subclass, castes it and returns it to the machine-independent base
class."

Ambulant Design Documentation [30]

2.10.2 Ambulant Player Interfaces

• Datasource interface: To get external data to media handlers and other modules
there are several datasource interfaces. A general interface passes the URI or file
I/O to several implementations of the datasource until a proper one able handle
the datasource is found, returning a datasource object. The datasource interface
also has a buffer that allow flow control over the net [30].

• Playable interface: The playable interface is implemented by media handlers
and media renderers. The scheduler part of the player use this interface to make
pictures, video, etc. appear on the screen.

19

Composing Distributed 3D Scenes

Figure 11: Ambulant overall structure diagram
[30]

Figure 11 shows the structure of the program, i.e. the parser creates a DOM tree or
that the Playable Interface gets media data from the Datasource Interface.

2.11 Gaim

Gaim is an open source instant messaging client supporting SIP (Gaim 2.0.0 beta 3)
in addition to other protocols like AIM, ICQ, MSN , Yahoo!, IRC, Jabber, etc [31].
Gaim supports the most common instant messaging functions (see list). There is also
a free VoIP version of Gaim supporting SIP called PhoneGaim based on the instant
messaging functions of Gaim [32].

Gaim functionality [31]:

• Instant messages.

• File transfer.

• Login to several different IM networks at the same time.

• Plugin functionality (the support of SIP/SIMPLE is a plugin).

• Status messages.

20

Composing Distributed 3D Scenes

Figure 12: Gaim logo and client (version 2.0.0beta3)

• Message typing indicator.

• Operating systems supported: Linux, Windows.

• Encryption (available using plugins).

2.11.1 Gaim SIP/SIMPLE Protocol Plugin

Thomas Butter began the development of a SIP/SIMPLE protocol plugin for Gaim
during "Google’s Summer of Code Program 2005" [33]. A plugin is a loadable exten-
sion to Gaim. This particular plugin is free software under the GNU General Public
License, just like Gaim [34]. The Gaim SIP/SIMPLE Protocol Plugin support the
Message Method of SIP (see section 2.1.3 and Session Initiation Protocol Extension
for Instant Messaging, RFC 3428 [7]), meaning there is no sense of a message session.
All the messages follow the signaling route. The plugin has options for later support
for MSRP removing a lot of burden to the intervening servers and giving better real-
time delivery of messages. But as there is no other available open source implementa-
tion of SIMPLE suitable to present the ideas of this Master’s Thesis, this SIP/SIMPLE
Protocol Plugin is still used.

2.12 XML

The Extensible Markup Language (XML) is a human readable text format with original
intentions to help publishing and exchanging data on the web. XML is the base for a

21

Composing Distributed 3D Scenes

number of languages (later in this Master’s Thesis SMIL, X3D, SVG are reviewed).
Common for these languages based on XML is that each of them have their own XML
Namespace (see Appendix C) [35].

XML documents are made up of storage units called entities, which con-
tain either parsed or unparsed data. Parsed data is made up of charac-
ters, some of which form character data, and some of which form markup.
Markup encodes a description of the document’s storage layout and log-
ical structure. XML provides a mechanism to impose constraints on the
storage layout and logical structure.

Extensible Markup Language (XML) 1.1 [35]

2.13 XCAP

XCAP (XML Path Language) is a language providing the ability to address specific
parts of remote XML documents and how to manipulate these specific parts . XCAP
reference the URI in two parts. First part reference the document and the second part
the node within the document [36].

• Remotely modify data stored in XML documents.

• XPath [37] is used for addressing the XML documents.

• Using HTTP: GET, PUT, POST, HEAD, OPTIONS, DELETE

XCAP maps XML document sub-trees and element attributes to HTTP
URIs, so that these components can be directly accessed by HTTP.

J. Rosenberg [36]

XCAP client operations are presented in Appendix L.

22

Composing Distributed 3D Scenes

2.13.1 XPath

XPath address parts of an XML document and may also be used on SMIL documents.
This XPath expression address the boldface <region ... /> tag of the SMIL doc-
ument in Figure 13:

http://documenturl/smildocument.smil/smil/head/layout/

region

In case there are several tags with the same name, a number in square brackets indicate
the position of the referenced tag:

http://documenturl/smildocument.smil/smil/head/layout/

region[1]

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE smil PUBLIC "-//W3C//DTD SMIL 2.0//EN"
"http://www.w3.org/2001/SMIL20/SMIL20.dtd">
<smil xmlns="http://www.w3.org/2001/SMIL20/Language">

<head>
<layout>

<region ... />
<region ... />

</layout>
</head>
<body>

...
</body>

</smil>

Figure 13: XPath Referenced tag in a SMIL document

2.14 Scene Graph

The concept of a "scene graph" are underlying many of the languages and standards
describing scenes. A scene graph is a hierarchical structure that organizes the scene
in computer graphics. A scene graph is a object oriented structure used to represent

23

Composing Distributed 3D Scenes

objects in a 3D scene in a logical way with parameters like size, shape, color, position,
relationship to other objects, etc. The scene is organized in a hierarchical way with
nodes that acts like parents and/or children. Sometimes both, but the node on top of
the pyramid is a parent only. Theoretically spoken, a scene graph is a directed acyclic
graph (see Appendix J).

When an operation affect a particular node, the effect of this operation is automati-
cally propagated further down the hierarchy to the children of this node. This way of
structuring means that similar or related objects can be grouped together by having the
same parent node.

A scene graph is suitable to describe 3D worlds and 3D graphics. A node may repre-
sent an object in the modeled 3D world. A node called "bunch of keys" are composed
by individual "keys" ("key" nodes) and a "key ring". The scene graph structure also
keep control of the physical location of the "key" in the 3D world and the relationship
between the "key ring" and the "keys".

Figure 14: Scene graph tree

A large scene graph (which means most of the scene graphs) structure is often orga-
nized in a tree structure (Figure 14).

To reduce the memory requirements scene graphs use instancing. One single bunch

of keys object are kept in the memory and all the bunch of keys appearing in the 3D
world, with different physical representations (color, shape, etc) are instances of this
object [38].

24

Composing Distributed 3D Scenes

2.15 Binary Scene Descriptions

Binary encoding takes advantage of compression technologies. Binary scenes are often
written using XML and scene graphs. Compared to uncompressed XML documents,
binary encoded formats usually have a smaller size. Smaller sizes favors faster delivery
over a network, and compression also makes parsing and reading the binary files faster.
Binary coding techniques are out of scope of this Master’s Thesis.

2.16 Section Summary

Summarizing the most important issues of this section, SIP comes forth as the most
preferable protocol, teamed with SDP and MSRP, as a messenger carrying scene de-
scriptions. SIP may (with MSRP) offer a P2P session for document exchange. XMPP,
with it’s intervening servers, introduce longer latencies and may not be as suitable as
SIP in a high requirements system. The ease of sending MIME content (including
SMIL documents) with MSRP also favors MSRP over SIP. The transport layer proto-
cols UDP and TCP have been presented as well as the RTP protocol and the MIME
mechanism used to transport and send media and information over networks. Ambu-
lant Player’s design overview and player interfaces have been presented to show the
goals and the basic design of this SMIL player. The Gaim instant messaging client has
been presented as well as XML, the base language for a number of other languages,
with mechanisms allowing information exchange between XML documents. And at
last the basics of scene graphs and binary encoding.

25

Composing Distributed 3D Scenes

3 Review of 3D Multiview, Autostereoscopic Object Ori-
ented Audiovisual Scenes Theory and Practice

This section carry out a review of 3D multiview, autostereoscopic object oriented
audiovisual scenes theories and practice. Following languages and standards are re-
viewed: X3D, MPEG-4 Interactive, SVG, NVSG, OSG, LASER and SMIL. As a
summary at the end of the section a comparison chart presents the most important
characteristics of the reviewed languages and standards. The review of each lan-
guage/standard are tried to be kept as short as possible but are still answering the
key points needed in a review (Section 3.1).

3.1 Writing Reviews

When writing reviews it is important to realize what a review really is.

"A review is a critical evaluation of a text, event, object, or phenomenon
(...) a review makes an argument. The most important element of a review
is that it is a commentary, not merely a summary. It allows you to enter
into dialog and discussion."

The Writing Center, University of North Carolina at Chapel Hill [39]

Transferring this into how to build a textual review may be carried out like this:

• First, a review gives the reader a concise summary of the content.
This includes a relevant description of the topic as well as its overall
perspective, argument, or purpose.

• Second, and more importantly, a review offers a critical assessment
of the content. This involves your reactions to the work under review:
What strikes you as noteworthy, whether or not it was effective or
persuasive, and how it enhanced your understanding of the issues at
hand.

27

Composing Distributed 3D Scenes

• Finally, in addition to analyzing the work, a review often suggests
whether or not the audience would appreciate it.

The Writing Center, University of North Carolina at Chapel Hill [39]

Using these tip-offs all the reviews in this Master’s Thesis are carried out after the
same pattern. Each review is divided into three subsections:

1. Theory: A summary of the theories behind.

2. Practice: How these theories are put into real life, and the application area.

3. Summary: A short concluding analysis.

The most important and comparative parts of the reviews are included in a compar-
ison chart, stating properties of and differences between the reviewed standards and
languages.

3.2 X3D

X3D (VRML in XML) is an ISO-Standard XML-enabled language for real-time 3D
communication. The development of X3D is supervised by the Web3D Consortium.

3.2.1 X3D Theory

Figure 15: X3D logo
[40]

28

Composing Distributed 3D Scenes

X3D enables 2D and 3D graphics and interactive media in physically simulated web
based environments or in distributed networks on top of cross platform environments.
X3D is an open standard providing real-time communication of graphics between local
and network applications. X3D has a number of file formats available, including XML
and it is a revision of the VRML97 ISO specification [41].

• Componentized: Integration with XML.

• Extensible: Allowing components to be added to extend functionality for verti-
cal market applications and services.

• Profiled: Standardized sets of extensions to meet specific application needs.

• Evolutionary: Easy to update and preserve VRML97 content as X3D.

• Broadcast/Embedded Application Ready: From mobile phones to supercom-
puters.

• Real-time: Graphics are high quality, real-time, interactive, and include audio
and video as well as 3D data.

• Well-Specified: Makes it easier to build conform, consistent and bug-free im-
plementations.

Web 3D Consortium [40]

X3D also supports profiles, a profile is a subset of chosen modular blocks of function-
ality. A user may choose an appropriate profile according to his or her preferences.
Profiles may also be extended to add more functionality (for instance network stream-
ing). The profile is declared at the beginning of the execution, telling the player the set
of components and the level of support needed to play.

The profiles shown in Figure 16 feature different services:

• Interchange: Communication between applications, geometry, texturing, basic
lighting and animation.

• Interactive: 3D environment, sensor nodes for navigation and interaction, tim-
ing and extra lightning.

29

Composing Distributed 3D Scenes

Figure 16: X3D baseline profiles

• Immersive: Full 3D graphics, interaction, audio, collision and fog.

• Full: All of the services mentioned above. The other profiles are subsets of this
profile.

The base of the 3D world in X3D is a scene graph, and a single application program-
ming interface (API) [40].

3.2.2 X3D Practice

The creators of X3D announces the advanced content and communication options
available through different profiles according to needs by the user as an advantage
of using X3D [40]. X3D has modular and reusable components which makes the
work effort to get X3D up and running smaller, and the profiles gives an X3D creator
the possibility to choose no more options than needed. The use of the XML-file for-
mat makes exchange over a network, between different applications, quite easy. X3D
uses OpenGL. X3D has two extensions, "GeoVRML" allowing the design of outdoor
worlds and "H-Anim" allowing human figures.

X3D is a specification under active development, the last DTD specifying X3D was
published on January 10th, 2006 [42].

30

Composing Distributed 3D Scenes

3.2.3 X3D Summary

X3D aims for preproduced scenes and scenarios built using advanced 3D programs
like CAD or in medical imaging, visual simulations and cartography. X3D may be
more focused at development and construction of advanced 3D scenes, than being
a language suitable to distributed 3D scenes with a communication like Distributed
Multimedia Plays Virtual Dinner [1]. But entertainment, gaming and conferencing are
also optional application areas of X3D.

3.3 MPEG-4 Interactive

MPEG-4 Interactive is an additional X3D (see Section 3.2) profile designed for "broad-
cast, hand held devices and mobile phones" [40]. MPEG-4 Interactive is a scaled-down
version of the X3D’s Interactive profile. The development of MPEG-4 Interactive is
also supervised by the Web3D Consortium.

"MPEG-4 Interactive is a small footprint version of the Interactive profile
designed for broadcast, handheld devices and mobile phones."

Web3D Consortium [40]

3.3.1 MPEG-4 Interactive Theory

X3D is written in XML telling the media player where to find the included media
(images, video, audio) and how to play in a textual format. On the other side MPEG-4
is a binary format wrapping both descriptions and media data in a binary format.

MPEG-4 Interactive is:

• Interoperable with the MPEG-4 standard.

• Supporting graphics and interactivity.

• Removing of complexity in other X3D profiles.

31

Composing Distributed 3D Scenes

When it comes to networking MPEG-4 Interactive supports "file:" and "http:" proto-
cols using relative URLs.

Following 3D geometry components are supported: Box, cone, cylinder, sphere and
IndexedFaceSet which supports 10 vertices per face and 5000 faces. Each face is a
polygon and faces should not intersect each other. (see Appendix I) [43].

3.3.2 MPEG-4 Interactive Practice

MPEG-4 Interactive is a binary format allowing simple networking and description of
more or less simple 3D geometric shapes.

3.3.3 MPEG-4 Interactive Summary

MPEG-4 Interactive is basically an option to the more complex profiles in X3D in-
tended for use on mobile devices with less computational power.

3.4 SVG

SVG means Scalable Vector Graphics and is an open standard describing two-
dimensional graphics in XML. SVG is a W3C recommendation.

Figure 17: W3C logo

3.4.1 SVG Theory

The slogan at the SVG Home Page says: "XML Graphics for the Web" [44] and this
first impression tells the reader about the main goal of SVG. As already mentioned
SVG describes 2D graphics and applications in XML, compared to X3D and MPEG-
4 Interactive enabling 3D representation. As a part of the name implies, "scalable"

32

Composing Distributed 3D Scenes

means scalable to different resolutions and data sources, "vector" means geometric
objects like circles or rectangles, and "graphics" means that both vector graphics and
raster graphics (bitmap pictures) can be used in SVG.

SVG 1.1 is the latest official version. SVG also has SVG Mobile Profiles targeted
at devices with low level resources, like mobile phones, SVG Basic and SVG Tiny.
The different profiles lets graphics rendering perform optimally as well on powerful
devices as on mobile devices. The application areas SVG targets are listed in Table 2.

• Mobile: SVG Tiny and SVG Basic Profiles. Primarily used making greeting
cards, diagrams, animations on mobile devices.

• Print: Printing graphics and text, similar to Adobe’s PDF-format.

• Web Applications: A platform to build graphics upon.

• Design and Interchange: High end graphical market.

• GIS and Mapping: Geographic Information Systems and maps.

• Embedded Systems: Very low resource devices.

Table 2: SVG application areas
[44]

SVG graphics are composed of shapes written using vector graphics, images and text.
Many graphical objects may be grouped together, composed into one larger object, and
transformation and styling may be applied to these objects [44].

3.4.2 SVG Practice

Since SVG includes the full XML Document Object Model it is allowed to be used
within SMIL documents. SVG is supported in web browsers like Mozilla and Opera
and Konqueror, Internet Explorer need a plugin an. SVG includes event handlers able
to run scripts (Javascript) manipulating the graphics, like changing the shape of a rect-
angle, etc.

33

Composing Distributed 3D Scenes

3.4.3 SVG Summary

SVG 1.1 does not support 3D graphics, but designing custom shapes and integrating
them in SMIL or other XML based languages (like XHTML) are easy.

3.5 NVSG

As the worlds biggest graphics hardware producer (together with ATI) NVIDIA’s
NVSG (NVIDIA Scene Graph) deserve to be included in the review section of this
Master’s Thesis.

3.5.1 NVSG Theory

Figure 18: NVIDIA’s and NVSG’s logos

NVSG means NVIDIA Scene Graph and is an object oriented programming library
(C++) which let developers exploit the latest features of NVIDIA’s own graphic pro-
cessing hardware to create advanced 3D applications.

"NVIDIA’s scene graph is intended to empower developers to quickly cre-
ate sophisticated and thoroughly modern high-performance 3D graphics
applications."

Dan Vivoli, executive vice president
of marketing at NVIDIA [45]

NVIDIA has chosen to focus NVSG against representation of 3D scenes and rendering.
NVSG is intended to reduce the amount of OpenGL programming and take care of
the rendering issues. In the future NVSG will become independent of which render

34

Composing Distributed 3D Scenes

Figure 19: NVSG viewer application

device is underlying. There will be support for OpenGL (which is also present today),
Microsoft DirectX (future) and Realtime Raytracer (future) [45].

As seen on Figure 19 there is a "traverser" class with different methods of traversing
the document tree as a part of the rendering process, or to apply specific effects to a
tree. A user developing a new effect may use the traverser class.

3.5.2 NVSG Practice

NVSG is a scene graph, organized like a scene graph (see Section 2.14). There are
many objects which all inherits the "object" node, which then inherits "RCObject".
Even though there are different (and more advanced) classes, the idea behind are ba-
sically similar to SVG. All nodes may have one or many parents, resulting in that it is
easier to apply effects to different parts of the node tree.

There’s one issue where SVG and NVSG differs a lot. NVSG features stereo camera,

35

Composing Distributed 3D Scenes

or in other words 3D. The camera position is shifted to the right and the left from the
center position and two different images is rendered to a "right frame buffer" and a
"left frame buffer" (Figure 20).

Figure 20: NVSG stereo camera

3.5.3 NVSG Summary

NVSG is a commercial product and favor the development of applications using NVIDIA’s
own hardware. The goal is probably to make NVIDIA’s products sell better. Still, as
one of the largest and most competitive developers of graphics hardware, using the
tailored NVSG together with NVIDIA’s hardware may give a developer an advantage
compared to others not using NVSG.

3.6 OSG

Figure 21: OSG logo
[46]

Open Scene Graph is a standard using scene graphs to represent 3D worlds or a scenes.
The idea of OSG is being a multi platform, open source graphics library (API) for
C++ programmers on top of OpenGL. OSG is developed by the OpenSceneGraph
community [47].

36

Composing Distributed 3D Scenes

3.6.1 OSG Theory

The two basic goals of OSG is to take care of scene management and rendering opti-
mization. The key factors of these two concerns are: Portability, extensibility, scala-
bility and flexibility [46].

A node is represented by the osg::Node class. Four of its subclasses are:

• Osg::Geode: Geometry node.

• Osg::Group: Grouping of child nodes.

• Osg::PositionAttitudeTransform: Telling the location of the children of this
node.

• Osg::Drawables: Renderable subclasses, instances physically seen in the scene.

3.6.2 OSG Practice

OSG is open source, being open source means that the value of the language is not
the source code itself but the implementations using the source code. The application
developer benefits from it and the open source code naturally evolves.

OSG does not interfere directly with the underlying graphics hardware, the OpenGL
layer are in between OSG and the hardware, handling all the communication between
these two layers.

OpenGL 2.0 supports 3D. If using a graphics hardware accelerator like Matrox Parhe-
lia Precision SDT [48] with a Planar SD1710 3D LCD screen [49] and polarized
glasses, the OSG scene can be viewed in 3D (Figure 22).

3.6.3 OSG Summary

OSG is a graphics library on top of OpenGL. It is suitable for heavy graphical applica-
tions like simulators, games and realistic 3D environments. OSG is not written in XML
and needs a little more effort to learn than X3D and SVG, OSG is more complicated
to integrate with SMIL.

37

Composing Distributed 3D Scenes

Figure 22: Planar SD170, Matrox Parhelia Precision and polarized glasses
[48]

3.7 SMIL

Figure 23: WC3’s SMIL logo
[50]

SMIL is an acronym for Synchronized Multimedia Integration Language and is pro-
nounced ’smile’. SMIL is built upon XML, it is not really a 3D auto stereoscopic
model but its goal is to ease presentation of media. The tags of SMIL are much similar
to HTML, but SMIL enables streaming of video, audio, images, text and other types
of media. SMIL enables the creator to control timing and placement of the media, this
goes for both layout and the timeline. The SMIL language is being developed by the
W3C SYMM group [51].

3.7.1 SMIL Theory

SMIL is support the following implementations:

• "Internet or Intranet presentations.

• Slide show presentations.

38

Composing Distributed 3D Scenes

• Presentations which link to other SMIL files.

• Presentations having control buttons (stop, start, next, ...).

• Defining sequences and duration of multimedia elements.

• Defining position and visibility of multimedia elements.

• Displaying multiple media types such as audio, video, text.

• Displaying multiple files at the same time.

• Displaying files from multiple web servers."

Wikibooks, XML: Managing Data Exchange/SMIL [51]

SMIL is also used in mobile phones, generally MMS uses a subset of SMIL to define
how multimedia content are put together in the MMS messages. SMIL is written using
tags, a SMIL file (having the extension *.smil, *.sml or *.smi) has this template:

<?xml version="1.0" encoding="ISO-8859-1"?>
<smil xmlns="http://www.w3.org/SMIL21/Language">

<head>
<layout>

<root-layout id="root_layout"/>
...

</layout>
</head>
<body>

...
</body>

</smil>

Figure 24: SMIL template

The first line is the XML declaration, this line defines the XML version and the char-
acter encoding used to write the XML document. The second line declares that the
SMIL 2.0 namespace is used. Defining a namespace reduces confusion on how words
are to be interpreted. A name cannot have more than one meaning and two different
things cannot have the same name (Appendix C). The layout is described inside the
<layout>...</layout>, and is divided into different regions using <region

id="..."/> with parameters describing the placement and size of the current re-
gion. Inside the <head>...</head> transitions may be described using

39

Composing Distributed 3D Scenes

<transition id"..."/>. Inside the <body>...</body> the media sources
may be added using for instance <video src"..."/> or an audio or image source
and assigned to a particular <region ... />. If the video are to be played in paral-
lel with another media source, placing it inside a <par>...</par> or sequentially
using <seq>...</seq>.

SMIL has a number of different functional areas, these areas are further divided into
modules describing structure, content, actions and attributes associated within the
SMIL 2.0 namespace [52].

"A module is a collection of semantically-related elements. Attributes and
their value range may be divided over different modules."

SMIL Modules [52]

Where:

"An element is a XML representation of a semantic feature. An element
has one representation in any given namespace."

SMIL Modules [52]

The SMIL Streaming Media Object Module extends SMIL Media Object Module
adding elements and attributes making it possible to describe transport properties of
streaming media. When RTP is used in SMIL the client need some initialization pa-
rameters to interpret the RTP data that is received. Usually these parameters are de-
scribed using SDP. To optimize this the Streaming Media Object Module allow the
SDP parameters to be merged into the SMIL document. Instead of first retrieving
SMIL and then retrieving the SDP referenced in SMIL separately (which will need
two round-trips on the network) this will need only one round-trip and offer better per-
formance. The application area may for instance when a person looks at a particular
object the client may ask the server to get a better visual representation of that partic-
ular object. Of course some other mechanism is needed to observe where the person
looks. The Streaming Media Object Module has two primary usage scenarios [22]:

40

Composing Distributed 3D Scenes

1. Multicast: The SDP packet describing the media stream is sent via another
protocol.

2. RTP: Real-time delivery of media.

3.7.2 SMIL Practice

To play SMIL presentations the user need a SMIL player. The SMIL player may be
incorporated into a web-browser like Microsoft Internet Explorer or Mozilla Firefox
(only supported by Ambulant’s plugin for Mozilla Firefox at the present time). Or the
SMIL player may be stand-alone like X-Smiles or Ambulant.

3.7.3 SMIL Summary

SMIL’s primary goal is to be a XML language for describing multimedia, the main
issues are timing, layout, media sources and visual transitions. SMIL is written using
tags quite similar to HTML. The SMIL source are human readable and easy to write
using a simple text editor. SMIL is a simple language to understand, but a SMIL
document in combination with media sources may be a powerful tool for creating
presentations and scenes.

3.8 LASeR

LASeR, Lightweight Application Scene Representation is: "A binary format for en-

coding 2D scenes, including vector graphics, and timed modifications of the scene"

[53].

3.8.1 LASeR Theory

LASeR is a part of MPEG-4 Part 20, it’s goal is to deliver rich media services to
devices like mobile phones which has a low level of computational resources.

• 2D vector graphics.

41

Composing Distributed 3D Scenes

• Pictures.

• Text.

• Sound.

• Video.

LASeR is based on the Tiny Profile of the Scalable Vector Graphics format (reviewed
in Section 3.4). In addition to the SVG Tiny Profile, LASeR is extended with frame
accurate synchronization between audio and video and streaming and coding of SVG
content.

A LASeR stream can be considered as an initial scene with modifications applied to it
during the time of playing the scene. This stream can be downloaded from a streaming
server.

3.8.2 LASeR Practice

Figure 25: LASeR workflow

The operation of LASeR is described in Figure 25. The LASeR wrapper takes a SVG
document and wraps it with SVG and LASeR extensions. The LASeR encoder then
encodes a binary LASeR stream ready to be sent over a network. To receive and play
a LASeR stream a user needs to decode the stream and play the document with a SVG
player.

3.8.3 LASeR Summary

LASeR is not intended to be used on advanced 3D scenes with high bitrate/quality con-
tent. The application areas are low resource devices (like 3G mobile phones) needing
simple 2D animation and television support.

In the future LASeR will support these features (among others):

42

Composing Distributed 3D Scenes

1. "Allow an easy conversion from other graphics formats (e.g. BIFS,
SMIL/SVG, PDF, Flash, ...).

2. Provide efficient coding suitable for the mobile environment.

3. Allow separate streams for 2D and 3D content.

4. Allow the representation of scalable scenes."

Call for Proposals for
Lightweight Scene Representation [54]

3.9 Section Summary

All the reviewed standards and languages have different ways of practice and different
areas of application making it difficult to find any winners or losers among them. Some
are suitable for heavy duty applications, others are appropriate for mobile or embedded
devices, some are based on binary code which may be faster in some circumstances,
others are based on XML which is easier for humans to read and understand and easier
to extend with additional functionality. Perhaps the best way to make a conclusion is
to present a comparison chart where the actual similarities and differences are easier
to grasp.

3.9.1 Comparison Chart

Explanation of the column categories of the comparison chart (Table 3):

• Name of standard: Abbreviation of the name of the standard.

• Develop. organ: The organ developing the standard.

• Open: Access to the source of the standard.

• Binary: Not human readable, encoded file format.

• Active dev.: "Yes" if the standard is still under active development.

• 3D: "Yes" if the standard support 3D.

43

Composing Distributed 3D Scenes

• Profiled: If the standard supports modular blocks of functionality. If "Yes", the
number of profiles are shown in the parenthesis.

• Extensible: Allowing components to be extended to add functionality.

• Base: The base theory of the standard.

Name of Develop. Open Binary Active 3D Profiled Exten- Base
standard organ dev. sible

X3D Web3D Yes No Yes Yes Yes (4) Yes Scene
Cons- (XML) graph
ortium

MPEG-4 Web3D Yes Yes Yes Yes No Yes Scene
Interactive Cons- graph

ortium

SVG W3C Yes No Yes No Yes Yes Vector
(XML) graphics

NVSG nVidia Yes Yes Yes Yes No No Scene
graph

OSG Open Yes Yes Yes Yes No Yes Scene
Scene graph
Graph

Community
SMIL W3C Yes No Yes No Yes Yes XML

(XML)
LASeR MPEG Yes Yes Yes Yes No No Scene

graph

Table 3: Review comparison chart

44

Composing Distributed 3D Scenes

4 3D, Transparency and Custom Shapes

The next section answers the problems outlined in the description.

Propose and demonstrate extensions to SMIL enabling 3D, transparency

and custom shapes.

SMIL does not support custom shapes, transparency or 3D in the current version
(SMIL 2.1 of 13th of December 2005 [26]). Including these features in SMIL using
SVG and/or X3D may be suitable alternative. Instead of creating entirely new exten-
sions to SMIL, using SVG or X3D saves a lot of work effort. XML based languages,
SVG and X3D are easily integrated with SMIL (discussed later).

4.1 Embedding and Referencing from SMIL

In order to build SMIL scenes (like the sketch in Figure 26) using features of SVG and
X3D as well, the SVG and X3D documents have to be incorporated with SMIL. Two
possible techniques may perform this task, embedding and referencing are presented
and demonstrated in this subsection.

Figure 26: Sketch of the SMIL document with SVG and X3D

45

Composing Distributed 3D Scenes

4.1.1 Embedding SVG and X3D Inline

Instead of creating new namespaces to give SMIL new features, it’s possible to inte-
grate SVG and/or X3D into SMIL. This way the features of SVG and X3D is integrated
into SMIL.

Figure 27: SVG and X3D embedded in SMIL

Embedding or embedding inline means that i.e. SVG or X3D documents are included
inside the parent SMIL document. To play SMIL+SVG, SMIL+X3D or SMIL+X3D/SVG
the player needs to support all three XML formats and supported media types. The cur-
rently available version of Ambulant Player only support SMIL, not SVG or X3D.

Documents embedded inline are located inside the <body> ... </body> tags of
a parent SMIL document. Embedded documents are equal to other media types in-
cluded in the SMIL document layout. An embedded SVG document must be encap-
sulated with the <svg> ... </svg> tags, shown on Figure 31. A larger example is
demonstrated in Appendix A.4.1.

46

Composing Distributed 3D Scenes

<?xml version="1.0" encoding="ISO-8859-1"?>
<smil xmlns="http://www.w3.org/SMIL20/Language">

<head>
<layout>
<root-layout id="root_layout"/>

...
</layout>

</head>
<body>

<svg>
...

</svg>
</body>

</smil>

Figure 28: Embedded SVG document phrase

4.1.2 Demonstration of Embedded X3D and SVG

The possible scene introduced in Figure 26 may be created using embedded SVG and
X3D documents. SVG is used to define polygon areas (the persons), and X3D takes
care of 3D figures (the table). The flatscreen TV is included with regular SMIL tags
(not shown). The complete SMIL document source is shown in Appendix A.4.1.

47

Composing Distributed 3D Scenes

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE smil PUBLIC "-//W3C//DTD SMIL 2.0//EN"

"http://www.w3.org/2001/SMIL20/SMIL20.dtd">
<smil ... >
<!- SMIL, SVG and X3D namespaces -> <head>
<layout>

...
</layout>
</head>
<body>
<par>
<svg:svg region="svgpersona_region">

...
</svg:svg>
<svg:svg region="svgpersonb_region">

...
</svg:svg>
<xsd:X3D region="boxtable_region" version=’3.1’

profile=’Immersive’ >
...

</xsd:X3D>
... <svg:svg region="window_region">

...
</svg:svg>
</par>
</body>
</smil>

Figure 29: Embedded documents

48

Composing Distributed 3D Scenes

4.1.3 Referencing External SVG/X3D

Figure 30: External SVG and X3D referenced from SMIL

An alternative to embed SVG or X3D documents is to reference external documents.
Other SMIL documents may be referenced as well as relevant types of XML docu-
ments. In this case (Figure 31) the SVG part is an referenced external SVG document
(referencedsvg.svg).

<?xml version="1.0" encoding="ISO-8859-1"?>
<smil xmlns="http://www.w3.org/SMIL20/Language">

<head>
<layout>
<root-layout id="root_layout"/>
<region id="referenceddocument" ... />
</layout>

</head>
<body>

<switch>
<ref type="image/svg+xml" src="referencedsvg.svg"

region="referenceddocument" />

</switch>
</body>

</smil>

Figure 31: Referenced SVG document

The <switch> ... </switch> tags is used to enable the player to display an

49

Composing Distributed 3D Scenes

optional image if it does not have the ability to play SVG documents.

4.1.4 Demonstration of Externally Referenced Documents

The same scene may also be created with references to external SVG and X3D doc-
uments. A SVG document is referenced from inside the <ref ... /> tag of the
<body> of the SMIL document (Figure 32). Figure 32 is extracted from a complete
SMIL document, referencing external SVG and X3D documents, the source of this
SMIL document is shown in Appendix A.4.2.

<ref type="image/svg+xml" src="persona.svg"
region="svgpersona_region"/>

...
<ref type="image/svg+xml" src="personb.svg"

region="svgpersonb_region"/>
...
<ref type="model/x3d+xml" src="boxtable.x3d"

region="boxtable_region"/>
...
<ref type="image/svg+xml" src="window.svg"

region="window_region"/>

Figure 32: References to external documents

Persona.svg, personb.svg, boxtable.x3d and window.svg are shown
in Appendix A.

50

Composing Distributed 3D Scenes

4.2 SVG Custom Shapes

A "custom shape" in this context represent the situation where a region or an object are
not only square or rectangular, but shaped like a polygon, circle, ellipse or whatever
the vector based representation allow. SVG support the following shapes/graphical
elements: Paths, Rectangles, Circles, Ellipses, Lines, Polylines and Polygons [55].

Among these shapes, the Polygon can be considered the most custom shape. It is
defined by a closed shape put together by a number of straight lines. An example of a
polygon is shown in Figure 33, its corresponding SVG-file is shown in Figure 34.

Figure 33: Simple polygon example

<?xml version="1.0"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="6cm" height="6cm" viewBox="0 0 500 500"

xmlns="http://www.w3.org/2000/svg" version="1.1">
<desc>

Simple polygon example
</desc>
<polygon fill="white" stroke="black" stroke-width="10"

points="100,100 70,200 400,450 480,80
350,90 300,50"/>

</svg>

Figure 34: SVG file of the simple polygon example

The image of Figure 35 (test.png) may be clipped into the polygon of Figure 33,
using the SVG container element ClipPath [55]:

51

Composing Distributed 3D Scenes

Figure 35: Square image

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="500" height="500" viewBox="0 0 500 500"

xmlns="http://www.w3.org/2000/svg" version="1.1"
xmlns:xlink="http://www.w3.org/1999/xlink">
<desc>

A square image (test.png) is clipped into the
polygon (klippsti)

</desc>
<defs>

<clipPath id="klippsti">
<polygon points="100,100 70,200 400,450
480,80 350,90 300,50"/>

</clipPath>
</defs>
<g clip-path="url(#klippsti)" visibility="visible">

<g id="klipp">
<image x="0" y="0" width="500" height="500"

xlink:href="test.png"/>
</g>

</g>
</svg>

Figure 36: SVG file with ClipPath

ClipPath’s are regions where an image are applied inside a shape described by path
coordinates, parts of the image appearing outside the clipping path are cut away. The
alpha value of the image are zero outside the clipping path (fully transparent), and one
(fully opaque) or between zero and one (semi transparent) on the inside. The result of
the SVG file with ClipPath (Figure 36) is shown in Figure 37.

52

Composing Distributed 3D Scenes

Figure 37: ClipPath result

4.2.1 Demonstration of Custom Shapes in SMIL+SVG

Arbitrary polygon shaped regions playing referenced video streams are not feasible
using SMIL only. To implement this feature into a scene a combination of SMIL+SVG
can be used. The idea described in the following example use a SMIL document as
a base document with a reference to an external SVG document taking care of the
polygon issue. The visual background of this scene is described using a second SMIL
document and the media stream played inside the polygon is a rtps:// referenced
via an URI.

• Smilbase.smil: Structural Layout document with GUI buttons, etc (Figure 40).

• Svgshapes.svg: Polygon shapes with transparency and external media streams,
an embedded SMIL document representing the background image, etc (Figure
41).

To be able to play this demonstration the following requirements have to be met:

• SVG streaming video enhancements. This feature is not available yet (under
consideration by the SVG working group: "The SVG working group is consid-

ering streaming enhancements to the SVG language" [56]).

• A player application supporting both SMIL, SVG and streaming video.

53

Composing Distributed 3D Scenes

Figure 38: Document structure

Figure 39: Result sketch

54

Composing Distributed 3D Scenes

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE smil PUBLIC "-//W3C//DTD SMIL 2.0//EN"

"http://www.w3.org/2001/SMIL20/SMIL20.dtd">
<smil xmlns="http://www.w3.org/2001/SMIL20/Language">
<head>

<layout>
<root-layout width="1024" height="768" />
<region id="svgshapes" left="40%" top="40%"

fit="fill" />
</layout>

</head>
<body>

<switch>
<ref type="image/svg+xml"

src="svgshapes.svg"
region="svgshapes" />

<img src="erroralternative.png"
region="svgshapes" />

</switch>
</body>

</smil>

Figure 40: Smilbase.smil

55

Composing Distributed 3D Scenes

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="1024" height="768" viewBox="0 0 500 500"

xmlns="http://www.w3.org/2000/svg" version="1.1"
xmlns:xlink="http://www.w3.org/1999/xlink">
xmlns:smil="http://www.w3.org/2001/SMIL20/Language"
<desc> SVG 1.2 video played in clippath with smil

document background SVG </desc>
<defs>
<clipPath id="rute">

<polygon points="0,200 200,0 400,200
200,400"/>

</clipPath>
<g>

<smil:smil>
<smil:head>
<smil:layout>
<smil:root-layout width="1024"

height="768" />
<smil:region id="background"

left="0%" top="0%"
fit="fill" />

</smil:layout>
</smil:head>
<smil:body>
<smil:img src="room.jpg"

region="background" />
</smil:body>

</smil:smil>
</g>
<g clip-path="url(#rute)" visibility="visible"

opacity=".9" >
<g id="klipp">

<video xlink:href="rtps:/..." width="400"
height="400" x="0" y="0"
repeatCount="indefinite"/>

</g>
</g>

</svg>

Figure 41: Svgshapes.svg

56

Composing Distributed 3D Scenes

4.3 Transparency

Transparency allow smoother overlapping of regions or partially see-through regions,
a background sky or a city may be visible outside a window or through lucid curtains.
An example from television is the partially see-through logo of a TV station logo
displayed in one of the corners of the screen.

4.3.1 Transparency Theory

Video frames are opaque by default. A transparent image or video clip has the property
that, at some degree, it is possible to see through it. Information about the transparency
of a bitmap picture is stored in the picture’s alpha channel. The alpha channel defines
transparent areas. In fact, the alpha channel is a separate channel beside the more
known RGB-channels (the visible colors) providing information about transparency
without disturbing the picture’s colors. The RGBA abbreviation (Red Green Blue
Alpha) is often used if there is an alpha channel in addition to the color channels .
Each pixel of the picture then has it’s own RGBA values.

There are different methods and names of transparent or translucent images, some of
them are listed below:

• Alpha Channel: A channel defining transparent areas of a clip.

• Mask: Another word sometimes is used for alpha channel.

• Matte: A file or a channel defining transparent areas of a clip. Of-
ten used when there is no alpha channel or when there is a channel
defining transparency better than the alpha channel.

• Keying: Defining transparency by a particular color or luminance
key.

• Opacity: Opaque is the opposite of transparency.
Transparency = 1 - opacity.

Adobe Premiere Pro, User Guide for Windows [57]

57

Composing Distributed 3D Scenes

Transparency is also called alpha blending. The value of the resulting color when color
Value1 with an alpha value of Alpha is drawn over a background of color Value0
is given by:

V alue = V alue0(1.0− Alpha) + V alue1(Alpha)[58]

4.3.2 Transparency in SMIL

SMIL 2.0 is not really supporting transparency, the only kind of support is transparency
indicated by the z-index, controlling the stacking of one region upon other regions. In
other words, a region is either 0 or 100 percent transparent.

<layout>
<root-layout id="RootRegion" title="RootRegion"

width="600" height="400"/>
<region id="region_back" title="Back" top="0"

left="0" width="600" height="400" z-index="1"/>
<region id="region_front" title="Front" top="50"

left="50" width="100" height="100" z-index="2"/>
</layout>

Figure 42: Transparency using the z-index

Figure 43: Z-index

A high z-index indicates that the object with this attribute will appear on top of
others with a lower z-index. In this example the "Front" region are on top of the
"Back" region. Generally spoken, the z-index control the stacking order of overlap-
ping regions

58

Composing Distributed 3D Scenes

4.3.3 Transparency in RealPlayer

Figure 44: RealPlayer

RealPlayer’s SMIL extension namespaces supports transparency, transparency is eas-
ily applied for GIF, JPEG, or PNG images and Flash animations, but more difficult for
streaming video. A negative thing is that the transparency attributes are only recogniz-
able by the RealOnePlayer and other SMIL players may not recognize these attributes
[59].

RealPlayer support a number of attributes used to apply transparency. These are listed
in Table 4 and shortly describes the transparency features RealPlayer adds to SMIL
[59].

Attribute Value Function
rn:backgroundOpacity percentage Adjusts background transparency.
bgcolor nnnnnn Substitutes color for transparency.
rn:chromaKey color_value Turns selected color transparent.
rn:chromaKeyOpacity percentage Adds opacity to chromaKey.
rn:chromaKeyTolerance color_value Widens range of chromaKey.
rn:mediaOpacity percentage Makes opaque colors transparent.

Table 4: RealPlayer’s transparency features
[59]

As previously mentioned these attributes are only applicable to GIF, JPEG, or PNG
and Flash graphics played with Real’s own player.

4.3.4 Transparency in X3D

X3D is based on the concept of a scene graph, meaning everything represented in a
scene is some kind of node in a tree (in a directed acyclic graph). There are a number of

59

Composing Distributed 3D Scenes

nodes in X3D having textures: Background, ImageTexture, MovieTexture,

MultiTexture, and PixelTexture.

Transparency may be applied to these nodes with texture maps or 2D images contain-
ing an array of colors describing the texture (i.e. RGB and RGBA), including video.
To describe X3D transparency, knowledge about the base types of abstract nodes are
needed (see Appendix K for more details).

• X3DTextureCoordinateNode: Base type node specifying geometric properties.

• X3DTextureNode: Base type node for all nodes specifying textures.

• X3DTexture2DNode: Base type node for all nodes specifying 2D textures.

A supported video format is MPEG1-Video with video and audio from a source speci-
fied by an url. The MPEG1-Video are in fact a time dependent texture map, with the
same transparency properties as a RGBA image texture map [60].

MovieTexture : X3DTexture2DNode, X3DSoundSourceNode,
X3DUrlObject{
...

}

Figure 45: A MovieTexture is constructed from abstract nodes
Web3D Consortium [60]

The MovieTexture node (see Figure 45) defines a texture map contained in a movie file
describing how to control the movie and how to apply mapping of the textures. The
MovieTexture or ImageTexture can be used to "dress" the sides of a 3D object
with one or many images and/or video streams.

4.3.5 Transparency With SVG

SVG incorporates an "Opacity Attribute Module" [61] which apply opacity to objects
and groups. The object/group is first rendered into an RGBA image (not displayed
during the rendering process), and thereafter the opacity settings specify how this ren-
dered RGBA image is blended upon a background [55]. Opacity can be applied to any
container element, including ClipPaths (described in Section 4.2).

60

Composing Distributed 3D Scenes

The opacity settings apply to the whole object. The level of transparency may obtain
any value between 0.0 and 1.0 (Figure 46) [55].

Figure 46: Transparency/opacity

To describe use of transparency in SVG the example SVG file in Figure 36 is continued
in Figure 47.

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="500" height="500" viewBox="0 0 500 500"

xmlns="http://www.w3.org/2000/svg" version="1.1"
xmlns:xlink="http://www.w3.org/1999/xlink">
<desc>

A square image (test.png) is clipped into the
polygon (klippsti)

</desc>
<!- Background blue circle ->
<circle cx="290" cy="220" r="100" fill="blue"/>
<defs>

<clipPath id="klippsti">
<polygon points="100,100 70,200 400,450

480,80 350,90 300,50"/>
</clipPath>

</defs>
<g clip-path="url(#klippsti)" visibility="visible"

opacity=".3">
<g id="klipp">

<image x="0" y="0" width="500" height="500"
xlink:href="test.png"/>

</g>
</g>

</svg>

Figure 47: SVG file with ClipPath and opacity

All that needs to be added is opacity=".3" inside the properties of the <g> tag.
"The ’g’ element is a container element for grouping together related graphics ele-

ments [61]". The SVG file in Figure 47 shows opacity of 30% (transparency of 70%)

61

Composing Distributed 3D Scenes

and the white background shines through the filled blue circle and the clipped image
(test.png) The result are presented in Figure 48.

Figure 48: A 70% transparent image of a map upon a blue filled circle

4.4 3D with X3D

As the name implies X3D aims at representing 3D graphics. X3D may create synthetic
textures or use referenced images or video streams from local or internet sources.

4.4.1 X3D Shapes and Textures

X3D allow a number of different shapes. Figure 51 demonstrate the use of a <Sphere>
using the image test.png as texture.

If <Sphere/> in the X3D file (Figure 51) is replaced with <Box/> the shape of the
3D object is changed from a globe to a cube. The result may be seen in Figure 50.

62

Composing Distributed 3D Scenes

<X3D version=’3.1’ profile=’Immersive’
xmlns:xsd=’http://www.w3.org/2001/XMLSchema-instance’
xsd:noNamespaceSchemaLocation=’http://www.web3d.org/

specifications/x3d-3.1.xsd’>
<Scene>

<Transform>
<NavigationInfo headlight=’false’

avatarSize=’0.80 2.6 0.99’
type=’ANY’/>

<SpotLight/>
<Transform translation=’0.0 0.0 0.0’

rotation=’0.5 0.5 0.5 0.5’>
<Shape>

<Sphere/>
<Appearance>

<ImageTexture url=’test.png’/>
</Appearance>

</Shape>
</Transform>
</Transform>

</Scene>
</X3D>

Figure 49: X3D sphere with ImageTexture

Figure 50: X3D <Box/> and <Sphere/> with test.png as texture

63

Composing Distributed 3D Scenes

4.4.2 Video Stream Played on 3D Object

To have video streams played as textures on 3D objects, X3D uses the <MovieTexture>
node (see Appendix K.2.2).

<X3D version=’3.1’ profile=’Immersive’
xmlns:xsd=’http://www.w3.org/2001/XMLSchema-instance’
xsd:noNamespaceSchemaLocation=’http://www.web3d.org/

specifications/x3d-3.1.xsd’>
<Scene>
<Group>

<Transform>
<Shape>

<Box/>
<Appearance>

<MovieTexture loop=’true’ url=’
"trikse1.mpg" ’/>

</Appearance>
</Shape>
</Transform>

</Group>
</Scene>
</X3D>

Figure 51: X3D box with as MovieTexture

The Xj3D player used to capture the images of Figure 50 does not fully support the
MovieTexture node [62]. Figure 52 is captured using another player, Octaga [63].

64

Composing Distributed 3D Scenes

Figure 52: X3D box played in Octaga Player

4.5 Section Summary

This section has presented techniques used to represent 3D, transparency and custom
shape features that may be interesting and useful to employ in a distributed 3D scene.
SVG and X3D are, because of the XML base, both suitable use teamed with SMIL.
The transparency and custom shape (ClipPath) features of SVG and the 3D op-
tions given by X3D are possibly the most interesting features to use while creating
distributed scenes. How to embed or reference SVG and X3D documents from SMIL
documents are discussed in a later section.

65

Composing Distributed 3D Scenes

5 Composition of Distributed Scenes

To be considered distributed, scene descriptions (SMIL documents) have to be ex-
changed between users which are taking part in the same scene. The scene descrip-
tions must allow different levels of quality of objects in the scene, meaning the bitrate
of audio and video streams must be adaptive according to preferences given by users
or available bandwidth of the network. 3D, transparency and custom shapes presented
in Section 4 may also be included.

This section continue the discussion of which of the technologies and protocols pre-
sented in Technology Background (Section 2) are preferable as fundamental and un-
derlying technologies of a distributed system. The end-user applications are not of the
greatest importance in this section, but using Ambulant Player and Gaim helps describ-
ing the system. Shortly written this section presents a problem study with proposed
solutions due to scene composition and exchange of scene descriptions. This Section
of the Master’s Thesis will answer the following questions:

1. Designing what?

2. Defining a requirement specification.

3. How may distributed scenes be composed?

4. Does the proposed system conform to the requirement specification

5.1 Designing What?

A possible scene, related to Distributed Multimedia Plays [1] are presented as an idea
of how a scenario may look like. In this possible scene one of the participants keep
track of the master SMIL document and passes this document to the other participant(s)
when the scene session is started. This way of organizing a scene may not be the most
fail safe and effective way, but how the scenes are composed and how data is exchanged
between participants do no differ very much if this organization is rearranged. The
participants submit changes relating to their status of participation or changes of the
object role they play to all the other participants during the time of participation. Each
user update their own version of the master SMIL document with this new information.

67

Composing Distributed 3D Scenes

Figure 53: Initial SMIL document exchange

Figure 54: Media streams

Media streams originates from each of the participants (and may also originate from a
third party server), the media streams correspond to descriptions in the master SMIL
document.

Object roles are played by participants in real-time. The blue rooms at Figure 53 and
Figure 54 are so-called "Multimedia Home Spaces" [64] (some kind of home studios).
The blue walls makes it easier to recognize the shape of the person(s) in the room, this

68

Composing Distributed 3D Scenes

is convenient in the process of creating polygon shaped objects to be embedded into
the SMIL scene description. The polygon will be shaped so it fits the shape of the
person’s (or object’s) video stream that is extracted from the blue background walls.
The network is a high-capacity fiber network connecting different "Multimedia Home
Spaces" and additional servers. The quality of the scenes approaches "near natural",
implicating high spatial and temporal resolution of objects in the scene.

Contents of a scene may be synthetic and live media streams may comprise 2D or
3D video, images, text and sound. The SMIL document (Master scene description)
describes the layout of a scene, the timing of objects and sound. Whether objects
appear in parallel or serial are described in the SMIL document. The object shapes are
getting more realistic using other embedded or referenced XML-based languages with
the SMIL document (discussed in Section 4.1.1).

5.1.1 User Interaction Use Case Diagrams

Use case diagrams describe the interaction between the user and the system to give a
concise idea what the user expect from the system. The level of detail of the use cases
are rather low, the purpose is to illustrate the basic idea, not the whole system. The use
cases depicts an external view to the system [65].

Figure 55: Use case: Join, leave, invite

69

Composing Distributed 3D Scenes

Figure 56: Use case: Initiate, participate and close a session

Figure 57: Use case: Change location, change shape, create objects

70

Composing Distributed 3D Scenes

5.1.2 System Parts Interaction Use Case Diagrams

Figure 58: Use case: Media server

Figure 59: Use case: SMIL player

71

Composing Distributed 3D Scenes

Figure 60: Use case: IM client

Figure 61: Use case: Scene synthesizer

5.1.3 Deployment Diagram

The deployment diagram show the hardware and the software of the system and the
structure of how the parts are connected.

72

Composing Distributed 3D Scenes

Figure 62: Deployment diagram

5.1.4 Sequence Diagram

Generally spoken UML sequence diagrams show how sequences of messages are
passed between objects in the use cases. Figure 63 identify the messages sent when
"User 1" loads an initial master SMIL document and invites "User 2" to take part in the
scene. The number "1" means that the physical location is at the same place as "User
1" and "2" means that the physical location at with "User 2’s" location.

73

Composing Distributed 3D Scenes

Figure 63: Sequence diagram: User loads scene and invites another participant

5.2 Requirement Specification

The requirement specification presented are somewhat hypothetical, but looking at
the Possible Scene (5.1) in combination with High-QoS constraints and specifications
mentioned by Leif Arne Rønningen in "Distributed Multimedia Plays Virtual Dinner"
[1] may give some ideas of a potential requirement specification.

End-to-end delays have to be guaranteed and limited only by delay introduced by the
time of propagation. Scene resolution have to be adaptable and scaled in real-time to
avoid traffic overload and package dropping [64].

1. Fiber optic, packet switched network. The end-to end delay in packet switched
network can be guaranteed but the resolution of objects in the SMIL scene must
be adaptive.

2. Natural, real-life/3D auto-stereoscopic. Requirements due to the perception of

74

Composing Distributed 3D Scenes

the participants of a scene. With temporal resolution at least 120 Hz [1].

3. Properties of stream communication: End-to-end time delay and latency of me-
dia streams less than 10-20 ms because of human perception [1], meaning cre-
ation/update and exchange of SMIL documents must be even faster.

4. Use RTP/UDP/IP to exchange media data.

5. Use extensions to SIP to enable reliable exchange of scene descriptions.

6. Multiparty sessions with more than two users should be allowed.

7. SMIL documents should be passed in a P2P manner between participants of a
session.

5.3 How to Compose Distributed Scenes?

How to compose a distributed scene with video streams originating from different
locations? The following sections present how to compose an entire scene using SMIL,
how participants may report behavior and parameters to master SMIL document and
how to allow adaptive datarate of objects in a distributed scene using rtpmap.

75

Composing Distributed 3D Scenes

5.3.1 SMIL Over MSRP

Figure 64: Protocol Layer Stack

Figure 64 shows the protocol stack when the transport of media is done using RTP/
UDP/IP, negotiation of MSRP sessions are done using SDP/SIP/TCP/IP and the ex-
change of scenes descriptions are done using MSRP/TCP/IP. The choice of MSRP
exclude UDP as a transport protocol for scene descriptions (MSRP requires a reliable
transport protocol).

MSRP gives a number of advantages compared to the SIP message method (listed
in Section 2.4). Shortly written MSRP sessions are negotiated via SDP "offers" and
corresponding "answers". The exchanges of "offer"/"answer" are done using SIP mes-
sages. MSRP may transfer instant messages and other MIME content over a transport
protocol (TCP is the only transport protocol supported by MSRP at the present time),
including SMIL documents. Set up of a MSRP session using SIP is quite similar to es-
tablishing a "normal" media session (see Figure 2). A SIP message with the following

76

Composing Distributed 3D Scenes

SDP media content line are sent as an offer. The port number is ignored, and replaced
with the MSRP address.

m=message 6666 MSRP *

Figure 65: SDP content
[9]

As Section 2.11.1 described, Gaim only support the SIP Message Method, not SIM-
PLE IM sessions where messages are transferred P2P between participants. Exchange
of SMIL documents using the Message Session Relay Protocol (MSRP) enables P2P
transfer of documents.

If the left@participant.com in Figure 53 wants to exchange a SMIL document to
right@participant.com he must first negotiate a MSRP session.

1. Left@participant.com sends an "offer" (Figure 66).

2. Right@participant.com "answers" (Figure 67).

3. Left@participant.com sends ACK to right@participant.com (Figure 68).

INVITE sip:right@participant.com SIP/2.0
To: <sip:right@participant.com>
From: <sip:left@participant.com>;tag=001
Call-ID: 1000ok1000
Content-Type: application/sdp
c=IN IP4 www.participant.com
m=message 6666 TCP/MSRP *
a=accept-types:text/plain
a=path:msrp://www.participant.com:6666/aghtR12gbh;tcp

Figure 66: Left@participant.com sending an "offer"

Now, the MSRP session is established and left@participant.com can send the SMIL
document to right@participant.com by telling that Content-type of the MRSP message
is application/smil (Figure 69).

Right@participant.com sends an OK message back to left@participant.com (Figure:
70) when he has received the SEND message. If the SEND message are contain-
ing a very large SMIL document, it may be partitioned into smaller messages called
"chunks" [9].

77

Composing Distributed 3D Scenes

SIP/2.0 200 OK
To: <sip:left@participant.com>;tag=101aa
From: <sip:right@participant.com>;tag=001
Call-ID: 1000ok1000
Content-Type: application/sdp
c=IN IP4 www.participant.com
m=message 12345 TCP/MSRP *
a=accept-types:text/plain
a=path:msrp://www.participant.com:12345/fgh53gds23;tcp

Figure 67: Right@participant.com sending an "answer" back to left@participant.com

ACK sip:right@participant.com SIP/2.0
To: <sip:right@participant.com>;tag=101aa
From: <sip:left@participant.com>;tag=001
Call-ID: 1000ok1000

Figure 68: SIP/SDP ACK

MSRP x1234567 SEND
To-Path: msrp://www.participant.com:12345/fgh53gds23;tcp
From-Path: msrp://www.participant.com:6666/aghtR12gbh;tcp
Message-ID: 77777
Byte-Range: y/x
Content-Type: application/smil

The content of this message is the first
"y" bytes of a total of "x" bytes of the
SMIL document
-----x1234567$

Figure 69: MSRP SEND

MSRP x1234567 200 OK
To-Path: msrp://www.participant.com:6666/aghtR12gbh;tcp
From-Path: msrp://www.participant.com:12345/fgh53gds23;tcp
Byte-Range: y/x
-----x1234567$

Figure 70: MSRP OK

Right@participant.com uses the same MSRP session to send "object descriptions" to
left@participant.com who is keeping track of the master SMIL document and updating
this when new information arrives.

78

Composing Distributed 3D Scenes

5.3.2 SMIL Over Gaim

When addressing the operation of the SIP/SIMPLE plugin some plugin specific func-
tions (see simple.c in the source code of Gaim in Appendix N) are referred to.

• Simple_im_send: Sending an instant message runs the next function

• Simple_send_message: Sending IM or "typing indicator" messages

• Send_sip_request: Translates the IM into a SIP request of the "MESSAGE"
type

• Sendout_pkt: Sends packets containing the "MESSAGE"

• Simple_process_incoming_message: Parsing incoming messaged. Finds out
what type of packet is incoming and who sent the packet.

• Send_sip_response: If the message contains content of the MIME type
"text/plain", "OK" responses are sent back to the "From".

• Simple_keep_alive: Keeps alive the connection when no packets are sent by
sending a UDP packet with 0 bytes.

To set up a SIP session, registering must take place using regular SIP messages:
send_sip_requests and send_sip_responses are interchanged by two Gaim
clients and the intervening servers. Transactions contain Via, From, To,
Max-Forwards, Cseq, User-Agent: Gaim SIP/SIMPLE Plugin,
Call-ID, Content-Length and Method type. Packets are sent over the signal-
ing route of the existing SIP session to another Gaim client (with address variable
GaimConnection *gc) using the sendout_pkt function. Figure 71 illustrates
the transfer of a single message over an established session. The sendout_pkt

function sends packets over a TCP or UDP connection.

79

Composing Distributed 3D Scenes

Figure 71: Gaim: Sending a message

80

Composing Distributed 3D Scenes

5.3.3 Object Descriptions

Object description in this context means description of several aspects concerning the
participation in a distributed scene. This description can tell for instance if the person
wants to move (change location) within the scene, etc. The master SMIL document has
to be updated with this new information and the participant must provide the necessary
information.

• Location of a participant inside a scene.

• Shape of a region.

• Media quality parameters, etc.

One way to handle this is to send small XML documents (content type:
application/xml) over the existing MSRP session with this information. This
XML document are then used to update the remote master SMIL document with new
preferences concerning the participant.

The following example uses XCAP (XML Configuration Access Protocol) to modify
a remote SMIL document using PUT, in particular the <region ... /> which is
referenced with an XPath URI. The <region ... /> keeps track of the location in
which the participant’s video stream are displayed.

PUT http://documenturl/smildocument.smil/smil/head/layout/
region HTTP/1.1

Content-Type: application/xml-fragment-body
<region id="participanta_region" left="80%" top="40%"

width="200" height="300" />

Figure 72: Region element modification

Synchronization problems may occur if several participants are allowed to write to the
same document. This problem may be solved if the participants may only modify a ref-
erenced document describing their own participation and the master SMIL document
is not writable by the participants.

Instead of using HTTP, the IM client can handle the SMIL document modification over
MSRP. The UML deployment diagram of Figure 73 describes this option.

81

Composing Distributed 3D Scenes

Figure 73: IM client handles the document modification

A proposal for a new address scheme, using ideas from XCAP and XPath (Section
2.13), may look like the example in Figure 74. The first part of the URI are changed to
the MSRP URL pointing at one and only one possible scene description. The second
part is pointing at nodes within the document. If several documents may be remotely
accessed, one possibility may be to include the filename of the document after the
MSRP URL.

"msrp://hostaddress:port/protection;transportprotocol"/smil
head/layout/region

Figure 74: New address

5.3.4 Multiparty Sessions

MSRP is a P2P protocol. To enable multiparty sessions all the participants needs to
establish MSRP sessions between each others (Figure 5.3.4). One of the users initiate
a conference room and this user thus becomes the "conference focus". This conference
room has its own SIP URI. Other participants may join this conference room (sending a
SIP INVITE request to the conference room). In order to exchange scene descriptions
between each others the participants need to [66]:

1. Obtain each others identities from a received "conference event package" from
the "conference focus".

2. Establish P2P sessions to each of the other participants.

82

Composing Distributed 3D Scenes

3. Send private messages containing scene descriptions to all the other participants.

In the following example (Figure 75) Participant 1 wants to update his region and sends
a Object Description to the other participants (to each of their respective MSRP URLs
over the existing MSRP sessions).

Figure 75: Participant 1 sending Object Descriptions

83

Composing Distributed 3D Scenes

5.3.5 Auto-stereoscopic 3D View

Using X3D and OpenGL. It’s possible to write auto-stereoscopic scenes in X3D as
the 3D graphics are rendered by OpenGL. When auto-stereoscopic X3D files are used
within SMIL only the part with X3D really looks three dimensional. A pair of LCD
glasses or similar is needed to watch the scene. Stereo cameras are rendered the same
way as with NVSG (Section 3.5):

1. "Set the geometry for the view from left human eye.

2. Set the left eye rendering buffers.

3. Render the left eye image.

4. Clear Z-buffer (if the same Z-buffer for left and right image is used).

5. Set the geometry for the view from right human eye.

6. Set the right eye rendering buffers.

7. Render the right eye image.

8. Swap buffers."

Stereoscopic OpenGL Tutorial [67]

5.3.6 Adaptive Datarate of Objects in a Scene

As mentioned in Section 3.7, the SMIL Streaming Media Object Module introduce the
possibility of describing properties of a RTP stream appearing in a SMIL document. A
media player need some parameters to understand the RTP data, these SDP parameters
may be merged into the actual SMIL document (details about this can be found in
"Integrating SDP Functionality Into SMIL" by Philipp Hoschka at W3C [68]).

Rtpmap allow dynamic video resolution or quality of audio according to constraints
on available bandwidth. To illustrate the use of rtpmap the part of the SMIL document
in Figure 76 is extended. The part of the document where a video stream is included is
extended with the ability to choose among a number of video streams with alternative
bitrates (Figure 77) [22].

84

Composing Distributed 3D Scenes

<video src="videosource.mpg" region="playedvideo" fit="fill"
repeatCount="indefinite" type="mpg" />

Figure 76: Without rtpmap: One quality level

The video stream "videosource.mpg" in this example may be changed to
"videosource.rtsp" imagined to be of type MPEG-2 (MIME type video/mpeg)
with available bitrates of payload="1", payload="2", payload="3" at (for
instance) 1150 kbps, 2000 kbps and 5000 kbps (VCD, SVCD and DVD quality).

<video src="rtp://www.videosource.com/videosource.rtsp"
port="1024-1026" transport="RTP/AVP" rtpformat="1,2,3"
region="playedvideo" fit="fill"
repeatCount="indefinite" >

<rtpmap payload="1" codec="mpv2"/>
<rtpmap payload="2" codec="mpv2"/>
<rtpmap payload="3" codec="mpv2"/>
</video>

Figure 77: With rtpmap: I.e. three quality levels

If the available bandwidth in network suddenly is reduced, the client can be forced to
reduce the rtpmap payload="3" to rtpmap payload="2". This is a way of
down scaling the content resolution when there is a lack of available network resources.
The transport type in this example is UDP over IPv4 (with port range from 1024 to
65535). Also worth mentioning is the transport="RTP/AVP" attribute telling
that the transport protocol is RTP/AVP, IETF’s Real-time Transport Protocol for the
Audio/Video profile over UDP [69].

5.3.7 Ambulant Playing SMIL Documents

To describe how a SMIL Client opens a document, Ambulant Player us used, despite
the current lack if support of other document standards like SVG and X3D. When
interacting through the GUI, a user may select to open an URI or a local document.
The application then need to get the document being opened, parse the document into
a Document Object Model (DOM) tree and create a player to play the DOM tree. The
player needs to know how to fetch the media data (video, audio streams, etc.) and
how to create windows and buttons. Ambulant 1.6.1 has two possibilities for opening

85

Composing Distributed 3D Scenes

Figure 78: Payload vs. available bandwidth

a document, opening an existing document with (MmDoc::OnOpenDocument) and
opening an URL with MmDoc::SetPathName. SMIL documents may be loaded by
Ambulant from several different sources:

• Create_from_file: Opens from SMIL document files.

• Create_from_string: The function reading from a SMIL source.

• Create_from_tree: Creates from a DOM tree.

• Create_from_url: Creates from a URL.

When users opens XML documents (with any kind of XML player), the player needs to
fetch the document and parse the document into a DOM tree. The player application
must be able to to play the DOM tree and possible media data referenced from the
XML, know how to create GUI buttons, windows, etc.

SMIL documents are opened by read_data_from_url and DOM trees are created
from the SMIL documents by create_from_string. A document object contain-
ing each DOM tree. A player object is then created by running create_smil2_player
together with the DOM, different factories and an embedder (embedding elements into
the document played on the screen). The player object is then implemented by the main
program. After the smil_player is implemented it needs to create its internal structures
to make playback enabled. To play SVG or X3D specific factories has to be developed
to handle rendering of these two kind of standards.

86

Composing Distributed 3D Scenes

There are a number of factories put together in a factories struct:

• Window_factory: The factory the player calls when it needs a window.

• Global_playable_factory: The object use to create media renderers.

• Datasource_factory: The functions that create datasources for media. Func-
tions

Playback is initiated by calling the start method of the player object. This pro-
cedure runs start in the scheduler which starts playing the root node of the DOM
tree. The scheduler sometimes needs things to be rendered. The scheduler then calls
a method new_playable from the global_playable_factory which passes the DOM
node to a bunch of factories to see if any of them can handle it and create a playable
for the object. Most of the times start is executed the renderer needs to get data
from a URL or a local source. The scheduler creates a datasource through the data-
source_factory object. The renderer asks the datasource when it needs something to be
drawn. The user interact by invoking a method called playable_notification
when he pushes a button (like pause) or by some other way interact with the player.

5.4 Conformance to Requirement Specification

It is difficult to state if the demands of the requirements specification met by the pro-
posal (using MSRP) without testing or simulating. Humans find 10-20ms to be an ac-
ceptable delay when expecting visual results of a response. That’s why end-to-end de-
lay caused by TCP’s retransmission of lost packets may become a problem in real-time
systems. The described proposal and Distributed Multimedia Plays Virtual Dinner [1]
uses RTP over UDP as the transport mechanism for streaming media, if a packet is lost
does not introduce any problems with UDP. On the other hand, MSRP needs a reliable
protocol in the underlying transport layer. Delays are critical for real-time scenes, in-
troducing some mechanisms is necessary avoid any problems and keeping the delays
low, or at least to keep the possibility of perceiving delays at a minimal level. One
approach may be to define larger transparent areas (in i.e. SMIL+SVG) surrounding
objects which are likely to movie. If a person object moves the transparent area will
handle the delay introduced by TCP in a neat fashion. Other "rules" are possible to
define for alternative situations.

87

Composing Distributed 3D Scenes

5.5 Section Summary

A requirement specification of a distributed system, and proposed models of a sys-
tem exchanging SMIL scene descriptions over MSRP sessions established with help
from SIP and SDP has been presented. Multiparty sessions are taking place over P2P
MSRP sessions between each participants (all-to-all). Rtpmap have been proposed as
a potential solution of handling adaptive bitrates of media content, enabling different
preconfigured levels of bitrates. How to exchange SMIL documents over existing ap-
plications (demonstrated with Gaim) and how SMIL documents are loaded and played
with Ambulant are also demonstrated, but it is vital to realize that Gaim does not
support MSRP or any kind of P2P message sessions, and Ambulant does not support
playback of either SVG or X3D documents.

88

Composing Distributed 3D Scenes

6 Discussion

When proposing answers to the questions in the description, a number of presupposi-
tions have to be made. These early stages of the process of proposing solutions, with
a number uncertainties, may come up with suggestions that may not be feasible or im-
plementable. Some of this uncertainties are discussed in this section of the Master’s
Thesis.

6.1 Protocols

SMIL document transport in a distributed scene system are preferred to be P2P be-
cause of the real-time nature of the distributed scene. To sum up the comparison of
SIP and XMPP (Section 2.6) it is obvious that XMPP excludes itself as a messenger
carrying entire SMIL scenes or small XML fragments with update information (ob-
ject descriptions). XMPP messages travel through a number of the intervening servers
introducing latencies. SIP allows MSRP sessions to be created between communicat-
ing entities (called peers or the participants of a distributed scene).MSRP allow i.e.
MIME content (SMIL or other kinds of XML documents included) to be included in
the message body. MSRP works over TCP as the transport layer protocol. A problem
due to real-time demands may be that TCP requires ACK messages to acknowledge
the receipt of packages. This problem may be possible to circumvent by making rules
for how often users can send new object descriptions or how the degree of importance
of the content of each MSRP packet containing an object description.

6.2 XML or Binary Scene Descriptions

One of the more important questions when establishing a real-time system is to ex-
change data in the most effective (fastest way), one of the simplest way to speed up
this factor is to use a lesser number of bytes (smaller size). Binary scene descrip-
tions are compressed in a number of ways, making it more effective than a regular ZIP
compression. Object descriptions, which is the most regular type of messages sent be-
tween peers of a distributed 3D scene, are short messages. The upper limit may often
be not more than 1000 bytes (using a short XML file as example). Creating a ZIP

89

Composing Distributed 3D Scenes

file (best compression) of such a file lowers the size to about 70%. Binary files add
some other compression schemes making the size even a bit smaller. But having high
capacity networks makes the time difference between passing such small files more or
less neglectable.

6.3 Scene Handling

Another way of handling scenes, compared to the P2P multiparty scheme in Section
5.3.4, may be to arrange a hub-like system with a master scene description kept and
updated by a single participant or a server (but still having P2P media streams be-
tween participants). This approach makes it necessary to download complete scene
descriptions quite more often in order to obtain the most recently updated scene de-
scription, and the documents passed between the hub center and the participants are
also larger. Another negative way with this approach is the vulnerability if the net-
work connection, hardware or software at the hub becomes inaccessible or damaged.
When using MSRP multiparty messages it is also possible to send messages from each
MSRP Client through a relay called MSRP Switch [66]. This MSRP Switch forwards
the message (containing i.e. an object description) to all the participants (the other
MSRP clients) which updates their own version of the scene descriptions.

6.4 Different Ways of Writing Scenes

Using SMIL as the base document is an effective way to handle regions with corre-
sponding media types (using SMIL or other kinds of referenced/embedded XML based
documents) and any time varying content. It is also possible to use SVG as the base
document (and reference SMIL when SMIL’s functions are needed) but this may be a
more bothersome approach. Which approach is taken does not result in any better per-
formance. The question if SVG or X3D documents should be referenced or embedded
may be answered in different ways. The performance when playing embedded com-
pared to referenced document are equal, but updating, keeping track of and manage
the scene in a structural way may seem better when the documents are referenced and
stored as separate files.

90

Composing Distributed 3D Scenes

6.5 Lack of Present Support

At the present point of time, no player support the latest versions of both SMIL, SVG
and X3D at the same time. X-Smiles [70] is tested, it supports a combination of SMIL,
SVG and X3D but uses an outdated SVG player (from August 2006, called CSIRO
SVG Toolkit). X3D is supported by an embedded version of Xj3D [71] and the SMIL
2.0 Basic Profile is also supported. Even though Xj3D is supposed to support full X3D,
another player (the Octaga Player [63]) was needed when testing X3D streaming video
played upon a 3D object. The ideal player which is not yet available should support
the latest versions of both SMIL, SVG and X3D.

As previously mentioned, SVG is not supporting any kind of streaming media. This
subject is under consideration by W3C [56]. Summarizing the lack of present support
concludes that the full integration of SVG and X3D with SMIL has been impossible to
test.

91

Composing Distributed 3D Scenes

7 Conclusion

The conclusion part answers the problems addressed in description in a short and con-
cise way as well as other important discoveries and achievements. The first part of
the Master’s Thesis carries out a review of 3D multiview, autostereoscopic object ori-
ented audiovisual scenes theory and practice. Seven theories (languages or standards)
are examined and the theory and practice of each of these theories are identified and
presented. Many of these theories have different targeted application areas, but a con-
cluding comparison chart presents the most important issues concerning these seven
theories.

The next part presents possible solutions of how to incorporate the currently lack-
ing possibilities of 3D, transparency and custom shapes into SMIL. Embedding inline
(the SMIL document) or referencing external SVG or X3D exploits these two stan-
dards’ features and makes them available through a SMIL document. All of these
three standards are easily integrated with each other by referencing their respective
XML namespaces. SVG and X3D have many features that may be interesting in dis-
tributed scenes, referencing these features avoids "reinvention of the wheel" by creat-
ing brand new SMIL namespaces with similar features. To be able to play the most
recent SMIL+SVG+X3D documents a (currently not supported) player application is
needed.

The last of the main parts of this Master’s Thesis is looking into composition of dis-
tributed scenes. Four questions are presented in the section introduction asking for
proposed solutions to issues like: What is to be designed? The requirement specifica-
tion. How will distributed scenes be composed? And if the proposals conform with the
requirement specification. Using SDP over SIP to establish MSRP sessions between
participants able to carry MIME contents (i.e. SMIL and other XML based docu-
ments) are one of the possibilities of managing exchange of scene descriptions and
scene updates. A consequence of this approach is that any problems introduced by us-
ing MSRP over TCP have to be taken care of, i.e. by defining special rules concerning
scene management.

93

Composing Distributed 3D Scenes

7.1 Future Works

• Develop an application able to generate scene descriptions, partially from an
initial SMIL document and partially from incoming XML/SMIL object descrip-
tions. This application (may be called a scene synthesizer) should also be able
to feed scene data to a SMIL player when updated versions of the scene are
available. (A Scene Synthesizer).

• Choose a SVG/X3D/SMIL player and develop a plugin making this player auto-
matically load incoming documents from a chosen instant message client. Also
create plugins to the instant message client to push documents (received over an
instant message session) to the SVG/X3D/SMIL player application.

• Create a MSRP over SIP plugin for an instant message client (Gaim [31]), and
carry out teletraffic measurements of the time needed for a SMIL/XML docu-
ment to traverse a network using this approach.

• Create factories or embed SVG or X3D players in Ambulant Player to make it
able to handle playback of SVG and/or X3D documents.

• Develop a set of special "rules" for scene exchange and object updating, making
exchange using MSRP over TCP a more effective method in relation to real-time
requirements and the contraints introduced by the reliable TCP protocol.

94

Composing Distributed 3D Scenes

References

[1] Leif Arne Rønningen. Distributed multimedia plays virtual dinner.
URL: http://www.item.ntnu.no/~leifarne/VirtualDinner4.
pdf

URL-date: March 27th, 2006.

[2] IETF. Rfc 2026, the internet standards process – revision 3 (best current prac-
tice).
URL: http://www.ietf.org/rfc/rfc2026.txt
URL-date: April 7th, 2006.

[3] SIP Forum. Sip forum.
URL: http://www.sipforum.org
URL-date: February 3rd, 2006.

[4] IETF. Session initiation protocol (sip) working group.
URL: http://www.ietf.org/html.charters/sip-charter.

html

URL-date: February 3rd, 2006.

[5] Javvin network management and security. Sip: Session initiation protocol.
URL: http://www.javvin.com/protocolSIP.html
URL-date: March 24th, 2006.

[6] e Multimedia. Sip (session initiation protocol).
URL: http://geocities.com/intro_to_multimedia/SIP/

index.html

URL-date: February 6th, 2006.

[7] IETF. Rfc 3428, session initiation protocol (sip) extension for instant messaging
(internet standards track protocol).
URL: http://www.ietf.org/rfc/rfc3428.txt
URL-date: March 24th, 2006.

[8] IETF. Rfc 2327, sdp: Session description protocol (internet standards track pro-
tocol).

95

http://www.item.ntnu.no/~leifarne/VirtualDinner4.pdf
http://www.item.ntnu.no/~leifarne/VirtualDinner4.pdf
http://www.ietf.org/rfc/rfc2026.txt
http://www.sipforum.org
http://www.ietf.org/html.charters/sip-charter.html
http://www.ietf.org/html.charters/sip-charter.html
http://www.javvin.com/protocolSIP.html
http://geocities.com/intro_to_multimedia/SIP/index.html
http://geocities.com/intro_to_multimedia/SIP/index.html
http://www.ietf.org/rfc/rfc3428.txt

Composing Distributed 3D Scenes

URL: http://www.ietf.org/rfc/rfc2327.txt
URL-date: February 10th, 2006.

[9] IETF. The message session relay protocol (internet-draft).
URL: http://www.ietf.org/internet-drafts/

draft-ietf-simple-message-sessions-14.txt

URL-date: April 5th, 2006.

[10] Internet Engineering Task Force. Internet-draft: Sip instant message sessions.
URL: http://www3.ietf.org/proceedings/01dec/I-D/

draft-ietf-simple-im-session-00.txt

URL-date: March 22nd, 2006.

[11] C. Jennings. Relay extensions for message sessions relay protocol (msrp).
URL: http://www.sipfoundry.org/msrp/

draft-ietf-simple-msrp-relays-07.txt

URL-date: May 30th, 2006.

[12] IETF. Rfc 3920, extensible messaging and presence protocol (xmpp): Core (in-
ternet standards track protocol).
URL: http://www.ietf.org/rfc/rfc3920.txt
URL-date: March 10th, 2006.

[13] Internet Engineering Task Force. Extensible messaging and presence protocol
(xmpp): Instant messaging and presence.
URL: http://www.ietf.org/rfc/rfc3921.txt
URL-date: May 5th, 2006.

[14] Jabber Inc. Architectural considerations for presence and instant messaging
infrastructure - comparing xmpp and sip/simple.
URL: http://www.jabber.com/index.cgi?CONTENT_ID=

55&VMX_TRACKED=YES

URL-date: March 17th.

[15] Cathleen Moore. Xmpp vs simple: The race for messaging standards.
URL: http://www.infoworld.com/article/03/05/23/

21FExmpp_2.html

URL-date: March 17th, 2006.

96

http://www.ietf.org/rfc/rfc2327.txt
http://www.ietf.org/internet-drafts/draft-ietf-simple-message-sessions-14.txt
http://www.ietf.org/internet-drafts/draft-ietf-simple-message-sessions-14.txt
http://www3.ietf.org/proceedings/01dec/I-D/draft-ietf-simple-im-session-00.txt
http://www3.ietf.org/proceedings/01dec/I-D/draft-ietf-simple-im-session-00.txt
http://www.sipfoundry.org/msrp/draft-ietf-simple-msrp-relays-07.txt
http://www.sipfoundry.org/msrp/draft-ietf-simple-msrp-relays-07.txt
http://www.ietf.org/rfc/rfc3920.txt
http://www.ietf.org/rfc/rfc3921.txt
http://www.jabber.com/index.cgi?CONTENT_ID=55&VMX_TRACKED=YES
http://www.jabber.com/index.cgi?CONTENT_ID=55&VMX_TRACKED=YES
http://www.infoworld.com/article/03/05/23/21FExmpp_2.html
http://www.infoworld.com/article/03/05/23/21FExmpp_2.html

Composing Distributed 3D Scenes

[16] International Organization for Standardization. Open system interconnection -
basic reference model.
URL: http://standards.iso.org/ittf/

PubliclyAvailableStandards/s020269_ISO_IEC_7498-1_

1994(E).zip

URL-date: June 4th, 2006.

[17] Wikipedia. User datagram protocol.
URL: http://en.wikipedia.org/wiki/User_Datagram_

Protocol

URL-date: June 4th, 2006.

[18] Wikipedia. Transmission control protocol.
URL: http://en.wikipedia.org/wiki/Transmission_

Control_Protocol

URL-date: June 4th, 2006.

[19] Wikipedia. Real-time transport protocol.
URL: http://en.wikipedia.org/wiki/Real-time_Transport_
Protocol

URL-date: March 27th, 2006.

[20] Wikipedia. Real-time streaming protocol.
URL: http://en.wikipedia.org/wiki/Real_Time_Streaming_
Protocol

URL-date: March 27th, 2006.

[21] Wikipedia. Real-time transport control protocol.
URL: http://en.wikipedia.org/wiki/Real_time_control_

protocol

URL-date: March 27th, 2006.

[22] Philipp Hoschka and Rob Lanphier. The smil streaming media object module.
URL: http://www.w3.org/TR/2000/WD-smil-boston-20000622/
streaming-media-object.html

URL-date: March 24th, 2006.

97

http://standards.iso.org/ittf/PubliclyAvailableStandards/s020269_ISO_IEC_7498-1_1994(E).zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/s020269_ISO_IEC_7498-1_1994(E).zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/s020269_ISO_IEC_7498-1_1994(E).zip
http://en.wikipedia.org/wiki/User_Datagram_Protocol
http://en.wikipedia.org/wiki/User_Datagram_Protocol
http://en.wikipedia.org/wiki/Transmission_Control_Protocol
http://en.wikipedia.org/wiki/Transmission_Control_Protocol
http://en.wikipedia.org/wiki/Real-time_Transport_Protocol
http://en.wikipedia.org/wiki/Real-time_Transport_Protocol
http://en.wikipedia.org/wiki/Real_Time_Streaming_Protocol
http://en.wikipedia.org/wiki/Real_Time_Streaming_Protocol
http://en.wikipedia.org/wiki/Real_time_control_protocol
http://en.wikipedia.org/wiki/Real_time_control_protocol
http://www.w3.org/TR/2000/WD-smil-boston-20000622/streaming-media-object.html
http://www.w3.org/TR/2000/WD-smil-boston-20000622/streaming-media-object.html

Composing Distributed 3D Scenes

[23] Wikipedia. Multipurpose internet mail extensions (mime).
URL: http://en.wikipedia.org/wiki/MIME
URL-date: March 24th, 2006.

[24] IETF. Rfc 2045, multipurpose internet mail extensions (mime) part one: Format
of internet message bodies (internet standards track protocol).
URL: http://www.ietf.org/rfc/rfc2045.txt
URL-date: March 24th, 2006.

[25] SourceForge. Ambulant.
URL: http://sourceforge.net/search/?words=

ambulant&type_of_search=soft

URL-date: April 21st, 2006.

[26] W3C. Synchronized multimedia integration language (smil 2.1).
URL: http://www.w3.org/TR/SMIL2/
URL-date: May 30th, 2006.

[27] Wikipedia. Cascading style sheets.
URL: http://en.wikipedia.org/wiki/Cascading_style_

sheets

URL-date: May 4th, 2006.

[28] Wikipedia. Xhtml.
URL: http://en.wikipedia.org/wiki/Xhtml
URL-date: May 30th, 2006.

[29] The Ambulant team. Why a new smil player.
URL: http://www.cwi.nl/projects/Ambulant/Why.html
URL-date: February 1st, 2006.

[30] The Ambulan team. Ambulant design documentation.
URL: http://www.cwi.nl/projects/Ambulant/Docs/

ambulantdesign.pdf

URL-date: February 2nd, 2006.

[31] Gaim. Gaim.
URL: http://www.w3.org/TR/xlink/
URL-date: May 27th, 2006.

98

http://en.wikipedia.org/wiki/MIME
http://www.ietf.org/rfc/rfc2045.txt
http://sourceforge.net/search/?words=ambulant&type_of_search=soft
http://sourceforge.net/search/?words=ambulant&type_of_search=soft
http://www.w3.org/TR/SMIL2/
http://en.wikipedia.org/wiki/Cascading_style_sheets
http://en.wikipedia.org/wiki/Cascading_style_sheets
http://en.wikipedia.org/wiki/Xhtml
http://www.cwi.nl/projects/Ambulant/Why.html
http://www.cwi.nl/projects/Ambulant/Docs/ambulantdesign.pdf
http://www.cwi.nl/projects/Ambulant/Docs/ambulantdesign.pdf
http://www.w3.org/TR/xlink/

Composing Distributed 3D Scenes

[32] Inc Linspire. Phonegaim: The all-in-one instant messaging and internet calling
solution.
URL: http://www.phonegaim.com
URL-date: May 17th, 2006.

[33] Google. Summer of code 2005.
URL: http://code.google.com/summerofcode05.html
URL-date: May 16th, 2006.

[34] Inc Free Software Foundation. Gnu general public license.
URL: http://www.gnu.org/licenses/gpl.html
URL-date: May 16th, 2006.

[35] W3C. Extensible markup language (xml) 1.1.
URL: http://www.w3.org/TR/2004/REC-xml11-20040204/
URL-date: May 22nd, 2006.

[36] J. Rosenberg. The extensible markup language (xml) configuration access
protocol (xcap).
URL: http://www.jdrosen.net/papers/

draft-ietf-simple-xcap-10.txt, May 30th, 2006.

[37] W3C. Xml path language (xpath).
URL: http://www.w3.org/TR/xpath
URL-date: May 30th, 2006.

[38] Wikipedia. Scene graph.
URL: http://en.wikipedia.org/wiki/Scene_graph
URL-date: April 25th, 2006.

[39] University of North Carolina at Chapel Hill The Writing Center. Reviews.
URL: http://www.unc.edu/depts/wcweb/handouts/review.

html

URL-date: May 28th, 2006.

[40] Web3D Consortium. X3d.
URL: http://www.web3d.org
URL-date: April 23rd, 2006.

99

http://www.phonegaim.com
http://code.google.com/summerofcode05.html
http://www.gnu.org/licenses/gpl.html
http://www.w3.org/TR/2004/REC-xml11-20040204/
http://www.jdrosen.net/papers/draft-ietf-simple-xcap-10.txt
http://www.jdrosen.net/papers/draft-ietf-simple-xcap-10.txt
http://www.w3.org/TR/xpath
http://en.wikipedia.org/wiki/Scene_graph
http://www.unc.edu/depts/wcweb/handouts/review.html
http://www.unc.edu/depts/wcweb/handouts/review.html
http://www.web3d.org

Composing Distributed 3D Scenes

[41] ISO/IEC. The virtual reality modeling language - international standard iso/iec
14772-1:1997.
URL: http://tecfa.unige.ch/guides/vrml/vrml97/spec
URL-date: April 24th, 2006.

[42] Don Brutzman. Extensible 3d (x3d) specification document type definition (dtd)
x3d-3.0.dtd.
URL: http://www.web3d.org/specifications/x3d-3.0.dtd
URL-date: April 24th, 2006.

[43] Web3D Consortium. Mpeg-4 interactive profile.
URL: http://www.web3d.org/x3d/specifications/

ISO-IEC-19775-X3DAbstractSpecification/Part01/

MPEG-4interactive.html

URL-date: April 24th, 2006.

[44] W3C. Scalable vector graphics (svg).
URL: http://www.w3.org/Graphics/SVG
URL-date: April 25th, 2006.

[45] nVIDIA. developer.nvidia.com.
URL: http://developer.nvidia.com/object/nvsg_home.html
URL-date: April 25th, 2006.

[46] Leandro Motta Barros. A short introduction to the basic principles of the open
scene graph.
URL: http://www.cscience.org/~lmb/OSG/

ASIttBPoOSG--02005-10-23.pdf

URL-date: April 27th, 2006.

[47] OSG Community. Open scene graph.
URL: http://www.openscenegraph.org
URL-date: April 27th, 2006.

[48] Matrox. Matrox parhelia precision sdt.
URL: http://www.matrox.com/mga/workstation/3dws/

products/special/sdt_technology.cfm

URL-date: April 27th, 2006.

100

http://tecfa.unige.ch/guides/vrml/vrml97/spec
http://www.web3d.org/specifications/x3d-3.0.dtd
http://www.web3d.org/x3d/specifications/ISO-IEC-19775-X3DAbstractSpecification/Part01/MPEG-4interactive.html
http://www.web3d.org/x3d/specifications/ISO-IEC-19775-X3DAbstractSpecification/Part01/MPEG-4interactive.html
http://www.web3d.org/x3d/specifications/ISO-IEC-19775-X3DAbstractSpecification/Part01/MPEG-4interactive.html
http://www.w3.org/Graphics/SVG
http://developer.nvidia.com/object/nvsg_home.html
http://www.cscience.org/~lmb/OSG/ASIttBPoOSG--02005-10-23.pdf
http://www.cscience.org/~lmb/OSG/ASIttBPoOSG--02005-10-23.pdf
http://www.openscenegraph.org
http://www.matrox.com/mga/workstation/3dws/products/special/sdt_technology.cfm
http://www.matrox.com/mga/workstation/3dws/products/special/sdt_technology.cfm

Composing Distributed 3D Scenes

[49] Planar. Sd1710.
URL: http://www.planar.com/Products/flatpanel_

monitors/stereoscopic/stereoscopic.cfm

URL-date: April 27th, 2006.

[50] W3C. Synchronized multimedia.
URL: http://www.w3.org/AudioVideo/
URL-date: June 10th, 2006.

[51] Wikibooks. Xml: Managing data exchange/smil.
URL: http://en.wikibooks.org/wiki/SMIL
URL-date: February 6th, 2006.

[52] Patrick Schmitz Warner ten Kate, Ted Wugofski. Synchronized multimedia
integration language (smil) modules.
URL: http://www.w3.org/TR/2000/WD-smil-boston-20000622/
smil-modules.html

URL-date: March 27th, 2006.

[53] Cyril Concolato. Mpeg-4 laser white paper.
URL: http://www.chiariglione.org/mpeg/technologies/

mp04-lsr

URL-date: April 27th, 2006.

[54] ISO/IEC. Call for proposals for lightweight scene representation.
URL: http://www.comelec.enst.fr/~dufourd/laser/laser_

saf_call.htm#_Toc58987152

URL-date: May 4th, 2006.

[55] W3C. Scalable vector graphics specification: Clipping, masking and composit-
ing.
URL: http://www.w3.org/TR/SVG/masking.html#

ObjectAndGroupOpacityProperties

URL-date: May 8th, 2006.

[56] W3C. Streaming (svg 1.2).
URL: http://www.w3.org/TR/2004/WD-SVG12-20041027/

101

http://www.planar.com/Products/flatpanel_monitors/stereoscopic/stereoscopic.cfm
http://www.planar.com/Products/flatpanel_monitors/stereoscopic/stereoscopic.cfm
http://www.w3.org/AudioVideo/
http://en.wikibooks.org/wiki/SMIL
http://www.w3.org/TR/2000/WD-smil-boston-20000622/smil-modules.html
http://www.w3.org/TR/2000/WD-smil-boston-20000622/smil-modules.html
http://www.chiariglione.org/mpeg/technologies/mp04-lsr
http://www.chiariglione.org/mpeg/technologies/mp04-lsr
http://www.comelec.enst.fr/~dufourd/laser/laser_saf_call.htm#_Toc58987152
http://www.comelec.enst.fr/~dufourd/laser/laser_saf_call.htm#_Toc58987152
http://www.w3.org/TR/SVG/masking.html#ObjectAndGroupOpacityProperties
http://www.w3.org/TR/SVG/masking.html#ObjectAndGroupOpacityProperties
http://www.w3.org/TR/2004/WD-SVG12-20041027/streaming.html
http://www.w3.org/TR/2004/WD-SVG12-20041027/streaming.html

Composing Distributed 3D Scenes

streaming.html

URL-date: May 27th, 2006.

[57] Adobe Systems Incorporated. Adobe Premiere Pro User Guide for Windows.
Adobe, 2003.

[58] Wikipedia. Alpha blending.
URL: http://en.wikipedia.org/wiki/Alpha_blending
URL-date: February 1st, 2006.

[59] Real Networks. Realnetworks production guide.
URL: http://service.real.com/help/library/guides/

realone/ProductionGuide/HTML/htmfiles/cliptags.htm#

178848

URL-date: March 29th, 2006.

[60] Web3D Consortium. Extensible 3d (x3d), part 1: Architecture and base
components, 18 texturing component.
URL: http://www.web3d.org/x3d/specifications/

ISO-IEC-19775-X3DAbstractSpecification

URL-date: May 5th, 2006.

[61] W3C. Scalable vector graphics specification.
URL: http://www.w3.org/TR/SVG/index.html
URL-date: May 4th, 2006.

[62] Web3D Consortium. Xj3d implementation status.
URL: http://www.xj3d.org/status.html
URL-date: June 5th, 2006.

[63] Octaga AS. Octaga player.
URL: http://www.octaga.com/
URL-date: June 5th, 2006.

[64] Leif Arne Rønningen. Multimedia home space.
Graceful Handover between Mobile and Fixed Networks – Scenario 2016.

[65] Marting Fowler with Kendall Scott. UML Distilled Second Edition, A Brief Guide

to the Standard Object Modelling Language. Addison-Wesley, 2000.

102

http://www.w3.org/TR/2004/WD-SVG12-20041027/streaming.html
http://www.w3.org/TR/2004/WD-SVG12-20041027/streaming.html
http://www.w3.org/TR/2004/WD-SVG12-20041027/streaming.html
http://en.wikipedia.org/wiki/Alpha_blending
http://service.real.com/help/library/guides/realone/ProductionGuide/HTML/htmfiles/cliptags.htm#178848
http://service.real.com/help/library/guides/realone/ProductionGuide/HTML/htmfiles/cliptags.htm#178848
http://service.real.com/help/library/guides/realone/ProductionGuide/HTML/htmfiles/cliptags.htm#178848
http://www.web3d.org/x3d/specifications/ISO-IEC-19775-X3DAbstractSpecification
http://www.web3d.org/x3d/specifications/ISO-IEC-19775-X3DAbstractSpecification
http://www.w3.org/TR/SVG/index.html
http://www.xj3d.org/status.html
http://www.octaga.com/

Composing Distributed 3D Scenes

[66] IETF. Multi-party instant message (im) sessions using the message session relay
protocol (msrp).
URL: http://www1.ietf.org/internet-drafts/

draft-niemi-simple-chat-04.txt

URL-date: June 7th, 2006.

[67] GALI-3D. Stereoscopic opengl tutorial.
URL: http://www.gali-3d.com/
URL-date: June 7th, 2006.

[68] W3C Philipp Hoschka. Integrating sdp functionality into smil.
URL: http://www.w3.org/AudioVideo/1998/08/

draft-hoschka-smilsdp-01

URL-date: February 10th, 2006.

[69] IETF. Framing rtp and rtcp packets over connection-oriented transport.
URL: http://www.ietf.org/internet-drafts/

draft-ietf-avt-rtp-framing-contrans-06.txt

URL-date: May 23rd, 2006.

[70] X-Smiles.org et.al. X-smiles, an open xml-browser for exotic devices.
URL: http://www.xsmiles.org
URL-date: May 4th, 2006.

[71] Web3D Consortium. Xj3d.
URL: http://www.xj3d.org
URL-date: May 8th, 2006.

[72] Wikipedia. Namespace.
URL: http://en.wikipedia.org/wiki/Namespace
URL-date: February 7th, 2006.

[73] Softpedia. Gaim 2.0.0 beta 3.
URL: http://www.softpedia.com/get/Internet/Chat/

Instant-Messaging/Gaim-for-Windows.shtml

URL-date: April 26th, 2006.

[74] IETF. Rfc3261, sip: Session initiation protocol (internet standards track proto-
col).

103

http://www1.ietf.org/internet-drafts/draft-niemi-simple-chat-04.txt
http://www1.ietf.org/internet-drafts/draft-niemi-simple-chat-04.txt
http://www.gali-3d.com/
http://www.w3.org/AudioVideo/1998/08/draft-hoschka-smilsdp-01
http://www.w3.org/AudioVideo/1998/08/draft-hoschka-smilsdp-01
http://www.ietf.org/internet-drafts/draft-ietf-avt-rtp-framing-contrans-06.txt
http://www.ietf.org/internet-drafts/draft-ietf-avt-rtp-framing-contrans-06.txt
http://www.xsmiles.org
http://www.xj3d.org
http://en.wikipedia.org/wiki/Namespace
http://www.softpedia.com/get/Internet/Chat/Instant-Messaging/Gaim-for-Windows.shtml
http://www.softpedia.com/get/Internet/Chat/Instant-Messaging/Gaim-for-Windows.shtml

Composing Distributed 3D Scenes

URL: http://www.ietf.org/rfc/rfc3261.txt
URL-date: February 6th, 2006.

[75] The Ambulant team. Ambulant open smil player.
URL: http://www.cwi.nl/projects/Ambulant
URL-date: May 18th, 2006.

[76] Microsoft. Microsoft windows xp professional sp2.
URL: http://www.microsoft.com/windowsxp/pro/default.

mspx

URL-date: May 18th, 2006.

[77] Christian Schenk. Miktex.
URL: http://www.miktex.org
URL-date: May 18th, 2006.

[78] LaTeX project team. Latex.
URL: http://www.latex-project.org
URL-date: May 18th, 2006.

[79] ToolsCenter.org. Texniccenter.
URL: http://www.toolscenter.org
URL-date: May 18th, 2006.

[80] Microsoft. Microsoft office visio professional 2003 sp2.
URL: http://office.microsoft.com/en-us/FX010857981033.
aspx

URL-date: May 18th, 2006.

[81] Bjarke Viksoe. Gmail drive shell extension.
URL: http://www.viksoe.dk/code/gmail.htm
URL-date: May 18th, 2006.

[82] Corel Corporation. Corel paint shop pro x.
URL: http://www.corel.com/servlet/Satellite?pagename=

Corel3/Products/Display&pid=1047025487586

URL-date: May 18th, 2006.

104

http://www.ietf.org/rfc/rfc3261.txt
http://www.cwi.nl/projects/Ambulant
http://www.microsoft.com/windowsxp/pro/default.mspx
http://www.microsoft.com/windowsxp/pro/default.mspx
http://www.miktex.org
http://www.latex-project.org
http://www.toolscenter.org
http://office.microsoft.com/en-us/FX010857981033.aspx
http://office.microsoft.com/en-us/FX010857981033.aspx
http://www.viksoe.dk/code/gmail.htm
http://www.corel.com/servlet/Satellite?pagename=Corel3/Products/Display&pid=1047025487586
http://www.corel.com/servlet/Satellite?pagename=Corel3/Products/Display&pid=1047025487586

Composing Distributed 3D Scenes

[83] Bruce B. Lowekamp David A. Bryan and Cullen Jennings. Sosimple: A
serverless, standards-based, p2p sip communication system.
URL: http://www.cs.wm.edu/~bryan/pubs/

bryan-AAA-IDEA2005.pdf

URL-date: April 4th, 2006.

[84] Wikipedia. Distributed hash table.
URL: http://en.wikipedia.org/wiki/Distributed_Hash_

Table

URL-date: April 4th, 2006.

[85] Wikipedia. Directed acyclic graph.
URL: http://en.wikipedia.org/wiki/Directed_acyclic_

graph

URL-date: April 27th, 2006.

[86] Jonathan Rosenberg. Xcap tutorial.
URL: www.jdrosen.net/papers/xcap-tutorial.ppt
URL-date: May 30th, 2006.

[87] IETF. Sctp as a transport for sip.
URL: http://www3.ietf.org/proceedings/02mar/I-D/

draft-ietf-sip-sctp-01.txt

URL-date: June 4th, 2006.

105

http://www.cs.wm.edu/~bryan/pubs/bryan-AAA-IDEA2005.pdf
http://www.cs.wm.edu/~bryan/pubs/bryan-AAA-IDEA2005.pdf
http://en.wikipedia.org/wiki/Distributed_Hash_Table
http://en.wikipedia.org/wiki/Distributed_Hash_Table
http://en.wikipedia.org/wiki/Directed_acyclic_graph
http://en.wikipedia.org/wiki/Directed_acyclic_graph
www.jdrosen.net/papers/xcap-tutorial.ppt
http://www3.ietf.org/proceedings/02mar/I-D/draft-ietf-sip-sctp-01.txt
http://www3.ietf.org/proceedings/02mar/I-D/draft-ietf-sip-sctp-01.txt

Composing Distributed 3D Scenes

A Appendix: SMIL, SVG and X3D Documents

Referenced SMIL, SVG and X3D documents with pictures referenced inside from
inside the respective documents are presented in this Appendix.

A.1 SVG Documents

A.1.1 Persona.svg

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">

<svg width="500" height="500" viewBox="0 0 500 500"
xmlns="http://www.w3.org/2000/svg" version="1.1"
xmlns:xlink="http://www.w3.org/1999/xlink">

<desc>Person A(persona)</desc>
<defs>

<clipPath id="persona">
<polygon points="50,40 66,35 84,35 100,40

100,60 84,70 100,75 110,75 130,170
110,170 130,300 90,300 75,225
60,300 20,300 40,170 20,170
40,75 50,75 66,70 50,60"/>

</clipPath>
</defs>
<g clip-path="url(#persona)" visibility="visible"

opacity="1.0" >
<g>

<image x="0" y="0" width="500" height="500"
xlink:href="personb.png"/>

</g>
</g>

</svg>

Figure 79: Persona.svg

I

Composing Distributed 3D Scenes

A.1.2 Personb.svg

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">

<svg width="500" height="500" viewBox="0 0 500 500"
xmlns="http://www.w3.org/2000/svg" version="1.1"
xmlns:xlink="http://www.w3.org/1999/xlink">

<desc>Person B(personb)</desc>
<defs>

<clipPath id="personb">
<polygon points="50,40 66,35 84,35 100,40

100,60 84,70 100,75 110,75 130,170
110,170 130,300 90,300 75,225
60,300 20,300 40,170 20,170
40,75 50,75 66,70 50,60"/>

</clipPath>
</defs>
<g clip-path="url(#personb)" visibility="visible"

opacity="1.0" >
<g>

<image x="0" y="0" width="500" height="500"
xlink:href="personb.png"/>

</g>
</g>

</svg>

Figure 80: Personb.svg

II

Composing Distributed 3D Scenes

A.1.3 Window.svg

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="500" height="500" viewBox="0 0 500 500"

xmlns="http://www.w3.org/2000/svg" version="1.1"
xmlns:xlink="http://www.w3.org/1999/xlink">

<desc>A cloudy and blue sky (sky.png) is seen
outside thin white curtains with green dots
on them (curtaincoordinates)

</desc>
<!- Background sky->
<image x="0" y="0" width="200" height="200"

xlink:href="sky.png"/>
<defs>

<clipPath id="curtaincoordinates">
<polygon stroke="black" stroke-width="1"

points="0,0 200,0 200,200 175,200
185,120 100,10 15,120 25,200 0,200" />

</clipPath>
<clipPath id="skycoordinates">

<polygon stroke="black" stroke-width="0"
points="175,200 185,120 100,10
15,120 25,200" />

</clipPath>
</defs>
<g clip-path="url(#curtaincoordinates)"

visibility="visible" opacity=".8" >
<g id="curtains">

<image x="0" y="0" width="200" height="200"
xlink:href="curtains.png"/>

</g>
</g>

</svg>

Figure 81: Window.svg

III

Composing Distributed 3D Scenes

A.2 X3D Documents

A.2.1 Boxtable.x3d

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE X3D PUBLIC "ISO//Web3D//DTD X3D 3.0//EN"

"http://www.web3d.org/specifications/x3d-3.0.dtd">

<X3D version=’3.1’ profile=’Immersive’
xmlns:xsd=’http://www.w3.org/2001/XMLSchema-instance’
xsd:noNamespaceSchemaLocation=

’http://www.web3d.org/specifications/x3d-3.1.xsd’>
<head>

<meta name=’filename’ content=’x3dcube.x3d’/>
</head>
<Scene>

<NavigationInfo type=’"EXAMINE" "WALK" "FLY" "ANY"’
transitionType=’"ANIMATE"’ transitionTime=’1.0’
transitionComplete=”/>

<Shape>
<Appearance>

<Material/>
<ImageTexture url=’ "bordtexture.png"

"bordtexture.png" ’/>
</Appearance>
<IndexedFaceSet colorPerVertex=’false’

creaseAngle=’0.5’ coordIndex=’0 1 3 2 -1 4 5 7 6
-1 6 7 1 0 -1 2 3 5 4 -1 6 0 2 4 -1 1 7 5 3 -1’
texCoordIndex=’0 1 3 2 -1 0 1 3 2 -1 0 1 3 2 -1 0
1 3 2 -1 0 1 3 2 -1 0 1 3 2 -1’>
<Color color=’0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0’/>
<Coordinate point=’-2 1 1 -2 -1 1 2 1 1 2 -1 1 2 1
-1 2 -1 -1 -2 1 -1 -2 -1 -1’/>
<TextureCoordinate point=’0 1 0 0 1 1 1 0’/>

</IndexedFaceSet>
</Shape>

</Scene>
</X3D>

Figure 82: Boxtable.x3d

IV

Composing Distributed 3D Scenes

A.3 Pictures Used in Documents

These are the referenced images in Section 4.1.4.

Figure 83: Referenced images

V

Composing Distributed 3D Scenes

A.4 SMIL documents

A.4.1 Embeddedinline.smil

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE smil PUBLIC "-//W3C//DTD SMIL 2.0//EN"

"http://www.w3.org/2001/SMIL20/SMIL20.dtd">

<!- Namespaces: SMIL, SVG and X3D. A player supporting all

three standards are needed. Try X-Smiles -!>

<smil xmlns="http://www.w3.org/2001/SMIL20/Language"

xmlns:svg="http://www.w3.org/2000/svg" version="1.1"

xmlns:xlink="http://www.w3.org/1999/xlink"

xmlns:xsd="http://www.w3.org/2001/XMLSchema-instance"

xsd:noNamespaceSchemaLocation="http://www.web3d.org/

specifications/x3d-3.1.xsd">

<head>

<layout>

<root-layout width="1024" height="768" />

<region id="background_region" left="0%" top="0%"

z-index="1" />

<region id="svgpersona_region" left="85%" top="45%"

width="150 "height="300" />

<region id="svgpersonb_region" left="15%" top="45%"

width="150" height="300" />

<region id="flatscreen_region" left="25%" top="15%"

width="300" height="200" z-index="20"/>

<region id="playedvideo" left="27%" top="17%"

width="270" height="170" z-index="30"/>

<region id="window_region" left="75%" top="20%"

width="200" height="200" />

<region id="boxtable_region" left="45%" top="70"

width="300" height="100" />

</layout>

</head>

<body>

<!- All the objects are displayed in parallel and starts

simultaneously -!>

VI

Composing Distributed 3D Scenes

<par>

<!- SMIL, Background image, wall and floor -!>

<img src="background.png" region="background_region"

fit="fill" dur="indefinite"/>

<!- SVG, Person A -!>

<svg:svg region="svgpersona_region">

<svg:desc>Person A(persona)

</svg:desc>

<svg:defs>

<svg:clipPath id="persona">

<svg:polygon points="50,40 66,35 84,35 100,40 100,60

84,70 100,75 110,75 130,170 110,170 130,300

90,300 75,225 60,300 20,300 40,170 20,170

40,75 50,75 66,70 50,60"/>

</svg:clipPath>

</svg:defs>

<svg:g clip-path="url(#persona)" visibility="visible"

opacity="1.0">

<svg:g>

<svg:image x="0" y="0" width="500" height="500"

xlink:href="personA.mpg" />

</svg:g>

</svg:g>

</svg:svg>

<!- SVG, Person B. Has the same shape as Person A -!>

<svg:svg region="svgpersonb_region">

<svg:desc>Person B(personb)

</svg:desc>

<svg:defs>

<svg:clipPath id="personb">

<svg:polygon points="50,40 66,35 84,35 100,40 100,60

84,70 100,75 110,75 130,170 110,170 130,300

90,300 75,225 60,300 20,300 40,170 20,170

40,75 50,75 66,70 50,60"/>

</svg:clipPath>

</svg:defs>

<svg:g clip-path="url(#personb)" visibility="visible"

VII

Composing Distributed 3D Scenes

opacity="1.0">

<svg:g>

<svg:image x="0" y="0" width="500" height="500"

xlink:href="personB.mpg" />

</svg:g>

</svg:g>

</svg:svg>

<!- X3D, Table / box on the floor-!>

<xsd:X3D region="boxtable_region" version=’3.1’

profile=’Immersive’ >

<xsd:head>

</xsd:head>

<xsd:Scene>

<xsd:Shape>

<xsd:Box/>

<xsd:Appearance>

<xsd:ImageTexture url=’bordtexture.png’/>

</xsd:Appearance>

</xsd:Shape>

</xsd:Scene>

</xsd:X3D>

<!- SMIL, A TV playing a video stream. The z-indexes stacks

the video upon the image of a TV box -!>

<img src="flatscreen.png" region="flatscreen_region"

fit="fill" dur="indefinite" />

<video src="videosource.mpg" region="playedvideo" fit="fill"

repeatCount="indefinite" type="mpg" />

<!- SVG, A transparent window with a clouded sky on the

outside -!>

<svg:svg region="window_region">

<svg:desc>A cloudy and blue sky (sky.png) is seen outside

thin white curtains with green dots on them

</svg:desc>

<!- Background sky->

<svg:image x="0" y="0" width="200" height="200"

xlink:href="sky.png"/>

<svg:defs>

VIII

Composing Distributed 3D Scenes

<svg:clipPath id="curtaincoordinates">

<svg:polygon stroke="black" stroke-width="1"

points="0,0 200,0 200,200 175,200 185,120

100,10 15,120 25,200 0,200" />

</svg:clipPath>

<svg:clipPath id="skycoordinates">

<svg:polygon stroke="black" stroke-width="0"

points="175,200 185,120 100,10

15,120 25,200" />

</svg:clipPath>

</svg:defs>

<svg:g clip-path="url(#curtaincoordinates)"

visibility="visible" opacity=".8" >

<svg:g id="curtains">

<svg:image x="0" y="0" width="200" height="200"

xlink:href="curtains.png"/>

</svg:g>

</svg:g>

</svg:svg>

</par>

</body>

</smil>

Table 5: Embeddedinline.smil

A.4.2 Referenced.smil

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE smil PUBLIC "-//W3C//DTD SMIL 2.0//EN"

"http://www.w3.org/2001/SMIL20/SMIL20.dtd">

<!- Namespaces referenced in linked documents are

SVG and X3D. A player supporting all three

standards are needed. ->

<smil xmlns="http://www.w3.org/2001/SMIL20/Language">

<head>

<layout>

<root-layout width="1024" height="768" />

IX

Composing Distributed 3D Scenes

<region id="background_region" left="0%" top="0%"

z-index="1"/>

<region id="svgpersona_region" left="85%" top="45%"

width="150" height="300" />

<region id="svgpersonb_region" left="15%" top="45%"

width="150" height="300" />

<region id="flatscreen_region" left="25%" top="15%"

width="300" height="200" z-index="20"/>

<region id="playedvideo" left="27%" top="17%"

width="270" height="170" z-index="30"/>

<region id="window_region" left="75%" top="20%"

width="200" height="200" />

<region id="boxtable_region" left="45%" top="70%"

width="300" height="100" />

</layout>

</head>

<body>

<!- All the objects are displayed/played in parallel

and starts simultaneously ->

<par>

<!- SMIL, Background image, wall and floor ->

<img src="background.png" region="background_region"

fit="fill" dur="indefinite" />

<!- SVG, Person A ->

<!- First element of switch will show if

available, alternatively second element->

<switch>

<ref type="image/svg+xml" src="persona.svg"

region="svgpersona_region"/>

</switch>

<!- SVG, Person B ->

<switch>

<ref type="image/svg+xml" src="personb.svg"

region="svgpersonb_region"/>

</switch>

X

Composing Distributed 3D Scenes

<!- X3D, Table / box on the floor->

<switch>

<ref type="model/x3d+xml" src="boxtable.x3d"

region="boxtable_region"/>

</switch>

<!- SMIL, A TV playing a video stream. The z-indexes

stacks the video upon the image of a TV box ->

<img src="flatscreen.bmp" region="flatscreen_region"

fit="fill" dur="indefinite" />

<video src="videosource.mpg" region="playedvideo"

fit="fill" repeatCount="indefinite"

type="mpg" />

<!- SVG, A transparent window with a clouded sky on

the outside ->

<switch>

<ref type="image/svg+xml" src="window.svg"

region="window_region"/>

</switch>

</par>

</body>

</smil>

Table 6: Referenced.smil

XI

Composing Distributed 3D Scenes

B Appendix: Ambulant Player

B.1 Ambulant Player Interfaces

• Refcounting protocol: A low level interface shared by many ob-
jects.

• Player Interface: This is the top level object.

• Parser Interface: Describes the interfaces to the XML parser.

• Datasource interface: The interface used to get external data into
the program.

• Playable interface: This interface makes media items appear on the
screen.

• Layout interface: This interface is used to determine where those
media items show up.

• GUI window interface: This interface is used to create new win-
dows.

• Animation interface: The interface used for SMIL animation.

The Ambulant team [30]

B.2 Ambulant Player Objects

• Clocks: These advance a virtual time.

• Event processor: This is the main loop plus the event/callback mech-
anism.

• Document: The representation of a SMIL document.

• Node: The representation of the DOM tree.

• Transitions: Classes to do visual transitions.

• Timeline: This is a description of another scheduler: the MMS
scheduler. This scheduler has a much simpler structure than the
SMIL 2.0 scheduler.

The Ambulant team [30]

XIII

Composing Distributed 3D Scenes

B.3 UML Diagrams

Figure 84: UML diagram for player
[30]

XIV

Composing Distributed 3D Scenes

Figure 85: UML diagram XML parser
[30]

XV

Composing Distributed 3D Scenes

C Appendix: Namespaces

C.1 Namespaces

To customize SMIL with extensions like 3D, transparency and custom shapes there is
an need for namespaces. Namespaces are defined as:

In general, a namespace is an abstract container, which is or could be filled
by names, or technical terms, or words, and these represent real-world
things.

As a rule, names in a namespace cannot have more than one meaning, that
is, two or more things cannot share the same name. A namespace is also
called a context, as the valid meaning of a name can change depending
on what namespace applies. Names in it can represent objects as well as
concepts.

Wikipedia [72]

Here, an example namespace (SMIL 2.0) reference is created:

xmlns:prefix="http://www.example.com/SMIL20/Extensions"

Figure 86: Namespace

The above prefix is the reference to the particular namespace used within the SMIL
document and http://www.example.com/SMIL20/Extensions is the URL
of the namespace. This prefix tells the player that the attribute in the SMIL document is
not a standard attribute but still a valid attribute because it is defined in the namespace
xmlns:prefix.The SMIL player then recognizes the attribute and knows how to
handle it. Namespaces are added in the <smil> attribute:

<smil xmlns="http://www.w3.org/2001/SMIL20/Language"
xmlns:prefix="http://www.example.com/SMIL20/
Extensions">

Figure 87: Namespace added to SMIL

XVII

Composing Distributed 3D Scenes

D Appendix: Gaim

D.1 About Gaim

Gaim is a multi-protocol instant messaging client compatible with AIM
(Oscar and TOC protocols), Yahoo, ICQ, MSN Messenger, Gadu-Gadu,
IRC, Jabber and Zephyr networks.

Gaim users can log in to multiple accounts on multiple IM networks si-
multaneously. This means that you can be chatting with friends on AOL
Instant Messenger, talking to a friend on Yahoo Messenger, and sitting in
an IRC channel all at the same time.

Gaim supports many features of the various networks, such as file trans-
fer (coming soon), away messages, typing notification, and MSN window
closing notification.

It also goes beyond that and provides many unique features. A few popular
features are Buddy Pounces, which give the ability to notify you, send
a message, play a sound, or run a program when a specific buddy goes
away, signs online, or returns from idle; and plugins, consisting of text
replacement, a buddy ticker, extended message notification, iconify on
away, and more.

Softpedia - Gaim 2.0.0 beta 3 [73]

D.2 Working Functionality

1. Currently the following things are working:

2. SIP Message Handling

3. TCP

4. DNS SRV resolving

5. registration on SIP server

6. sending / receiving instant messages

XIX

Composing Distributed 3D Scenes

7. presence subscribe / notify for simple status types and PUA == PA

Bugs / Problems / Missing:

8. SIP over UDP for compatibility with non 2.0 servers

9. resending SIP messages (not sure if needed with TCP)

10. auto login (currently just works after disconnect/connect, don’t know
why...)

11. uploading presence information (PA != PUA)

Softpedia - Gaim 2.0.0 beta 3 [73]

XX

Composing Distributed 3D Scenes

E Appendix: SIP

E.1 SIP Header Fields

• To: The logical recipient of the request. May contain a
SIP or SIPS URI. An example of SIP URI is To: Anton
<sip:anton@bratislava.com>.

• From: The logical address of the initiator of the request. An example
is
From: Heidi <sip:heidi@bratislava.com>.

• CSeq: CSeq is an abbreviation for Command Sequence and is the
way to identify and order transactions. CSeq: 4711 INVITE is an
example which consists of a sequence number and a method.

• Call-ID: A unique identifier. Groups together a series of messages.
All requests and responses in a dialog must have the same Call-ID.
A cryptographically random Call-ID is recommended because it pro-
tects more against hijacking and collision with other Call-IDs.

• Max-Forwards: Limits the number of hops in the network to protect
against endless loops.

• Via: Indicates the path taken by the request and contains information
about the transport. protocol that is used.

RFC3261 [74]

Table 7: SIP header fields

XXI

Composing Distributed 3D Scenes

F Appendix: SIMPLE

The SIP MESSAGE method does not currently support any sense of a
session. Instant messages sent using this method are treated like pager
messages. Each message stands alone, and is not linked into a conver-
sation. There has been recent interest in the idea of a SIP based instant
message session, where the user experience is more akin to a a text con-
ference or a chat room. This document proposes the idea of treating SIP
instant message sessions as a media type that can be initiated using the
same SIP mechanisms as for any other media type.

In this approach, a SIP endpoint that wishes to initiate a text chat ses-
sion would send an INVITE request with an SDP body that describes the
session [2]. The sender and recipient then negotiate MESSAGE sessions
using normal SIP conventions.

IETF Internet-draft, SIP instant message sessions [10]

XXIII

Composing Distributed 3D Scenes

G Appendix: Software Tools

• Gaim: Instant Message Client [31].

• AMBULANT Open SMIL Player: SMIL player [75].

• Microsoft Windows XP Professional SP2: Operating system [76].

• MikTex: TeX implementation [77].

• LATEX: Document format of the Master’s Thesis [78].

• TeXnicCenter: Developing LATEXdocuments [79].

• Microsoft Wordpad: Writing and investigating source code.

• Microsoft Office Visio Professional 2003 SP2: Illustrations and diagrams [80].

• GMail Drive: Backup of Master’s Thesis during work [81].

• Xj3D: Viewing of X3D files[71].

• X-Smiles: Viewing SMIL with X3D/SVG [70].

• Corel Paint Shop Pro X Version 10.0: Editing and format conversion of digital
images [82].

XXV

Composing Distributed 3D Scenes

H Appendix: SOSIMPLE

SOSIMPLE is a SIP/SIMPLE approach based on a open source protocol stacks, stan-
dards, fully distributed and decentralized system for peer-to-peer VoIP and IM building
on existing SIP components, compatibility with existing SIP are maintained. The com-
munication messages are passing directly between the users. SOSIMPLE is developed
by David A. Bryan and Bruce B. Lowekamp at College of William and Mary, USA
and partially supported by the Cisco University Research Program. According to the
authors a draft of the P2P SIP protocol based on SOSIMPLE is submitted to the IETF
[83].

H.0.1 Keywords About SOSIMPLE

• Peer-to-peer VoIP/IM

• No central server

• No naming authority

• No message passes through external proxies

• Advantages of a proxy based system are preserved

• No critical proxy down-time

• Ad-hoc situations

• Less expensive to join, more scalable

• Creating realms of only invited users

• User Mobility Support

• Reuse and compatibility using SIP/SIMPLE

Benefits of using SOSIMPLE [83]

H.0.2 SOSIMPLE Architecture

SOSIMPLE is based on a distributed architecture, there are no central servers or au-
thorities to control the users. The system is also very scalable and the capacity grows

XXVII

Composing Distributed 3D Scenes

with the number of users. SOSIMPLE is based on a Distributed Hash Table (DHT)
similar to Naptster and Gnutella.

Nodes connect to a few other nodes in the overlay network. These nodes are the
destination of the SIP messages. Each node acts as User Agent (UA) and proxy at
the same time. Together all the nodes replace the need for Proxies and Registrars.
The nodes are organized in a Distributed Hash Table [84], each node has its own ID
created by combining a hash code, the IP-address and the port number. Advantage is
taken by knowing that the user often contacts the same persons again and again. All
the messages to maintain the Distributed Hash Table are SIP messages. To have peer-
to-peer functionality be built into SIP only a few new headers are needed. The SIP
REGISTER message pass information between the overlay nodes (see Appendix H for
Join and Locate operations).

H.0.3 Future of SOSIMPLE

One important issue due to SOSIMPLE is the handling of keys and authentication.
This problem has to be solved to make P2P SIP secure. Public key authentication is
not covered in the SIP standard. How routing is to be handled is also an issue. Social
routing (means the users social preferences) are taken into the consideration. And the
interfaces to existing SIP networks also have to be covered in the future.

H.0.4 SOSIMPLE Client

During e-mail correspondence with one of the developers of the SOSIMPLE archi-
tecture, David A. Bryan, it was clear that no implemented version of a SOSIMPLE
client are still available. But a tip from D. A. Bryan that an Italian, Enrico Marocco
of Telecom Italia, was followed up and this Italian was currently developing a client
that could be used in this Master’s Thesis for research purposes. Still a great deal of
functionality is missing and the stability is not very good. The implemented version
was not received early enough to be tested and used as a part of this Master’s Thesis.

XXVIII

Composing Distributed 3D Scenes

H.1 Operations

H.1.1 Join

Figure 88: Node joining the overlay
[83]

When a node wants to join an overlay, it must:

1. Locate a node in the overlay (the bootstrap node)

2. Calculate its own node ID

3. Pass the ID in a REGISTER message to the bootstrap node

4. If the bootstrap node is not responsible for the overlay it responds with a SIP 302
Moved Temporarily response and information about which node in the nearest
region that can place the joining node in the overlay

5. The joining node now pass his ID in a new REGISTER message to the closer
node

6. If this new node is responsible for the overlay, a SIP 200 OK is returned, other-
wise the earlier steps are repeated

XXIX

Composing Distributed 3D Scenes

7. Registration is complete

H.1.2 Locate Another Node

When a node wants to find another node it must:

Figure 89: Node allocating another node and starting communication
[83]

1. Hash the user name to find the Resource-ID

2. Look in the nodes own finger table and finds the node with the Node-ID closest
to the Resource-ID

3. the other node responds with SIP 302 Moved Temporarily including the node it
think is the closest

4. Repeats the previous step until the actual Resource is found

5. The Resource node maps the connection between the username and the IP ad-
dress of the node connection to it

6. The Resource node then returns a 200 OK and the registration data

XXX

Composing Distributed 3D Scenes

7. A conventional SIP or SIMPLE session between the actual nodes using regular
SIP mechanisms can be established

8. The SMIL documents then may flow directly between the nodes

XXXI

Composing Distributed 3D Scenes

I Appendix: MPEG-4 Interactive

I.1 IndexedFaceSet

IndexedFaceSet describes how an object should be created of individual faces and
polygons.

"IndexedFaceSet

ccw optionally supported. set_colorIndex optionally supported.

set_normalIndex optionally supported. normal optionally supported.

Only convex indexed face sets supported. Hence, convex optionally

supported. For creaseAngle, only 0 and ? radians supported.

normalIndex optionally supported.

Face list shall be well-defined as follows:

1. Each face is terminated with -1, including the

last face in the array.

2. Each face contains at least three non-coincident

vertices.

3. A given coordIndex is not repeated in a face.

4. The vertices of a face shall define a planar polygon.

5. The vertices of a face shall not define a

self-intersecting polygon."

MPEG-4 interactive profile [43]

XXXIII

Composing Distributed 3D Scenes

J Appendix: Directed Acyclic Graph

In computer science and mathematics, a directed acyclic graph, also called
a dag or DAG, is a directed graph with no directed cycles; that is, for any
vertex v, there is no nonempty directed path starting and ending on v.
DAGs appear in models where it does not make sense for a vertex to have
a path to itself; for example, if an edge u->v indicates that v is a part of u,
such a path would indicate that u is a part of itself, which is impossible.

Wikipedia [85]

Figure 90: Directed acyclic graph
[85]

XXXV

Composing Distributed 3D Scenes

K Appendix: X3D Nodes

K.1 Abstract Nodes

K.1.1 X3DTextureCoordinateNode

X3DTextureCoordinateNode : X3DGeometricPropertyNode{
SFNode [in,out] metadata NULL [X3DMetadataObject]

}

Figure 91: X3DTextureCoordinateNode
Web3D Consortium [60]

K.1.2 X3DTextureNode

X3DTextureNode : X3DAppearanceChildNode{
SFNode [in,out] metadata NULL [X3DMetadataObject]

}

Figure 92: X3DTextureNode
Web3D Consortium [60]

K.1.3 X3DTexture2DNode

X3DTexture2DNode : X3DTextureNode{
SFNode [in,out] metadata NULL [X3DMetadataObject]
SFBool [] repeatS TRUE
SFBool [] repeatT TRUE

}

Figure 93: X3DTexture2DNode
Web3D Consortium [60]

K.2 Texture Nodes

XXXVII

Composing Distributed 3D Scenes

K.2.1 ImageTexture

ImageTexture : X3DTexture2DNode{
SFNode [in,out] metadata NULL [X3DMetadataObject]
MFString [in,out] url [] [urn]
SFBool [] repeatS TRUE
SFBool [] repeatT TRUE

}

Figure 94: ImageTexture
Web3D Consortium [60]

K.2.2 MovieTexture

MovieTexture : X3DTexture2DNode, X3DSoundSourceNode,X3DUrlObject{
SFBool [in,out] loop FALSE
SFNode [in,out] metadata NULL [X3DMetadataObject]
SFTime [in,out] resumeTime 0 (-?,?)
SFTime [in,out] pauseTime 0 (-?,?)
SFFloat [in,out] speed 1.0 (-?,?)
SFTime [in,out] startTime 0 (-?,?)
SFTime [in,out] stopTime 0 (-?,?)
MFString [in,out] url [] [urn]
SFBool [] repeatS TRUE
SFBool [] repeatT TRUE
SFTime [out] duration_changed
SFTime [out] elapsedTime
SFBool [out] isActive
SFBool [out] isPaused

}

Figure 95: MovieTexture
Web3D Consortium [60]

XXXVIII

Composing Distributed 3D Scenes

L Appendix: XCAP

L.1 XCAP Client Operations

Retrieving:

• Document

• Element

• Attribute

Deleting:

• Document

• Element

• Attribute

Modifying:

• Document

• Element

• Attribute

Adding:

• Document

• Element

• Attribute

Jonathan Rosenberg [86]

XXXIX

Composing Distributed 3D Scenes

M Appendix: SCTP

The Stream Control Transmission Protocol (SCTP) is an alternative to TCP. It is a
reliable message based protocol on the same layer as UDP and TCP (transport layer).
SIP (which is transport independent) may run over SCTP as well as UDP and TCP.
SCTP manages congestion protocol in a manner similar to open one TCP connection
for each message, removing delays introduced by "head of line blocking". Both SCTP
and TCP manages packet size fragmentation which may occur when the packet to be
sent are larger than the MTU of the network. SCTP also enables multi homing (i.e.
multiple IP addresses) making it more reliable over lossy conditions. But TCP (which
is already thoroughly tested as the transport protocol of SIP) is just as reliable as SCTP
when the network is reliable [87].

XLI

Composing Distributed 3D Scenes

N Appendix: Attached Files

The attached files consists of references (URLs made available offline) and source
files. The contents are shown in Figures: 96, 97, 98 and 99.

Figure 96: References 1/3

XLIII

Composing Distributed 3D Scenes

Figure 97: References 2/3

XLIV

Composing Distributed 3D Scenes

Figure 98: References 3/3

Figure 99: Source code

XLV

