
Master of Science in Communication Technology
July 2010
Poul Einar Heegaard, ITEM
Pieter-Tjerk de Boer, University of Twente, Design and
Analysis of Communication Systems (DACS)

Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Telematics

Implementing and Simulating the
Cross-Entropy Ant System

Jonathan Brugge

Problem Description
The Cross-Entropy Ant System (CEAS) is a swarm intelligence based path management system
developed at Q2S and at the department of Telematics. This system has been implemented and
simulation studies have been and are conducted using the network simulator 2 (ns-2).

So far, CEAS has been developed for use in relatively static networks. The goal of this thesis is to
adapt CEAS for use in more dynamic networks. In those networks, link quality and availability
change over time, often quickly, and traffic patterns differ from regular networks. It seems likely
that changes to CEAS can be made that make it work better in ad-hoc networks than standard
CEAS. The thesis project looks for those improvements, measures their impact and compares the
result to existing routing protocols for ad-hoc networks.

As part of this thesis, the existing CEAS code will be ported from ns-2 to its intended replacement
ns-3. Ns-3 is a new network simulator that strives to be more flexible, better structured and better
documented than its predecessor, ns-2.

Assignment given: 25. May 2009
Supervisor: Poul Einar Heegaard, ITEM

Master thesis

Implementing and simulating the cross-entropy

ant system

Jonathan Brugge

July 1, 2010

ii

Contents

Preface vii

Introduction and contributions ix

I The Cross Entropy Ant System 1

1 Background 3

2 The Cross Entropy Ant System 5

2.1 Foraging ants . 5

2.2 CEAS . 6

2.2.1 Introduction . 6

2.2.2 Implementation . 7

2.2.3 Avoiding converging to a local optimum 7

2.2.4 Cycles in paths . 8

2.2.5 Extensions . 8

II Porting CEAS to ns-3 11

3 Introduction 13

iii

4 About ns-3 15

4.1 Introduction . 15

4.2 Features . 16

5 CEAS in ns-3 - the architecture 19

5.1 Overview . 19

5.2 Temperature table . 20

5.3 Pheromone table . 20

5.4 Ant packets . 21

5.4.1 Neighbour discovery packets 24

5.5 Routing protocol . 25

5.5.1 Before sending the ants 25

5.5.2 Leaving node A . 25

5.5.3 Passing through node B 26

5.5.4 Arriving at node C . 27

5.5.5 The way back . 27

5.6 Infrastructure . 27

6 Validation 29

7 Experience with ns-3 33

7.1 Comparison with ns-2 . 34

7.1.1 Abstraction level . 34

7.1.2 Usability and adaptability 35

7.1.3 Built-in components and models 36

7.1.4 Experiment setup, control and analysis 36

7.1.5 Development status . 37

iv

7.1.6 Efficiency . 37

III Simulation and optimization 39

8 Simulation 41

8.1 Introduction . 41

8.2 The scenario . 41

8.2.1 The layout . 41

8.3 Basic results . 43

8.4 Load-sensitive cost functions . 45

8.5 Preplanning . 51

8.6 Packet format improvements . 51

9 Conclusion 55

9.1 The original plan . 55

9.2 What actually happened . 55

9.3 Future work . 57

A Simulation parameters 59

B Paper 61

C Presentation TM8105 69

D Research project 75

v

vi

Preface

This report describes the work I have done as my graduation project at NTNU
in Trondheim. The work was performed within the Telematics department of
the university under supervision of Poul Heegaard and Laurent Paquereau. At
my home university in Enschede, Pieter-Tjerk de Boer was my first supervisor,
with Geert Heijenk taking the role of second supervisor.

I would like to thank them for their help with this project. Pieter-Tjerk always
spots the even smallest issues, whether they are mistakes in some formula in
the research project or layout problems deeply hidden in the bibliography. I
enjoyed the mix of discussing those issues and discussing everything else - from
university politics to bicycle holidays. Thanks for that!

In Norway, Poul and Laurent took over - and kept doing that, even when results
took longer than expected to arrive and graphs managed to deviate from the
expected results in a surprising number of different ways. Extra meetings to
find the last bugs and an Easter holiday spent writing a paper with Laurent -
my project definitely took more of your time than the standard NTNU thesis.
Thanks for all your help along the way!

Jonathan Brugge

June 2010

vii

viii

Introduction and
contributions

For this thesis project, I have worked on the Cross-Entropy Ant System (CEAS),
a routing protocol developed at NTNU. CEAS had been implemented in network
simulator ns-2 [1]. At the start of the project, the plan was to

• Implement CEAS in ns-3

• Verify the implementation against the existing ns-2 implementation

• Come up with improvements to CEAS for use in environments with a
relatively high rate of changes in the network topology

• Simulate the improvements to verify them

Ns-3 is a new simulator, written by the developers of ns-2, but otherwise incom-
patible.

During the project, it became clear that porting to ns-3 was more work than
originally expected. Thus, a relatively big part of this report is dedicated to the
work done to implement CEAS in ns-3. The last part is about the additional
scenarios that have been simulated with the ns-3 implementation and the specific
improvements that have been made.

Where applicable, parameters used for the simulation have been included in
this report. An earlier study [2] found that many studies in the field of network
simulation lack information about the parameters, making it difficult to verify
the results. The source code used for all simulations is available on request.

Together with Laurent and Poul, I have written a paper about the experience of
porting CEAS from ns-2 to ns-3. The paper has been accepted at a conference
and is included in this report as appendix B. Appendix C contains part of the
presentation about ns-3. I prepared and presented it as part of a course for PhD
students at NTNU, organized by Poul.

ix

Structure

This thesis starts with an introduction to CEAS, including existing extensions
to the system. It is followed by an introduction to ns-3 in chapter 3 and 4.
Chapter 5 describes how CEAS has been implemented and how it fits in ns-3.
The implementation is then validated against the existing ns-2 implementation
in chapter 6. Some remarks about ns-3, derived from the experience of imple-
menting CEAS in it, form chapter 7.

Improvements to CEAS to make it more usable in congested networks are dis-
cussed in chapter 8, which also includes simulations of such networks. Conclu-
sions follow in chapter 9, after which some appendices are included.

Contributions

The original goal of the project was to improve CEAS by making it more suit-
able for highly dynamic networks. Others have worked on different projects
to improve CEAS: the most important examples are the addition of a system
called elite selection, described in [3], and the subpath extension, introduced
in [4]. Both extensions are described in section 2.2.5 of this report.

Though some work has been done to adapt CEAS for use in such networks, an
important part of this thesis project is the experience gained from implementing
the protocol in ns-3. Because the protocol had been implemented in ns-2 before,
it was possible to compare the two implementations and with that, the two
simulators. As many researchers will have to decide whether to use ns-2 or
ns-3 for future projects, the comparison can be useful to others. I will present
the paper Laurent, Poul and I wrote about that decision at SIMUL 2010, a
conference about simulations in August 2010 in Nice.

x

Part I

The Cross Entropy Ant
System

1

Chapter 1

Background

Requirements to networks are changing over time and with those, the require-
ments to routing protocols. New developments mean that it is not necessarily
enough to find a single shortest route from a source to a destination, but that
specific requirements are placed on the quality of service offered by different
paths and the possibility to balance the load between paths.

Different approaches are used to develop new routing protocols that fulfill those
requirements. One approach is the use of algorithms inspired by the behaviour
of swarms of animals, specifically ants [5]. A protocol based on how ants find
their way to food was proposed in [6].

One example of an ant-based routing system, designed with the new require-
ments in mind, is the Cross Entropy Ant System (CEAS). Cross-Entropy Ant
System (CEAS) is a fully decentralized Ant Colony Optimization (ACO) sys-
tem [7] first introduced in [8] and developed at NTNU. Different from some
other systems, it uses the cross-entropy method as a mathematical basis.

This thesis does not contain an in-depth description of the cross-entropy method:
it has been described in the research project, which was written as a preparation
for this thesis project and is attached to this report as appendix D. An extensive
introduction to the cross-entropy method can be found in [9].

ACO systems are systems inspired by the foraging behaviour of ants in nature.
ACO systems belong to the class of Swarm Intelligence (SI) systems. SI systems
are formed by a population of agents, whose behaviour is governed by a small
set of simple rules and which, by their collective behaviour, are able to find good
solutions to complex problems. ACO systems are characterized by the indirect
communication between agents - ants - through local modifications of their
environment, referred to as stigmergy and mediated by (artificial) pheromones.
The pheromone trails reflect the knowledge acquired by the colony and good
solutions emerge as the result of the iterative interactions between ants.

3

CEAS was originally designed for distributed network path management and
one of the successful applications is adaptive routing in dynamic networks [10].
Given different study objectives, the system has been implemented in different
programming languages and platforms. CEAS has also been implemented in a
testbed, which makes it possible to validate simulation results. It also provides
useful insights in the complexity of swarm-based methods in real routers and
reveals potential implementation challenges and performance bottlenecks which
are hard to predict through simulations and analysis alone.

4

Chapter 2

The Cross Entropy Ant
System

The Cross Entropy Ant System (CEAS) is a routing protocol developed at
NTNU that takes ideas from nature, specifically how foraging ants find their
way, to build an efficient and robust routing protocol. A basic description can
be found in [11]. It is an example of a swarm-based routing protocol. CEAS
uses the cross entropy method to quickly converge to good routes.

Note that the following is not a complete description of CEAS: it is intended
to provide the information needed to understand the rest of this thesis. More
information about CEAS cna be found in [11] and its references.

2.1 Foraging ants

CEAS takes its basic idea from nature. Consider an area with an ant nest and a
place with food, respectively called “s” and “d” for “source” and “destination”.
Each individual ant tries to find a way from the source to the destination.
While travelling, it leaves a trail of pheromones. Those pheromones evaporate
over time. Thus, if an ant uses a short route, it will pass there more often
per unit of time on its way from the source to the destination and back again,
resulting in a high concentration of pheromones on that route.

New ants choose their route partly based on the pheromones: the chance of
taking a specific route is proportional to the amount of pheromones. The re-
sult is that the most efficient routes are used more often, which results in even
more pheronomes on that path. Longer routes are chosen less often and even-
tually, the pheromone concentration gets lower and lower. The effect is clear:
something which started as a random walk converges to an efficient path be-
tween source and destination. This phenomenon, where a group of systems do

5

not communicate directly with each other, yet specific behaviour for the whole
group emerges, is called emergent behaviour.

2.2 CEAS

2.2.1 Introduction

A number of routing protocols, such as AntHocNet, are designed after the for-
aging ant behaviour described before. CEAS does that as well, but - contrary
to the other protocols - bases it on the cross entropy method, which provides a
mathematical basis for CEAS. The basic method is described in [12], though it
is not directly applied to CEAS there. An overview of the algorithms used in
CEAS can be found in [11].

The basic routing information in the protocol is a value pt,r,s, which is the
routing probability that a packet will go to node s, when it is at node r at
iteration t. For all nodes, these probabilities can be grouped in a matrix pt =
pt,rs∀rs. The routing probabilities are the ’digital pheromones’ of the protocol:
the higher the pheromone value from r to s, the higher the probability that a
packet will travel over that link as its next hop.

The protocol also uses a temperature γt, which converges to a value based on the
cost of the best (lowest cost) route between two nodes. A performance function
h(p, γ) indicates how good a certain matrix p is.

The algorithm works as follows:

1. Start with a set of routing probabilities pt=0 that are for instance uni-
formly distributed: all paths have the same probability 1/n with n =
size(s).

2. Generate a number of sample paths and select those samples that give
the best results - so find a γ as low as possible, that still gives a certain
number of cases that satisfy h(p, γ).

3. Using those samples, generate a new matrix pt which is as similar as
possible to the optimal matrix. This optimal matrix is a matrix such that
routes generated with it are the shortest routes, i.e. the matrix which,
when used, results in the lowest possible temperature γ.

4. Increase t by 1 and repeat the procedure with the new matrix. Stop when
the temperature γ stabilizes.

For t → ∞, pt gets an optimal solution, where pt→∞,r,s is either 1 (if the link
between r and s is on the path with minimal cost) or 0 (if it is not). The

6

performance function used in CEAS is h(p, γt) = e−
Lt
γt , with Lt the cost at

time t. A more in-depth description can be found in section 2.3 in [3].

This procedure needs a number of samples before it can update the temperature
and the matrix, which is not practical in a routing environment: it would be
better if the probabilities would be updated with each arriving routing packet,
instead of waiting for a batch of packets to arrive. CEAS achieves that by
adjusting the performance function every time new information arrives, basing
it on both the new information and the currently used function.

2.2.2 Implementation

To implement the behaviour described above, the routing protocol uses packets
called ants. Ants travel from a source to a destination, possible using the matrix
pt to choose the route, accumulating the cost of the followed path. At the
destination, the temperature is updated. The ant then travels back along the
same way to the source, updating pt in the nodes it passes.

2.2.3 Avoiding converging to a local optimum

With the algorithm described above, there is a risk of ending up with a path
that is not actually the shortest. At first, a reasonable - but not optimal - path
pR may be found. No other paths have any pheromone at all, so all ants choose
to follow pR. No better path is ever found.

To avoid that situation, CEAS knows two different kind of ants. Normal forward
ants use the pheromone tables to find their destination, while explorer ants
simply pick a random next hop, not using the pheromone values at all. Using a
suitable mix of normal ants and explorer ants results in new routes being found,
while known routes are reinforced with the right amount of pheromone.

That does not solve the whole problem, however. Consider the situation where
the reasonable path pR is known. At some point, a shorter route pB is found.
However, the chance of taking that route is not very high, as only one (explorer)
ant ’deposited’ pheromone on that route, compared to possibly thousands of
ants on pR. Thus, pB is not chosen more often and its pheromone value is not
reinforced.

To avoid this situation, a basic solution is to sample a number of random paths
at first, before starting to use the pheromone values. Thus, the default imple-
mentation of CEAS has an initialization phase during which only explorer ants
are sent. The pheromone tables then contain reasonable levels, after which the
normal system with both normal and explorer ants can take over to maintain
the short routes and adapt to changes in the system.

7

2.2.4 Cycles in paths

Given how ants find their way to a destination, it is possible that an ant visits
a single node twice on its way to the destination. In that case, the path to the
destination will contain a cycle. In most cases, such cycles are not a problem as
the system will converge to a route without cycles: a route with cycles can not
be the best route to a destination, assuming a positive cost for every hop in the
path.

In some cases, cycles can be a problem. Updating paths which contain a cycle
means that ants have to travel more, resulting in a higher network load. Also,
investing ’energy’ in longer paths might cause a longer time to converge to the
shortest path. For some possible extensions to CEAS, such as subpaths (dis-
cussed in 2.2.5), the effects can be noticable. In [13], three different approaches
to handling cycles in CEAS are discussed. For the simulations in this report,
cycles are detected at every hop and packets are dropped if they contain a cycle.

To avoid the creation of cycles, an extra mechanism has been used. Before the
next hop of an ant is chosen, all nodes that it has visited before are taken out of
the list of possible options. Though this heuristic has limitations in the current
ns-3 implementation of CEAS, it prevents the most common cases, such as ants
travelling back to the node from which they just came.

2.2.5 Extensions

The system described above works, but it is not as efficient as it could be. A
number of improvements are already known that speed up convergence or reduce
the overhead of the protocol by limiting the number of ant transmissions needed
to get good routes.

Elite selection is one such optimization. When a forward ant reaches its des-
tination, it is only converted to a backward ant if the cost for the path it has
followed is within a certain distance from the best path known to that destina-
tion. Other ants are discarded. In this way, ants that would only confirm that
a low-chance path is indeed not worth taking are not propagated, thus causing
a reduction in overhead. Elite selection also helps to avoid the problem of con-
verging to a local optimum, described before. A more thorough description of
elite selection, including benchmarks, can be found in [3].

Another optimization can be found in the rate ants are generated. When a
network is changing, a high number of ants is needed to find the best (new)
routes. However, if no changes occur, it would be better to create fewer ants.
To solve this problem, ant rates are self-tuning. If almost no forward ants return
to the source node, that node knows that the protocol has likely not converged
to a stable state yet - ants either do not get to the destination at all or if they
get there, they are not converted to backward ants because they do not qualify
as elite ants. In a stable network, most ants reach the destination over the

8

A B C

D E

Figure 2.1: Five node network. The red nodes A and B are the source of some
network traffic. The green node C is the destination of traffic from both source
nodes.

lowest-cost path and are thus within the elite selection range. That implies
that the number of ants that is generated can be lowered when the number of
forward and backward ants is almost equal.

A third extension to CEAS is the introduction of subpaths, introduced in [4].
The idea is to limit the number of ants by sharing information between dif-
ferent nodes. In basic CEAS, routes are found for a source-destination pair.
In figure 2.1, both node A and node B need a route to destination node C.
Clearly, the shortest path from A to C leads through B. It is also clear that
at node B there is knowledge about the shortest path to C. In basic CEAS,
the information discovered by ants from B would not be used by ants travelling
from A. The subpath extension makes it possible to share that information,
resulting in less overhead. This is done by cutting the path from the source
to the destination in smaller pieces. For each piece, the pheromone values are
updated individually.

9

10

Part II

Porting CEAS to ns-3

11

Chapter 3

Introduction

A big part of the time available for this thesis has been spent on porting the
CEAS protocol from ns-2 to ns-3. The following sections provide information
about what has been done exactly and the issues encountered along the way.
Ns-3 is described in chapter 4, followed by an overview of the design chosen for
CEAS in ns-3 in chapter 5. Results obtained from the ns-3 implementation are
then validated against the original ns-2 implementation in chapter 6. Finally,
chapter 7 discusses the experience of using and extending ns-3.

The design description in chapter 5 is necessarily somewhat abstract. Read-
ers interested in implementation details can take a look at the code, which is
extensively documented and available on request.

13

14

Chapter 4

About ns-3

This chapter describes the properties of the ns-3 simulator, as presented by
the ns-3 developers. In chapter 7, the actual experience with the simulator is
discussed.

4.1 Introduction

Ns-3 is a network simulator, developed by mostly the same group of people that
work on or have worked on ns-2. It got started because there are problems with
the ns-2 design that they felt could not be fixed without breaking compatibility
with earlier versions [14].

Specifically, those problems included:

Bi-language system (C++/tcl) Ns-2 uses both C++ and tcl to build sim-
ulations. The combination of both languages is difficult to debug and a
barrier for new developers.

Scalability problems Tests show that ns-2 does not scale well to large simu-
lations, making it unsuitable for some research.

Core packet structure In ns-2, packets are not serialized and deserialized. To
be able to run simulations against real-world systems, support for ’real’
packets is needed.

Lack of validation and verification Many models in ns-2 are not validated
against the real world, which causes users to doubt whether simulation
results are the same as the results that would be measured in real-world
implementations.

15

To fix these problems, the ns-3 project was started in 2006. The first stable
version was released in June 2008. The current release, as of May 2010, is
ns-3.8. New versions are released every three to four months.

4.2 Features

To avoid the problems that developed in ns-2, a number of specific features have
been introduced in ns-3. Those are described in the next sections.

Extensible core

Ns-3 is written in C++. It features an optional Python interface. In contrast
to ns-2, users don’t necessarily have to know both languages. To make it easy
to extend the simulator, its goal is to be documented more consistently than
ns-2. Also, the coupling between different models has been minimized by using
object aggregation.

Attention to realism

In ns-3, nodes in the simulation resemble real computers more than in ns-2.
Every node is constructed out of devices and there is an internet protocol stack
that closely resembles the stack on real systems. Applications written in ns-3
can use an implementation of the BSD socket API.

Software integration

Compared to ns-2, it has become easier to interact with other software packages.
Network traffic generated by ns-3 can be traced and written to a file in the pcap
format, which makes it possible to analyze it with tools like Wireshark.

Support for virtualization and testbeds

Because of its attention to realism, ns-3 can be used as a virtual system or in
testbeds. Real applications can run on top of a protocol stack implemented by
ns-3. It is also possible to run ns-3 applications on real networking stacks or
to run an instance of ns-3 in a network, where it interacts with ’real’ systems.
Such features make ns-3 more of an emulator than a traditional simulator.

16

Tracing and statistics

In ns-3, a tracing framework makes it possible to decouple tracing as much as
possible from the simulation code itself. The code can provide tracing hooks,
which can then be connected to tracing sinks by the user. A tracing hook can
be the arrival of a packet, the occurence of a certain error state or anything
else. Tracing sinks can analyze the incoming data, aggregate it and store it in
different formats, depending on the needs of the user.

A statistics module is also included in ns-3, though its current feature set is
rather limited. As part of this thesis, the functionality has been extended.

Architecture

Ns-3 consists of a core simulator part and a number of layers that add the
networking-specific elements. It provides an internet stack with implementa-
tions of protocols like TCP and UDP, as well as lower-level protocols like vari-
ous versions of 802.11. Different components and applications can be added to
nodes, after which nodes can be connected to each other. To help with build-
ing up nodes and creating a network topology, helper scripts are provided. A
schematic view of ns-3 is shown in figure 4.1.

Compared to ns-2, there are other differences as well, such as the build system.
Section 7.1.2 discusses the differences in more detail.

17

Tracing

Loging

Callbacks

Smart pointers

Attributes

Random variables

Dynamic type system

Events

Schedulers

Time artithmetic

Mobility models

(static, random walk, etc.)

Packets

Packet tags

Packet headers

Pcap/Ascii file writing

NetDevice ABC

Address types

(IPv4, MAC, etc.)

Queues

Socket ABC

IPv4/IPv6 ABCs

Packet sockets

Node class

High−level wrappers

for everything else.

Aimed at scripting.

mobility

simulator

core

test

helper

internet−stackrouting devices applications

node

common

Figure 4.1: Schematic view of ns-3 architecture, based on figure from [15].

18

Chapter 5

CEAS in ns-3 - the
architecture

Soon after the thesis project started, it was decided that porting CEAS to ns-3
would be the first step. It was expected that ns-3, being a more modern project
and developed by people that knew the advantages and disadvantages of ns-2,
would make it easy to extend and improve CEAS. Thus, the time spent on
implementing CEAS could be won back by being able to develop improvements
in a faster way. In the end, that was not what happened: porting to ns-3 took
longer than expected and the extra time could not be compensated by faster
development later on.

The CEAS code in ns-3 uses the same algorithms as those used in ns-2. Most
of it has, however, been built from scratch in the ns-3 framework. The parts
related to the temperature calculations could be taken from ns-2. Some inspira-
tion for the design came from the implementation of the Optimized Link State
Routing (OLSR) protocol, which is the only other decentralized algorithm cur-
rently implemented in ns-3. The first part of this chapter describes how the ns-3
version of CEAS is designed. The last section is dedicated to the infrastructure
used to perform simulations with ns-3 and is not specific to CEAS.

5.1 Overview

The implementation consists of a number of building blocks. Most important
is the class CeasRoutingProtocol, which implements the protocol. To be able
to work, each instance of the protocol maintains a pheromone table. This table
works as a routing table and is used to perform the actual routing. Also, every
node which is a destination of some traffic keeps track of temperatures with
a temperature table. Ants are modelled in separate classes: every ant is a
separate packet. Those classes are responsible for the creation, serialization and

19

NetDevice
(incoming)

Network layer

Transport and

CeasRoutingProtocol

Ant serialization /

deserialization

Ns−3 routing

table entries

NetDevice
(outgoing)

UdpL4Protocol

Ipv4L3Protocol

Data packet

Routing packet

Function call

Application

CEAS

UdpSocket

Upper layers

Lower layers

Ant generator

Routing table

Routing table entries

RouteInput

RouteOutput

Figure 5.1: Design of CEAS within the ns-3 framework.

deserialization of ant packets. Figure 5.1 shows how CEAS has been integrated
in the ns-3 framework.

5.2 Temperature table

The temperature table, modelled by a class CeasTemperatureTable, provides
methods to add temperature entries to a table and retrieve them. Entries are
instances of CeasTemperatureTableEntry and have a key, which is by default
a source-destination pair, that identify entries in the table. The original default
in ns-2 is to use an identifier that specifies the pheromone type. Other key types
can easily be added in both the ns-2 and ns-3 implementation.

The CeasTemperatureTableEntry itself contains both the normal and the elite
temperature γ of a key and the ‘search focus’ρ. The temperatures, instances of
CeasTemperatures, consist of the actual temperature γ and the parameters a
and b, which are used to update γ.

5.3 Pheromone table

Ns-3 provides a class Ipv4Route, which models IPv4 routing table entries, and
methods to create and update those entries. However, the fields in such an entry
are not sufficient for CEAS. For that reason, a new class CeasRoutingTable-

Entry has been added. The class uses ns-3’s IPv4 routing table entries where
possible.

The resulting structure is shown in figure 5.2. The outermost entity is a table
with entries. The key for every entry is an IPv4 address, which is the destination
of that entry. The table provides methods to create, read, update and delete
routing entries.

20

CeasRoutingTable

NextHop

Ipv4Route
Ceas−

Routing−

Table−

Entry

CeasRouting−

TableEntry

NextHop

Figure 5.2: Routing table elements of the CEAS implementation.

Every entry has a set of NextHops, which are possible next hops to reach the
destination. It is possible to ask for a NextHop instance in two ways:

• Using stochastic routing with the pheromone values as input, as used by
normal forward ants.

• Using a random selection of the next hop, where all hops have equal
chances, as used by explorer ants.

NextHop is modelled as a wrapper around ns-3’s routing entries. The wrapped
entries are used to store the IPv4 address of the next hop and the outgoing
interface address to reach that address. The values that can not be stored in
the Ipv4Route class provided by ns-3, such as the cost for this link and the
pheromone value associated to it, are stored in the NextHop itself.

5.4 Ant packets

In ns-2, contrary to ns-3, packets are not serialized. For that reason, there
was no clear definition of the packet format to use for ants in ns-3. An earlier
implementation of CEAS in AntPing [16] used the IPv4 route record mechanism,
described in [17] to store route information. Disadvantages of that approach
are the limited number of hops that can be stored (no more than nine) and the
limited amount of information that can be stored (just the IPv4 address). For
the ns-3 implementation, a new packet format has been designed that does not
have those limitations.

The implementation consists of a header which is common to all ants and spe-
cialized headers for neighbour discovery packets, forward ants and backward
ants. The neighbour discovery packets will be discussed in section 5.4.1. For-
ward ants are again split in normal forward ants and explorer ants. The common
header simply contains a value which specifies the type of ant. When serialized,
any ant thus consists of two headers: the ’outer’ header, which just specifies
the ant type, and the ’inner’ header, which - for ants - specifies all the other

21

Field Size Value

Source address 4 The IPv4 address of the source.

Destination address 4 The IPv4 address of the destination.

Cost 8 The cost to get from source to destination.

Table 5.1: Packet structure - hops. Sizes are in bytes.

information that has to be encoded in an ant. This structure has been chosen
because it makes it much easier to deserialize ants.

The structure that has been used for normal forward ants is shown in figure 5.3.

Each ’inner’ ant header contains the following fields:

Size (2 bytes) Not used so far.

Ant type (1 byte) Not used so far. This could be used to have different
’types’ of routes between two nodes, for instance one route which has a
low latency and another route which is optimized to have a maximal band-
width. In that case, the source and destination address are not enough
anymore to keep the different ants apart. Note that this field does not
specify whether the ant is a forward ant or a backward ant - that is en-
coded in the common, ’outer’ header.

TTL (1 byte) The time-to-live (in number of hops) of the packet.

Destination (4 bytes) The IPv4 address of the destination of the packet.

Gamma (8 bytes1) The gamma value of the packet. This is the temperature
γ, which is used to update the pheromone values. It is only relevant when
the ant is travelling back to its source.

L (8 bytes) The cost L of the ant. In the current implementation, it is only
relevant when the ant is travelling back to its source. Future extensions
could use it to drop a forward ant based on the cost it has accumulated
so far.

Rho (8 bytes) The search focus ρ of the packet. This value is used to update
the temperature γ at the destination.

Number of hops (1 byte) The number of hops the packet has already taken.

Following the ‘number of hops’ field, descriptions of the individual hops are
added to the packet. The structure of the description is shown in table 5.1.

The packet structure could be optimized. For instance, there is no reason to
use eight bytes per floating point field in the packet: two bytes would probably
provide enough precision. However, to keep extensions to and debugging of the
protocol easy, optimization of the packet size has not been an objective.

22

Destination

Gamma

L

Rho

Size Ant type TTL

0 (bits)

(bytes)

8 16 24 32

4

8

12

16

20

24

28

32

36

Number of

hops

Figure 5.3: CEAS packet format in ns-3.

23

The encoding of the different hops the packet has passed deserves some atten-
tion. In the current CEAS implementation, both the source and the destination
address for each hop are stored in the packet. It is possible to store just the
source addresses. However, it is not enough to store just the destination ad-
dresses. The reason that the source addresses have to be stored comes from how
backward ants find their way. If a forward ant travels from node A via node B
to node C, a backward ant will be generated at C. This backward ant needs
the IP address of the outgoing interface from B to C: that address is used to
determine which outgoing interface from C to B has to be used.

Future extensions to the protocol might need both the source and destination
addresses of each hop, for instance when the connections between nodes are not
point-to-point links. For that reason and for easier debugging, both the source
and destination address have been included in the ants.

For basic CEAS, it is not needed to include the cost of each link: just incre-
menting L at every node on the way would be enough. However, to implement
the subpath extension to CEAS, the cost of every hop has to be known. Other
extensions might also need the cost of individual hops, so it has been included
in the packet structure. However, just like with the other floating point fields,
it could be made significantly smaller than it currently is.

Methods have been implemented to change values in a packet, serialize it and
deserialize it.

5.4.1 Neighbour discovery packets

In the ns-2 implementation of CEAS, nodes know which neighbours they have.
In real networks, that is not necessarily true: neighbours have to be discov-
ered somehow. The ns-3 implementation of CEAS contains an extra packet
type, called ’hello’ packets, to discover neighbours. Packets are periodically
sent through all connected interfaces and when a node receives such a packet,
it sends a reply. When a node receives a reply, it adds the sender of the reply
packet to the list of known neighbours. If a known neigbour does not reply to a
configurable number of discovery packets, it is removed from the list of known
neighbours.

The ns-2 implementation does not contain such a mechanism. To make it pos-
sible to compare the two implementations, the discovery mechanism has been
disabled and nodes are configured with a list of known neighbours at the start of
each simulation. For more realistic simulations, the neighbour discovery packets
can be enabled easily.

24

A B C

Figure 5.4: Network with nodes A, B and C.

5.5 Routing protocol

Assume a network as shown in figure 5.4. This section describes how the routing
protocol is implemented by following a single ant on its way from node A via
node B to node C and back through B to A again.

5.5.1 Before sending the ants

Before any ants are sent, a basic infrastructure has to be set up. A list of
neighbours is needed, as well as a mapping from the IPv4 addresses of the
neighbours to the corresponding UDP sockets used to send routing information.

Also, an - initially empty - list of ’needed’ destinations has to be created. This
list is used to determine which routes have to be discovered. Using such a list
allows for both a reactive and a proactive approach to routing. In the first case,
destinations are added when a data packet requests a route to that destination.
In the second case, external code can add destinations to the list, which will
then automatically be looked for by ants.

5.5.2 Leaving node A

Ants are generated at regular intervals with a configurable rate. There are
separate rates for normal ants and explorer ants. A new ant picks a next hop
from the pheromone table. For normal ants, the pheromone values are used
to influence the chance of choosing a certain neighbour as the next hop. For
explorer ants, every neighbour has an equal chance.

Depending on the chosen next hop, a certain cost is associated to the ant. The

25

various other fields, such as the time-to-live of the ant, are set to the right
values. The packet is then queued for transmission.

When the transmission timer expires, all queued packets are sent. In the current
implementation, the transmission timer is set to zero every time a packet is
queued. The result is that all packets are sent individually. The timer could be
used to send bursts of packets, which might be useful in for instance wireless
scenarios.

For every packet that is to be sent, a timestamp is added. This is a tag that is
just used for simulation purposes: it is not serialized with the normal packet and
thus does not add to the transmission delay. After completing the packet, the
socket associated with the link to the next hop is looked up. The packet is then
sent through the socket to be processed by the lower layers in the communication
stack.

5.5.3 Passing through node B

When the ant arrives at node B, the first part of the header is read. This part
contains the identification for the different ant types. Depending on the type of
ant, different handling routines are called. In this case, the handler will conclude
that the ant has not arrived at its destination yet and that it has to forward it.

Next, some basic checks on the route the ant has taken are performed. The
time-to-live should still be above zero and the ant should not have visited the
node before. In both cases, the packet is dropped. Then, a next hop for the ant
is chosen using the process described before. One difference is that all nodes
which have been visited before by the ant are blacklisted: they can not be chosen
as a next hop. Note that this does not completely prevent loops: neighbours
may have multiple IP addresses, not all of which may be known at B. Thus,
the loop check is still needed. Normal forward ant packets are dropped if no
valid next hops are found. For explorer ants, that is different: if all neighbours
are blacklisted, the blacklist is ignored and the explorer ant is sent to one of
the neighbours, where it might find a node which it has not visited yet. The
different way to handle explorer ants prevents dropping such ants too often,
which would make it difficult to find routes when the discovery process has just
started. The ns-2 implementation does not limit this mechanism to explorer
ants and handles normal forward ants in the same way.

The destination of the packet is then added to the local list of known desti-
nations, which will be needed when the ant returns, and the cost and path
information within the ant are updated. The ant is then serialized and sent as
described before.

26

5.5.4 Arriving at node C

At C, the packet is analyzed in the same way that happened at B. This time, the
system concludes that the ant has arrived at its destination. The temperature
value γ is updated for the specific source-destination pair, in this case the route
A ⇒ C. If the route is within certain limits of the best known route, i.e. it is
an elite ant (see section 2.2.5), a backward ant is generated.

Backward ants are basically identical to forward ants, except for a field in the
header indicating that the ant is on its way back. Thus, the forward ant is simply
copied into the new ant and only the first part of the ant is newly generated.
The packet is then queued to return to A.

5.5.5 The way back

The ant arrives at node B again, where the pheromone values for all routes to
C are updated, based on the values of γ, L (the cost) and β. The packet is then
forwarded to A, based on the route stored in the ant.

At A, the same happens, except for the forwarding: it has arrived at its desti-
nation and is dropped.

5.6 Infrastructure

To perform the actual simulation, a number of helper tools have been written.
These tools are not specific to CEAS. A simulation run consists of the following
steps:

• A simulation script (written in bash/sh) is started.

• The script compiles and runs the simulation scenario file (written in C++)
a configurable number of times with the specified options.

• The simulation scenario stores the results in an SQLite database.

• The simulation script runs queries on the SQLite database to get data
points.

• The simulation script calls gnuplot to convert the data points to graphs.

Scenario files contain the definition of the network topology and specify any
special events, such as link losses, that occur.

During development, it became clear that the SQLite support of ns-3 had perfor-
mance problems. The problem could be tracked down to the lack of transaction

27

Simulation

Simulator

Simulation

script

SQLite database

GNUplot

2

3

5

4

1

Figure 5.5: Workflow of simulating CEAS with ns-3.

1. The simulation script starts the simulator with specific simulation param-
eters.

2. The simulator runs the simulation.

3. The simulator stores the results in a SQLite database after every simula-
tion run.

4. The simulation script queries the database to get the results.

5. The results are plotted with GNUplot.

support in the ns-3 interface to SQLite. The problem has been fixed and the
resulting patch has been provided to the ns-3 developers2. It is integrated in
new ns-3 releases.

To be able to measure the changes in temperature and pheromone values over
time, the statistics framework of ns-3 has been extended. Some scripts are used
to run a simulation, store the results in a database and extract relevant data
from the database to generate graphs. The process is shown in figure 5.5.

2See http://mailman.isi.edu/pipermail/ns-developers/2009-November/006959.html and
replies.

28

Chapter 6

Validation

To assess whether the CEAS port to ns-3 behaves identically to the latest ns-2
version, a number of simulations have been run on both simulators. The results
show that the ns-3 code behaves exactly like the original version.

To validate the convergence and temperature calculation, a network consisting
of 12 nodes has been chosen. A very similar network has been used in [11]
and for the simulation of the subpath extension to CEAS [4]. Because of the
experience with the network layout and the available results from ns-2, it was
chosen as the network for validating the ns-3 CEAS implementation. In the
network, traffic flows from node 10 to node 11. The path with minimal cost is
along 10 − 0 − 4 − 6 − 9 − 11, which has cost 0.0038s. Figure 6.1 shows the
network layout. There is one difference between the network used for ns-3 and
the network used before: nodes 10 and 11 have been added. This has been done
to have a single interface on both the source and destination node, which makes
it easier to run the simulations with the ns-3 implementation. The cost of the
links connecting the extra nodes to the original network have been set to zero,
so the cost of the path is the same in both networks.

The expected result is that most ants converge to this route. The performance

function used in CEAS is h(p, γt) = e−
Lt
γt = ρ (see section 2.2.1). In this

function, Lt the cost at time t, γt is the temperature at that time and ρ is the
’search focus’ of the protocol, which is 0.01 in both ns-2 and ns-3. With some
rearranging, a theoretical lower bound for the temperature can be found, given
values for ρ and L (dropping the subscript t for the variables, as this is about
the converged state, not an intermediate time):

e−
L
γ = ρ

γ = − L

ln(ρ)

29

1

2

3

10 12

4

5

6

8

9 11

7

0

1

2

2

1

2

1

2 1

2.2

1

1.81.8

1

1 1

0

2.2

0.2

Figure 6.1: The 12-node network used for validation. Costs are delays in mil-
liseconds. The shortest path is indicated.

The total temperature γ at node 11 for the source-destination pair (10 − 11)
should gradually converge to − L

ln(ρ) . In both simulations, ρ = 0.01 has been

used, which gives an expected lower bound for the temperature:

γ = − L

ln(ρ)
= − 0.0038

ln(0.01)
≈ 0.000825

Due to explorer ants taking different routes, the temperature of the system will
stay slightly higher than 0.000825. The elite temperature, which is only updated
by ants with a low enough cost, should always be lower than or equal to the
total temperature, but has the same lower bound.

Figures 6.2 and 6.3 show the evolution of temperature over time in ns-2 and ns-3,
respectively. The parameters used in the simulation are described in appendix
A. The code for updating the temperature has been taken from the ns-2 imple-
mentation, so any difference in temperatures between the two implementations
comes from other parts of the code.

Figure 6.3 also shows that the elite temperature follows the expected curve: it
is always lower than the total temperature, while never getting below the lower
bound. The curves from the ns-3 simulation are within the confidence intervals
of the curves generated by ns-2.

It was checked manually that the chosen path is indeed 10− 0− 4− 6− 9− 11:
the pheromone values at all intermediate nodes converge to the expected values.

A different network topology, consisting of only seven nodes, has also been used
to test CEAS in ns-3. It has not been compared to ns-2, but it converged to the
expected route and temperature. Based on these results, the ns-3 implementa-
tion is believed to behave in the same way as the original ns-2 implementation.

30

 0.00082

 0.00084

 0.00086

 0.00088

 0.0009

 0.00092

 0.00094

 0.00096

 0.00098

 0.001

 0 2000 4000 6000 8000 10000

Figure 6.2: Temperature convergence in ns-2, averaged over 30 trials. The red
(upper) line is the normal temperature; the elite temperature is shown in blue.
The vertical bars are 95% confidence intervals. The figure has been contributed
by Laurent Paquereau.

31

Figure 6.3: Temperature convergence in ns-3.

32

Chapter 7

Experience with ns-3

At the beginning of the thesis project, I proposed to use ns-3 instead of ns-2 to
run the CEAS simulations. The idea was that it would take more time at first,
because of the porting of the protocol to a new simulation, but that it would be
possible to make up for that by being able to use a more flexible architecture
for all simulations.

In practice, that has not exactly happened. The ns-3 architecture is indeed more
flexible and would in theory make it easier to run a large number of different
simulations. However, the flexibility is mostly concentrated at the application
layer. It is very easy to construct nodes, generate all kinds of network topologies
and add applications to nodes. Tracing works well too, though it is slightly less
useful because of the lack of a complete statistics module: it is possible to get
a lot of information out of the system and it is easy to add hooks to get even
more data. However, ns-3 does not offer all the needed components to analyze
the data easily. For instance, it is possible to run a simulation with certain
input parameters and record the (final) value of whatever is to be measured.
However, there is no infrastructure to record how that value changes over time
within a simulation.

The most important reason for the delay in porting CEAS to ns-3 is the added
realism in the new simulator. In ns-2, nodes can have an ID and packets can
simply be sent to a specific node. In ns-3, such a basic operation requires a lot
more work:

• The nodes have to run an IP stack, with different IP addresses for every
network interface. Thus, there is not a single ’node ID’.

• To send a packet, a TCP or UDP connection has to be established by
opening a socket to the destination node. The destination has to have the
port open: if not, ICMP error messages will be generated.

• Packets are really serialized and deserialized, so it is not enough to simply

33

pass a structure around in the simulator. Instead, a definition of the packet
layout is needed and serialization and deserialization functions have to be
written.

The purpose of this research is to improve CEAS, not to get to know the details
of the BSD socket API. For that reason, the added realism seems unnecessary
- after all, the simulation results show that the ns-2 and ns-3 implementations
behave in exactly the same way.

Having said that, there are advantages to the added realism as well. Until now,
CEAS did not have a well-defined packet structure. Also, it depended on the
existence of a unique identifier for every node, which is not necessarily available
in real networks. By forcing realism on the developer, the protocol improves and
gets ready for real-world usage. However, for first implementations of a protocol,
where the general behaviour is more important than the exact implementation
details, ns-3 does not seem the right tool for now.

The experience with implementing a protocol in ns-3 and how it differs from ns-2
has been described in a paper, which is attached to this report as appendix B.

7.1 Comparison with ns-2

7.1.1 Abstraction level

Both ns-2 and ns-3 are packet-based discrete-event simulators, but have different
levels of abstraction. Ns-3 mirrors real network components, protocols and APIs
more closely. This becomes obvious when implementing CEAS. At the transport
and network layers, ns-3 does not abstract any detail. IP and UDP protocols
are implemented in detail. A packet is represented as a buffer of bytes and the
actual content of a packet needs to be serialized and deserialized. Packets are
not simply sent: a socket has to be created and connected and errors have to be
handled properly. Trying to connect to a closed port results in an ICMP error
message. In ns-2, there is no detailed implementation of either UDP or IP.

The main reason and advantage of this increased realism is to facilitate code
re-use, portability and validation. In particular, it makes it to possible to em-
bed the simulator in a mixed environment with real hardware, software and
networks. Any problem that would occur when implementing and running a
protocol in a real-world system is likely to occur during the implementation and
simulation in ns-3. The downside is the added complexity. Ns-3 confronts the
developer with low-level implementation details such as socket communication,
packet serialization and addressing at a very early stage. If one wants to try out
novel concepts, such a level of details may be overwhelming. The higher level of
abstraction in ns-2 allows for a quick implementation and testing of new ideas,
and is an important reason for its popularity.

34

As a result, the implementation of the same protocol in ns-2 and ns-3 is signifi-
cantly different and porting a protocol from ns-2 to ns-3 is not straightforward.

7.1.2 Usability and adaptability

Elements of usability and adaptability are, among others, how easy it is to learn
the tool, to extend existing models and to add new ones. This involves many
aspects:

Programming language and debugging

Ns-2 is implemented in C++ and OTcl. Each language taken separately is not
difficult to use. The difficulty comes from the combination of the two and the
concept of split-object. When developing a new protocol such as CEAS, one has
not only to implement objects in both C++ and OTcl, but also the interactions
between those objects. This task is made difficult by the lack of documentation
and debugging tools for the interface between C++ and OTcl. Ns-3 is written
in C++ only and, hence, much easier to debug. It offers Python bindings as
well, which are identical to the C++ interface. It is not required to use Python
and so far, it looks like most users choose to work with C++.

Building

Unlike ns-2, which uses the traditional GNU build system (autoconf, automake,
make), ns-3 uses waf [18]. Waf is a much more recent framework, written in
Python, that one needs to learn and adapt to when using ns-3.

Documentation

In addition to the ns-2 documentation [19], many tutorials and reports are
available, e.g. [20]. However, not all modules are equally well documented and
the documentation is in part outdated. Ns-3 is a much younger project and the
amount of available resources is consequently much smaller. The development
team strives to write and maintain a manual and tutorial as new models are
integrated. Nevertheless, the coverage of the documentation is not complete
yet, and parts have to be updated according to API changes. During this thesis
project, the ns-3 manual more than doubled in size.

35

Existing code

Ns-2 and ns-3 are open-source projects, distributed under the General Pub-
lic Licence (GPL). Hence, a way to learn is to read and study existing code.
Many models have been contributed to ns-2, but ns-2 code is generally hard
to read because: (i) it includes old code for backward compatibility, (ii) many
contributions use different coding styles and design approaches and constitute
a patchwork of often incompatible models, and (iii) the code is generally poorly
commented. In comparison, ns-3 enforces a coding style and a stricter review
process before inclusion, which results in more coherent code which is better
commented and easier to read. On the other hand, the number of examples is
still limited. When the implementation of CEAS in ns-3 was started, the only
example of dynamic detailed routing protocol was OLSR.

Modularity

In ns-2, it is not always easy to simply replace a model by another. In the
case of routing protocols, models vary depending on the type and numbers of
interfaces; see [21]. In ns-3, layers are clearly separated and interfaces well-
defined. Replacing objects by similar ones, e.g. a routing protocol, is therefore
much easier. On the other hand, the architecture of ns-3 closely maps that of
existing systems and implementing untraditional approaches or different levels
of abstraction, e.g. abstracting the IP layer, is much more demanding. At the
application level, ns-3 is much more flexible than at the transport and network
layer.

7.1.3 Built-in components and models

Ns-3’s focus on extensibility makes it easier to add new components and prop-
erties to nodes, which can be an advantage. The number of protocols available
for ns-3 is still relatively small compared to ns-2. However, new protocols are
added regularly, particularly in the field of wireless communications. The in-
creased focus on validation makes results obtained with ns-3 potentially more
thrustworthy than results from ns-2.

7.1.4 Experiment setup, control and analysis

Both ns-2 and ns-3 provide basic network elements such as nodes and links
and make it easy to setup simulation scenarios. In particular, ns-3 provides
various helpers to facilitate the creation, initialization and connection of the
different entities in the simulation. However, both simulators natively offer
very limited support for data collection and experiment control. For instance,
neither of them provide mechanisms for transient period detection, specification
of termination conditions other than time, handling of replications, or parallel

36

and distributed execution. For ns-2, several frameworks have been developed
and provide some of these features. For ns-3, most of these features are being
developed or planned, but not yet integrated.

Furthermore, compared with ns-2, ns-3 provides a powerful framework for trac-
ing internal variables, but, for the time being, misses generic trace sinks. Other
advantages of ns-3 include the use of standard formats, such as pcap for packet
tracing, and the integration of interfaces to external software such as SQLite.
An effort to improve the data collection framework in ns-3 has been announced
in March 2010 [22].

Finally, the support for visualization in ns-2 and ns-3 is limited (Nam and
NetAnim, respectively), in particular for wireless networks.

7.1.5 Development status

Ns-2 is funded through the ns-3 project, but the core development team is only
working on ns-3. Ns-2 only receives maintenance updates and less and less
models are contributed. Ns-3, on the other hand, is under active development.
It has been available for developers and early adopters since 2008. Most of
the generic building blocks are in place. However, not all the core APIs are
completely stable yet, which may keep some developers from moving to ns-3.
For example, the routing API has undergone significant changes until version 3.6
(October 2009). One should also expect some rough edges. For instance, during
the development of CEAS, it became clear to us that the SQLite output interface
was a performance bottleneck and had to be fixed by introducing support for
SQL transactions. The resulting patch has since then been integrated.

The original NSF project for ns-3 is ending this year (2010) and a lot has already
been achieved. However, referring to the project goals [23], there is still much to
do, including porting models from ns-2, providing support for data collection,
experiment control and statistic generation, extending the visualization support,
and integrating ns-3 with external tools such as Click. Recently, a new NSF
grant has been announced for the development of “frameworks for ns-3” [22].
The framework will focus on better support for controlling the execution of
simulations and analyzing the results. Finally, part of the development of ns-3
is also founded through the Google Summer of Code (GSoC) [24] program.

7.1.6 Efficiency

Though no in-depth benchmarks between ns-2 and ns-3 have been performed
as part of this thesis, some comparisons with Laurent Paquereau’s work have
been done. He has written the current ns-2 implementation of CEAS. We have
compared our implementations using the same network as was used for the val-
idation of the ns-3 implementation. In our benchmarks, ns-3 used almost ten
times more processing time. Profiling showed that much of the extra time is

37

Simulator Run time Number of events

ns-2 0.94s (0.04) 157511 (6689)

ns-3 8.92s (0.33) 412104 (9098)

Table 7.1: Performance comparison

spent in the ’added’ layers: those parts that are not included in ns-2, like socket
handling and serialization. The detailed implementation of the transport and
network layer require processing time, which is not used in ns-2. To compare
memory usage, we created 10.000 nodes with an IP stack and the CEAS imple-
mentation. Ns-3 used about half as much memory as ns-2. The difference comes
from the fact that the ns-3 node is simply a container and only the required
components are instantiated while the ns-2 node is a much more static construct
including components that may not be used.

The results are summarized in table 7.1. The run-time and the number of
events are averaged over 30 replications. The standard deviation is given in
parentheses.

38

Part III

Simulation and
optimization

39

Chapter 8

Simulation

8.1 Introduction

After the implementation and validation of the routing protocol, a scenario has
been defined. Based on the scenario, a number of simulations have been run,
using different configurations of the protocol.

8.2 The scenario

To have meaningful simulations, a scenario has been defined. Simulations could
then be run with the scenario as a basis and any changes could be compared to
the basic protocol more easily.

The defined scenario is a city that provides wireless access to its inhabitants.
One example of such a city is Trondheim, where wireless access is provided by
Tr̊adløse Trondheim [25].

The city has an infrastructure with different base stations and a (potentially
large) group of mobile users. The base stations are connected to each other
and route the traffic to ’the internet’. Depending on how the users move, the
traffic pattern within the network of base stations changes, which might cause
congestion in part of the network.

8.2.1 The layout

For most simulations, the base stations are arranged in a grid. Such a layout
fits quite well with the main streets of Trondheim, as shown in figure 8.1, and

41

would fit many other city centers as well. Base stations are placed at regular
intervals at some of the bigger streets. The chosen layout affects the simulation
results. One characteristic of a grid layout with equal costs for each link is that
there are often many paths to a destination with the same cost.

The layout models the location of base stations, not the location of end users. It
is assumed that the end user equipment will select the base station it connects to
automatically. As the user moves around, his or her equipment will switch base
stations as necessary. Thus, base stations will transfer fluctuating amounts of
data, depending on what traffic users generate and how they move around. The
generated traffic depends on the services that users use and how those services
are used. Base stations are connected by point-to-point links with a delay of
500ns between base stations. This value has been chosen because standard
Cat5 ethernet cables have a delay of about 5ns/m, resulting in a simulated
distance between base stations of about 100 meter. How users are connected to
the base station does not infuence the results and has not been specified in the
simulations. Given the scenario, a wireless connection should be expected. It is
assumed that users are connected to at most one base station at a time, which
is true for standard WiFi connections.

All links between base stations are simulated at a bandwidth of 1Mbps. That is
a lower bandwidth than can be expected in reality. The low bandwidth is used
to limit the number of packets that has to be simulated to congest a link. With
higher bandwidths, the number of packets that has to be simulated grows, and
so does the simulation time in ns-3. The effect can be limited by using bigger
packets, but that has limitations as well: UDP packets have a size limit, which
means that packets have to be split and the total number of packets grows again.
It has been tested that a link of 1Mbps provides more than enough bandwidth to
make the effect of CEAS packets on available bandwidth disappear completely:
routing traffic uses a few kilobits per second at the very most, or less than one
percent of available bandwidth.

Instead of simulating every end user, simulations are limited to simulating the
network of base stations. The movement of users is simulated by changing the
amount of traffic each base station generates. That way, the processing power
needed for the simulation can be limited. Because end users are assumed to
send all data to the base stations (i.e. no other networks are involved), the
simulation should give the same results as a simulation including all the end
users would.

As the user moves, different base stations are used as access points to the net-
work. The trail that is followed is shown in figure 8.1. Every 1000s, the user
moves to the next base station. From t = 8000s, when the user is back at node
8, no more movements are made.

42

5

9

13

1

8

12

16

4

7

11

15

3

6

10

14

2

Figure 8.1: Trail through 16-node grid network. The red node is the start
position of the traffic source. The source then follows the arrows to different
nodes, moving every 1000s. The green node is the destination of all generated
traffic.

8.3 Basic results

The first simulations test how the system behaves when a user moves through
the system.

In this simulation, no background traffic is generated at all and every base
station has to start looking for a route to the destination when the user starts
to use that base station. Once a destination has been requested, the base station
will maintain the route - even if it is not requested again. As such, it is not
completely realistic yet, but it provides a good way to see whether the scenario
shows the expected behaviour. In this case, the expected behaviour is that the
delay to the destination is directly proportional to the distance in number of
hops to that destination. Also, the delay is expected to show a spike when the
user arrives at a new base station. That spike comes from the time it takes to
converge to the shortest route.

As shown in figure 8.2, the plot shows the expected behaviour: it shows spikes
every time the traffic source - the user - moves to a new base station. The
spikes are not clearly visible for those steps where the delay gets lower, because
they are very narrow and overlap with the ’drop’ from moving to a node which
is closer to the destination. The measured delay is the delay of data packets

43

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

A
v
e
ra

g
e
 d

e
la

y
 (

m
ic

ro
s
e
c
o
n
d
s
)

--
-

a
v
e
ra

g
e
 o

f
3
0
 t
ri
a
ls

Time (s)

Delay over time in 16-node network

CEAS Default, beta = 0.95, no background traffic

Figure 8.2: Delay over time - basic scenario.

and does not include routing packets. The parameters for the simulation are
described in appendix A.

The next step is to include background traffic. The background traffic is a
traffic flow which uses a significant part of the bandwidth along the dashed line
in figure 8.3. The background traffic is enabled at t = 3000s. From then on,
some paths to the destination are loaded and have a higher queueing delay. At
all times, there is a route which is fast (in number of hops) and not loaded -
except for 6000s ≤ t < 7000s, when the single shortest route is loaded.

The original implementation of CEAS in ns-2 uses hop count as the cost func-
tion. The ns-3 implementation uses that as the default as well. Because the
cost function is not load-sensitive, the protocol can converge to a route which
is heavily loaded and it will not switch to a different route until the path is
so congested, that ants get dropped and the pheromone value for the path is
not updated anymore. By then, a lot of data packets will have been dropped
as well. The plot in figure 8.4 shows that the delay indeed grows dramatically
when the path to which the protocol converges is congested. The line seems
curved because of the logarithmic scale on the y-axis. In fact, it is linearly
increasing. That is caused by the queues at the overloaded links: new packets
arrive faster than they can be transferred, resulting in an unstable network.
Note the drop in the average delay slightly after t = 7000s: the traffic source
moves at that time, and at its destination it will take some time to converge
to the shortest route. That means that longer routes are used for a moment as
well, taking some pressure off the - overloaded - shortest route and resulting in
a lower average delay. As soon as the system converges to the short route again,

44

5

9

13

1

8

12

16

4

7

11

15

3

6

10

14

2

Figure 8.3: Trail through 16-node grid network with background traffic along
the dashed line. Again, the red node is the start position of the traffic source
and the green node is the destination of all generated traffic.

the link is again overloaded and the average delay will return to its old value
and grow again.

8.4 Load-sensitive cost functions

To improve the situation with loaded links, a cost function which is load-sensitive
has been added to the protocol. To be able to do that, the load of a link is
estimated. The estimation formula used is:

newTrafficRate = smooth× oldTrafficRate +

(1.0− smooth)× currentTrafficRate

The current traffic rate is estimated by receivedBits
interval , where receivedBits is the

number of bits sent to the queue of the networking device. The interval is
currently hardcoded to 10 seconds and the smoothing value is 0.5, which gives a
reasonable estimation of the current outgoing traffic rate, without overreacting
when relatively big packets are used. The parameters have been selected by
running simulations with a few different values and looking for a combination
that reacts quickly enough to changes in the traffic rate, yet does not give
estimations that are too far from reality. That could happen when big packets
are used. In that case, it is possible that there is less than one packet per
second, which would result in quickly changing traffic rates that do not reflect
the reality very well. A possible improvement would be to use the amount of
data that has left the queue and has actually been sent over the link.

45

 10000

 100000

 1e+06

 1e+07

 1e+08

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

A
v
e
ra

g
e
 d

e
la

y
 (

m
ic

ro
s
e
c
o
n
d
s
)

--
-

a
v
e
ra

g
e
 o

f
3
0
 t
ri
a
ls

Time (s)

Delay over time in 16-node network

CEAS Default, beta = 0.95, with background traffic

Figure 8.4: Delay over time - with background traffic from t = 3000s. The
delay of the background traffic itself is not included in the calculation. Note the
logarithmic scale of the y-axis: the delay does in fact grow linearly.

Without the smoothing mechanism, traffic rates could easily seem to be higher
than the link capacity, simply because a few big packets were added to the
queue in a short period. An extreme example would be a 50kbit packet, which
is queued every 10 seconds on a 10kbps link. Clearly, the link is just used at
half of its capacity - but without the smoothing parameter, the link would seem
overloaded once every ten seconds and completely idle for the other nine sec-
onds. Though seemingly unrealistic, similar situations actually occured during
simulations with CEAS.

Implementing this estimation uncovered bugs in ns-3: the functions that were
supposed to return the number of queued bytes and packets did not work prop-
erly. The problem has been solved; patches have been sent to the developers
and have been added to the newest release of ns-31.

Given the estimation of the traffic rate, the load ρ is defined as traffic rate (bits/s)
link capacity (bits/s) ,

or λ
µ in variables from queueing theory. Note that this is a different ρ than the

parameter used in CEAS.

The first load-sensitive cost function is 1
1−ρ , which has the properties that are

desired in such a function: it returns a low cost when the load is low and it
grows as the load gets higher. In this case, the cost goes to infinity as the load
reaches the link capacity.

1See http://mailman.isi.edu/pipermail/ns-developers/2009-December/007144.html and
http://www.nsnam.org/bugzilla/show bug.cgi?id=769.

46

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

A
v
e
ra

g
e
 d

e
la

y
 (

m
ic

ro
s
e
c
o
n
d
s
)

--
-

a
v
e
ra

g
e
 o

f
3
0
 t
ri
a
ls

Time (s)

Delay over time in 16-node network

CEAS Default, beta = 0.95, no background traffic
CEAS Cost 1, beta = 0.95, background traffic

Figure 8.5: Delay over time with load-sensitive cost function. For comparison,
the normal CEAS without background traffic has been included as well.

The resulting plot of using such a cost function can be seen in figure 8.5. When
there are no congested links, the delay converges to the lowest possible delay.
From t = 3000s, when some of the links are congested, part of the traffic is
sent along a different path, resulting in a slightly higher end-to-end delay - but
nothing like the delays seen with hop count as the cost metric.

Based on this result, simulations have been run with similar functions, but with
a steeper curve - like 1

(1−ρ)2 . The goal was to have a function which would react

even faster on overloaded links by having a bigger difference in cost between
loaded and unloaded links. However, those functions did not perform better
than the cost function used in figure 8.5.

A different way of assigning a cost to a certain load is the following:

cost =
ρ

totalBandwidth− usedBandwidth

With ρ = usedBandwidth
totalBandwidth = λ

µ . A plot of both functions is shown in figure 8.6.
This second function is similar to the first cost function, but it does not have an
extra, constant cost. The idea is that the removal of the constant cost, which
acts like an added cost to every hop, will make the system converge to the route
with the lowest load. With the first function, a route of two hops would at
least have a total cost of 2, even if both links are not loaded at all. A different
route, which has length 1, will have a lower cost, even if it’s slightly loaded.

47

 0

 2

 4

 6

 8

 10

 0 0.2 0.4 0.6 0.8 1

C
o
s
t

Load (%)

Cost functions

First cost function
Second cost function

Figure 8.6: Cost as a function of link load for the first two cost functions.

Thus, the system would converge to the loaded link. In practice, that might
not be bad, because the loaded link (given the low cost of 2) would still have a
lot of capacity left - but for complete avoidance of loaded links, the second cost
function would seem like a good candidate.

The resulting plot, shown in figure 8.7 shows that the second load-sensitive cost
function does work, but in an unintended way. The relative cost difference be-
tween two paths at a low load is already high, which causes the system to keep
switching to the lowest loaded path it can find, without taking the length into
account. Thus, the system does not converge to the shortest path. The advan-
tage is that an overloaded link will not change the end-to-end delay significantly:
because the traffic is always balanced over different paths, only part of the traffic
will be affected and the average delay will not change much. Of course, that’s
not very useful if that average delay is higher than the maximum delay that
other cost functions return. The second cost function is not an improvement
over the first function.

A third cost function uses λ and µ to estimate the mean waiting time and uses
that as a cost value:

cost =
1

totalBandwidth− availableBandwidth
=

1

µ− λ

The cost value is the mean waiting time for an M/M/1 queue. Assuming that
the arriving packets and their processing time follow a Poisson distribution, it

48

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

A
v
e
ra

g
e
 d

e
la

y
 (

m
ic

ro
s
e
c
o
n
d
s
)

--
-

a
v
e
ra

g
e
 o

f
3
0
 t
ri
a
ls

Time (s)

Delay over time in 16-node network

CEAS Default, beta = 0.95, no background traffic
CEAS Cost 2, beta = 0.95, background traffic

Figure 8.7: Delay over time with second load-sensitive cost function. For com-
parison, the normal CEAS without background traffic has been included as
well.

should be a reasonable estimate of the expected waiting time in the real world.

As shown in figure 8.8, the third cost function performs very similar to the first
cost function. In fact, it is not just ’very similar’: the results of the two cost
functions are identical. It is not difficult to see why that happens. The first
cost function is:

1

1− ρ

That cost function can be shown to be equal to the third cost function, except
for a constant factor:

1

1− ρ =
1

µ− λ

49

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

A
v
e
ra

g
e
 d

e
la

y
 (

m
ic

ro
s
e
c
o
n
d
s
)

--
-

a
v
e
ra

g
e
 o

f
3
0
 t
ri
a
ls

Time (s)

Delay over time in 16-node network

CEAS Default, beta = 0.95, no background traffic
CEAS Cost 3, beta = 0.95, background traffic

Figure 8.8: Delay over time with third load-sensitive cost function. For compar-
ison, the normal CEAS without background traffic has been included as well.

1

1− ρ =
1

1− λ
µ

=
µ

µ
∗ 1

1− λ
µ

= µ ∗ 1

1− (λµ) ∗ µ

= µ ∗ 1

µ− λ

As µ, which represents the total capacity (i.e. the service rate) of the link, is a
constant value, the difference between cost function one and three is a constant
factor. That implies that the ratios in pheromone values between different
possible next hops is equal for both cost functions, which means that the same
routing decisions will be taken. Thus, it does not make a difference whether the
first cost function is used or the third function.

50

8.5 Preplanning

In the simulations so far, the routing protocol has been purely reactive: a node
only starts to look for a route when there is a direct demand for it from a traffic
source on that node. From then on, it will keep the route updated indefinitely.

Another approach is to use some type of proactive approach: routes are already
discovered before they are requested. The advantage is that, when a request
comes up, it should take less time - or even no time at all - to converge to
the shortest route. The clear disadvantage is the extra overhead: ants will be
sent to discover routes that will never be used. Whether the faster convergence
is desirable enough to outweigh the overhead depends on the situation. In
relatively static networks with many traffic sources, it makes sense to discover
routes proactively: they would have to be discovered at a later time anyway, so
it makes sense to do it in time and prevent unnecessary delays. In more dynamic
networks with less traffic sources, it is probably not a good idea, because the
chance that a route will actually be needed is smaller. On top of that, there is
a bigger chance that a route which has been discovered before is not available
anymore due to changes in the network topology: in that case, the ’investment’
of finding a route early is lost and there will be a delay to find a new, working
route anyway.

The CEAS implementation in ns-3 makes it possible to use preplanning. One
approach is to discover routes to those hosts that any ’passing’ data traffic has
as its destination. The idea is that those destinations are relatively likely to
be requested later on anyway, so it might pay off to look for routes to them.
The results for preplanning those routes is shown in figure 8.9. As can be seen,
the peaks that were visible when a user moved to a new base station have
disappeared. That is the expected effect: routes have already been discovered
when the user arrives, so no time is needed to converge to the shortest route.

8.6 Packet format improvements

The CEAS packet format as described in section 5.4, especially figure 5.3 and
table 5.1, makes it easy to add new features to the protocol and test extensions
such as subpaths (see subsection 2.2.5). However, it is not optimized for effi-
ciency. A simple potential improvement to the protocol would be to use a more
compact packet format. A suggestion for such a format is shown in table 8.1.
Note that, contrary to the improvements mentioned in the last two sections, no
simulations have been run with the compact format.

The encoding for each hop can be done as described in table 8.2.

Using the suggested compact format, a packet which has travelled for five hops
would shrink from 113 bytes to 29 bytes. Some extra improvement would be
possible by having distinct forward and backward ants, each with a separate

51

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

A
v
e
ra

g
e
 d

e
la

y
 (

m
ic

ro
s
e
c
o
n
d
s
)

--
-

a
v
e
ra

g
e
 o

f
3
0
 t
ri
a
ls

Time (s)

Delay over time in 16-node network

CEAS Default, beta = 0.95, pre-planned

Figure 8.9: Delay over time with preplanning. The peaks when moving to a dif-
ferent base station, seen in simulations without preplanning, have disappeared.

Field Normal size (bytes) Compacted size (bytes)

Size 2 0

Ant type 1 0

TTL 1 1 (or a few bits)

Destination 4 4

Gamma 8 1

L 8 1

Rho 8 1

Number of hops 1 1

Total size 33 9

Table 8.1: Compact packet structure - changed fields in italic.

Field Normal size (bytes) Compacted size (bytes)

Source address 4 4

Destination address 4 0

Cost 8 0

Total size 16 4

Table 8.2: Packet structure - hops

52

structure. In that case, a value like γ would not have to be stored in a forward
ant, resulting in an even smaller forward ant packet.

In the scenarios simulated in this report, the smaller packets will not make
a significant difference: the link capacity and speed of any modern link will
not show any measurable difference between packets of 31 or 123 bytes. Only in
very specific situations, the difference might become significant. Such situations
would include networks with narrow or very unstable links: in that case, smaller
packets might have a higher chance of being transmitted successfully and a lower
chance of causing congestion. In most cases, limiting the amount of ants will be
much more effective than

The disadvantage of the more compact packet format is the loss of some possible
extensions. As an example, the subpath extension depends on having the cost
of every individual hop in the packet - which is not available in the compact
format.

53

54

Chapter 9

Conclusion

9.1 The original plan

The goal of this thesis project, as stated at the start of it, was to extend CEAS
for use in dynamic networks, in which the network topology or other circum-
stances change regularly. Would it be possible to adapt CEAS for such envi-
ronments? And if so, what would have to be changed? Those changes would
then be simulated to verify that the system would indeed work in dynamic
environments.

Already at the beginning of the project, it was decided to implement CEAS in
ns-3, instead of using the existing ns-2 implementation. The idea was that ns-3
would be easier to learn and to extend - resulting in faster improvements to
CEAS once the implementation would be complete. Thus, the plan became to:

• Implement CEAS in ns-3

• Verify the implementation against the existing ns-2 implementation

• Come up with improvements to CEAS for use in environments with a
relatively high rate of changes in the network topology

• Simulate the improvements to verify them

9.2 What actually happened

As the project progressed, it became clear that implementing the protocol in
ns-3 took more time than expected. The implementation, which was originally
intended to be a small part of the project, mainly to be able to improve things

55

faster later on, became a more important part of it. The first two items of
the list above have been realized: CEAS has been implemented in ns-3 and the
implementation has been verified.

The other two items, related to the improvement of CEAS, have been done to
a smaller extend. Improvements have been proposed for one specific aspect of
dynamicity in networks: congestion. The protocol has been adapted to behave
in a better way in congested networks, while still showing good behaviour in
networks where congestion is no issue.

Though the last items on the list have not been investigated as deeply as
planned, some extra work has been done instead. Having CEAS implemented
in both ns-2 and ns-3 allowed for a comparison between the two simulators. As
it looks likely that both ns-2 and ns-3 will be used for some time to come, the
comparison is interesting for anyone having to decide which simulator to use for
his or her research. Together with Laurent Paquereau and Poul Heegaard, a
paper has been written that describes the experience with both simulators. Our
findings have been presented at a PhD course at NTNU and will be presented
at SIMUL 2010.

Experience with ns-3

From the experience gained by implementing CEAS, ns-3 is a promising tool.
It relies on good programming practices and provides carefully designed generic
building blocks which make it easily extensible. Although some APIs are not
fully stable yet, ns-3 is in many respects ready for active use and is to replace
ns-2 as more and more models are added to it. The development of a framework
for data collection and experiment control for ns-3 will also be a strong argument
for moving to ns-3. One challenge remains maintaining the documentation and
improving its coverage.

Whether to already take ns-3 in use depends on several criteria, including earlier
experience with ns-2, availability of the models of interest and the type and scope
of study.

For the time being and in the short term, ns-2 offers a larger number of models.
Moreover, from our experience, porting a model from ns-2 to ns-3 is not trivial.
However, the amount of time and effort to implement a new protocol in either
of the tools is similar.

Compared to ns-2, ns-3 has a higher level of realism. Whether that increased
realism is worth the added complexity depends on the situation. The rationale
is to narrow the gap between simulation and a real implementation, and thus
facilitate validation and emulation. To a certain extent, ns-3 is more of an
emulator than a simulator. The downsides are twofold. First, ns-3 confronts
the developer with low-level details at an early stage of the implementation.
Hence, it misses the simplicity of ns-2 to quickly test research ideas, which is
part of the reason for its popularity. Second, including more details leads to a

56

significant increase of the simulation run-time.

9.3 Future work

Now that ns-3 is stabilizing and a CEAS implementation for it exists, the next
step would be to use the implementation to improve CEAS. That does not
necessarily have to be for use in dynamic environments: the implementation
allows for other types of research as well. Comparisons with other protocols
should be relatively easy to make, as more and more protocols get implemented
in ns-3.

As for improvements to CEAS, a first step would be to implement the subpath
extension to the protocol in ns-3. This extension has been developed for ns-
2 already and it has been shown to increase the performance of the protocol
by significantly decreasing the number of ants that are needed to converge to
good routes. From there, other changes could be made to use even less ants to
converge - or to converge even faster with the same number of ants. Clearly,
limiting the number of ants needed to react to changes in the network is espe-
cially important in networks where the rate of such changes is high. The ns-3
implementation should provide a good basis to implement those improvements
and to simulate the results.

57

58

Appendix A

Simulation parameters

To make it possible to reproduce the results obtained, this report includes the
parameters used to obtain the simulation results shown. These are the default
values: in some cases, other values have been used. In that case, it is stated in
the report.

59

Parameter Value

Link bandwidth 1Mbps

Link delay 500ns

β 0.95

ρ 0.01

Ant rate 1/s (constant intervals)

Explorer ant rate 0.1/s (constant intervals)

Handling of loops Described in section 5.5.3

Path cost Sum of link cost on the way forward

Initial phase duration 10s

Elite selection On; non-explorer ants only

Extra processing delay at nodes 0

Duration 10000s

Ant generation start t = 0s

Number of runs 30

RNG seed 1234

Table A.1: Simulation parameters

60

Appendix B

Paper

The following paper has been written as part of the thesis project, together
with Laurent Paquereau and Poul Heegaard. It has been accepted at SIMUL
20101.

1http://www.iaria.org/conferences2010/SIMUL10.html

61

Experience Report on Implementing and
Simulating a Routing Protocol in NS-2 and NS-3

Jonathan Brugge†, Laurent Paquereau‡ and Poul E. Heegaard†
†Departement of Telematics

Norwegian University of Science and Technology, Trondheim, Norway
Email: brugge@stud.ntnu.no, poul.heegaard@item.ntnu.no

‡Centre for Quantifiable Quality of Service in Communication Systems∗

Norwegian University of Science and Technology, Trondheim, Norway
Email: laurent.paquereau@q2s.ntnu.no

Abstract—Among specialized tools for simulation of network
protocols, the network simulator 2 (ns-2) has been a first choice
for over a decade. Its intended successor, ns-3, has been under
active development since 2006 and was first made publicly
available in 2008. However, ns-3 is not a new version of ns-2, but
a completely new tool, and today ns-2 and ns-3 co-exist. In this
paper, we report our practical experience in implementing and
simulating the same routing protocol in both tools and, based on
this experience, compare ns-2 and ns-3. In particular, we discuss
the advantages and disadvantages of the increased realism of
ns-3.

Keywords-ns-2, ns-3, CEAS.

I. INTRODUCTION

Simulation is an important method for the design, the
evaluation and the presentation of network protocols. It allows
to perform reproducible experiments over a wide range of
scenarios and parameter settings. When conducting a simu-
lation study, the choice of the simulation software is essential.
There are two levels of choice. The first is the decision
whether to use a general purpose programming language,
a simulation library providing generic building blocks for
implementing a simulator, or a specialized simulation tool
including components and models that can be reused. The
second is which language, library or specialized tool to use. In
the first two cases, the developer’s experience and proficiency
in the language usually determinate the final choice. In the case
of a specialized simulation tool, the choice should depend on
many more criteria related to the tool itself, e.g. the abstraction
level and the available models and components, but also to the
type, objective and scope of the study.

Among specialized tools for simulating layer 2-4 network
protocols, the network simulator 2, ns-2 [1], has been the first
choice for over a decade [2], [3]. The development of the
next generation network simulator, ns-3 [4], was initiated in
2006 [5] and the first version was released in 2008. Although
it intends to eventually replace ns-2, ns-3 is not a new version
of ns-2, but a complete overhaul, a new tool, and today ns-2

∗“Centre for Quantifiable Quality of Service in Communication Sys-
tems, Centre of Excellence” appointed by The Research Council of Nor-
way, funded by the Research Council, NTNU, UNINETT and Telenor.
http://www.q2s.ntnu.no

and ns-3 co-exist1. Hence, the question: ns-2 or ns-3? The
objective of this paper is not to give any definite answer to
that question, but rather to report our practical experience in
implementing and simulating a routing protocol, namely the
Cross-Entropy Ant System (CEAS), in both tools and, based
on this experience, provide elements to help in the choice.

The rest of the paper is organized as follows. Section II
provides background on CEAS, its applications and existing
implementations. Sections III and IV detail the implementation
and simulation of CEAS in ns-2 and ns-3, respectively. Next,
ns-2 and ns-3 are compared in Section V. Finally, some
concluding remarks are given in Section VI.

II. BACKGROUND

A. CEAS

CEAS is a fully decentralized Ant Colony Optimization
(ACO) system [6] first introduced in [7]. ACO systems are
systems inspired by the foraging behaviour of ants in nature.
ACO systems belong to the class of Swarm Intelligence
(SI) systems [8]. SI systems are formed by a population of
agents, whose behaviour is governed by a small set of simple
rules and which, by their collective behaviour, are able to
find good solutions to complex problems. ACO systems are
characterized by the indirect communication between agents
- ants - through local modifications of their environment, re-
ferred to as stigmergy and mediated by (artificial) pheromones.
The pheromone trails reflect the knowledge acquired by the
colony and good solutions emerge as the result of the iterative
interactions between ants.

B. Applications and implementations of CEAS

CEAS was originally designed for distributed network path
management and one of the successful application is adaptive
routing in dynamic networks [9]. See [10] for a popular
introduction to other applications of CEAS. Several different
implementations of CEAS exist where the programming lan-
guage and platform have been selected based on the objective
of the study.

1At the time of writing, the latest versions are 2.34 and 3.7, respectively.

CEAS has been mainly studied by simulation and most of
the studies have been conducted using ns-2; see Section III.
However, CEAS has also been implemented in DEMOS [11],
a simulation library for SIMULA, to study the detailed be-
haviour of the system and its parameter sensitivity. In this
implementation, the details of the communication protocol
stack are abstracted to build a more efficient simulator.

CEAS has also been implemented in a testbed. Imple-
menting a working prototype allows to validate simulation
results. It also provides useful insights in the complexity of
swarm-based methods in real routers and reveals potential
implementation challenges and performance bottlenecks which
are hard to predict through simulations and analysis alone.
The first pioneering prototype implementation of CEAS [12]
uses the Click Modular software [13] router system for packet
forwarding and a Java-based Mobile Agent System called
Kaariboga [14] for the routing process. An upgraded prototype
implementation denoted AntPing [15] embeds new modules to
Click for both CEAS routing and forwarding and is deployed
on small home routers.

More recently, CEAS has been applied to the deployment of
service components [16] and a SIMULA/DEMOS simulator
has been developed for this purpose. To address CEAS in
larger scale networks, PeerSim [17] is currently considered.
PeerSim is a discrete event simulator designed for the simu-
lation of systems with millions of nodes.

C. Application of CEAS to network path management

When CEAS is applied to network path management, ants
are control packets used to repeatedly sample paths between
source and destination pairs, and pheromone trail values are
maintained locally at each node. For a given neighbour and
destination, the pheromone trail value indicates the estimated
goodness of the path using this neighbour as a next-hop
towards the destination.

Fig. 1 illustrates the behaviour of ants in CEAS. Ants are
generated by the source node and have a two-phase life cycle.
On its way to the destination, a forward ant incrementally
builds a path applying at each node a probabilistic forwarding
decision based on the local pheromone trail values. Once it has
reached the destination, an ant turns around and backtracks.
On the way back, a backward ant deposits pheromones and
triggers pheromone trail evaporation at each node along the
sampled path. The path quality is evaluated at the destination
where a self-adjusting parameter, denoted the temperature,
is maintained. The temperature controls the relative weights
given to solutions.

Moreover, additional mechanisms have been integrated to
improve the performance of the system. The performance
is measured in terms of quality of the solution, but also in
number of iterations, time and overhead to converge or adapt
after a change, e.g. a link failure. Elite selection is such a
mechanism. It is applied at the destination and consists in
discarding ants that have sampled low quality paths to reduce
the overhead and improve the convergence speed. See for
instance [9] for further details.

i τvi
j τvj
.

Pheromone table

Generate ant

src v i dst
ds

Update temperaturethe local pheromone trail values
Sample next-hop according to

BacktrackUpdate pheromone trails

j

Fig. 1. Ant behaviour in CEAS

III. CEAS IN NS-2

A. Implementing CEAS

The first implementation of CEAS in ns-2 dates back to
2000 [7]. The choice of ns-2 at that time was motivated
by a more general interest for network management by
mobile software agents and the availability of the Active
Network (AN) extension for ns-2 developed in the PANAMA
project [18]. In this context, the support for Tcl scripts was also
an important element. Moreover, although ant-based routing
had already been proposed for several years, e.g. AntNet [19],
no implementation was publicly available. Later, following the
development of ns-2 and in an effort to better integrate CEAS,
the implementation was revised according to the guidelines
for implementing detailed dynamic routing protocols2 given
in the ns-2 documentation [20]. CEAS basic functions were
then organized into RtModule (routing), rtProto/Agent (ant
generation) and Classifier (forwarding). Finally, the latest
version is based on the framework presented in [21] and
implemented as a dynamic library for ns-2. The main rationale
for this iteration was to make the implementation independent
of the type and number of interfaces CEAS is running on.

The detailed structure of the latest implementation of
CEAS in ns-2 is shown in Fig. 2. Arrows represent the
path followed by packets internally. CEAS is implemented
as a NetworkLayerUnit. Ants are defined as a new type
of Packet and generated at the source node by a CEAS-

PacketGenerator. At each node, ants are processed by
a CEASRoutingUnit. Upon receiving a forward ant, the
CEASRoutingUnit updates the ant, i.e. records the visit to
the current node, and probabilistically chooses the next-hop
to the destination based on the local pheromone trail values
maintained in a CEASPheromoneTable. At the destination,
the CEASRoutingUnit maintains CEAS internal parameters

2ns-2 distinguishes between centralized routing protocols and detailed
dynamic routing protocols. The former refers to protocols running at the
simulator level and computing routes having full-knowledge of the network;
the latter to routing protocols running on each node, sending and receiving
control packets and computing routes based on the local view of the network.

Interface2

Network

Classifier

Port

Agent

CEASPacket

Generator

Packet

Upper layers

Network layer

NetworkLayerManager

NetworkLayer

Unit
CEAS

Lower layers

ants

data

CEASNetworkLayerUnit

CEASPheromoneTable

CEASRoutingUnit

CEASForwardingUnit

Fig. 2. Schematic representation of a Node [21] and detailed structure of the implementation of CEAS in ns-2

such as the temperature and performs additional operations
including elite selection. Upon receiving a backward ant,
the CEASRoutingUnit updates the local pheromone trail
values. Data packet forwarding is handled by the CEAS-

ForwardingUnit. Incoming data packets are passed upwards
to the NetworkLayerManager. Outgoing data packets are
forwarded on a given interface based on the information
available in the CEASPheromoneTable.

Other ant-based routing algorithms have been implemented
in ns-2, e.g. AntNet [22] and AntSense [23]. Both protocols
are implemented as routing Agents following the typical im-
plementation of Mobile Ad-hoc NETwork (MANET) routing
protocols in ns-2 [24] and, hence, inherit the limitations of this
model [21]. For instance, in the case of AntNet, this design
does not support the routing of data traffic.

B. Simulating CEAS
1) Tracing and data collection: The support for tracing

and data collection in ns-2 is limited to recording events and
basic statistics related to packets and triggered by packets
passing through dedicated objects (Traces and Monitors,
respectively) [20]. There is no native3 support for tracing
internal states such as the temperature values at the destination
node or the pheromone trail values at intermediate nodes in
the case of CEAS. This functionality therefore had to be
integrated in addition to the implementation of the protocol
itself. Moreover, ns-2 defines its own text format for trace
records, so specialized scripts have to be written to post-
process those traces.

2) Experiment control: ns-2 does not natively include tools
for controlling an experiment4, e.g. for running independent
replications of the same scenario or running a simulation until
a termination condition other than a specified time. In the case
of CEAS, a relevant termination criterion may for instance be
the convergence of the system. Hence, these features also had
to be implemented.

3Extensions have been contributed, e.g. ns2measure [25], but are not
included in the main distribution.

4Contributed extensions include ns-2/akaroa-2 [26] and ANSWER [27].

IV. CEAS IN NS-3

A. Implementing CEAS

CEAS is completely implemented within the frameworks of
ns-3; see [28] for details. An overview of the architecture is
shown in Fig. 3.

The main class is the CeasRoutingProtocol, which inher-
its from Ipv4RoutingProtocol and implements the protocol.
There is one instance of such a protocol per node in the
network. On receiving a forward ant, it is responsible for
updating the ant and making the stochastic forwarding decision
based on the local pheromone trails. At the destination, it
maintains the temperature and applies elite selection. Finally,
on receiving a backward ant, it is responsible for updating the
local pheromone trails.

Pheromone trail values are stored at each node in a
CeasRoutingTable. A CeasRoutingTableEntry contains
a set of possible NextHops. NextHop wraps the routing table
entry provided by ns-3 (Ipv4Route) and adds new fields, e.g.
the associated pheromone trail value (pheroLevel) to reach
the destination.

Ants are implemented as UDP datagrams5. Ant classes
inherit from Header and implements serialization and deseri-
alization methods. Internally, a Packet contains a serialized
representation of Headers. When an ant is forwarded by the
CeasRoutingProtocol, it is serialized into a Packet. When
an ant is received, it is deserialized and handed over to the
CeasRoutingProtocol.

When a data packet is to be forwarded, the transport
protocol requests a route from CeasRoutingProtocol by
calling RouteOutput(). When a data packet is received, the
Ipv4L3Protocol calls RouteInput(); the CeasRouting-

Protocol is then responsible for deciding whether the packet
should be delivered locally or forwarded further.

5Contrary to the AntPing prototype implementation [15], the list of visited
nodes is stored in the UDP payload and not using the IP route record
extension. Hence, the number of hops is not limited to 8.

data

ants

ants

Network layer

Transport and

Ipv4L3Protocol

Upper layers

Lower layers

UdpL4Protocol

Application

UdpSocket

CEAS

CeasRoutingProtocol

AntGenerator

(outgoing)
NetDevice

(incoming)
NetDevice

TableEntry

RouteInput()

RouteOutput()

Serialize()

Deserialize()

Function call

Packet

NextHop

•Ipv4Route
•pheroLevel

CeasRoutingTable

CeasRouting

Fig. 3. Schematic representation of a Node and detailed structure of the implementation of CEAS in ns-3

B. Simulating CEAS

1) Tracing and data collection: Ns-3 supports packet trac-
ing to ASCII (AsciiWriter) and pcap (PcapWriter) files.
Specialized scripts have to be written to analyze ASCII files,
while external tools such as Wireshark [29] can be used to ex-
amine pcap files. In addition, ns-3 provides a powerful frame-
work for tracing internal variables (TracedValues) which
implements the concept of independent trace sources and
sinks and internally relies on callbacks. The support for data
collection and statistics (DataCollector/DataCalculator),
on the other hand, is much more limited. Output interfaces
to OMNet++ [30] trace files and SQLite [31] are provided.
Finally, a separate module allows to monitor packet flows
(FlowMonitor [32]).

2) Experiment setup and control: ns-3 provides support for
writing simulation scenarios. It includes Helpers to simplify
the creation and the connection of objects and a comprehensive
attribute system to access and configure objects. Attributes can
be configured in the scenario itself or by passing arguments
on the command line. Moreover, ns-3 includes experimental
support for reading configuration from ASCII or XML files
(ConfigStore). On the other hand, ns-3 does not provide
support for controlling a simulation experiment. For instance,
external scripts have to be written to run independent replica-
tions.

V. COMPARING NS-2 AND NS-3

This section highlights and discusses some of the dif-
ferences between ns-2 and ns-3 as experienced during the
implementation and simulation of CEAS.

A. Abstraction level

Both simulators are packet-based discrete-event simulators,
but have different levels of abstraction.

Ns-3 mirrors real network components, protocols and APIs
more closely. This becomes obvious when implementing
CEAS in ns-2 and ns-3. At the transport and network layers,
ns-3 does not abstract any detail. IP and UDP protocols are

implemented in detail. A packet is represented as a buffer of
bytes and the actual content of a packet needs to be serialized
and deserialized. Packets are not simply sent: a socket has to be
created and connected and errors have to be handled properly.
Trying to connect to a closed port results in an ICMP error
message. In ns-2, there is no detailed implementation of either
UDP or IP.

The main reason and advantage of this increased realism is
to facilitate code re-use, portability and validation. In particu-
lar, it makes it to possible to embed the simulator in a mixed
environment with real hardware, software and networks. Any
problem that would occur when implementing and running
a protocol in a real-world system is likely to occur during
the implementation and simulation in ns-3. The downside is
the added complexity. Ns-3 confronts the developer with low-
level implementation details such as socket communication,
packet serialization and addressing at a very early stage. If
one wants to try out novel concepts, such a level of details
may be overwhelming. The higher level of abstraction in ns-2
allows for a quick implementation and testing of new ideas,
and is an important reason for its popularity.

As a result, the implementation of the same protocol in ns-2
and ns-3 is significantly different and porting a protocol from
ns-2 to ns-3 is not straightforward.

B. Usability and adaptability
By usability and adaptability, we mean how easy it is to

learn the tool, extend existing models and add new ones. This
involves many aspects:

1) Programming language and debugging: Ns-2 is imple-
mented in C++ and OTcl. Each language taken separately is
not difficult to use. The difficulty comes from the combination
of the two and the concept of split-object. When developing
a new protocol such as CEAS, one has not only to implement
objects in both C++ and OTcl, but also the interactions
between those objects. This task is made difficult by the lack
of documentation and debugging tool for the interplay between
C++ and OTcl. Ns-3 is written in C++ only and, hence, much
easier to debug.

2) Building: Unlike ns-2, which uses the traditional GNU
build system (autoconf, automake, make), ns-3 uses waf [33].
Waf is a much more recent framework, written in Python, that
one needs to learn and adapt to when using ns-3.

3) Documentation: In addition to the ns-2 documenta-
tion [20], many tutorials and reports are available, e.g. [24].
However, not all modules are equally well documented and
the documentation is in part outdated. Ns-3 is a much younger
project and the amount of available resources is consequently
much smaller. The development team strives to write and
maintain a manual and tutorial as new models are integrated.
Nevertheless, the coverage of the documentation is not com-
plete yet, and parts have to be updated according to API
changes.

4) Existing code: Ns-2 and ns-3 are open-source projects.
Hence, a way to learn is to read and study existing code. Many
models have been contributed to ns-2, but ns-2 code is gener-
ally hard to read because: (i) it includes old code for backward
compatibility, (ii) many contributions use different coding
styles and design approaches and constitute a patchwork of
often incompatible models, and (iii) the code is generally
poorly commented. In comparison, ns-3 enforces a coding
style and a stricter review process before inclusion, which
results in more coherent code which is better commented and
easier to read. On the other hand, the number of examples is
still limited. When we started to implement CEAS, the only
example of dynamic detailed routing protocol was OLSR.

5) Software design: Both ns-2 and ns-3 follows an object-
oriented design and are thus easily extensible. New modules
are implemented as subclasses of generic base classes.

6) Modularity: In ns-2, it is not always easy to simply
replace a model by another. In the case of routing protocols,
models vary depending on the type and numbers of interfaces;
see [21]. In ns-3, layers are clearly separated and interfaces
well-defined. Replacing objects by similar ones, e.g. a routing
protocol, is therefore much easier. On the other hand, the
architecture of ns-3 closely maps that of existing systems
and implementing untraditional approaches or different levels
of abstraction, e.g. abstracting the IP layer, is much more
demanding.

C. Experiment setup, control and analysis

Both tools provide basic network elements such as nodes
and links and make it easy to setup simulation scenarios.
In particular, ns-3 provides various helpers to facilitate the
creation, initialization and connection of the different entities
in the simulation. However, both simulators natively offer very
limited support for data collection and experiment control. For
instance, neither of them provide mechanisms for transient
period detection, specification of termination conditions other
than time, handling of replications, or parallel and distributed
execution. For ns-2, several frameworks have been developed
and provide some of these features. For ns-3, most of these
features are being developed or planned, but not yet integrated.

Furthermore, compared with ns-2, ns-3 provides a powerful
framework for tracing internal variables, but, for the time

being, misses generic trace sinks. Other advantages of ns-3
include the use of standard formats, such as pcap for packet
tracing, and the integration of interfaces to external software
such as SQLite.

Finally, the support for visualization in ns-2 and ns-3 is
limited (Nam and NetAnim, respectively), in particular for
wireless networks.

D. Development status

Ns-2 is funded through the ns-3 project, but the core
development team is only working on ns-3. Ns-2 only receives
maintenance updates and less and less models are contributed.
Ns-3, on the other hand, is under active development. It has
been available for developers and early adopters since 2008.
Most of the generic building blocks are in place. However,
not all the core APIs are completely stable yet, which may
keep some developers from moving to ns-3. For example, the
routing API has undergone significant changes until version
3.6 (October 2009). One should also expect some rough edges.
For instance, during the development of CEAS, it became
clear to us that the SQLite output interface was a performance
bottleneck and had to be fixed by introducing support for
SQL transactions. The resulting patch has since then been
integrated.

The original NSF project for ns-3 is ending this year (2010)
and a lot has already been achieved. However, referring to
the project goals [5], there is still much to do, including
porting models from ns-2, providing support for data col-
lection, experiment control and statistic generation, extending
the visualization support, and integrating ns-3 with external
tools such as Click. Recently, a new NSF grant has been
announced for the development of “frameworks for ns-3” [34].
The framework will focus on better support for controlling the
execution of simulations and analyzing the results. Finally, part
of the development of ns-3 is also founded through the Google
Summer of Code (GSoC) [35] program.

E. Efficiency

The performance of ns-2 and ns-3 was evaluated by sim-
ulating a relatively simple scenario, similar to the one used
in [36]. In this scenario, the network is composed of ten nodes
connected by point-to-point links. CEAS is used to find the
shortest path between a source and destination pair. The results
are given in Table I. The run-time and the number of events are
averaged over 30 replications. The standard deviation is given
in parentheses. In this case, ns-2 turned out to be almost ten
times faster than ns-3. Profiling showed that a significant part
of the difference comes from the time spent on serializing and
deserializing packets and from the detailed implementation of
the transport and network layers.

The efficiency of both simulators was also compared in
terms of memory requirements. For this purpose, a scenario
with 10.000 nodes containing an IP stack and the CEAS
implementation was loaded with both simulator. In this test,
ns-3 used half as much memory as ns-2. The difference comes
from the fact that the ns-3 node is simply a container and only

TABLE I
PERFORMANCE COMPARISON

Simulator Run time Number of events

ns-2 0.94s (0.04) 157511 (6689)
ns-3 8.92s (0.33) 412104 (9098)

the required components are instantiated while the ns-2 node
is a much more static construct including components that may
not be used.

VI. CONCLUDING REMARKS

From our experience, ns-3 is a promising tool. It relies on
good programming practices and provides carefully designed
generic building blocks which make it easily extensible. Al-
though some APIs are not fully stable yet, ns-3 is in many
respects ready for active use and is to replace ns-2 as more and
more models are added to it. The development of a framework
for data collection and experiment control for ns-3 will also be
a strong argument for moving to ns-3. One challenge remains
maintaining the documentation and improving its coverage.

Whether to already take ns-3 in use depends on several
criteria, including earlier experience with ns-2, availability of
the models of interest and the type and scope of study.

For the time being and in the short term, ns-2 offers a larger
number of models. Moreover, from our experience, porting a
model from ns-2 to ns-3 is not trivial. However, the amount
of time and effort to implement a new protocol in either of
the tools is similar.

Compared to ns-2, ns-3 has a higher level of realism.
Whether that increased realism is worth the added complexity
depends on the situation. The rationale is to narrow the
gap between simulation and a real implementation, and thus
facilitate validation and emulation. To a certain extent, ns-3
is more of an emulator than a simulator. The downsides are
twofold. First, ns-3 confronts the developer with low-level
details at an early stage of the implementation. Hence, it
misses the simplicity of ns-2 to quickly test research ideas,
which is part of the reason for its popularity. Second, including
more details leads to a significant increase of the simulation
run-time.

REFERENCES

[1] The network simulator - ns-2. [Online]. Available: http://www.isi.edu/
nsnam/ns

[2] S. Kurkowski, T. Camp, and M. Colagrosso, “MANET simulation
studies: the incredibles,” SIGMOBILE Mobile Computing and Commu-
nications Review (MC2R), vol. 9, no. 4, pp. 50–61, 2005.

[3] ns-3 project description. [Online]. Available: http://www.nsnam.org/
docs/proposal/project.pdf

[4] The ns-3 network simulator. [Online]. Available: http://www.nsnam.org
[5] T. R. Henderson, S. Roy, S. Floyd, and G. F. Riley, “ns-3 project goals,”

in Proc. First Workshop on NS2 (WNS2), Pisa, Italy, Oct. 2006.
[6] M. Dorigo, G. Di Caro, and L. M. Gambardella, “Ant algorithms for

discrete optimization,” Artificial Life, vol. 5, no. 2, pp. 137–172, 1999.
[7] B. E. Helvik and O. J. Wittner, “Using the cross entropy method to

guide/govern mobile agent’s path finding in networks,” in Proc. Interna-
tional Workshop on Mobile Agents for Telecommunication Applications
(MATA), Montreal, Canada, Aug. 2001.

[8] E. Bonabeau, M. Dorigo, and G. Theraulaz, Swarm Intelligence: From
Natural to Artifical Systems. Oxford University Press, 1999.

[9] P. E. Heegaard and O. J. Wittner, “Overhead reduction in distributed
path management system,” Computer Networks, vol. 54, no. 6, pp. 1019–
1041, Apr. 2010.

[10] P. E. Heegaard, B. E. Helvik, and O. J. Wittner, The Cross Entropy Ant
System for Network Path Management, ser. Telektronikk, 2008, vol. 104,
no. 1, pp. 19–40.

[11] G. Birtwistle, “DEMOS - a system for Discrete Event Modelling On
Simula,” 1997. [Online]. Available: http://www.dcs.shef.ac.uk/∼graham/
research/demos.pdf

[12] A. Mykkeltveit, P. E. Heegaard, and O. J. Wittner, “Realization of a
distributed route management system on software routers,” in Proc.
Norsk Informatikkonferanse (NIK), Stavanger, Norway, Nov./Dec. 2004.

[13] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, “The
Click modular router,” ACM Transactions on Computer Systems, vol. 18,
no. 3, pp. 263–297, Aug. 2000.

[14] D. Struve. (2006, Sep.) Kaariboga mobile agents. [Online]. Available:
http://www.projectory.de/kaariboga

[15] P. E. Heegaard and I. Fuglem, “Demonstrator 1: Ant-based monitoring
on software IP routers,” BISON (IST-2001-38923), Tech. Rep., 2006.
[Online]. Available: http://www.cs.unibo.it/bison/deliverables/D14.pdf

[16] M. J. Csorba, P. E. Heegaard, and P. Herrmann, “Component deployment
using parallel ant-nests,” International Journal of Autonomous and
Adaptive Communications Systems (IJAACS), 2010.

[17] M. Jelasity, A. Montresor, G. P. Jesi, and S. Voulgaris. The Peersim
simulator. [Online]. Available: http://peersim.sf.net

[18] O. J. Wittner and B. E. Helvik, “Simulating mobile agent based
network management using network simulator,” in Poster abstracts Joint
International Symposium on Agent Systems and Applications / Mobile
Agents (ASA/MA), Zürich, Switzerland, Sep. 2000.

[19] G. Di Caro and M. Dorigo, “AntNet: Distributed stigmergetic control for
communications networks,” Journal of Artificial Intelligence Research
(JAIR), vol. 9, pp. 317–365, 1998.

[20] The ns Manual, Kevin Fall and Kannan Varadhan ed., The VINT Project,
UC Berkeley, LBL, USC/ISI, and Xerox PARC.

[21] L. Paquereau and B. E. Helvik, “Simulation of wireless multi-* networks
in ns-2,” in Proc. Workshop on NS2 (WNS2), Athens, Greece, Oct. 2008.

[22] V. Laxmi, L. Jain, and M. S. Gaur, “Ant colony optimisation based
routing on ns-2,” in Proc. International Conference on Wireless Com-
munication and Sensor Networks (WCSN), Allahabad, India, Dec. 2006.

[23] T. Camilo, C. Carreto, J. S. Silva, and F. Boavida, “An energy-efficient
ant-based routing algorithm for wireless sensor networks,” in Proc. Inter-
national Workshop on Ant Colony Optimization and Swarm Intelligence
(ANTS), ser. LNCS, vol. 4150. Springer Berlin / Heidelberg, 2006.

[24] F. J. Ros and P. M. Ruiz, “Implementing a new manet unicast
routing protocol in ns2,” Dec. 2004. [Online]. Available: http:
//masimum.inf.um.es/nsrt-howto/pdf/nsrt-howto.pdf

[25] C. Cicconetti, E. Mingozzi, and G. Stea, “An integrated framework for
enabling effective data collection and statistical analysis with ns-2,” in
Proc. Workshop on NS2 (WNS2), Pisa, Italy, Oct. 2006.

[26] The ns-2/akaroa-2 project. [Online]. Available: http://www-tkn.ee.
tu-berlin.de/research/ns-2 akaroa-2/ns.html

[27] M. M. Andreozzi, G. Stea, and C. Vallati, “A framework for large-scale
simulations and output result analysis with ns-2,” in Proc. International
Conference on Simulation Tools and Techniques (SIMUTools), Rome,
Italy, Mar. 2009.

[28] ns-3 reference manual. [Online]. Available: http://www.nsnam.org/docs/
release/manual.pdf

[29] Wireshark. [Online]. Available: http://www.wireshark.org
[30] OMNet++. [Online]. Available: http://www.omnetpp.org
[31] SQLite. [Online]. Available: http://www.sqlite.org
[32] G. Carneiro, P. Fortuna, and M. Ricardo, “FlowMonitor - a network

monitoring framework for the network simulator 3 (ns-3),” in Proc.
International Workshop on Network Simulation Tools (NSTools), Pisa,
Italy, Oct. 2009.

[33] Waf. [Online]. Available: http://code.google.com/p/waf
[34] NSF Grant “Frameworks for ns-3”. [Online]. Available: http:

//nsf.gov/awardsearch/showAward.do?AwardNumber=0958015
[35] Google Summer of Code. [Online]. Available: http://code.google.com/

soc
[36] V. Kjeldsen, O. J. Wittner, and P. E. Heegaard, “Distributed and

scalable path management by a system of cooperating ants,” in Proc.
International Conference on Communications in Computing (CIC), Las
Vegas, NV, USA, Jul. 2008.

68

Appendix C

Presentation TM8105

Poul Heegaard organizes a course ’Advanced Discrete Event Simulation Method-
ology’ for PhD students. During one lecture, both ns-2 and ns-3 were introduced
to participants. Laurent Paquereau spoke about ns-2. The following slides show
what I have presented about ns-3.

69

What is ns-3?: What is ns-3?21

What is ns-3?

Discrete-event network simulator Focused on studying
networking protocols in a controlled environment

Free, open source software project All code released under
GPLv2 or compatible licences

Not ns-2 Ns-3 is a new simulator, not backwards-compatible
with ns-2

More information can be found at www.nsnam.org.

www.item.ntnu.no J. Brugge, An introduction to NS-3

What is ns-3?: History22

History

Ns-3 got started because limitations in ns-2 could not be fixed
easily.

July 2006 Official start of ns-3
March 2007 First development release (ns-3.0.1)
June 2008 First stable release (ns-3.1)
Since then Releases every 3-4 months

The current release is ns-3.6, released in October 2009.
Version 3.7 is expected in early 2010.

www.item.ntnu.no J. Brugge, An introduction to NS-3

What is ns-3?: Why does ns-3 exist?23

Why does ns-3 exist?

Or: what is wrong with ns-2?
Architectural issues Core is difficult to extend and has

scalability problems
Bi-language system (C++/tcl) The combination is difficult to

debug and a barrier for new developers
Core packet structure Packet structure not suitable for

emulation
Lack of validation and verification Many models in ns-2 are not

validated against the real world
Fixing the above is impossible without breaking backward
compatibility.

www.item.ntnu.no J. Brugge, An introduction to NS-3

What is ns-3?: Why does ns-3 exist?24

Not completely from scratch

Ns-3 is not a completely new simulator. It has taken code and
concepts from:
• Ns-2 (OLSR, error models)
• Yans (WiFi model)
• GTNetS (applications)
Also, it builds on years of experience from ns-2.

www.item.ntnu.no J. Brugge, An introduction to NS-3

Features: Features25

Features (1/3)

• Extensible core
– C++ with an optional Python interface
– Documented more extensively than ns-2
– Callbacks to limit coupling between models

• Flexible object aggregation
– (covered later)

• Attention to realism
– Models nodes like a real computer
– Supports sockets API and other interfaces

www.item.ntnu.no J. Brugge, An introduction to NS-3

Features: Features26

Features (2/3)

• Software integration
– Trace output can be in pcap format and used in Wireshark, for

instance
– Hooks to GNUplot, netanim, potentially more

• Support for virtualization and testbeds
– Ns-3 can interact with ’real’ systems

• Tracing and statistics
– Trace sources (packet reception, etc.) are decoupled from

trace sinks (output interfaces)
– User can freely couple trace sources en sinks
– Statistics module exists - though limited functionality so far

www.item.ntnu.no J. Brugge, An introduction to NS-3

Features: Features27

Features (3/3)

• Lots of smart pointers and templates
– Not necessarily a feature, but good to know beforehand
– Ptr<Ipv4Route> route = CreateObject<Ipv4Route>();

• Easy attribute configuration
– Pointer-based: txQueue->GetAttribute

("MaxPackets", limit);
– String-based: Config::Set

("/NodeList/*/DeviceList/*/TxQueue/MaxPackets",
UintegerValue (15));

• Helper scripts
– Make programming scenarios easier
– (shown later)

www.item.ntnu.no J. Brugge, An introduction to NS-3

Features: Features28

Object aggregation - example

Ptr<Ipv4> ipv4 = CreateObject<Ipv4> ();
ipv4->SetNode (node);
node->AggregateObject (ipv4);

ipv4 = m_node->GetObject<Ipv4> ();

Instead of

Ipv4Node in = static_cast<Ipv4Node>(node);
Ipv4 ipv4 = in.GetIpv4();

www.item.ntnu.no J. Brugge, An introduction to NS-3

Features: Features29

Event schedulers

• In ns-2: Heap, List, Calendar, Splay, RealTime
• In ns-3: Heap, List, Calendar, Ns2Calendar, Map (default)

Real time scheduling is implemented as a different simulator
object in ns-3, not as an event scheduler.

www.item.ntnu.no J. Brugge, An introduction to NS-3

Features: Features30

Network components and protocols

Network stacks ARP, IPv4, ICMPv4, UDP, TCP (IPv6 under
review)

Devices WiFi, CSMA, point-to-point, bridge
Error models and queues
Applications UDP echo, on/off, sink
Mobility models Random walk, etc.

Routing OLSR, static global, AODV (soon), CEAS

⇒ Growing, but still less than in ns-2.

www.item.ntnu.no J. Brugge, An introduction to NS-3

Features: Features31

Packets in ns-3

In ns-2, packets are modelled as events. In ns-3, packets are
’real’ packets:
• Packets are serialized/deserialized
• Allows implementation of fragmentation
• Allows testing against ’real world’
On the other hand:
• Requires more work from the user
• Is potentially slower

www.item.ntnu.no J. Brugge, An introduction to NS-3

Features: Features32

Performance - computation time

www.item.ntnu.no J. Brugge, An introduction to NS-3

Features: Features33

Performance - memory usage

www.item.ntnu.no J. Brugge, An introduction to NS-3

Features: Features34

Actively developed

⇒ Size: ∼ 220.000 lines in main distribution

www.item.ntnu.no J. Brugge, An introduction to NS-3

Architecture: Architecture35

Architecture

www.item.ntnu.no J. Brugge, An introduction to NS-3

Example: Example36

A typical simulation

• Create (C++) objects
• Configure and connect them
• Schedule special events if needed
• Run the simulation

⇒ In practice, changes to the core are often still required.

www.item.ntnu.no J. Brugge, An introduction to NS-3

Example: Example37

Example scenario

Node *a = new Node ();
Node *b = new Node ();
Link *link = new Link (a,b);
Simulator::Schedule (Seconds (0.5),

&Node::StartCbr, a,
"100bytes", "0.2ms", b);

Simulator::Run ();

www.item.ntnu.no J. Brugge, An introduction to NS-3

Example: Example38

Demonstration

Demonstration of simple ns-3 scenario

www.item.ntnu.no J. Brugge, An introduction to NS-3

Example: Example39

Demonstration - discussion

• Demonstration is realistic, but not very useful
• Real simulation will require actual programming

My current workflow:
1. Shell script runs scenario number of times
2. Scenario uses my own code (routing protocol)
3. Scenario stores results in SQLite database
4. Shell script runs queries on the database
5. Shell script generates plot from the query results

www.item.ntnu.no J. Brugge, An introduction to NS-3

State of ns-3: State of ns-340

State of ns-3

As it is now, ns-3 is ready for the first users:
• API is stabilizing, but not stable yet. Fundamental changes

still happen.
• Code quality is good
• Most required pieces are in place
• Check whether pieces you require are there

www.item.ntnu.no J. Brugge, An introduction to NS-3

State of ns-3: State of ns-341

Own experience (1/2)

Good stuff:
• Documentation (when it’s there)
• Readable, structured source code
• Helpful and active developers
• Improving fast - new models added regularly
Could be better:
• Documentation (when it’s not there)
• Non-standard build system (Python-based ’waf’)
• Statistics infrastructure clearly unfinished
• Sometimes unexpected things are missing

www.item.ntnu.no J. Brugge, An introduction to NS-3

State of ns-3: State of ns-342

Own experience (2/2)

• Realistic simulations are nice...
• ...but ns-3 still confronts users a bit too much with ’realism’
• Debugging still difficult (C++ and GDB)
• Not many people with ns-3 experience around (yet)

www.item.ntnu.no J. Brugge, An introduction to NS-3

State of ns-3: State of ns-343

Use ns-2 or ns-3?

• At this point, added realism is both a blessing and a curse
• For instance, requires detailed knowledge of IP addresses

and BSD sockets API.
• Ns-2 has more models, but ns-3 is developing much faster
• From own experience: ns-3 is usable for projects - but watch

out for missing parts

www.item.ntnu.no J. Brugge, An introduction to NS-3

Final words: Final words44

Questions

Any questions?

www.item.ntnu.no J. Brugge, An introduction to NS-3

Final words: Final words45

Sources

• Performance graphs taken from A performance comparison
of recent network simulators by Weingartner et al., 2009
• Lines-of-code graph taken from the frontpage of the ns-3

website (www.nsnam.org)
• Feature overview based on ns-3 overview, published on the

ns-3 website

www.item.ntnu.no J. Brugge, An introduction to NS-3

Appendix D

Research project

The research project is a project to prepare for the master thesis. As part
of the information in this thesis builds on the research project, particularly in
chapter 1 and 2, it is attached to this thesis.

75

Research Topics

Jonathan Brugge

December 19, 2009

Contents

1 Introduction 4

2 Basics 5

2.1 Simulation . 5

2.2 Rare event simulation . 6

2.2.1 Introduction . 6

2.2.2 Importance sampling . 7

2.3 Cross entropy method . 7

2.3.1 Introduction . 7

2.3.2 A more formal description 8

3 The Cross Entropy Ant System 15

3.1 Foraging ants . 15

3.1.1 Ants and rare events - the relation 16

3.2 CEAS . 16

3.2.1 Introduction . 16

3.2.2 Implementation . 17

3.2.3 Avoiding converging to a local optimum 17

3.2.4 Extensions . 18

1

4 Performance conditions in dynamic networks 19

4.1 Performance . 19

5 Routing protocols in dynamic networks 21

5.1 Pro-active routing: Destination-Sequenced Distance-Vector Rout-
ing (DSDV) . 22

5.1.1 Introduction . 22

5.1.2 The protocol . 22

5.1.3 Performance characteristics 24

5.2 Reactive routing: Ad hoc On-Demand Distance Vector (AODV) 24

5.2.1 Introduction . 24

5.2.2 The protocol . 25

5.2.3 Performance characteristics 26

5.3 Hybrid routing (1): AntHocNet 27

5.3.1 Introduction . 27

5.3.2 The protocol . 27

5.3.3 Performance characteristics 29

5.4 Hybrid routing (2): Hazy Sighted Link State (HSLS) 30

5.4.1 Introduction . 30

5.4.2 The protocol . 31

5.4.3 Performance characteristics 32

5.5 Benchmarks . 32

5.5.1 Sesay . 32

5.5.2 Johansson . 32

5.5.3 Kudelski . 33

5.5.4 Ducatelle . 33

2

6 Conclusion 34

3

Chapter 1

Introduction

This research project is a preparation for my master thesis at NTNU in Trond-
heim. Based on this report, a final thesis subject will be defined. A first idea
is to write my thesis about adapting the Cross Entropy Ant System for use in
dynamic networks. To be able to really define the subject, this report has two
goals:

• Describe the Cross Entropy Ant System (CEAS)

• Give an overview of routing in dynamic networks

The combination of those two topics should provide a basis for the definition of
the thesis subject.

To be able to describe CEAS, the first part of this report gives an introduction
in some of the tools used in the design of CEAS. Based on that, CEAS is
described. The second part of this report gives a number of design criteria for
routing protocols in dynamic networks and continues to describe those protocols
and how well they satisfy the design criteria.

4

Chapter 2

Basics

This chapter gives an introduction to the tools that are used in the following
chapters. Rare event simulation is described and an explanation of importance
sampling, a technique that is used in rare event simulation, is given. The infor-
mation in this chapter is needed to understand the rest of this document.

2.1 Simulation

Sometimes, the behaviour of a system has to be analyzed. In this section, I’ll
use a slot machine to describe the various ways to perform such an analysis. We
want to know how often a user gets the jackpot.

The easiest way to learn that number is to systematically try it: just toss in
coins until you’ve hit the jackpot a couple of times and calculate the chance of
getting it. While time intensive, this is a reliable way to learn more about the
behaviour of the machine.

While easy, the hands-on approach does have disadvantages. Assuming the
owner of the slot machine plans to make money, it can be an expensive way to
test the machine. Also, when the configuration of the machine is changed in any
way, all previous results are worthless and testing has to start again. Finally, it
is not very precise if the chance of winning the jackpot is relatively small: if you
use the slot machine 100 times and you hit the jackpot once, you still do not
really know what the chance of winning the jackpot really is: you might have
been lucky to hit it even if the real chance is more like one in a million. To get a
better estimation, you’d have to win it very often - which becomes increasingly
difficult with machines that have a small chance of winning.

Other systems might have more problems: while it is possible to use a slot
machine many times in a row, that is more difficult with a montly lottery: it

5

would probably take hundreds of years before you’d have an idea about the
chance to win.

The most precise way to analyze the behaviour of a model is to mathematically
analyze it. While that gives a complete idea of the behaviour of the model, it
is often difficult or even impossible. The calculations involved quickly become
too difficult to solve analytically and even if it possible, it takes too much time.
In case of the slot machine, modelling would not be very difficult: given the
start position, speed and direction of each wheel in the slot machine and any
other parameters that influence its behaviour, a reasonable model could be
made. However, solving the equations you’d get when you assume a certain
behaviour of the user of the machine (who influences the success rate as well, of
course) would probably become unfeasible. Considering that slot machines are
not exactly the most complicated devices imaginable, it is clear that analytically
describing the behaviour is not a good solution for all problems.

An easier, though less precise method is to simulate the behaviour of the model.
As said before, creating a model of a system can be feasible, even if it is difficult
to analyze. If one wants to know how often a model reaches a specific state,
the idea is to run the model as often as needed and check each time whether
that state is reached. That process can be automated and thus be performed as
often as needed: now, it is suddenly possible to play the slot machine a million
times without spending any coins - and you’d get a better approximation of
the chance of hitting the jackpot, because the large number of tests makes the
uncertainty in the measured quantity smaller.

2.2 Rare event simulation

2.2.1 Introduction

The procedure described before works quite well, assuming the slot machine
gives you a reasonable chance to win the jackpot - say, once every thousand
plays or so. You’d just simulate a million games, get about a thousand times in
the ’jackpot state’ and conclude that the chance is about one in a thousand.

However, if the slot machine lets you only win once every million games, you’d
have to play so many games that it would become difficult to simulate. The
situation is even worse if you’d like to calculate, say, the chance of being hit by
a meteorite in the next minute. Such events are really rare and special tools
are needed to be able to simulate such situations. That is the area of rare event
simulation.

The basic idea in rare event simulation is to change the system parameters in
such a way that the rare event becomes a more common event: you amplify it.
Then, you can simulate just as you’d do in the normal case and when you know
how often the event occurs, you divide by the amplification factor and you know

6

how often the rare event would occur. This trick is called importance sampling.

2.2.2 Importance sampling

As a simple example, consider the meteorite example mentioned before. One
could change various parameters:

• Increase the number of meteorites

• Increase the time from one minute to much longer

• Increase the size of the target, in this case the human.

Assume that the target is a billion times larger. The chance of being hit increases
approximately a billionfold and thus simulation becomes doable. After one gets
the result, a simple division by a billion yields the right answer.

This example also shows a problem that can occur with this approach. If, instead
of the size of the target, the number of meteorites would have been increased,
the chance of being hit would be a billion times larger as well. However, the
lower number of simulation sessions required would not help all that much if
the time to perform a single simulation experiment would significantly increase
- which is not unlikely if there are a billion times more meteorites included in
each simulation.

Of course, there is another problem as well. Increasing parameters does not
necessarily linearly increase the chance that an event occurs and parameters
might be related to each other. Consider the slot machine discussed before: it
is not immediately apparent what exactly would have to be changed to increase
the success rate tenfold. Determining the right change of parameters in the
general case is a hard problem. Heuristics have been developed. One of those
heuristics, called the cross entropy method, is described in the next section.

2.3 Cross entropy method

2.3.1 Introduction

Importance sampling only works if the parameters of the simulation are well
chosen. One technique to do this is called the cross entropy method. The basic
idea is to choose an initial set of values for the parameters and then iteratively
improve those. The improvement is realized by minimizing the cross entropy
between the chosen values and the theoretical optimal values. The cross entropy
method was developed by Reuven Rubinstein. A tutorial, on which much of the
following has been based, can be found in [3].

7

2.3.2 A more formal description

Basically, there are two things that can be important when using importance
sampling. In many cases, the difference between the original distribution and
the adjusted distribution is needed. It can be used to know how often a specific
event would occur in the original model. In other cases, knowing the ratio is
not as important as getting as close as possible to a choice of parameters that
makes that specific event occur as often as possible. In that case, the goal is
to get a distribution that always causes the event to happen. That is not very
useful when one wants to calculate how often an event occurs in the real world,
as simulation with the new distribution would basically give the same situation
that has started the whole exercise: now, the ’normal’ events have become rare.
Thus, in some situations importance sampling can be used to get a distribution
that lets specific events occur regularly, while knowing the ’amplification factor’
between the original and adjusted distribution. In other situations the new
distribution converges to a single result all the time and the relation to the
original distribution is not important at all.

The latter case is true in optimization problems: the parameters used to ini-
tialize the algorithm are not very interesting, as long as the algorithm returns a
solution that is close to or equal to the optimal solution. In the rest of this docu-
ment, the cross entropy method is applied to optimization problems. Therefore,
this description focusses on how to get close to an optimal solution and does
not detail how the new probability distribution is related to the distribution of
the original model.

The naive approach

Assume a model with random parameters X = (X1, . . . , Xn), with 0 ≤ Xi ≤ 1
for 1 ≤ i ≤ n. The values X assumes are based on the probability density
functions f(·; v), where v represents the parameters of the distribution. Assume
a function S that takes X and returns a real value. The goal is to maximize
S(X) by using a ’better’ X, which can be accomplished by adjusting v.

The first step is to get an estimator for the chance that S(X) is greater than or
equal to some value γ. The real probability is

` = P(S(X) ≥ γ) = EI{S(X)≥γ} (2.1)

Here, P is a probability. I is the indicator function, which returns 1 if its
argument is true and 0 if it is not. E is the expected value, in this case of I.
As I = 1 ⇐⇒ (S(X) ≥ γ) and 0 otherwise, it is equal to the chance of S(X)
being equal to or larger than γ.

An easy estimator can be obtained by simple Monte-Carlo simulation:

8

ˆ̀=
1

N

N∑

i=1

I{S(Xi)≥γ} (2.2)

where each Xi is a new sample of X. That basically runs the simulation N
times and averages the result, giving a better estimation as N becomes larger.

Smarter estimation: use importance sampling

So far, nothing special has happened: the described steps are just a normal
simulation. If ` is expected to be a relatively rare event, a large number of
simulations will have to be performed. The next step is thus to use importance
sampling: take the values of (X1, . . . , Xn) from a different distribution that
improves the chance of S(X) ≥ γ. In the following equations, u is the original
distribution and v is a new, supposedly improved distribution.

Monte-Carlo simulation using the new distribution should be more efficient,
because the rare event will not be as rare anymore and thus fewer simulations
are needed. In the simulation, one would correct for the ’amplification’, giving
a new estimator with the extra compensation factor:

ˆ̀=
1

N

N∑

i=1

I{S(Xi≥γ)}
f(Xi; u)

g(Xi)
(2.3)

In this case, the samples are taken from the new distribution g and the com-
pensation factor ’converts’ between the old and new distribution1.

Based on this definition of ˆ̀, the ideal distribution would be:

g∗(X) :=
I{S(x)≥γ}f(x; u)

`
(2.4)

because that would result in the following equality:

I{S(Xi)≥γ}
f(Xi; u)

g∗(Xi)
= ` (2.5)

which gives the best estimator one could wish for:

ˆ̀= ` (2.6)

1This depends on g being non-zero where f is - a condition which is satisfied with the
distribution that will be used in the end.

9

This estimator clearly has zero variance. There is one problem with this ap-
proach - g∗ depends on `, which is not known. Besides, it might be useful to
have a g∗ with certain characteristics, i.e. it might be useful if the distribution
g∗ can be represented by f(·; v). Depending on the choice of f , that might limit
our ability to get the optimal answer, but we can still try to get as close as
possible.

To get close to the optimal distribution, the difference between f(·; v) and g∗

should be as small as possible. That raises the matter of how the difference
between two distributions should be measured.

Intermezzo: difference between distributions

Consider two probability density functions g and h. We want to know how
different h is from g, with the goal of having a h as close as possible to g. There
are lots of possible definitions of ’different’. A few criteria for a good definition
apply in this case.

Preferably, the difference should be zero if h(x) = g(x)∀x. That ensures that it
is easy to see that we’ve found the right solution: we surely can not do better
than having identical results for all input values.

If h(x) = 0 in a region where g(x) is not, the difference should be undefined or
go to (minus) infinity. The reason is that in that case, the new distribution h(x)
clearly misses part of the support2 of g(x) and is thus not a good imitation of
g. Note that it does not matter if h(x) = 0 at single values of x: the chance of
selecting those individual values in a continuous distribution is zero, so the two
distributions can for all practical purposes still be considered identical.

The requirement is a bit less strong the other way round: the difference can be
defined, if h(x) 6= 0 for regions where g(x) = 0. In that case, the distributions
are clearly not equal, so the difference should be non-zero.

Finally, it is important that the difference between g(x) and h(x) equals 0 only
if both distributions are identical - thus, no two zero points should exist. If
this condition does not hold, finding a difference of zero would still not tell
us whether we’ve found the looked-for identical distribution. Another way to
satisfy this criterium is to have a difference function which is convex and thus
does not have multiple minima. In that case, finding a minimum guarantees
that the difference between the distributions is minimal.

There are a lot of functions that meet those criteria. Another important one,
which is not as easy to define, is that it should be something that is easy to
calculate with - in the end, we should be able to adjust h based on how large
the difference is and get closer and closer to g.

2The ’support’ of a function is the set of points where its value is not equal to zero.

10

At this point, the name of the cross-entropy method becomes clear. The cross-
entropy or Kullback-Leibler distance between g(x) and h(x) is defined as:

D(g, h) = Eg ln
g(x)

h(x)
=

∫
g(x) ln g(x)dx−

∫
g(x) lnh(x)dx (2.7)

Note that the Kullback-Leibler distance (KL-distance) is not really a distance.
For instance, D(g, h) 6= D(h, g), i.e. it is not symmetric.

The KL-distance satisfies the criteria defined before. If h(x) = g(x), the distance
becomes zero:

ln
g(x)

g(x)
= ln 1 = 0 (2.8)

The second criterium states that distance should be undefined or go to infinity
if h(x) = 0 6= g(x) ∃x, where x is a region, not one or more individual points,
as described on page 10. That holds as well for a single value of x:

ln
g(x)

h(x)
= ln

g(x)

0
= undefined if g(x) 6= 0 (2.9)

It can be shown that this is the case if h(x) = 0 for some region j and g(j) 6= 0,
because limx→j g(x) lnh(x) = −∞:

D(g, h) =

∫
g(x) ln g(x)dx−

∫
g(x) lnh(x)dx (2.10)

=

∫
g(x) ln g(x)dx− (

∫

x⊆x
g(x) lnh(x)dx (2.11)

+

∫

x*x

g(x) lnh(x)dx) (2.12)

=

∫
g(x) ln g(x)dx−

∫

x 6=j
g(x) lnh(x)dx+∞ (2.13)

The last equation only holds if x is a region of the points and not just a set of
individual points, as discussed before.

Because the two integrals in the final equation will never go to +∞ in our
case, because we’ll be using probability density functions, the final result will
be undefined or go to infinity, as the criterium requires. Note that if x just
contains individual points, the integral would not be over a region and thus not
necessarily go to infinity.

11

The next looked-for property is that the function only has one zero point, which
is reached when the distance between the two distributions is minimal. The KL-
distance clearly satisfies that:

ln
g(x)

h(x)
= 0 ⇐⇒ g(x)

h(x)
= 1⇒ g(x) = h(x) (2.14)

It is shown on page 156 in [10] that the distance becomes zero if and only if
h(x) = g(x).

Thus, using the Kullback-Leibler distance or cross entropy as the measure of
difference between the ideal and the generated probability density function is a
good choice, provided it is easy to calculate with - which will be shown later on.

Next step: minimize the cross entropy

Given the difference between two distributions as defined above, the next step is
to find a distribution f(x; v) that comes as close to g∗ as possible. As can be seen
from the definition of D(g, h), that comes down to maximizing

∫
g(x) lnh(x)dx:

that is the only part of the equation that contains h(x), which is the only variable
that can be adjusted.

Also, it is not possible to use any function h(x). In the model, there might be
limits to the values that the parameters can assume. Thus, h(x) is replaced by
f(x; v), where v is the vector with the parameters of the distribution. That
results in the following maximization problem:

max
v

∫
g∗(x) ln f(x; v)dx = max

v

∫
I{S(x)≥γ}f(x; u)

`
ln f(x; v)dx (2.15)

This can be written with stochastic variables and the expectation function as
well:

max
v

EuI{S(X)≥γ} ln f(X; v) (2.16)

Thus, we’re looking for some distribution parameter v such that the equation
above is maximal:

v∗ = argmax
v

EuI{S(X)≥γ} ln f(X; v) (2.17)

As before, Monte-Carlo simulation can be used to estimate the optimal value of
v∗. Using N independent samples Xi, the estimator becomes:

12

v̂∗ = argmax
v

1

N

N∑

i=1

I{S(Xi)≥γ} ln f(Xi; v) (2.18)

The final step: split γ and parameter calculation

The original goal of the whole exercise described above was to find a maximum
value for the function S(X). One of the first steps was to define the following
estimator:

ˆ̀=
1

N

N∑

i=1

I{S(Xi)≥γ} (2.19)

If we want to find the highest possible value of S(X), γ should be as high as
possible - only by averaging over the very best solutions will the maximum value
be found. We’ll call the maximum value that S(X) can reach γ∗.

Note that the difference between rare-event simulation and combinatorial opti-
mization are very clear here. If we would be simulating a rare event, the value of
ˆ̀ would be the measure of interest. In our case, however, we want the indicator
function to return 1 all the time: which does not necessarily result in a good
estimation of the chance that a certain event occurs, but it does give a very
good idea of the maximum value that S(X) can assume.

The values of S(X) depend on the distribution used to generate X. The pa-
rameters for that distribution are estimated with the following estimator, as has
been discussed before:

v̂∗ = argmax
v

1

N

N∑

i=1

I{S(X)≥γ} ln f(Xi; v) (2.20)

For any γ close to γ∗, a problem arrises with that estimator. The function
IS(X)≥γ will almost never return 1 and thus the estimation of the parameters will
not be very good. A lower γ, however, would give more ’hits’ in the simulation,
but at the same time cause problems with ˆ̀, which depends on γ ≈ γ∗.

The solution to this is to adapt γ and v iteratively. If a good v is used, many
’hits’ will occur even with a high γ. The high γ can in turn be used to generate
a new estimate of v. That results in the following algorithm:

1. Define an initial v̂0 and set a counter t = 1. The initial v̂0 can be a uniform
distribution.

13

2. Generate samples X1, . . . ,XN from the density function f(·; vt−1) and set
γ̂t to such a value that only the best performing samples reach that value.

3. Use the same samples to calculate v̂t.

4. Repeat from step 2 to until γ̂t stabilizes at a maximum value.

14

Chapter 3

The Cross Entropy Ant
System

The Cross Entropy Ant System (CEAS) is a routing protocol developed at
NTNU that takes ideas from nature, specifically how foraging ants find their
way, to build an efficient and robust routing protocol. A basic description can
be found in [5]. It is an example of a swarm-based routing protocol. CEAS uses
the cross entropy method to quickly converge to good routes.

This chapter gives a basic introduction to the cross entropy method and then
describes how this method has been used in CEAS.

3.1 Foraging ants

As said, CEAS takes its basic idea from nature. Consider an area with an ant
nest and a place with food, respectively called “s” and “d” for “source” and
“destination”. Each individual ant tries to find a way from the source to the
destination. While travelling, it leaves a trail of pheromones. Those pheromones
evaporate over time. Thus, if an ant uses a short route, it will pass there more
often per unit of time on its way from the source to the destination and back
again, resulting in a high concentration of pheromones on that route.

New ants choose their route partly based on the pheromones: the chance of
taking a specific route is proportional to the amount of pheromones. The re-
sult is that the most efficient routes are used more often, which results in even
more pheronomes on that path. Longer routes are chosen less often and even-
tually, the pheromone concentration gets lower and lower. The effect is clear:
something which started as a random walk converges to an efficient path be-
tween source and destination. This phenomenon, where a group of systems do
not communicate directly with each other, yet specific behaviour for the whole

15

group emerges, is called emergent behaviour.

3.1.1 Ants and rare events - the relation

So far, rare event simulation and foraging ants have been discussed. While the
connection of foraging ants with routing is easy to see - both are about finding
good routes to destinations - the connection between rare events and routing is
less clear.

Generally, there are many paths to a certain destination. Only one or a few of
those would be considered good paths. The problem in routing is to find those in
the large collection of possible paths. Formulated that way, the connection with
rare event simulation becomes apparent. In rare event simulation, an efficient
path (i.e. series of steps) to a certain destination has to be found among a large
number of possible paths.

3.2 CEAS

3.2.1 Introduction

A number of routing protocols, such as AntHocNet, are designed after the for-
aging ant behaviour described before. CEAS does that as well, but - contrary
to the other protocols - bases it on the cross entropy method, which provides a
mathematical basis for CEAS. The basic method is described in [8], though it
is not directly applied to CEAS there.

The basic routing information in the protocol is a value pt,r,s, which is the
routing probability that a packet will go to node s, when it is at node r at
iteration t. For all nodes, these probabilities can be grouped in a matrix pt =
pt,rs∀rs. The routing probabilities are the ’digital pheromones’ of the protocol:
the higher the pheromone value from r to s, the higher the probability that a
packet will travel over that link as its next hop.

The protocol also uses a temperature γt, which converges to a value based on the
cost of the best (lowest cost) route between two nodes. A performance function
h(p, γ) indicates how good a certain matrix p is.

The algorithm works as follows:

1. Start with a set of routing probabilities pt=0 that are for instance uni-
formly distributed: all paths have the same probability 1/n with n =
size(s).

2. Generate a number of sample paths and select those samples that give

16

the best results - so find a γ as low as possible, that still gives a certain
number of cases that satisfy h(p, γ).

3. Using those samples, generate a new matrix pt which minimizes the dis-
tance (as defined before) between pt and the optimal matrix. This opti-
mal matrix is a matrix such that routes generated with it are the shortest
routes, i.e. the matrix which, when used, results in the lowest possible
temperature γ.

4. Increase t by 1 and repeat the procedure with the new matrix. Stop when
the temperature γ stabilizes.

For t → ∞, pt gets an optimal solution, where pt→∞,r,s is either 1 (if the link
between r and s is on the path with minimal cost) or 0 (if it is not). A more
in-depth description can be found in section 2.3 in [6].

This procedure needs a number of samples before it can update the temperature
and the matrix, which is not practical in a routing environment: it would be
better if the probabilities would be updated with each arriving routing packet,
instead of waiting for a batch of packets to arrive. CEAS achieves that by
adjusting the performance function every time new information arrives, basing
it on both the new information and the currently used function.

3.2.2 Implementation

To implement the behaviour described above, the routing protocol uses packets
called ants. Ants travel from a source to a destination, possible using the matrix
pt to choose the route, accumulating the cost of the followed path. At the
destination, the temperature is updated. The ant then travels back along the
same way to the source, updating pt in the nodes it passes.

3.2.3 Avoiding converging to a local optimum

With the algorithm described above, there is a risk of ending up with a path
that is not actually the shortest. At first, a reasonable - but not optimal - path
pR may be found. No other paths have any pheromone at all, so all ants choose
to follow pR. No better path is ever found.

To avoid that situation, CEAS knows two different kind of ants. Normal forward
ants use the pheromone tables to find their destination, while explorer ants
simply pick a random next hop, not using the pheromone values at all. Using a
suitable mix of normal ants and explorer ants results in new routes being found,
while known routes get the right amount of pheromone.

That does not solve the whole problem, however. Consider the situation where
the reasonable path pR is known. At some point, a shorter route pB is found.

17

However, the chance of taking that route is not very high, as only one (explorer)
ant ’deposited’ pheromone on that route, compared to possibly thousands of
ants on pR. Thus, pB is not chosen more often and its pheromone value is not
reinforced.

To avoid this situation, a basic solution is to sample a number of random paths
at first, before starting to use the pheromone values. Thus, the default imple-
mentation of CEAS has an initialization phase during which only explorer ants
are sent. The pheromone tables then contain reasonable levels, after which the
normal system with both normal and explorer ants can take over to maintain
the short routes and adapt to changes in the system.

3.2.4 Extensions

The system described above works, but it is not as efficient as it could be. A
number of improvements are already known that speed up convergence or reduce
the overhead of the protocol by limiting the number of ant transmissions needed
to get good routes.

Elite selection is one such optimization. When a forward ant reaches its des-
tination, it is only converted to a backward ant if the cost for the path it has
followed is within a certain distance from the best path known to that destina-
tion. Other ants are discarded. In this way, ants that would only confirm that
a low-chance path is indeed not worth taking are not propagated, thus causing
a reduction in overhead. Elite selection also helps to avoid the problem of con-
verging to a local optimum, described before. A more thorough description of
elite selection, including benchmarks, can be found in [7].

Another optimization can be found in the rate ants are generated. When a
network is changing, a high number of ants is needed to find the best (new)
routes. However, if no changes occur, it would be better to create less ants. To
solve this problem, ant rates are self-tuning. If almost no forward ants return to
the source node, that node knows that the protocol has likely not converged to
a stable state yet - ants either do not get to the destination at all or if they get
there, they are not converted to backward ants because they do not qualify as
elite ants. In a stable network, most ants reach the destination over the lowest-
cost path and are thus within the elite selection range. That implies that the
number of ants that is generated can be lowered when the number of forward
and backward ants is almost equal.

18

Chapter 4

Performance conditions in
dynamic networks

In this chapter, various conditions will be discussed that influence the perfor-
mance in dynamic networks. Knowledge of the conditions will be useful in
the next chapter, which describes various routing protocols and gives an idea
of their behaviour when said conditions change. Because all protocols under
discussion are routing protocols, this chapter focuses on those conditions that
directly influence routing.

4.1 Performance

To define the performance conditions, an important first step is to define ’per-
formance’ in the context of (routing in) dynamic networks. I assume a network
with the following characteristics to keep this definition as general as possible:

• Two or more nodes

• Zero or more connections between nodes

• Zero more data flows that want to travel from one node to one or more -
not necessarily connected - other nodes. Data flows consist of packets.

In such a network, an important performance metric is whether packets arrive
at all: if a route exists between source and destination of a packet, the packet
should preferably get to its destination. Thus, the delivery ratio is a performance
indicator. Also, it might be important to notify the sender when a packet could
not be delivered.

19

Not only does it matter whether a packet arrives at all, in many cases it is also
nice if it does not take much time to get to its destination. End-to-end delay is
therefore another indicator. For routing protocols, this translates in a few more
specific performance indicators. In many cases, not only the average speed is
important, but also the speed variation or jitter, which is especially important
for real-time communication between nodes: in that case, a low average delay
might not be very useful if that is achieved by sometimes having a very low
delay and at other times having a high delay. The peaks of high delays degrade
the quality of for instance voice chats, which depend on not having sudden
long delays. Many papers include delay measurements - it is relatively easy to
measure.

Especially in dynamic networks, it is to be expected that nodes appear and
disappear regularly. Also, connections between nodes change: new connections
form and existing connections break or degrade. Adaptibility to topology changes
is important for a routing protocol.

Scalability is another important characteristic of networks. Routing schemes
that work in a relatively small network might fall apart when the number of
nodes or connections grows: for instance, if the number of control messages a
protocol needs grows faster than linearly with the number of nodes in a network,
the number of messages per node will increase and at some point, each node
spends all of its time on routing and none on actually processing any data. Of
course, such a linear increase is probably impossible to reach, but to make a
protocol usable in larger networks, overhead should not increase too fast.

A routing protocol should work well in many different circumstances. Not only
should scale from small to large networks, it should preferably also work in both
dynamic and static situation, networks with high and low bandwidth, densely
connected or sparse. The ability to work in many different environments without
much user intervention could be called the flexibility of a protocol.

The relative importance of each performance measure differs between situations
- in some networks, jitter might not be important at all and in other networks,
scalability problems will never occur.

Most research seems to be on maximizing the delivery ratio in mobile networks,
as well as minimizing the overhead and increasing the scalability of networks.
However, no agreed-on environment seems to exist: all papers use different
network simulators, different network sizes, different node movement behaviours
and different traffic models. That makes it difficult to compare the protocols,
even if they are basically designed for the same task. In my thesis, choosing an
environment in which at least a number of routing protocols can be compared
will be important. Some more information on performance characteristics in
mobile networks can be found in [12].

20

Chapter 5

Routing protocols in
dynamic networks

This chapter describes some protocols already developed for use in dynamic
networks. A few categories of routing protocols can be defined:

• Pro-active routing

• Reactive routing

• Hybrid (both pro-active and reactive) routing

One pro-active and one reactive routing protocol are described, as well as two
hybrid protocols.

To avoid having to introduce new variables all the time, a few standard names
for nodes are used in this chapter. In the next sections, A is always the source
node for a packet or flow, B is the destination and any intermediate nodes are
denoted by I.

After each protocol description, a section is included in which the (expected)
performance of the protocol on the metrics defined in the last chapter is dis-
cussed:

• Delivery ratio

• End-to-end delay and jitter

• Adaptability to topology changes

• Scalability and flexibility

21

The last section contains a selection of benchmark papers in which the discussed
protocols are simulated and compared to other routing protocols.

5.1 Pro-active routing: Destination-Sequenced
Distance-Vector Routing (DSDV)

5.1.1 Introduction

In pro-active routing, routes to destinations are kept up-to-date regardless of
whether there is actual traffic to a certain destination. An example of such a
pro-active routing protocol is Destination-Sequenced Distance-Vector Routing
or DSDV. It was proposed by Perkins and Bhagwat in 1994 in [14] and is based
on the Bellman-Ford algorithm, with changes to make it usable in dynamic
networks.

In general, an advantage of pro-active routing is that packets can be delivered
relatively fast: because routes are kept up-to-date all the time, packets can be
transmitted immediately when they arrive. A disadvantage naturally follows:
if there is not much traffic or routes change very frequently, the overhead of
keeping the routing tables up-to-date will be large.

5.1.2 The protocol

Each node has a table with the following information about each known desti-
nation:

1. Hop count to destination

2. Next node to destination

3. Sequence number of last routing update for this destination

The hop count may be replaced by a different cost function, such as the time
required to reach the destination.

Packets travel from A to intermediate node I1 as indicated in the routing table.
At I1, it is sent to I2, which is the next node recorded in the routing table at
I1 to get to B. This goes on until at last the packet arrives at B.

To maintain consistent routing tables, all nodes transmit updates regularly and
always when a significant routing change occurs. There are two types of updates:
full updates contain information about all known destinations, while incremental
updates only contain part of the routing table. For each destination in an

22

update, the cost to that destination is included, as well as the last sequence
number known from that destination. In addition to that, an update contains
a new sequence number for the hosts which send the update. All receivers look
at the sequence number and in case it is larger than the latest sequence number
they have received so far from that host, perform updates as necessary for each
received destination:

• If the sequence number for that destination is smaller than the sequence
number already stored, nothing happens.

• If the sequence number is larger than the currently stored number, the
cost to that destination replaces the currently stored cost.

• If the sequence number is equal to the stored number, the smaller of the
currently stored cost and the new cost is stored in the routing table.

If any changes to the routing table are made as a result of processing the received
updates, the node sends an update itself1. Incremental update packets always
contain all changes relative to the last transmitted full update. That implies that
incremental updates grow over time, as more and more changes to the routing
table occur. To minimize the traffic generated by routing updates, nodes can
decide to send a full update regularly. That will cause the following incremental
updates to be smaller and thus, if the full updates are sent at the right moment,
to lower the amount of traffic needed for routing updates. The protocol does
not define when full updates should be sent.

To minimize the trafic even more, not all changes made to a routing table at
a node are immediately forwarded to the other nodes: only significant changes
are propagated. A mechanism is proposed where the significance of an update
is related to the rate of updates for that destination received so far. If many
changes have happened, new updates become less significant and are not broad-
casted. This mechanism prevents a storm of updates when the cost function to
a destination is still stabilizing. However, even if changes are not forwarded to
other nodes, a node always uses the latest information it has received. That
implies that a ’public’ routing table exists that might differ from the internally
used routing table.

If a node I2 detects that its connection to destination B is lost, it has to forward
that information to its neighbours. A potential problem arrises, because B can
not provide a sequence number for this update. If I2 makes up a sequence
number on its own, it might clash later on with the real sequence numbers
generated by B. To avoid that problem, an odd number is set as the sequence
number and the cost to get to B is set to ∞, thus causing an update to be

1The description by the original authors of the protocol leaves room for multiple inter-
pretations of this rule. It could be read as only sending an update (and generating a new
sequence number) if anything in the routing table changes or only if a metric in the table is
changed. In the latter case, no update is transmitted when a new sequence number is received
that does not change any metric. The option of always sending an update is shown to give
the best results.

23

sent. Normal sequence numbers are always even, so any new sequence number
generated by B will immediately replace the number generated by I2.

5.1.3 Performance characteristics

DSDV was one of the first protocols to be proposed for use in mobile networks.
Because it keeps an up-to-date view of the network at all times, setting up
a connection should be fast. As the protocol does not specify how topology
changes should be noticed - it assumes that a lower layer will notify the routing
protocol when the link cost changes or a node appears or disappears - there
is no easy method to say whether the protocol is able to work with topology
changes very well. Given that such changes are noticed, the protocol will include
them automatically - although settling times can be high. High settling times
are mostly caused by not immediately forwarding a new routing table when the
cost of a link changes - which lowers the overhead and avoids ’update storms’,
but that comes with the cost of routing tables that are outdated for a longer
time.

Reliability of the network may become a problem, because DSDV does not keep
backup paths.

Scalability is an issue, because nodes keep routes to all other nodes. Thus, a
change in the cost of a single link can cause a large number of updates to be
broadcasted in large parts of the network. Each update can be fairly large, espe-
cially if updates are frequent. In that case, even incremental updates can have
a significant size. This effect is limited to a certain extent by only forwarding
significant routing updates.

5.2 Reactive routing: Ad hoc On-Demand Dis-
tance Vector (AODV)

5.2.1 Introduction

One of the original authors of DSDV has later on proposed an algorithm that
uses a very different approach to routing in dynamic networks [2]. In Ad hoc
On-Demand Distance Vector (AODV), no routes are calculated until actual
data has to travel from A to B. The protocol is documented in an experimental
RFC [13].

24

5.2.2 The protocol

When a new route is needed, a route request (RREQ) packet is transmitted to
all neighbours. It contains the following information:

Source address The address of the node that produced the RREQ.

Source sequence number The current ’version’ of the information of this
node.

Broadcast ID A number that is increased with each RREQ that a source
produces.

Destination address The address of the destination.

Destination sequence number The minimum sequence number of the in-
formation about the destination, i.e. how old the information about the
route to the destination is allowed to be.

Hop count The number of hops the RREQ has taken so far.

The combination of source address and broadcast ID is unique. Each node
that receives a RREQ either forwards it if it does not know how to reach the
destination, increasing the hop count, or returns a route reply (RREP) packet if
it knows how to reach the destination. Because forwarding in this case implies
broadcasting, a node may receive multiple copies of a RREQ. Such copies are
dropped.

If a node forwards a RREQ, it locally stores some information about the request:

• Destination address

• Source address

• Broadcast ID

• Expiration time for reverse path route entry

• Sequence number of source node

At some point, the RREQ will reach a node that either is the destination or
knows how to reach it. In the latter case, it checks whether its own sequence
number for that destination is newer than the sequence number the RREQ asks
for. If it is, a route reply (RREP) is constructed. The RREP travels back
along the path that the RREQ followed, using the information stored at each
intermediate node about the request. At some point, it will reach the source
node and both the source node and all intermediate nodes have a route to the
destination.

25

It is possible that an intermediate node receives multiple RREPs for the same
RREQ. In that case, it forwards RREPs after the first one only if its destination
sequence number is larger than the RREPs forwarded before (indicating a newer
path) or if the destination sequence number is the same, but the hop count is
lower (indicating a better path). Source nodes can start to transmit data as
soon as they receive a RREP - its routing table can be updated if newer RREPs
arrive and point to better paths.

It is also possible that an intermediate node which forwarded a RREQ does not
receive any RREPs at all. In that case it is not on the path between source and
destination and after the expiration time, which was stored when the RREQ
arrived, the routing information is deleted.

Nodes update their routing table according to a few simple rules. When a
RREP arrives, it is always used to overwrite the current routing entry for that
destination if its destination sequence number is newer than the currently stored
one: the RREP has newer information. If the sequence number is equal to the
current sequence number, it only replaces the current entry if the hop count is
smaller than the currently known best hop count. That way, nodes always use
the best up-to-date routing information possible.

When a node notices that a link to one of its destinations breaks, for instance
because one of its neighbours disappears, it produces a special RREP packet.
The destination sequence number in that packet is one higher than the locally
stored number for that destination, thus triggering updates at all receivers that
use this node to send data to that destination. The cost of the path is set to
∞. Any node that wants to create a new connection to the destination has to
send a RREQ with an updated destination sequence number, forcing a discovery
process for other possible routes to the destination.

5.2.3 Performance characteristics

Because of its reactive nature, path setup times are higher than with DSDV.
However, that helps with scalability: only if a node is actively involved in data
transmission, does it have to store routing information - and even then, only of
those nodes that it has to interact with. AODV does not have many parameters
that have to be optimized by hand - it should not be much work to deploy it.

Various researchers have performed benchmarks to compare DSDV and AODV.
Sesay and Johansson show that in almost all cases, AODV is the preferable
routing protocol. DSDV has a higher overhead because it tries to keep an
updated view of the network at all times. That makes AODV more scalable
and gives AODV higher throughput as well, because the reduction in overhead
can be used for the transmission of actual data.

26

5.3 Hybrid routing (1): AntHocNet

5.3.1 Introduction

AntHocNet, developed by Gianni Di Caro and others [1], is based on the same
ant behaviour used in the design of CEAS. However, it uses reinforcement learn-
ing to converge to the shortest paths. It is shown to be more efficient than AODV
in at least some situations. For an introduction to how ants leave pheromones
to converge to a short path between their nest and a food source, see the first
part of this document.

5.3.2 The protocol

AntHocNet is based on routing packets that travel through the network that
are called ’ants’. Part of the protocol is reactive: it only builds a route when
actual data has to travel to a certain destination. However, it uses a pro-
active approach by maintaining the path and looking for better routes to that
particular destination once a path has been found.

Nodes periodically broadcast ’hello messages’ to inform their neighbours about
their presence. If no such message has been received from a node from which
such a message has been received earlier, the connection to that node is consid-
ered broken. Each node has a pheromone table, which indicated the ’goodness’
of paths to different destinations. When ants travel through a node, they update
the pheromone table.

To find a route to a certain destination, a node broadcasts a ’forward ant’. At
each node the ant visits, two things can happen:

• The forward ant chooses a next hop based on the routing information at
that node. ’Good’ paths have a higher chance of being chosen.

• The forward ant is broadcasted to all neighbours again.

To limit the number of ants, two mechanisms are used. Each ant has a maximum
number of hops it is allowed to travel. If it does not reach its destination in at
most that many hops, the ant is discarded. A second, more important rule is
that not all ants are forwarded by all nodes. If a node I has already received an
ant from the same source on the way to the same destination, it can decide to
drop it - another ant has clearly already found a faster way to reach I, so there
is not much point in forwarding it anymore. Ants are only dropped if the route
they have found is worse by at least a certain factor, so it is still possible that
more than one ant is forwarded at I. Also, the first step that the ant took is
considered. If an ant is worse than another ant that has passed before, but has
a different first hop than the better ant, it will still be forwarded. This avoids

27

converging to only one route for the first number of hops, which would limit
the number of good paths found - which in turn leads to less redundancy and
reliability.

Once an ant reaches its destination B, it is converted to a ’backward ant’. It
travels back along its route and updates the routing table at each node with
information about the cost to get to B.

The new ’routing chance value’ at a node I is calculated as follows:

τ IB = (
T̂ IB + h ∗ Thop

2
)−1

Where

• T̂ IB is the estimated time to get from I to B (as recorded by the ant)

• h is the number of hops to B

• Thop is the time one hop takes in unloaded network conditions (hardcoded)

The estimation thus averages the calculated travel time and the unloaded travel
time and inverses this, giving lower ’routing chances’ when travel times are
longer. This value is then combined with the existing values to update the
value in the routing table as follows:

T INB = γT INB + (1− γ)τ IB γ ∈ [0, 1]

Here, T INB is the chance that a packet at I will choose N as the next hop to B
- so N is the last node the backward ant has visited before it arrived at I. The
parameter γ influences the weight of the new information in comparison to the
current value.

Once a path has been found, data can travel from A to B. This is always done
stochastically, where the best routes have a higher chance of being chosen.

The stochastic mechanism is implemented in an easy way. As shown above,
the routing table does not really store cost values to destinations, but stores
’chances’ PNB of the next hop N being used to travel to destination B. When
a forward ant has to choose how it will travel further, the probability for each
possible next hop is calculated:

PNB =
(T INB)β∑
j∈N I

B
(T IJB)β

β ≥ 1

28

where N I
B is the set of neighbours that can be used to reach B. The parameter β

can be used to lower the chance of very explorative behaviour. For data packets,
a higher value of β is used, causing them to use the best-regarded paths, while
forward ants use a lower value and thus more often choose routes which are less
likely to be good.

During a data session, new forward ants are created regularly. They obey to
the same rules as normal forward ants: most of the time it will use one of the
existing routes, but sometimes it is broadcast to all neighbours of a node. This
explorative behaviour helps to find new, better routes.

When a link or node fails, its neigbours will not receive hello messages any
longer. It will consider the path to be broken and generate a ’route repair
ant’, which basically has the same task as a forward ant: to find a route to the
destination. Once it finds a path, the routing table will be updated and the new
path will be used instead.

5.3.3 Performance characteristics

The designers of AntHocNet have run a number of benchmarks against AODV.
Under certain conditions, AntHocNet is shown to have a higher delivery ratio
and less end-to-end delay than AODV. That comes at a cost, however: overhead
of AntHocNet can be several times higher than AODV.

AntHocNet should scale relatively well: routing information is generated only
for nodes that are actually sending data to each other. There is a risk that
finding a path to a new destination floods the network with a lot of ants. The
AntHocNet authors suggest to mitigate this effect by using the hello messages
to spread basic routing information. That way, forward ants have a better idea
of where to go and should thus reach their destination more efficiently.

In benchmarks by Ducatelle [4] and Kudelski [11], AntHocNet has a higher
packet delivery ratio than AODV. Its end-to-end delay is in most cases lower
as well. These results hold both at low and high node mobility. Only at high
data rates, when the network gets congested, AODV performs slightly better,
according to Ducatelle: it sends less control packets and each packet is smaller.

One concern with AntHocNet is the number of parameters that currently have to
be hardcoded in the protocol. There are exploration factors for forward ants and
data, there is the maximum hop count which depends on the network diameter,
there are different smoothing factors and an acceptance parameter - and the
optimal values of all of them depend on the characteristics of the network. While
the benchmarks show a good results, it is possible that configuring a network for
such performance requires manually optimizing the parameters, which reduces
the flexibility of the protocol.

29

5.4 Hybrid routing (2): Hazy Sighted Link State
(HSLS)

5.4.1 Introduction

The Hazy-Sighted Link State routing protocol (HSLS) is a routing protocol that
was proposed by Cesar Santiváñez and Ram Ramanathan from BBN Technolo-
gies in 2001 [15]. In their paper, they define the goal of routing protocols to
be the minimization of overhead. Overhead is defined as ’the total amount of
bandwidth used in excess of the minimum amount of bandwidth required to
forward packets over the shortest distance by assuming that the nodes had in-
stantaneous full-topology information’. With this definition, inefficient routing
(i.e. taking longer routes than strictly necessary) contributes to the overhead.
The goal of a routing protocol should be to minimize the overhead in any type
of network.

According to the designers, pure pro-active protocols have to transmit (in the
worst case) a message every time a link change is detected. Each message has
to be retransmitted by each node in the network to reach all nodes. The HSLS
authors argue that, because both the number of link changes and the number of
transmissions needed increases linearly with the the network size N , the total
overhead of a purely pro-active protocol grows with N2.

A similar argument is given for pure reactive protocols. A new protocol message
has to be transmitted for each new connection and then has to be retransmitted
by each node in the network. Because the number of connections and the number
of retransmissions per connection grow linearly with N , the total overhead of
purely reactive protols grows with N2.

Of course, it is possible to avoid the worst cases, for instance by storing routing
information temporarily in a reactive protocol. In that case, the protocol is
not purely reactive anymore - but it will likely be more efficient in terms of
overhead.

The designers argue that the theoretical optimum is somewhere in between: a
protocol should be hybrid. The set of Fuzzy Sighted Link State (FSLS) algo-
rithms is proposed. FSLS algorithms are based on the link state (pro-active)
approach, but limit the overhead in both the space and time dimension. To limit
the spatial overhead, not all link changes are propagated through the complete
network. By not transmitting updates when they occur, but collecting them
before they are transmitted, the overhead in the time dimension is reduced.

Of course, not transmitting all updates through the complete network immedi-
ately causes inefficient routes to exist for longer than necessary. That implies
that a new type of overhead is created: the ’sub-optimal routing overhead’.
An optimal routing protocol, i.e. with minimal overhead, should balance the
overhead caused by control messages and the sub-optimal routing overhead to

30

minimze the total overhead. That protocol is the Hazy Sighted Link State
routing algorithm.

5.4.2 The protocol

HSLS is a link state algorithm that does not always transmit its updates to all
nodes in a network at all times. The design seeks a balance between not causing
control message overhead and limiting inefficient routing overhead.

Limiting the overhead in time is done by only sending updates every t seconds,
aggregating all link changes that have occured in the last t seconds in a single
control message.

Limiting the overhead in space is done by limiting the range that a control
message will travel. Some messages will just reach the direct neighbours of a
node, while other messages will propagate through the entire network.

After a number of calculations, the authors of HSLS propose a protocol that
sends control messages (called Link Status Updates or LSUs) with range r every
2r−1 ∗ t seconds. Thus, a node transmits a message to its neighbours every t
seconds. Every 2 ∗ t seconds, a message is sent to all nodes 2 hops away. Of
course that LSU passes each neighbour as well, so no separate LSU (which
would have the same information) is sent to the neighbours. That results in the
following set of LSUs being sent:

Time (t seconds) Range (hops)
1 1
2 2
3 1
4 3
5 1
6 2
7 1
8 4
9 1
10 2

When the range r reaches the (best known) distance to the furthest node, t (and
thus r) is reset. The protocol has an initialization phase in which LSUs with an
unlimited range are sent. That way, the distance to the furthest node is known.

Using this protocol, closer nodes have a more up-to-date view of the state of a
node than other nodes that are further away.

31

5.4.3 Performance characteristics

The authors of HSLS compare it to a number of other FSLS routing protocols,
which have different algorithms to limit the transmission of control messages in
space and time. For instance, in Discretized Link State (DLS), messages are
still sent every t seconds, but the range is always ∞, so effectively no limitation
of space is used. Near Sighted Link State is another example: updates are
transmitted every t seconds with range k, unless t is a multiple of some value v
- in that case, the range is set to ∞.

HSLS performs better for large networks than the other protocols that are
tested: the throughput (defined as the percentage of packets that arrive at
the destination) is highest of all.

5.5 Benchmarks

In a number of papers, simulations have been run to compare different routing
protocols. The next subsections briefly detail the most important conclusions
of some of these papers.

5.5.1 Sesay

In [16], DSDV, AODV, TORA and DSR are compared on throughput, delay,
overhead and route acquisition time. DSR (Dynamic Source Routing) is a re-
active routing protocol somewhat comparable to AODV, the main difference
being it uses source routing: the complete path of a packet is attached to the
packet at the source. Intermediate nodes don’t decide on the next hop, but
simply follow the ’instructions’ attached to the packet.

The article concludes that AODV is more scalable than DSDV, has less overhead
and has higher throughput. However, it takes more time to find a route (because
of its reactive nature) and end-to-end delay is worse in small networks as well.
TORA, a protocol which supports multiple routes and multicasting, is usable
in higly dynamic networks. The best all-round performer is AODV.

5.5.2 Johansson

In [9], DSDV, AODV and DSR are compared in scenarios where nodes either
move randomly or with predefined speeds and directions. It is shown that
DSDV does not work very well in dynamic networks: a reactive approach is
more efficient in such networks. DSR and AODV are both good candidates to
use in the simulated scenarios, with DSR performing better in smaller networks

32

with less traffic and AODV showing better results in more higly utilized, bigger
networks.

5.5.3 Kudelski

In a recent comparison by Kudelski and Pacut in [11], AODV, AntHocNet and
their own protocol, AntHocGeo, are compared. The simulations focus on the
end-to-end delay and the delivery ratio. In a simulation with moving nodes,
AntHocNet has a lower end-to-end delay and a higher delivery ratio than AODV,
with different node speeds. It is not stated how the nodes choose their route -
most likely, a random waypoint model has been used.

5.5.4 Ducatelle

Ducatelle, Di Caro and Gambardella, the designers of AntHocNet, have com-
pared their protocol with AODV regarding the end-to-end-delay and the delivery
ratio [4]. Under high load, the end-to-end delay of AntHocNet is larger than
AODV because the control packets are larger in size and number and thus in-
terfere with the data packets. Just like the results reported in [11], AntHocNet
has a higher packet delivery ratio and in most cases a lower delay than AODV.

33

Chapter 6

Conclusion

As stated in the introduction, this research project is a preparation for my
master thesis at NTNU. Two goals were defined: describing the Cross Entropy
Ant System (CEAS) and giving an overview of routing in dynamic networks.

The basic algorithms of CEAS have been described in this report, including
existing improvements to the basic protocol. What has not been described are
implementation details like the format of the routing packets - that will be
done during my thesis work. Not in the report, but studied nevertheless, are
the benchmarks which show how much of a difference specific improvements to
CEAS actually make.

To get an overview of routing in dynamic networks, four protocols were selected,
which were as different from each other as possible to get a broad idea of the
possible approaches to routing in such an environment. DSDV and AODV
are relatively basic protocols, while both hybrid systems are more advanced.
AntHocNet shares the idea of imitating ants to perform routing with CEAS,
but it takes a less mathematical approach. HSLS tries to provide a rigorous
mathematical basis to its design which is interesting, but does not seem to have
gained much attention by other researchers. Conclusions from a number of
simulation papers are included in the report, which compare the performance
of different combinations of DSDV, AODV and AntHocNet. No papers with
benchmarks of HSLS were found, so a comparison with that protocol could not
be made.

One field that was not covered in this report, but will be important when writing
my thesis, is what simulation environment should be used. The papers that
describe the four protocols use four different network simulators. Parameters
like network density, mobility of nodes and type and intensity of traffic flows
are not standardized either, so it is difficult to compare the existing protocols.
Choosing a simulation environment should be part of the further work for my
thesis.

34

Bibliography

[1] Gianni Di Caro, Frederick Ducatelle, and Luca Maria Gambardella. Ant-
HocNet: An Adaptive Nature-Inspired Algorithm for Routing in Mobile
Ad Hoc Networks. Technical report, 2004.

[2] Charles E. Perkins. Ad-hoc on-demand distance vector routing. In Pro-
ceedings of the 2nd IEEE Workshop on Mobile Computing Systems and
Applications, pages 90–100, 1999.

[3] Pieter-Tjerk de Boer, Dirk P. Kroese, Shie Mannor, and Reuven Y. Ru-
binstein. A Tutorial on the Cross-Entropy Method. Annals of Operations
Research, 134:19–67, 2005.

[4] Frederick Ducatelle, Gianni Di Caro, and Luca Maria Gambardella. A
study on the use of MANETs in an urban environment. Technical report,
2007.

[5] Poul E. Heegaard, Bjarne E. Helvik, and Otto J. Wittner. The Cross
Entropy Ant System for Network Path Management. Teletronikk, 2008.

[6] Poul E. Heegaard, Otto Wittner, Victor F. Nicola, and Bjarne Helvik. Dis-
tributed Asynchronous Algorithm for Cross-Entropy-Based Combinatorial
Optimization.

[7] Poul E. Heegaard, Otto Wittner, Victor F. Nicola, and Bjarne Helvik. Dis-
tributed Asynchronous Algorithm for Cross-Entropy-Based Combinatorial
Optimization.

[8] Bjarne E. Helvik and Otto J. Wittner. Using the Cross-Entropy Method to
Guide/Govern Mobile Agents Path Finding in Networks. In Mobile Agents
for Telecommunication Applications, pages 255–268. 2001.

[9] Per Johansson, Tony Larsson, Nicklas Hedman, Bartosz Mielczarek, and
Mikael Degermark. Scenario-based Performance Analysis of Routing Pro-
tocols for Mobile Ad-hoc Networks. 1999.

[10] J. N. Kapur and H. K Kesavan. Entropy Optimization Principles with
Applications. Academic Press, Inc., 1992.

[11] Michal Kudelski and Andrzej Pacut. Ant Routing with Distributed Geo-
graphical Localization of Knowledge in Ad-Hoc Networks. 2009.

35

[12] Sampo Naski. Performance of Ad Hoc Routing Protocols: Characteristics
and Comparison, 2004.

[13] C. Perkins and E. Belding-Royer. RFC 3561: Ad Hoc On-Demand Distance
Vector (AODV) Routing, 2003.

[14] C. Perkins and P. Bhagwat. Highly Dynamic Destination-Sequenced
Distance-Vector Routing (DSDV) for Mobile Computers. 1994.

[15] Cesar Santiváñez and Ram Ramanathan. Hazy Sighted Link State (HSLS)
Routing: A Scalable Link State Algorithm. Technical report, 2003.

[16] Samba Sesay, Zongkai Yang, Biao Qi, and Jianhua He. Simulation Compar-
ison of Four Wireless Ad hoc Routing Protocols. Information Technology
Journal, pages 219–226, 2004.

36

Bibliography

[1] The network simulator - ns-2. [Online]. Available: http://www.isi.edu/
nsnam/ns

[2] S. Kurkowski, T. Camp, and M. Colagrosso, “Manet simulation studies:
the incredibles,” SIGMOBILE Mob. Comput. Commun. Rev., vol. 9, no. 4,
pp. 50–61, 2005.

[3] P. E. Heegaard, O. Wittner, V. F. Nicola, and B. Helvik, “Distributed
Asynchronous Algorithm for Cross-Entropy-Based Combinatorial Opti-
mization,” ca. 2005.

[4] V. Kjeldsen, O. J. Wittner, and P. E. Heegaard, “Distributed and scalable
path management by a system of cooperating ants,” in Proc. International
Conference on Communications in Computing (CIC), Las Vegas, NV, USA,
Jul. 2008.

[5] E. Bonabeau, M. Dorigo, and G. Theraulaz, Swarm Intelligence: From
Natural to Artifical Systems. Oxford University Press, 1999.

[6] G. Di Caro and M. Dorigo, “AntNet: Distributed stigmergetic control
for communications networks,” Journal of Artificial Intelligence Research
(JAIR), vol. 9, pp. 317–365, 1998.

[7] M. Dorigo, G. Di Caro, and L. M. Gambardella, “Ant algorithms for dis-
crete optimization,” Artificial Life, vol. 5, no. 2, pp. 137–172, 1999.

[8] B. E. Helvik and O. J. Wittner, “Using the cross entropy method to
guide/govern mobile agent’s path finding in networks,” in Proc. Inter-
national Workshop on Mobile Agents for Telecommunication Applications
(MATA), Montreal, Canada, Aug. 2001.

[9] P.-T. de Boer, D. P. Kroese, S. Mannor, and R. Y. Rubinstein,
“A Tutorial on the Cross-Entropy Method,” Annals of Operations
Research, vol. 134, pp. 19–67, 2005. [Online]. Available: http:
//www.springerlink.com/content/kpw596202975755n

[10] P. E. Heegaard and O. J. Wittner, “Overhead reduction in distributed path
management system,” Computer Networks, vol. 54, no. 6, pp. 1019–1041,
Apr. 2010.

113

http://www.isi.edu/nsnam/ns
http://www.isi.edu/nsnam/ns
http://www.springerlink.com/content/kpw596202975755n
http://www.springerlink.com/content/kpw596202975755n

[11] P. E. Heegaard, B. E. Helvik, and O. J. Wittner, “The Cross Entropy Ant
System for Network Path Management,” Teletronikk, 2008.

[12] B. E. Helvik and O. J. Wittner, “Using the Cross-Entropy Method
to Guide/Govern Mobile Agents Path Finding in Networks,” in Mobile
Agents for Telecommunication Applications, 2001, pp. 255–268. [Online].
Available: http://www.springerlink.com/content/8q470wpybc8266ur

[13] V. Kjeldsen, “Coperation through pheromone sharing in swarm routing,”
2007.

[14] ns-3 project description. [Online]. Available: http://www.nsnam.org/docs/
proposal/project.pdf

[15] ns-3 reference manual. [Online]. Available: http://www.nsnam.org/docs/
release/manual.pdf

[16] P. E. Heegaard and I. Fuglem, “Demonstrator 1: Ant-based monitoring
on software IP routers,” BISON (IST-2001-38923), Tech. Rep., 2006.
[Online]. Available: http://www.cs.unibo.it/bison/deliverables/D14.pdf

[17] I. S. I. U. of Southern California, “RFC 791: Internet Protocol v4,” 1981.
[Online]. Available: http://www.ietf.org/rfc/rfc791.txt

[18] Waf. [Online]. Available: http://code.google.com/p/waf

[19] The ns Manual, Kevin Fall and Kannan Varadhan ed., The VINT Project,
UC Berkeley, LBL, USC/ISI, and Xerox PARC.

[20] F. J. Ros and P. M. Ruiz, “Implementing a new manet unicast
routing protocol in ns2,” Dec. 2004. [Online]. Available: http:
//masimum.inf.um.es/nsrt-howto/pdf/nsrt-howto.pdf

[21] L. Paquereau and B. E. Helvik, “Simulation of wireless multi-* networks
in ns-2,” in Proc. Workshop on NS2 (WNS2), Athens, Greece, Oct. 2008.

[22] NSF Grant “Frameworks for ns-3”. [Online]. Available: http://nsf.gov/
awardsearch/showAward.do?AwardNumber=0958015

[23] T. R. Henderson, S. Roy, S. Floyd, and G. F. Riley, “ns-3 project goals,”
in Proc. First Workshop on NS2 (WNS2), Pisa, Italy, Oct. 2006.

[24] Google Summer of Code. [Online]. Available: http://code.google.com/soc

[25] Tr̊adløse Trondheim. [Online]. Available: http://www.tradlosetrondheim.
no

114

http://www.springerlink.com/content/8q470wpybc8266ur
http://www.nsnam.org/docs/proposal/project.pdf
http://www.nsnam.org/docs/proposal/project.pdf
http://www.nsnam.org/docs/release/manual.pdf
http://www.nsnam.org/docs/release/manual.pdf
http://www.cs.unibo.it/bison/deliverables/D14.pdf
http://www.ietf.org/rfc/rfc791.txt
http://code.google.com/p/waf
http://masimum.inf.um.es/nsrt-howto/pdf/nsrt-howto.pdf
http://masimum.inf.um.es/nsrt-howto/pdf/nsrt-howto.pdf
http://nsf.gov/awardsearch/showAward.do?AwardNumber=0958015
http://nsf.gov/awardsearch/showAward.do?AwardNumber=0958015
http://code.google.com/soc
http://www.tradlosetrondheim.no
http://www.tradlosetrondheim.no

	Title Page
	Problem Description
	Preface
	Introduction and contributions
	I The Cross Entropy Ant System
	Background
	The Cross Entropy Ant System
	Foraging ants
	CEAS
	Introduction
	Implementation
	Avoiding converging to a local optimum
	Cycles in paths
	Extensions

	II Porting CEAS to ns-3
	Introduction
	About ns-3
	Introduction
	Features

	CEAS in ns-3 - the architecture
	Overview
	Temperature table
	Pheromone table
	Ant packets
	Neighbour discovery packets

	Routing protocol
	Before sending the ants
	Leaving node A
	Passing through node B
	Arriving at node C
	The way back

	Infrastructure

	Validation
	Experience with ns-3
	Comparison with ns-2
	Abstraction level
	Usability and adaptability
	Built-in components and models
	Experiment setup, control and analysis
	Development status
	Efficiency

	III Simulation and optimization
	Simulation
	Introduction
	The scenario
	The layout

	Basic results
	Load-sensitive cost functions
	Preplanning
	Packet format improvements

	Conclusion
	The original plan
	What actually happened
	Future work

	Simulation parameters
	Paper
	Presentation TM8105
	Research project

