
June 2006
Stig Frode Mjølsnes, ITEM
Kristian Gjøsteen, ITEM

Master of Science in Communication Technology
Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Telematics

Secure and Verifiable Electronic
Elections at NTNU

Bent Kristoffer Rosvold Onshus

Problem Description
It is hard to design efficient and secure election schemes for
moderate to large scale applications.

The thesis should give a brief introduction to the theory of
electronic elections, and a thorough study of a certain electronic
election scheme by Damgård, Jurik and Nielsen (DJN scheme).

The functionality and security requirements for elections at NTNU
should be analyzed, and it should be verified that the DJN scheme
can satisfy these requirements.

An implementation of the DJN scheme should be made and used to test
the feasibility of the scheme for elections at NTNU. The focus
should be on computational requirements for vote creation, tallying
and verification for the various elections at NTNU.

Assignment given: 16. January 2006
Supervisor: Stig Frode Mjølsnes, ITEM

Abstract

This thesis describes an electronic voting system based on Damgård, Jurik and

Nielsen’s generalization of Paillier’s probabilistic public key system. A threshold

variant of this homomorphic cryptosystem is used to provide universally verifiable

elections, where zero-knowledge proofs are used for proving correctness of votes.

Using this cryptosystem, an electronic voting system that supports voting for 1 out

of L candidates is described. Two types of encoding may be used to prove the

validity of the votes. The number of proofs needed using normal encoding is linear

in L, while the number of proofs needed using binary encoding is logarithmic in

L. It is shown how to extend the system to allow casting a vote for t out of L

candidates. This method may easily be used to carry out elections with weighted

votes without any added complexity to the system.

The system is shown to satisfy the requirements for elections at The Norwegian

University of Science and Technology (NTNU). A fully functional implementa-

tion of the electronic voting system as a distributed system, using Java Remote

Method Invocation, is presented. The implementation is used to analyze the fea-

sibility of using this voting system for future elections at NTNU. The implemen-

tation is tested using various keylengths and various election parameters. With a

keylength of 1024 bits, the simulated time for verification of complex elections is

small enough to be considered universally verifiable.

i

Preface

This thesis is written as a part of my Master of Technology degree at the Norwegian

University of Science and Technology (NTNU) during the spring semester of 2006.

I would now like to use this opportunity to thank:

• My supervisor at the Department of Telematics Kristian Gjøsteen for valu-

able guidance during the work with this thesis.

• Kristin K. H. for knocking it up another notch.

iii

Table of Contents

Abstract i

Preface iii

List of Figures xi

List of Tables xiii

List of Listings xv

1 Introduction 1

1.1 Background . 1

1.2 Problem to be addressed . 2

1.3 Scope . 2

1.4 Outline . 3

2 Electronic Voting Systems 5

2.1 Electronic Voting . 5

2.2 Requirements for Voting Systems 6

2.3 Requirements for elections at NTNU 9

2.3.1 Functional Requirements 9

2.3.2 Security Requirements 9

2.4 Existing Electronic Voting Schemes 11

v

vi TABLE OF CONTENTS

2.4.1 Homomorphic Cryptosystems 12

2.4.2 Mix-Nets . 12

2.4.3 Blind Signatures . 13

2.4.4 Publicly Verifiable Secret Sharing 14

2.5 Summary . 15

3 The Cryptographic Voting System 17

3.1 Introduction . 17

3.2 Damgård, Jurik and Nielsen’s generalized variant of Paillier’s

public-key system . 18

3.2.1 Key Generation . 19

3.2.2 Encryption . 19

3.2.3 Decryption . 19

3.3 Zero Knowledge Proofs . 21

3.4 The Zero-Knowledge Protocols 22

3.4.1 Encryption of 0 - protocol 22

3.4.2 Protocol 1-out-of-2 ns’th power 24

3.4.3 Protocol 1-out-of-L ns’th power 25

3.4.4 Protocol Multiplication-mod-ns 26

3.4.5 Protocol for Equality of Discrete Logarithms 27

3.5 Non-Interactive Zero-Knowledge Proofs 28

3.5.1 Random Oracle . 28

3.5.2 Fiat-Shamir Heuristic . 29

3.5.3 The Non-Interactive Zero-Knowledge Proofs 29

3.6 A Threshold Variant of the Cryptosystem 30

3.6.1 Key Generation . 31

3.6.2 Encryption . 32

3.6.3 Share Decryption . 32

TABLE OF CONTENTS vii

3.6.4 Share Combination . 32

3.7 Summary . 32

4 Design 35

4.1 Top Level Architecture . 35

4.2 Parameters of the Election . 37

4.3 Model of Elections . 37

4.4 The Different Parts of the Voting System 38

4.4.1 The Voter Application 38

4.4.2 The Bulletin Board . 39

4.4.3 The Decryption Server 39

4.4.4 The Election Authority 40

4.5 Voting Methods . 40

4.5.1 Yes/No Election . 41

4.5.2 1-out-of-L Election . 42

4.5.3 t-out-of-L Election . 43

4.5.4 1-out-of-L Election with Binary Encoding of Votes 45

4.5.5 t-out-of-L Election with Binary Encoding of Votes 46

4.6 Satisfying Election Requirements at NTNU 47

4.6.1 Functional Requirements 47

4.6.2 Security Requirements 47

4.7 Other Considerations . 49

4.8 Summary . 50

5 Implementation 51

5.1 Overview . 51

5.2 Implementation of the Cryptosystem 52

5.3 Implementation of the Common Library 54

viii TABLE OF CONTENTS

5.4 Implementation of the Election Authority 56

5.4.1 Description of the Structure 56

5.4.2 Parameters Chosen by the Election Authority 59

5.5 Implementation of the Voter Application 59

5.5.1 Description of the Structure 59

5.5.2 Optimizations of Encryption 62

5.6 Implementation of the Decryption Server 63

5.6.1 Description of the Structure 64

5.6.2 Optimizations of the Decryption Server 66

5.7 Implementation of the Bulletin Board 66

5.8 The Simulation Tool . 68

5.9 Executing the Voting System . 69

5.10 Summary . 71

6 Performance Evaluations 73

6.1 Comparison of Voting Methods 73

6.1.1 Parameters for the Performance Evaluation 73

6.1.2 Performance Evaluation of Share Decryption and Vote Val-

idation . 74

6.1.3 Performance Evaluation of Vote Creation 75

6.1.4 Performance of the Election Authority 76

6.2 Elections with Higher Security Requirements 77

6.3 Feasibility Analysis . 78

6.4 Programming Language Comparison 79

6.5 Summary . 79

7 Concluding Remarks 81

7.1 Conclusion . 81

7.2 Future Work . 82

TABLE OF CONTENTS ix

Bibliography 85

A Source Code 89

A.1 Voter Application . 89

A.1.1 Precomputation of Values for Encryption 89

A.1.2 Optimized Encryption Algorithm 90

A.1.3 Creation of a Vote in a 1-out-of-L Election 90

A.1.4 Creation of a MultipleVote in a t-out-of- L Election 92

A.1.5 Creation of a BinaryVote in a 1-out-of-L Election 94

A.1.6 Creation of a MultipleBinaryVote in a t-out-of- L Election 98

A.2 The Share Decryption of Votes 100

A.3 The Verification of the Zero-Knowledge Proofs 101

A.3.1 Verification of a Vote in a 1-out-of-L Election 101

A.3.2 Verification of MultipleVotes in a t-out-of- L Election . . . 102

A.3.3 Verification of a BinaryVote in a 1-out-of-L Election . . . 104

A.3.4 Verification of MultipleBinaryVotes in a t-out-of-L Election 106

A.3.5 Verification of a DecryptedShare Acquired from a Decryp-

tion Server . 108

A.4 The Combination of DecryptedShares Acquired from Decryption

Servers . 109

B Digital Material following the Thesis 113

List of Figures

4.1 Top level architecture of the voting system. 36

4.2 Possible layered structure of the system 37

5.1 Deployment diagram of the voting system 53

5.2 Class diagram of the package votingSystem 55

5.3 Class diagram of the ea package 57

5.4 The sequence diagram for the election authority 58

5.5 Screenshot of the administration window at the election authority. 60

5.6 Class diagram of the package voter 61

5.7 Sequence diagram for the voter application. 62

5.8 Class diagram of the ds package 64

5.9 Sequence diagram for the actions of the decryption server. 65

5.10 Class diagram for the package bb containing the bulletin board. . . 67

5.11 Screenshot of the simulation results 69

xi

List of Tables

2.1 Requirements for a voting system for elections at NTNU. 11

4.1 The parameters of the voting system. 37

4.2 Requirements satisfied by the voting system proposed in this thesis. 49

5.1 Package names and main classes for the components in the voting

system. 70

6.1 The parameters chosen for the performance testing. 74

6.2 The time spent for validation of votes and vote multiplication per

vote for different values of L. 75

6.3 A comparison of mean share decryption time per vote in 2-out-of-L

elections using the two different encodings. 75

6.4 A comparison of mean vote encryption and proof creation time in

1-out-of-L elections using the two different encodings. 76

6.5 A comparison of the two different encodings with respect to mean

vote encryption and proof creation time in 2-out-of-L elections. . . 76

6.6 A comparison of share combination time in all four voting methods. 77

6.7 A comparison of mean share decryption and vote validation times

per vote using a 2048-bits key. 77

xiii

List of Listings

3.1 Algorithm used for extracting i mod ns+1 from (1 + n)i mod ns+1 . 20

5.1 Unoptimized encryption algorithm 62

5.2 Calculation of the precomputed values 63

5.3 Calculation of (1 + n)m . 63

A.1 Precomputation of values for encryption 89

A.2 Full optimized encryption algorithm 90

A.3 Creation of a Vote in a 1-out-of-L Election 90

A.4 Creation of a MultipleVote in a t-out-of-L Election 92

A.5 Creation of a BinaryVote in a 1-out-of-L election 94

A.6 Creation of a MultipleBinaryVote in a t-out-of- L election 98

A.7 Share decryption of votes and creation of a zero-knowledge proof

for the calculations . 100

A.8 Verification of a Vote . 101

A.9 Verification of MultipleVotes . 102

A.10 Verification of a BinaryVote . 104

A.11 Verification of MultipleBinaryVotes 106

A.12 Verification of a DecryptedShare 108

A.13 Combination of DecryptedShares to a result 109

xv

Chapter 1

Introduction

1.1 Background

Electronic voting systems that allow voting over Internet are starting to gain pop-

ularity around the world. Internet voting systems give the voter the possibility of

voting from any Internet-accessible computer at any time of day. These systems

are suitable for elections where voters are not needed to cast their votes in desig-

nated polling places. Elections in organizations and at universities are examples of

elections which have requirements regarding security without requiring voters to

go to polling places to vote.

The efficiency, flexibility and accessibility of Internet voting systems is attractive,

but many systems used today lack important security properties. Up until today

most internet voting systems have given administrators the possibility of viewing

the votes given, often also checking the identity of voters. This has raised privacy

issues, because the voters’ choices are revealed. The correctness of the results can

also be questioned because the systems can be vulnerable to election fraud from the

inside, and voters are rarely able to verify the results. These problems have called

for a secure electronic voting system that can provide a higher security against

election fraud, and that can provide privacy, correctness and verifiability.

1

2 Chapter 1. Introduction

1.2 Problem to be addressed

The main focus of this thesis is to design and implement a secure electronic voting

system suitable for elections at the Norwegian University of Science and Technol-

ogy (NTNU). The system will provide a voting service that relies on cryptography

to efficiently and securely hide the voters’ choices from other participants in the

election, as well as from people inside the electoral apparatus. The voting system

will provide universally verifiable elections where anyone participating in the elec-

tion can verify all votes cast, as well as the actions of the components in the voting

system.

This thesis will describe the building blocks needed to create such a voting system.

This will start by presenting the homomorphic cryptosystem used as a basis for

the voting system. This cryptosystem will be used together with different zero-

knowledge proofs to prove the validity of votes without revealing anything beyond

the validity of the proof. These building blocks will then be combined into a fully

functional voting system.

This thesis will also perform an analysis of the computational requirements for car-

rying out elections using this system. This analysis will be done both mathemati-

cally and by testing the actual system. Different encodings of votes and different

parameters will be used to find the optimal performance of the system in different

scenarios. The analysis will then be used to determine the feasibility of using this

system in elections at NTNU.

1.3 Scope

This thesis will focus mainly on the voting system itself. The security of a voting

system depends on many outside factors. Many problems exist concerning the de-

ployment of a system like this in a real life situation. Examples include the key

distribution, securing communication between components in the system and con-

trolling access to the voting system. These are problems where adequate solutions

exist today. Solving these problems for deployment of this system in an Internet

environment is outside the scope for this thesis.

1.4. Outline 3

1.4 Outline

The following chapter will give the reader an introduction to electronic voting,

where different properties are defined that may be used to characterize a voting

system. These properties will be explained, along with solutions for satisfying the

different properties. Four different types of voting schemes are then presented,

along with an explanation of how they work, and how they satisfy the different

properties.

Chapter 3 explains the homomorphic cryptosystem as well as zero-knowledge pro-

tocols to show that a given ciphertext encrypts one of a set of given plaintexts,

and protocols to verify multiplicative relations of plaintexts. Then we explain how

to transform these interactive protocols into non-interactive proofs using the Fiat-

Shamir heuristic. Finally, the threshold variant of the cryptosystem is explained,

which will be used by decryption server to collectively decrypt a given ciphertext.

Chapter 4 covers the design of the voting system. This is where the building blocks

explained in Chapter 3 are combined to a fully functional voting system. All the

components of the system are explained, along with the different voting methods

available in the system. It is then shown how this voting system satisfies the re-

quirements for electronic voting at NTNU.

Chapter 5 describes the implementation of this voting system in Java. The func-

tionality of all components is thoroughly explained. Some optimizations are in-

troduced to increase the performance of the system. This chapter also includes a

tutorial for running the implementation of the system.

Chapter 6 gives a performance evaluation of the system with realistic parameters

for NTNU elections, as well as some tests of elections with higher security de-

mands. The different encodings of votes are analyzed, and the optimal encoding

for different numbers of candidates is determined.

Chapter 7 covers the concluding remarks for this thesis, as well as some notes about

future research areas that may be investigated.

Chapter 2

Electronic Voting Systems

This chapter will describe the general aspects of voting systems. Some properties

that can be used for characterizing a voting system are defined, along with possible

methods that can be used for satisfying these properties. Some existing voting

schemes are explained along with an explanation of how these schemes satisfy the

properties.

2.1 Electronic Voting

A voting system is a means of choosing between a number of options, based on

the input of a number of voters. A voting system consists of the rules for how

voters express their desires, and how these desires are aggregated to yield a final

result. Voting is perhaps best known to be used in elections where political can-

didates are selected for public office. It can also be used for any other situation

where people are given the opportunity to choose between different alternatives,

for instance price awards or different plans of action for organizations, businesses

or even countries.

Electronic voting usually refers to collection and dissemination of peoples opin-

ions, with the help of some machinery that is more or less computer supported.

This concept is not new, and methods to record and count votes using electrome-

chanical machinery was first proposed by Thomas Edison in 1869 [5]. Newer

examples of electronic voting systems are punch-card systems that have been in

use since the 1960s, and touch screen systems that are widely used today. These

5

6 Chapter 2. Electronic Voting Systems

newer electronic voting systems have the possibility of notifying the voter in case

of invalid votes, as well as providing instant counts after polling.

Electronic voting systems can be realized in a variety of ways. For political elec-

tions, voting is often carried out using voting machines in designated polling

places. For elections that do not require voters to go to a specific place to cast

their votes, Internet voting may be used. Many elections held at universities or in

organizations may benefit from the efficiency of Internet elections.

The voting system used for elections at NTNU today is a simple web form secured

by SSL. Authentication is performed using the normal credentials used to access

the internal network at NTNU. A voter’s choice is visible to the people inside

the electoral apparatus, and there is no guarantee against electoral fraud from the

inside. The actions of the voting system is not verifiable for the participants in the

election, and the system is more or less a black box where votes go in and a result

is shown at the end of the election. Voters have no way of verifying that the result

is correct and that the votes cast are unmodified.

2.2 Requirements for Voting Systems

Voting systems may have varying requirements. When viewers cast votes for par-

ticipants in a television reality show, revealing the identity of voters and election

fraud are minor concerns. In national political elections, however, privacy, reliabil-

ity and security are important issues to consider.

Dr. Michael Ian Shamos issued six commandments that describe the fundamental

requirements for electronic voting [22]. They are listed below in decreasing order

of importance:

I. Thou shalt keep each voter’s choices an inviolable secret.

II. Thou shalt allow each eligible voter to vote only once, and only for those

offices for which she is authorized to cast a vote.

III. Thou shalt not permit tampering with thy voting system, nor the exchange

of gold for votes.

IV. Thou shalt report all votes accurately.

V. Thy voting system shall remain operable throughout each election.

2.2. Requirements for Voting Systems 7

VI. Thou shalt keep an audit trail to detect sins against Commandments II-IV,

but thy audit trail shall not violate Commandment I.

From the requirements stated above, one can propose a set of security properties

that may be used to characterize an electronic voting system. The most common

properties of electronic voting systems are described below, along with methods

that may be used to satisfy these properties [10].

Privacy means that no one can see what a voter, or a proper subset of voters, voted

for.

Keeping a voter’s choice private is important for security against election

fraud. If the contents of a vote is visible for people inside the electoral ap-

paratus, votes can be changed or deleted. This can facilitate election fraud

from the inside. By securing votes cryptographically, and requiring multiple

servers to decrypt votes, this gives a higher security against insider attacks.

Privacy will not be satisfied if one entity in the voting system is able to view

the voters’ choices, thus some way of separating the votes cast from the vot-

ers’ identities is needed. Mix-nets, blind signatures, verifiable secret sharing

and homomorphic cryptosystems are all different methods of securing pri-

vacy in voting systems. A threshold variant of a homomorphic cryptosystem

is used as a basis for the cryptographic voting system chosen for this thesis

and will be explained in Chapter 3.

No Double Voting means that anyone who tries to cheat by voting more than once

will be caught with all but a negligible probability

To ensure that voters are unable to vote twice, some sort of control mech-

anism must be implemented. This may be satisfied in a variety of ways.

The easiest, and perhaps most logical, solution is to maintain a list of people

who have voted, and check this list whenever a voter casts his vote. The list

could consist of usernames or public keys depending on the authentication

mechanism used.

No Cheating means that that anyone casting an illegal vote, will be caught with

all but a negligible probability.

A way of determining whether a vote is correctly formed is needed. This

may be done by having votes digitally signed by an honest on-line signer, or

by proving the correctness of votes using zero-knowledge proofs. The latter

8 Chapter 2. Electronic Voting Systems

is used in the voting system based on homomorphic encryption and will be

discussed further in Section 3.3.

Correctness means that the result of the election is consistent with the votes cast.

To ensure correctness of the election, one needs to prove that every vote is

correctly formed, and that the actions of the servers calculating the results

are executed correctly. The voting system should provide some sort of audit

trail where the actions of every participant in the election may be verified.

Verifiable means that anyone can verify that the result is correct and that every

voter may verify that his vote is included in the result.

This property enables everyone to verify the actions of every participant in

the election, as well as the actions of the voting system itself. In the voting

system based on the homomorphic cryptosystem, a public bulletin board is

used where all encrypted votes and proofs of correctness for both voters

and servers are posted. These proofs are verifiable for everyone, without

requiring the knowledge of any secret key.

Off-line means that no specific server or group of servers need to be on-line during

the whole election.

An off-line voting system does not need any specific servers to be on-line

during the whole election. Whether this is avoidable or not depends largely

on the choice of voting system, as well as the particular implementation of

the system. Most systems need some sort of on-line server to register votes.

Some types of voting schemes may also need additional on-line components,

for instance the blind signature scheme which needs an on-line signer to

digitally sign votes.

receipt-freeness means that a voter cannot prove to a potential coercer that he

voted in a particular way.

receipt-freeness can be obtained by securing that no information held by the

voter can prove the voter’s choice in the election. If we assume that the

voter wishes to cooperate with a coercer, receipt-freeness guarantees that

such cooperation will not be worthwhile, because it will be impossible for

the coercer to obtain proof about how the voter voted. receipt-freeness is

a similar property to privacy, with the additional assumption that the voter

cooperates with a coercer. Thus, receipt-freeness implies privacy.

2.3. Requirements for elections at NTNU 9

receipt-freeness can discourage vote-buying and coercing in an election.

When encrypting votes using a randomized cryptosystem, random numbers

are used to hide the plaintext. A user-chosen randomness can work as a re-

ceipt, as is the case when using a homomorphic cryptosystem for designing

an electronic voting system.

Robustness means that the voting system can withstand attacks, and can tolerate

failure of components.

A voting system should be operational during the whole election and with-

stand a wide range of attacks. Protection against Denial of Service attacks

can be done by replicating critical components in the system. Good authen-

tication mechanisms should be implemented as a protection against hackers.

The properties satisfied by the voting system constructed in this thesis will be dis-

cussed in Section 4.6.

2.3 Requirements for elections at NTNU

2.3.1 Functional Requirements

The elections at NTNU are carried out using Internet voting. The voting service

should be accessible from any computer connected to the Internet (and should sup-

port all major operating systems).

Many elections at NTNU are carried out using ranked voting, which allows vot-

ers to cast a predefined number of differently weighted votes. The system should

support this type of election.

2.3.2 Security Requirements

The security requirements for elections at NTNU are not as strict as the security

requirements for national, political elections. Today’s electronic voting system at

NTNU satisfies few of the security properties of a secure electronic voting system.

The privacy of votes in NTNU elections should be maintained. However, the impli-

cations of revealing the contents of votes 5 to 10 years forward in time are assumed

to be of little significance (as opposed to national, political elections where votes

10 Chapter 2. Electronic Voting Systems

ideally should be kept secret for all time). The voting schemes treated in this thesis

use cryptography for securing the privacy of votes, and the security of cryptogra-

phy depend largely on the length of the keys used for encryption. As an increasing

key length increases the time needed for encryption, validation and decryption of

votes, choosing a suitable key length is important for the performance of the sys-

tem. The key sizes should be chosen long enough to keep the votes secure today,

but the implications of breaking the cryptography 10 years forward in time are

not as severe as in the national, political elections. It is assumed that securing the

privacy of votes 5 years forward in time is sufficient for election at NTNU.

receipt-freeness should not be a necessary requirement for this electronic voting

system, as vote-buying and coercion are minor concerns at NTNU. In order to

understand why privacy and receipt-freeness are not equally important a few sce-

narios may be described. If the administrators of the electronic voting system (for

instance the administrators of the computer systems at NTNU) may benefit from

the election of a specific candidate, it may be desirable for them to tweak the re-

sults of the election to their advantage. People with access to the system can easily

delete or change preferred votes without being detected, if the contents of the votes

are visible. These employees may also be paid by another group or individual at

NTNU to change the result of the election. If privacy is not satisfied by the system,

cheating from the inside may be easy. Receipt-freeness is a property discouraging

vote-buying and coercion in an election. It is a much harder task to cheat in an

election through the purchase of individual votes. This requires the people wanting

to cheat in an election to purchase the votes of many voters, and check their re-

ceipts to verify that they voted for the correct candidate. Such large scale cheating

operations are assumed not likely to be seen at elections at NTNU, and although

receipt-freeness is needed in large scale political elections, it is a property that is

of minor importance for elections at NTNU.

Although it is not provided for elections today, the elections at NTNU could be

made universally verifiable. This could convince all voters that the results are

valid (although electoral fraud has never been an issue with elections at NTNU).

A verifiable election scheme can ensure people’s trust in the political system at

NTNU.

A completely off-line voting system should not be necessary for elections at NTNU,

because the operation of on-line components can be secured using server replica-

tion techniques and well-designed authentication mechanisms. However, the com-

2.4. Existing Electronic Voting Schemes 11

plexity and vulnerability of the system will increase with an increasing number of

on-line components. It is therefore desirable to keep the number of on-line compo-

nents to a minimum. The operation of all on-line components needs to be secured

for satisfying the robustness criterion.

The requirements of no cheating, no double voting and correctness must be sat-

isfied in an electronic voting system at NTNU, because it is desirable to prevent

voters from cheating, and to ensure that the results of the election are consistent

with the votes cast.

The security and functional requirements for elections at NTNU are summarized

in Table 2.1.

Privacy X

No Double Voting X

No Cheating X

Correctness X

Verifiable (X)

Off-line

Receipt-freeness

Robustness X

Ranked Voting X

Internet Voting X

Usable in a heterogeneous environment X

Table 2.1: Requirements for a voting system for elections at NTNU.

2.4 Existing Electronic Voting Schemes

Various fundamentally different approaches to electronic voting are known in the

literature. This section will describe the basics of four different cryptographic vot-

ing schemes. Depending on the implementation, all the systems mentioned in this

section can be made to satisfy the requirements robustness and no double vot-

ing. These are requirements largely dependent of the implementation of the voting

scheme, and the authentication and access control mechanisms used by the voting

system.

12 Chapter 2. Electronic Voting Systems

2.4.1 Homomorphic Cryptosystems

A homomorphic cryptosystem is a public key cryptosystem, that satisfies

D(c1) + D(c2) = D(c1 � c2)

for some binary operation � on ciphertexts. Homomorphic cryptosystems can be-

cause of this property be used to calculate the results of an election before decrypt-

ing the results, thereby hiding the individual choices of voters. The � function is

normally multiplication as in Damgård, Jurik and Nielsen’s generalized variant of

Paillier’s public-key system, which is the cryptosystem used in this thesis. The

protocol works in the following way:

1. The voter selects a vote vi, chooses a random number r and calculates the

encryption E(vi, r). The voter then makes a proof of correctness that will

show that the vote is valid.

2. All votes are multiplied together.

3. The decryption servers make a verifiable threshold decryption, as well as

making a proof of correctness of the calculation. When enough decrypted

shares are acquired, the shares can be combined to reveal the results of the

election without any knowledge of the secret keys.

This voting scheme satisfies the requirements for privacy, no cheating and verifia-

bility. This method is the one studied in detail in this thesis and the functionality

and design of this voting system is thoroughly described in Chapter 3. Such voting

schemes can also be designed to satisfy receipt-freeness, as proposed by Aquisti in

[1].

2.4.2 Mix-Nets

This voting scheme is based on random order permutations of votes to hide the

individual choices of voters. A group of servers permute a set of votes in a ran-

dom order. If one of the servers is not watched by an adversary, the votes will

be randomly permutated and the adversary will be unable to deduce which voter

voted what. This is done by making a network of binary gates that either pass the

2.4. Existing Electronic Voting Schemes 13

votes through, or switches them. A server proves that their actions were correct by

proving that it did in fact do one of these things at each gate.

This scheme requires some randomized public key cryptosystem and the servers

are required to have different keys, to ensure that the permutations of votes remain

secret to all servers. This could be done by using the El Gamal cryptosystem and

making different exponents for each server. The protocol works in the following

way:

1. The voter generates a vote that is encrypted k times:

ci = EKk
(Rk, EKk−1

(· · · EK1
(R1, vi) · · ·)

2. The vote is posted on a bulletin board.

3. The first server decrypts all votes once, makes a random permutation of them

and posts the result on the board. Then the rest of the servers do this sequen-

tially.

4. The result of the election is ready after the votes have been decrypted by the

last server.

This solution requires many communications rounds and has a large computa-

tional overhead, because of the many encryption and decryption operations needed.

The privacy of votes is obtained by using random permutations performed by the

servers. Breaking the scheme would require an adversary to watch the actions

of all servers. For obtaining a verifiable scheme, large server proofs are needed

for proving the correctness of the random permutations. By proving that all the

servers’ actions are valid, correctness is also satisfied.Some techniques for obtain-

ing receipt-freeness in mix-net based voting systems can be found in [2].

2.4.3 Blind Signatures

The idea of this scheme is that an on-line trusted signer digitally signs the votes

in a fashion so that the signer cannot see what he has signed. The protocol is as

follows:

1. The voter generates a vote vi, modifies this to get bi. This must be done

in such a way that the voter is able to generate a signature on vi when a

signature on bi is received.

14 Chapter 2. Electronic Voting Systems

2. The voter gets bi signed by an trusted on-line signer.

3. The voter checks the signature and generates the signature on vi from the

signature on bi.

4. The voter sends the vote vi and the signature to a counter anonymously.

5. The counter checks all signatures and counts the valid votes to get the result.

This scheme requires an on-line signer, and a lot of communication rounds, as

well as a way of sending messages totally anonymously. The on-line signer must

be on-line during the whole election for providing the signing service, and the

counter must be on-line the whole election for receiving the votes. Every voter

must communicate with the signer to get the vote signed and then send the vote to

the counter. The scheme obtains privacy by modifying the vote before sending it

to the signer, and also by sending the vote and the signature anonymously to the

counter. The correctness property is satisfied if the on-line signer is honest, and

only signs the valid votes. A voting scheme based on blind signatures that satisfies

receipt-freeness was proposed in [16].

2.4.4 Publicly Verifiable Secret Sharing

The idea of this voting scheme is to use a Publicly Verifiable Secret Sharing system

to generate a secret sharing of the vote to the decryption servers. An explanation of

the details of this scheme can be found in [20]. The general protocol is as follows:

1. The voter generates a secret sharing of the vote with one share for each of the

servers. The voter also makes a proof of correctness for the vote and sends

the value to the decryption servers.

2. The decryption servers checks the proofs and add the shares together, publish

the results.

3. The result is the secret of the shares.

This scheme requires secure communication between the voter and the decryption

servers and it requires a large block size for the votes, because one share is gener-

ated for each of the servers. This scheme satisfies privacy, given that all commu-

nication is secured. Correctness should be satisfied by the proofs provided by the

2.5. Summary 15

servers. The scheme is also verifiable for anyone if the proofs of correctness are

published.

2.5 Summary

This chapter described the basics of electronic voting systems and some of the

problems of current systems. A set of criteria that can be used for characterizing

electronic voting systems was defined. It was also explained how these criteria can

be satisfied in an electronic voting system. The requirements regarding electronic

voting here at NTNU were explained. Four types of voting schemes were briefly

explained. The next chapter will thoroughly explain the voting system based on

homomorphic encryption.

Chapter 3

The Cryptographic Voting

System

This chapter will present the theory behind a voting system based on homomorphic

encryption, and explain all building blocks needed to build a fully functional voting

system that satisfies the requirements for NTNU elections.

3.1 Introduction

The cryptosystem of choice is the Damgård, Jurik and Nielsen’s generalization

of Paillier’s public-key system [19]. This cryptosystem has properties that are at-

tractive for electronic voting. The cryptosystem is homomorphic, which gives the

possibility of adding encrypted votes without decrypting them. Another attractive

property is the possibility of making a threshold variant of this cryptosystem to

ensure that a certain percentage of the decryption authorities must cooperate to de-

crypt the results of an election. A set of zero-knowledge proofs will be used for

proving the correctness of votes. The cryptosystem and the zero-knowledge proofs

are the building blocks we need to construct a fully functional and efficient voting

system.

17

18 Chapter 3. The Cryptographic Voting System

3.2 Damgård, Jurik and Nielsen’s generalized variant of

Paillier’s public-key system

The Paillier cryptosystem is a probabilistic asymmetric algorithm for public key

cryptography, invented by Pascal Paillier in 1999. The scheme is based on com-

posite residuosity classes of degree set to a hard-to-factor number n = pq where p

and q are two large prime numbers.

The scheme is an additive homomorphic cryptosystem which implies that:

D(c1 ∗ c2) = D(c1) + D(c2)

where c1 and c2 are encryptions of the plaintexts m1 and m2. By using this we can,

given only the public-key and the ciphertexts c1 and c2, compute an encryption of

m1 + m2 by multiplying the ciphertexts. This cryptosystem uses computations n2

where n is a RSA modulus.

The generalization of Paillier’s public-key system proposed by Damgård, Jurik

and Nielsen in [19] uses computations ns+1, where n is an RSA modulus and s

is a natural number. This cryptosystem contains Paillier’s scheme as a special

case by setting s = 1. For every natural number s and RSA modulus n we can

build a cryptosystem CS s with message space Zns . This generalization allows the

extension of the message space by increasing s without increasing the keylength,

thus without affecting the security of the system.

Both these cryptosystems rely on the difficulty of solving the problem known as

the Composite Residuosity Class Problem. This is the problem of distinguishing

the set of n-residues from non n-residues in Zns+1

Definition. A number z is said to be an n’th residue modulo ns+1 if there exists a

number y ∈ Z∗
ns+1 such that

z = yn mod ns+1

The assumption that this problem is polynomial-time intractable is referred to as

the Decisional Composite Residuosity Assumption (DCRA).

A thorough description of the Paillier public-key cryptosystem can be found in

[18], and the generalization of this cryptosystem is explained in [19]

3.2. Damgård, Jurik and Nielsen’s generalized variant of Paillier’s public-key

system 19

The next subsections will describe the generalized Paillier cryptosystem that will

be used in this voting system.

3.2.1 Key Generation

In the following, gcd denotes the greatest common divisor of two numbers, and

lcm denotes the least common multiplier of two numbers. The security parameter

k denotes the bitlength of the admissible RSA modulus n = pq. The parameters p

and q are chosen as two odd primes such that gcd(n, φ(n)) = 1 where φ is Euler’s

totient-function. This function is defined as the number of positive integers less

than n that are relatively prime to n. The parameter g is chosen as an element of

the group Z∗
ns+1 , with an order divisible by ns. To simplify matters it is possible to

use g = 1+n always, without decreasing security. It will be shown in Section 5.5.2

that the choice of g = 1 + n can facilitate the optimization of performance as well.

Let λ be lcm(p − 1, q − 1). It is now possible to choose a d such that d mod n ∈ Z∗n

and d = 0 mod λ. Any d satisfying these requirements will work, and the original

Paillier scheme used d = λ, but there are better choices for the threshold scheme

this voting system will be based on. This will be discussed in Section 3.6.

The public key is (n, g), the private key is d, and the message space for plaintexts

in the cryptosystem is Zns .

3.2.2 Encryption

Given a plaintext message m, choose a random r ∈ Z∗n and calculate the ciphertext

as E(m, r) = gmrns

mod ns+1.

3.2.3 Decryption

Given a ciphertext c, compute cd mod ns+1. Decryption is here shown below using

g = 1 + n.

cd = (gmrns

)d = ((1 + n)mrns

)d = (1 + n)md mod ns

(rns

)d mod λ = (1 + n)md mod ns

A method for extracting a number i mod ns from (1 + n)i mod ns

was proposed in

[19], and will be explained here. We define a function L as L(b) = (b − 1)/n. By

20 Chapter 3. The Cryptographic Voting System

applying this function to the value (1 + n)i mod ns

we obtain

L((1 + n)i mod ns+1) = (i +

(

i

2

)

n + · · · +

(

i

s

)

ns−1) mod ns

The value i may now be extracted part by part. We extract i1 = i mod n, then

i2 = i mod n2 and so forth. It is easy to extract i1 = L((1 + n)i mod n2 = i mod n.

The rest of the values are extracted by using the following induction step: i j =

i j−1 + k ∗ n j−1 for some 0 ≤ k < n. Each term
(

i j

t+1

)

nt for 0 < t < j satisfies that
(

i j

t+1

)

nt =
(

i j−1

t+1

)

nt mod n j. This is due to the fact that the contributions from kn j−1

are cancelled out modulo n j, after multiplication by n. This allows us to calculate

i j as

i j = i j−1 + kn j−1

= L((1 + n)i mod n j+1) − (

(

i j−1

2

)

n + · · · +

(

i j−1

j

)

n j−1) mod n j

By using this equation for calculating i j the calculation of i may be done using the

algorithm described in pseudocode in listing 3.1.

i = 0;

2 for j=1 to s do

begin

4 t1 = L(a mod n j+1);

t2 = i;

6 for k = 2 to j do

begin

8 i = i − 1;

t2 = t2 ∗ i mod n j;

10 t1 = t1 −
tk−1
2
k! mod n j;

end

12 i = t1;

end

Listing 3.1: Algorithm used for extracting i mod ns+1 from (1 + n)i mod ns+1

By using the algorithm explained in Listing 3.1 with (1 + n)md mod ns

as input,

md mod ns can be extracted. The plaintext is calculated by multiplying md mod ns

with the inverse of d modulo ns.

3.3. Zero Knowledge Proofs 21

3.3 Zero Knowledge Proofs

A zero-knowledge proof has the property of proving a statement without yielding

anything beyond the validity of the proof. The ability to prove the validity of the

votes in a voting system, without revealing the contents is essential to ensure the

privacy and integrity of the votes.

The concept of zero-knowledge implies that no matter how the verifier behaves as

a verifier, no information can be learned from the conversation with the prover that

it could not have computed itself even before the start of the protocol. Protocols

satisfying this criteria often requires more than three moves, and in the interest of

efficiency a looser criteria has been defined. This is the concept of honest-verifier

zero-knowledge. Such a protocol is defined as being zero-knowledge given that

the verifier is honest. These protocols often requires fewer moves and are therefore

more efficient than the ones satisfying the criteria of zero-knowledge.

To perform these proofs Σ-protocols may be used. These protocols are a type of

3-move honest-verifier zero-knowledge proofs. Consider two parties, a prover P

and a verifier V. They both share knowledge of a common input x, and P knows

a witness w such that (x,w) ∈ R, where R is some relation. P wants to prove to

V that x ∈ L where L is the NP-language specified by the relation R, but does not

want V to obtain any other information about x other than that x ∈ L. To prove this,

P and V may carry out a Σ-protocol. P sends an initial message a, V responds with

a randomly chosen challenge e, and P responds with an answer z. From evaluating

(x, a, e, z), the verifier can decide to accept or reject the claim that x ∈ L.

A proof system like this is called a Σ-protocol when it satisfies the following criteria

[6], [9]:

Completeness: If x ∈ L, and P knows a witness (the private input to P) w, V will

always accept the proof at the end of the protocol

Special Soundness: Given two arguments (x, a, e, z) and (x, a, e’, z’) where e ,

e’, it is possible to extract a witness w so that (x,w) ∈ R. Special soundness

makes a Σ-protocol a system for proofs of knowledge.

Special honest-verifier zero-knowledge: Given x ∈ L and e, is it possible to sim-

ulate an argument (x, a, e, z) which is indistinguishable from a real argument

with challenge e. In other words, it is possible to simulate a proof (x, a, e,

22 Chapter 3. The Cryptographic Voting System

z) with the same probability distribution as real proofs with any witness and

conditioned on using the challenge e

An Σ-protocol can be made non-interactive through the Fiat-Shamir heuristic. The

challenge will be computed by P as e = hash(x,a) instead of being chosen ran-

domly by V. This allows us to complete the whole honest-verifier zero-knowledge

proof by sending one message from P to V, thus making it non-interactive. Non-

interactive zero-knowledge proofs will be further discussed in Section 3.5.

3.4 The Zero-Knowledge Protocols

The different zero-knowledge protocols needed by this system to ensure that votes

are correctly formed are explained in this section. The interactive versions of the

protocols are described and proved to fulfill the requirements stated in Section

3.3. The protocols explained in the following subsections are not zero-knowledge,

only honest-verifier zero-knowledge. This will also be true for the non-interactive

variants explained in Section 3.5, as zero-knowledge cannot be obtained using the

Fiat-Shamir heuristic. We can however obtain security in the so-called random

oracle model. The protocols described in this section were originally proposed in

[19].

All these protocols will consist of a conversation between P, a prover, and V, a

verifier. Normally the protocols will consist of one message sent from P to V, a

reply from V containing a q-bit random challenge, a message from P containing

values calculated using the random challenge, and the verification of the proof at V.

All protocols will include a security parameter q, which denotes the bitlength of the

random challenge given by V. This security parameter decide the probability that a

cheating prover can make the verifier accept the conversation. This probability is

given as ≤ 2−q. For these protocols to satisfy special soundness, q must be chosen

such that 2q is smaller than the smallest prime factor of n.

3.4.1 Encryption of 0 - protocol

This protocol is used to prove that a given ciphertext is an encryption of 0, which

is equivalent to proving that the ciphertext is a ns power. Remember the form of a

ciphertext; c = E(m, r) = (1 + n)mrns

mod ns+1. If (1 + n)m = 1 because m = 0,

3.4. The Zero-Knowledge Protocols 23

the whole expression is reduced to c = rns

mod ns+1. Showing that a ciphertext

c = E(m, r) encrypts a given plaintext can be done by showing that c(1+ n)−m is an

encryption of 0.

Common Input: n, u.

Private Input for P: v ∈ Z∗n, such that u = E(0, v).

1. P chooses r at random in Z∗n and sends a = E(0, r) it to V

2. V chooses a random q-bit challenge e and sends to P.

3. P sends z = rve mod n to V.

4. V then checks that u, a, z are relatively prime to n and then computes the en-

cryption E(0, z), checks if E(0, z) = aue mod ns+1 and accepts if and only if

this is true.

To check the completeness of this proof, the values are inserted into the equation

checked by V to ensure that a verifier will accept the conversation, if P knows v.

These calculations are possible due to the homomorphic property of the cryptosys-

tem.

E(0, z) = E(0, rve mod n) = E(0, r)E(0, v)e mod ns+1 = aue mod ns+1

To prove special soundness we must show that it is possible to extract a witness

v from two accepting conversations (a, e, z) and (a, ê, ẑ) with e , ê. From the

conversations we have:

E(0, z) = aue mod ns+1

E(0, ẑ) = auê mod ns+1

Notice that:

E(0, zẑ−1 mod n) = ue−ê mod ns+1

Since 2q is smaller than the smallest prime factor of n, it is trivial to see that e − ê

will be prime to n. This implies that by using Euclid’s algorithm two numbers α

and β can be chosen such that αns + β(e − ê) = 1. Let ū = u mod n and v =

ūα(zẑ−1)β mod n. We see that uns

mod ns+1 = E(0, u mod n) = E(0, ū) from the

24 Chapter 3. The Cryptographic Voting System

encryption algorithm in the cryptosystem. By checking the encryption of v we see

that this protocol satisfies special soundness.

E(0, v) = E(0, ū)αE(0, zẑ−1)β = uαns

uβ(e−ê) = u mod ns+1

It is easily seen that this protocol satisfies the special honest-verifier zero-

knowledge criterion. This is done by checking if a simulated proof given u and

e will have the same probability distribution as a real proof. P chooses a random

z ∈ Z∗n and sets a = E(0, z)u−e mod ns+1, which is a perfect simulation.

3.4.2 Protocol 1-out-of-2 ns’th power

The protocol described in the last subsection can be extended to prove that a given

ciphertext encrypts one of two plaintexts. This is useful for proving that a vote on

a candidate has one of two legal values, without revealing which one it is. P and

V know the ciphertext c and the two candidate plaintexts m1 and m2. Using this, P

and V may compute the two values

u1 =
c

gm1
mod ns+1, u2 =

c

gm2
mod ns+1

P proves that either u1 or u2 encrypt 0, and that he has knowledge of one of the

corresponding ns’th roots.

Common Input: n, u1, u2.

Private Input for P: v1, such that u1 = E(0, v1).

1. P chooses r1 at random in Z∗n. P then invokes the honest-verifier simulator from

the previous subsection on input n, u2 to get a conversation (a2, e2, z2), and

sends a1 = E(0, r1), a2 to V.

2. V chooses a random q-bit challenge s and sends to P.

3. P then computes e1 = s− e2 mod 2q and z1 = r1v
e1

1
mod n and sends e1, z1 to V.

4. V then checks that s = e1 + e2 mod 2q, E(0, z1) = a1u
e1

1
mod ns+1, E(0, z2) =

a2u
e2

2
mod ns+1 and that u1, u2, a1, a2, z1, z2 are relatively prime to n, and ac-

cepts if and only if this is the case.

3.4. The Zero-Knowledge Protocols 25

To see that this proof satisfies the completeness criteria we can insert the values

into the equations V checks like in the previous protocol.

From what is calculated by P in step 3 of the protocol, it is easy to see that

s = e1 + e2 mod 2t. To check the other values we may use the properties of the

homomorphic cryptosystem.

E(0, z1) = E(0, r1v
e1

1
mod n) = E(0, r1)E(v1)e1 mod ns+1 = a1u

e1

1
mod ns+1

E(0, z2) = E(0, r2v
e2

2
mod n) = E(0, r2)E(v2)e2 mod ns+1 = a2u

e2

2
mod ns+1

To check if this protocol satisfies special soundness we extract the witness v such

that either u1 = E(0, v) or u2 = E(0, v) from two accepting conversations:

(a1, a2, s, e1, z1, e2, z2), (a1, a2, ŝ, ê1, ẑ1, ê2, ẑ2)

The procedure to check this will be equivalent to the work done in the previous

subsection. The difference is that the witness v1 will show knowledge of only one

of the corresponding ns’th roots.

The proof for special honest-verifier zero-knowledge criterion will also be equiv-

alent to what is done in the previous subsection. The simulation will have to be

done for each of the corresponding ns’th roots.

3.4.3 Protocol 1-out-of-L ns’th power

The protocol explained in this subsection extends the protocol from the last subsec-

tion to prove in honest-verifier zero knowledge that a ciphertext is an encryption of

1 out of L plaintexts without revealing which one.

Common Input: n, u1, · · · , uL.

Private Input for P: v1, such that u1 = vns

1
mod ns+1.

1. P chooses r1 at random in Z∗n. P then invokes the honest-verifier simulator of

the encryption-of-0 protocol with input n, ui to get conversations ai, ei, zi for

all i’s in 2 ≤ i ≤ L, and sends a1 = E(0, r1), a2 to V.

2. V chooses a random q-bit challenge s and sends it to P.

26 Chapter 3. The Cryptographic Voting System

3. P then computes e1 = s− (e2 + · · ·+ eL) mod 2q and z1 = r1v
e1

1
mod n and sends

e1, z1, · · · , eL, zL to V.

4. V then checks that s = e1 + · · ·+ eL mod 2q, E(0, zi) = aiu
ei

i
mod ns+1 for all i’s

in 1 ≤ i ≤ L and that u1, · · · , uL, a1, · · · , aL, z1, · · · , zL are relatively prime to

n, and accepts if and only if this is the case.

The proofs that this protocol satisfies completeness, honest-verifier zero-

knowledge and special soundness follows directly from the 1-out-of-2 ns’th power

protocol..

3.4.4 Protocol Multiplication-mod-ns

This protocol proves in honest-verifier zero-knowledge that a ciphertext contains

the multiplication of the plaintexts of two other ciphertexts modulo ns. This pro-

tocol was described in [19]. The three ciphertexts in question is included in the

common input for both P and V as ea, eb, ec.

Common Input: n, g, ea, eb, ec

Private Input for P: a, b, c, ra, rb, rc such that ab = c mod n and ea = E(a, ra) ,

eb = E(b, rb) , ec = E(c, rc)

1. P chooses a random value d ∈ Zns , rd, rdb ∈ Z
∗
n and sends the encryptions ed =

E(b, rd), edb = E(db, rdb) to V.

2. V chooses a random q-bit challenge e and sends it to P.

3. P opens the encryption ee
aed = E(ea + d, re

ard mod n) by sending f = ea +

d mod ns and z1 = re
ard mod n. Finally P opens the encryption e

f

b
(edbee

c)−1 =

E(0, r
f

b
(rdbre

c)−1 mod n) by sending z2 = r
f

b
(rdbre

c)−1 mod n.

4. V verifies that the openings of encryptions in step 3 were correct, that all values

sent by P are relatively prime to n, and accepts if and only if this is the case.

To check that this protocol satisfies the completeness criterion the values are in-

serted into the equations checked by V.

E(f , z1) = (garns

a)egdrns

d = ee
aed

E(0, z2) = (gbrns

b)ea+d(gdbrdbgaberns

c)−1 = r
f

b
(rdbre

c)−1

3.4. The Zero-Knowledge Protocols 27

The protocol will now be proven to satisfy special soundness. Given two accepting

conversations we have f = ea + d mod ns, f̂ = êa + d mod ns. From this we see

that f b − x − ec = f̂ b − x − êc mod ns = 0. By putting this together we obtain

(f − f̂)b = (e − ê)c mod ns or (e − ê)ab = (e − ê)c mod ns

Because (e−ê) is invertible modulo ns because 2q is smaller than the smallest prime

factor of n, we can conclude that c = ab mod ns and also compute a, b and c.

For honest-verifier simulation we may choose f , z1, z2, e at random and then com-

puting ed, edb which is seen to see a perfect simulation because f , z1, z2, e are ran-

dom and independent in the real conversation as well.

3.4.5 Protocol for Equality of Discrete Logarithms

This protocol explained in [19] proves that two discrete logarithms are equal, and

will be used in the decryption process by the decryption servers to convince V that

the raising of the ciphertext to their own secret exponent is done correctly, without

revealing any secret information about the exponent to V.

Common input: n, s, u, ũ, v, ṽ ∈ Z∗
zs+1

Private input for P: y such that y = logu(ũ) = logv(ṽ)

1. P chooses a random number r of length (s+ 1)k+ q bits where k is the bitlength

of the modulus, and q is the security parameter. P then calculates a = ur mod

ns+1, b = vr mod ns+1 and sends these values to V.

2. V chooses a random challenge e of q bits and sends to P.

3. P sends z = r + ey to V.

4. V verifies that uz = aũe mod ns+1, vz = bṽe mod ns+1 and accepts if and only if

this is the case.

A check for completeness is performed by inserting the values into the equations

checked by V.

uz = uruey mod ns+1 = a(uy)e mod ns+1 = aũe mod ns+1

vz = vrvey mod ns+1 = a(vy)e mod ns+1 = aṽe mod ns+1

28 Chapter 3. The Cryptographic Voting System

For verifying that the protocol satisfies special soundness, remember that 2q is

smaller than the smallest of the prime factors of n. This implies that with two

accepting conversations (a, b, e, z), (a, b, ê, ẑ) where e , ê we have that gcd (e,ê) =

1. Notice that we in this case, like in Section 3.4.1 can choose α and β such that

αns + β(e − ê) = 1

uz(uẑ)−1 = ũeũ−ê mod ns+1 = ũe−ê mod ns+1 = uy(e−ê) mod ns+1 = uy mod ns+1

For honest-verifier simulation a random z ∈ Z∗n is chosen. Given e, u, ũ, v, ṽ It is

possible to set a = ũ−euz and b = ṽ−evz which will have the same probability

distribution as the real proof.

3.5 Non-Interactive Zero-Knowledge Proofs

All the protocols described in the previous section are interactive. As interactive

protocols require communication between P and V, they require on-line servers

to reply with random values to complete the proofs. By allowing P to choose

the random value while computing the values for the proofs, we can relieve P of

interacting with V, thus reducing these 3-way protocols to non-interactive proofs.

This may be done by using the Fiat-Shamir heuristic and a suitable hash function

H. This variant of the proofs is not only more efficient due to less communication

between P and V, but also allows V to be off-line and later check the proof created

by P. The non-interactive zero-knowledge proofs will only provide security in the

random oracle model.

3.5.1 Random Oracle

The random oracle is a mathematical abstraction used in cryptographic proofs. In

practice, random oracles are typically used to model cryptographic hash functions

in schemes where strong randomness assumptions are needed of the hash function’s

output, as is the case in the zero knowledge protocols described in the previous

section. Note however, that the non-interactive variants of these proofs are not

zero-knowledge as they stand, but provide security assuming the random oracle

model. In the more precise definition formalized in [3], the random oracle produces

a bit-string of infinite length which can be truncated to the length desired. When

3.5. Non-Interactive Zero-Knowledge Proofs 29

a random oracle is used within a security proof, it is made available to all players,

including the adversary.

No real function can implement a true random oracle however, and although a pro-

tocol is proven secure in the random oracle model, it may turn out to be trivially

insecure when the random oracle is replaced with a real hash function. Nonethe-

less, a proof of security in the random oracle model gives strong evidence that

an attack which does not break the other assumptions of the proof, must discover

some unknown and undesirable property of the hash function used in the protocol

in order to work.

3.5.2 Fiat-Shamir Heuristic

The interactive protocols explained in Section 3.4 consist of three messages be-

tween P and V (P → V, V → P, P →V), where the message from V to P consists

of a random challenge. Fiat and Shamir present a zero-knowledge identification

scheme in [8], where they prove that V’s part in this protocol may be replaced by

a truly random function f , thereby making the scheme non-interactive. This will

imply, as mentioned above, that the scheme no longer is truly zero-knowledge, but

will provide security assuming the random oracle model.

The Fiat-Shamir heuristic applies to any 3-round zero-knowledge protocol, and can

be used in our case to transform the interactive zero-knowledge protocols into valid

proofs assuming the random oracle model. We can however never design a truly

random algorithm f . This requires that the function f0 that is used in practice must

be sufficiently strong to withstand attacks on the scheme.

3.5.3 The Non-Interactive Zero-Knowledge Proofs

The protocols are made non-interactive by replacing the random value chosen by

V, with a hash function H. The digest should be calculated from values that are

unique for the specific proof. Therefore the digest should be calculated over the

values present in the argument presented to V. In addition to the values used in

the argument, some auxiliary information should be included in the input to H, to

prevent duplication of the proof. This information can for instance include the id

of the voter, as well as the modulo n used in the election.

The non-interactive variant of the encryption-of-0 protocol will be described here

30 Chapter 3. The Cryptographic Voting System

as an example. The non-interactive variants of the other protocols described in

Section 3.4 are trivial extensions to this example:

Common Input: n, u, id.

Private Input for P: v ∈ Z∗n, such that u = E(0, v).

1. P chooses r at random in Z∗n and computes a = E(0, r) to V

2. P then calculates random q-bit challenge e as e = H(n, a, u, id).

3. P sends z = rve mod n, a to V.

4. V then calculates e = H(n, a, u, id), checks that u, a, z are relatively prime to

n and then computes the encryption E(0, z). V then checks if E(0, z) =

aue mod ns+1 and accepts if and only if this is true.

By leaving to V the calculation of e from the information used in the proof, V can

be certain that the e used in the calculations made by P is correct. If this is not the

case, this will be discovered when verifying that E(0, z) = aue mod ns+1.

3.6 A Threshold Variant of the Cryptosystem

A threshold variant of the cryptosystem should be implemented to ensure that,

given l decryption servers, only a subset of at least w authentication servers can

be able to decrypt votes. This reduces the risk for voting fraud committed by

persons in the election apparatus and secures the privacy of the votes. Damgård,

Jurik and Nielsen proposed a threshold variant of their cryptosystem in [19], where

it is proven in the random oracle model that this threshold scheme is as secure

as a centralized scheme, where one trusted entity performs the decryption. The

threshold scheme uses a variant of Shoup’s threshold variant of RSA signatures

[23]. Shoup’s variant works by allowing a set of servers to collectively raise an

input number to a secret exponent modulo n (a RSA modulus.) Each server returns

a share of the result, together with a proof of correctness. When w shares are

acquired, these can be combined to reveal the result.

This protocol can, as explained in [19] be transplanted to the cryptosystem used

in this voting system, thus allowing the decryption servers to collectively raise an

3.6. A Threshold Variant of the Cryptosystem 31

input number to the power of the secret exponent d mod ns+1. The protocol can

therefore be used to compute E(m, r)d mod ns+1 = cd mod ns+1. After doing this

the rest of the decryption process may be done by anyone without knowing the

secret key d. The security of the scheme will depend on the choice of d, because

if the original choice d = λ is used, then seeing the value E(m, r)d mod ns+1 may

allow an attacker to compute λ, thus breaking the system completely. Therefore

d should be chosen as a number different from λ, such that d = 1 mod ns and

d = 0 mod λ. This will ensure that d contains no trace of the secret λ.

The parameter w can be chosen freely, but a natural choice would be w = l
2
. The

modulus n will be a product of safe primes p, q, where p, q, p′ =
(p−1)

2
, q′ =

(q−1)
2

are primes. As mentioned earlier the decryption servers have to include a proof

that their exponentiation of the ciphertext is done correctly. The protocol designed

for this purpose is proposed in [19], and is described in Section 3.4.5.

3.6.1 Key Generation

As explained earlier, the key generation process starts by choosing two safe primes

p and q. These primes are safe if they satisfy p = 2p′ + 1 and q = 2q′ + 1 where p′

and q′ are prime. The straight forward way of finding safe primes is choosing p and

q at random at first, and then testing whether or not they have the needed properties.

A more efficient way of generating safe primes is explained in [13]. After choosing

p and q we set n = pq and m = p′q′. The parameter s is chosen to get the desired

message space for the election. The parameters n and s give the plaintext space

Z
s
n. By increasing s the message space can be increased without increasing the key

length k, and therefore without affecting the security of the scheme. The secret key

d is chosen such that d = 0 mod m and d = 1 mod ns.

Now we go on to generating the secret key shares for the decryption servers.

The secret key share for decryption server si will be chosen as si = f (i) =
∑w−1

j=0 a ji
j mod nsm where a j for all 1 ≤ j < w, are chosen as random values from

0, · · · , ns(m − 1), and a0 = d. This gives a secret key share for decryption server

i, si, and a public key (n, g). To be able to verify the actions of each decryption

server the following fixed public values are needed: v generating the cyclic group of

squares in Z∗
ns+1 and a verification key for each decryption server vi = v∆si mod ns+1

where ∆ = l!

32 Chapter 3. The Cryptographic Voting System

3.6.2 Encryption

For encrypting a message M a random r ∈ Z∗n is picked and the ciphertext is com-

puted as c = (n + 1)Mrns

mod ns+1 as in the normal scheme described in Section

3.2.2. Some improvements regarding the efficiency of this computation will be

discussed in Section 5.5.2.

3.6.3 Share Decryption

The i’th decryption server performs its share decryption by computing ci = c2∆si ,

where c is the ciphertext and si is the secret key share. Together with ci, the de-

cryption server will include a proof using the protocol explained in Section 3.4.5,

showing that logc4(c2
i
) = logv(vi), which will convince a verifier V that the cipher-

text was raised to the power of the secret exponent si.

3.6.4 Share Combination

When the w shares from the decryption servers are acquired and all proofs have

been checked, the results can be combined to yield the plaintext without any knowl-

edge of any secret key. The results are obtained by first calculating

c′ =
∏

i∈S

c
2λS

0,i

i
mod ns+1 where λS

0,i = ∆
∏

i′∈S \i

−i

i − i′
∈ Z

The value of c′ will have the form c′ = c4∆2 f (0) = c4∆2d. We note that 4∆2d =

0 mod λ and 4∆2d = 4∆2 mod ns so c′ = (1 + n)4∆2 M mod ns+1 where M is the

plaintext. By using the algorithm described in Section 3.2.3 we may extract 4∆2M,

and multiply with the inverse of 4∆2 mod ns+1 to obtain the plaintext message M.

3.7 Summary

This chapter explained the building blocks needed for designing a fully functional

and efficient voting system. The underlying homomorphic cryptosystem has been

thoroughly explained, along with the zero-knowledge protocols needed to prove

correctness of votes. These protocols has been made non-interactive with help of

the Fiat-Shamir heuristic, with security in the random oracle model. A threshold

3.7. Summary 33

variant of the cryptosystem has been explained, which is the cryptosystem used for

designing a fully functional voting system in the following chapter.

Chapter 4

Design

This chapter will describe the design of the voting system and find suitable values

for the system parameters to satisfy the computational requirements, as well as the

security requirements, for elections at NTNU. Chapter 3 explained the building

blocks needed to design the voting system. It is now time to combine these pieces

to create a fully functional voting system.

4.1 Top Level Architecture

The voting system consists of four main parts; the election authority, the decryp-

tion servers, the bulletin board and the voter application. The election authority

is responsible for creating the keys needed for encryption and decryption of votes,

as well as the calculation of the result from the multiple shares acquired from the

decryption servers. The decryption servers decrypt the votes together, using multi-

party computations. The bulletin board is the public place where votes are posted.

The voter application is responsible for the encryption of the voters’ choices and

the creation of the appropriate proofs. In order to counter denial of service attacks,

multiple bulletin boards may be created, but as this is a trivial extension to the sys-

tem, only one bulletin board will be used in the design described in this thesis. The

top level architecture of the system is shown in Figure 4.1.

The application will typically consist of multiple layers. A possible structure of an

implementation of the system in Java is shown in Figure 4.2.

This thesis focuses mainly on the design of the voting system. Although securing

35

36 Chapter 4. Design

Voters

Bulletin Board

Decryption Servers

Election Authority

Figure 4.1: Top level architecture of the voting system.

communication between components is outside the scope of this thesis, the design

of this system will try to suit the needs of NTNU elections. The internal network

at NTNU1) may be used for authentication of voters. The communication with this

internal network is secured using SSL2. The username of the voter can be used for

identification and to prevent double voting.

The system will be verifiable for anyone participating in the election. All the zero-

knowledge proofs are publicly accessible. This way anyone can verify the proofs

of correctness posted on the bulletin board by both voters and decryption servers.

The GUI layer of the model will show the voter the ballot and take input from the

voter. The encryption of the votes, and the creation of the proofs of correctness will

be done in the voting system layer of the model, using the techniques described in

Section 3.2. In this particular model, the networking part of the system is designed

as a distributed system and is handled by Java RMI3 over an SSL connection using

1The internal network used by employees and students at NTNU is called Innsida. Innsida carries

out authentication of users using a username and password [15].
2Secure Sockets Layer. More information can be found at [17]
3Java Remote Method Invocation. For more information on Java RMI see [11]

4.2. Parameters of the Election 37

JSSE4.

Figure 4.2: Possible layered structure of the system

4.2 Parameters of the Election

Table 4.1 presents the parameters used in the calculations of the electronic voting

system. This notation will be used throughout the thesis.

n The modulo used in the cryptosystem

g The generator used in the cryptosystem

k The bitlength of n

s The exponent used in the cryptosystem to adjust

the size of the message space

q The security parameter specifying the length of

the challenges in the zero-knowledge proofs

L The number of candidates in the election

M The maximum number of voters in the election

l The number of decryption servers

w The number of decrypted shares needed to get the

plaintext of the results from the election

Table 4.1: The parameters of the voting system.

4.3 Model of Elections

The general model of elections used in [19] will be explained here and used

throughout the thesis.

4Java Secure Socket Extension (JSSE) For more information on JSSE see [12]

38 Chapter 4. Design

The model consists of a set of voters V1, · · · ,VM where M denotes the maximum

number of voters in the election, the bulletin board B where votes are posted, and

a set of decryption servers A1, · · · , Al where l is the number of decryption servers.

The bulletin board is assumed to be public, and every voter is allowed to write to

the board once and only once. A vote is not allowed to be deleted once it is cast, and

every voter can see who cast every vote. H will denote a fixed hash function used to

make non-interactive proofs according to the Fiat-Shamir heuristic, with security in

the random oracle model as explained in 3.5. An instance of the threshold version

of the cryptosystem with public key (n, g) is set up as explained in 3.6. The n and

s will be chosen such that ns > ML.

The notation Proo fV (S), where S is some logical statement, will denote a bit string

created by voter V to prove the statement. Proofs are constructed by selecting the

appropriate protocol from Section 3.4, and following the steps explained in Section

3.5 to make it non-interactive.

4.4 The Different Parts of the Voting System

This section will describe the individual parts of the voting system.

4.4.1 The Voter Application

The voter application is the part of the voting system where the voter makes his

choice in the election. The vote is encrypted, the zero-knowledge proofs of cor-

rectness are created, and the vote is submitted to B. This part of the voting system

can be implemented as an applet or a web service for Internet voting. The voters

may be authenticated and authorized to vote through the local intranet (in this case

through Innsida) using their normal credentials.

The applet must acquire the election parameters and the public key for the voting

system from the election authority. This information can either be included with

the application or obtained on-demand from the election authority. The problem of

distributing keys will not be discussed further in this thesis, as adequate solutions

for solving this problem exist today.

The voter application gets the choices of the user from the user interface and re-

trieves the information needed to encrypt the votes from the election parameters. It

4.4. The Different Parts of the Voting System 39

then follows the correct protocol to create the vote and the proofs needed, as will

be explained in Section 4.5. Finally, the application authenticates to B and submits

the votes and the proofs.

4.4.2 The Bulletin Board

The bulletin board is the least complex part of the system. It has to authenticate

users, and handle the storage of votes and proofs on the public bulletin board.

It may also authenticate servers and post the results of the share decryption, as

well as the proofs of correctness related to this computation. The storage of these

values may be realized with a database. The values posted on the board should

be accessible for every participant of the election. This component is the only one

required to be on-line for the whole duration of the election. Denial of service

attacks can be a threat to the operation of B, and a remedy may be the introduction

of server replication to secure the operation of this component.

4.4.3 The Decryption Server

The function of the decryption servers is to verify the proofs of the votes cast

and provide a share decryption of the result, as well as including a proof that this

is performed correctly. The key distribution problem has to be solved for these

servers as well because they all need a secret decryption key to perform the share

decryption as explained in Section 3.6.3.

The verification of the zero-knowledge proofs will be carried out as explained in

Section 3.4. Depending on the type of election, different proofs are used for prov-

ing correctness of votes. Section 4.5 will describe the different voting methods

thoroughly.

The decryption server will raise the product of the valid votes to the power of the

secret key si, and the proof of correctness will together with the public verification

key vi prove that the computations are done correctly. By proving in honest-verifier

zero-knowledge that logc4(c2
i
) = logv(vi), using the non-interactive variant of the

protocol for equality of discrete logarithms, the decryption server will convince a

sceptical verifier that the product of the valid votes in fact were raised to the power

of the secret key si.

40 Chapter 4. Design

4.4.4 The Election Authority

The election authority is the trusted component of this system. It generates the

public key for the system, along with the secret keys for the decryption servers and

the public verification keys used to verify the actions of the decryption servers. The

generation of keys in this system is done as explained in 3.6.1.

The election authority may also combine the shares acquired from the decryption

servers, verify the proofs of their calculations and combine the shares to yield the

result. This is a procedure which anyone may do after enough valid shares have

been acquired, without knowledge of any secret key, but the election authority may

be a natural choice for the publication of the results.

4.5 Voting Methods

This section will explain the different voting methods available using this voting

system, and how they are realized.

The basic idea is to encode a vote for candidate j as an encryption of the number

M j, where 0 ≤ j < L. By multiplying all these encryptions we get an encryp-

tion of the form a =
∑L

j=0 a jM
j mod ns, where a j is the number of votes cast

for candidate j. This encoding requires us to choose the parameters such that

L log2 M < (k − 1)s. This is to ensure that the message space is large enough to

avoid overflow when votes are multiplied together. This can always be done by

increasing k or s.

A vote for one of the L possible candidates will be denoted ṽ. In the elections

where one voter is allowed to cast t votes for L candidates, the t votes will be

denoted ṽ1, · · · , ṽt.

The amount of work that needs to be done by the voter varies from one method to

another, and will be described specifically for each method. The decryption servers

multiply all votes before share decryption, thus only one share decryption is needed

for each decryption server. The amount of zero-knowledge proofs that needs to be

verified will also vary and will be mentioned specifically for each method. All

zero-knowledge proofs used in the system are made non-interactive using the Fiat-

Shamir heuristic for providing security in the random oracle model.

Java implementations of the vote creation process for the different voting methods

4.5. Voting Methods 41

are provided in Section A.1. The implementation of the verification of the different

zero-knowledge proofs can be seen in Section A.3.

4.5.1 Yes/No Election

The Yes/No election is the simplest of the voting methods available in this vot-

ing system. It requires few computations and few proofs to ensure that the votes

are correctly formed. The elections can be viewed as an election with two possi-

ble candidates. The protocol for how this system carries out a Yes/No election is

described in the following:

1. Each voter Vi decides on a candidate j from the two possible choices 0, 1.

The voter then encodes the vote as ṽ = M j, and calculates the encryption of

the vote e = E(ṽ, r). The voter creates a proof

Proo fV (e/g or e/gM is an encryption of 0)

using the 1-out-of-2 ns’th power protocol, and writes e and the proof to B.

2. Each decryption server Ax checks the proof of all votes, and multiplies all

valid votes together to get etot. This is the encryption of the result of the

election due to the properties of the homomorphic cryptosystem. Finally, Ax

executes his part of the threshold decryption protocol as explained in Section

3.6.3 with etot as input, and sends the result of the exponentiation and the

proof to B.

3. When w servers have executed Step 2 of this protocol and posted the result

with a valid proof at B, anyone may perform share combination, as explained

in Section 3.6.4, to reconstruct the plaintext of the encryption, which is the

result of the election.

The complexity of the proof is constant in this case, and a decryption server must

validate 2 values for each vote.

The voter only computes one encryption, and only one proof is needed in order

to prove the correctness of a vote, in addition to the honest-verifier simulator that

needs to be computed in the 1-out-of-2 ns’th power protocol.

42 Chapter 4. Design

4.5.2 1-out-of-L Election

The 1-out-of-L election is a generalization of the Yes/No election. The computa-

tional overhead will be larger in this type of election due to the fact that the 1-out-

of-L ns’th protocol will be used. As explained in Section 3.4.3, this requires more

computations and L − 1 invocations of the honest-verifier simulator for the ns’th

power protocol. The generalization of the Yes/No election to allow L candidates

can now be described:

1. Each voter Vi decides on a candidate j from the L possible choices 0, · · · , L.

The voter then encodes the vote as ṽ = M j, and calculates the encryption of

the vote e = E(ṽ, r). The voter creates a proof

Proo fV (e/gM0

or · · · or e/gML

is an encryption of 0)

using the 1-out-of-L ns’th power protocol, and writes e, as well as the proof,

to B.

2. Each Ax checks the proof of all votes, and multiplies all valid votes together

to get etot. Finally, Ax executes his part of the threshold decryption protocol

with etot as input, and sends the result of the exponentiation and the proof to

B.

3. When w servers have executed Step 2 of this protocol and posted the result

with a valid proof at B, anyone can perform the share combination to obtain

the result of the election.

The protocol for this type of election will be similar to the Yes/No election, except

that the proof will convince a sceptical verifier that the plaintext value of the vote

is one of the L allowed values for the election.

For voting in a 1-out-of-L election, each voter Vi is required to compute one en-

cryption, and to create one 1-out-of-L ns’th power proof in order to prove the cor-

rectness of a vote. This proof has a complexity of O(L), because the vote must

be proven to contain one of the L valid candidates, thus requiring the decryption

servers to verify O(L) values to validate a vote.

A voter only computes one encryption, along with one 1-out-of-L proof.

4.5. Voting Methods 43

4.5.3 t-out-of-L Election

The t-out-of-L election provides the possibility of casting a vote for t out of L can-

didates. The 1-out-of-L ns’th power protocol will be used for each of the t votes

to ensure that every vote given is for one of the L candidates. In addition to this

protocol, we need a way to ensure that a voter does not cast multiple votes for the

same candidate. This method can easily be used for providing ranked elections

with differently weighted votes without any additional requirements for the mes-

sage space. The protocol for performing an election with these properties is shown

below:

1. The voter Vi chooses t candidates, encodes the votes ṽ1, · · · , ṽt. The voter

then creates the encryptions of the votes

e1 = E(ṽ1, r1), · · · , et = E(ṽt, rt)

and the 1-out-of-L ns’th power proofs

Proo f1V
, · · · , Proo ftV

as explained in the last section. In addition to these proofs, the voter creates

the encryptions of all pairwise differences of votes

e1,2 = E(ṽ1 − ṽ2, r1,2), · · · , et,t−1 = E(ṽt − ṽt−1, rt,t−1)

and the encryptions of the inverses of these differences

e′1,2 = E((ṽ1 − ṽ2)−1, r′1,2), · · · , e′t,t−1 = E((ṽt − ṽt−1)−1, r′t,t−1)

This needs to be performed once for every pair of votes. This implies that the

encryption of the pairwise difference of votes and the inverse of this differ-

ence must be calculated for an asymmetric set of all possible combinations

of two different votes. Alternatively, the calculation of the differences of two

votes may be done as follows:

e1,2 = E(ṽ1, r1)E(ṽ2, r2)−1 · · · et,t−1 = E(ṽt, rt)E(ṽt−1, rt−1)−1

The voter then creates an honest-verifier zero-knowledge proof using the

multiplication-mod-ns protocol showing that the product of the pairwise dif-

44 Chapter 4. Design

ference and the inverse of this difference is 1 for every pair of votes. By

providing this proof, Vi can convince a sceptical verifier that the pairwise

difference between all votes are non-zero, thus no two votes are the same.

After encrypting the votes and creating the required zero-knowledge proofs,

the voter Vi writes the encrypted votes and the proofs to B.

2. Each Ax checks the 1-out-of-L ns’th proofs provided by Vi for each of the

votes cast. Each Ax also needs to verify that the pairwise differences of all

votes cast by Vi are non-zero. The encryptions of the difference of two votes

can easily be obtained by the verifier, due to the homomorphic property of

the cryptosystem. This difference is computed by the verifier as follows:

Ex,y(x − y, rxr−1
y) = E(x)E(y)−1 = (gxrns

x)(gyrns

y)−1 = gx−yrns

x r−ns

y

The multiplication-mod-ns proofs provided by Vi are then checked to verify

that the multiplication of the encryptions ex,y and e′x,y, for all pairwise differ-

ences of votes, equals the encryption of 1. If the election is using differently

weighted votes, the t votes provided by Vi may be exponentiated with the

correct weights, before the multiplication of the valid votes. All valid votes

acquired from voters are then multiplied together to yield eres, which is the

encrypted result of the election. The encrypted result eres is raised to the

power of the server’s secret key si, and a proof of correctness for the ex-

ponentiation is made using the proof of equality of discrete logarithms, to

prove that logc4(c2
i
) = logv(vi). The vote and the proof are then sent to B.

3. Like earlier, the shares provided by the decryption servers may be combined

to yield the result of the election.

This protocol will run t 1-out-of-L elections, and prove that no two votes are the

same. This solution requires O(tL + t2

2
− t

2
) = O(tL + t2) zero-knowledge proofs.

The number of proofs needed in order to prove the correctness of the votes cast by

one voter increases quadratically with an increasing t.

The voter needs to create t encryptions of votes, along with the required number of

zero-knowledge proofs.

4.5. Voting Methods 45

4.5.4 1-out-of-L Election with Binary Encoding of Votes

The 1-out-of-L election with binary encoding of votes provides the same possi-

bilities as the one mentioned in Section 4.5.2, with a possible reduction in the

number of proofs needed. The method is explained in [19]. The encoding of a

vote for candidate j, associated with the value ṽ, will have the form Mṽ, where

0 ≤ ṽ < L. This method uses binary representation of ṽ to prove the correctness

of a vote. An l is chosen as the smallest possible number such that 2l+1 > L. We

then let bo, · · · , bl be the bits in the binary representation of ṽ. We can now see that

Mṽ = (M20
)b0 · · · · · (M2l

)bl . This implies that each factor in this product is either

1 or a power of M. This may be used in the following protocol, for proving the

correctness of a vote:

1. The voter makes the l+1 encryptions eo, · · · , el of (M20
)b0 , · · · , (M2l

)bl). For

every encryption he also computes

Proo fiV (ei/g or ei/g
M2i

is an encryption of 0)

using the 1-out-of-2 ns’th power protocol.

2. Let

Fi = (M20

)b0 · · · · · (M2i

)bi

for i = 1 . . . l. The voter then computes the encryptions fi of all Fi, and sets

f0 = e0. Now, for i = 1 . . . l the voter computes

Proo fiV (Plaintexts corresponding to fi−1, ei, fi satisfy Fi−1(M2i

)bi = Fi mod ns)

using the multiplication-mod-ns protocol. The last encryption fl is the en-

cryption of the vote.

After encrypting the vote and creating the required zero-knowledge proofs,

the voter Vi writes the encrypted vote and the proofs to B.

3. The decryption server checks all of the proofs, multiplies all valid votes to-

gether, and creates a share decryption of the result.

4. The shares acquired from the decryption servers may now be combined to

yield the final result of the election.

46 Chapter 4. Design

These proofs convince a sceptical verifier that fl is a number of the form M j. Since

there are l + 1 encryptions e0, · · · , el, each determining one bit of ṽ, it is clear that

0 ≤ ṽ < 2l+1. This scheme allows voters to vote for a non-existing candidate

L < ṽ < 2l+1 if L < 2l+1, and it requires a larger block size satisfying M2l+1
< ns,

to avoid overflow when votes are added. Preventing voters from voting for non-

existing candidates may be achieved by adding an extra step to the verification of

a vote, where the voter proves in zero-knowledge that ṽ < L. By preventing voters

from voting for non-existing candidates this could be reduced to ML < ns. An

explanation of how to do this can be found in [19].

This method requires O(log2 L) proofs in order to prove the correctness of a vote,

as opposed to O(L) proofs in the method explained in Section 4.5.2. When using

binary encoding of votes, the proofs require more computations than the proofs

used in the normal encoding of votes, which may lead to lower performance for

small values of L. For large values of L, however, the method using binary encod-

ing of votes will perform better than the method explained in Section 4.5.2, due to

the lower number of proofs needed.

This method requires the voter to compute 2l encryptions for creating the zero-

knowledge proofs, in addition to the l encryptions required for the encryption of

the vote, as opposed to just 1 encryption in the method in Section 4.5.2.

4.5.5 t-out-of-L Election with Binary Encoding of Votes

The t-out-of-L election with binary encoding of votes is an optimization of the

t-out-of-L election, using binary encoded votes. This is performed by running t

parallel 1-out-of-L elections with binary encoding of votes, and proving that none

of the t votes are cast for the same candidate. The cross validation of votes is

performed as explained in Section 4.5.3.

This type of election needs O(t log2 L + t2) proofs in order to prove the correctness

of the votes cast by one voter. This is due to the fact that t 1-out-of-L elections

require verification of t log2 L proofs, and the cross validation of all pairwise dif-

ferences of votes requires verification of O(t2/2 − t/2) proofs.

The voter needs to compute 2lt encryptions in order to create the zero-knowledge

proofs for the correctness of the votes, lt encryptions for the encryption of the votes,

as well as the encryptions required for cross validation of the votes.

4.6. Satisfying Election Requirements at NTNU 47

4.6 Satisfying Election Requirements at NTNU

4.6.1 Functional Requirements

The design of the system facilitates Internet voting. By designing the electronic

voting system as a distributed system, all components of the system are able to

exchange information using remote procedure calls in an Internet environment.

The requirement that the system should be usable in a heterogeneous environment

will largely depend on the implementation of the system. For the voting service to

be accessible using all major operating systems, this application should be imple-

mented using a non-proprietary language, which is independent of the operating

system. This system is thought implemented using Java. The majority of operating

systems today support Java. This ensures that voters are able to cast votes using

most of the operating systems available today.

The proposed system handles both 1-out-of-L elections, where a voter casts only

one vote, and t-out-of-L elections, which may be used to carry out ranked voting,

where the t votes may be weighted differently when the result is calculated.

4.6.2 Security Requirements

As mentioned in Section 2.3, the security demands at NTNU are not as high as in

national, political elections. The contents of individual votes should remain safe

at least 5 years forward in time. The special purpose machine proposed by Bern-

stein in [4], may be used by an adversary for efficiently breaking the security of

a system, based on the factorization of large integers. In light of this special pur-

pose machine, it may seem that the length of the keys in public key algorithms,

based on the factorization of large integers, should be very long in order to pre-

serve the security of the system. However, the construction of such a machine is

likely to be expensive, and it is assumed to be unlikely that anyone will go to such

measures to break the encryption of the votes in an election at NTNU. The length

of the keys chosen in a cryptosystem will always be a trade-off between security

and performance. As this system is designed to be universally verifiable for any

participant in an election, the time spent on this verification must be kept as low

as possible. Based on the results of a workshop held by NIST in 2001 [14] and

recommendations from RSA Security [21], it is assumed that a key length of 1024

bits should be sufficient to secure the votes for long enough time for elections at

48 Chapter 4. Design

NTNU. Other elections with higher security requirements may choose a larger key

length to obtain a higher level of security, with some loss of performance.

The threshold variant of the cryptosystem proposed in [19] will be used to secure

the privacy of the votes. The homomorphic property of this cryptosystem enables

the encryptions of all valid votes to be combined into an encryption of the result, by

multiplying the encrypted votes together. The threshold variant of the cryptosystem

enables the results to be decrypted without allowing a single entity the possibility

of learning how single voters voted.

Votes posted on B will be associated with the username of the voter. The ID of

the voter is also included in the input to the hash function H, when creating the

proof of correctness of the vote. This ensures that no voter can post two votes on

B with the same ID. However, the property no double voting cannot be guaranteed

without some kind of access control of the system. This is not handled by this

voting system. It may be handled by the internal network authentication at NTNU.

The votes and computations made by the decryption servers will be secured using

zero-knowledge proofs. As explained in Section 3.4, these proofs have a security

parameter q, which is the bitlength of the challenge provided by V in the interactive

variant, and the bitlength of the digest of H in the non-interactive variant. With a q

of 80 bits, an incorrectly formed vote will be accepted with a probability of ≤ 2−80.

This probability is assumed to be small enough to ensure that the requirements no

cheating and correctness will be satisfied for this system.

All zero-knowledge proofs posted on B may be verified by any participant in the

election. This ensures that anyone may verify all votes posted on B, as well as

the proofs proving the correctness of the calculations carried out by the decryption

servers, thereby making the elections universally verifiable.

Innsida is a secure internal network at NTNU, which authenticates users by their

username and password. As Innsida will be used to control B, this will be the only

part of the system which needs to be on-line during the whole election, thus the

voting system does not satisfy the property off-line. This part of the system must

be able to withstand denial of service attacks. Innsida is maintained by NTNU

and will be continuously monitored by the NTNU staff during the election. Mul-

tiple instances of B may be launched if there is need for it, using existing server

replication techniques. The robustness of the system will largely depend on the

implementation and integration of the system, and cannot be guaranteed by the

system itself.

4.7. Other Considerations 49

This system will not satisfy receipt-freeness. Any voter can easily post the random

numbers used in the encryption of votes to show anyone the contents of the votes.

As vote-buying and coercion are minor concerns at NTNU, the lack of this property

is not considered critical.

The requirements satisfied by this voting system are shown in Table 4.2. As we

can see by comparing this table to Table 2.1, this system may be implemented to

satisfy all properties required in an NTNU election.

Privacy X

No Double Voting (X)

No Cheating X

Correctness X

Verifiable X

Off-line

Receipt-Freeness

Robustness (X)

Ranked Voting X

Internet Voting X

Usable in a heterogeneous environment X

Table 4.2: Requirements satisfied by the voting system proposed in this thesis.

The requirements in parenthesis cannot be guaranteed by the system alone, and

will depend on the implementation of the system and the access control enforced

when using the system for an election.

4.7 Other Considerations

While evaluation of security measures other than those concerning the crypto-

graphic protocols is beyond the scope of this thesis, this section will describe some

challenges regarding the integration of this system at NTNU.

The security of the internal network at NTNU, Innsida, will be the weakest link

of this voting system, if used for authentication of voters and access control of the

voting system. Even though NTNU has a strict policy concerning the quality of the

Innsida passwords (it has to consist of 8 characters, and include at least one charac-

ter from each of the groups a-z, A-Z and 0-9), it may be possible for an adversary

to gain access using another person’s credentials. It is not uncommon that students

and employees leave computers unattended, without logging out of Innsida. Also,

50 Chapter 4. Design

many employees at NTNU have access to the authentication mechanisms used, and

the possibility of employees posting votes for other people or even deleting votes

from B cannot be ruled out.

No PKI5 is in place at NTNU as of this moment, thus there is no straight-forward

way to create a digital signature on the information posted on B. This implies that

there is no way to secure the integrity of votes posted on B cryptographically. One

possible way of securing that votes stay unaltered on B is to give the voter a receipt

with the vote and proof, so the voter can verify the information on B at the end

of the election. However, this cannot guarantee the authenticity of all information

posted on B.

Another problem is the key distribution. Who can be trusted to generate the keys

for the voting system, and how will the keys be delivered to the servers and the

voters? These are questions that need to be answered in order to realize this voting

system securely for voting at NTNU.

4.8 Summary

This chapter has explained the different components of the voting system, and how

they will work together for carrying out a secure election. The voting methods of

this system were explained, as well as their performance. A description of how this

voting system will satisfy the requirements for voting at NTNU was also provided.

Some security issues that need to be solved for attaining a high level of security for

voting at NTNU were raised at the end of this chapter. The next chapter will cover

the implementation of the system.

5Public Key Infrastructure. In cryptography, a public key infrastructure (PKI) is an arrangement

that provides for third-party vetting of, and vouching for, user identities. It also allows binding of

public keys to users.

Chapter 5

Implementation

This chapter will discuss the implementation of the voting system. This imple-

mentation is mainly done for performance evaluation of the algorithms, thus the

security of the implementation is not guaranteed.

5.1 Overview

The programming language of choice is Java, as it functions well in a heteroge-

neous environment and has good mechanisms for implementing a distributed sys-

tem. Java has a built-in class called BigInteger, which is capable of performing

computations using large integers. This class is needed in order to implement the

cryptosystem. The implementation supports different voting methods: elections

for 1-out-of-L candidates and elections for t-out-of-L candidates. Both of these

methods are implemented using two different encodings of the votes, which per-

form differently depending on the parameters of the election. The two encodings

differ largely in the techniques needed to create and validate proofs, as well as in

the number of proofs needed as explained in Section 4.5. A Yes/No-election can

easily be obtained by using the 1-out-of-L method with L = 2.

The implementation of the system is realized as a distributed system using Java

RMI1. The system consists of four different components: The voter application,

the decryption server, the election authority and the bulletin board.

1Java Remote Method Invocation. For more information on Java RMI see [11]

51

52 Chapter 5. Implementation

The voter application does not provide any authentication and access control, as

this is out of scope for the thesis, but this may easily be provided by introducing a

layer providing these services, below the RMI layer in the model, as described in

Figure 4.2.

The deployment diagram of the system is shown in Figure 5.1. The remote ob-

ject BulletinBoard handles the storage of votes and decryption shares during the

election process. This is the only entity that needs to be on-line during the whole

duration of the election. The ElectionServer is bound to the registry by the Electio-

nAuthority and provides the voters and servers with the public key of the election,

as well as the election parameters. The ElectionServer also provides the Decryp-

tionServers with their key shares, which will be used in the share decryption pro-

cess.

All entities in the system share a common library of resources in addition to these

shared objects. This library contains the classes which hold the different types of

votes, the algorithms needed to verify the zero-knowledge proofs used throughout

the system, as well as the classes holding the public key for the election and the

key shares used by the decryption servers. The remote interfaces needed for using

the remote objects through Java RMI are also included in this library.

5.2 Implementation of the Cryptosystem

The cryptosystem used in this voting system is a threshold variant of the general-

ization of Paillier’s public-key system. The cryptosystem mainly consists of four

parts: the key generation, the encryption, the share decryption and the share com-

bination.

The random key generator used in this implementation is provided by the generic

SecureRandom class included in Java. SecureRandom is a cryptographically strong

random number generator, satisfying the criteria stated in the recommendation in

[7], and should satisfy the requirements needed for randomness in this cryptosys-

tem.

Key generation for a non-threshold variant of this cryptosystem is fairly straight

forward, but in the case of the threshold variant there are more factors to consider.

As explained in Section 3.6.1, we need to find two primes p and q, that satisfy

p = 2p′ + 1 and q = 2q′ + 1, where p′ and q′ are primes and different from

5.2. Implementation of the Cryptosystem 53

Figure 5.1: Deployment diagram of the voting system. The two remote objects are the BulletinBoard and the

ElectionServer. The use of these remote objects is shown by connectors in the diagram.

p and q. In this implementation the key generation is performed by trying and

failing until a suitable pair of primes is found. The BigInteger class includes an

implementation of the Miller-Rabin test, which may be used to determine whether

a number is a prime or not, with a given certainty. This is used to determine whether

the values chosen for p, p′, q, q′ are prime or not. In this implementation of the key

generation, the probability of error, or uncertainty, is set to be 0.5100.

After finding suitable primes, the parameters n and m are calculated as n = pq

and m = p′q′. A suitable secret key d is chosen to satisfy d = 0 mod m and

d = 1 mod ns, by using the Chinese remainder theorem. The key shares for the

decryption servers are computed as explained in Section 3.6.1.

Encryption of a given plaintext i is done by choosing a random r ∈ Z∗n, and com-

puting the ciphertext as explained in Section 3.2.2. A discussion of optimizations

regarding this computation follows in Section 5.5.2.

The share decryption process is performed by raising the ciphertext to the power

of the decryption server’s own secret exponent. Along with this exponentiation the

server includes the zero-knowledge proof for convincing a verifier that log4
c(c2

i
) =

54 Chapter 5. Implementation

logv(vi). This is done non-interactively using a hashfunction, and provides security

in the random oracle model.

The combination of shares may be done without any knowledge of the secret keys.

When enough shares are acquired, the procedure explained in Section 3.6.4 may

be applied to yield the plaintext.

5.3 Implementation of the Common Library

All of the components of the voting system need a shared library of resources,

which specifies the data structures for the different types of votes and keys. In ad-

dition to these data structures, classes that are used by multiple components in the

system are included in this common library. The package containing these classes

is called votingSystem, and the class diagram for this package is shown in Figure

5.3. In addition to this package, the packages remoteInterfaces and exceptions are

needed. The remoteInterfaces package simply contains the interfaces needed to

interpret the remote objects placed in the RMI registry. The exceptions package

contains the exceptions that may be thrown if any problems occur in the voting

process.

The classes Vote, MultipleVote, BinaryVote and MultipleBinaryVote are the data

structures holding the different types of votes, as well as their proofs of correct-

ness. The attributes of these classes should be easily interpreted after reading Sec-

tion 4.5, which explains the different voting methods used, as well as Section 3.4,

which explains the proofs used in the methods. Note that MultipleVote is a class

holding the multiple Vote-objects in the case of a multi-vote election, as well as the

additional attributes needed to prove that all votes are cast for different candidates.

This is also the case for MultipleBinaryVote and BinaryVote.

The PublicKey and KeyShare classes are the data structures holding the keys used

in the election. The PublicKey class specifies n, g, and s, which are needed to

encrypt votes for a specific election. Additionally the class specifies the public

parameter v, and the list of verification keys vi, which are needed for verification

of the calculations made by the decryption servers. The KeyShare class specifies

the secret exponent si, used in the share decryption process, along with the public

parameter v and the verification key vi, as explained in Section 3.6.3.

The DecryptedShare class is the data structure holding a decrypted share, along

5.3. Implementation of the Common Library 55

Figure 5.2: Class diagram of the package votingSystem including only the most important methods and attributes.

with the proof which will convince a verifier that the server indeed raised the ci-

phertext to the power of his secret key si.

The ElectionProperties class is the data structure holding the parameters of the

election, which are specified by the election authority.

All the classes mentioned above are passed between components using Java RMI.

Therefore these classes implement the interface Serializable, which makes it pos-

sible to pass them as arguments to and from a remote object.

The HashFunction class provides the standard Java implementation of the hash

function SHA-256, which is used in all the zero-knowledge proofs in this system.

SHA-256 gives message digests up to 256 bits, which is the maximum value for

the security parameter q in this system. Because the HashFunction class truncates

the output from the hash function on byte level, q can only be chosen as a multiple

56 Chapter 5. Implementation

of 8 in this system.

The Validator class includes all the methods needed to validate the zero-knowledge

proofs used in this system. The votes cast and the shares acquired from decryption

servers may therefore be validated by anyone participating in the election.

The Result class includes methods for extracting the result of the election from the

plaintext. The procedure for finding the result depends on the encoding used for

the votes. This class includes four methods, and the method used must correspond

with the voting method used in the election.

5.4 Implementation of the Election Authority

The election authority is located in the ea package of the voting system. This

section describes the implementation and functionality of this component.

5.4.1 Description of the Structure

The election authority generates the keys and sets the parameters of the election. In

this implementation, the election authority also handles the combination of shares

for obtaining the final result, although this is a process which may be executed by

anyone, after enough shares are acquired. The class diagram in Figure 5.3 shows

the structure of the election authority. The GUI collects the election parameters

from the election administrator and launches the KeyGenerator to generate the pub-

lic key and the key shares for the decryption servers. This information is stored in

the remote ElectionServer object, which will be bound to the RMI registry through

the RemoteEntityConnectionEA object. For simplicity the RMI registry runs on

the election authority component in this implementation, but it could easily be run

separately on a remote server.

The bulletin board could be started independently of the election authority, but

since the RMI registry is needed for the bulletin board to register, the bulletin board

cannot be started until the election authority is started, in this implementation.

The sequence diagram in Figure 5.4 describes the actions of the election authority

through the whole duration of an election. The application starts by receiving the

election parameters from the election administrator. The application then starts the

KeyGenerator for generation of the public key and the key shares (not shown in

5.4. Implementation of the Election Authority 57

Figure 5.3: Class diagram of the ea package including only the most important methods and attributes. The

ElectionServer Impl class is the implementation of the remote object that will be bound in the RMI registry for

remote access.

Figure 5.4). RemoteEntityConnectionEA is then instantiated and used for starting

a RMIRegistry where remote objects may be stored. The ElectionServer object is

bound to the RMIRegistry, and the election is started. The remote object Bullet-

inBoard may now be bound to the RMIRegistry, and voters and decryption servers

may use the ElectionServer object to retrieve the keys and the election parameters.

The voters may now post their votes to the BulletinBoard.

58 Chapter 5. Implementation

Figure 5.4: The sequence diagram for the election authority

The administrator may end the election at any time. This is done by retrieving the

BulletinBoard stub through the RemoteEntityConnectionEA, which will look up the

BulletinBoard in the RMIRegistry and return the stub. The method endElection()

is then invoked at the BulletinBoard. This will cause the BulletinBoard to stop

5.5. Implementation of the Voter Application 59

accepting votes, and notify the decryption servers that share decryption of the result

may start.

The election authority monitors the number of shares posted to the BulletinBoard

by the decryption servers. These shares are calculated by the decryption servers

and posted at the BulletinBoard. When enough shares are acquired, these shares

may be combined to yield the result of the election. This is done by retrieving the

shares from the BulletinBoard, and instantiating the ElectionAuthority class which

will check the proofs of correctness and return the result.

5.4.2 Parameters Chosen by the Election Authority

All the parameters shown in Table 4.1 are chosen by the election authority, except

s, which will be calculated automatically to adjust the message space, and the

generator g, which is fixed to (1 + n) in this implementation. In addition to these

parameters the administrator of the election inputs the type of election, the weights

of the votes in the case of a multi-vote election, and the names of the different

candidates. A screenshot of one of the two administration windows is included in

Figure 5.5.

5.5 Implementation of the Voter Application

This section describes the general structure of the voter application, as well as

some of the optimizations done to improve the performance of the encryption. The

package containing the voter application is called voter.

5.5.1 Description of the Structure

The voter package is implemented as a Java application. The application can easily

be ported to an applet for use in Internet elections. It consists of three classes:

GUI, Voter and RemoteEntityConnectionC. The GUI specifies the user interface

and receives input from the voter. The Voter class encrypts the votes using the

correct encoding for the election type, and creates the proofs of correctness. The

RemoteEntityConnectionC is used to obtain the stubs of the remote objects from

the RMIRegistry. These stubs are used to obtain the parameters of the election,

as well as the public key. The stubs are also used by the Voter class to send the

60 Chapter 5. Implementation

Figure 5.5: Screenshot of the administration window at the election authority.

encrypted vote to the bulletin board. If any kind of problem occurs when trying to

post votes, the application notifies the voter, and the voter may try again later. This

will happen if either the RMIRegistry is off-line, or the BulletinBoard object is not

yet bound to the RMIRegistry.

As specified in the class diagram shown in Figure 5.6, the Voter class includes four

different methods for encrypting votes, depending on the type of election and the

encoding of votes. The election type is retrieved together with the other parameters

of the election, through the use of the remote ElectionServer object. The sequence

diagram for the total lifetime of the voter application can be seen in Figure 5.7.

When the voter starts the application he is prompted for the hostname and the

port number used by the RMIRegistry. The program then retrieves the stubs for

the remote objects ElectionServer and BulletinBoard through the RemoteEntity-

ConnectionC. The remote ElectionServer is used for retrieving the PublicKey and

the ElectionProperties for the system. The GUI then creates a Voter object for

performing the computations. The choices of the user is collected, and the vote

as well as the proofs of correctness are inserted into the proper container for the

5.5. Implementation of the Voter Application 61

Figure 5.6: Class diagram of the package voter, including only the most important methods and attributes.

votes. The postVote() method corresponding to the current election type in Voter

is invoked. Finally, the Voter object sends the encrypted vote and the proofs to the

BulletinBoard using the stub obtained from RemoteEntityConnectionC.

The different methods used for encryption of votes and creation of proofs for dif-

ferent election types may be seen in Section A.1.

62 Chapter 5. Implementation

Figure 5.7: Sequence diagram for the voter application.

5.5.2 Optimizations of Encryption

The encryption algorithm is used for encryption of votes as well as the creation

of zero-knowledge proofs. This is explained in 3.2.2. The large exponentiations

performed in the encryption are time-consuming and should be optimized in order

to make the voting system more efficient. Calculating the expression (1 + n)m

directly gives an exponentiation with a O(ns) exponent. The source code for this

solution is shown below:

BigInteger temp1 = pk.getG (). modPow(voteValues[candidate],nArray[s + 1]);

2 BigInteger temp2 = v.modPow(nArray[s], nArray[s + 1]);

BigInteger ciphertext vote = (temp1.multiply (temp2)).mod(nArray[s + 1]);

Listing 5.1: Unoptimized encryption algorithm

Even though the generator g in the voting system may be chosen from many pos-

sible values, it is efficient to choose g = 1 + n. This may be done without any

5.6. Implementation of the Decryption Server 63

reduction of security. As explained by Jurik in [10] we note that:

(1 + n)m = 1 +

(

m

1

)

n + · · · +

(

m

s

)

ns mod ns+1

Using this, all the binomial terms may be calculated separately, which gives O(s)

multiplications, using:
(

m

j

)

=

(

m

j − 1

)

m − j + 1

j

By precomputing the values which are constant for every encryption we can opti-

mize this further. All exponentiations of ni for i ∈ (1 to s) are also precomputed.

We precompute (j!)−1n j for every j as shown in the Java code below:

BigInteger precomp[] = new BigInteger[s+1];

2 BigInteger jFac = BigInteger .ONE;

precomp[1] = n;

4 for (int j=1 ; j<=s ; j++){

jFac = jFac . multiply (BigInteger .valueOf(j));

6 precomp[j] = jFac .modInverse(nArray[s+1]);

precomp[j] = precomp[j]. multiply (n.pow(j)). mod(nArray[s+1]);

8 }

Listing 5.2: Calculation of the precomputed values

The full code for computing (1+ n)m when using the precomputed values is shown

in the listing below:

BigInteger c = BigInteger .ONE.add(voteValue.multiply(n));

2 BigInteger temp = voteValue ;

for (int j= 2 ; j<=s ; j++){

4 BigInteger j = BigInteger .valueOf(j);

temp = temp.multiply ((voteValue . subtract (j)). add(BigInteger .ONE)).mod(nArray[s−j+1]);

6 c = (c .add(temp.multiply (precomp[j]))). mod(nArray[s+1]);

}

Listing 5.3: Calculation of (1 + n)m

An analysis of different methods of computing (1 + n)m, as well as the computa-

tional gain of this optimization is given in [10].

5.6 Implementation of the Decryption Server

The purpose of the decryption server is to retrieve the encrypted votes from the

server, multiply the valid votes together, and then make a decrypted share of the

64 Chapter 5. Implementation

result, along with a zero-knowledge proof, which proves the correctness of the cal-

culations. The decryption server is located in the ds package of the voting system.

5.6.1 Description of the Structure

The structure of the decryption server can be seen in Figure 5.8. The ds pack-

age contains three classes: DSGUI, RemoteEntityConnectionDS and Server. The

DSGUI provides the user interface and takes input from the administrator of the

decryption server. The Server performs the calculations for the share decryption

of the result. RemoteEntityConnectionDS is responsible for retrieving the stubs of

the remote objects needed by the decryption server. The user interface of this com-

ponent allows the administrator of the decryption server to check the status of the

election, and to see the number of votes cast. When the election has finished, the

decryption server is allowed to retrieve the votes from the bulletin board, perform

the share decryption, and post the decrypted share on the bulletin board.

Figure 5.8: Class diagram of the ds package, including only the most important methods and attributes.

The sequence diagram for the actions of the decryption server throughout the elec-

tion is shown in Figure 5.9. For simplicity, some of the objects used by the decryp-

tion server for validation of votes are excluded from the diagram.

5.6. Implementation of the Decryption Server 65

Figure 5.9: Sequence diagram for the actions of the decryption server.

When the decryption server starts up, it connects to the RMIRegistry using the Re-

moteEntityConnectionDS and retrieves the stub for accessing the ElectionServer

object. The election parameters, the public key for the election and the secret key

share are then retrieved by calling the appropriate methods on this stub. When

the election is finished, the decryption server administrator is notified through the

user interface. The share decryption process is started on input from the server

administrator. The stub of the BulletinBoard is retrieved using the RemoteEnti-

tyConnectionDS. The stub of the BulletinBoard is then passed on to the Server,

which retrieves the votes using the BulletinBoard stub. The Server verifies the cor-

rectness of the votes, multiplies the valid votes, and creates a proof of correctness.

The result of the exponentiation and the proof of correctness is finally sent in the

66 Chapter 5. Implementation

form of a DecryptedShare to the BulletinBoard.

5.6.2 Optimizations of the Decryption Server

The validation of votes requires many time-consuming computations, especially

when dealing with multi-vote elections. As described in Section 4.5, the number of

zero-knowledge proofs needed for proving correctness of votes grows dramatically

as the number of votes per voter increases.

As an example, in a t-out-of-L-election with t = 4 and L = 10, the decryption server

needs to validate the 4 votes, verifying that each of these votes encrypt one of the

10 plaintexts allowed using the 1-out-of-L ns’th power protocol. In addition to this

verification, the cross-validation of votes proving that every pairwise difference of

votes is non-zero, requires t2

2
− t

2
multiplication-mod-ns proofs. In this case we

are required to verify 6 proofs for the cross validation. When considering that this

process needs to be repeated for each voter, the computations must be done as

efficiently as possible, in order for this voting system to be useful.

To minimize the number of computations done in validation of proofs, some fre-

quently used values are precomputed. The validation of multiplication-mod-ns

proofs requires the server to perform encryptions. These encryptions are optimized

as explained in Section 5.5.2. When verifying a MultipleBinaryVote or a Bina-

ryVote, the value l+ 1, which defines the bitlength of L, and the values (gM2i

)−1 for

0 ≤ i ≤ l, are precomputed.

In addition to these optimizations, the values for the exponentiation ni, for 0 < i ≤

s + 1, are precomputed and accessed from an array. The number of objects used in

the implementation of critical methods is also kept to a minimum for optimizing

performance. The Java implementation of the methods used for validation of the

zero-knowledge proofs is included in Section A.3

5.7 Implementation of the Bulletin Board

The implementation of the bulletin board is located in the package bb. It contains

the classes: BulletinBoardServer, BulletinBoard Impl and RemoteEntityConnec-

tionBB. The BulletinBoardServer specifies the user interface of the bulletin board.

BulletinBoard Impl is the implementation of the remote object BulletinBoard,

5.7. Implementation of the Bulletin Board 67

which will be bound in the RMIRegistry. The RemoteEntityConnectionBB is the

class responsible for the interaction with the RMIRegistry.

Figure 5.10: Class diagram for the package bb containing the bulletin board.

The implementation of the remote object BulletinBoard is a remote data structure

holding votes and decrypted shares (including the proofs associated with these el-

ements). In addition to holding votes and shares, the BulletinBoard provides real-

time information of the election, showing the number of votes given, the number

of decrypted shares posted and the status of the election.

The BulletinBoard has no interaction with the ElectionServer and does not have

any knowledge of the parameters of the election. This implies that the Bullet-

inBoard allows any voter to post any type of vote at any time. This should, how-

ever, never be an issue because every participant of the election should know what

election type is used from the ElectionProperties obtained from the ElectionServer,

and incorrect votes should not be counted by the decryption servers. If a decryp-

tion server counts incorrect votes, this will be discovered when verifying the share

68 Chapter 5. Implementation

decryptions.

Due to the simplicity of this package, no sequence diagram will be included here.

The functionality of this package may easily be interpreted from the class diagram

shown in Figure 5.10.

5.8 The Simulation Tool

In addition to the distributed voting system, a package called simulator is included.

This package is included for simulating elections. Simulations are important to

evaluate the performance of the system in different scenarios. The simulation tool

needs all packages to be present, as it runs all components of the election locally.

The simulator includes a user interface much like the one in the ea package, where

the user is allowed to choose the parameters of an election. In addition to the

parameters, the user is allowed to choose how many simulated votes that will be

cast.

The simulator does not run as a distributed system, but performs all computations

locally. This implies that networking delays will not be simulated using this tool.

However, this should not be a major concern, since the network delays of RMI

should be insignificant compared to the time spent on computations in this system,

due to the small amount of data transferred between components. This is especially

true when considering the high data rate of most Internet connections today.

The times displayed to the user after a simulated election are: total time, key gen-

eration time, mean vote encryption time (the mean time spent by a voter for en-

cryption of votes and creation of proofs), total vote encryption time, mean share

decryption time (the mean share decryption time for all decryption servers, which

includes the validation of all votes and the share decryption of the result), mean

share decryption time per vote cast, total share decryption time and share com-

bination time. An example of the results of a simulation can be seen in Figure

5.11.

The simulator package contains only one class, which is called Simulator. Sim-

ulator contains the user interface, as well as the logic for simulating an elec-

tion. The simulation tool can be executed by running the command ”java simula-

tor.Simulator”, or by running the shell script simulator.sh in Linux or simulator.bat

in Windows.

5.9. Executing the Voting System 69

Figure 5.11: Screenshot of the simulation results

5.9 Executing the Voting System

This section will function as a tutorial for running an election using the voting

system.

The bulletin board should be executed from the same machine as the election au-

thority in this implementation, as binding an object to the RMI registry from a

non-local host is restricted in Java RMI.

The Java packages for all components of the system are located in the Election-

System folder of the digital appendix included with this thesis. All contents of this

appendix is described in Appendix B. The programs require that Java Runtime En-

vironment2 is installed. The voting system should work on all operating systems

capable of running Java Runtime Environment.

Starting the Election Authority. The election authority can be started by running

the shell script ea.sh in Linux and ea.bat in Windows. The script takes the

2Available from http://www.java.sun.com

70 Chapter 5. Implementation

port number for the RMI registry as argument. If no port is given, the pro-

gram uses the default port 2004.

Starting the Bulletin Board. The bulletin board is started by running the shell

script bb.sh in Linux and bb.bat in Windows.

Starting the Decryption Server. The decryption server is started by running the

shell script ds.sh in Linux and ds.bat in Windows.

Starting the Voter Application. The voter application is started by running the

shell script voter.sh in Linux and voter.bat in Windows.

All of these components require RMI support. To secure that the applications are

allowed to communicate over the network, a policy file is included for use with the

applications. This file is used by all these components and is included as policy.

This file must be present in the ElectionSystem directory.

All components require the user to input the hostname/IP-address and the port

number of the the machine running the election authority.

The applications may also be executed using the following command:

”java -Djava.security.manager -Djava.security.policy=policy -classpath . ”pack-

age”.”class” ”

The package names and main classes for each component are specified in Table

5.1.

Component Package Main Class

Election Authority ea GUI

Bulletin Board bb BulletinBoardServer

Decryption Server ds DSGUI

Voter Application voter GUI

Table 5.1: Package names and main classes for the components in the voting system.

If any problems occur using the voting system in Linux, this may be related to

how Java RMI uses the hosts file found in /etc/hosts. The hosts file may need to be

altered so that it links localhost to the external IP-address of the computer, instead

of the loopback-address.

5.10. Summary 71

5.10 Summary

This chapter explained the implementation of the voting system in Java. All the

components of the system were thoroughly explained with class diagrams and se-

quence charts. The next chapter will analyze the performance of the system and

evaluate the feasibility of using this system for elections at NTNU.

Chapter 6

Performance Evaluations

In this chapter the performance of the voting system is tested, using different pa-

rameters and election types. The tests done in this chapter were performed on a 3

GHz Pentium D with 2 Gb RAM.

6.1 Comparison of Voting Methods

6.1.1 Parameters for the Performance Evaluation

The parameters of these tests are chosen to suit the needs of an election at NTNU.

Choosing the security parameters of a cryptosystem will always have to be a trade-

off between performance and security. The parameters used in these tests would

suffice if the election were to be held today, but as the computing power of comput-

ers increases with time, these parameters will have to be changed accordingly. For

elections with higher security demands, the key length will have to be increased.

A few tests with higher security demands are shown in Section 6.2.

If a larger M is needed, this may imply an increase in the block size needed to avoid

overflow when calculating the results (remember that ML < ns must be satisfied

when using the normal encoding of votes, and M2l+1
< ns when using the binary

encoding of votes). The straight forward way of increasing the block size (the way

that is performed automatically on-demand in the implementation of the system)

is by increasing the parameter s. This implies doubling the block size of the cryp-

tosystem, resulting in an increased complexity of the calculations. If only a small

extension of the message space is needed, it may be more efficient to increase n.

73

74 Chapter 6. Performance Evaluations

k (bitlength of n) 1024

s 1

q (security parameter) 80

M 10000

Table 6.1: The parameters chosen for the performance testing.

For most elections at NTNU, the values chosen in Table 6.1 should suffice. In most

cases the value M can be increased without needing to increase s. For finding the

s needed for a particular choice of parameters, the numbers can be inserted into

the equation ML < ns (M2l+1
< ns when using the binary encoding of votes) and

choosing s as the lowest value where this equation is true.

6.1.2 Performance Evaluation of Share Decryption and Vote Valida-

tion

The vote validation process is the bottleneck of the system. The decryption server

needs to validate every vote cast, and then multiply the ciphertexts. As we want

the election to be universally verifiable for anyone, a performance evaluation of

this step is of utmost importance for choosing the right method for a given set of

parameters.

This thesis has described two distinct ways of carrying out 1-out-of-L elections.

The two variants can perform the same elections, but have completely different

ways of encoding votes and creating the zero-knowledge proofs of correctness. As

explained in Section 4.5 the normal way of encoding votes requires O(L) proofs

while the binary encoding only requires O(log2 L) proofs.

The binary encoding variant requires log2 L multiplication-mod-ns proofs and

log2 L 1-out-of-2 ns’th proofs to prove correctness of a vote. Each multiplication-

mod-ns proof requires two encryptions and two calculations of large numbers.

Each 1-out-of-2 ns’th proof also requires two encryptions and two calculations

for verification.

The normal way of encoding needs only one 1-out-of-L ns’th proof for each vote.

The verification of a 1-out-of-L ns’th requires L encryptions and L calculations of

large integers. These calculations are less complex than those of the multiplication-

mod-ns proofs used in the binary encoding of votes, and this leads to a slightly

quicker verification of each proof.

6.1. Comparison of Voting Methods 75

Since the calculations done in the normal encoding are a small fraction quicker,

these two methods are close to being equivalent for small L. As explained above,

the binary encoding variant has a smaller complexity as L grows larger. Thus, it

is first with a larger L that the binary encoding variant really starts to outshine the

normal encoding variant. This leads to a large performance gain for large L, as

shown in Table 6.2.

L 1-out-of-L normal 1-out-of-L binary

2 381 ms. 380 ms.

8 1226 ms. 1745 ms.

16 2330 ms. 2433 ms.

32 4580 ms. 3109 ms.

64 8933 ms. 3772 ms.

128 74264 ms. 4471 ms.

Table 6.2: The time spent for validation of votes and vote multiplication per vote for different values of L. The

value is calculated as: Mean time spent on vote validation and vote multiplication for all decryption servers

divided by the total number of votes given. This result can be calculated using the simulation tool, and is shown

as: Mean share decryption time per vote.

This comparison is valid for choosing the right voting method in the case of a t-

out-of-L election as well. The results of simulations of 2-out-of-L elections with

varying L using the two different encodings can be seen in Table 6.3.

L 2-out-of-L normal 2-out-of-L binary

8 2831 ms. 3881 ms.

16 5082 ms. 5244 ms.

32 9534 ms. 6624 ms.

64 18270 ms. 7972 ms.

Table 6.3: A comparison of mean share decryption time per vote in 2-out-of-L elections using the two different

encodings.

It is clear that the same tendency can be seen in the case of a multi-vote election.

The normal encoding of votes perform slightly better for small values of L, and

the binary encoding of votes performs best for large values of L. This result was

expected since the multi-vote election is realized as a parallel run of single vote

elections, including cross validation of proofs.

6.1.3 Performance Evaluation of Vote Creation

The vote creation process includes the encryption of the votes and the creation of

the zero-knowledge proofs. The computations done during this process should be

76 Chapter 6. Performance Evaluations

done as efficiently as possible because voters should be able to cast votes, without

specific requirements to the computers used. A comparison of vote creation time

using the two different encoding methods for votes is shown in Table 6.4 and Table

6.5.

L 1-out-of-L normal 1-out-of-L binary

2 414 ms. 1336 ms.

8 1321 ms. 2257 ms.

16 2603 ms. 3209 ms.

32 5525 ms. 4131 ms.

64 12448 ms. 5026 ms.

128 104059 ms. 5979 ms.

Table 6.4: A comparison of mean vote encryption and proof creation time in 1-out-of-L elections using the two

different encodings.

L 2-out-of-L normal 2-out-of-L binary

8 3396 ms. 5285 ms.

16 6026 ms. 7129 ms.

32 11864 ms. 9003 ms.

64 25707 ms. 10806 ms.

Table 6.5: A comparison of the two different encodings with respect to mean vote encryption and proof creation

time in 2-out-of-L elections.

It is clear that the same tendency is seen here as in the simulations in Section 6.1.2.

Vote encryption and proof creation is quickest using the normal encoding if L is

small. When L grows the binary encoding variant is quicker, because of the lower

number of proofs needed.

6.1.4 Performance of the Election Authority

The main functions of the election authority in this system is the key generation

and combining valid shares acquired from decryption servers to a result. As ex-

plained in Section 5.2 the keys are generated by choosing random prime numbers

and checking if they meet the requirements. This may be a time-consuming pro-

cess, as the methods used for checking if a number is a prime requires much com-

puting power when the bitlength of n is large. However, this should not be a major

concern, since the key generation only needs be performed once for each election.

The election authority verifies the zero-knowledge proofs proving that the expo-

nentiation done in the share decryption process is done correctly. The election

6.2. Elections with Higher Security Requirements 77

authority validates all votes cast, and checks that the decryption servers have cal-

culated their share from the correct set of valid votes. Finally, the zero-knowledge

proofs for the exponentiations of the result are verified. This simulation results for

this process for different values of L and different voting methods are included in

Table 6.6.

L 1-out-of-L normal 1-out-of-L binary 2-out-of-L normal 2-out-of-L binary

2 6718 ms. 6812 ms. Not Available Not Available

8 15078 ms. 20484 ms. 29375 ms. 39985 ms.

16 26266 ms. 27406 ms. 51797 ms. 53656 ms.

32 49016 ms. 34188 ms. 96032 ms. 67344 ms.

64 92829 ms. 40906 ms. 182954 ms. 80909 ms.

128 765666 ms. 47703 ms. Not Available Not Available

Table 6.6: A comparison of share combination time in all four voting methods.

The values in Table 6.6 shows a clear correlation to the tables in Section 6.1.3

and 6.1.2. The reason for this is the time spent validating votes. As we can see,

the performances of the two voting methods is similar for L = 16, but the normal

encoding is slightly quicker for L < 16, and the binary encoding is quicker for

L > 16.

6.2 Elections with Higher Security Requirements

For evaluating the possibility of running elections with higher security demands,

the system was tested out using a keylength of 2048 bits. This clearly leads to

a degradation of performance because of the more complex computations. The

remaining parameters were chosen as explained in Table 6.1. Table 6.7 shows the

mean time needed to validate one vote using the L shown in the table using the two

different encodings of votes in a 1-out-of-L election.

L 1-out-of-L normal 1-out-of-L binary

2 2842 ms. 7849 ms.

8 9076 ms. 12848 ms.

16 17405 ms. 17859 ms.

32 33020 ms. 22931 ms.

Table 6.7: A comparison of mean share decryption and vote validation times per vote using a 2048-bits key.

As shown in this table, the vote validation times are much higher when using a 2048

bits key, but for elections with smaller L this should be computationally feasible.

78 Chapter 6. Performance Evaluations

6.3 Feasibility Analysis

A fully functional voting system has been implemented, and this section will dis-

cuss the feasibility of using this system in an election at NTNU.

A university performs a variety of elections for electing persons for different posi-

tions at the university, or internally at different faculties or institutes. The largest

elections, such as the rectorial election may allow all students and employees to

vote. NTNU has around 3500 employees and 20000 students, which would be the

maximum number of voters in an election. We will now assume that everyone casts

a vote. This will result in a total count of 23500 votes.

We give some examples of the vote validation time in different scenarios given the

parameters mentioned in Section 6.1.1, but with M = 23500. All these examples

satisfy ML < n (M2l+1
< n for the binary encoding of votes), which allows us to

use s = 1

A Yes/No-election using the normal encoding of votes would take around 2.5

hours to validate.

An 1-out-of-L election with L = 8 and normal encoding of votes, the validation

of all votes would take around 8 hours.

In an 1-out-of-L election with binary encoding of votes and L = 32, the total

validation process would take approximately 20 hours.

In a 2-out-of-L election using ranked voting with normal encoding of votes and

L = 8, the validation of all votes would take between 18 and 19 hours.

In an example with a 2-out-of-L election, binary encoding of votes and L = 32

the validation of all votes would take around 43 hours.

These examples show that even elections with complex parameters and a large M

can be validated in a reasonable amount of time using a normal desktop computer.

It should be mentioned that the election turnout of former elections at NTNU have

been much lower than 100 percent. This value was chosen for performance evalua-

tion of the system in a ”worst case scenario” where all the voters cast their votes. In

practice, the election turnout would be much lower, which would result in a shorter

time needed for the validation of all votes.

6.4. Programming Language Comparison 79

Choosing the right encoding is important for attaining the highest level of perfor-

mance possible for a given set of parameters. For L < 16 the normal encoding

performs best because of the slightly less demanding calculations needed for each

proof. For L > 16 the lower number of proofs needed for the binary encoding is

noticed, and this given a better performance than using the normal encoding.

6.4 Programming Language Comparison

All the tests were done using an implementation of the complete voting system in

Java. For evaluation of the performance of Java as programming language when

doing calculations with large integers, some tests were done with execution of the

same operations using both Java and C. The library GNU MP1 was used for per-

forming the computations in the C version. The two programs were programmed

to execute unoptimized encryptions of a given message using a 1024 bits modulo.

The results showed that the C version was consistently 3-4 times faster than the

Java variant of the program. This leads us to think that the results of the time for

validation of results could be reduced drastically by implementing the system in C

or C++ instead of Java. An implementation of the system in C or C++ would not

run as easily as the Java variant in a heterogeneous environment, but would have

much better performance. This would allow more demanding election types to be

carried out, with the elections still being considered universally verifiable.

6.5 Summary

This chapter provided a performance analysis of the voting system using realistic

parameters that may be used for elections at NTNU. The two different encodings,

normal and binary, performed differently depending on the number of candidates

L. Because the calculations done using binary encoding are slightly more com-

plex, the performance of normal encoding is better for small L. As L increases

the number of proofs needed for verification of an election using normal encoding

increases linearly, while the proofs needed using binary encoding increases loga-

rithmically. The two encodings perform almost identically for L = 16. For L > 16

the binary encoding performs better than the normal encoding.

1GNU multiple precision arithmetic library [24]

80 Chapter 6. Performance Evaluations

A comparison between C and Java in terms of performance in large integer calcu-

lations was done, and the C program performed consistently 3-4 times faster than

the Java version. This means that a C or C++ version of the voting system could

provide verification of votes much faster, and could allow more complex elections.

Chapter 7

Concluding Remarks

7.1 Conclusion

This thesis has described, designed, implemented and tested a voting system based

on homomorphic encryption. The voting system is built on top of a generalization

of Paillier’s public-key system, and uses zero-knowledge proofs for proving cor-

rectness of votes, without revealing anything about the contents of the votes. The

system has been implemented in Java, and the computational requirements for car-

rying out an election has been tested with various parameters which may be used

in NTNU elections.

The design of the voting system maintains the privacy of the votes, is secured

from cheating (by people both inside and outside of the electoral apparatus), is

universally verifiable for every participant in the election and works well on all

machines capable of running Java.

The system may be used to carry out Yes/No-elections, elections where a vote is

cast for one out of L candidates and elections where t votes are cast for L candi-

dates. The latter may be used to provide ranked elections, where votes are dif-

ferently weighted when results are calculated. The voting methods were designed

using two different encodings of votes, which had different performance on differ-

ent sets of election parameters.

The most time-consuming task in an election is the validation of votes. For an elec-

tion to be universally verifiable, the validation of votes should be computationally

feasible for anyone, without the need of special hardware to speed up the compu-

81

82 Chapter 7. Concluding Remarks

tations. The main reason for making an election verifiable is not necessarily that

everyone should do it, but that everyone should be able to do it. Using a 3 GHz

Pentium D with 2 Gb RAM and a 1024 bit key, even a 2-out-of-L election with

L = 32 with 23500 participants was verifiable in less than two days, when testing

the system presented in this thesis.

A few tests comparing the performance of Java and C as programming languages

for large integer computations, were undertaken. The C version was consistently

3-4 times faster than the Java version, implying that higher performance may be

achieved by implementing the voting system in C or C++.

7.2 Future Work

Designing, implementing and testing several types of voting systems is important

in order to evaluate the security and performance of different voting schemes. Re-

search should be undertaken in order to compare the different schemes and to eval-

uate how well they function in different types of scenarios.

The binary encoding of votes used in this thesis requires the chosen parameters

to satisfy M2l+1
< ns. There are two drawbacks associated with this: it allows

voters to cast votes for non-existing candidates, and it may also, in some scenarios,

require the use of a block size which is twice as large as what would otherwise

have been needed. Adding an extra step in the verification of a vote, where the

voter proves in zero-knowledge that the chosen candidate is valid, may inhibit both

of the drawbacks mentioned. The procedure for doing this is described in [19]. A

performance evaluation of the binary encoding of votes, using this technique, may

be interesting.

The implementation of the system in Java does not seem to be as efficient as an

implementation in C or C++. The core functions of the system may easily be

translated to C or C++. Doing this will probably imply a large performance gain,

and may allow more complex elections to be universally verifiable in a shorter

amount of time.

The electronic voting system presented in this thesis is probably more secure than

most existing electronic voting systems used in elections at universities and in or-

ganizations today. The implementation in this thesis may be integrated at NTNU

today, and tested in a real election. Certain elements that were outside the scope

7.2. Future Work 83

of this thesis, like authentication of voters and access control of the system, would

have to be implemented in order to make this voting system to function securely.

It would be interesting to see a universally verifiable voting system, like the one

presented in this thesis, be put into use in a real election outside the lab.

BIBLIOGRAPHY 85

Bibliography

[1] Alessandro Acquisti. Receipt-free homomorphic elections and write-in bal-

lots. Cryptology ePrint Archive, Report 2004/105, 2004. http://eprint.

iacr.org/.

[2] Riza Aditya, Byoungcheon Lee, Colin Boyd, and Ed Dawson. An efficient

mixnet-based voting scheme providing receipt-freeness. In Sokratis K. Kat-

sikas, Javier Lopez, and Günther Pernul, editors, TrustBus, volume 3184 of

Lecture Notes in Computer Science, pages 152–161. Springer, 2004.

[3] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A

paradigm for designing efficient protocols. In ACM Conference on Computer

and Communications Security, pages 62–73, 1993.

[4] D. Bernstein. Circuits for integer factorization: a proposal, 2001. cr.yp.

to/papers.html#nfscircuit, Visited June 5. 2006.

[5] CyberVote. The history of electronic voting. http://www.eucybervote.

org/Reports/KUL-WP2-D4V1-v1.0-01.htm#P323_14632, Visited

February 20. 2006.

[6] Ivan Damgård, Jens Groth, and Gorm Salomonsen. The theory and imple-

mentation of an electronic voting system. In D. Gritzalis, editor, Secure Elec-

tronic Voting, pages 77–100. Kluwer Academic Publishers, 2003.

[7] Donald E. Eastlake, Stephan D. Crocker, and Jeffrey I. Schiller. RFC1750:

Randomness requirements for security. Technical Report 1750, 1994.

[8] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions

to identification and signature problems. In Andrew M. Odlyzko, editor,

CRYPTO, volume 263 of Lecture Notes in Computer Science, pages 186–

194. Springer, 1986.

[9] Jens Groth. Honest verifier zero-knowledge arguments applied. ds DS-04-3,

BRICS - Basic Research in Computer Science, October 2004. PhD thesis.

xii+119 pp.

[10] Mads J. Jurik. Progress report, May 2001. http://www.brics.dk/

˜jurik/Research/progress.ps, Visited June 15. 2006.

86 Chapter 7. Concluding Remarks

[11] Sun Microsystems. Java Remote Method Invocation (Java RMI). http:

//java.sun.com/products/jdk/rmi/, Visited May 10. 2006.

[12] Sun Microsystems. Java Secure Socket Extension (JSSE). http://java.

sun.com/products/jsse/, Visited May 10. 2006.

[13] D. Naccache. Double-speed safe prime generation. Crypto Eprint Archive,

entry 2003:175, http://eprint.iacr.org, 2003.

[14] NIST. Key management guideline - workshop document.

draft, 2001. http://csrc.nist.gov/encryption/kms/

key-management-guideline-(workshop).pdf.

[15] NTNU. Innsida. https://innsida.ntnu.no/, Visited June 7, 2006.

[16] Tatsuaki Okamoto. Receipt-free electronic voting schemes for large scale

elections. In Bruce Christianson, Bruno Crispo, T. Mark A. Lomas, and

Michael Roe, editors, Security Protocols Workshop, volume 1361 of Lecture

Notes in Computer Science, pages 25–35. Springer, 1997.

[17] The Open SSL Project. OpenSSL Homepage. http://www.openssl.org/,

Visited June 7, 2006.

[18] Pascal Paillier. Public-key cryptosystems based on composite degree residu-

osity classes. In EUROCRYPT, pages 223–238, 1999.

[19] Ivan Damgård, Mads Jurik, and Jesper Buus Nielsen. A generalization of

Paillier’s public-key system with applications to electronic voting. Technical

report, BRICS - Basic Research in Computer Science, 2003.

[20] Berry Schoenmakers. A simple publicly verifiable secret sharing scheme

and its application to electronic voting. In Michael J. Wiener, editor,

CRYPTO, volume 1666 of Lecture Notes in Computer Science, pages 148–

164. Springer, 1999.

[21] RSA Security. RSA Security homepage. http://rsasecurity.com, Vis-

ited June 9. 2006.

[22] Michael Ian Shamos. Electronic voting - evaluating the threat. In CFP’93,

1993.

[23] Victor Shoup. Practical threshold signatures. In EUROCRYPT, pages 207–

220, 2000.

BIBLIOGRAPHY 87

[24] Free Software Foundation. GNU MP Homepage. http://swox.com/gmp/,

Visited May 10, 2006.

Appendix A

Source Code

A.1 Voter Application

This section describes the methods used for encryption of votes and creation of the

non-interactive zero-knowledge proofs of knowledge needed to prove correctness

of votes. Here, only the most important methods used in the voting system are

described. The full source code is included in the digital appendix following this

thesis, described in Appendix B.

A.1.1 Precomputation of Values for Encryption

/∗∗ Method for precomputing values used in the optimized encryption algorithm

2 ∗

∗ @return

4 ∗/

private BigInteger [] preCompute() {

6 BigInteger precomp[] = new BigInteger[s + 1];

BigInteger jFac = BigInteger .ONE;

8 precomp[1] = n;

for (int j = 1; j <= s; j++) {

10 jFac = jFac . multiply (BigInteger .valueOf(j));

precomp[j] = jFac .modInverse(nArray[s + 1]);

12 precomp[j] = precomp[j]. multiply (n.pow(j)). mod(nArray[s + 1]);

}

14 return precomp;

}

Listing A.1: Precomputation of values for encryption

89

90 Chapter A. Source Code

A.1.2 Optimized Encryption Algorithm

/∗∗ The optimized encryption algorithm

2 ∗

∗ @param candidate

4 ∗ @return The ciphertext and the random value used to hide the plaintext

∗/

6 public BigInteger [] encryptOptimized(int candidate) {

BigInteger [] encryption = new BigInteger [2];

8 BigInteger voteValue = voteValues [candidate];

BigInteger c = BigInteger .ONE.add(voteValue.multiply(n));

10 BigInteger temp = voteValue ;

for (int j = 2; j <= s; j++) {

12 BigInteger j = BigInteger .valueOf(j);

temp = temp.multiply ((voteValue . subtract (j)). add(BigInteger .ONE))

14 .mod(nArray[s − j + 1]);

c = (c .add(temp.multiply (precomp[j]))). mod(nArray[s + 1]);

16 }

BigInteger v = new BigInteger(n.bitCount (), rand);

18 while (v.compareTo(n) >= 0 || v.gcd(n). compareTo(BigInteger.ONE) > 0)

v = new BigInteger(n.bitCount (), rand);

20

BigInteger rns = v.modPow(nArray[s], nArray[s + 1]);

22 encryption [0] = c. multiply (rns). mod(nArray[s + 1]);

encryption [1] = v;

24

return encryption ;

26 }

Listing A.2: Full optimized encryption algorithm

A.1.3 Creation of a Vote in a 1-out-of-L Election

/∗∗

2 ∗ The method for encrypting a Vote and creating the proof of correctness

∗ in the case of 1−out−of−L elections

4 ∗

∗ @param candidate

6 ∗ The candidate the Client voted for

∗ @return The Vote including the proof of correctness

8 ∗ @throws IncorrectVoteException

∗/

10 public Vote encryptVote (int candidate) throws IncorrectVoteException {

if (candidate > L)

12 throw new IncorrectVoteException (”Choice out of bounds”);

14 BigInteger g = pk.getG ();

BigInteger z [] = new BigInteger[L];

16 BigInteger a [] = new BigInteger[L];

BigInteger e [] = new BigInteger[L];

A.1. Voter Application 91

18 BigInteger valuesToBeHashed[] = new BigInteger[L + 2];

valuesToBeHashed[0] = n;

20 valuesToBeHashed[1] = BigInteger .valueOf(id);

22 BigInteger r = null ;

BigInteger e sum = BigInteger .ZERO;

24 BigInteger pow t = BigInteger .valueOf (2). pow(t);

26 BigInteger [] encryption = encryptOptimized(candidate);

BigInteger ciphertext vote = encryption [0];

28 voteRandom[votePointer] = encryption [1];

BigInteger v = encryption [1];

30 for (int i = 0; i < L; i++) {

if (i == candidate) {

32 // Invoke Protocol 1−out−of−k nˆs’th power for the real vote .

34 // Choose a random r in Z nˆ(s+1) to use in a[i] = E(0,r)

r = new BigInteger(n.bitCount (), rand);

36 while (r .compareTo(n) >= 0

|| r .gcd(n). compareTo(BigInteger.ONE) > 0)

38 r = new BigInteger(n.bitCount (), rand);

40 // Calculate a[i]

a[i] = r .modPow(nArray[s], nArray[s + 1]);

42

} else {

44 // Invoke the honest− verifier simulator for nˆs’ th power

// protocol

46

// Choose z[i] random in Z n rel .prime to n

48 z[i] = new BigInteger(n.bitCount (), rand);

while (z[i]. compareTo(n) >= 0

50 || z[i]. gcd(n). compareTo(BigInteger.ONE) > 0)

z[i] = new BigInteger(n.bitCount (), rand);

52

// Choose e[i] random in Z (2ˆ t)

54 e[i] = new BigInteger(t , rand);

e sum = e sum.add(e[i]). mod(pow t);

56

// Set a[i] =

58 // (ciphertext vote /gˆ votevalue [i])ˆ(−e[i])∗z[i]ˆ(nˆs) mod

// nˆ(s+1)

60 BigInteger temp = (g.modPow(voteValues[i], nArray[s + 1]))

.modInverse(nArray[s + 1]);

62 a[i] = (ciphertext vote . multiply (temp).modPow(e[i],

nArray[s + 1])). modInverse(nArray[s + 1]);

64 a[i] = a[i]. multiply (z[i]. modPow(nArray[s], nArray[s + 1]));

66 }

// Include all a[i]−values into the hash−function−values

68 valuesToBeHashed[i + 2] = a[i];

92 Chapter A. Source Code

70 }

// Generate a hash−value as challenge , using Fiat−Shamir heuristic with

72 // SHA−256

BigInteger e Challenge = h.generateHash(valuesToBeHashed, t);

74 // Calculate the random challenge for e[candidate]

e[candidate] = (e Challenge . subtract (e sum)).mod(pow t);

76 // Calculate z[candidate]

z[candidate] = (r . multiply (v.modPow(e[candidate], nArray[s + 1])))

78 .mod(nArray[s + 1]);

80 return new Vote(ciphertext vote , a , e Challenge , z , e , id);

}

Listing A.3: Creation of a Vote in a 1-out-of-L Election

A.1.4 Creation of a MultipleVote in a t-out-of- L Election

/∗∗ Encrypts the chosen votes using the method explained as k−out−of−L voting.

2 ∗

∗ @param candidate chosen candidates

4 ∗ @return The MultipleVotes object containing the votes and proofs needed.

∗ @throws IncorrectVoteException If any choices were out of

6 ∗ bounds, or if incorrect number of votes were cast .

∗/

8

public MultipleVotes encryptMultipleVotes (int [] candidate)

10 throws IncorrectVoteException {

12 if (candidate . length != noOfVotes)

throw new IncorrectVoteException (” Incorrect number of votes cast ”);

14

Vote[] votes = new Vote[candidate . length];

16

for (; votePointer < candidate . length ; votePointer++) {

18

votes [votePointer] = encryptVote (candidate [votePointer]);

20

}

22 // Public input : n, g, E(a), E(b), E(c) where a∗b = c mod n

BigInteger ea [][] = new BigInteger[candidate . length][candidate . length];

24 BigInteger eb [][] = new BigInteger[candidate . length][candidate . length];

BigInteger ec [][] = new BigInteger[candidate . length][candidate . length];

26 BigInteger ra [][] = new BigInteger[candidate . length][candidate . length];

BigInteger rb [][] = new BigInteger[candidate . length][candidate . length];

28 BigInteger rc [][] = new BigInteger[candidate . length][candidate . length];

BigInteger A[][] = new BigInteger[candidate . length][candidate . length];

30 BigInteger B [][] = new BigInteger[candidate . length][candidate . length];

32 for (int i = 0; i < candidate . length ; i++) {

for (int j = i + 1; j < candidate . length ; j++) {

A.1. Voter Application 93

34 A[i][j] = voteValues [candidate [i]]

. subtract (voteValues [candidate [j]]);

36 B[i][j] = A[i][j]. modInverse(nArray[s + 1]);

BigInteger [] temp = encryptOptimized(A[i][j]);

38 ea[i][j] = (votes [i]. getVote (). multiply (votes [j]. getVote ()

.modInverse(nArray[s + 1]))). mod(nArray[s + 1]); // temp[0];

40 ra [i][j] = (voteRandom[i].multiply (voteRandom[j]

.modInverse(nArray[s + 1]))). mod(nArray[s + 1]); // temp[1];

42

temp = encryptOptimized(B[i][j]);

44 eb[i][j] = temp[0];

rb[i][j] = temp[1];

46

temp = encryptOptimized(BigInteger .ONE);

48 ec[i][j] = temp[0];

rc [i][j] = temp[1];

50

}

52 }

54 BigInteger [][] d = new BigInteger[candidate . length][candidate . length];

BigInteger [][] rd = new BigInteger[candidate . length][candidate . length];

56 BigInteger [][] ed = new BigInteger[candidate . length][candidate . length];

BigInteger [][] edb = new BigInteger[candidate . length][candidate . length];

58 BigInteger [][] rdb = new BigInteger[candidate . length][candidate . length];

BigInteger [][] e = new BigInteger[candidate . length][candidate . length];

60 BigInteger [][] f = new BigInteger[candidate . length][candidate . length];

BigInteger [][] z1 = new BigInteger[candidate . length][candidate . length];

62 BigInteger [][] z2 = new BigInteger[candidate . length][candidate . length];

64 for (int i = 0; i < candidate . length ; i++) {

for (int j = i + 1; j < candidate . length ; j++) {

66 d[i][j] = new BigInteger(nArray[s]. bitLength (), rand);

BigInteger [] temp2 = encryptOptimized(d[i][j]);

68 ed[i][j] = temp2[0];

rd[i][j] = temp2[1];

70 temp2 = encryptOptimized(d[i][j]. multiply (B[i][j]));

edb[i][j] = temp2[0];

72 rdb[i][j] = temp2[1];

74 BigInteger [] valuesToBeHashed = new BigInteger[5];

valuesToBeHashed[0] = n;

76 valuesToBeHashed[1] = ea[i][j];

valuesToBeHashed[2] = eb[i][j];

78 valuesToBeHashed[3] = ec[i][j];

valuesToBeHashed[4] = BigInteger .valueOf(id);

80 e[i][j] = h.generateHash(valuesToBeHashed, t);

f [i][j] = (e[i][j]. multiply (A[i][j])). add(d[i][j]). mod(

82 nArray[s]);

84 z1[i][j] = ((ra [i][j]. modPow(e[i][j], n)). multiply (rd[i][j]))

.mod(n);

94 Chapter A. Source Code

86 z2[i][j] = rdb[i][j]. multiply (rc [i][j]. modPow(e[i][j], n));

z2[i][j] = z2[i][j]. modInverse(n);

88 z2[i][j] = (z2[i][j]. multiply (rb[i][j]. modPow(f[i][j],

nArray[s + 1]))). mod(n);

90 }

}

92 MultipleVotes mVotes = new MultipleVotes(votes , ea , eb, ec , ed, edb, e ,

f , z1, z2, id);

94

return mVotes;

96 }

Listing A.4: Creation of a MultipleVote in a t-out-of-L Election

A.1.5 Creation of a BinaryVote in a 1-out-of-L Election

/∗∗ Encrypts a vote in the case of 1−out−of−L Binary Voting

2 ∗

∗ @param candidate The candidate that was voted for

4 ∗ @return The BinaryVote holding the ciphertext and the needed

∗ zero−knowledge proofs of correctness

6 ∗ @throws IncorrectVoteException If the choice was out of bounds

∗/

8 public BinaryVote encryptVoteBinary(int candidate)

throws IncorrectVoteException {

10 if (candidate > L)

throw new IncorrectVoteException (”Choice out of bounds”);

12

l = 1;

14 BigInteger M = BigInteger .valueOf(M);

while (Math.pow(2, l + 1) < L)

16 l++;

18 String bitRep = Integer . toString (candidate , 2);

20 BigInteger g = pk.getG ();

BigInteger pow t = BigInteger .valueOf (2). pow(t);

22 BigInteger encryptions [] = new BigInteger[l + 1];

BigInteger rb [] = new BigInteger[l + 1];

24 BigInteger [][] a = new BigInteger [2][l + 1];

BigInteger [][] e = new BigInteger [2][l + 1];

26 BigInteger [][] z = new BigInteger [2][l + 1];

28 BigInteger valuesToBeHashed[] = new BigInteger [4];

valuesToBeHashed[0] = n;

30 valuesToBeHashed[1] = BigInteger .valueOf(id);

BigInteger MraisedToBitValue[] = new BigInteger[l + 1];

32

for (int i = 0; i <= l ; i++) {

34 int biti = 0;

A.1. Voter Application 95

try {

36 biti = candidate % 2;

candidate = candidate / 2;

38 } catch (Exception ex) {

biti = 0;

40 }

if (biti == 1) {

42 // The bit in question is 1. Create encryption and proofs for

// this case .

44 // System.out . println (biti);

MraisedToBitValue[i] =M .pow((int) Math.pow(2, i));

46 BigInteger [] tempVote = encryptOptimized(MraisedToBitValue[i]);

encryptions [i] = tempVote[0];

48 BigInteger v = tempVote[1];

rb[i] = v;

50 // Choose a random r in Z nˆ(s+1) to use in a[i] = E(0,r)

BigInteger r = new BigInteger(n.bitCount (), rand);

52 while (r .compareTo(n) >= 0

|| r .gcd(n). compareTo(BigInteger.ONE) > 0)

54 r = new BigInteger(n.bitCount (), rand);

56 // Calculate a[i]

a [0][i] = r .modPow(nArray[s], nArray[s + 1]);

58

// Create honest− verifier simulator for the other value .

60 // Choose z[i] random in Z n rel .prime to n

z [1][i] = new BigInteger(n.bitCount (), rand);

62 while (z [1][i]. compareTo(n) >= 0

|| z [1][i]. gcd(n). compareTo(BigInteger.ONE) > 0)

64 z [1][i] = new BigInteger(n.bitCount (), rand);

66 // Choose e[i] random in Z (2ˆ t)

e [1][i] = new BigInteger(t , rand);

68

// Set a[i] =

70 // (ciphertext vote /gˆ votevalue [i])ˆ(−e[i])∗z[i]ˆ(nˆs) mod

// nˆ(s+1)

72 BigInteger temp = g.modInverse(nArray[s + 1]);

a [1][i] = (encryptions [i]. multiply (temp).modPow(e[1][i],

74 nArray[s + 1])). modInverse(nArray[s + 1]);

a [1][i] = a [1][i]. multiply (z [1][i]. modPow(nArray[s],

76 nArray[s + 1]));

78 valuesToBeHashed[2] = a [0][i];

valuesToBeHashed[3] = a [1][i];

80

BigInteger e Challenge = h.generateHash(valuesToBeHashed, t)

82 .mod(pow t);

84 e [0][i] = e Challenge . subtract (e [1][i]). mod(pow t);

;

86 z [0][i] = (r . multiply (v.modPow(e[0][i], nArray[s + 1])))

96 Chapter A. Source Code

.mod(nArray[s + 1]);

88 } else {

90 // The bit in question is 0. Create encryption and proofs for

// this case .

92 MraisedToBitValue[i] = BigInteger .ONE;

BigInteger [] tempVote = encryptOptimized(BigInteger .ONE);

94 encryptions [i] = tempVote[0];

BigInteger v = tempVote[1];

96 rb[i] = v;

98 // Choose a random r in Z n to use in a[i] = E(0,r)

BigInteger r = new BigInteger(n.bitCount (), rand);

100 while (r .compareTo(n) >= 0

|| r .gcd(n). compareTo(BigInteger.ONE) > 0)

102 r = new BigInteger(n.bitCount (), rand);

104 // Calculate a[i]

a [1][i] = r .modPow(nArray[s], nArray[s + 1]);

106

// Create honest− verifier simulator for the other value .

108 // Choose z[i] random in Z n rel .prime to n

z [0][i] = new BigInteger(n.bitCount (), rand);

110 while (z [0][i]. compareTo(n) >= 0

|| z [0][i]. gcd(n). compareTo(BigInteger.ONE) > 0)

112 z [0][i] = new BigInteger(n.bitCount (), rand);

114 // Choose e[i] random in Z (2ˆ t)

e [0][i] = new BigInteger(t , rand);

116

// Set a[i] = (ciphertext vote /gˆ(Mˆ2ˆi))ˆ(−e[i])∗z[i]ˆ(nˆs) mod

118 // nˆ(s+1)

BigInteger temp = (calculateGM(M .pow((int) Math.pow(2, i))))

120 .modInverse(nArray[s + 1]);

a [0][i] = (encryptions [i]. multiply (temp).modPow(e[0][i],

122 nArray[s + 1])). modInverse(nArray[s + 1]);

a [0][i] = a [0][i]. multiply (z [0][i]. modPow(nArray[s],

124 nArray[s + 1]));

126 valuesToBeHashed[2] = a [0][i];

valuesToBeHashed[3] = a [1][i];

128

BigInteger e Challenge = h.generateHash(valuesToBeHashed, t)

130 .mod(pow t);

e [1][i] = e Challenge . subtract (e [0][i]). mod(pow t);

132 z [1][i] = (r . multiply (v.modPow(e[1][i], nArray[s + 1])))

.mod(nArray[s + 1]);

134

}

136 }

138 // Proofs for that bits are 1 or 0 are created . Now to the

A.1. Voter Application 97

// Proofs for the 2nd part

140 BigInteger Fi [] = new BigInteger[l + 1];

BigInteger fi [] = new BigInteger[l + 1];

142 BigInteger rfi [] = new BigInteger[l + 1];

144 Fi [0] =MraisedToBitValue[0];

fi [0] = encryptions [0];

146 rfi [0] = rb [0];

148 BigInteger [] tempVote;

for (int i = 1; i <= l ; i++) {

150 Fi[i] = Fi[i − 1]. multiply (MraisedToBitValue[i]);

tempVote = encryptOptimized(Fi[i]);

152 fi [i] = tempVote[0];

rfi [i] = tempVote[1];

154 if (i == l) {

voteRandom[votePointer] = rfi [i];

156 }

}

158

// Make the multiplication proof !

160 BigInteger z1[] = new BigInteger[l];

BigInteger z2[] = new BigInteger[l];

162 BigInteger d[] = new BigInteger[l];

BigInteger ed[] = new BigInteger[l];

164 BigInteger edb[] = new BigInteger[l];

BigInteger rdb [] = new BigInteger[l];

166 BigInteger rd [] = new BigInteger[l];

BigInteger eMult[] = new BigInteger[l];

168 BigInteger f [] = new BigInteger[l];

BigInteger [] valuesToBeHashed2 = new BigInteger[5];

170 valuesToBeHashed2[0] = n;

valuesToBeHashed2[4] = BigInteger .valueOf(id);

172 for (int i = 0; i < l ; i++) {

d[i] = new BigInteger(nArray[s]. bitLength (), rand);

174 BigInteger [] temp2 = encryptOptimized(d[i]);

ed[i] = temp2[0];

176 rd[i] = temp2[1];

temp2 = encryptOptimized(d[i]. multiply (encryptions [i + 1]));

178 edb[i] = temp2[0];

rdb[i] = temp2[1];

180

valuesToBeHashed2[1] = fi [i];

182 valuesToBeHashed2[2] = encryptions [i + 1];

valuesToBeHashed2[3] = fi [i + 1];

184

eMult[i] = h.generateHash(valuesToBeHashed2, t);

186

f [i] = (eMult[i]. multiply (Fi[i])). add(d[i]). mod(nArray[s]);

188 z1[i] = ((rfi [i]. modPow(eMult[i], n)). multiply (rd[i])). mod(n);

z2[i] = rdb[i]. multiply (rfi [i + 1]. modPow(eMult[i], n));

190 z2[i] = z2[i]. modInverse(nArray[s + 1]);

98 Chapter A. Source Code

z2[i] = (z2[i]. multiply (rb[i + 1]. modPow(f[i], nArray[s + 1])))

192 .mod(n);

194 }

196 return new BinaryVote(encryptions , e , z , a , fi , z1, z2, eMult, ed, edb,

f , id);

198

}

Listing A.5: Creation of a BinaryVote in a 1-out-of-L election

A.1.6 Creation of a MultipleBinaryVote in a t-out-of- L Election

/∗∗ Encrypts the chosen votes using the method explained as k−out−of−L Binary encoded voting .

2 ∗

∗ @param candidate chosen candidates

4 ∗ @return The MultipleBinaryVotes object containing the votes and proofs needed.

∗ @throws IncorrectVoteException If any choices were out of bounds, or if

6 ∗ incorrect number of votes were cast .

∗/

8 public MultipleBinaryVotes encryptMultipleVoteBinary (int candidate [])

throws IncorrectVoteException {

10 BigInteger M = BigInteger .valueOf(M);

if (candidate . length != noOfVotes)

12 throw new IncorrectVoteException (” Incorrect number of votes cast ”);

for (int i = 0; i < candidate . length ; i++)

14 System.out . println (candidate [i]);

BinaryVote[] votes = new BinaryVote[candidate . length];

16

for (votePointer = 0; votePointer < candidate . length ; votePointer++) {

18 votes [votePointer] = encryptVoteBinary(candidate [votePointer]);

}

20 // Public input : n, g, E(a), E(b), E(c) where a∗b = c mod n

BigInteger ea [][] = new BigInteger[candidate . length][candidate . length];

22 BigInteger eb [][] = new BigInteger[candidate . length][candidate . length];

BigInteger ec [][] = new BigInteger[candidate . length][candidate . length];

24 BigInteger ra [][] = new BigInteger[candidate . length][candidate . length];

BigInteger rb [][] = new BigInteger[candidate . length][candidate . length];

26 BigInteger rc [][] = new BigInteger[candidate . length][candidate . length];

BigInteger A[][] = new BigInteger[candidate . length][candidate . length];

28 BigInteger B [][] = new BigInteger[candidate . length][candidate . length];

30 for (int i = 0; i < candidate . length ; i++) {

for (int j = i + 1; j < candidate . length ; j++) {

32

A[i][j] = ((M .modPow(BigInteger.valueOf(candidate[i]),

34 nArray[s + 1])). subtract (M .modPow(BigInteger

.valueOf(candidate [j]), nArray[s + 1])));

36

A.1. Voter Application 99

B[i][j] = A[i][j]. modInverse(nArray[s + 1]). mod(nArray[s + 1]);

38 BigInteger [] temp = encryptOptimized(A[i][j]);

40

BigInteger temp2 = votes [j]. getFi ()[l]

42 .modInverse(nArray[s + 1]);

ea[i][j] = ((votes [i]. getFi ()[l]). multiply (temp2))

44 .mod(nArray[s + 1]);

ra [i][j] = (voteRandom[i].multiply (voteRandom[j]

46 .modInverse(nArray[s + 1]))). mod(nArray[s + 1]); // temp[1];

48 temp = encryptOptimized(B[i][j]);

eb[i][j] = temp[0];

50 rb[i][j] = temp[1];

52 temp = encryptOptimized(BigInteger .ONE);

ec[i][j] = temp[0];

54 rc [i][j] = temp[1];

56 }

}

58

BigInteger [][] d = new BigInteger[candidate . length][candidate . length];

60 BigInteger [][] rd = new BigInteger[candidate . length][candidate . length];

BigInteger [][] ed = new BigInteger[candidate . length][candidate . length];

62 BigInteger [][] edb = new BigInteger[candidate . length][candidate . length];

BigInteger [][] rdb = new BigInteger[candidate . length][candidate . length];

64 BigInteger [][] e = new BigInteger[candidate . length][candidate . length];

BigInteger [][] f = new BigInteger[candidate . length][candidate . length];

66 BigInteger [][] z1 = new BigInteger[candidate . length][candidate . length];

BigInteger [][] z2 = new BigInteger[candidate . length][candidate . length];

68

for (int i = 0; i < candidate . length ; i++) {

70 for (int j = i + 1; j < candidate . length ; j++) {

d[i][j] = new BigInteger(nArray[s]. bitLength (), rand);

72 BigInteger [] temp2 = encryptOptimized(d[i][j]);

ed[i][j] = temp2[0];

74 rd[i][j] = temp2[1];

temp2 = encryptOptimized(d[i][j]. multiply (B[i][j]));

76 edb[i][j] = temp2[0];

rdb[i][j] = temp2[1];

78

BigInteger [] valuesToBeHashed = new BigInteger[5];

80 valuesToBeHashed[0] = n;

valuesToBeHashed[1] = ea[i][j];

82 valuesToBeHashed[2] = eb[i][j];

valuesToBeHashed[3] = ec[i][j];

84 valuesToBeHashed[4] = BigInteger .valueOf(id);

e[i][j] = h.generateHash(valuesToBeHashed, t);

86

f [i][j] = (e[i][j]. multiply (A[i][j])). add(d[i][j]). mod(

88 nArray[s]);

100 Chapter A. Source Code

90 z1[i][j] = ((ra [i][j]. modPow(e[i][j], n)). multiply (rd[i][j]))

.mod(n);

92 z2[i][j] = rdb[i][j]. multiply (rc [i][j]. modPow(e[i][j], n));

z2[i][j] = z2[i][j]. modInverse(n);

94 z2[i][j] = (z2[i][j]. multiply (rb[i][j]. modPow(f[i][j],

nArray[s + 1]))). mod(n);

96 }

}

98 MultipleBinaryVotes mVotes = new MultipleBinaryVotes(votes , ea , eb, ec ,

ed, edb, e , f , z1, z2, id);

100

return mVotes;

102

}

Listing A.6: Creation of a MultipleBinaryVote in a t-out-of- L election

A.2 The Share Decryption of Votes

This method is executed by the decryption server to calculate the decrypted share

of the result. The calculations use the information stored in the KeyShare object

assigned to this specific decryption server.

/∗∗

2 ∗ The method for decrypting the results of the election with the secret

∗ KeyShare

4 ∗

∗ @param votes

6 ∗ The votes from the election

∗/

8 public DecryptedShare shareDecrypt(Vote[] votes)

throws NoValidVotesException {

10 int bitlength = (s + 2) ∗ k + t ;

ArrayList validVotes = new ArrayList ();

12

for (int i = 0; i < votes . length ; i++) {

14 if (val .checkProof(votes [i]))

validVotes .add(votes [i]);

16 }

18 if (validVotes . size () == 0)

throw new NoValidVotesException(”No valid votes given”);

20 // Calculate encrypted result of the election

BigInteger result = ((Vote) validVotes . get (0)). getVote ();

22 for (int i = 1; i < validVotes . size (); i++) {

result = result . multiply (((Vote) validVotes . get (i)). getVote ()). mod(

24 nArray[s + 1]);

}

A.3. The Verification of the Zero-Knowledge Proofs 101

26 BigInteger c = result ;

BigInteger ci = c.modPow(secretExponent, nArray[s + 1]);

28

BigInteger random = new BigInteger(bitlength , r);

30 // Generate zero−knowledge proof

BigInteger a = (c .pow(4)).mod(nArray[s + 1]);

32 a = a.modPow(random, nArray[s + 1]);

34 BigInteger b = v.modPow(random, nArray[s + 1]);

36 BigInteger e;

BigInteger [] values = new BigInteger [5];

38 values [0] = n;

values [1] = a;

40 values [2] = b;

values [3] = c.pow(4).mod(nArray[s + 1]);

42 values [4] = ci .pow(2).mod(nArray[s + 1]);

44 e = h.generateHash(values , t);

BigInteger temp2 = (e . multiply (si). multiply (delta));

46 BigInteger z = random.add(temp2);

48 DecryptedShare ds = new DecryptedShare(e, z , c , ci , id);

return ds;

50 }

Listing A.7: Share decryption of votes and creation of a zero-knowledge proof for the calculations

A.3 The Verification of the Zero-Knowledge Proofs

The methods included in this section is located in the Validator class in the vot-

ingSystem package of the system. These methods are used for validation of votes

and decrypted shares.

A.3.1 Verification of a Vote in a 1-out-of-L Election

/∗∗

2 ∗ The code for checking if a Vote is of the correct form.

∗

4 ∗ @param v The vote that will be checked

∗

6 ∗ @return true if the proof is correct .

∗/

8 public boolean checkProof(Vote v) {

102 Chapter A. Source Code

10 BigInteger [] e = v.getE ();

BigInteger [] z = v.getZ ();

12 BigInteger [] a = v.getA ();

BigInteger e challenge = v. getChallenge ();

14 // The variable to hold the sum of e i values

BigInteger e sum = BigInteger .ZERO;

16

// The array that holds the values to be used in the hash−function

18 BigInteger valuesToBeHashed[] = new BigInteger[L + 2];

valuesToBeHashed[0] = n;

20 valuesToBeHashed[1] = BigInteger .valueOf(v. getId ());

22 BigInteger voteCheckValue1, voteCheckValue2;

24

// Check all e ,a,z values to see if they are correct .

26 for (int i = 0; i < L; i++) {

e sum = e sum.add(e[i]). mod(pow t);

28

voteCheckValue1 = normalVoteValues[i]. multiply (v. getVote ());

30 voteCheckValue1 = a[i]. multiply (

voteCheckValue1.modPow(e[i], nArray[s + 1])). mod(

32 nArray[s + 1]);

34 voteCheckValue2 = z[i]. modPow(nArray[s], nArray[s + 1]);

36 if (voteCheckValue1.compareTo(voteCheckValue2) != 0)

return false ;

38

if ((n.gcd(a[i])). compareTo(BigInteger.ONE) > 0

40 || (n.gcd(z[i])). compareTo(BigInteger.ONE) > 0)

return false ;

42 // Save a i in the array to hold values to be hashed.

valuesToBeHashed[i + 2] = a[i];

44 }

// Check if the sum of e i values are correct !

46 BigInteger e hash = h.generateHash(valuesToBeHashed, t). mod(pow t);

48 if (e hash .compareTo(e sum) != 0)

return false ;

50

return true ;

52

}

Listing A.8: Verification of a Vote

A.3.2 Verification of MultipleVotes in a t-out-of- L Election

/∗∗

A.3. The Verification of the Zero-Knowledge Proofs 103

2 ∗ The code for checking if MultipleVotes are of the correct form.

∗

4 ∗ @param mVotes The vote that will be checked

∗

6 ∗ @return true if the proof is correct .

∗/

8 public boolean checkMultipleVote(MultipleVotes mVotes) {

Vote[] votes = mVotes.getVotes ();

10 BigInteger ea [][] = mVotes.getEa ();

BigInteger eb [][] = mVotes.getEb();

12 BigInteger ec [][] = mVotes.getEc ();

BigInteger ed [][] = mVotes.getEd();

14 BigInteger edb [][] = mVotes.getEdb();

BigInteger f [][] = mVotes.getF ();

16 BigInteger e [][] = mVotes.getE ();

BigInteger z1 [][] = mVotes.getZ1();

18 BigInteger z2 [][] = mVotes.getZ2();

int clientId = mVotes.getId ();

20

if (ea . length != noOfVotes || ea [0]. length != noOfVotes

22 || eb. length != noOfVotes || eb [0]. length != noOfVotes

|| ed. length != noOfVotes || ed [0]. length != noOfVotes

24 || edb. length != noOfVotes || edb [0]. length != noOfVotes

|| f . length != noOfVotes || f [0]. length != noOfVotes

26 || z1. length != noOfVotes || z1 [0]. length != noOfVotes) {

return false ;

28 }

int [] validVotesIndex = new int[votes . length];

30 for (int i = 0; i < votes . length ; i++) {

if (checkProof(votes [i])) {

32 validVotesIndex [i] = 1;

} else {

34 validVotesIndex [i] = 0;

}

36

}

38

BigInteger [] valuesToBeHashed = new BigInteger[5];

40 valuesToBeHashed[0] = n;

valuesToBeHashed[4] = BigInteger .valueOf(clientId);

42

BigInteger voteDiff , temp1, temp2;

44

for (int i = 0; i < votes . length ; i++) {

46 if (validVotesIndex [i] == 0) {

continue;

48 }

for (int j = i + 1; j < votes . length ; j++) {

50 if (validVotesIndex [j] == 0) {

continue;

52 }

104 Chapter A. Source Code

54

56 valuesToBeHashed[1] = ea[i][j];

valuesToBeHashed[2] = eb[i][j];

58 valuesToBeHashed[3] = ec[i][j];

60 e[i][j] = h.generateHash(valuesToBeHashed, t);

62 voteDiff = ((votes [i]. getVote ()). multiply (votes [j]

. getVote (). modInverse(nArray[s + 1])))

64 .mod(nArray[s + 1]);

if (voteDiff .compareTo(ea[i][j]) != 0)

66 return false ;

68 temp1 = ((ea[i][j]. modPow(e[i][j], nArray[s + 1]))

. multiply (ed[i][j])). mod(nArray[s + 1]);

70 temp2 = encryptCheck(f[i][j], z1[i][j]);

72 if (temp1.compareTo(temp2) != 0)

return false ;

74

temp1 = (edb[i][j]. multiply (ec[i][j]. modPow(e[i][j],

76 nArray[s + 1]))). modInverse(nArray[s + 1]);

temp1 = temp1.multiply (eb[i][j]. modPow(f[i][j], nArray[s + 1]))

78 .mod(nArray[s + 1]);

temp2 = encryptCheck(BigInteger .ZERO, z2[i][j]);

80

if (temp1.compareTo(temp2) != 0)

82 return false ;

}

84 }

return true ;

86

}

Listing A.9: Verification of MultipleVotes

A.3.3 Verification of a BinaryVote in a 1-out-of-L Election

2 /∗∗

∗ The code for checking if a BinaryVote is of the correct form.

4 ∗

∗ @param vote The vote that will be checked

6 ∗

∗ @return true if the proof is correct .

8 ∗/

public boolean checkBinaryVote(BinaryVote vote) {

10 BigInteger [] encryption = vote . getEncryption ();

BigInteger [][] e = vote .getE ();

A.3. The Verification of the Zero-Knowledge Proofs 105

12 BigInteger [][] z = vote .getZ ();

BigInteger [][] a = vote .getA ();

14

16 // The array that holds the values to be used in the hash−function

BigInteger valuesToBeHashed[] = new BigInteger [4];

18

valuesToBeHashed[0] = n;

20 valuesToBeHashed[1] = BigInteger .valueOf(vote . getId ());

22 BigInteger u1,u2, voteCheckValue1, voteCheckValue2;

24

for (int j = 0; j <= l ; j++) {

26

// Check all e ,a,z values to see if they are correct .

28

u1 = encryption [j]. multiply (binaryVoteValues [j]);

30 voteCheckValue1 = a [0][j]. multiply (

u1.modPow(e[0][j], nArray[s + 1])). mod(nArray[s + 1]);

32 voteCheckValue2 = z [0][j]. modPow(nArray[s],

nArray[s + 1]);

34

if (voteCheckValue1.compareTo(voteCheckValue2) != 0)

36 return false ;

38 u2 = encryption [j]. multiply (gInverse);

voteCheckValue1 = a [1][j]. multiply (

40 u2.modPow(e[1][j], nArray[s + 1])). mod(nArray[s + 1]);

voteCheckValue2 = z [1][j]. modPow(nArray[s], nArray[s + 1]);

42

if (voteCheckValue1.compareTo(voteCheckValue2) != 0)

44 return false ;

46 if ((n.gcd(a [0][j])). compareTo(BigInteger.ONE) > 0

|| (n.gcd(z [0][j])). compareTo(BigInteger.ONE) > 0

48 || (n.gcd(a [1][j])). compareTo(BigInteger.ONE) > 0

|| (n.gcd(z [1][j])). compareTo(BigInteger.ONE) > 0)

50 return false ;

// Save a i in the array to hold values to be hashed.

52 valuesToBeHashed[2] = a [0][j];

valuesToBeHashed[3] = a [1][j];

54

// Check if the sum of e i values are correct !

56

voteCheckValue1 = h.generateHash(valuesToBeHashed, t). mod(pow t);

58

voteCheckValue2 = e [0][j]. add(e [1][j]). mod(pow t);

60

if (voteCheckValue1.compareTo(voteCheckValue2) != 0)

62 return false ;

106 Chapter A. Source Code

64

}

66

// Now it’s time to check the multiplication proofs .

68

BigInteger [] fi = vote . getFi ();

70 BigInteger [] f = vote .getF ();

BigInteger [] ed = vote .getEd ();

72 BigInteger [] edb = vote .getEdb ();

BigInteger [] z1 = vote .getZ1 ();

74 BigInteger [] z2 = vote .getZ2 ();

BigInteger [] eMult = new BigInteger[f . length];

76

// We set f [0] = e[0] to ensure that the calculations start from a

78 // correct value .

fi [0] = encryption [0];

80 BigInteger [] valuesToBeHashed2 = new BigInteger[5];

valuesToBeHashed2[0] = n;

82 valuesToBeHashed2[4] = BigInteger .valueOf(vote . getId ());

for (int i = 0; i < l ; i++) {

84

valuesToBeHashed2[1] = fi [i];

86 valuesToBeHashed2[2] = encryption[i + 1];

valuesToBeHashed2[3] = fi [i + 1];

88 eMult[i] = h.generateHash(valuesToBeHashed2, t);

voteCheckValue1 = ((fi [i]. modPow(eMult[i], nArray[s + 1]))

90 . multiply (ed[i])). mod(nArray[s + 1]);

voteCheckValue2 = encryptCheck(f[i], z1[i]);

92

if (voteCheckValue1.compareTo(voteCheckValue2) != 0)

94 return false ;

96 voteCheckValue1 = edb[i]. multiply (fi [i + 1]. modPow(eMult[i],

nArray[s + 1]));

98 voteCheckValue1 = voteCheckValue1.modInverse(nArray[s + 1]);

voteCheckValue1 = (voteCheckValue1.multiply (encryption [i + 1]. modPow(f[i],

100 nArray[s + 1]))). mod(n);

voteCheckValue2 = encryptCheck(BigInteger .ZERO, z2[i]). mod(n);

102

if (voteCheckValue1.compareTo(voteCheckValue2) != 0)

104 return false ;

}

106

return true ;

108 }

Listing A.10: Verification of a BinaryVote

A.3.4 Verification of MultipleBinaryVotes in a t-out-of-L Election

/∗∗

A.3. The Verification of the Zero-Knowledge Proofs 107

2 ∗ The code for checking if MultipleBinaryVotes are of the correct form.

∗

4 ∗ @param mVotes The vote that will be checked

∗

6 ∗ @return true if the proof is correct .

∗/

8 public boolean checkMultipleBinaryVote(MultipleBinaryVotes mVotes) {

BinaryVote[] votes = mVotes.getVotes ();

10 BigInteger ea [][] = mVotes.getEa ();

BigInteger eb [][] = mVotes.getEb();

12 BigInteger ec [][] = mVotes.getEc ();

BigInteger ed [][] = mVotes.getEd();

14 BigInteger edb [][] = mVotes.getEdb();

BigInteger f [][] = mVotes.getF ();

16 BigInteger e [][] = mVotes.getE ();

BigInteger z1 [][] = mVotes.getZ1();

18 BigInteger z2 [][] = mVotes.getZ2();

int clientId = mVotes.getId ();

20

if (ea . length != noOfVotes || ea [0]. length != noOfVotes

22 || eb. length != noOfVotes || eb [0]. length != noOfVotes

|| ed. length != noOfVotes || ed [0]. length != noOfVotes

24 || edb. length != noOfVotes || edb [0]. length != noOfVotes

|| f . length != noOfVotes || f [0]. length != noOfVotes

26 || z1. length != noOfVotes || z1 [0]. length != noOfVotes) {

return false ;

28 }

int [] validVotesIndex = new int[votes . length];

30 for (int i = 0; i < votes . length ; i++) {

if (checkBinaryVote(votes [i])) {

32 validVotesIndex [i] = 1;

} else {

34 validVotesIndex [i] = 0;

}

36

}

38 int l = votes [0]. getFi (). length−1;

BigInteger [] valuesToBeHashed = new BigInteger[5];

40 valuesToBeHashed[0] = pk.getN ();

valuesToBeHashed[4] = BigInteger .valueOf(clientId);

42

BigInteger temp , temp1, temp2, voteDiff ;

44

for (int i = 0; i < votes . length ; i++) {

46 // Skip the vote if it is not valid

if (validVotesIndex [i] == 0) {

48 continue;

}

50 for (int j = i + 1; j < votes . length ; j++) {

// Skip the vote if it is not valid

52 if (validVotesIndex [j] == 0) {

continue;

108 Chapter A. Source Code

54 }

56 valuesToBeHashed[1] = ea[i][j];

valuesToBeHashed[2] = eb[i][j];

58 valuesToBeHashed[3] = ec[i][j];

60 e[i][j] = h.generateHash(valuesToBeHashed, t);

62 temp = votes [j]. getFi ()[l]

.modInverse(nArray[s + 1]);

64 voteDiff = ((votes [i]. getFi ()[l])

. multiply (temp)). mod(nArray[s + 1]);

66

if (voteDiff .compareTo(ea[i][j]) != 0)

68 return false ;

70 temp1 = ((ea[i][j]. modPow(e[i][j], nArray[s + 1]))

. multiply (ed[i][j])). mod(nArray[s + 1]);

72 temp2 = encryptCheck(f[i][j], z1[i][j]);

74 if (temp1.compareTo(temp2) != 0)

return false ;

76

temp1 = (edb[i][j]. multiply (ec[i][j]. modPow(e[i][j],

78 nArray[s + 1]))). modInverse(nArray[s + 1]);

temp1 = temp1.multiply (eb[i][j]. modPow(f[i][j], nArray[s + 1]))

80 .mod(nArray[s + 1]);

temp2 = encryptCheck(BigInteger .ZERO, z2[i][j]);

82

if (temp1.compareTo(temp2) != 0)

84 return false ;

86 }

}

88 return true ;

90 }

Listing A.11: Verification of MultipleBinaryVotes

A.3.5 Verification of a DecryptedShare Acquired from a Decryption

Server

/∗∗

2 ∗ This method verifies the zero−knowledge proof for the decrypted shares

∗ acquired from the decryption Servers

4 ∗

∗ @param ds

6 ∗ The DecryptedShare to be verified

∗ @return true if the DecryptedShare is correct .

A.4. The Combination of DecryptedShares Acquired from Decryption Servers109

8 ∗/

public boolean checkShareDecryption(DecryptedShare ds) {

10 BigInteger [] vi = pk.getVi ();

12 BigInteger e = ds .getE ();

BigInteger u = (ds .getC (). pow(4)).mod(nArray[s + 1]);

14 BigInteger u tilde = (ds . getCi (). pow(2)).mod(nArray[s + 1]);

16 BigInteger uz = u.modPow(ds.getZ(), nArray[s + 1]);

BigInteger u tilde e = u tilde .modPow(e, nArray[s + 1]);

18 u tilde e = u tilde e .modInverse(nArray[s + 1]). mod(nArray[s + 1]);

BigInteger check 1 = uz. multiply (u tilde e). mod(nArray[s + 1]);

20

BigInteger v tilde = vi [ds . getTallyId ()];

22 BigInteger vz = v.modPow(ds.getZ(), nArray[s + 1]);

BigInteger v tilde e = v tilde .modPow(e, nArray[s + 1]);

24 v tilde e = v tilde e .modInverse(nArray[s + 1]). mod(nArray[s + 1]);

BigInteger check 2 = vz. multiply (v tilde e). mod(nArray[s + 1]);

26

BigInteger [] valuesToBeHashed = new BigInteger[5];

28 valuesToBeHashed[0] = n;

valuesToBeHashed[1] = check 1;

30 valuesToBeHashed[2] = check 2;

valuesToBeHashed[3] = u;

32 valuesToBeHashed[4] = u tilde ;

34 BigInteger digest = h.generateHash(valuesToBeHashed, ep.getT ());

36 if (digest .compareTo(e) != 0)

return false ;

38

return true ;

40

}

Listing A.12: Verification of a DecryptedShare

A.4 The Combination of DecryptedShares Acquired from

Decryption Servers

/∗∗

2 ∗ The method for combining the DecryptedShare’s acquired from the

∗ decryption Servers

4 ∗

∗ @param dsList

6 ∗ Array of DecryptedShare’s

∗ @return The plaintext of the result of the election

8 ∗ @throws InsufficientSharesException

∗/

110 Chapter A. Source Code

10 public BigInteger shareCombine(DecryptedShare[] dsList)

throws InsufficientSharesException {

12 if (dsList . length < ep.getW()) {

throw new InsufficientSharesException (”Not enough shares acquired”);

14 }

// Check ShareS!

16 BigInteger n = pk.getN ();

int needed = ep.getW();

18 int [] goodShares = new int[needed];

int numberOfGoodShares = 0;

20 for (int i = 0; i < dsList . length ; i++) {

if (val .checkShareDecryption(dsList [i])) {

22 goodShares[numberOfGoodShares] = i;

numberOfGoodShares++;

24 if (numberOfGoodShares >= needed)

break;

26 }

}

28 if (numberOfGoodShares + 1 < needed) {

throw new InsufficientSharesException (

30 ”Not enough good shares acquired”);

}

32 BigInteger lambda = BigInteger .ZERO;

BigInteger c = BigInteger .ONE;

34 BigInteger delta = BigInteger .valueOf(Utility . faculty (ep. getl ()));

// Lagrange interpolation

36 for (int i = 0; i < needed; i++) {

lambda = BigInteger .ONE;

38 for (int j = 0; j < needed; j++) {

if (j != i) {

40 lambda = lambda.multiply (new BigInteger(”−”

+ (dsList [goodShares[j]]. getTallyId () + 1)));

42 }

}

44 lambda = lambda.multiply (delta);

for (int j = 0; j < needed; j++) {

46 if (j != i) {

lambda = lambda

48 . divide ((new BigInteger(””

+ (dsList [goodShares[i]]. getTallyId () + 1)))

50 . subtract (new BigInteger(””

+ (dsList [goodShares[j]]

52 . getTallyId () + 1))));

}

54 }

c = (c . multiply (dsList [goodShares[i]]. getCi (). modPow(

56 lambda.multiply (new BigInteger(”2”)), nArray[s + 1])))

.mod(nArray[s + 1]);

58

}

60 // Applying algorithm for extracting the result !

int s = ep.getS ();

A.4. The Combination of DecryptedShares Acquired from Decryption Servers111

62

BigInteger c temp = c ;

64 BigInteger temp;

66 BigInteger [] lArray = new BigInteger[s + 1];

for (int i = 2; i <= s; i++) {

68 temp = c temp.mod(n.pow(i));

temp = temp. subtract (BigInteger .ONE);

70 lArray[i − 1] = temp.divide (n);

System.out . println (lArray[i − 1]);

72 }

temp = c temp. subtract (BigInteger .ONE);

74 lArray[s] = temp.divide (n);

76 BigInteger [] iArray = new BigInteger[s + 1];

78 iArray [0] = BigInteger .ZERO;

80 BigInteger counter = BigInteger .ONE;

BigInteger faculty [] = new BigInteger[s];

82 temp = BigInteger .ONE;

84 for (int i = 1; i < s ; i++) {

counter = counter .add(BigInteger .ONE);

86 temp = temp.multiply (counter);

faculty [i − 1] = (nArray[i]. multiply (temp.modInverse(nArray[s])))

88 .mod(nArray[s]);

}

90

BigInteger t1 , t2 ;

92 BigInteger i = BigInteger .ZERO;

for (int j = 1; j < s + 1; j++) {

94 t1 = lArray[j];

t2 = i ;

96 for (int k = 2; k <= j ; k++) {

i = i . subtract (BigInteger .ONE);

98 t2 = (t2 . multiply (i)). mod(nArray[j]);

t1 = (t1 . subtract (n.pow(k − 1). multiply (

100 t2 . multiply (BigInteger .valueOf(Utility . faculty (j))

.modInverse(nArray[j]))))). mod(nArray[j]);

102 }

i = t1 ;

104 }

temp = delta . multiply (delta). multiply (new BigInteger(”4”));

106 temp = temp.modInverse(nArray[s]);

i = (i . multiply (temp)).mod(nArray[s]);

108 return i ;

}

Listing A.13: Combination of DecryptedShares to a result

Appendix B

Digital Material following the

Thesis

The source code for the electronic voting system, along with an executable version

of all components of the voting system is included with this thesis. The source

code, and executables for all packages used in the system are located in folders

corresponding with their package names, in the ElectionSystem folder. The shell

scripts used for starting the different components are located in the ElectionSystem

folder.

The voting system and the simulator have been tested on Windows XP, and Ubuntu

Linux, and cannot be guaranteed to run flawlessly on all systems. However, the

program should work well on all computers that have Java Runtime Environment

installed. As all components require the use of a graphical user interface, the com-

puter used must use an operating system which supports graphical user interfaces

The Java documentation for all components is included in html in the Electionsys-

tem/doc folder, and may be viewed by opening the index.html file in a browser.

113

