
June 2009
Rolv Bræk, ITEM
Professor Gerald Q. Maguire Jr., Dept. of
Communication Systems, KTH, Sweden

Master in Security and Mobile Computing
Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Telematics

Secure Context-Aware Mobile SIP User
Agent

Bemnet Tesfaye Merha

Problem Description
This thesis project concerns the design, implementation, and evaluation of a context aware SIP
user agent which can provide secure multimedia VoIP calls and presence information. For
example, it should enable users to make use of multimedia (and perhaps other) devices around
them. For example, the user should be able to send the video stream to a network attached data
projector or large screen display; while sending the audio to a network attached speakers; while
providing outgoing video images of an artefact in front of them via a network attached camera --
with all of the streams being managed by the user's device.

This project builds upon several previous thesis projects in this area. One of the important
protocols is the Service Location Protocol (SLP). It is important to understand just how much of
this protocol is needed on constrained devices to support dynamic service discovery and to identify
an efficient mechanism to establish trust relationships between the user's device and devices
located near the user. The goal is to minimize the effort required by the user to make used of
these nearby devices while protecting the user and their device from "rogue" devices.

Assignment given: 09. January 2009
Supervisor: Rolv Bræk, ITEM

i

Preface
The work depicted in this report was carried out at the Wireless@KTH laboratory of

Royal Institute of Technology (KTH), in Sweden. The major goal of the project is to research
on ways to enable multimedia communication systems to adapt to user’s situations by giving
major emphasis to design, implementation, and evaluation of a context aware Secure Session
Initiation Protocol (SIP) user agent. The thesis report is submitted to Department of
Communication Systems (KTH), in Sweden, and to Department of Telematics (NTNU), in
Norway as a partial fulfillment of a master’s of Science degree in Mobile Computing and
Information Security.

ii

iii

Acknowledgment
I would like to express my deepest gratitude to my supervisor professor Gerald Q.

Maguire Jr. at Royal Institute of Technology (KTH) for his continuous support and guidance
throughout the various stages of the project. Without his personal involvement and
intervention at critical stages, it would have been very challenging to complete the project
according to the initially set plan. His help was tremendous in setting up the test beds, and in
providing practical and useful feedbacks all the way through the completion of the project. He
provided critical and useful clues on how to approach the research problem systematically and
tactfully. Professor Maguire’s continuous motivation and encouragement made my stay in the
Wireless@KTH lab an enjoyable experience.

I would also like to thank my host university supervisor Professor Rolv Bræk in
Norwegian University of Science and Technology (NTNU) for his helpful suggestions during
the initial phase of the project. I would also like to thank Professor Mark Smith for providing
me a Wasa board and the IR beacons used in this project.

Moreover, I would like to thank the NordSecMob consortium and the European
Commission for funding my study and giving me the opportunity to participate in the
NordSecMob program. My special thanks go to the program coordinators Eija Kujanpaa,
May-Britt Eklund-Larsson, and Mona Nordaune for their helpful advice to make my stay a
successful one.

Last, but not least, my family and friends in Ethiopia deserve special thanks for their
unconditional support and encouragement throughout the past two years. I thank my parents,
Tesfaye Merha and Elsabet Woldeselasse, for believing in me and opening their
communication channels for word of wisdom while I have been away from home.

iv

v

Abstract
Context awareness is an important aspect of pervasive and ubiquitous computing. By

utilizing contextual information gathered from the environment, applications can adapt to the
user’s specific situation. In this thesis, user context is used to automatically discover
multimedia devices and services that can be used by a mobile Session Initiation Protocol
(SIP) user agent. The location of the user is captured using various sensing technologies to
allow users of our SIP user agent to interact with network attached projectors, speakers, and
cameras in a home and office environment.

In order to determine the location of the user, we have developed and evaluated a
context aggregation framework that gathers and analyzes contextual information from various
sources such as passive infrared sensors, infrared beacons, light intensity, and temperature
sensors. Once the location of the user is determined, the Service Location Protocol (SLP) is
used to search for services. For this purpose, we have implemented a mobile SLP user agent
and integrated it with an existing SIP user agent. The resulting mobile SIP user agent is able
to dynamically utilize multimedia devices around it without requiring the user to do any
manual configuration.

This thesis also addressed the challenge of building trust relationship between the user
agent and the multimedia services. We propose a mechanism which enables the user agent
authenticate service advertisements before starting to redirect media streams.

The measurements we have performed indicate that the proposed context aggregation
framework provides more accurate location determination when additional sensors are
incorporated. Furthermore, the performance measurements indicate that the delay incurred by
introducing context awareness to the SIP user agent is acceptable for a small deployment such
as home and office environment. In order to realize large scale deployments, future
investigations are recommended to further improve the performance of the framework.

Keywords: SIP, context-awareness, service discovery, trust establishment

vi

vii

Table of Contents
Preface ... i
Acknowledgment ... iii
Abstract .. v
Table of Contents ..vii
List of Figures ... ix
List of Tables ... x
List of Acronyms and Abbreviations ... xi
1. Introduction .. 1
2. Background ... 4

2.1 Context Aware Computing ... 4
2.2 Dynamic Service Discovery .. 4

2.2.1 Universal Plug and Play (UPnP) ... 5
2.2.2 Jini ... 5
2.2.3 Service Location Protocol (SLP) .. 6

2.3 Session Initiation Protocol (SIP) ... 7
2.3.1 Components of a SIP network .. 8
2.3.2 SIP Dialogs and Transactions ... 10
2.3.3 Real time Transport Protocol (RTP) ... 11

2.4 Secure Multimedia Communication ... 11
2.4.1 Secure Signaling ... 12
2.4.2 Media Security .. 13
2.4.3 Key Exchange ... 15
2.4.4 Minisip support for security .. 17

2.5 Trust Relationships ... 18
2.5.1 Policy based trust negotiation ... 19

2.6 Presence and Instant Messaging ... 21
3. Related Work .. 23

3.1 Exploiting devices around us .. 23
3.2 Occupancy sensor system ... 24
3.3 Context-addressed messaging ... 24
3.4 Redirecting RTP Media .. 25
3.5 An Intelligent presentation System ... 27

4. Context Modeling Framework .. 28
4.1 Requirements of our application ... 28

4.1.1 What aspects should the model include? .. 28
4.1.2 How should we represent context? ... 28
4.1.3 How should we manage context? ... 29
4.1.4 How do we address privacy issues .. 30

4.2 The CoolBase Platform ... 30
4.3 The Wasa Sensor Board .. 31
4.4 The Passive Infrared Sensor .. 32
4.5 Proposed context model .. 34

4.5.1 Alternative 1: Using a mobile Presence Watcher 34
4.5.2 Alternative 2: Using a Room Locator Service .. 35

4.6 Implementation ... 37
4.6.1 Test bed and development environment ... 37
4.6.2 IR-Reader for the iPAQ PDA ... 40
4.6.3 Light and temperature sensors .. 41

viii

4.6.4 Room status watcher ... 46
4.6.5 Room locator client ... 48
4.6.6 Room locator server .. 49

5. Trust Relationships & Media Redirection ... 52
5.1 Service Discovery using SLP .. 52

5.1.1 Provisioning service discovery ... 53
5.2 Establishing a Trust Relationship ... 54
5.3 Secure Media Redirection ... 55
5.4 Implementation ... 58

5.4.1 Test bed and development environment ... 58
5.4.2 Configuring OpenSLP .. 58
5.4.3 Implementing SLP UA for the iPAQ .. 61
5.4.4 Configuring SER ... 64
5.4.5 Implementing secure media redirection in Minisip 65

6. Evaluation and Discussion ... 69
6.1 Performance of the room locator client ... 69

6.1.1 Measuring performance of the client .. 69
6.1.2 Performance analysis for the locator client ... 73

6.2 Accuracy of the room locator server ... 76
6.3 Secure media redirection delay ... 79

7. Conclusion and Future Work ... 83
7.1 Goal Attainment .. 83
7.2 Conclusion .. 83
7.3 Future Work .. 84

References .. 86
Appendices ... 90

A. Useful tools used when developing application for Pocket PC 90
B. Connecting a Wasa board to the HP iPAQ PDA .. 91
C. Partial listing of the IRBeaconReader class. ... 92
D. Partial listing of the WasaBoardReader class ... 94
E. Partial listing of the RoomSubscriber class .. 96
F. Partial listing of the room locator client .. 101
G. Partial listing of the room locator server ... 104
H. Partial listing of the mobile SLP User agent ... 109
I. Partial listing sendAckWithSDP() method ... 116
J. OpenSLP configuration files (three files) ... 118
K. SER configuration file .. 121
L. Minsip configuration file for the iPAQ PDA .. 125

ix

List of Figures
Figure 1: Overview of our system ... 1
Figure 2: Service discovery using Jini .. 6
Figure 3: Relationship between SIP dialog and transaction .. 11
Figure 4: Format of SRTP packet [16] .. 15
Figure 5: Certificate configuration in Minisip .. 17
Figure 6: MIKEY configuration of Minisip .. 18
Figure 7: Digital signature generation and verification. ... 19
Figure 8: Policy based trust negotiation. (Adapted from [20]) ... 20
Figure 9: Message flow in a Presence System (adapted from [1]) .. 21
Figure 10: Event notification using context broker. (Adapted from [3]) .. 24
Figure 11: Third Party Call Control (3PCC) (Adapted from [4]) ... 26
Figure 12: Components of the context model ... 30
Figure 13: Cooltown IR beacon .. 31
Figure 14: Block diagram of the Wasa Board [35] ... 32
Figure 15: Wasa Board.. ... 32
Figure 16: The Velleman HAA52 PIR Detector ... 33
Figure 17: Waveform for the PIR sensor .. 33
Figure 18: Mobile Watcher based Context Framework .. 35
Figure 19: Room locator service based context framework .. 36
Figure 20: Installation of PIR sensors and IR beacons in the Wireless@KTH lab 37
Figure 21: Snapshot of the entrance of room 6340 ... 38
Figure 22: Components of the room locator service based context framework. 39
Figure 23: Comparison of pick wavelength for the MPY series LDR and human eye. 44
Figure 24: Relationship between luminance and resistance .. 44
Figure 25: LDR circuit for the Wasa board .. 45
Figure 26: The Room locator client application.. 49
Figure 27: Basic SLP Network [8] .. 52
Figure 28: SLP network with a DA [8] ... 53
Figure 29: Grouping services using scope .. 54
Figure 30: SRTP key derivation .. 56
Figure 31: Trust establishment and secure media transfer .. 57
Figure 32: Service Reply Message .. 62
Figure 33: Delay breakdown for the room locator client .. 70
Figure 34: Comparison of the room locater client delay. .. 72
Figure 35: Comparison of LDR readings from two Wasa boards ... 78
Figure 36: Comparing the LDR reading for various reference locations. ... 79
Figure 37: Call flow for redirecting media to a speaker service ... 80

x

List of Tables
Table 1: Security threats related to IP telephony[2]. ... 12

Table 2: Predefined security suites. .. 14

Table 3: Configuration and role of devices used in the test bed ... 40

Table 4: Basic AT commands supported by the Wasa board ... 42

Table 5: The room database table ... 48

Table 6: The room history database table ... 48

Table 7: Test bed for service discovery, trust negotiation, and secure media transfer 58

Table 8: Description of room locator delays ... 70

Table 9: Room locator client delay measurements. .. 71

Table 10: Scenarios for determining the accuracy of the room locator server 76

Table 11: Decision made by the room locator server for the four scenarios 77

Table 12: Delay measurements for media redirection .. 81

xi

List of Acronyms and Abbreviations
3PCC Third Party Call Control
ADC Analog to Digital Convertor
AES Advanced Encryption Standard
CA Certificate Authority
CE Compact Edition
CN Correspondent Node
DES Data Encryption Standard
IR Infrared
IrDA Infrared Data Association
MAC Message Authentication Code
MIKEY Multimedia Internet KEYing
PDA Personal Digital Assistant
PIDF Presence Information Data Format
PIR Pyroelectric InfraRed
PKI Public Key Infrastructure
PSTN Public Switched Telephone Network
PUA Presence User Agent
RFID Radio Frequency Identification
RTCP Real-time Transport Control Protocol
RTP Real-time Transport Protocol
S/MIME Secure /Multipurpose Internet Mail Extensions
SA Service Agent
SDP Session Description Protocol
SER SIP Express Router
SIMPLE SIP for Instant Messaging and Presence Leveraging Extensions
SIP Session Initiation Protocol
SLP Service Location Protocol
SPI Security Parameter Index
SRTCP Secure Real-time Transport Control Protocol
SRTP Secure Real-time Transport Protocol
TLS Transport Level Security
UA User Agent
URL Uniform Resource Locator
URI Uniform Resource Identifier
VCP Virtual COM Port
VOIP Voice Over Internet Protocol
WLAN Wireless Local Area Network
XML Extensible Markup Language

xii

1

1. Introduction
This thesis examines how to enable multi-media communication systems to adapt to a

user’s situation. The focus will be on the design, implementation, and evaluation of a context
aware secure Session Initiation Protocol (SIP) user agent [1; 2]. Depending on the user’s
location and the availability of multimedia devices, our user agent will enable users to
experience a better multimedia session without requiring the user to manually re-configure
their session. For instance when a user in an ongoing video conferencing session via their
Personal Digital Assistant (PDA) moves into a room having more powerful (or more capable)
input/output multimedia device, the user agent should be able to send video streams to a
network-attached projector while streaming the audio to network-attached speakers, and use a
high definition camera installed in the room for video input. The problem here is not
redirecting the media stream to different devices (as this is already demonstrated in previous
thesis project), rather the problem is to facilitate the discovery of devices and services
provided in a secure and transparent mechanism. Without knowledge of these multimedia
devices there is no way to transfer the media streams to these devices and without trust there
is no reason to believe that transferring the media streams to these devices is appropriate.

Figure 1: Overview of our system. As the user with a PDA moves into a room (a), the sensors installed on

the doorway sense that the user has entered the room. The incoming video steam which was
originally being displayed on the PDA will be transferred to a data projector and the sound will
be steamed to a high quality set of speakers. As the user leaves the room (b) the streams will be
redirected to the user’s PDA.

In order to understand the context of the user, we built upon a number of earlier thesis
projects conducted in the Department of Communication Systems here in KTH [3; 4; 5; 6; 7].

2

For example, we will use of the sensor system developed by Daniel Hübinette to sense the
occupancy of a room. His system, discussed in section 3.2, uses passive infrared detectors to
sense directional movement of a heat source. A SIP presence user agent publishes occupancy
information about this room to a context server. Interested applications can subscribe the
status updates and will be notified when the occupancy of the room changes. By using this
presence framework, our SIP user agent can learn that there is no one in the room, thus no one
should object if the audio and video outputs are migrated to the room’s audio system and
video projectors (see Figure 1). The determination that the user was the only person in the
room was possible because his or her SIP presence user agent differentiates between the
presence of zero, one, or more than one person in a room. However, it does not address the
problem of identifying the individuals in the room. In this case, it is important to recognize the
identity of the user who just entered the room so that his or her presence information can be
updated in the user’s context server. Note that here we have referred to the user's context
server as opposed to the room's context server. This distinction is important in terms of
maintaining the personal integrity of the user.

An alternative solution would to utilizing RFID (for example, via an RFID tag). Today
most individuals have RFID tags with them all the time. For example, the Stockholm Local
(SL) transit system has started distributing RFID enabled smart cards as transit cards and in
Trondheim city the bus operating company uses RFID enabled smart cards. Therefore an
alternative solution could use a sensor system that can read such tags and update the status of
the corresponding user using the unique serial number of the tag. Note that this requires a
mapping to be established between a RFID tag's serial number and a SIP URI (this URI could
identify the SIP proxy of a given user or another trusted third party who acts on behalf of this
user or potentially directly identifying the user). However, directly identifying the user is
fraught with many problems concerning the user's personal integrity. Alternatively, the room
could have the RFID tag and the user's device could be equipped with a RFID reader - thus
permitting the room to identify itself via a URI that can be used to get more information.

Once we are able to recognize the presence of the user, the next question will be how
our user agent learns about the devices and services around us. One solution could be to have
all details related to the address (URL), type of service, and availability information
preconfigured in the device. We envision our system enables a mobile user to have an
enjoyable user experience, thus when the user walks into the room the list of available
multimedia devices will be made available automatically. However, this requires either a
mechanism to register devices and services in a registry which is available via the network or
dynamic discovery of services via the user device’s network interface1. The Service Location
Protocol (SLP) is a service discovery protocol standardized by the Internet Engineering Task
Force in their request for comments (RFC) 2608 [8]. SLP utilizes three types of entities:
Directory Agent, Service Agent, and User Agent. Our main task regarding service discovery
will be to understand how this protocol can be used to dynamically discover devices and

1 Note that here we are assuming that the device is not doing the discovery via some other means such as

reading RFID tags, scanning for bar code or other visible markers, etc.

3

services that are available to the user and to develop and evaluate a prototype to verify the
design choices made.

The above scenario clearly raises a number of questions regarding trust. For example,
how does the user know the devices and services being made available to them are devices
and services that they can trust and not some rogue device that would like to eavesdrop their
conversation or even worse a malicious service? We will examine various existing trust
negotiation mechanisms [9; 10]. The trust model to be proposed should enable a user agent to
dynamically build trust in devices that it has never used before without requiring the user to
do significant manual configuration2. Obviously, it is important to support different levels of
trust, ranging from not trusted, partially trusted, and trusted. Additionally devices and services
can move up in the trust hierarchy as the user over time agent builds up confidence in the
service. However, it is equally important to understand that the scope of trust we are trying to
achieve has rather limited scope. This is practical since our system shall be used in a smart
home and office environment, where the rate of exposure to new unknown devices or services
is relatively low. Therefore instead of using complex trust negotiation and reasoning
techniques based on distributed policies and ontology, we will be interested in a simple but
sufficiently secure trust negotiation model.

The rest of the project is organized as follows. Section 2 will summarize the basic
concepts and technologies which serve as a foundation for our work. Section 3 will present
summery of related works previously conducted in the area of context-aware computing and
multimedia communication. In section 4 will start by presenting the requirements of our
context-aware framework and continue by discussing various design and implementation
issues related to the framework. Section 5 will present the proposed device discovery, trust
establishment and media redirection mechanism. Section 6 will present the results obtained
when evaluating the context aggregation framework and the media redirection technique
followed by detailed discussion of the findings. Finally section 7 will finalize this report with
concluding remarks and recommendations for the future.

2 Ideally the user should only need to specify a general trust profile once - with the option in specific

cases to say: Do not use that device or service again.

4

2. Background
In this section we summarize basic concepts and technologies which we believe are

valuable to our research. A critical analysis of the related work done will follow.

2.1 Context Aware Computing
Context aware computing refers to systems that sense and react based upon their

environment. Such systems may provide customized service with minimal user interaction
based upon context information sensed from the environment. It is important to understand
that the kind of information that can be considered as part of this context depends on the
application and can take may different forms. As discussed by Dey [11], initially context
awareness was perceived to be the user’s location. However, systems that can take various
aspects of the user’s context including voices, light levels, weather conditions, presence of
people around us, availability of computing resources and network connectivity,
communication cost, and bandwidth have been developed. Thus it is clear that a general
model to support context aware systems is both useful and necessary.

The survey by Bolchini, et al. [12] provides a data driven comparison of several general
purpose models. In this survey sixteen different frameworks are compared based on aspects
such as location, time, previous context history, user profile, and so on. The survey also
assesses the way each of these models build, manage, and exploit context. Although it is
necessary to have a general framework with which application developers can build context
aware systems, it has been impractical to aim for a model which will fit every application
domain. Instead the most practical approach is to consider using a model that fulfills the
primary design goals with appropriate adjustments. In the design phase of our thesis we will
identify an appropriate model that meets the requirements of our context aware SIP user
agent.

2.2 Dynamic Service Discovery
Dynamic service discovery enables potential consumers of a service to dynamically

discover a service that matches a required service description exists and to learn how to
communicate with this service. In mobile computing an intelligent way of discovering
services has a special value as the available services change with location and the lifecycle of
services (i.e., new services are created, fielded, operate, and are terminated). For instance
someone who just moved into a new office should be able to issue a print request that requires
the use of a color printer, which can print 14 pages per minute and is within a reasonable
distance of the user. Additionally, it should be possible to utilize such a printing service
without being required to configure and install every printer in the whole building into the
user’s device(s).3 Consider a mobile SIP user agent which is able to utilize available
multimedia devices such as projectors, speakers, and cameras in a room without manual
configuration. Our major task related to service discovery will be to analyze some of the

3 For an example of such a service, see the work of Athanasios Karapantelakis [53].

5

existing protocols and technologies and implement and evaluate our choice of a service
discovery mechanism in our user agent. In the following subsections we summarize some of
the candidate technologies considered in our project.

2.2.1 Universal Plug and Play (UPnP)
UPnP is a standard based upon existing networking protocols designed to provide

seamless installation and configuration of devices in home and office environments. The
UPnP Forum is responsible for developing and maintaining the standard. This forum has more
than 875 members (including major hardware, operating system, and application vendors).
UPnP uses established networking protocols and technologies (specifically TCP/IP, UDP,
HTTP, and XML) to connect computers, home appliances, and wireless devices together [13].

Every device in UPnP is identified using an IP address and should implement a DHCP
client to obtain an IP address dynamically. When a new node joins the network it starts by
advertising its services to a special node called a control point. Similarly when a new control
point joins the network it starts by looking for devices around it. All UPnP messages are
formatted in an XML based device template. This template specifies the capabilities of the
device. Once a control point learns about the capability of the device, it can send queries to
obtain more details about the device or can subscribe for status updates of the device or its
services. Often the control point can present all the details and status updates of the devices
using a graphical user interface viewed in a browser.

It is important to understand that such a graphical user interface is not suitable for our
requirement, as we do not want the user to have to manually configure their device in order to
make use of at least specific subclasses of multimedia devices (projectors, speakers, cameras,
etc.) via their SIP user agent.

2.2.2 Jini
Jini is another technology for discovering services in a distributed computing

environment. This technology was originally developed by Sun Microsystems and now it is in
an incubation period to be passed to the Apache Software Foundation under the name River
[14]. Jini is based on Java and provides a device discovery service based upon Java Remote
Method Invocation (RMI). Jini not only provides service discovery, but by providing a set of
Java methods to utilize the service it provides increased functionality by allowing applications
to utilize resources distributed over a network as if they were installed locally. However, to
utilize these methods requires that the device that wishes to invoke these methods have a Java
virtual machine in order to execute the method(s). It should be noted that many people believe
that this also means that the device offering services also needs to implement a JVM;
however, this is false - as it simply needs to know how to implement the Java RMI and the
service could be implemented in any language that the service creator wishes to use.

A Jini network includes three type of entities: clients, (one or more) servers, and a
lookup service. A node that wishes to offer a service starts by discovering the lookup service,

6

which is used to register the service to be provided in the logical Jini network.4 If a lookup
service is available, then the node wishing to register the service will obtain a Service
Registrar object by which it can register its services. The clients follow a similar discovery
procedure to obtain a Service Registrar object. Subsequently the client can request the lookup
service to search its list of registered services based on name, type, or description of a service.
Upon finding a match the lookup service returns a Java proxy enabling the client to directly
connect to the server. The communication between the three entities is enabled by using Java
serialization to transport Java objects between Java virtual machines.

Lookup Service

ServiceClient Communicates with the service via proxy

Client downloads proxy

object fo
r service

Find Service Service Discovers and

Register with the

lookup service

Figure 2: Service discovery using Jini

Chen and et al., [15] give a critical evaluation of Jini in the area of mobile computing
environment. The major weakness identified is using Java class interfaces for matching
service requests. This approach is also poor for representing complex service descriptions. It
turned out to be difficult to represent service requests using the interface based syntax and a
better solution would utilize a more flexible way of representing services using XML making
the look up process more adaptable. Because our system requires more flexible querying
mechanism, Jini is not an ideal solution for our service discovery problem.

2.2.3 Service Location Protocol (SLP)
SLP [8] introduces a dynamic service discovery protocol that can be used by devices in

an IP network. It allows hosts to discover devices and services without prior configuration.
The protocol specifies three entities: Directory Agent (DA), Service Agent (SA), and User
Agent (UA). The Service Agents advertise details of available services to interested user
agents. Directory agents can be used to increase scalability by allowing service
advertisements from service agents to be stored so that interested user agents can perform a

4 Note that we said the "logical Jini network" as it is the ability to access the lookup service that defines

this network - not the physical network.

7

lookup using a DA rather than having to learn about all the SAs by itself. A SLP UA issues
Service Requests on behalf of a client application. These service requests can either be
multicast to SAs or unicast (if the UA knows a DA in the network). In both cases, the UA
receives a service reply which it can use to contact the service. In order to lookup a service or
register new services both the UA and SA need to know of a DA. This is done by
broadcasting or multicasting5 a service request, in response an active DA (or an SA) will
reply with service reply. It is important to note that the presence of a DA is optional - as it is
possible to use SLP simply with SAs and UAs.

Every service on the network is identified using a URL for example, the URL
service:printer:lpr://myprinter/myqueue describes a printing service provided by a printer
named myprinter that uses the Line Printer Remote (LPR) protocol. Optionally URL services
can have any number of attributes specified using a name-value pair. These attributes will be
used to describe the details of the service and can be used by the user agents when issuing a
service request query. SLP allows grouping of services based on location, administrative
structure, or proximity in network topology. If required user agents can be assigned to a given
scope; in which case they will only be able to discover services in their scope [8]. It is also
important to note that SLP URLs can include IP addresses rather than names - so the network
infrastructure does not need to have an available DNS server.

In this project we demonstrate, how one can easily implement a simple SLP UA. The
SLP UA is incorporated inside the SIP UA to allow us dynamically discover services and
devices in the room (see section 5.4.3). The choice of SLP as a dynamic service discovery
protocols is based on the fact that SLP is intended to function within a network under
cooperative or personal administrative control. SLP relies on networking features such as
multicast routing, organization of clients and services in to a group, and implementation of
security policies, all which are not suitable for a global scale deployment. However, our
system is intended to be used in a home or office environment where such administrative
control is readily available, making it easy to realize SLP functionality. Furthermore,
compared to other dynamic service discovery protocols SLP provides more flexible service
queries - using LDAPv3 predicate logic [8].

2.3 Session Initiation Protocol (SIP)
SIP is a signaling protocol used to establish, modify, and teardown a multimedia

communication session over the internet. SIP was initially developed by IETF’s Multiparty
Multimedia Session Control (MMUSIC) working group, and then taken over by IETF’s SIP
working group [16]. Currently RFC 3261 describes the core functionalities of the protocol [1].
The protocol was designed with the intention to add signaling and call setup functionalities to
an IP based network. Although these functions have long been present in the traditional
Public Switched Telephone Network (PSTN) systems, a significant difference between a SIP
based multimedia system and the PSTN is due to their extreme difference in design
principles. PSTN networks the use Signaling System 7 (SS7) protocol for call setup and call

5For IPv6 a set of multicast group IDs are defined and broadcast only SLP configurations are not

supported under IPv6.

8

processing. SS7 is a centralized approach and requires complex and intelligent equipment in
the core network, and allows dumb terminals at the end points. Whereas SIP builds upon the
basic internet principles, where the network is dumb and the end-points have significant
computing capabilities

The fact that a SIP network places all of the computationally intensive operations at the
end-points enables us to achieve high scalability; while at the same time delivering a wide
variety of end-to-end services. The success of SIP can be seen in its usage in various
multimedia communication systems - including voice and video conferencing, presence
applications, instant messaging, collaboration applications, and file sharing systems.

In order to realize all these services, SIP utilizes various other protocols. It is important
to note that SIP is only meant for the signaling portion of a multimedia communication. SIP
uses a separate protocol called the Session Description Protocol (SDP) for describing the
media content of the session to be established. Information including the IP address, port
number, and the type of CODEC to be used for each media stream is included in the SDP
embedded in the body of the SIP messages. SDP introduces a negotiation scheme between
endpoints in order to agree upon a common media type and format - with available CODEC.
In the traditional PSTN network such flexibility is not available as user terminals do not have
the ability to negotiate what media types, formats, and CODECs to use. As a result the PSTN
generally offers only a very limited set of services to the end-points and these services
generally have a fixed quality (in fact, the emphasis of the PSTN has been on guaranteeing a
fixed QoS).

 In this thesis SDP’s ability to efficiently redirect an ongoing SIP session to a different
terminal will be exploited. More specifically, we will investigate the approach suggested by
Oscar Santillana in his master’s thesis (see section 3.3 on page 24). A careful investigation of
this approach along with other alternatives will be conducted in order to find an efficient
media redirection scheme. Note that media redirection is a central element of this thesis
project as we wish the user to easily be able to exploit local input/output devices without
requiring extensive manual configuration - hence requiring the user to initiate or receive a
new session is not acceptable.

Based on the agreed media type, format, and CODEC the Real-time Transport Protocol
(RTP) [17] will be used to carry the actual media content. RTP encapsulates audio and video
samples along with a sequence number, timestamp, and an information about the media
sources (this additional information is included in the RTP header [2]). RTP can use statistical
feedback provided by the RTP Control Protocol (RTCP) [17] to adapt the quality of the media
stream to network conditions. RTCP periodically transmits control packets containing
information about the stream (including bytes sent, lost packets, jitter, and roundtrip delay)
which can be used by the receiver to enhance the quality of the multimedia stream or used by
the sender to adapt its transmission of a multimedia stream.

2.3.1 Components of a SIP network
A SIP network consists of SIP user agents and a variety of SIP servers. Each of these

will be described below.

9

SIP users are addressable entities that participate in SIP sessions. Users are identified
with a Universal Resource Identifier (URI), similar in format to an e-mail address. A SIP URI
has the general form sip:name@domain:port where name is the name of the user; domain is
the fully qualified domain name of the user’s proxy server, and port is the port number where
the proxy server is listening for a connection (the default is 5060). A SIP URI can also be
used to address users with an E.164 phone number. For example, the URI of the form
sip:+46-700-680-137@gateway.com may refer to a voice mailbox of a user. However, in
order to use E.164 phone numbers a simple DNS lookup is done to find the address of the
gateway between the SIP network and the PSTN that is associated with this E.164 number.
The DNS query can return a variety of answers ranging from the IP address and port number
of a media gateway to a new URI that is to be used.

SIP user agents (UAs) are end-points used for sending and receiving of SIP messages.
User agents can be either implemented in hardware (for example, a dedicated analog
telephony adapter, a SIP phone, or similar device) or as a soft-phone running on a general
purpose computer or handheld device. Alternatively SIP user agents can also be implemented
as a gateway to another network; for instance as a gateway to a PSTN network. SIP user
agents have two basic functions: initiating SIP requests and receiving and responding to
requests. The part of the user agent that generates requests is called a user agent Client (UAC)
and the component that responds to requests is called a user agent Server (UAS).

Each SIP user agent requires at least one valid IP address (usually obtained from a
DHCP server).The UA should be able to resolve domain names using a DNS server, and so
on. Users of SIP systems, with a fully qualified URI, are associated with a user agent upon
registering with their registrar server (see below). The user agent will be able to receive an
incoming invitation to a SIP session once its current location is known to the registrar server.
It is important to note that the called user's SIP proxy can be used to implement the callee's
call preferences; thus these preferences can be processed before the user's UAS is actually
contacted.

In this thesis we will use the Minisip [18] user agent both for handheld devices and for
stationary systems. Minisip is an open source SIP user agent being developed at KTH
(together with others). It is written in C++. Minisip is ideal choice for our project for number
of reasons. It has been developed in a research environment where the main focus has been
providing end-to-end security; hence implementations for TLS, SRTP, MIKEY, and other
security protocols are provided. Ports of Minisip to different platforms include the HP iPAQ
PDAs, Microsoft's Windows XP, and a variety of Linux, and UNIX systems. Appropriate
extensions of functionality will be investigated to incorporate dynamic service discovery and
media redirection techniques along with security solutions to be able to build trust
relationships with devices near the Minisip user agent.

Although SIP user agents can communicate in a peer-to-peer manner, it is convent to
use a central network element to help user agents to easily setup SIP sessions. A SIP proxy is
such an entity, as it helps route a SIP user agent’s requests to the destination user agent.
Incoming invitations to a user agent to join a session are forwarded to the destination user
agent according to the preferences set earlier by the user. Besides introducing a great deal of

10

flexibility in the overall system, SIP proxies also provide a mechanism to perform a number
of security functions, such as authenticating user agents and authorizing services to the users.

A redirect server is a user agent server that responds with 3xx messages for each
request it receives. Upon receiving such a response the originator of the request will make a
new request using the SIP URI received in the 3xx message. The main reason for utilizing
redirect servers is to reduce the load on proxy servers, which otherwise are responsible for
routing SIP requests.

In order to receive incoming session invitations SIP user agents must register their
contact information with a registrar server. This is done by sending a REGISTER request to
a registrar server. The registrar server uses a location server to store the contact information
associated with a SIP user. Note that what it is actually storing is a Fully Qualified Domain
Name (FQDN) or IP address that can be used to contact one or more SIP user agent servers.
Thus one has to be careful about the use of the term location as the registrar need not know
the physical coordinates of a user agent.

In a SIP network a location server provides a database that can be used to store
information related to users’ contact information, IP addresses and port numbers. SIP user
agents do not directly access this information; rather it is updated and retrieved though their
respective proxy and registrar servers. The interaction with the location server is not defined
in the SIP RFC and is done using a non-SIP protocol. In the case of this thesis project, the SIP
Express Router (SER) will be configured to use a MySQL server for storing all the
information related to user preferences and their registered locations [19].

2.3.2 SIP Dialogs and Transactions
It is sometimes confusing to clearly differentiate between SIP dialogs and transactions.

It is important to understand the difference in order to correctly implement the session transfer
mechanism presented in section 5.3.

• Dialog: A dialog (previously called a call leg) represents a peer-to-peer
relationship between user agents that persist for some time. It is used to properly
sequence message proper routing of requests between these peers6. A dialog is
identified using a dialog identifier consisting of a Call-ID, a local tag, and a
remote tag. A dialog is created when a request gets a non-failure, final response
(2xx and 101-199 responses with a “To” tag). If a request gets a non-final
response, it is considered as an early dialog.

• Transaction: represents a set of messages between peers, starting from a
request from a client to a final (i.e., non 1xx) response from a server. As shown
in Figure 3, an INVITE transaction includes the INVITE, 180 Ringing and 200
OK messages. Note that if an INVITE request gets a final response, then the
ACK is considered as separate transaction. We can also observe that a set of

6Note that SIP requests can also be processed outside a dialog, in which case the individual requests will

establish a dialog.

11

transactions can be part of a dialog. The main purpose of maintaining state about
transaction is to properly deliver requests to the Transaction User (TU). For
instance a client transaction is responsible for receiving responses, filtering out
retransmissions and delivering it to TU.

Figure 3: Relationship between SIP dialog and transaction

2.3.3 Real time Transport Protocol (RTP)
RTP is an application layer protocol that is designed to provide real-time transport of

audio and video data over an IP network [17]. Majority of RTP implementations are based on
UDP instead of TCP. This is because multimedia applications require timely delivery over
reliable delivery. The latency involved in establishing connection and retransmitting missing
packets makes TCP unsuitable for real-time transport. Instead, RTP uses UDP and adds
various functionalities such as sequencing of packets, jitter control and error concealment for
lost packets.

RTP is used with Real-time Transport Control Protocol (RTCP) [17]. RTCP provides
out of band control information for RTP stream. The primary function of RTCP is to provide
a feedback on the quality of service of the media stream by periodically sending statistical
information to the session participants. RTCP report includes information such as transmitted
packet counts, lost packet counts, jitters, and round trip delays. Applications use this
information to control transmission behavior by adjusting flow rates or changing CODEC
used.

2.4 Secure Multimedia Communication
When using SIP based IP telephony, very few users pay attention to security. Compared

to Public Switched Telephone Network (PSTN) based telephony systems, SIP based systems
suffer from numerous security concerns. These concerns are not a result of flaws in SIP or
other supplementary protocols; but because of the availably of wide selection of tools to

12

perform serious attacks on an IP network. The following are a list of some of the security
concerns that are straight forward to apply to a SIP based system; therefore one must consider
the appropriate counter measures.

Table 1: Security threats related to IP telephony and corresponding protection mechanism [2].

Threat Description Protection Mechanism

Session Hijacking User dials a SIP URI, but
actually establishes a session
with another user.

Authentication of signaling.

Registration Hijacking Incoming calls to a user are
diverted to a third party.

Integrity protection of
registration.

Impersonation A third party impersonates
another user in a session.

Using enhanced SIP Identity

Eavesdropping on signaling A third party tracks and records
with whom a user is
communicating with by
monitoring SIP messages.

Using TLS

Eavesdropping on media A third party tracks and records
media streams

Using SRTP

Session disruption Calls to or from a user disrupted
after they are established.

Integrity protection of signaling.

Denial of service Calls to or from a user are
prevented.

IP, SIP and RTP layer traffic
management using various
techniques.

2.4.1 Secure Signaling
In order to prevent some of the threats described above, SIP utilized various techniques

of providing confidentiality and integrity protection. Instead of defining a new a security
mechanism, SIP utilizes existing security protocols operating in different layers. Below we
describe some of the widely used techniques.

2.4.1.1 Using network and transport layer security

In order to provide network layer security we can use IPSec. IPSec is commonly used in
architectures consisting of hosts that are in an administrative domain where there is an
existing trust relationship with one another. IPSec is usually implemented in the host
operating system or on a security gateway to provide confidentiality and integrity protection
of all network traffic on a particular interface [1]. This means IPSec security has not direct
interaction with SIP network elements like user agents, proxy, and registrar servers. This
makes IPSec ideal for network architectures where introducing a security mechanism to these
SIP entities is not desirable.

Transport Level Security (TLS) on the other hand provides a transport layer security for
SIP messages. In comparison to IPSec, TLS is suitable when there is no preexisting trust

13

relationship between two hosts. In a situation where two user agents do not have an existing
trust relationship, TLS can be used to establish a hop-by-hop security using digital certificate
chain. Once TLS connection is established, all the SIP messages will be confidential and
integrity protected. However, it is important to understand that TLS can only prove hop-by-
hop security, thus a user agent that sends request using TLS cannot be assured that TLS will
be used end-to-end. For this purpose the secure SIP URI (sips) is defined. By using sips, all
the requests made by the user agent are granted that all intermediate hops will use TLS. One
exception is the last hop of the request, which could be protected using some other means (for
instance IPSec or some lower layer security).

2.4.1.2 Using S/MIME

S/MIME is an alternative solution used to provide end-to-end security for SIP messages.
S/MIME uses public key infrastructure to provide confidentiality and integrity protection of
the SIP body [1]. A user agent that uses S/MIME encrypts the body of its SDP using the
public key of the end user. In order to provide integrity protection the digital signature of the
SDP is attached to the SIP message.

2.4.2 Media Security
The security measures discussed in the previous section provide protection for the

signaling portion of a multimedia session. The RTP media (carrying the content in the
session) can be protected using a separate protocol called Secure RTP (SRTP) [20]. SRTP
provides privacy, authentication, and replay protection for the media stream. The detail of
each of these is described below.

2.4.2.1 Encryption of RTP stream

SRTP uses AES (Advanced Encryption Standard) to encrypt/decrypt RTP packets. AES
can be used with various key and block sizes. In SRTP a 128 bit block is encrypted with a 128
bit key. In order to encrypted larger block size, two7 modes of operation - Segmented Integer
Counter Mode and f8-mode are used. Table 2 presents the predefined security suites for both
modes of operation and the corresponding key length. When used in counter mode, the key
stream is generated by encrypting successive integers as follows.

KS ൌ EሺKe, IVሻ || EሺKe, IV ൅ 1 mod 2128ሻ || EሺKe, IV ൅ 2 mod 2128ሻ
Where Ke is the encryption key, E() is the AES encryption function, and (IV) is

calculated as follows

IV ൌ ሺks * 216ሻ ሺSSRC * 264ሻ ْ ሺi * 216ሻ
Where ks is the session salting key, i is the SRTP packet index and SSRC is the

synchronization source. In this mode encryption is based upon XORing the RTP payload with
the generated key stream.

An important point to note here is that reuse of the keystream must be avoided. If a
keystream is used more than once a trivial attack as shown below can be realized easily.

7 SRTP has a third cipher mode called NULL Cipher, which provides no encryption (i.e its output is

identical t the input payload)

14

C1 ൌ KS ْP1
C2 ൌ KS ْ P2

Where C is cipher text, KS is the key stream and P is the payload. The attacker can
compute:

C1 ْ C2 ൌ ሺKS ْ P1ሻ XOR ሺKS ْ P2ሻ ൌ P1 ْP2

Now if the attacker can decrypt C1, P2 can be obtained as follows,

P1 ْ ሺP1 ْ P2ሻ ൌ P2
It is due to this problem that the SRTP RFC mandates that, a key stream generated from

the same index and key must never be used more than once. By including the packet index
when computing the IV, SRTP generates a unique keystream per packet. Furthermore, SRTP
allows sharing of the master key across different streams belonging to the same RTP session
by including the SSRC in IV calculation.

The f-8 mode of operation uses the f-8 mode originally defined for data encryption in
Universal Mobile Telecommunications System (UMTS) systems. This mode of operation is
based on Output FeedBack (OFB) mode, where the output of each encryption block is feed as
an input into encryption of the next block. It uses AES as a block cipher with the same block
and key size in the counter mode described above. More detail about this mode of operation
can be found section 4.1.2 of the SRTP RFC [20].

Table 2: Predefined security suites.

Suite Name Encryption Key
length(bits)

Authentication
Key Length(bits)

AES_CM_128_HMAC_SHA1_80 128 80

AES_CM_128_HMAC_SHA1_32 128 32

F8_128_HMAC_SHA1_80 128 80

2.4.2.2 Authentication and Integrity Protection of RTP packets

The above method provides confidentiality for the media stream, but it does not prevent
the attacker from forging RTP packets. SRTP provides a mechanism to authenticate
individual packets thereby maintaining the integrity of the media stream. This is done by
using a keyed hash function called HMAC-SHA1. The hash value is computed with the
authentication session key (ka) and a portion of the RTP header and the payload as shown
in Figure 4. The HMAC-SHA1 produces a 160 bit output which is truncated to become 80 or
32 bit authentication tag appended to the SRTP packet by the sender. The receiver will
compute the hash value similarly and verify if the authentication tag matches value computed
locally. If it does, then the packet will be sent out for play out, otherwise it will be dropped.

15

Figure 4: Format of SRTP packet [20]

2.4.2.3 Replay protection

With message authentication in place, the attacker cannot spoof the media stream.
However, an adversary can still capture SRTP packets and re-inject these packets into the
network later. For the victim to successfully play out the replayed packet the replayed packet
should be re-injected before the authentication session key is renewed, otherwise the
authentication would fail. SRTP provides a solution to avoid a replay attack. The receiver
keeps track of the last few sequence numbers that have been played out. Typically this will be
done by using a sliding window of an acceptable range of sequence numbers. Any value less
than this range will be assumed to be replay attempt and will be dropped. An important point
to note here is that this replay protection works only if authentication is enabled. Otherwise
the attacker will be able to spoof the sequence number without being noticed by the replay
protection mechanism.

2.4.3 Key Exchange
In order to provide end-to-end security, the communicating entities must agree upon a

cryptographic keys and parameters. This is done by using key exchange protocols. In this
section we will present two key exchange mechanisms used in this thesis project.

 0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

1
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

 V=
2

P X CC M PT Sequence number

A
u
t
h
e
n
t
i
c
a
t
e
d

 Timestamp

 Synchronization source(SSRC) identifier

 Contributing source (CSRC) identifier
...

 RTP extension (OPTIONAL)

Payload

E
n
c
r
y
p
t
e
d

 RTP padding RTP pad count

 SRTP MKI (OPTIONAL)

 Authentication tag (RECOMMENDED)

16

2.4.3.1 Multimedia Internet KEYing (MIKEY)

MIKEY is a key management solution that is used to exchange keys and related security
parameters used to secure a real-time multimedia session. A single master key exchanged will
be used to derive session keys (collectively known as TEK - Traffic Encrypting Keys) used
for encrypting and integrity protecting the media stream. Although MIKEY is a general key
exchange protocol, it has some features which make it ideal choice for real-time
communication systems (both for unicast and multicast scenarios). Compared to other similar
key management protocols (for instance Internet Key Exchange - IKE), MIKEY has lower
latency making it suitable for real-time communication systems [21].

The central goal of MIKEY is securely exchanging the master key also called the TGK
(TEK Generating Key). Therefore in order to exchange the TGK between the participants, the
MIKEY messages8 need to be encrypted and integrated protected. RFC 3830 [21]defines
three different methods of securely transporting TGK using pre-shared key, public-key
encryption, and Diffie-Hellman key exchange. In this thesis project MIKEY using Diffe-
Hellman key exchange is used to establish a secure session between the correspondent node
and the mobile node.

2.4.3.2 SDP Security Descriptions for Media Streams

A new media level SDP attribute called crypto attribute is defined to provide a
mechanism to exchange key material and other security parameters for SRTP. It is used to
agree upon a cryptographic suite, key parameters, and session parameters using either a single
message or round trip exchange [22]. In contrast to MIKEY, this approach is designed
specifically for SRTP. Furthermore, the crypto attribute is only meant to establish security
context in a unicast scenarios, where as MIKEY could be used for both and unicast and
multicast cases. Syntax of the crypto attribute is given below.
 a=crypto:<tag> <crypto-suite> <key-params> [<session-params>]

The tag is an identifier of specific crypto attribute. The crypto-suite is used to identify
the encryption and authentication algorithm to be used for SRTP. An example crypto-suite is
AES_CM_128_HMAC_SHA1_80, which uses AES in counter mode for encryption and
HMAC with SHA1 for authentication. The key-params field provides the keying material to
be used for the crypto-suite. It is base64 encoded octet string concatenation of the master key
and the master salt used for SRTP. The session-params field is used to specify the parameters
like lifetime of keys and Master Key Index (MKI) number of SRTP packets.

Because the keying materials are carried inside the SDP message, this approach can
only be used if the SIP signaling is protected. Thus the crypto attribute will be used when the
SIP messages are confidential and integrity protection is provided using either S/MIME or
TLS as described in section 2.4.1. In our project the crypto attribute is used to transfer the
master key from the mobile node to the local node as presented in section 5.4.5.

8 MIKEY is a general protocol and it does not define which SIP messages will embed MIKEY messages.

17

2.4.4 Minisip support for security
Minisip [18] is an open source SIP user agent developed in KTH. The most attractive

feature of Minisip is its support for security. It implements TLS to secure the signaling and
SRTP for protecting the media stream. For key management Minisip implements the verities
of MKIEY using pre-shared key, Diffie-Hellman key exchange, and certificate based
encryption (see Figure 6). In order to use the last two options of MIKEY and TLS, the user
agent must be configured with security certificates. Minisip supports X.509 certificates from
both trusted Certificate authorities (CAs) as well as self-signed certificates. The screenshot
in Figure 5 shows the configuration of a personal certificate chain for Minisip running on a
Linux machine. For the iPAQ PDA there is no such a graphical user interface and this
configuration is done using a configuration file (see Appendix L)

Figure 5: Certificate configuration in Minisip

18

Figure 6: MIKEY configuration of Minisip

2.5 Trust Relationships
Due to various security concerns, it is important to establish an appropriate degree of

trust between two entities before they attempt to perform an online transaction. On the
internet today various services require two strangers to meet for the first time and conduct a
business transaction. Such transactions could involve online purchases, access to confidential
information, and, participating in a multimedia session. For these systems to function properly
the participants must perform mutual authentication in order to make sure that they trust each
other.

When properly implemented digital signatures gives the receiver sufficient reason to
believe that the message was sent by the claimed sender. Compared to a handwritten
signature, a digital signature are more difficult to forge. Digital signatures use a public key
cryptography algorithm (sometimes called an asymmetric key algorithm). The distinguishing
technique used in public key cryptography is that the key used for encryption is not the same
as the key used for the decryption. Each user will have a cryptographic key pair – a so called
public and private key. The private key is kept secret and is only known by the owner. In
contrast, the public key is not a secret at all and can safely be widespread to allow easy public
access. Messages are encrypted using the recipient’s public key and can only be decrypted
using the corresponding private key. The security of public key cryptography relies on the fact
that the two keys are mathematically related in such a way that the private key cannot be
feasibly be derived from the public key.

In order to digitally sign a document, a one way hash functions are used to compute a
fixed size representation of the entire document. Examples of hash functions used for digital

19

signature include MD5, SHA-1, and HAVA. The signer uses his/her private key to encrypt
the hash value. To encrypt the message asymmetric cryptographic algorithms such as RSA
and DSA can be used. This encrypted hash value is what we call the digital signature. Before
sending the signature to the verifier, the sender can attach a digital certificate signed by a
trusted third part (usually a trusted Certificate Authority - CA) proving that the included
public key belongs to the claimed identity (see Figure 7).

Upon receiving the digitally signed document, the verifier performs the exact reverse
operation performed during signature generation. It uses the public key to decrypt the
signature, which reveals the hash value encrypted by the sender. The receiver also computes
the hash value of the message to be verified and compares it with the hash value obtained
after decryption. If the two values match, then the verifier can be sure that the message was
sent by a trusted individual (more specifically by someone who is in the position of the
private key)

Figure 7: Digital signature generation and verification.

2.5.1 Policy based trust negotiation
Trust negotiation systems utilize digital signatures to verify the identity and other

attributes of both users and services providers. In client-server architecture mutual trust
between participating entities can be built up by exchanging digital credentials before access
to services is granted. However, when the credentials themselves contain sensitive
information, for example credit card information and medical information, certain
requirements must be meet before an entity should disclose his/her credentials. In this case a
Credential Access Policy (CAP) related to every credential can be required. A CAP describes

20

the set of preconditions that must be fulfilled by the requester of the credential before it can be
disclosed [10].

TrustBuilder [23] is a research project at University of Illinois at Urbana-Champaign
trying to investigate different way of building trust by using access policies and digital
credentials. Figure 8 shows trust negotiation taking between a service provided by Bob
(certified by a trusted third party, here assumed to be the Better Business Bureau (BBB)) and
a user Alice (who possess a VISA credit/debit card). The negotiation starts when Alice
request access to Bob’s service. Bob replies with a policy guarding his service.

Figure 8: Policy based trust negotiation. (Adapted from [23])

Bob’s service policy states that Alice must have a VISA card so that she can be billed
for the service. However, Alice’s CAP says that she will not disclose her VISA card
credential unless she is sure that Bob’s service is certified by BBB. Upon receiving Alice’s
CAP Bob will send his BBB credential to Alice. Once Alice has verified Bob’s credential, she
can send her VISA card credential knowing that Bob's service is vouched for by a trusted
third party (i.e., the BBB). If Alice’s credentials are found to be genuine, then Bob will grant
her access to his service.

Such policy based trust negotiation models allow participants protect their sensitive
credential information. The trust negotiation model presented here can easily be incorporated
into existing systems because we can utilize the existing Public Key Infrastructures (PKI)
functions that are already built in to various systems. For example, Minisip now supports
X.509 certificates (see section 2.3.2); hence we may be able to integrate CAP into our trust

21

negotiation model. However, more in-depth investigation need to be performed in order to
understand the usability and efficiency of the model in real world scenarios.

2.6 Presence and Instant Messaging
Using presence and instant messaging enables more pleasant and effective

communication compared to traditional telephone communications. In a traditional telephone
system there is no convenient way of determining the status of the called party before actually
making the call. If the user is not available to receive the call, the call will end up in their
voice mail or may not be connected at all. In a voice over IP (VoIP) system presence
information enable us to determine if the desired party is available online and is ready to take
part in the communication. By using user agents that support presence information, user can
set their current status and indicate their preferred contact mechanism.

SIP for Instant Messaging and Presence Leveraging Extensions (SIMPLE) is an
extension of the SIP protocol to support presence and instant messaging. SIMPLE provides an
event based notification mechanism using SUBSCRIBE and NOTIFY messages. SIP user
agents can either use an end-to-end mode where the user agents themselves handle the
presence information or the presence user agents can update a presence server in a more
centralized approach. In the latter case, a presence agent will receive subscription information
from watchers. Then applications interested in status updates will receive notifications as the
status information is updated by a presence user agent. Figure 9 shows a watcher that
subscribes to a status change of the presence user agent. The presence agent will notify the
watcher when status change occurs using PUBLISH messages sent from the presence user
agent.

Figure 9: Message flow in a Presence System (adapted from [1])

The actual presence information carried in the SIP messages is a well formatted XML
document. RFC 3863 [24] defines the structure of this document in a format called Presence
Information Data Format (PIDF). Important issues when using centralized presence systems

22

are the questions of privacy and user integrity. Therefore, user agents should have some
control of who can subscribe to their presence information. A standard protocol called XML
Configuration Access Protocol (XCAP) [25] is used to enable clients to manage their presence
information. The XCAP protocol, implemented as a server daemon, allows user agents to
access their presence information as stored in the presence server (in XML format) using
HTTP. This means that a SIP user agent can set various access policies regarding their
presence information. A human SIP user could do this using a web browser.

This kind of subscription based event notification architecture used in SIP is valuable
when building context aware systems. Here at Wireless@KTH several master’s thesis
projects have exploited this architecture in building sensor systems [3] and, intelligent home
and office applications [7]. We plan to utilize the lessons learned from their earlier work when
designing and implementing our system. In the next chapter we summarize some of these
projects done in the department and critically analyze how they can be incorporated in or
leveraged by our project.

23

3. Related Work
3.1 Exploiting devices around us

The thesis by Shasha Zhang [5] focused on aggregating various devices connected to a
local area network so that the services provided by the devices near the user appear as if they
are provided by a single device. The goal is to improve the user’s experience when using
various devices to provide services in a personal area network. Her thesis suggests a solution
based on the Service Location Protocol (SLP) (see section 2.2.3 on page 6) for automatically
discovering services. The thesis tried to realize a remote desktop control service which
enables small handheld devices to utilize larger screen devices around them. Devices, for
example a PDA with a larger screen, in the personal area network could advertize their
services by sending SLP service advertisements to an SLP directory agent running on one of
the KTH and HP smart badges [9]. When a cellular phone with a small display joins the
network, an IP address will be assigned by a DHCP server running on the badge9. An SLP
user agent running on the cellular phone will discover a remote desktop service registered by
the PDA and can use it to display its output. The implementation of a client application
executing on the cellular phones and its integration with an SLP user agent is outlined, but no
implementation or evaluation work is presented in the thesis. The author also raised some
concerns related to authentication and trust in device aggregation, but no suggestion has been
made of how to overcome concerns. The use of a remote display of a cellular phone's display
on the user's laptop or desktop display was shown in a related bachelor’s thesis project [26].

Security will be a crucial part of our thesis work and a mechanism to properly
authenticate and build trust between communicating devices will be investigated and a
prototype will be developed. One of the goals of our project is to study how we can
effectively discover various services provided by the devices around the user. Therefore, we
will build upon some of the experiments performed by Zhang‘s thesis, especially how she
created SLP service agents that interoperate with the OpenSLP [27] implementation.

The idea of utilizing devices around the user for performing intensive computation is
presented by S. Goyal and J. Carter in [28]. This paper describes how constrained devices can
exploit surrogate machines which make their computing and networking power available. The
goal is to enable applications that require a lot of computing power such as real-time voice
recognition and synthetic web service application available on small handheld devices. The
suggested framework uses a simple XML based querying mechanism to allow the handheld
devices to locate surrogate machines. Upon discovering a surrogate, the user’s device will be
assigned a virtual machine in which they can run a shell script that will download and install
the packages required for the user’s task. The proposed system uses public key cryptography
to ensure that only authorized clients will be allocated a virtual machine and to make sure that
the virtual machine is used only by the client that it is created for. The idea of utilizing more

9 The badge was used as it was equipped with both a WLAN interface and could act as a USB bus master,

thus USB devices such as keyboards, headsets, etc. easily could be attached to it.

24

powerful devices to perform remote speech recognition and control constrained devices is
also demonstrated in Johan Sverin’s master thesis [29]

3.2 Occupancy sensor system
The master’s thesis by Daniel Hübinette [3] presents a design for a sensor system that

keeps track of the occupancy of a room. The sensor was designed to report if a room contains
zero, one, or more people. Various application scenarios and possible services that can be
built upon such a sensor are presented. The sensor system uses a passive infrared motion
detector [30]. This sensor has the ability to determine the directional movement of a heat
source, enabling a system which processes this data to determine the occupancy of a room
(assuming that each doorway is only wide enough for a single person to pass through and that
each doorway is equipped with a PIR sensor). The proposed architecture uses a presence user
agent which sends a PUBLISH messages to update the status of the room to a context broker.
An interested user agent could subscribe for status updates of a room and will receive
NOTIFY messages.

Figure 10: Event notification using context broker. (Adapted from [31])

The thesis mainly focuses on the hardware design and prototyping of the sensor system.
Currently the system is only able to send PUBLISH messages to the context broker and no
realistic service has been developed to make use of the occupancy information gathered by
the sensors. However, a prototype service was shown in the theses of Xueliang Ren [31] and
Ke Wang [32].

Therefore, the focus of our thesis will be to understand how we can utilize contextual
information from various sensors in order develop a secure mobile SIP user agent that makes
use of available multimedia devices. Security issues, as mentioned as future work in Daniel’s
thesis, will be central to our contribution.

3.3 Context-addressed messaging
Alisa Devlic’s licentiate thesis [33] introduces the idea of utilizing the user’s contextual

information as the basis for addressing message. In her approach messages will be addressed

25

not using their network specific address, but rather using contextual information of the user.
By doing so users communication will be more personal because such an approach is able to
make sure that the user will only receive relevant messages in his/her current context [33]. For
this purpose a context management middleware is provided. The middleware implements
functionalities such as discovering new context sources, aggregating, filtering, synthesizing,
and storing contextual information.

As it can be seen Figure 11, applications that use this middleware have two roles. They
can consume contextual information produced by the communication and dissemination
subsystem and at the same time they can serve as sensors that provide additional contextual
information. In our thesis project a similar context aggregation framework is used to
determine the location of the user based on information gathered from PIR sensor, IR
beacons, light intensity and temperature sensors (see 4.5). However, our approach does not
support a two way interaction between the application and the framework. Perhaps in the
future such a distributed approach of aggregating contextual information could be
incorporated in to our framework.

Figure 11: Context Management Framework [33]10.

3.4 Redirecting RTP Media
Oscar Santillana master’s thesis looks at different mechanisms for redirecting RTP

media streams from a handheld device [4]. This thesis claims that RTP media redirection
enables users with constrained computational power, a smaller display, and limited bandwidth

10 Appears here with the permission of the owner.

26

to utilize more powerful devices around them in order to provide the user with a better
multimedia session. Two solutions based on third-party call control (3PCC) and the REFER
method were investigated to enable seamless session mobility. The first alternative is based
on a simple call flow described in RFC 3725 [34] and uses a mobile node to control the
redirection of the RTP media to a different location. The user agent running on the mobile
node sends a new INVITE request for every multimedia device chosen to participate in the
session. The mobile node also sends a RE-INVITE request, with the updated media
parameters in the SDP body, to the correspondent node. This approach is interesting because
the mobile node has full control of the SIP session; enabling it to latter redirect the RTP
media to the original device. Figure 12 shows this call flow.

Figure 12: Third Party Call Control (3PCC) (Adapted from [4])

This call flow is simple in structure, but there exists a major problem with timeouts.
When the mobile node sends the RE-INVITE request, the correspondent node is expected to
answer the call and send a 200 OK almost immediately. Otherwise the local device will
assume that the call failed as it did not receive the ACK from the mobile node on time. In fact
RFC 3725 recommends that this call flow would be more effective if the correspondent node
is an entity that will ensure that the RE-INVITE will be answered almost immediately. As a
result, this call flow is effective if implemented on multimedia servers, conferencing servers,
or messaging servers – as they will respond quickly.

Directly using this approach for our system raises some issues. Most importantly we
should study how different SIP user agents react to reception of a RE-INVITE request while
being in a session. The expected behavior is that the user agent will update its media session
according to the new SDP and continue the call without causing any interruption. This should

27

be verified experimentally. We will also investigate how the 3PCC call transfer affects the
MIKEY key exchange. For instance, we will consider a situation where the user redirects its
media to more than one local device. For each redirection the MIKEY session keys will be
updated per media stream. Therefore we will study how those session keys can be securely
transferred to the local devices.

3.5 An Intelligent presentation System
Hu Lidan’s master’s thesis aims to create an intelligent presentation system by utilizing

a user’s context to provide a simplified presentation experience [7]. The proposed system
envisions detecting the arrival of the presenter and automatically presenting their previously
uploaded slides via a projector - while allowing the presenter to control the presentation using
any handheld device with a web browser. The suggested solution utilized a location sensor
implemented as a presence user agent to publish the status of the user on a context-aware
server. A room occupancy sensor, also implemented as a presence user agent by a separate
master’s thesis project [3], was used to understand if the user is going to conduct the
presentation and if enough attendees are present to start the presentation.

28

4. Context Modeling Framework
4.1 Requirements of our application

The context model to be used in our application should answer a number of questions.
The following subsections will each examine one of these questions.

4.1.1 What aspects should the model include?

Space The context model should be able to deal with the user’s location. When
we say location we mean the relative location of the user in an home or
office environment. Absolute user locations (such as via GPS) will not be
necessary for our application.

Environment Some attributes of the user's surroundings also affect the behavior of our
system. For instance, the presence or absence of various multimedia
equipment around the user’s current location should be modeled in the
proposed framework.

History The model should utilize previous context history to increase the accuracy
of the reasoning.

Subject Users are central part of our context aware application. We consider
context to be user’s situation (specially their location and the surrounding)
as perceived by the application.

User’s preference Preference information explicitly set by the user or learned though the
user’s prior actions will also be used as contextual information. Users
should be able to set their profile information and our system should use
this information to understand the user’s choices. Example of such profile
information include presence information, previous experience with
multimedia devices and services, the user’s calendar, and the
user's address book

4.1.2 How should we represent context?
The mechanism to be used to represent context should allow some level of automatic

processing of the captured contextual data. A formal representation technique should also be
available to enable reasoning support. Most importantly the mechanism should be intuitive
enough to let us easily incorporate the contextual information with the application to be
developed.

Furthermore, the model should be flexible enough to easily adapt to use different
context information. This is important because the requirements on our system may change
over time, posing a need for additional contextual information (for example, by including
additional sensors) to be incorporated into the system. In such situations it is important to
have a context representation mechanism which is independent of the actual context being
represented and that can easily be extended.

29

Another important aspect related to context representation is context granularity. The
framework to be developed should allow us to represent contextual information at different
levels of detail depending on the application’s requirement. This is particularly important
because the various context sources to be used in our application (PIR detectors, light and
temperature sensor, and IR beacons) provide different contextual information and with
varying degrees of accuracy.

4.1.3 How should we manage context?
The context model should have a mechanism to build, manage, and utilize the context

information. Context information can be gathered in either a centralized or distributed
manner. In our system we employ a mixture of context sources (including PIR, IR beacon,
and light and temperature sensors) to determine the user’s situation. The model to be proposed
should detect if the user is present at a certain room and utilize the user’s previous experience
and preference information to draw a conclusion about the current situation of the user. The
model should not be a static in the sense that all those information are predetermined in
design time, but rather it should be robust enough to accurately figure out the situation of the
user at runtime.

A typical approach would utilize state of the art sensing technologies to determine the
user’s presence at a specific location. The sensor system to be deployed should tell us if the
user entered into the room or left the room. The sensor systems proposed in [3] and [6] will be
experimented with, along with other means of determining a user’s presence in a room.

A robust reasoning technique should be included in the model to allow us to fine tune
the context information collected from the sensors. Profile information set by the user (for
example scheduled meetings, address books, and social networking knowledge base) could be
used to supplement the situation determination. When enough context information cannot be
obtained the system should somehow interpolate and mediate the available context
information to estimate the user’s most likely situation.

After a reasonable estimate of the situation of the user is determined, our application
exploits this information to update the presence information of the user on a presence server.
For this purpose a presence user agent capable of interworking with the context model should
be implemented. The figure below illustrates the three components our model should have.
The lower layer is a collection of various context sources that can provide contextual
information to the system. The middle layer is the portion of the context model that analyzes
the gathered context information and determines the user’s situation. The output of this layer
will be given to a SIP presence user agent that will update the user’s situation on a presence
server.

30

Figure 13: Components of the context model

4.1.4 How do we address privacy issues
When developing a context aware system, we must pay careful attention regarding

privacy of the user. For instance, an application which uses the user’s location information
should utilize such information with the explicit consent of the user. Failing to do so is not
only an inconvenience to the user, but it is considered as crime in many countries. In our
framework the central system does not store any contextual information that can be mapped
to the user’s identity. Instead we propose a solution where the user takes the full initiation of
controls which of their contextual information is exposed. Section 4.5 provides a comparison
of different alternatives of building a context framework to be used in our application.

4.2 The CoolBase Platform
HP Labs created a software and hardware platform to facilitate creation of a wide verity

of ubiquitous computing applications. The platform enables developers to create a
personalized application that utilizes contextual information of the user. The platform
leverages web presence information linked to people, places, and things [35]. An example
application developed based on this platform is a virtual tour guide. It aims to deliver
personalized services based on contextual information such as location and time. As the user
visits each exhibit items in a museum, the user’s PDA displays a web page tied to the exhibit.

The CoolBase platform consists of several software and hardware modules. Below we
will describe some of the components that we have found valuable to our work.

Esquirt: This module provides an API to encapsulate a device to device interaction
model. Its sole purpose is to allow devices to access the web presence of other devices by

31

reference (for instance using a URL). For example, a mobile phone could send(or “squirt”) a
URL of a document to a printer which will retrieve the document and print it for the user. We
have developed an Esquirt like application which identifies rooms by reference (using a
unique IR beacon number).

Web Presence Manager: This entity facilitates creation and hosting of web presence
information for people, places, and things. It also provides context composing functionality.
For instance in a conference room, a projector and a printer may have individual web
presence. However, if the two devices are co-located, then the presence manger will generate
a relationship between the presence information of the printer, projector, and the conference
room. In our context aggregation framework, the room locator server uses a similar concept in
order to aggregate contextual information from different sources and provide a more accurate
location of the user (see section 4.5).

CoolTown Beacons: Beacons are small battery powered devices that broadcast a URL
reference for a specific location (see Figure 14). For instance, a beacon near a painting could
broadcast the URL for this painting, providing a web presence for this specific work of art.
The receiving functionality is implemented using the Esquirt API described above. The
beacons use the Infrared-Ultra protocol. The Ultra protocol is a link layer protocol which
allows devices to communicate without support for device discovery, sniffing, and connection
oriented services. The details of how Ultra frames are formatted can be found in [36]. In our
context framework the IR beacons are used to allow the mobile SIP user agent to determine
the room it is situated in.

Figure 14: Cooltown IR beacon. On the left a view of the backside with battery, on the right and view of
the front side with the IR transceiver.

4.3 The Wasa Sensor Board
The Wasa board is an experimental circuit board created by Mark Smith in at KTH. The

Wasa board is designed to allow easy integration of sensors with an existing computing
platform such us laptops and PDA [37]. The board has built in light and temperature sensors
and accelerometer which can be accessed through a USB interface. The interesting aspect of
this board is that both the hardware and software designs are open, making it easy to create a
customized version of the board for a specific purpose. Figure 15 shows the hardware layout
of the board.

32

Figure 15: Block diagram of the Wasa Board [37]

Figure 16: Wasa Board. On the left is a view of the front side and on the right a view of the back side of

the board.

In our context modeling framework the Wasa board will be used to integrate light and
temperature sensors. In the prototype we developed, the user’s PDA includes the light and
temperature readings from the Wasa board when making a location request to the room
locator service. We argue that by utilizing additional sensors additional aggregated contextual
information can be collected enabling us make more accurate decision regarding the location
(and situation) of the user. A detailed explanation of the proposed context framework is
presented in section 4.5 belowand its performance and accuracy evaluation are presented in
section 6.1 and 6.2 respectively.

4.4 The Passive Infrared Sensor
In order to understand the directional movement of the user (i.e. if the user is entering or

leaving a certain room), we have used a pyroelectric detector. Pyroelectric detectors are built
from a special crystalline substance that takes the advantage of the polyelectric effect. The
polyelectric effect is the ability for such materials to generate an electric potential when
heated or cooled. For our purpose we have used the Velleman HAA52 Passive Infrared
intrusion detector (see Figure 17).

Light sensor

Temprature
Sensor

33

Figure 17: The Velleman HAA52 PIR Detector

The most important aspect of this sensor is the ability to determine directional
movement of a heat source (i.e. we can tell if someone is entering or exiting a room). This is
possible because the potential difference generated as a heat source moves from left to right
produces a different wave form than when someone moves past it in the opposite direction.
Figure 14 shows the wave form divided in two five different zones.

Figure 18: Different waveforms are produced depending on the directional of movement of a heat source

past the sensor

Our work has benefited from previous attempts in the Wireless@KTH lab in using PIR
sensors to determine directional movement of the user to develop room occupancy sensors
and meeting detectors systems. Daniel Hübinette’s thesis suggests using a state based
algorithm which tracks changes between the five zones shown in Figure 18 to determine the
directional movement of the user [3]. Resent work by Xueliang Ren showed that more
accuracy can be achieved by utilizing a correlation based technique to determine the
movement of the user and this approach is used in our context framework as presented in
section 4.6.

34

4.5 Proposed context model
In order to understand the situation of the user, we need to find a mechanism to

aggregate contextual information from different sources. The goal here is to correctly estimate
the location of the user in relation to a particular room. Our context aggregation framework
will utilize various sensors (PIR Sensors, IR Beacons, light, and temperature sensors) to
understand the users location11. With this framework in place, our application will be able to
tell if the user entered to left from a particular room. Here under we propose two alternating
techniques to collect, aggregate and interpreted contextual information of the user. Both
alternatives allow us to aggregate context from various sources, the main difference lies in
their efficiency and scalability.

4.5.1 Alternative 1: Using a mobile Presence Watcher
This alternative is based on a SIP presence watcher application implemented on the

PDA. Our SIP UA will subscribe for location updates originated from the meeting detector
sensor used in [3]. Such a subscription will be done based on the SIP event notification
package [31]. This package uses a Presence User Agent (PUA) application that manipulates
presence information for a presentee. PUAs are responsible for publishing presence
information to the user’s presence server. In this design alternative the Pyroelectric Infrared
(PIR) sensor will be connected to a PUA that will publish a presence document when
someone enters or leaves the specified room. As shown in Figure 19 the document published
by the presence user agent could include the light and temperature reading from a Wasa board
mounted in this room. Because the user’s device has subscribed to be notified for such an
update, a NOTIFY message will be sent to each of the subscribers. It is up to the user’s device
to figure out its current location, and then start the process of redirecting the media for the
user's current session(s) to the appropriate nearby device(s).

11 We are interested in a symbolic location of user. For instance user1is entering the seminar room

“Grimeton”, user 2 is leaving the meeting room “Mint” and so on.

35

Figure 19: Mobile Watcher based Context Framework

Although most of the components for this alternative can be reused from prior works [3;
31] this approach has major scalability limitations. Consider a scenario where handful of users
has subscribed for a status update of room1 above. When user1 moves into the room the PIR
presence user agent will publish a status update to the SIP proxy. This will cause a NOTIFY
message to be sent to all the subscribers (as shown in Figure 19 user2 will be notified even if
it did not enter room1). Because the SIP event notification package does not allow any
filtering of NOTIFY messages, individual user agents will have to act upon the notification.
The mobile device can compare the IR beacon number, light and temperature sensor values it
has with the once that are present in the NOTIFY message to determine if the NOTIFY
message is relevant to this user. However, in an environment where users enter and leave the
room frequently, this approach will require a considerable amount of computing power on the
mobile device.

4.5.2 Alternative 2: Using a Room Locator Service
In order to overcome the limitation of the first alternative we propose a centralized

context aggregation solution. This alternative utilizes a room locator service that aggregates
context information from different sources (including light sensors, temperature sensors, PIR
sensors, and IR beacons) to determine the most probable location of the user. IR beacons will
be installed at the entrance of every room and they will broadcast a URL specific for a given
room. When the user’s device is within the light of sight of the IR beacon, it will receive the

36

URL broadcasted by the beacon; this will trigger a room location request. Such a request will
also include the temperature and light readings from the Wasa board connected to the PDA. A
location request document formatted in XML will be created and will be uploaded to the room
locator server using HTTP(S). Note that this approach does not require the PDA to be
preconfigured with the room locator’s service URL. This URL can either be the one from the
IR beacon or it can be dynamically discovered using our mobile SLP user agent (discussed in
section 5.3).

Notify
(13)

Subscr
ibe (8

)

Readings(XML)(5)(14)

Room Info(XML) (7)(16)

U
pdate

Figure 20: Room locator service based context framework

When the room locator service gets a location request, it will execute the room locating
algorithm (described in section 4.6) to determine the location of the user. The algorithm
utilizes a database of IR beacon number to room mappings, along with real-time light and
temperature sensor readings and status updates from the PIR sensors (to determine if the user
entered or exited the room). Once the most probable location of the user is determined, a
response XML document will be returned to the requester. This response will be used by the
mobile device to search for multimedia devices and services available in the identified
location.

This approach not only resolves the scalability problem posed by the first alternative,
but also allows us to perform more accurate location determination by aggregating
information from multiple sources. The locator server can also be extended to perform various
reasoning and analytical operations to enable us further improve the accuracy of the whole
system.

37

4.6 Implementation
As a proof of concept, we have implemented and evaluated the room locator service

based context framework. In this sub section we will provide the details of the
implementation of this framework and section 6.1 will deal with the measurements and
evaluations conducted.

4.6.1 Test bed and development environment
A test bed was setup in the Wireless@KTH lab. This test bed includes two PIR sensors

(PIR1 and PIR2) installed at the entrance to room 6339 and room 6340 as shown in the map
below. Two IR beacons (IR-1 and IR-2) are also hanging from the ceiling above the entrance.
Room 6339 is also equipped with a Wasa board (with light and temperature sensors).

Figure 21: Installation of PIR sensors and IR beacons in the Wireless@KTH lab

Figure 22 shows the entrance to room 6340. The triangle represents the line of sight of
the IR beacon and the red lines represent the optical beams used detect movement of a heat
source by the PIR detector.

38

Figure 22: Snapshot of the entrance of room 6340 equipped with IR beacon and PIR sensor

The two PIR sensors are connected to the Velleman K8055 USB interface board. This
board allows us to access the voltage reading of the PIR sensor using a USB interface API

39

that is provided with the board12. Because the distance between the sensors and the room
locator server is greater than five meters (the maximum length of a USB cable segment, we
had to use a self-powered USB hub to regenerate the USB signals. The K8055 USB interface
and the Wasa board are connected to this hub, and then hub is plugged in to the room locator
server as shown in Figure 23.

In order to access the ADC readings from the Wasa board we have used a Virtual Com
Port (VCP) driver from FTDI Chip [38]. Appropriate drivers for both the desktop (running
Windows Vista) and for the HP iPAQ PDA (running Windows Pocket PC) are available.
Appendix B provides the steps required to install and configure the Wasa board on the iPAQ
PDA

Figure 23: Components of the room locator service based context framework.

For the test bed shown above we have used three different computers (as servers) and
one iPAQ PDA. The configuration details and the role played by the individual machines is
summarized in Table 3.

12 Xueliang Ren's thesis [31] provide an excellent description of this board and how to use the USB

interface API.

40

Table 3: Configuration and role of devices used in the test bed

Machine Name Configuration Service Provided

CCSLEFT Dell® OptiPlex® GX620; Intel® Pentium®
Dual Core 2.4GHz; 2GB DDR2 memory;
250GB SATA-II hard drive; Dell GX62
and D-Link DGE-528T Gigabit Ethernet
adapter; OpenSUSE 10.3 Linux OS

192.168.2.238:5060 – SIP Proxy,
Registrar and Presence Server

CCSMOTO Dell® OptiPlex® GX620; Intel® Pentium®
Dual Core 2.4GHz; 2GB DDR2 memory;
250GB SATA-II hard drive; Dell GX62
NIC; OpenSUSE 10.3 Linux OS

192.168.2.91:5060 – Presence user
agent for the PIR sensor.

192.168.2.91:49152 – UDP receiver
for PIR readings from the room
locator server

CCSBEMNET Sony® Vaio® PCG-5G2M Laptop; Intel®
Core2 Duo® 1.80GHz; 2.0GB RAM;
160GB hard drive; Realtek® RTL8101
Ethernet NIC; Windows® Vista® Home
Premium OS.

192.168.2.90:45999 – Room locator
IIS® 7.0 Web server.

192.168.2.90:1433 – Microsoft
SQL Server 2005.

COM16: - Reads the light and
temperature ADC values from the
Wasa board using VCP driver from
FTDI Chip [38]

K8055 Board Address 0: - Reads
the voltage values from the PIR
sensor using the K8055 USB
interface board.

192.168.2.90:ANY – Sends PIR
readings as UDP packets to the PIR
user agents (i.e. CCSMOTO).

CCSIPAQ HP iPAQ H5550; Intel® XScale 400 MHz;
128 MB SDRAM; 48 MB ROM; 802.11b
WLAN; IrDA up to 115.2 Kbps; photo-
sensor for automatic backlight adjustment;
Microsoft® Pocket PC 2003 OS

192.168.2.99:5060 – Our SIP user
agent.

192.168.2.99:ANY – Room locator
client application.

COM0: – Reads the light and
temperature ADC values from the
Wasa board using VCP driver from
FTDI Chip [38]

COM2: – Reads the IrDA port of
the PDA using a serial port API.

4.6.2 IR-Reader for the iPAQ PDA
As shown in the test bed, the rooms containing a multimedia device have IR beacons

that broadcast a unique URL using the Ir-Ultra protocol [36]. The user’s PDA will read this
URL to initiate a room location request. The HP iPAQ PDA has a built in IrDA port that can

41

be accessed by a program. The IrDA port is accessed using a virtual serial port, whose address
is specified by the Index sub key of the registry record
HKEY_LOCAL_MACHINE\Drivers\Builtin\IrCOMM. We have used the Remote Registry
Editor application provided with Visual Studio to access the registry record and we have
found that it uses COM2 by default. In order to open this port from our application we have to
first disable the IR beam functionality via the Pocket PC operating system (so that other
applications do not use it). This can be done by unchecking the box marked Receive all
incoming beams under Setting>Connections>Beam menu.

For this purpose we have developed a simple C#.Net smart device application to read
the Ultra frames broadcasted by the IR beacons. In contrast to the CoolBase platform
described in section 4.2, this application implements the receiving portion of the ESquirt API.
The .Net Compact Framework 2.0 System.IO.Ports namespace provides an event based serial
port access API for Pocket PC. Although the API works flawlessly for accessing standard
serial ports, it does not work properly for emulated IrDA ports. This issue is discussed on
MSDN forum [39] and it is suggested to use an open source serial port API from OpenNetCF
[40]. Therefore, we have used this OpenNetCF serial port API.

The IRBeaconReader class presented in Appendix C provides a partial listing of the
code used to implement this functionality. When the instance of this class is created the
constructor will create a serial port and configure it as port address = COM2, baud rate =
9600, byte size = 8, no parity bit, and stop bit = 1. When the startReading() method is called,
the DataReceived and OnError event handlers are initialized and the Open() method will be
called to start receiving data. When data arrives via the port, the method delegated to handle
this event will be called (i.e., OnData() method) and the data will be retrieved from the input
buffer and the appropriate parsing will be done to extract the URL and the beacon number.

We have noted that it takes two read operation to extract the full URL from the IR
beacon and implemented the OnData() method accordingly. When this code is called for the
first time the URL is preceded with some ASCII encoded string
“????????????pphttp://www.it.kt”. When called for the second time string similar to
"h.se/~maguire/beacon/1\0??" is read. The URL extracted is the address of the room locator
server (i.e., http://www.it.kth.se/~maguire/beacon13), where the number following the beacon
directory will be used as the unique identifier for the beacon. The beacon number along with
the temperature and light sensor readings will be used to create a location request XML file
that will be uploaded to the room location request server. The next section presents the
implementation of the temperature and light sensors used in the project.

4.6.3 Light and temperature sensors
In order to read the light and temperature values, we have connected the iPAQ PDA to a

Wasa board. The Wasa board uses an FT232R USB UART interface chip from Future
Technology Devices International Ltd (FTDI). Virtual Com Port (VCP) USB drivers for

13 Actually this URL points to a subdirectory of the personal website of Professor Gerald Q. Maguire. We

have used a simple PHP script to redirect all http request directed to this URL to our location server i.e
http://192.168.2.90:45999

42

various platforms including Linux, Windows, and Pocket PC are available from FTDI’s
website [38]. We have used the iPAQ extension pack to install a USB host interface on the
PDA. Appendix B provides detailed instruction on how to install and configure the Wasa
board on the iPAQ. Once the board has been installed and configured properly, the light and
temperature readings can be accessed using a virtual serial port.

For this purpose we have developed a C#.Net application that uses the
System.IO.Ports.SerialPort class provided with the .Net Compact Framework to access the
Wasa board. A partial listing of the WasaBoardReader class is provided in Appendix 0. When
creating an instance of this class, a serial port connection will be established with the
following settings. Port = COM0, baud rate = 115200, no parity bit, byte size = 8, stop bit =1.
When the readValue() method is called, the appropriate analog input will be read depending
on the requested sensor type.

The Wasa board uses AT commands to control the devices mounted on the board. AT
commands are widely used to configure MODEMs, mobile phones, and other devices using a
simple terminal emulator or serial port API. The Wasa board supports three different kinds of
AT commands.

Basic AT Commands: These are standard commands that are used to set up the
terminal interface. We have used these commands to configure the serial port before starting
to read sensor data. Table 3 lists three of the basic AT commands currently supported by the
Wasa board.

Table 4: Basic AT commands supported by the Wasa board

S-Register Commands: These commands are used to configure, read, and write
individual signal lines. Currently the Wasa board supports reading the analog inputs. From the
schematic of the Wasa board [37], we have noted that the light and the temperature sensors
are connected to analog inputs 5 and 6 respectively. Therefore the S-Register AT command to
retrieve the readings from the light and temperature sensors can be issued as follows.
AT S206?<CR> //reads the ADC value of the light sensor and
AT S205?<CR> //reads the ADC value of the temperature sensor

Extended Commands: These commands are used access special devices on the Wasa
board. Currently the only device that implements the extended commands is the 3D
accelerometer. For instance the command AT+OAx reads the vector of X, Y, and Z values of
the 3D accelerometer. Using information from this accelerometer we can infer than the user is
moving when the device is accelerated in some direction(s).

Commands Description Example

V Command Used to turn verbose mode on or off.
If on , then each command will return
OK or ERROR.

AT V1<CR>
AT V0<CR>

E Command Used to turn the command line echo
on or off

AT E1<CR>
AT E0<CR>

Q Command (i.e., Quiet mode) used to set if any
response to command line is sent to
the terminal.

AT Q1<CR>
 AT Q0<CR>

43

The readValue() method of the WasaBoardClass issues the S-Register command. After
issuing the command the method performs the appropriate parsing of the data available in the
input buffer of the serial port. The light and temperature sensors are connected to a 12bit
ADC, which means that the value will range from 0 to 4095. The method returns the mean of
the consecutive read operations requested by the caller.

The next step will be to convert the raw ADC readings in to actual light intensity and
temperature units. One option here can be to use the raw ADC reading to create the location
request XML file, upload it to the locator service, and compare it with the raw ADC readings
obtained on the server side. However, this option poses a major interoperability limitation on
our context framework. In the ideal situation we would like our context framework to work
with different light and temperature sensor types on the user device and the locator service.
Although this approach could work with the current setup we have (since we use the Wasa
board both on the PDA and on the server), we have decided to convert the raw ADC reading
in to actual temperature and light intensity unites before creating the location request XML
file.

4.6.3.1 Computing the light intensity value

The human eye can detect an electromagnetic radiation with wavelengths between
380nm and 760nm. Wavelengths longer than 760nm (infrared) and shorter than 380nm
(ultraviolet) are also considered as light, but are invisible to the human eye. In order to
measure light intensity, photoresistors (also known as a light dependent resistor - LDR) can
be used. They are made up of a high resistance semiconductor substance (such as Cadmium
Sulfide - CdS), whose resistance drops when a light source with strong enough energy in the
frequency to which it is sensitive falls on its surface. Depending on the type of light sources,
that is to be measured, there are different photoresistors can be used. The Wasa board uses the
FUJI & CO. (Piezo Science) MPY-20C48 LDR [41]. It has a peak spectral sensitivity within
the range 540-570nm, which also represents the most visibly wavelength range for human
eye. The spectral sensitivity curve in Figure 24 compares the wavelength sensitivity of the
MPY LDR and that of the human eye.

0

20

40

60

80

100

300 400 500 600 700 800 900

Re
la
ti
ve
 S
en

si
ti
vi
ty
(%

)

Wavelength (nm)

Comparison of human eye and MPY LDR
Spectral curve

Human Eye Spectral Curve

MPY Series LDR

44

Figure 24: Comparison of pick wavelength for the MPY series LDR and human eye.

Typically light intensity is measured using a standard unit called lux. One lux is
equivalent to one lumen per square meter. The difference between lux and lumen is that, lux
takes in to account the area in which the luminous flux is spread. Our aim here is to calculate
the light intensity of the room based on the reading we obtain from the WASA board's ADC.
As mentioned earlier the resistance of the photoresistors varies depending on the intensity of
the light source it is exposed to. Figure 25 shows the relationship between luminance (in lux)
and resistance (in KΩ) for the MPY series LDRs.

Figure 25: Relationship between luminance and resistance for the MPY LDR used on the Wasa board [41]

It is known that the resistance of photoresistors decreases with the light intensity in a
non-linear fashion, which is close to the power law [42].

ܫ
݋ܫ ൌ ൬

ܴ
൰݋ܴ

ି௚௔௠௠௔

Equation 1: Power relationship between resistance and intensity.

Where Io is intensity at resistance Ro. For our purpose we have considered the reference
point Io = 1 lux and Ro = 100KΩ (see Figure 25). The constant gamma has a value that ranges
between 0.6~0.8. The exact value can be found on the datasheet of the device14. The specific
MPY-20C48 LDR used on the Wasa board has gamma value of 0.8.

With this relationship in place, we can now proceed to calculate the resistance value R,
whose intensity I is to be computed using Equation 1. In order to obtain the resistance value
of the LDR from the ADC reading, we have to consider the LDR circuitry of the Wasa board
(see Figure 26).

14 The LDR used on the Wasa board has a part number MPY-20C48.

1

10

100

1 10 100 1000

Re
si
st
an

ce
(K
O
hm

)

Intensity(lux)

Illuminance vs Resistance (MPY series LDR)

45

Figure 26: LDR circuit for the Wasa board

Because we have a 12 bit ADC, when we issue the appropriate AT command the ADC
returns a number which ranges between 0 and 4095 (212-1). This number depends on the value
of Vout, which is the voltage level on the LDR as shown in Figure 26. In the extreme case
where the ADC reading is zero, Vout = 0V and when it is 4095 it means Vout = 3.3V.
Therefore, for a given ADC reading XADC, Vout is given as:

ݐݑ݋ܸ ൌ ஺ܺ஽஼ ൈ 3.3ܸ
4095 ,

Equation 2: Conversion of the ADC reading to voltage

The current that passes through the LDR, I, is calculated using Ohms law. Note that we
ignore the current that flows to the ADC.

ܫ ൌ ோܸభ
ܴଵ

ൌ
3.3ܸ െ ݐݑ݋ܸ

ܴଵ
,

Equation 3: The current that pass thought the LDR

Finally the resistance of the LDR, RL, is obtained using Vout and I as per Ohms law as
follows:

ܴ௅ ൌ
ݐݑ݋ܸ
ܫ ,

Equation 4: Resistance of the LDR

Once we obtain the resistance of the LDR, then the corresponding light intensity value
can be computed using Equation 1. Now this light intensity value in unit of lux will be used
when creating the location request XML file to be uploaded for the locator service. The next
section will present how a similar transformation from ADC reading to actual temperature
unit is performed.

46

4.6.3.2 Computing the temperature

The Wasa board uses a thermistor, a special kind of resistor whose resistance varies
with temperature. Besides temperature sensors, thermistors are used in self-resetting circuits,
inrush current limiter, and self-regulating heating elements. Compared to Resistance
Temperature Detectors (RTD), thermistors are able to achieve a higher precision over a
limited temperature range. This make thermistors suitable for our application, since the
temperature variance within a building in a home and office environment is not significant
enough to be detected by RTDs.

The relation between resistance (in Ohms) of the thermistor and the surrounding
temperature (in Kelvin) is specified using a third-order approximation called the Steinhart-
Hart equation:

ܶሺܴሻ ൌ ሺܽ ൅ ܾ ݈݊ሺܴሻ ൅ ܿ lnଷሺRሻ ൅ ݀ lnସሺRሻሻିଵ
Equation 5: Steinhart-Hart equation

Where a, b, and c are called Steinhart parameter and are provided with the device.
Based upon the datasheet of the NTC 2322-640-63103 thermistors used on the Wasa board15,
we have identified the following values for the parameters:

ܽ ൌ 3.354016 X 10ିଷ

ܾ ൌ 3.49502 X 10ିସ Kିଵ

ܿ ൌ 2.095959 X 10ି଺ Kିଶ

݀ ൌ 4.260615 X 10ି଻ Kିଷ
The resistance of the thermistor is obtained from the ADC reading in a similar approach

to that of the light sensor as described in section 4.6.3.1. Finally the temperature reading
obtained using Equation 5 is included when creating the location request XML file.

4.6.4 Room status watcher
The watcher application is a simple SIP Presence watcher application that subscribes for

status update of various rooms. The status update of the rooms is collected using the PIR
detector and it is published to a SIP proxy server using the PIR user agent implemented by
Xueliang Ren [31]. The main purpose of this watcher application is to provide additional
information (someone entered or left a specific room) to the room locator service. Due to the
scalability limitation of the mobile watcher based context framework discussed in
section 4.5.1, we have decided to implement the watcher functionality on a desktop machine.
The watcher will subscribe for status updates of the different rooms by sending the
appropriate SUBSCRIBE message to the SIP proxy. When someone enters or leaves the
room, the PIR user agent will send a PUBLISH message to the SIP proxy. As a result the SIP
proxy will send a NOTIFY message to our room status watcher application which will update
this information on a database server. Finally the room locator service will use this
information when making the decision about where the user.

15 The termistor used on the Wasa board is from Vishay BC Components (negative temperature

coefficient thermistor – NTC) has product number of 2322-640-63103. . The datasheet is available at:
http://parts.digikey.com/1/parts/953698-thermistor-10k-ohm-ntc-leaded-2322-640-63103.html

47

Xueliang Ren's thesis [31] provides an implementation of the PIR user agent to provide
contextual information related to meetings going on in a room to a SIP proxy server. We have
used his user agent with some extensions. The primary extension was to extend the structure
of the data published by the user agent. Because we are interested in identifying if someone
entered or exited a given room, we have added an action attribute to the XML PIDF content
published by the user agent. Below we can see the new XML PIDF file published by the user
agent when someone enters into the meeting room named “MINT”
<?xml version="1.0" encoding="UTF-8"?>
 <presence
xmlns="urn:ietf:params:xml:ns:pidf"entity="sip:pir@130.237.15.238">
 <tuple id="6sJ8J0">
 <status>
 <basic>open</basic>
 <area>Mint</area>
 <occupancy>Meeting</occupancy>
 <action>entry</action>
 </status>
 <note>2</note>
 <contact priority="0.8">ccsmoto</contact>
 </tuple>
 </presence>

Listing 1: XML PIDF published by the PIR presence user agent

The watcher application is implemented using an open source Java SIP stack called
JAIN-SIP [43]. JAIN-SIP is chosen for its simplicity and comprehensive documentation.
Appendix 0 provides partial listing of the RoomSubscriber class that implements this
functionality. The first part of the init() method configures and initializes the SipStack. This
includes setting up IP listening point, transport protocol, initializing SipProvider, and adding
a listener for SIP events. Once this is done successfully, the second part of the method will
create the SUBSCRIBE request and send it to the SIP proxy. JAIN-SIP uses an event based
approach for handling SIP requests and response. The RoomSubscriber class implements the
processRequest() and processResponse() methods of the SipListener interface to handle
requests and response from a remote peer respectively.

When the proxy server sends the NOTIFY request, the processRequest() method will be
called. The implantation will extract the body of the request and use it to update the room
database. For this purpose we have created a room database table as shown in Table 5.

48

Table 5: The room database table
id Name IR beacon Last entrance Last exit
1 OpenArea 3 4/24/2009 14:38:54 4/24/2009 11:28:56
2 MINT 1 4/24/2009 11:51:20 4/24/2009 14:30:44

Table 6: The room history database table

Id Roo
m id

IR
bea
con

Last
entrance

Last

exit

Device

 light

Device

Temp

Room

 light

Room

temp

Action

PIR

Action

light

Action
temp

Action
final

1 1 3 4/24/20
09
14:38:5
4

4/24/2
009
11:28:
56

309 200 320 210 Entrance Entrance Exit Entrance

2 2 1 4/24/20
09
11:51:2
0

4/24/2
009
14:30:
44

408 300 400 200 Exit Exit Entrance Exit

The updatePIRState() method listed in Appendix 0 uses Java Database Connectivity
(JDBC) to establish a connection to our SQL Server 16 and update the last entrance and last
exit fields the room table. This update is done depending on the action (i.e. entry or exit)
published by the PIR presence user agent. The last entrance field will be updated to the
current system time if the NOTIFY message indicate that this is an entry action. Otherwise
the last exit field will be updated to reflect an exit action. This information will be relevant for
the room locator server to determine the location of the user.

4.6.5 Room locator client
The room location client is a simple web client application that creates the location

request XML file (containing the IR beacon number, light and temperature readings) and
upload it to the locator server. The locator client is implemented with the SIP user agent and it
is implemented using two methods defined in IRBeaconReader class (see Appendix F). The
createRequest() method uses the WasaBoardReader class we described in section 4.6.3 to
compute the light and temperature values on the user’s PDA. The request will also include the
IR beacon number read by the user’s PDA. Finally the method will return a string
representing this request. Listing 2 shows an example location request XML file.
<?xml version="1.0" encoding="UTF-8"?>
<message type="request" id="22524141dfdad2472af8d1f7"
time_stamp="225451787785">
 <beacon>4</beacon>
 <light>345</light>
 <temp>223</temp>
</message>

Listing 2: Example of a location request XML

16 We have used Microsoft SQL Server 2005 Express Edition which is freely available at

http://www.microsoft.com/Sqlserver/2005/en/us/express.aspx

49

The uploadRequest() method will take this XML file and upload it to the room locator
service. The HttpWebRequest class provides the appropriate methods to create an HTTP
connection stream to the room locator service and to write the XML file this stream. The file
will be encoded in ASCII character encoding and will be sent as the body of a POST HTTP
request. After the request is uploaded, the GetResponse() method of HttpWebRequest is used
to get a handle to the input stream to read the response from the locator service. The response
of the location request is also formatted in XML (see Listing 2). The uploadRequest() method
concludes by parsing the XML reply and creating and returning an instance of the
LocationReply class to be used for searching for multimedia services in the identified
location. Appendix F provides the code snippet for this method that implements this
functionality. The screenshot in Figure 27 shows the room locator client application that
Listing 3 creates a new XML location request and uploads a request to the server’s URL. The
reply is subsequently used to search for available services using SLP (here we find a speaker
service).

Figure 27: The Room locator client application

4.6.6 Room locator server
The room locator server is a web application that accepts location requests from our

mobile SIP user agent and executes a room locating algorithm to identify the most probable
location of the user. The location request from the client contains an IR beacon number and
the temperature and light intensity values formatted in XML as shown in Listing 2 above. The
room database table containing mappings between IR beacon numbers and rooms and
information about the last entrance to and exit from a given room. These are used as inputs to
the room locating algorithm. We have used real-time light and temperature readings from the
different rooms to further improve the accuracy of the user’s location determination.

The room locator server also provides a secondary functionality by monitoring and
controlling the room registration using a simple web user interface. It enables us to easily
register new rooms and their corresponding IR beacon mapping. The web user interface also

50

let us monitor the activity of the locator service by presenting a history table - enabling the
user to monitor the activity of the room locator server. We have found this feature very useful
when developing and evaluating the system. Figure 28 shows the screen shoot of the web user
interface used to monitor the room locator server.

Figure 28: The Room locator Server web interface

The locator server is implemented as an ASP.Net web application deployed on a
Microsoft IIS 7.0 web server. Appendix G provides a partial listing of the C# implementation
of the web application. The Page_Load() method will be executed when the web server
receives an XML location request. The method extracts the beacon number and the light and
temperature readings. The beacon number will be used to query the database server to identify
the corresponding room number. The last entrance and exit fields will be used to estimate if
the user just left or entered the identified room. The light and temperature readings will be
compared (see section 4.6.3 for details) with that of the room in order to further improve the
accuracy of location estimation. Finally the location (i.e. the room number) and action (i.e.
exiting or entering) will be used to create a location reply. We also compute a certainty value
(that ranges between 0 and 1) to describe how accurate this estimation is. The certainty value
is computed based on the weighted information provided by the PIR sensor, IR beacons, and

51

the light and temperature sensors. The decision made by the location server is also saved in
the history table of the database server.

.

52

5. Trust Relationships & Media
Redirection

By using the context aggregation framework we presented in the previous chapter, our
SIP user agent is able to determine if it is entering or leaving a specific room. The next task
will be to dynamically discover multimedia devices and services in a secure manner. We
decided to use the Service Location Protocol (SLP) due to its advantages, as we presented in
section 2.2.3. The services provided by multimedia devices such as speakers, microphones,
projectors, and cameras will each have a unique URI, which is a fully qualified SIP URI.
Subsequently by using this SIP URI we can start redirecting media to/from the multimedia
device.

It is important to note here that, before redirecting media to the discovered devices the
mobile user should somehow establish some level of trust in the service to be provided by the
discovered device(s). We propose a public key based authentication mechanism where the
service advertisements will be digitally signed by the service providers. Redirection of media
will only take place if the signature presented by the service provided is verified by a trusted
third party. The trust relationship established in this way will also be used when exchanging
the keying materials used to secure the actual media stream. In order to demonstrate the
feasibility our proposal, we have implemented and evaluated a mobile SLP user agent that
includes these functionalities. Before proceeding with the implementation details, we review
the design choices we have made.

5.1 Service Discovery using SLP
In this section we will present two possible ways to use SLP and identify the most

appropriate approach for our system. The basic SLP network client applications are modeled
as User Agents (UA) and services are advertised by Service Agents (SA). As shown in Figure
29, the user agent issues a service request specifying the service the user is interested in.
Service requests are sent to the SLP multicast address17 239.255.255.253. Service agents are
implemented as a daemon that listens for service requests on the SLP port 427. Upon
receiving such a request, SAs check to see if the service request matches the specification of
the service that this device implements This matching includes comparing the service-type,
scope, and predicate logic of the requested service to the service provided. When a match is
found, the SA unicasts a service reply message. This service reply includes a URL for the
service and other optional parameters.

Figure 29: Basic SLP Network [8]

17 In IPv6 network service requests are multicasted to a group IPV6 address between

FF0X:0:0:0:0:0:1:1000 and FF0X:0:0:0:0:0:1:13FF. The value X is used to scope the request.

53

Alternatively in large networks, a Directory Agent (DA) may be deployed to provide
caching functionality. SAs will register services they provide by unicasting service register
messages to the DA. In this scenario, UAs unicast their service request to the DA, which is
responsible to perform the appropriate service matching operation. For this setup to function,
UAs and SAs must identify their directory agent. This can be achieved by multicasting service
request messages with a service type set to directory-agent. Alternatively the nearby directory
agent can be discovered using DHCP or by static configuration.

Figure 30: SLP network with a DA [8]

Our application is intended to be used in a home or office network. Because the limited
number of services that are likely to be deployed in such a network, it makes sense to deploy
our application without a directory agent. However, in the future as the number of services
available in the network increases, a directory agent could be deployed to improve
performance.

5.1.1 Provisioning service discovery
Using the approach shown in Figure 29 all the service agents which are member of the

SLP multicast group will receive the service request and each may send a reply to the
requesting user agent. However, we are interested to get a reply only from services in a
particular room. One approach could be to use a user defined attribute (for instance location)
to be a basis for service comparison. Therefore, the user agent can filter out services replies
whose location attributes match the room we are interested in.

A better solution would be using SLP scopes to provide administrative grouping of
services. By using this option, we remove the requirement to use a user defined attribute to
group services and instead use the built-in mechanism of categorizing services. SLP allows a
set of services to be assigned to a particular scope by a network administrator18. The client
application will then be able to discover services within the scope they belong to. We propose
that a set of services will be assigned to a particular scope based on their physical location.
For instance camera and projector services in Grimneon will be assigned to the scope of
Grimneon and speaker service installed in room6339 will be assigned to an SLP scope of
room6339 and so forth (see Figure 31 below). Note that "room6339" is simply a symbolic
string to refer to resources in room 6339.

18 By default all SLP services belong to a DEFULT scope.

54

Figure 31: Grouping services using scope

When the mobile user agent makes a service request, the current location (identified
using our context aggregation framework) will be used as a scope identifier. We believe this
approach effectively delimits the service discovery without introducing a user defined
attribute to be configured both on the service agent and on the mobile user agent.

5.2 Establishing a Trust Relationship
By introducing context-awareness to mobile multimedia communication, we can create

a more enjoyable user experience allowing interaction with nearby devices and services. An
interesting aspect of context-aware systems is their ability to provide personalized services to
the user. This requires the user’s explicit consent in disclosing some of their contextual
information (for instance their location and current activity). In order to obtain the user’s
consent, users will have to trust the system. Trust in this context can take two forms. The first
is that the users would like to be certain that inferences made about the user's situation are
sufficiently accurate. For instance, assume that our context aggregation framework makes
frequent incorrect determinations of the user’s location. This will result in bothering the user
to redirect media to devices which are not nearby. This will reduce the user’s satisfaction and
eventually the user will not trust the system. Possible countermeasures could incorporate
more accurate sensors and context sources. However, this in turn will need greater
willingness of the user to disclose additional context information. Therefore a better solution
would be to improve the system's accuracy by performing detailed context synthesis and
learning based reasoning utilizing existing context sources. Eventually when the system’s
accuracy has improved sufficiently, additional sensors and context sources can be introduced
without losing the user’s trust in the system.

55

The second aspect of trust we are considering concerns privacy and security. In order to
enhance the usability of our context aware SIP user agent we would like to assure the user that
the devices they interact with are genuine. If we do not provide an appropriate, then
authentication mechanism the following attacks can occur:

Unauthorized registration: The attacker registers non-existent or malicious services
with the directory agent. This will result in the client application start to interact with the
malicious service or causing it to take it a long time to find a functional service.

Unauthorized deregistration: This is a more effective attack because causes services
to be deregistered, resulting the client application not being able to locate services it is
interested in.

Unauthorized DA: An unauthorized directory agent could take full control of the client
service discovery. It would produce service replies with fake URLs, (pseudo-)randomly
accept and drop service registrations, and so on.

Unauthorized SA: A malicious service agent could masquerade as a provider of a
trusted service allowing it to gain access to the user's private information.

Consider the situation where an adversary sets up a fake speaker service agent to reply
to service location requests by our SIP user agent. With the absence of an authentication
mechanism for the user’s reply, the SIP user agent will start redirecting sound to the rogue
device. This is considered a serious invasion of the user’s privacy which will significantly
affect the usability of our system.

To counter this problem we propose a public key based authentication mechanism. SLP
v2 allows an authentication block to be attached to SLP messages so that receivers can verify
the authenticity and integrity of the message. SLP service agents digitally sign their service
advertisement using their private key. SLP user agents and directory agents can verify the
advertisement (specifically the URL and the corresponding attributes) using the public key of
the service agent.

It is important to note here that protecting the integrity of the service URL does not
provide a complete guarantee that the actual service provided is authentic. An authenticated
service reply can only guarantee the integrity of the service URL (in our case the integrity of
the fully qualified SIP URI). However, an adversary could easily setup an IP or DNS spoofing
attack allowing any device to reply to this address. Therefore it is important to prove the
authenticity of the device that provides the service at a different level (i.e., using user name
and password, TLS, S/MIME, or IPSec). The next section will present how the trust
relationship created by authenticating the SLP reply can be maintained all the way to
protection of the actual media stream.

5.3 Secure Media Redirection
So far we have described how we can identify the user’s relative location (i.e. entering

or exiting a particular room) and the multimedia devices available in the identified location.
Based on the findings of Oscar Santillana's master’s thesis, we have decided to use the third
party call control (3PCC) method to redirect media (see section 3.4). His thesis shows how to

56

use 3PCC to redirect RTP media from a mobile node to local devices. We have extended this
approach to provide media redirection functionality for secure streams (i.e. when using
SRTP).

Our main contribution is providing a secure key transfer mechanism. In order to provide
privacy and integrity protection, SRTP uses session keys (authentication and encryption keys
and salt values). The session keys are securely derived from a single master key. Currently
[20] defines a pseudo-random function based on AES-CM, which takes a 128 bit master key
and produces a random value of up to 223 bits used as a session key.

External Key
Management
(Optional Re-

keying)

Key Derivation
Function

Master Key

Master Salt

Session encryption key

Session authentication key

Session salt key

Packet Index

Figure 32: SRTP key derivation

Therefore the local device, to which we are redirecting the media stream, needs to
access these session keys. For this purpose we have to securely transfer the master key used to
derive the session keys as shown in Figure 32 (or we have to transfer a specific session key --
we will do this rather than provide the service with the master key, thus minimizing the
damage that a rogue service could do).

In section 2.4.3 we presented key agreement protocols including MIKEY, SDP crypto
attribute, and SDP key management extension. We have decided to use the SDP crypto
attribute due to its simplicity. We propose to transfer the specific session key as part of the
SDP of the final ACK message sent from the mobile node to the local node (see Figure 33).
However, transferring the key materials in the clear makes no sense and we have to provide
privacy and integrity protection of the key transfer. Here we can take advantage of the trust
relationship we established during service discovery. The local device’s SLP service agent
signed the service reply using its private key during service discovery. The same public key
used to verify the SLP service reply will now be used to encrypt the key transfer messages.
This enables us to maintain the trust relationship we created during authentication of the
service reply all the way to media protection. Furthermore, by using SRTP we protect against
attackers who have successfully deployed address spoofing attack on a trusted service
provider. This means an adversary will not be able to decipher the SRTP media unless it
posses the corresponding session keys.

Figure 33 shows the proposed mechanism for establishing trust with an example
speaker service and performing a secure media transfer. After the mobile node issues an SLP
service request, the speaker service agent will reply with the URL of its speaker service. The
reply will be signed with the private key of the service agent. The mobile device can now
verify the signature of the reply using the speaker’s public key19. In order to establish an

19 Currently SLP does not provide any mechanism for distributing public keys. The public key to an SPI

string mapping should be available both at the UA and at the SA.

57

SRTP session with a speaker service, we need to transfer the master key to the speaker service
encoded as a crypto attribute in the SDP of the final ACK message.

Figure 33: Trust establishment and secure media transfer

In order to provide end-to-end protection of the crypto attribute we used S/MIME.
S/MIME is chosen for two reasons. First S/MIME provides an end-to-end security of the
contents of the SIP message. In comparison, TLS only provides a hop-by-hop protection of
the whole SIP messages. If we use TLS, then a trust chain must be established between the
mobile node, the intermediate proxies, and the speaker service. In a context of an inter-
domain environment, maintaining this web of trust is relatively difficult. One alternative
could be using up-cross-down trust establishment to easy this burden [44]. S/MIME on the
other hand provides encryption and integrity protection of part of the SIP header (excluding
headers used for routing messages by intermediate proxies like To, From, Call-ID, CSeq, and
Contact) and the body of SIP message.

Secondly S/MIME certificates have the ability to assert an end-user identity. Unlike
certificates used by servers, which assert the identity of the holder to a particular host name,
S/MIME certificates assert that the holder is identified by the given end-user address. This
address is the user name and domain part of the SIP URI (commonly known as address-of-
record). Hence an S/MIME certificate signed by a trusted CA, provide us with proof that a
given public key belongs to a particular address-of-record. This allows us to use the same
certificate to protect the SDP of the SIP messages and assert the authenticity the URL of the
service that we discovered using SLP (because our SLP URL contains the address-of-record
of the service provider).

58

5.4 Implementation
5.4.1 Test bed and development environment

The test bed used to implement and test the service discovery, trust negotiation, and
media transfer uses the machines and services presented in Table 7.

Table 7: Test bed for service discovery, trust negotiation, and secure media transfer

Machine Service Description

CCSIPAQ (Similar configuration
to Table 3)

192.168.2.99:5060 - Minisip
UA

Windows CE version of the
Minisip user agent from [18] has
been extended to implement
3PCC secure call transfer
functionality. It is implemented
using C++ and is integrated in to
the existing Minisip code.

192.168.2.99:ANY - SLP UA An SLP user agent with the
ability to authenticate service
replies from service agents is
implemented using C#.Net.

CCSLEFT (Similar configuration
to Table 3)

192.168.2.238:5060 – SER
server

SIP proxy and registrar server.

192.168.2.238:35345 - Minisip
UA

Linux version of Minisip user
agent from [18] has been
extended to implement 3PCC
secure call transfer functionality.
It is implemented using C++ and
is integrated in to the existing
Minisip code.

CCSMOTO(Similar
configuration to CCSLEFT
on Table 3)

192.168.2.4:427 – SLP SA An OpenSLP speaker service
agent is configured to reply for
service requests from user
agents. OpenSLP is also
configured to digitally sign
service replies to enable user
agents build trust on discovered
services.

CCSBEMNET(Similar
configuration to Table 3)

192.168.2.90:5060 – JAIN SIP
UA

A Java SIP user agent acting as a
local device to which we are
transferring the session to.

5.4.2 Configuring OpenSLP
OpenSLP is open source implementation of the version 2 of the SLP protocol [27]. It is

written in the C programming language and is targeted for Linux systems. The current
developmental version was 1.3.0. It has also been ported to win32 and various verities of

59

Linux platforms. For developers working in Java, the version20 1.0 of the implementation has
been developed in Java.

5.4.2.1 Installing OpenSLP

In our systems the OpenSLP daemon (slpd) has been used to act as a service agent. In
order to provide authentication of service replies we have built OpenSLP with the following
steps.

• Download the source tarball:
ccslabda:/home/bemnet# wget
http://prdownloads.sourceforge.net/openslp/openslp-1.3.0.tar.gz

• Untar the tarball:
ccslabda:/home/bemnet# tar -zxf openslp-1.3.0.tar.gz

• Extracted the directory and become root:
ccslabda:/home/bemnet# cd openslp-1.3.0
ccslabda:/home/bemnet# su

• Configure, make, and install the package. OpenSLP by default comes with security
features disabled. In order to build with security feature we have to specify the “--
enable-slpv2-security” flag to the configure command. CAUTION: Both the online
user guide and the read me file in the tarball instructs the user to use the “--enable-
security” flag which doesn’t enable security. To add to the problem, the configure script
does not check if we have provided a correct flag, it simply ignores flags that it does not
recognize. To verify if the installation has security enabled, one should check as shown
below. We have contacted the developers to correct this error.

ccslabda:/home/bemnet/openslp-1-3-0# ./configure –enable-slpv2-security
ccslabda:/home/bemnet/openslp-1-3-0# make
ccslabda:/home/bemnet/openslp-1-3-0# make install

• Check if OpenSLP is installed with security enabled.
ccslabda:/home/bemnet/openslp-1-3-0# slpd -v

slpd version: 1.3.0
compile options:
 debugging: disabled
 predicates: enabled
 slpv1 compatibility: enabled
 slpv2 security: enabled

5.4.2.2 Configuring OpenSLP with security support

OpenSLP uses three configuration files: - slp.conf, slp.reg, and slp.spi. The slp.conf file
contains parameters that are used by our service agents. The set of parameters that we have
configured for the speaker service agent are described below. All the other parameters are set
to their default value.

• Scope will be use in our application as a specific logical location in the building. For
instance SIP UAs located in room1 will specify that they are interested in services
available in this room by specifying the corresponding room name as service scope. The

2020 This version of OpenSLP does not include support for IPv6.

60

net.slp.useScopes attribute allow us to specify comma separated list of scopes the
service should be assigned to. For example:

net.slp.useScopes = “grimeton, default”

• List of interfaces to be used by the SA. For example:
net.slp.interfaces = “192.168.2.4”

• In order to include an authentication block in the service reply messages we should set
the net.slp.securityEnabled parameter. This is done by specifying:
net.slp.securityEnabled = true

The slp.reg file contains a list of services that are statically configured to be used by the
SLP daemon (slpd). Since in our configuration we do not have a directory agent, each service
agent will be configured in a similar way. The following example shows and slp.reg entry for
the speaker service.
#Register the speaker service
service:speaker://speaker1@192.168.2.238,en,65535
scopes=room1
description= 7.1 Stereo Sound System
authors=bemnet

From this entry we can see that the service type is speaker and the URL for the service
is speaker://speaker1@192.168.2.238. The URL specifies the SIP URI that our SIP UA will
redirect the RTP media stream to. The scope attribute indicates the room this service is
provided in. The string en indicates the locale the service uses (in this case English). The
value 65535 indicates the lifetime of the service. In this case the service will be available as
long as the slpd is alive. Currently OpenSLP does not have a mechanism to indicate persistent
service registrations. When the slpd(running as a DA) dies, then all the dynamically registered
services will be lost. There is a future plan by the OpenSLP maintainers to provide a
persistent store of service registration information if the slpd dies unexpectedly.

When OpenSLP is compiled with security features, the slp.spi file is used by an SLP
daemon to specify the keys used for signing and verifying SLP messages. This configuration
file uses a Security Parameter Index (SPI) to create a mapping between a security context and
the key files. An authenticator (in our case the UA), will specify the SPI when sending a
request, so that the reply will be signed with the correct key. Below we can see the SPI entry
we have used for our speaker service agent.
PRIVATE spi1 /etc/secure/privkey.pem
PUBLIC spi1 /etc/secure/pubkey.pem

One important shortcoming to be noted here is the protection of private key. In most
cases, in order to avoid unauthorized access, the private key will be encrypted with a pass
phrase (for instance using triple DES). The current implementation of OpenSLP does not
support encrypted private keys, which force us to store the private key in the clear.

SLP uses the Digital Signature Algorithm (DSA) to integrity protect SLP messages. In
order to create the key pairs (shown above) we have used openssl. OpenSLP expects the key
files to be supplied in PEM format. The following command will first create DSA parameters,
and then create the key pair.

61

ccslabda:/home/bemnet# openssl dsaparam -out dsaparam.pem 2048
ccslabda:/home/bemnet# openssl gendsa -out privkey.pem dsaparam.pem
ccslabda:/home/bemnet# openssl dsa -in privkey.pem -pubout -out pubkey.pem

The above command will produce the private and public keys in privkey.pem and
pubkey.pem respectively. It is important to note here that Windows does not support public
keys in PEM format. In order to import the public key into the Windows key store, we have to
convert the key to a compatible format (for instance PKCS#12). In the next section we will
show how we performed this conversion and how we access this key from the Windows CE
certificate manager using our SLP UA.

5.4.3 Implementing SLP UA for the iPAQ
This section presents the design decisions and the implementation of our SLP UA. The

UA is implemented so that it will easily be integrated with our SIP user agent running on
Windows Mobile 2003. The UA is developed as a reusable API so that others can use it in
order to introduce dynamic service discovery in their application. A partial listing of the
SLPUserAgent class, can be found in Appendix H. Currently the UA is able to handle two
messages: – service request and service reply. The findService() method constructs the service
request message by creating the SLP header with the function ID set to the value SrvRqst (i.e.
equal to 1). The method sets the service parameters, supplied by the caller (including service-
type, scope-list, and predicate lists), to the send buffer of the request message as specified in
RFC 2608 [8]. Finally we set the SPI field of the buffer to indicate the security context. This
value is used by the service agent to determine which private key to use when signing the
service reply. Just before sending the byte buffer, a new thread will be spawned to receive
service reply. The byte buffer is multicasted to the SLP multicast group address on port 427.

Upon receiving the service request, the SA will find the service entry that matches the
parameters mentioned above. When the receiving thread gets a packet in reply, the
processPacket() method checks if it is a service reply (by checking if the function ID is set to
SrvRply i.e. equal to 2) and performs the appropriate parsing. Most importantly we extract the
URL21, the SPI string, and the timestamp values. These fields (marked in Yellow in Figure
34) are used to compute the digital signature. After the service reply is authenticated (as
described in section 5.4.3.1 on page 62), the processPacket() function will return a data
structure containing the service URL. The following code snippet shows how to use location
reply we got from the room locator server in order to search for a speaker service using SLP.

21 In the current version of the UA we only support a single URL per service reply.

62

LocationReply[] location = this.uploadRequest(roomLocatorURL, xml);
SLPUserAgent slpUA = new SLPUserAgent(location[0], "spi1", "en");
SLPServiceRequest slpRequest =

new SLPServiceRequest("", ServiceType.SPEAKER, "");
SLPServiceReply[] slpReply = slpUA.findServices(slpRequest);
if (slpReply == null || slpReply.Length ==0){

System.Console.WriteLine("No Service Found!");
}
else{

System.Console.WriteLine("Service Type: " + slpReply[0].serviceType +
"\nService URL: " + slpReply[0].URL);
}

Listing 4: Searching for a speaker service using the SLPUserAgent class

Service Location Header (Function ID = SrvRply = 2)

Error Code

<URL Entry>

URL Entry cont.

Reseved Life time URL Length

URL Len cont. URL

of URL Auth Authentication Block

Block Structure Descriptor Authentication Block Length

Timestamp

SLP SPI String Length SLP SPI String

Structured Authentication Block
Figure 34: Service Reply Message (Yellow: Fields included in the signature, Red: the authentication

block)

5.4.3.1 Authenticating Services

SLP version 2 introduced using authentication blocks with every URL entry to verify
that the content transmitted is not modified and has been transmitted by a trusted party. The
authentication has the data structure shown in Figure 34. The Block Structure Descriptor
(BSD) identifies the structure of the authentication block. IANA maintains well known BSD
values ranging from 0x0000 to 0x7FFF. The timestamp is an unsigned 32 bit value that
represents the time when the signature expires. The start of the time epoch is 0h on 1 January
197022 .Service agents use this value to indicate the duration of the validity of the signature23.
The SPI field is a string that identifies the key length, algorithm parameter, and keying
materials to be used to verify the digital signature. We use this value to retrieve the correct
public key from a file.

22 This Timestamp will wrap back to 0 in the year 2106 and the time at which the time stamp is relative to

resets.
23 OpenSLP sets the timestamp field to the maximum possible value i.e. 0xFFFFFFFF.

63

For an implementation to support SLP v2 authentication, it must implement a digital
signature algorithm with a SHA-1 authentication block (i.e. BSD = 0x0002). The Digital
Signature Algorithm (DSA) is used to digitally sign SLP messages. The algorithm was
proposed by National Institute of Standards and Technology (NIST) and the signature
calculation is specified in [45]. Compared to its counterpart RSA, DSA is only used for
signing and it does not provide encryption. Additionally DSA is an ideal choice for signing
SLP messages, because of the short size of the resulting signature it produces compared to
RSA. This is important because when encapsulated in UDP, SLP messages can only have a
maximum size of 1400 bytes24. SHA-1 is used to compute the hash of the message to be
signed (i.e. the one shown in yellow in Figure 34).

The default SLP signature format (i.e. BSD = 0x00002) conforms to X.509 v3
certificate format. It has the following three parts represented using ASN.1 encoding:

• The signature algorithm identifier (an OID):

Id-dsa-with-sha1 (ASN.1 encoding of OID = 1.2.840.10040.4.3)

• The signature value:

Binary ASN.1 encoding of r and s computed using DSA and SHA-1

• Certificate path

In order to extract the signature value from the ASN.1 encoded byte stream we have
uses an open source ASN.1 parser from [46]. The code snippet below used the AsnParser
class to extract the r and s values (20 bytes each) of the X.509 signature values and save them
in a 40 byte array.

 349//Parse the ASN.1 signature to extract the r and s values.
 350 AsnParser par = new slpua.AsnParser(signitureBytes);
 351 par.NextSequence();
 352 byte[] r = par.NextInteger();
 353 byte[] s = par.NextInteger();
 354 byte[] b40 = new byte[40];
 355 Array.Copy(r, 0, b40, 0, 20);
 356 Array.Copy(s, 0, b40, 20, 20);

Listing 5: Extracting the r and s values of the X.509 signature

In order to verify the signature we first have to compute the hash value of fields whose
signature is to be computed (including the SPI, URL, and timestamp fields). We have used the
SHA1CryptoServiceProvider class that is present in the .Net security package. When the
ComputeHash() method is called a 20 byte hash value of these fields is returned (see Listing
6). The DSASignatureDeformatter class implements the DSA signature verification
algorithm. The VerifySignature() method takes the hash value and the signature to be verified.
For the source code of the mobile SLP user agent we have implemented see Appendix 0.

24 Although not common, TCP can be used if larger SLP messages are desired.

64

 358 //Compute the hash value
 359 SHA1 sha = new SHA1CryptoServiceProvider();
 360 byte[] digest = sha.ComputeHash(authDataBytes);
 361 //Verify the signiture
 362 DSASignatureDeformatter verifier =
 new DSASignatureDeformatter(dsa);

 363 verifier.SetHashAlgorithm("SHA1");
 364 bool result = verifier.VerifySignature(digest, b40);
 365 System.Console.WriteLine("****Verify****: " + result);

Listing 6: Compute the SHA1 hash value and verify the signature

5.4.4 Configuring SER
To provide SIP network element functionalities such as SIP proxy, registrar server,

presence server, and redirect server we used open source software called Sip Express Router
(SER) [19]. The various functionalities of SER are implemented as separately installable
modules could be built and configured independently. The following steps provide the tasks
required to be performed in order to build and configure SER.

• Download the source code
ccsleft:/home/bemnet/ser# wget
ftp://siprouter.teigre.com/pub/ser/ser-2.0.0-rc1_src.tar.gz

• Unpack the tar archive
ccsleft:/home/bemnet/ser# tar xzf seri-2.0.0-rc1_src.tar.gz

• Compile SER with MySQL, presence and standard modules.
ccslabda:/home/bemnet/ser# make group_include="standard

standard-dep mysql presence" all

• Install SER
ccsleft:/home/bemnet/ser# make group_include="standard

standard-dep mysql presence" install

• Download the serctl script used to manage the SER proxy from
http://www.iptel.org/news/serctl and install to /usr/local/sbin/serctl

• Create a new local domain (i.e., the IP address of the proxy server
192.168.2.238) using the serctl
ccsleft:/usr/local/sbin/serctl # ./ser_domain add test

192.168.2.238

• Add user (called ipaq) to the SER Registrar server
ccsleft:/usr/local/sbin/serctl # ./ser_user add ipaq
ccsleft:/usr/local/sbin/serctl # ./ser_uri add ipaq ipaq

@192.168.2.238
ccsleft:/usr/local/sbin/serctl # ./ser_uri add ipaq ipaq

@192.168.2.238
ccsleft:/usr/local/sbin/serctl # ./ser_cred add ipaq ipaq test

192.168.2.238 ipaq

• Start SER using the configuration file in Appendix 0
ccsleft:/usr/local/sbin # ./ser -f /home/bemnet/ser/auth-mysql-

pa.cfg

65

5.4.5 Implementing secure media redirection in Minisip
In order to transfer an ongoing secure session to a local device we have extended the

recommendations made by Oscar Santillana [4]. The Third Party Call Control (3PCC)
functionality with a simple call flow shown in Figure 33 was implemented and integrated in
to Minisip on both the iPAQ PDA (the mobile node) and on a Linux machine (the
correspondent node).

On the iPAQ PDA we have built a Windows CE version of Minisip [18]. The
MinisipTextUI class provides a command line interface to make outgoing calls, answer
incoming calls, and end active sessions. The communication between the user interface and
the SIP layer is done using callback functions to send messages to a message router. When a
message router receives a message it routes it to the appropriate destination (can be either a
gui, sip, or media) using the handleCommand() method. In order to implement our session
transfer functionality we defined a command called localtrans. This will allow the user to
issue this command from the command line (for example localtrans
speaker1@192.168.2.238). When the message router receives this command from the gui it
will call the localTransfer() method of the sip layer, which will initiate the 3PCC call flaw.
 968 if ((command.size()>=10) && (command.substr(0,10) == "localtrans")){
 969 if (command.size()>=12){
 970 if (state!="INCALL"){
 971 displayMessage("Not in a call!", red);
 972 }else{
 973 string uri = trim(command.substr(11));
 974 CommandString transCmd (callId,

 SipCommandString::local_transfer_requested,
 uri);
 //send command to message router

 975 callback->guicb_doLocalTransfer(transCmd);
 976 wprintf(L"Starting local transfer...\n");
 977 }
 978 }else{
 979 displayMessage("Usage: localtrans <userid>");
 980 }
 981 handled=true;
 982 }

Listing 7: Code snippet from MinisipTextUI class for handling the localtrans command

The localTransfer() method starts by checking if the URI specified by the user is valid.
Then the method creates a new SIP dialog (i.e. an instance of SipDialogVoip class) to
represent the session between the mobile node and the local node. Next we create an invite
command to be sent to the transaction user of the SIP dialog we just created (see section 2.3.2
to clarify the difference between dialog and transactions). The difference between the invite
message to the local node and other nodes is that, the local node’s invite message does not
have an SDP body. Therefore we must tell the SipDialogVoip class that it should set an SDP
when calling the sendInvite() method. This is done by saving the Call-Id of the dialog as
shown in Listing 8. and checking if the Call-Id is different from SipDialog::localCallID in the
sendInvite() method before setting the SDP.
 138 string Sip::localTransfer(string &uri){
 139 //...parse the uri
 140 //URI doesn't have the domain name part add it.

66

 141 if(!gotAtSign && id){
 142 id->lock();
 143 uri += "@" + id->sipDomain;
 144 id->unlock();
 145 }
 146 SipDialogSecurityConfig securityConfig;
 147 MRef<SipDialogConfig*> callconf =
 MRef<SipDialogConfig*>(new SipDialogConfig(phoneconfig->inherited));
 148 securityConfig = phoneconfig->securityConfig;
 149 MRef<Session *> mediaSession =
 mediaHandler->createSession(securityConfig);
 150 //create new SIP dialog with for the local device.
 151 MRef<SipDialog*> voipCall(new SipDialogVoip(sipstack,
 callconf, phoneconfig, mediaSession));
 152 SipDialog::localDialog = voipCall;//save instance of the dialog
 153 SipDialog::localCallID = voipCall->getCallId(); //save call id
 154 //Add the dialog to the SIP stack
 155 sipstack->addDialog(voipCall);
 156 //Create invite command to be sent to the Transaction User (TU)
 157 CommandString inv(voipCall->getCallId(), SipCommandString::invite, uri);
 158 SipSMCommand cmd(SipSMCommand(inv, SipSMCommand::remote,
 SipSMCommand::TU));
 159 //Queue the message for the sip stack to handle it.
 160 sipstack->handleCommand(cmd);
 161 mediaSession->setCallId(voipCall->getCallId());
 162 return voipCall->getCallId();
 163 //...
 164 }

Listing 8: The Sip::localTransfer() method used to start the 3PCC call transfer

When the local node gets the invite message it will immediately reply with a 200 OK
response. Upon receiving this response the SipDialogVoip::a3_callingnoauth_incall_2xx()
method will be called. If the incoming call ID matches the call ID used for the local node (i.e.
SipDialog::localCallID), then the mobile node saves the SDP of the response in a
SipDialogVoip::localSDP static object. The mobile node uses this SDP when sending a
re-invi te message to the correspondent node. Since the SDP from the local device does not
have any key exchange attribute (i.e., the key-mgmt session level attribute), we defined the
SipDialogVoip::getReinviteSDP() method to create the key-mgmt attribute and include it in
the SDP from the local node. See Listing 9.
 1497 MRef<SdpPacket *> SipDialogVoip::getReinviteSDP()
 1498 {
 1499 //get the sdp offer from the media session and extract the a=key-
mgmt:mikey line
 1500 MRef<SdpPacket *> tempSdp = mediaSession->getSdpOffer();
 1501 string keyMgmt = tempSdp->getKeyMgmt();
 1502 //and add it to the one in localSDP
 1503 SipDialogVoip::localSDP->setSessionLevelAttribute("key-mgmt",keyMgmt);
 1504 return SipDialogVoip::localSDP;
 1505 }

Listing 9: The getReinviteSDP() method

When the mobile node gets a 200 OK from the correspondent node it will have to send
an ACK to both the correspondent node and to the local node (confirming the first 200 OK).
However, the ACK for the local node should include SDP from the correspondent node. More
importantly it will need to include the keying material to be used to decipher the SRTP media.
We have defined the sendAckwithSDP() method inside the SipTransactionInviteClient class to
create the ACK message with the appropriate keying material. Appendix 0 provides a partial
listing of this method. The method creates the crypto SDP media level attribute to securely

67

transfer the master key used to derive session keys used to decipher the SRTP media. The
crypto attribute has the following syntax.
a=crypto:<tag> <crypto-suite> <key-params> [<session-params>]
Where: tag=0,1,2...

crypto-suite= AES_CM_128_HMAC_SHA1_80
key-param = "inline:" <key||salt> ["|" lifetime] ["|" MKI ":"

length]

The tag field is a unique identifier of the crypto attribute. The crypto-suite specifies the
encryption and authentication algorithm to be used. Currently there are three crypto suites
(see Table 2) standardized and registration of more new suite is managed by IANA. The key-
param provides the keying material for the crypto suite in question. The string inline means
that the key material is provided in the key-param itself following the (‘:’). The master key
and the salt values are concatenated and encoded in base64. The lifetime is an optional field
that indicates the maximum number of SRTP and SRTCP packets that can use this master
key. MKI stands for master key identifier. By specifying an MKI, it is possible to identify
which master key value to use by simple looking at the SRTP packet. As shown in Figure 4
on page 15, the SRTP packet contains an optional MKI field used to indicate the relevant
master key25. The example bellow shows the SDP sent from the local device to the speaker
service as part of the final ACK message.
v=0
o=- 3344 3344 IN IP4 192.168.2.238
s=Minisip Session
t=0 0
a=crypto:1 AES_CM_128_HMAC_SHA1_80
 inline:d0RmdmcmVCspeEc3QGZiNWpVLFJhQX1cfHAwJSoj|2^20|1:32
m=audio 30456 RTP/SAVP 0
c=IN IP4 192.168.2.238
a=fmtp:0 PCMU/8000
a=rtpmap:0 PCMU/8000

Finally before sending the ACK message to the local node, the SDP will have to be
encrypted and signed using S/MIME. For encryption [47] recommends using AES instead of
3DES. This is mainly because AES is considered to be faster and more memory efficient
compared to 3DES, which makes it suitable for mobile and embedded devices [47]. For
signing S/MIME uses RSA as its digital sig nature algorithm and SHA1 as the digest
algorithm. The example shown below presents the full ACK message sent when calling the
sendAckWithSDP() (see Appendix 0). The content type of the ACK message is a multipart
signed SDP. The first part is an S/MIME encrypted SDP and the second part is the signature
of the SDP. The boundary between these parts is marked using an identifier specified in the
Content-Type header of the ACK message.
ACK sip:192.168.2.90:5060 SIP/2.0
Max-Forwards: 70
From: <sip:ipaq@192.168.2.238>;tag=20997
To: <sip:local@192.168.2.238>;tag=7709
Call-ID: 14206@192.168.2.99
CSeq: 901 ACK
Route: <sip:192.168.2.238;ftag=8664;lr=on>

25 Note that SRTP has another method of identifying the master key used to process SRTP packet using

the <”From”, “To”> range of the 48 bit packet sequence number.

68

Content-Length: 320
Content-Type: multipart/signed;boundary=75b3d73b4e24d3f6;\
 micalg=sha1;protocol=application/pkcs7-signature
Content-Length: 2158

--75b3d73b4e24d3f6
Content-Type: application/pkcs7-mime;
 smime-type=enveloped-data;name=smime.p7m
Content-Disposition: attachment;handling=required;filename=smime.p7
Content-Transfer-Encoding: binary

* BINARY BLOB 1 *

--75b3d73b4e24d3f6
Content-Type: application/pkcs7-signature;name=smime.p7s
Content-Disposition: attachment;handling=required;filename=smime.p7s
Content-Transfer-Encoding: binary

* BINARY BLOB 2 *

--75b3d73b4e24d3f6—

Listing 10: The final ACK message sent from the mobile node to the local node.

Up on receiving the final ACK message, the local device will use its private key to
decrypt the SDP. The public key of the mobile node will be used to verify the signature. In the
current implementation the public key files are preconfigured on both the mobile and the local
node. This approach works well for limed deployment such as in our test bed. However, in the
future public keys with appropriate credentials could be distributed using a public key server.

69

6. Evaluation and Discussion
This chapter presents the two categories of measurements and evaluations that have

been performed. A detailed discussion of the results and analysis will also be presented. The
first set of evaluations performed mainly focused on quantifying the performance delays
introduced by including context-aware features into the SIP user agent. For this purpose the
room locator client was evaluated using the test bed described in section 4.6.1. Accuracy tests
were made in order to understand how reliable the context framework is. Theses series of tests
were performed to determine if location determination made by the room locator server is
sufficiently accurate for our target task (i.e., automatic configuration of the SIP user agent).

The second set of measurements focused on the performance of the trust establishment
and media redirection features. The test bed presented in section 5.4.1 was used to evaluate
how long it takes for the mobile device to authenticate service replies and to start redirecting
the existing media stream(s).

6.1 Performance of the room locator client
The room locator is an application that enables a mobile SIP user agent to determine its

current location (in this case room number) and action (either entering or exiting this specific
room). In order to decide whether it is acceptable to include these features in the SIP user
agent, we need to measure its performance; as if the performance is not adequate the user will
not be happy with this service

Section 6.1.1 presents what aspect of the room locator client needed to be evaluated and
section 6.1.2 discusses the findings and provides detailed analysis of the measurements that
were made.

6.1.1 Measuring performance of the client
As presented in section 4.5, the room locator client listens for URLs broadcasted by IR

beacons mounted either in the room (or near the entrance to the room) and initiates a room
locator request. Before creating this request, we acquire the light level and temperature
reading from the Wasa board installed on the iPAQ PDA. The XML request is sent to the
room locator web server using HTTP. The response XML from the server describes the most
probable location and action of the user (see section 4.6.5).

Figure 35 shows a sequence diagram representing the interaction between the room
locator clients; along with the server and the corresponding delays.

70

Figure 35: Delay breakdown for the room locator client

We have found the following six elements of the overall delay types interesting to
measure and analyze. Table 8 shows these delays and describes what they account for. Note
that in these measurements we assume that the PDA already has an established
communication path to and from this server. The PDA dynamically discovers the IP address
of the server using the SLP user agent described in section 5.4.3.

Table 8: Description of room locator delays

Delay Description

L1 - Initialize IR
Port

The time it takes to open and set up the IrDA port (with bit rate = 9600bps). This
is done only once when we start the room locator client.

L20 – Read IR
beacon

The time it takes receive (58byte) URL from the IR beacon.

L210 – Initialize This is the time it takes to open and setup the serial port (with bit rate = 115200)
to read light and temperature values.

L211 – Read This is the time it takes to issue the AT command (twice) to read light and
temperature values from the Wasa board. This include the time it takes to decode
the ASCII characters, parse the readings, validate, and optionally re-issue the AT
command and receive new values (if either of the reading was invalid).

L22 – Create
Request

This is the time used to load the XML file (only for the first request after the room
locator client begins), and to insert the values obtained from the IR beacon and
light and temperature sensors.

L4 – Response This is the time elapsed between sending the XML location request and getting a

71

Delay response from the server. It includes the network delay and the processing
performed on the server.

L30 – Database
access

This is the time it takes to retrieve the mapping between IR beacon number and
room number from the database server.

L31 – Access
sensors

This the time elapsed to read the light and temperature readings of the Wasa board
installed in the target room

L32 – Create
XML

This is the time it takes the server to create the response XML containing the users
location and corresponding action.

In order to determine these delays we have first used the date and time API provided in
the .Net framework. The DateTime class provides methods to subtract two instances and
return the result as a TimeSpan object using which we can determine the duration in
milliseconds as follows.

DateTime time1 = DateTime.Now;
//do something
DateTime time2 = DateTime.Now
TimeSpan span = time2.Subtract(time1);
double delay = span.TotalMilliseconds;

However, the result we obtained using this method on the iPAQ PDA made no sense(
we were getting exceptionally high delay – in the magnitude of hours). After some
investigation we learned that Windows CE devices exihibt strange behaviour when querying
for current time with a resolution of milliseconds. A better time source is the system tick
counter property – Environment.TickCont. The tick count is a 32bit signed value that
represents the number of milliseconds ellapsed since the last time the device restarted26.

Tick counter approach of determining delay was used in the IRBeaconReader class (see
Appendix C) to determine the six delays listed in Table 8. We performed five different test
runs with six location requests per test. A test run in this context refers to starting the
application and making a request refers to the client application making a XML location
request to the server when walking under one of the IR beacons mounted on the ceiling as
shown in Figure 22. Table 9 summarizes the delays for the 5 test runs and Figure 36 plots the
delay for each test run.

Table 9: Room locator client delay measurements (5 test runs & 6 requests per test run). The last two
rows correspond to mean and standard deviation excluding the first request in each run (as this first

timing includes all of the initialization times which do not re-occur in later).

 L1(ms) L20(ms) L210(ms) L211(ms) L22(ms) L4(ms)
Run 1 165 65 144 122 496 1716
 54 105 58 8 486
 53 109 81 8 579
 54 105 80 8 587
 53 103 80 9 625
 56 106 82 9 574
Run 2 158 69 146 150 495 2359
 56 104 85 8 1429

26 This value rollovers when the device is kept running for 24.9 days; thus this is the maximum delay we

can measure with only this method. However, this was not a limitation in any of our measurements.

72

 55 101 82 7 964
 56 108 62 9 852
 60 103 84 7 470
 55 104 110 8 937
Run 3 168 70 131 117 496 1796
 51 104 80 7 474
 56 101 85 7 637
 56 104 87 8 580
 55 100 78 8 807
 56 107 80 8 975
Run 4 160 69 144 116 496 1869
 55 106 85 7 2898
 60 113 84 8 664
 57 105 81 8 935
 57 105 86 9 548
 59 110 81 9 1372
Run 5 163 70 143 111 499 4412
 55 104 81 8 744
 56 102 85 8 695
 54 100 81 8 981
 55 102 82 8 898
 57 105 73 10 548
Mean 163 58 111 88 89 1114
Standard Dev. 4 5 14 19 185 861
Mean-
Intermediate 56 105 81 8 850
Std Dev-
Intermediate 2 3 9 1 497

Figure 36: Comparison of the room locater client delay.

1.00

10.00

100.00

1000.00

10000.00

Ru
n
1

Ru
n
2

Ru
n
3

Ru
n
4

Ru
n
5

D
el
ay
 in

 m
ill
is
ec
on

ds

Test runs(6 requests per run.)

Room locator delay

L1(ms) L20(ms) L210(ms)
L211(ms) L22(ms) L4(ms)

73

6.1.2 Performance analysis for the locator client
The delay specified as L1 is the time it takes to initialize the IrDA port. From Table 9

we can observe that the delay ranges between 158 ms to 168 ms with a mean equal to 163 ms
and standard deviation of 4 ms. This delay is mainly due to the time required to open the
IrDA port, which is accessed using an emulator serial port (COM2 on the iPAQ PDA). It also
includes the time it takes to set the baud rate (which is equal to 9600bps) and other parameters
as described in section 4.6.2. We believe that this delay is acceptable, because the IR port
initialization only takes place once when we start the room locator client. As shown above
any subsequent location request in a given test run does not experience this delay.

The delay specified as L20 is the time it takes to read the URL broadcast by the IR
beacon. An example URL looks like this
“????????????pphttp://www.it.kth.se/~maguire/beacon/1\0??” and has a total size of 58 bytes.
As we have mentioned in section, it takes two read operation to read the full URL using the
serial port API. The first read operation returns the 32 bytes, and the next read operation
returns the remaining 26 bytes. We experienced an average delay of 56 ms (as shown in
the Table 9). Ideally at 9600bps, we expect to read the whole URL within 48.33 ms. The
additional delay of 7.31 ms includes time for receiving framing bits. Because we are using 8-
N-1 connection27, for every eight bits transmitted, two additional framing bits are also
transmitted. Note that since we might not be reading at the start of the beacon being
transmitted, we expect to wait on the average one half of the beaconing period to see a beacon
and to wait at most one beacon period to see a whole beacon (note that the beacon
continuously transmits its URL - so the beacon time is simply the time it takes to transmit the
URL).

The delay specified as L210 is the time it takes to initialized the serial port used to read
the light and temperature readings from the ADC. The Wasa board is connected to the iPAQ
PDA using a USB interface. In order to obtain the readings we open the virtual port once. We
have determined that the time it takes to open the virtual serial port is around 110.80 ms. This
delay includes the time it takes to configure the serial port parameters. It was surprising to
learn that the delay to initialize the serial port is larger than the time it takes to read the actual
light and temperature values (i.e. L211). Again, we believe that this delay is acceptable
considering the fact that we only initialize the port once and reuse it for both readings.

The delay specified L211 is the time it takes to read the light and temperature values
from the Wasa board. The virtual serial port used to connect the Wasa board with the PDA
has a bit rate of 115200bps. The total time it takes to issue the AT command to access the
ADC in order to read both light and temperature values was determined to be 88.30 ms. In
comparison to Thor Hådén’s report [48] in sampling data from Wasa board, our delay is
significantly longer. His findings indicate that it was possible to collect 344 samples per
second (i.e., each reading took only 2.9ms). The extended delay in our case is mainly because
our delay not only includes the time it takes to read the sample using the AT command, but it
also includes the time it takes to write to the serial port, read the response, parse the ADC

27 8-N-1 stands for (8) data bits, no (N) parity bit, and one (1) stop bit.

74

reading, validate the reading, and possibly re-issue the AT command (if the value read is
invalid). We observed that frequently the AT commands return invalid ADC reading (i.e. less
than 0 and greater 4095 – because we have a 12 bit ADC we know that such values cannot be
valid). We also noticed that if we issue the AT commands without a gap in time between
them, the room locator client application crashes and quits28. Therefore we included a 100ms
delay between AT commands. However this delay is subtracted from the data presented
in Table 9, as this delay is a programmed delay and not a delay in the operation we are
measuring. In order to further reduce the delay of creating location requests, the room locator
client could be improved by reading the URL from the IR beacon and accessing the light and
temperature values in parallel.

The delay L22 is the time it takes to create the XML location request. Table 9 shows
this delay is very high (above 490 ms) for the first requests within a test run. This is because
for the first request the XML request template is loaded from a file in to memory. All the
subsequent requests have a lower delay (about 8 ms) because we do not access the local file
system. The delay specified as L4 is the round trip time of sending the XML request to the
room locator server and getting a XML response XML. We have determined that on average
it takes about 850 ms to process location requests. This delay includes the round trip time
uploading the request, accessing the room database, reading the room’s light and temperature
sensors, and downloading the response.

In the current version of the room locator server, we can only handle a single location
request at a time. This is mainly because every location request accesses the serial port on
which the Wasa board is installed. This means while the room locator web server is accessing
the light and temperatures sensors, subsequent request will have to be blocked. This will be a
bottleneck when the number of requests increases. A better approach could be implementing a
separate process which continuously access the light and temperature reading and makes the
latest values available to the room locator server. Additionally, it should be noted that in a real
installation there would probably be separate sensing of the room light level and temperature
for each room - rather than the single sensor system used in this prototype.

In order to help us further improve the location determination delay we performed
additional tests. On the room locator side, we have measured the time it takes to establish the
database connection, access the light and temperature readings, and prepare and send the
response. We can observe that establishing the database connection takes 15 ms for the first
request. However, subsequent requests utilize this existing connection. The delay T31 is the
time it takes to access the Wasa board. As we described earlier this delay can be parallelized
with the location determination, because accessing the physical sensors can be implemented
in a separate process. For example a separate which access the light and temperature readings
could transmit the latest values to the room locator service. This will considerably reduce the
location determination delay and making our approach very scalable.

28 The specific cause of this crash and alternative solution could be investigated in the future.

75

Table 10: Server side request processing delay

T30(ms) T31(ms) T32(ms)
15 218 110
0 218 110
0 218 109
0 218 94
0 203 125
0 218 125
0 203 124
0 219 109
0 203 109
0 219 125
0 219 125

Std.
Dev 5 7 10
Average 1 214 115

Figure 37 shows how the delay of accessing light and temperature sensors with the
request processing task. On the client side the tasks L210 and L211 can be parallelized with
the request processing task. This will reduce the delay by 186 ms. On the server side, the
delay about 214 ms can be saved. Therefore if we introduce this parallelizing approach a total
of 400 ms can be reduced making the location service very scalable.

Figure 37: Parallelizing the light and temperature sensors with request processing.

76

6.2 Accuracy of the room locator server
In order to determine if the decisions made by the room locator server have an

acceptable level of accuracy, we conducted accuracy measurements. The objective of these
measurements was to determine how accurate the context aggregation framework is (see
section 4.5). We also wished to understand how the accuracy would be affected when
incorporating additional sources of context information such as light and temperature sensors.
For this purpose we created a number of scenarios (presented in Table 11), where the user
walks by our target rooms (room 6339 and room 6340 – see Figure 21) and we collect the
location decision on the server side using the history database.

Table 11: Scenarios for determining the accuracy of the room locator server

Scenario Available Sensors Expected Action

Entering room 6339 PIR, IR beacon, light and
temperature sensor

Redirect media to speaker
service
(sip:speaker1@192.168.2.238)

Exiting room 6339 PIR, IR, beacon, light and
temperature sensors

Redirect media to mobile node

Entering room 6340 PIR and IR beacon Redirect media to speaker
service
(sip:speaker2@192.168.2.238)

Exiting room 6340 PIR and IR beacon Redirect media to mobile node.

As it can be seen in Table 11, room 6339 is equipped with light and temperature sensors
in addition to the IR beacon and room occupancy sensor. Generally we expect to have a
higher certainty when we have input from the additional sensors. To test this hypothesis we
have used a weighted certainty measurement. The certainty value is a number that ranges
between 0 and 1. A certainty value of 0 indicates that the location of the user is unknown and
certainty value close to 1 indicates that there is a near certainty that the user is located in a
given room and is performing the indicated action (entering or exiting). Because the different
sensors provide different levels of accuracy in determining the location and action of the user,
the certainty value is calculated by adding the weighted probability values from different
sensors. Location determined using the IR beacon has a higher weight (0.40) because it
explicitly placed by the administrator at each specific room and the same administrator enters
the mapping between the IR beacon numbers and the room number into the database of the
room locator server. Therefore if the location of the user is determined only using the IR
beacon, the certainty will be 0.40. If the room status information published by the PIR sensor
matches the previous decision, then the certainty value will be increased by 0.20. The light
and temperature sensors each have a lower weight of 0.15. The comparison between readings
from the device and the room is done based on the maximum difference between the ADC
readings from two WASA boards exposed to the same light and temperature sources. The
maximum difference between light sensors ADC reading is determined to be 30 and for that
of the temperature sensor we determined it to be 20.

77

Table 12: Decision made by the room locator server for the four scenarios (5 tests per scenario).

E=Entrance, X=Exit, and U=Unknow

Device
Sensor

Room
Sensor Action

ID Room IR
Beacon

Last
Entrance Last Exit Light Temp Light Temp PIR Light Temp Final Certainty

1 6339 4
6/11/2009

11:38
6/11/2009

11:23 341 2543 N/A N/A E U U E 0.60

2 6339 4
6/11/2009

11:58
6/11/2009

11:39 722 2575 N/A N/A E U U E 0.60

3 6339 4
6/11/2009

13:18
6/11/2009

12:01 362 2575 N/A N/A E U U E 0.60

4 6339 4
6/11/2009

13:18
6/11/2009

14:38 309 2531 N/A N/A X U U X 0.60

5 6339 4
6/11/2009

13:18
4/14/2009

14:38 323 2599 N/A N/A X U U X 0.60

6 6339 4
6/11/2009

13:23
6/11/2009

14:52 315 2619 N/A N/A X U U X 0.60

7 6339 4
6/11/2009

14:56
6/11/2009

14:52 2627 2615 N/A N/A E U U E 0.60

8 6339 4
6/11/2009

14:56
6/11/2009

15:01 319 2615 N/A N/A X U U X 0.60

9 6339 4
6/11/2009

15:05
6/11/2009

15:01 311 2607 N/A N/A E U U E 0.60

10 6339 4
6/11/2009

15:05
4/14/2009

17:12 2607 2607 N/A N/A X U U X 0.60

11 6340 3
4/12/2009

17:38
4/12/2009

12:38 356 2611 363 2558 E E U E 0.75

12 6340 3
4/12/2009

17:54
4/12/2009

17:39 2633 2607 361 2560 E U U E 0.60

13 6340 3
4/12/2009

18:09
4/12/2009

18:09 358 2569 361 2564 E E E E 0.90

14 6340 3
4/12/2009

18:09
4/12/2009

18:25 360 2572 367 2568 X E E X 0.30

15 6340 3
4/12/2009

18:41
4/12/2009

18:25 2321 2571 593 2567 E U E E 0.75

16 6340 3
4/12/2009

18:38
4/13/2009

11:38 355 2609 364 2553 X X U X 0.75

17 6340 3
4/13/2009

11:39
4/13/2009

11:56 352 2575 368 2528 X X U X 0.75

18 6340 3
4/13/2009

11:58
4/13/2009

12:14 2655 2567 2567 2558 X U U X 0.60

19 6340 3
4/13/2009

11:58
4/13/2009

12:32 389 2579 359 2557 X X U X 0.60

20 6340 3
4/13/2009

11:58
4/13/2009

12:50 396 398 367 2558 X X U X 0.60

In the Table 12 shows the data collected from the room locator server for the above four
scenarios. For each of the four scenarios we performed five consecutive tests. For the first two
cases, three out of the five decisions were correct (i.e. 60% accuracy) with equal level of
certainty (i.e. 0.60). Since we do not have light and temperature sensors, the accuracy of the
decision for those tests depends completely on the status update from the PIR sensor and the
IR beacon. Xueliang Ren reported that he was able to obtain 60% accuracy when setting the
PIR threshold to around 0.80 [31]. For scenarios three and four, we have been able to obtain a
higher accuracy because we have used the light and temperature sensors mounted in room

javascript:__doPostBack('GridView2','Sort$room_id')�
javascript:__doPostBack('GridView2','Sort$ir_beacon')�
javascript:__doPostBack('GridView2','Sort$ir_beacon')�
javascript:__doPostBack('GridView2','Sort$last_enterance')�
javascript:__doPostBack('GridView2','Sort$last_enterance')�
javascript:__doPostBack('GridView2','Sort$last_exit')�
javascript:__doPostBack('GridView2','Sort$device_temp')�
javascript:__doPostBack('GridView2','Sort$certainity')�

78

6340. The certainty value of 0.75 indicates that the action decision made (i.e. exiting or
entering) is supported by the PIR (with a certainty weight of 0.60) and by one of the sensors
(additional certainty of 0.15). When both sensors support the PIR’s decision (as in test 13) a
much higher certainty of 0.90 is achieved.

During our test we detected a slight difference between the light sensor readings when
exposed to the same light source. This resulted in decrease in the accuracy of the location
estimate. To further investigate this problem we exposed the Wasa board to incandescent and
fluorescent light source simultaneously. The results showed in Figure 38 shows that there is a
fixed variance in the ADC readings.

Figure 38: Comparison of LDR readings from two Wasa boards

On average the variance can be up to 50.3 of the ADC reading for a fluorescent lamp
and 19.70 for incandescent bulbs. These offset values were used when using the light sensor
reading is compared by the location server. Note that initially we did not calibrate the light
sensors or temperature sensors.

1750
1775
1800
1825
1850
1875
1900
1925
1950
1975
2000
2025
2050

0 1 2 3 4 5 6 7 8 91011121314151617181920212223242526272829303132333435

A
D
C
Re

ad
in
g

Sequential Counter

Comparison of Two LDRs under Incandescent
and Flourscent light sources

Server Incandescent

PPC Incandescent

Server Flourscent

PPC Flourscent

79

Figure 39: Comparing the LDR reading for various reference locations.

Figure 39 shows the comparison of LDR readings at different between reference points
in the Lab. The readings marked PPC are collected using the iPAQ PDA; while the one
marked Server was collected using the Wasa board mounted in room 6340(see Figure 21 for
floor plan). From the plot above we can clearly see that the reading collected in room 6340 is
very close to the one we obtained when the user is in the same room.

The results we obtained clearly show that the accuracy framework increase when
additional sensors such as IR beacons, light intensity and temperature sensors are
incorporated. In comparison to previous thesis projects that use only the PIR sensor to
determine room occupancy information [3; 31], we have been able to obtain 20%-30%
increase in accuracy of location determination. To further improve the accuracy of the context
aggregation framework, additional sensors and contextual sources such as RFID tag readers
could be incorporated.

6.3 Secure media redirection delay
In order to evaluate the performance of the secure media redirection technique, we

conducted five test runs of the setup presented in section 5.4.1. The measurements to be
performed will allow us understand the delay in performing the secured third party controlled
call transfer. The SIP messages during the initial call establishment with the correspondent
and the media redirection to the local node are captured at the SIP proxy using Wireshark. In
order to analyze the delay between the messages we have used the SIP Scenario Generator
tool [49]. The call flow in Figure 40 was generated using this tool. The five unique colors in
the call flow correspond to individual SIP dialogs. The first three dialogs are registration of
the three user agents (local, correspondent, and mobile nodes). The initial session
establishment with the correspondent node is indicated with a green color and the media
redirection to the local node is indicated with a lime color. We can observe that the re-invite

2510
2515
2520
2525
2530
2535
2540
2545
2550
2555
2560
2565
2570
2575
2580
2585
2590

0 5 10 15 20 25 30 35 40

A
D
C
Re

ad
in
g

Sequential Counter

Comparison of LDR Readings

PPC Desk

PPC Grimton

PPC Main Enterance

PPC Room 6340

Server Room 6340

80

transaction with the correspondent node is performed within the same dialog as the initial call
setup and hence the same color is used.

Figure 40: Call flow for redirecting media to a speaker service

For this purpose we have measured six delays. The first three delays (T1, T2, and T3)
are latencies of registering the correspondent node, the local node, and the mobile node
respectively. The delay specified as T4 is the time it takes to establish the initial session
between the mobile node and the correspondent node. The ringing delay on the correspondent
side (i.e. the time before the user accept the call) has been eliminated by subtracting the delay
between 180 Ringing and 200 OK as shown in Figure 40. The delay specified as T5 is the
time it takes to establish a new session with the speaker service. For this delay we did not
have to remove the ringing delay because the local node answers i.e., replies to the invite
message, almost immediately. The last delay T6 represents the re-invitation session with the
correspondent node. The correspondent node’s user agent (i.e. Minisip) code has been

81

implemented in such a way that incoming RE-INVITE messages are replied immediately to
redirect the media. These times are summarized in table 10.

Table 13: Delay measurements for media redirection

Test
T1

(ms)
T2

(ms)
T3

(ms)
T4

(ms)
T5

(ms)
T6

(ms)

T4

Total Ringing
T4

Retrans T4 Net
T6

Total
T6

Retrans

T6

Net
1 2 2 1 4898 2956 1506 436 98 1209 500 709
2 2 2 1 4163 2979 650 534 98 1372 503 869
3 3 1 2 4646 2584 1506 556 96 1300 501 799
4 2 2 1 3528 2482 502 544 98 1219 502 717
5 2 2 3 3716 2685 496 535 97 1344 503 841

Mean 2 2 2 512 97 787
Standard
Dev. 0.5 0.5 1 48 1 72

On average the registration delays range between 1.6 ms - 2.2 ms. Note that this delay
only corresponds to the latency of processing the registration on the SER registrar server.
Note that in our setup the registration messages are not authenticated. In order to avoid call
hijacking attacks, in an actual deployment each registration should be authenticated.
Determining the delay T4 (i.e. establishing a session with the correspondent node) requires
more careful investigation. Simply subtracting the delay between message F10 and F18
in Figure 40 gives us a very high delay in order of 3-4 seconds -- marked as T4 total in Table
13. Therefore in order to determine the actual time required to establish the initial session, we
have to eliminate the ringing delay and the possible retransmission of the 200 OK. From the
raw captured data we have observed the correspondent node (i.e. Minisip) retransmits the 200
OK frequently (2-3 times) until it gets ACK from the mobile node. After eliminating these
two delays the time it takes establish the initial session was determined to be 521ms.

Johan Bilien and et.al performed measurements to evaluate the delay of establishing a
secure session using Minisip [50]. Their results show that it takes about 30ms to process SIP
messages and additional 30ms to verify the MIKEY messages and perform a policy check29.
Note that his delays only refer to the delays on the user agents and does not include the
network latency. We have noticed that major portion of the delay (about 358ms) occurs on the
mobile node when receiving a 200 OK from the correspondent node and before sending the
ACK message. At this point it is not really clear why it takes this long to acknowledge 200
OK responses. The delay to invite the local node to the session is relatively very short. On
average it takes about 97 ms. This is because the local node immediately replies with a 200
OK. Compared to T4, this delay does not have the MIKEY message processing latency since
at this point no key exchange has been performed with the local node. On the other hand the
delay T6 has considerably higher delay. The average delay we measured is 787 ms. Compared
to the initial session establishment delay (i.e., T4), the added latency accounts for the
additional ACK message sent to the local node (confirming the 200 OK in T5).

29 Their test bed was based on two Linux boxes (rather than a PDA and PC as in the case of this thesis project).

82

The time elapsed to redirect the secure media stream to the local node is around 1.3
seconds. When added with the time it takes to determine the location of the user (around 1.1
seconds), the overall delay is noticeable by the user. We believe this delay is acceptable for a
small home and office environment where the number of users and devices is limited.
However, in order to use this framework in a large scale deployment, faster means of
redirecting media streams should be investigated.

83

7. Conclusion and Future Work
7.1 Goal Attainment

The challenge of utilizing a user’s context to dynamically discover and use multimedia
services via a secure SIP user agent was the core problem to be addressed in this project.
Existing literatures indicated that by utilizing simple sensors (such as passive infrared
sensors), applications that detect meetings, and determine occupancy information of a room
can be developed [3; 31]. We developed and evaluated a new context aggregation framework
that utilizes existing and new methods of sensing user’s current location. The framework
gathers and analyzes context information from passive infrared sensors, infrared beacons, and
light intensity & temperature sensors in order to determine the most probable location of the
user.

The context aggregation framework has two important parts: a room locator client and
room locator server. The client is an application installed on the user’s mobile device which
initiates room location requests. A typical location request is an XML encoded message that
includes infrared beacon numbers, light intensity and temperature readings in the user’s
current location. The room locator server is a web application that receives the XML encoded
location request. Based on the information provided in this location request, the server
determines the location (in our case current room number) and action of the user (either
entering or exiting). Once the location of the user is determined, our mobile SIP user agent is
able to utilize this information to search for services available in this specific room.

For this purpose we have developed an SLP user agent that is capable of dynamically
discovering multimedia devices such as projectors, speakers, cameras. The room locator client
and the SLP user agent applications are integrated in to an existing SIP user agent called
Minisip [18]. The resulting SIP user agent is able to dynamically discover and interact with
nearby multimedia devices and services without requiring any manual configuration from the
user.

This thesis project also addressed the challenge of establishing trust between the SIP
user agent and the multimedia services. The main objective of establishing trust is to make
sure that our SIP user agent does not start redirecting media streams to rogue services. The
mechanism we proposed establishes a security context by authenticating service
advertisements from the service providers. The established security context enables trusted
services to participate in a secure multimedia session.

7.2 Conclusion
The accuracy measurements we have performed indicate that the context aggregation

framework provides more accurate location determination when additional sensors are
incorporated. By including infrared beacons, passive infrared sensors, and light intensity &
temperature sensors, we have been able to obtain location accuracy greater than 80%. In
comparison to the room occupancy sensor system [31], which only utilizes room status

84

information published by a passive infrared sensor, our context aggregation framework
provides an increase in accuracy of 20%-30%. Therefore, instead of relying on a single
sensor, more accurate location determination can be achieved by utilizing context information
gathered from multiple sources. Furthermore, we have shown that a centralized approach of
aggregating and analyzing multiple sources provides even better accuracy.

However, adding more sensors and introducing more detailed analysis of context
information causes additional delay. In order to determine if the latency introduced by
including context-awareness to our SIP user agent is acceptable, we conducted performance
tests. The results indicate that it takes about 1.1 seconds for the room locator client to
determine the location of the user. Once the location of the user is determined, an additional
1.3 seconds is required to redirect the media stream. Despite the fact that a delay greater than
one second is clearly noticeable by the user, we argue that due to the added functionality the
user will find the increased delay is acceptable. The next section presents some suggestions
that could help reduce this added delay and presents few open issues to be explored in future
projects.

7.3 Future Work
It is important to note that the performance measurements we have conducted are in a

laboratory with two target rooms and one mobile user. As the number of mobile users and the
target locations increase, we anticipate that the context aggregation framework will exhibit
increased latency. We believe the major portion of this increased delay is caused by the time
spent to poll the light intensity and temperature sensors installed in all the rooms. The
readings from these sensors are accessed via a serial port, which means in the current version
of the framework only one request can be handled at a time. One possible solution could be
implementing a separate process to access the light intensity and temperate readings of
various rooms and make this data available to the room locator server. Such a process could
continuously access the sensors and transmit the latest readings to the room locator server
using UDP. Such a layered approach of implementing sensor systems is presented in Xueliang
Ren’s thesis [31] and could be incorporated into the context aggregation framework in the
future. In addition to this the room locator client can be improved by parallelizing some of the
operations. More specifically we have shown that by simultaneously accessing the light and
temperature sensors while processing location requests could reduce the location
determination by 400 ms making the framework very scalable.

Another future improvement is related to public key distribution. We have used a public
key infrastructure in order to establish trust and create a security context between the mobile
device and multimedia services. In the current version of the framework, in order to
authenticate service advertisements, the mobile node requires access to public key files of all
the services configured locally. On the multimedia services side, the client requires the public
key of the mobile node in order to verify the S/MIME signature of the SDP that carries the
SRTP keying material. This configuration of course works well for a small number of devices
and services. However for wider use, requiring each device to manage all of the various
public keys does not scale. For this purpose one could introduce a public key server to
distribute public keys and the appropriate credentials. One possibility could be using an HTTP

85

Keyserver Protocol (HKP) [51] server to allow applications search and download public keys
after network administrators have uploaded public keys using a web based interface.

Finally we would like to point out that current version of Minisip used on the iPAQ
PDA does not have support for video. The Linux version of Minisip has experimental support
for video using H263 codec from the FFMPEG’s libavcodec library [52]. Due to time
constraints we did not cross compile this library for Windows CE platform. Future projects
could port the libavcodec library to Windows CE platform to evaluate the context aggregation
framework with video support.

86

References
1. J. Rosenberg, H. Schulzrinne, et al. SIP: Session Initiation Protocol. : IETF, RFC

4568, June 2002.
2. H. Sinnreich, A. B. Johnston. Internet Communications Using SIP: Delivering VoIP

and Multimedia Services with Session Initiation Protocol. New York : Wiley, 2006.
978-0-471-41399-8.

3. Hübinette, Daniel. Occupancy Sensor System, Master Thesis. Stockholm : Royal
Institute of Technology (KTH), School of Information and Communication
Technology, 2007. COS/CCS 2007-26, http://web.it.kth.se/~maguire/DEGREE-
PROJECT-REPORTS/071221-Daniel_Hubinette_Master_Thesis-with-cover.pdf.

4. Oscar Santillana. RTP redirection using a handheld device with Minisip, Master
Thesis. Stockholm : Royal Institute of Technology (KTH), School of Information and
Communication, 2007. COS/CCS 2007-10, http://web.it.kth.se/~maguire/DEGREE-
PROJECT-REPORTS/070301-Oscar_Santillana-FinalVersion-with-cover.pdf.

5. Shasha Zhang. Device aggregation with data networking, Master Thesis. Stockholm :
Royal Institute of Technology (KTH), School of Information and Communication,
2008. COS/CCS 2008-23, http://web.it.kth.se/~maguire/DEGREE-PROJECT-
REPORTS/081003-Shasha_Zhang-with-cover.pdf.

6. Haruumi Shiode. In-building Location Sensing Based on WLAN Signal Strength:
Realizing a Presence User Agent, Masters Thesis. Stockholm : Royal Institute of
Technology (KTH), School of Information and Communication, 2008. COS/CCS
2008-04, http://web.it.kth.se/~maguire/DEGREE-PROJECT-REPORTS/080314-
Haruumi_Shiode-with-cover.pdf.

7. Hu Lidan. An Intelligent Presentation System, Master Thesis . Stockholm : Royal
Institute of Technology (KTH), School of Information and Communication, 2008.
COS/CCS 2008-14, http://web.it.kth.se/~maguire/DEGREE-PROJECT-
REPORTS/080807-Hu_Lidan-with-cover.pdf.

8. E. Guttman, C. Perkins, et al. Service Location Protocol, Version 2. : IETF, RFC
2608, June 1999.

9. SmartBadge version 4. [Online] HP Labs and Royal Institute of Technology (KTH),
January 03, 2001. [Cited: June 02, 2009.] http://web.it.kth.se/~maguire/badge4.html.

10. W. H. Winsborough, K. E. Seamons, V. E. Jones. Automated Trust Negotiation.
South Carolina : In DARPA Information Survivability Conference and Exposition,
2000. ISBN:0769504906.

11. A. K. Dey, G. D. Abowd,. Towards a Better Understanding of Context and Context
Awareness. Karlsruhe : Proceedings of the 1st international symposium on Handheld
and Ubiquitous Computing, 1999. ISBN:3-540-66550-1.

12. C. Bolchini, C. A. Curino and et. al,. A data-oriented survey of context models.
New York : ACM, 2007. ISSN:0163-5808.

13. UPnP Device Architecture 1.0. UPnP Forum. [Online] 24 April 2008. [Cited: 05
January 2009.] http://www.upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-
v1.0.pdf.

14. Apache River Incubation Project. [Online] 24 April 2008. [Cited: 05 June 2009.]
http://incubator.apache.org/river/RIVER/index.html.

87

15. H. Chen, A. Joshi, T. Finin. Dynamic Service Discovery for Mobile Computing:
Intelligent Agents Meet Jini in the Aether. Hingham : Kluwer Academic Publishers,
2001. ISSN:1386-7857.

16. Jr., Gerald Q. Maguire. Practical Voice Over IP (VoIP): SIP and related protocols
course(IK2554). [Online] Royal Institute of Technology (KTH), School of
Information and Communication,, 12 January 2009. [Cited: 02 January 2009.]
http://www.it.kth.se/courses/IK2554/VoIP-2008.pdf.

17. H. Schulzrinne, S. Casner, et al. RTP: A Transport Protocol for Real-Time
Applications. : IETF, RFC 3550, July 2003.

18. MiniSIP. [Online] 05 February 2009. [Cited: 05 February 2009.]
http://www.minisip.org.

19. SIP Express Router. [Online] IPTEL, 01 January 2007. [Cited: 08 January 2009.]
http://www.iptel.org/ser.

20. M. Baugher, D. McGrew, et. al. The Secure Real-time Transport Protocol
(SRTP). : IETF, RFC 3711, March 2004.

21. J. Arkko, E. Carrara, and et. al. MIKEY: Multimedia Internet KEYing. : IETF,
RFC 3830, August 2004.

22. F. Andreasen, M. Baugher, and et al. Session Description Protocol (SDP) Security
Descriptions for Media Streams. : IETF, RFC 4568, July 2006.

23. TrustBuilder. [Online] 01 January 2008. [Cited: 08 January 2009.]
http://dais.cs.uiuc.edu/dais/security/trustb.php.

24. H. Sugano, S. Fujimoto, et al. Presence Information Data Format (PIDF). . : IEFT,
August 2004. RFC 3863.

25. Rosenberg, J. The Extensible Markup Language (XML) Configuration Access
Protocol (XCAP). : IETF, RFC 4827, May 2007.

26. David Sabaté Mogica. Remote Desktop: Integrating multiple devices. Stockholm :
Royal Institute of Technology(KTH), School of Information and Communications
Technology, 2008. COS/CCS 2008-15, http://web.it.kth.se/~maguire/DEGREE-
PROJECT-REPORTS/081202-DavidSabateMogica-report-with-cover.pdf.

27. OpenSLP. [Online] May 02, 2009. [Cited: May 02, 2009.] http://www.openslp.org/.
28. S. Goyal, J. Carter. A Lightweight Secure Cyber Foraging Infrastructure for

Resource-Constrained Devices. Washington, DC : Mobile Computing Systems and
Applications, 2004. WMCSA 2004. Sixth IEEE Workshop, 2004. ISBN: 0-7695-
2258-0.

29. Johan Sverin. Speech Interface for a Mobile Audio Application, Master Thesis.
Stockholm : Royal Institute of Technology (KTH), School of Information and
Communication,, 2005. IMIT/LCN 2005-17,
http://web.it.kth.se/~maguire/DEGREE-PROJECT-REPORTS/050702-
Johan_Sverin-with-cover.pdf.

30. Velleman Components. PIR Intrusion Detector. [Online] Velleman, January 02,
2009. [Cited: January 04, 2009.]
http://www.velleman.be/be/en/product/view/?id=374758.

31. Xueliang Ren. A Meeting Detector to Provide Context to a SIP Proxy, Masters
thesis. Stockholm : Royal Institute of Technology (KTH), School of Information and
Communication, October 2008. COS/CCS 2008-24.

88

32. Ke Wang. Exploiting Presence. Stokholm : Royal Institute of Technology (KTH),
School of Information and Communication, December 2008. COS/CCS 2008-27,
http://web.it.kth.se/~maguire/DEGREE-PROJECT-REPORTS/081205-Ke_Wang-
with-cover.pdf.

33. Alisa Devlic. Context-Addressed Communication Dispatch, Licentiate Thesis.
Stockholm : Royal Institute of Technology (KTH), School of Information and
Communication, May 2009.
http://web.it.kth.se/~devlic/licentiate%20thesis/Alisa_Devlic-licentiate-thesis.pdf.

34. J. Rosenberg, J. Peterson, et al. Best Current Practices for Third Party Call
Control (3pcc) in the Session Initiation Protocol (SIP). : IETF, RFC 3725, April
2004.

35. Chan, Wesley. Using CoolBase to Build Ubiquitous Computing Applications. 2001.
36. California Wireless, Inc., Ericsson, et al. Infrared Data Association Guidlines for

Ultra Protocols. . : IrDA, October 1997. V.1.
37. Mark T. Smith. Course website for II2302: Sensor Based Systems. [Online] Royal

Institute of Technology (KTH), School of Information and Communication,, January
1, 2009. [Cited: June 29, 2009.] http://web.ict.kth.se/~msmith/II2302_2009.html.

38. FTD Chip VCP Driver. [Online] May 12, 2008. [Cited: June 12, 2009.]
http://www.ftdichip.com/Drivers/VCP.htm.

39. MSDN forum discussion on bug when using IO.Port.SerialPort class to access
emmulated IrDA port. Title of discussion: "IO.Ports.SerialPort - issue with
.BytesToRead and DataReceived Event". [Online] January 01, 2009. [Cited: June 14,
2009.] http://social.msdn.microsoft.com/Forums/en-
US/netfxcompact/thread/1c548a4d-2556-4ee4-9f01-b0922fd96862/.

40. OpenNetCF Consulting. [Online] June 13, 2008. [Cited: June 15, 2009.]
http://www.opennetcf.com/.

41. FUJI & CO.(Piezo Science) MPY-20C48 LDR. [Online] May 31, 2009. [Cited: June
13, 2009.] http://www.fuji-piezo.com/photoldr.htm.

42. Joachim Köppen. Photometry with Light Dependent Resistors. [Online] 01 May
2004. [Cited: 22 May 2009.] http://www.astrophysik.uni-
kiel.de/~koeppen/blueskies/photometer.html.

43. JAIN-SIP API. [Online] January 01, 2007. [Cited: June 13, 2009.] https://jain-
sip.dev.java.net/.

44. Mikael Svensson. Countering VoIP Spam: Up-Cross-Down Certificate Validation.
Stockholm : Royal Institute of Technology (KTH), School of Information and
Communication,, 2007.
http://www.minisip.org/publications/Thesis_Svensson_Sep2007.pdf.

45. NIST Digitalsignature Standard Technical Report. s.l. : U.S. Department of
Commerce, May 1994. NIST FIPS PUB 186.

46. Cryptographic Interoperability: Digital Signatures. The code project. [Online] 26
April 2008. [Cited: 02 April 2009.]
http://www.codeproject.com/KB/security/CryptoInteropSign.aspx.

47. Peterson, J. S/MIME Advanced Encryption Standard (AES) Requirement for the
Session Initiation Protocol (SIP). : IETF, RFC 3853, July 2004.

48. Thor Hådén’s. IPv6 Home Automation, Batchelors thesis. Stockholm : Royal
Institute of Technology (KTH), School of Information and Communication, June

89

2009. TRITA-ICT-EX-2009:28, http://web.it.kth.se/~maguire/DEGREE-PROJECT-
REPORTS/090601-Thor_Haaden.pdf.

49. SIP Scenario Generator. [Online] 25 July 2004. [Cited: 22 June 2009.]
http://www.iptel.org/~sipsc/.

50. Johan Bilien, Erik Eliasson, et. al. Secure VoIP: call establishment and media
protection. [Online] 01 January 2009. [Cited: 12 June 2009.]
www.minisip.org/publications/secvoip-minisip-camera.pdf.

51. Shaw, D. The OpenPGP HTTP Keyserver Protocol (HKP). : IETF, March 2003.
http://tools.ietf.org/html/draft-shaw-openpgp-hkp-00.

52. FFMPEG.ORG. [Online] May 01, 2008. [Cited: June 12, 2009.]
http://ffmpeg.org/index.html.

53. Athanasios Karapantelakis. A mobile SIP client: From the user interface design to
evaluation of synchronised playout from multiple SIP user agents. Stockholm : Royal
Institute of Technology (KTH), School of Information and Communication,, 2007.
COS/CCS 2007-07.

90

Appendices
A. Useful tools used when developing application

for Pocket PC

Name Description Source

PHM Device
Manager

The Device Manager display a
graphical view of the hardware built-
in or connected to your Pocket PC.

http://www.phm.lu/products/PocketPC/
DevMgmt/

Windows Mobile
Developer Power
Toys

Pocket PC command shell, remote
Pocket PC display and others.

http://www.microsoft.com/downloads/d
etails.aspx?FamilyID=74473fd6-1dcc-
47aa-ab28-
6a2b006edfe9&displaylang=en

PocketPuTTY Terminal emulator for Pocket PC.
Supports SSH, Telnet, and Serial.
Useful when debugging the Wasa
Board.

http://www.pocketputty.net/

PocketPC Ping A utility application used to ping IP
or host names.

http://sourceforge.net/projects/pocketpin
g/

MyIpConfig Shows current IP configuration for
multiple network adapters

http://sourceforge.net/projects/myipconf
ig/

http://www.phm.lu/products/PocketPC/DevMgmt/�
http://www.phm.lu/products/PocketPC/DevMgmt/�
http://www.microsoft.com/downloads/details.aspx?FamilyID=74473fd6-1dcc-47aa-ab28-6a2b006edfe9&displaylang=en�
http://www.microsoft.com/downloads/details.aspx?FamilyID=74473fd6-1dcc-47aa-ab28-6a2b006edfe9&displaylang=en�
http://www.microsoft.com/downloads/details.aspx?FamilyID=74473fd6-1dcc-47aa-ab28-6a2b006edfe9&displaylang=en�
http://www.microsoft.com/downloads/details.aspx?FamilyID=74473fd6-1dcc-47aa-ab28-6a2b006edfe9&displaylang=en�
http://www.pocketputty.net/�
http://sourceforge.net/projects/pocketping/�
http://sourceforge.net/projects/pocketping/�
http://sourceforge.net/projects/myipconfig/�
http://sourceforge.net/projects/myipconfig/�

91

B. Connecting a Wasa board to the HP iPAQ PDA
The following steps provide the tasks required to install the Wasa board on the iPAQ in

order to access the light intensity and temperature readings.

1. The Wasa board uses a USB interface to access the ADC readings, therefore we
must first install USB host on the iPAQ.

2. Insert the iPAQ in to the expansion pack as shown in the figure below.
3. Insert the USB host card in to the expansion card. We have used the

SolarExpress PDA II CF USB Host.
4. Install the USB host driver. We have used the one the comes with the card but it

is also available at http://www.lightconecorp.net/blog.
5. Soft reset the PDA.
6. Connect the Wasa board with the PDA as shown in the figure.
7. Install the Virtual Com Port (VCP) driver for the Wasa board. Download the

correct version from http://www.ftdichip.com/Drivers/VCP.htm.
8. Copy the ftdi_ser.dll and FTDIPORT.INF files to the \\Windows directory of the

PDA.
9. Reset the device and when it asks you for the name of the device driver enter

ftdi_ser.dll so that the appropriate driver could be located.
10. Now the Wasa board is installed. You can check your installation using

PocketPuTTY.

Figure 41: Connecting the Wasa board to the HP iPAQ PDA

http://www.lightconecorp.net/blog�
http://www.ftdichip.com/Drivers/VCP.htm�

92

C. Partial listing of the IRBeaconReader class.
This is partial listing of the IRBeaconReader class used on the iPAQ PDA to read the

URL broadcasted by the beacon. The part of the code that create the XML location request is
removed and the full source code can be checked out from my SVN server by issuing the
following command:

svn checkout http://securecontextawaresip.googlecode.com/svn/trunk/
securecontextawaresip-read-only

namespace minisip.context{
 class IRBeaconReader{
 private Port irPort;
 private StringBuilder irData;
 /// <summary>
 /// Configure the serial port
 /// </summary>
 public IRBeaconReader(){
 irPort = new Port("COM2:");
 irPort.RThreshold = 1;
 irPort.Settings.BaudRate = BaudRates.CBR_9600;
 irPort.Settings.ByteSize = 8;
 irPort.Settings.Parity = Parity.none;
 irPort.Settings.StopBits = StopBits.one;
 irPort.IREnable = true; //set to true to indicate that this is emulated
IR port.
 irData = new StringBuilder();
 }
 /// <summary>
 /// Setup receiver event and error handlers.
 /// </summary>
 public void startReading(){
 try{
 irPort.OnError += new Port.CommErrorEvent(onError);
 irPort.DataReceived += new Port.CommEvent(onData);
 bool sucess = irPort.Open(); //Open the IR Port
 System.Console.WriteLine("IR-Port Opened : " + sucess);
 }
 catch (Exception ex){
 System.Console.WriteLine(ex.ToString());
 irPort.Close();
 }
 }

 /// <summary>
 /// Closes the IR port.
 /// </summary>
 public void stopReading(){
 irPort.Close();
 System.Console.WriteLine("Closed IR port successfully.");
 }

 /// <summary>
 /// This deligate will be called when read error occurs
 /// </summary>
 /// <param name="d">The error message.</param>
 public void onError(string d){
 System.Console.WriteLine("Error: " + d);
 }
 /// <summary>
 /// This deligate will be called when data is avaiable
 /// </summary>
 public void onData(){
 try{
 byte[] buff = irPort.Input; //Save the reciever buffer
 String data = new ASCIIEncoding().GetString(buff, 0, buff.Length);

93

 String startWith = "????????????";
 if (data.StartsWith(startWith)){
 //read the first part of the url its something like this
"????????????0p ttp://www.it.kt"
 L20Start = DateTime.Now;
 irData.Remove(0, irData.Length);
 String url = data.Substring(data.IndexOf("http"));
 irData.Append(url);
 }
 else //read the second part
 {
 //trunkate the last 4 characters. It is something like this
"h.se/~maguire/beacon/1\0à?"
 int len = data.Length - 4;
 String url = data.Substring(0, len);
 irData.Append(url);
 System.Console.WriteLine("URL: " + irData.ToString());
 String beacon = url.Substring(url.IndexOf("beacon"));
 //Now we have extracted the URL and the beacon number. Continue
creating location request XML
 //...
 }
 }
 catch (Exception ex){
 System.Console.WriteLine(ex);
 fileWriter.Close();
 Console.ReadLine();
 Process.GetCurrentProcess().Kill();
 }
 }
 }

}

94

D. Partial listing of the WasaBoardReader class
This is partial listing of WasaBoardReader class used by the iPAQ PDA to access the

light and temperature sensors on the Wasa board. The full source code can be checked out
from my SVN server by issuing the following command:

svn checkout http://securecontextawaresip.googlecode.com/svn/trunk/
securecontextawaresip-read-only

using System;
using System.Collections.Generic;
using System.Text;
using System.IO.Ports;
using System.Threading;

namespace light_temp_senor_test
{
 public class WasaSensorReader
 {
 public static String LIGHT_SENSOR = "LIGHT_SENSOR";
 public static String TEMP_SENSOR = "TEMP_SENSOR";

 private String SENSOR_COM_PORT = "COM0";
 private static int READ_TIMEOUT = 10000;
 private static int MAX_LIGHT = 4096; //Since we have 12bit ADC.
 private static int MAX_TEMP = 4096;//Since we have 12bit ADC.
 private SerialPort serial;
 /// <summary>
 /// Creates a COM port for the given port number
 /// </summary>
 /// <param name="comPort">Port number</param>
 public WasaSensorReader(String comPort)
 {
 this.SENSOR_COM_PORT = comPort;
 serial = new SerialPort(SENSOR_COM_PORT, 115200, Parity.None, 8,
StopBits.One);
 serial.Handshake = Handshake.None;
 serial.Open();
 System.Console.WriteLine("WasaSensorReader: Opened port " +
SENSOR_COM_PORT);
 serial.ReadTimeout = READ_TIMEOUT;
 }

 /// <summary>
 /// Connects to the Wasa board and read numberOfReadings times
 /// </summary>
 /// <param name="sensorType">Type of reading "LIGHT_SENSOR" or
"TEMP_SENSOR" </param>
 /// <param name="numberOfReadings">Number consucative of readings.</param>
 /// <returns>The mean of the readings.</returns>
 public long readValue(String sensorType, int numberOfReadings)
 {

 long sum = 0;
 for (int i = 0; i < numberOfReadings; i++)
 {
 //issue the approprate AT command
 if (sensorType.Equals(LIGHT_SENSOR))
 {
 /*The LDR is connected to analog input 6
 hence the s-register AT command will be AT S206?\r*/
 serial.Write("AT S206?\r");
 }
 else
 {

95

 /*The TDR is connected to analog input 5,
 hence the s-register AT command will be AT S205?\r*/
 serial.Write("AT S205?\r");
 }
 try
 {
 byte[] b = new byte[serial.ReadBufferSize];
 int n = serial.Read(b, 0, serial.ReadBufferSize);//read the
input buffer.
 String data = new ASCIIEncoding().GetString(b, 0, n);
 data = data.Replace("OK", "");//remove the OK output if echo is
set to true.
 data = data.Replace("\n", "");//remove new line characters
 data = data.Replace("\r", "");
 data = data.Trim();
 System.Console.WriteLine(sensorType + "[" + i + "]" + data);
 long reading = 0;
 try
 {
 if (!data.Equals(""))
 {
 reading = long.Parse(data);
 }
 }
 catch (FormatException ex)
 {
 System.Console.WriteLine(ex);

 }
 if (sensorType.Equals(LIGHT_SENSOR))
 {
 if (reading > MAX_LIGHT || reading <= 0)
 {
 //if the reading is not valid read one more time
 i--;
 continue;
 }
 }
 else
 {
 if (reading > MAX_TEMP || reading <= 0)
 {
 //if the reading is not valid read one more time
 i--;
 continue;
 }
 }
 sum += reading;
 }
 catch (TimeoutException e)
 {
 System.Console.WriteLine(e);
 return 0;
 }
 }
 return (sum / numberOfReadings);
 }
 public void closePort()
 {
 serial.Close();
 }
 }
}

96

E. Partial listing of the RoomSubscriber class
This class is used to implement a SIP presence watcher that provides additional

contextual information for the room locator service. When status of a room changes (i.e when
someone enters or leaves the room), the SIP proxy will send us a NOTIFY message and the
information received will be stored in a database. The room locator server will use this
information when making decision about the location of the user. The full source code can be
checked out from my SVN server by issuing the following command:

svn checkout http://securecontextawaresip.googlecode.com/svn/trunk/
securecontextawaresip-read-only

public class RoomWatcher implements SipListener{
 private static final String PROXY_IP = "192.168.2.238";//"130.237.15.238";
 private static final int PROXY_PORT = 5060;
 private static final String PROXY_TRANSPORT = "udp";

 private static final String MY_IP = "192.168.2.90";//"130.237.239.208";
 private static final int MY_PORT = 5060;
 private static final String MY_TRANSPORT = "udp";

 private static SipProvider sipProvider;
 private static AddressFactory addressFactory;
 private static MessageFactory messageFactory;
 private static HeaderFactory headerFactory;
 private static SipStack sipStack;
 private ContactHeader contactHeader;

 protected ClientTransaction subscribeTid;

 public void processRequest(RequestEvent requestReceivedEvent) {
 Request request = requestReceivedEvent.getRequest();
 ServerTransaction serverTransactionId =
 requestReceivedEvent.getServerTransaction();
 if (request.getMethod().equals(Request.NOTIFY)){
 processNotify(request, serverTransactionId);
 }
 else{
 System.out.println("Watcher Error: Unsupported method: "+
 request.getMethod());
 }
 }

 private void processNotify(Request request, ServerTransaction
serverTransactionId) {
 try {
 if (serverTransactionId == null) {
 System.out.println("Watcher Error: Got null server transaction
ID.");
 return;
 }
 Dialog dialog = serverTransactionId.getDialog();
 Response response = messageFactory.createResponse(200,request);
 serverTransactionId.sendResponse(response);
 SubscriptionStateHeader subscriptionState =

 (SubscriptionStateHeader)request.getHeader(SubscriptionStateHeader.NAME);
 //Check if the subscription is terminated.
 if (
subscriptionState.getState().equals(SubscriptionStateHeader.TERMINATED)) {
 dialog.delete();
 System.out.println("Watcher Info: subscription terminated.");
 }
 //update the room database with the the new location update
 updatePIRState(new String(request.getRawContent()));

97

 } catch (Exception ex) {
 ex.printStackTrace();
 System.exit(0);
 }
 }

 public void processResponse(ResponseEvent responseReceivedEvent) {
 Response response = (Response) responseReceivedEvent.getResponse();
 //System.out.println("Watcher Info: Got a
response.\n"+response.toString());
 Transaction tid = responseReceivedEvent.getClientTransaction();

 System.out.println("Watcher Info: Response received "+ response);
 }

 public void init() {
 SipFactory sipFactory = null;
 sipFactory = SipFactory.getInstance();
 sipFactory.setPathName("gov.nist");
 Properties properties = new Properties();
 //setup the sip stack properties.
 properties.setProperty("javax.sip.OUTBOUND_PROXY",
 PROXY_IP+":"+Integer.toString(PROXY_PORT)+"/" + PROXY_TRANSPORT);
 properties.setProperty("javax.sip.STACK_NAME", "subscriber");
 properties.setProperty("javax.sip.MAX_MESSAGE_SIZE", "1048576");
 properties.setProperty("gov.nist.javax.sip.DEBUG_LOG","subscriberdebug.txt");

 properties.setProperty("gov.nist.javax.sip.SERVER_LOG","subscriberlog.txt");
 properties.setProperty("gov.nist.javax.sip.CACHE_CLIENT_CONNECTIONS",
"false");
 properties.setProperty("gov.nist.javax.sip.TRACE_LEVEL", "32");

 try {
 // Create SipStack object
 sipStack = sipFactory.createSipStack(properties);
 } catch (PeerUnavailableException e) {
 e.printStackTrace();
 System.exit(0);
 }

 //Create and send a SUBSCRIBE request to proxy
 try {
 headerFactory = sipFactory.createHeaderFactory();
 addressFactory = sipFactory.createAddressFactory();
 messageFactory = sipFactory.createMessageFactory();

 ListeningPoint lp =
 sipStack.createListeningPoint(MY_IP,MY_PORT,
MY_TRANSPORT);
 sipProvider = sipStack.createSipProvider(lp);
 sipProvider.addSipListener(this);

 String fromName = "room_locator";
 String fromSipAddress = PROXY_IP;
 String fromDisplayName = "Room Locator Service";
 String toSipAddress = PROXY_IP;
 String toUser = "pir";
 String toDisplayName = "PIR Sensor";

 // create >From Header
 SipURI fromAddress = addressFactory.createSipURI(fromName,
fromSipAddress);
 Address fromNameAddress =
addressFactory.createAddress(fromAddress);
 fromNameAddress.setDisplayName(fromDisplayName);
 FromHeader fromHeader =
 headerFactory.createFromHeader(fromNameAddress, "12345");

98

 // create To Header
 SipURI toAddress = addressFactory.createSipURI(toUser,
toSipAddress);
 Address toNameAddress =
addressFactory.createAddress(toAddress);
 toNameAddress.setDisplayName(toDisplayName);
 ToHeader toHeader = headerFactory.createToHeader(toNameAddress,
null);
 // create Request URI
 SipURI requestURI = addressFactory.createSipURI(toUser,
toSipAddress);
 // Create ViaHeaders
 ArrayList viaHeaders = new ArrayList();
 ViaHeader viaHeader =
 headerFactory.createViaHeader(MY_IP, MY_PORT,
MY_TRANSPORT, null);
 // add via headers
 viaHeaders.add(viaHeader);
 // Create a new CallId header
 CallIdHeader callIdHeader = sipProvider.getNewCallId();
 // Create a new Cseq header
 CSeqHeader cSeqHeader = headerFactory.createCSeqHeader(1L,
Request.SUBSCRIBE);
 // Create a new MaxForwardsHeader
 MaxForwardsHeader maxForwards =
headerFactory.createMaxForwardsHeader(70);
 // Create the request.
 Request request =
 messageFactory.createRequest(requestURI,
Request.SUBSCRIBE, callIdHeader,
 cSeqHeader,fromHeader, toHeader, viaHeaders,
maxForwards);
 // Create contact headers
 String host = lp.getIPAddress();
 SipURI contactUrl = addressFactory.createSipURI(fromName,
host);
 contactUrl.setPort(lp.getPort());
 // Create the contact name address.
 SipURI contactURI = addressFactory.createSipURI(fromName,
host);

 contactURI.setPort(sipProvider.getListeningPoint(MY_TRANSPORT).getPort());
 Address contactAddress =
addressFactory.createAddress(contactURI);
 // Add the contact address.
 contactAddress.setDisplayName(fromName);
 contactHeader =
headerFactory.createContactHeader(contactAddress);
 request.addHeader(contactHeader);
 //add event header.
 EventHeader eventHeader =
headerFactory.createEventHeader("presence");
 request.addHeader(eventHeader);
 AcceptHeader acceptHeader =
 headerFactory.createAcceptHeader("application",
"pidf+xml");
 request.addHeader(acceptHeader);
 // Create the client transaction.
 this.subscribeTid =
sipProvider.getNewClientTransaction(request);
 // send the request out.
 subscribeTid.sendRequest();
 System.out.println("Watcher Info: Subscribe
sent.\n"+request.toString());

 } catch (Exception ex) {
 ex.printStackTrace();
 System.exit(1);

99

 }
 }

 //used to update the database with the room location update from the PIDF XML
 private void updatePIRState(String xml){
 try{
 DocumentBuilderFactory docFactory =
DocumentBuilderFactory.newInstance();
 DocumentBuilder builder = docFactory.newDocumentBuilder();
 Reader reader = new StringReader(xml);
 Document doc = builder.parse(new InputSource(reader));
 NodeList child = doc.getChildNodes();
 //get action tag value (action can be exit or enter)
 NodeList nodes = doc.getElementsByTagName("action");
 String action = null;
 if(nodes.getLength()!=0){
 Element e = (Element)nodes.item(0);
 Node n = e.getFirstChild();
 CharacterData data = null;

 if(n instanceof CharacterData){
 data = (CharacterData)n;
 System.err.println("Action node: "+data.getData());
 action = data.getData();
 }
 }
 //get area (name of the room)
 nodes = doc.getElementsByTagName("area"); //we only have one action
element
 String area = null;
 if(nodes.getLength()!=0){
 Element e = (Element)nodes.item(0);
 Node n = e.getFirstChild();
 CharacterData data = null;
 if(n instanceof CharacterData){
 data = (CharacterData)n;
 System.err.println("Area node: "+data.getData());
 area = data.getData();
 }
 }
 //Open JDBC connection to database server.
 if(area!=null && action !=null){
 String url =
"jdbc:sqlserver://localhost:1433;databaseName=room_info;";
 Connection con;

 Class.forName("com.microsoft.sqlserver.jdbc.SQLServerDriver");
 con = java.sql.DriverManager.getConnection(url,"sa","pass4u");
 if(con!=null){
 System.out.println("Database Connection Successful!");
 Statement updateStmt = con.createStatement();
 String sql="";
 //update the last_enterance or last_exit field of
 //the room table with the current time
 if(action.equalsIgnoreCase("entry")){
 sql = "update room set last_enterance =getDate()
where name='"+area+"';";
 }
 else if(action.equalsIgnoreCase("exit")){
 sql = "update room set last_exit =getDate() where
name='"+area+"';";
 }

 int affect = updateStmt.executeUpdate(sql);
 System.out.println("Affected rows"+affect);

 }
 else{

100

 System.out.println("Error creating database
connection.");
 }
 }
 }
 catch(Exception ex)
 {
 ex.printStackTrace();
 }
 }

public static void main(String[] arg){
 new Subscriber().init();
 }

//....

 //Override other methods of the SipListener class
 //....

}

101

F. Partial listing of the room locator client
This is portion of the IRBeaconReader class that implements two method

createRequest() and uploadRequest() for implementing the room locator client functionality.
namespace minisip.context{
 class IRBeaconReader{
 private Port irPort;
 private StringBuilder irData;
 /// <summary>
 /// Configure the serial port
 /// </summary>
 public IRBeaconReader(){
 }
 /// <summary>
 /// Setup receiver event and error handlers.
 /// </summary>
 public void startReading(){
 }
 /// <summary>
 /// Closes the IR port.
 /// </summary>
 public void stopReading(){
 }
 /// <summary>
 /// This deligate will be called when read error occurs
 /// </summary>
 /// <param name="d">The error message.</param>
 public void onError(string d){
 }
 /// <summary>
 /// This deligate will be called when data is avaiable
 /// </summary>
 public void onData(){
 }
 /// <summary>
 /// Creates XML file that contains the temprature and light
readings
 /// </summary>
 /// <param name="beaconNumber">the beacon number to use in the
request</param>
 /// <returns>XML of the location request</returns>
 private String createRequest(int beaconNumber)
 {
 if (null != xmlDoc)
 {
 //Set the Beacon number
 XmlNodeList beaconReadings =
xmlDoc.GetElementsByTagName("beacon");
 beaconReadings[0].InnerText = beaconNumber.ToString();

 //Set the Temprature value

 WasaSensorReader wasaReader = new WasaSensorReader("COM0");
 //read 5 temp values
 long tempMean =
wasaReader.readValue(WasaSensorReader.TEMP_SENSOR, 1);
 XmlNodeList tempReadings =
xmlDoc.GetElementsByTagName("temp");
 tempReadings[0].InnerText = tempMean.ToString();

102

 //Set the Light value.
 long lightMean =
wasaReader.readValue(WasaSensorReader.LIGHT_SENSOR, 1);
 XmlNodeList lightReadings =
xmlDoc.GetElementsByTagName("light");
 lightReadings[0].InnerText = lightMean.ToString();
 wasaReader.closePort();

 xmlDoc.Save("\\minisip\\request.xml");
 TimeSpan s = DateTime.Now.Subtract(L20Stop);
 fileWriter.WriteLine("L21(ms)=" + s.TotalMilliseconds);
 fileWriter.Flush();

 }
 return xmlDoc.InnerXml;
 }
 /// <summary>
 /// Uploads the request to the room location server
 /// </summary>
 /// <param name="roomLocatorURI">URI of the location server, i.e. a
web address</param>
 /// <param name="requestXml">the request xml</param>
 /// <returns>Possible locations</returns>
 private LocationReply[] uploadRequest(String roomLocatorURI, String
requestXml)
 {

 byte[] reqBytes = new ASCIIEncoding().GetBytes(requestXml);
 //write file to uri
 HttpWebRequest request = HttpWebRequest.Create(roomLocatorURI)
as HttpWebRequest;
 request.Method = "POST";
 request.ContentType = "text/xml";
 request.ContentLength = reqBytes.Length;
 Stream reqStream = request.GetRequestStream();
 reqStream.Write(reqBytes, 0, reqBytes.Length);

 reqStream.Flush();
 reqStream.Close();
 System.Console.WriteLine("Location request sent to " +
roomLocatorURI);
 //read response

 HttpWebResponse response = request.GetResponse() as
HttpWebResponse;
 Stream respStream = response.GetResponseStream();

 if (response.ContentLength == 0)
 {
 throw new Exception("Error: Room locator reply is Empty.");
 }

 byte[] respData = new byte[response.ContentLength];
 respStream.Read(respData, 0, respData.Length);
 respStream.Close();
 System.Console.WriteLine("Reply Received from service.");
 //write response to file.

 BinaryWriter binWriter = new
BinaryWriter(File.Open("\\minisip\\response.xml",

103

 FileMode.Create, FileAccess.Write));
 binWriter.Write(respData, 0, respData.Length);
 binWriter.Close();
 System.Console.WriteLine("Reply written to file.");

 //Construct LocationReply and return
 XmlDocument replyXml = new XmlDocument();
 replyXml.LoadXml(new ASCIIEncoding().GetString(respData, 0,
respData.Length));

 XmlNodeList roomNodes = replyXml.GetElementsByTagName("room");
 LocationReply[] locationReply = new
LocationReply[roomNodes.Count];
 for (int i = 0; i < roomNodes.Count; i++)
 {
 locationReply[i] = new LocationReply();
 XmlAttributeCollection roomAttributes =
roomNodes[i].Attributes;
 for (int j = 0; j < roomAttributes.Count; j++)
 {
 switch (roomAttributes[j].Name)
 {
 case "id":
 locationReply[i].roomID =
int.Parse(roomAttributes[j].Value);
 break;
 case "name":
 locationReply[i].roomName =
roomAttributes[j].Value;
 break;
 case "action":
 locationReply[i].action =
roomAttributes[j].Value;
 break;
 case "certainty":
 locationReply[i].certainity =
float.Parse(roomAttributes[j].Value);
 break;
 }
 }
 }
 return locationReply;
 }
 }

}

104

G. Partial listing of the room locator server
using System;
using System.Data;
using System.Configuration;
using System.Collections;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;
using System.Text;
using System.IO;
using System.Xml;
using Room_Locator_Web_App.RoomDataSetTableAdapters;
using Room_Locator_Web_App;
using light_temp_senor_test;
namespace Room_Locator_Web_App
{
 public partial class FileUploader : System.Web.UI.Page
 {
 private const String ACTION_ENTERANCE = "enterance";
 private const String ACTION_EXIT = "exit";
 private const String ACTION_UNKNOWN = "unknown";
 protected void Page_Load(object sender, EventArgs e)
 {
 try
 {
 if (Request.ContentLength == 0)
 {
 Response.Redirect("Registration.aspx");
 log("Web App accessed from desktop browser.");
 return;
 }
 //todo check content type...
 Stream reqInStream = Request.InputStream;
 byte[] reqBytes = new byte[Request.ContentLength];
 reqInStream.Read(reqBytes, 0, reqBytes.Length);
 String reqString = new ASCIIEncoding().GetString(reqBytes);
 log("Request from client:\n" + reqString);
 XmlDocument reqDoc = new XmlDocument();
 reqDoc.LoadXml(reqString);

 byte[] respBytes = getResponse(reqDoc);
 log("Response to Client:\n" + new
ASCIIEncoding().GetString(respBytes));
 if (respBytes != null)
 {
 //write back the reply
 Stream reqOutStream = Response.OutputStream;
 reqOutStream.Write(respBytes, 0, respBytes.Length);
 }
 }
 catch (Exception ex)
 {
 log(ex.ToString());
 }
 }

 public byte[] getResponse(XmlDocument reqDoc)

105

 {
 //1. parse out beacon, light and temprature values.
 //2. Check if we have a room with the given beacon number
 // 2.1 select the recent action(entry or exit)
 // 2.2 create xml response to this room
 //3. if we don't have the beacon number
 // 3.1 select the room with the clothses light and temp values
 // 3.2 select the room recent action(entry/exit)
 // 3.2 create xml response to this room
 bool isValidReq = false;
 String reqID = "";
 XmlNode message = reqDoc.GetElementsByTagName("message")[0];
 XmlAttributeCollection msgAttributes = message.Attributes;
 for (int i = 0; i < msgAttributes.Count; i++)
 {
 XmlAttribute attribute = msgAttributes[i];
 if (attribute.Name.Equals("type") &&
attribute.Value.Equals("request"))
 {
 isValidReq = true;
 }
 if (attribute.Name.Equals("id"))
 {
 reqID = attribute.Value;
 }

 }
 if (isValidReq)
 {
 String beacon =
reqDoc.GetElementsByTagName("beacon")[0].InnerText;
 String userLight = "";
 userLight =
reqDoc.GetElementsByTagName("light")[0].InnerText;
 String userTemp = "";
 userTemp =
reqDoc.GetElementsByTagName("temp")[0].InnerText;
 String actionByPIR = "";
 String actionByLightSensor = "";
 String actionByTempSensor = "";
 String actionFinal = "";
 int roomId = 0;
 String roomName = "";
 //Find the matching room record
 RoomTableAdapter roomTableAdapter = new RoomTableAdapter();
 RoomDataSet.RoomDataTable roomTable =
roomTableAdapter.GetData();
 RoomDataSet.RoomRow[] roomRows =
(RoomDataSet.RoomRow[])roomTable.Select();

 foreach (RoomDataSet.RoomRow row in roomRows)
 {
 //match the beacon id
 if (row.ir_beacon.Equals(beacon))
 {
 roomId = row.id;
 roomName = row.name;
 //enterance is more recent
 //check also if the last_enterance and exit values
are updated within the last X sec.

106

 //X will be determined experimentall on how long it
takes for a publish to cause a notify.
 //for now it will be set 10 seconds
 int maxDelay = 10;
 if (!row.Islast_enteranceNull() &&
!row.Islast_exitNull())
 {
 DateTime now = DateTime.Now;
 TimeSpan enteranceDiff =
now.Subtract(row.last_enterance);
 TimeSpan exitDiff =
now.Subtract(row.last_exit);
 //if the last enterance field is still valid
and is more recent than the exit value
 if (enteranceDiff.TotalSeconds > maxDelay &&
 row.last_enterance.CompareTo(row.last_exit)
> 0)
 {
 actionByPIR = ACTION_ENTERANCE;
 }
 else if (exitDiff.TotalSeconds > maxDelay &&
 row.last_exit.CompareTo(row.last_enterance)
> 0) //other wise for the exit field
 {
 actionByPIR = ACTION_EXIT;
 }
 else
 {
 actionByPIR = ACTION_UNKNOWN;
 }
 }
 else
 {
 actionByPIR = ACTION_UNKNOWN;
 }

 //retrive the room temprature and light values.
 WasaSensorReader reader = new
WasaSensorReader("COM16");

 long roomLight =
reader.readValue(WasaSensorReader.LIGHT_SENSOR, 5);
 long roomTemp =
reader.readValue(WasaSensorReader.TEMP_SENSOR, 5);

 reader.closePort();

 //the light and temp vaules will be used to
determine if the user is in the given room
 //this will be used to support/correct the

 if (!userLight.Equals(""))
 {
 //experimentally we have identified that the
light sensor values within one room
 //have a maximum divation less than 61.96.
 //light readings are mean of atleast 5
consucative readings...why 5?
 long lightDiff = Math.Abs(roomLight -
long.Parse(userLight));

107

 if (lightDiff < 62)
 {
 actionByLightSensor = ACTION_ENTERANCE;
 }
 else
 {
 actionByLightSensor = ACTION_EXIT;
 }
 }
 else
 {
 actionByLightSensor = ACTION_UNKNOWN;
 }

 if (!userTemp.Equals(""))
 {
 //Determine the temprature difference between
rooms and use it here
 //for now we assume 20
 long tempDiff = Math.Abs(roomTemp -
long.Parse(userTemp));
 if (tempDiff < 20)
 {
 actionByTempSensor = ACTION_ENTERANCE;
 }
 else
 {
 actionByTempSensor = ACTION_EXIT;
 }
 }
 else
 {
 actionByTempSensor = ACTION_UNKNOWN;
 }

 //Determine the final action
 //the priority is pir, light, temp from high to low

 if (actionByPIR.Equals(ACTION_UNKNOWN))
 {
 if (actionByLightSensor.Equals(ACTION_UNKNOWN))
 {
 //tie breaker is action by temp...may be
unknown
 actionFinal = actionByTempSensor;
 }
 else
 {
 actionFinal = actionByLightSensor;
 }
 }
 else
 {
 actionFinal = actionByPIR;
 }
 //insert to history table
 HistoryTableAdapter historyTableAdapter = new
HistoryTableAdapter();
 historyTableAdapter.Insert(roomId,
int.Parse(beacon), row.last_enterance,

108

 row.last_exit, int.Parse(userLight),
int.Parse(userTemp),
 (int)roomLight, (int)roomTemp, actionByPIR,
actionByLightSensor,
 actionByTempSensor, actionFinal);

 //construct the XML
 //Todo fix timestamp..for now using fixed value
 //Todo fix certainity value.
 String xml =
 "<?xml version=\"1.0\" encoding=\"UTF-8\"?>" +
 "<message type=\"reply\" id=\"" + reqID + "\"
time_stamp=\"225451787785\">" +
 "<room id=\"" + roomId + "\" name=\"" + roomName +
"\" action= \"" +
 actionFinal + "\" certainty=\"0.73\"/>" +
 "</message>";
 return new ASCIIEncoding().GetBytes(xml);
 }
 }

 }
 return null;
 }
 }

}

109

H. Partial listing of the mobile SLP User agent
 1 class SLPUserAgent
 2 {
 3 public LocationReply roomLocation;
 4 public String spi;
 5 public String language;
 6 public String scope;
 7 private UdpClient client;
 8 private SLPServiceReply slpReply = null;
 9 public static String SLP_MULTICAST_ADDRESS = "239.255.255.253";
 10 public static int SLP_PORT = 427;
 11 Stream fileOut;
 12 StreamWriter fileWriter;
 13 DateTime stopCreate;
 14 /// <summary>
 15 /// Initializes the UA
 16 /// </summary>
 17 /// <param name="roomLocation">the locaiton to search the service
for</param>
 18 /// <param name="spi">the SPI string used to map the public key</param>
 19 /// <param name="language">the locale</param>
 20 public SLPUserAgent(LocationReply roomLocation, String spi, String
language)
 21 {
 22 this.roomLocation = roomLocation;
 23 this.spi = spi;
 24 this.language = language;
 25 this.scope = roomLocation.roomName;
 26 }
 27 /// <summary>
 28 /// Sends a locaiton request and process the reply
 29 /// </summary>
 30 /// <param name="request">type of service we are looking for</param>
 31 /// <returns>array of services available in this location</returns>
 32 public SLPServiceReply[] findServices(SLPServiceRequest request)
 33 {
 34
 35 fileOut = File.Open("\\Temp\\slp_test.txt", FileMode.Append);
 36 fileWriter.WriteLine("---------");
 37 DateTime startCreate = DateTime.Now;
 38 slpReply = null;
 39 ASCIIEncoding ascii = new ASCIIEncoding();
 40
 41 byte[] prListByte = ascii.GetBytes(request.prList);
 42 byte[] serviceTypeByte = ascii.GetBytes(request.serviceType);
 43 byte[] scopeListByte = ascii.GetBytes(this.scope);
 44 byte[] predicateByte = ascii.GetBytes(request.predicate);
 45 byte[] spiByte = ascii.GetBytes(this.spi);
 46 byte[] langTagByte = ascii.GetBytes(this.language);
 47
 48 /*
 49 0 1 2 3
 50 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 51 +-+
 52 | Service Location header (function = SrvRqst = 1) |
 53 +-+
 54 | length of <PRList> | <PRList> String \
 55 +-+
 56 | length of <service-type> | <service-type> String \
 57 +-+
 58 | length of <scope-list> | <scope-list> String \
 59 +-+
 60 | length of predicate string | Service Request <predicate> \
 61 +-+
 62 | length of <SLP SPI> string | <SLP SPI> String \
 63 +-+

110

 64
 65 */
 66 int srvReqBuffSize =
 67 2 + prListByte.Length +
 68 2 + serviceTypeByte.Length +
 69 2 + scopeListByte.Length +
 70 2 + predicateByte.Length +
 71 2 + spiByte.Length;
 72 byte[] srvReqBuff = new byte[srvReqBuffSize];
 73 int reqIndex = 0;
 74
 75 reqIndex = appendBytes(srvReqBuff,
SLPUtil.ToByte16(prListByte.Length), reqIndex);
 76 reqIndex = appendBytes(srvReqBuff, prListByte, reqIndex);
 77
 78 reqIndex = appendBytes(srvReqBuff,
SLPUtil.ToByte16(serviceTypeByte.Length), reqIndex);
 79 reqIndex = appendBytes(srvReqBuff, serviceTypeByte, reqIndex);
 80
 81 reqIndex = appendBytes(srvReqBuff,
SLPUtil.ToByte16(scopeListByte.Length), reqIndex);
 82 reqIndex = appendBytes(srvReqBuff, scopeListByte, reqIndex);
 83
 84 reqIndex = appendBytes(srvReqBuff,
SLPUtil.ToByte16(predicateByte.Length), reqIndex);
 85 reqIndex = appendBytes(srvReqBuff, predicateByte, reqIndex);
 86
 87 reqIndex = appendBytes(srvReqBuff, SLPUtil.ToByte16(spiByte.Length),
reqIndex);
 88 reqIndex = appendBytes(srvReqBuff, spiByte, reqIndex);
 89
 90 int slpBuffSize = (
 91 +1 /* Version */
 92 + 1 /* Function-ID */
 93 + 3 /* Length */
 94 + 2 /* Flags */
 95 + 3 /* Extension Offset */
 96 + 2 /* XID */
 97 + 2 + langTagByte.Length /* Lang Tag Len/Value */
 98 + srvReqBuffSize); /* Message */
 99
 100 byte[] sendBuff = new byte[slpBuffSize];
 101
 102 /*All requests and services are scoped. The two exceptions are
 103 SrvRqsts for "service:directory-agent" and "service:service-agent".*/
 104
 105 int index = 0;
 106 byte version = 2;
 107 index = appendBytes(sendBuff, new byte[] { version }, index);
 108 byte funID = 1;//SrvRqst=1
 109 index = appendBytes(sendBuff, new byte[] { funID }, index);
 110 /*The flags are: OVERFLOW (0x80) is set when a message's length
 111 exceeds what can fit into a datagram. FRESH (0x40) is set on
 112 every new SrvReg. REQUEST MCAST (0x20) is set when multicasting
 113 or broadcasting requests. Reserved bits MUST be 0.
 114 */
 115
 116 index = appendBytes(sendBuff, SLPUtil.ToByte24(slpBuffSize), index);
 117 int MCAST = 0x2000;
 118 int flags = 0;
 119 //request is always multicasted in our case
 120 flags |= MCAST;
 121
 122 /*Next Extension Offset is set to 0 unless extensions are used.*/
 123 index = appendBytes(sendBuff, SLPUtil.ToByte16(flags), index);
 124 //we don't use extenstions.
 125
 126 byte extension = 0;

111

 127 index = appendBytes(sendBuff, SLPUtil.ToByte24(extension), index);
 128 /*XID is set to a unique value for each unique request.*/
 129 int xid = new Random().Next();
 130 index = appendBytes(sendBuff, SLPUtil.ToByte16(xid), index);
 131
 132 /*
 133 Lang Tag Length is the length in bytes of the Language Tag field.
 134 Language Tag conforms to [7].*/
 135
 136 //lang tag len
 137 index = appendBytes(sendBuff, SLPUtil.ToByte16(langTagByte.Length),
index);
 138 //lang tag value
 139 index = appendBytes(sendBuff, langTagByte, index);
 140 //add SRVReqst header
 141
 142 index = appendBytes(sendBuff, srvReqBuff, index);
 143
 144 //send to port 427
 145
 146 IPEndPoint ipep = new
IPEndPoint(IPAddress.Parse(SLP_MULTICAST_ADDRESS),
 147 SLPUserAgent.SLP_PORT);
 148 client = new UdpClient();
 149
 150 Thread unicastThread = new Thread(unicastReciever);
 151 unicastThread.Start();
 152
 153 stopCreate = DateTime.Now;
 154
 155 TimeSpan span = stopCreate.Subtract(startCreate);
 156 fileWriter.WriteLine("S1(ms)=" + span.TotalMilliseconds);
 157
 158 client.Send(sendBuff, sendBuff.Length, ipep);
 159 System.Console.WriteLine("SLP UA INFO: Service request {0} sent
successfully",
 160 request.serviceType);
 161 int counter = 1;
 162 while (counter < 5 && slpReply == null)
 163 {
 164 Thread.Sleep(500 * counter);
 165 System.Console.WriteLine("SLP UA INFO: Waiting for SLPReply.");
 166 counter++;
 167 }
 168 if (slpReply != null)
 169 {
 170 slpReply.serviceType = request.serviceType;
 171 return new SLPServiceReply[] { slpReply };
 172 }
 173 else
 174 {
 175 return null;
 176 }
 177 }
 178
 179 private static SLPServiceReply processPacket(byte[] buff)
 180 {
 181 ASCIIEncoding ascii = new ASCIIEncoding();
 182 //Extract funciton id
 183 if (buff[1] == 8)//DA ADV
 184 {
 185 //extract URL and save it
 186 //lang tag header length begins at the 14th byte and extends to
the 15th
 187 byte[] langLenByte = new byte[] { buff[12], buff[13] };
 188 //int langLen = BitConverter.ToInt16(langLenByte,0);
 189 int langLen = SLPUtil.FromByte16(langLenByte);
 190 int header =

112

 191 1 /* Version */
 192 + 1 /* Function-ID */
 193 + 3 /* Length */
 194 + 2 /* Flags */
 195 + 3 /* Extension Offset */
 196 + 2 /* XID */
 197 + 2 + langLen; /* Lang Tag Len/Value */
 198 int urlLenOffset = header +
 199 2 + /*Error Code*/
 200 4; /*DA Stateless Boot Timestamp*/
 201
 202 //URL Length starts at this offset.
 203 byte[] urlLenByte = new byte[] { buff[urlLenOffset],
buff[urlLenOffset + 1] };
 204 //int urlLen = BitConverter.ToInt16(urlLenByte, 0);
 205 int urlLen = SLPUtil.FromByte16(urlLenByte);
 206 //The url string starts at url ofst + url length (start from 0)
 207 String url = ascii.GetString(buff, urlLenOffset + 2, urlLen);
 208 System.Console.WriteLine("SlP UA INFO: Got DA Advert URL: {0}",
url);
 209 }
 210 else if (buff[1] == 11)//SA ADV
 211 {
 212 System.Console.WriteLine("SlP UA INFO: Got SA Advert.");
 213 }
 214 else if (buff[1] == 2)
 215 {
 216 //SrvReply NOTE: WE assume 1 URL and 1 Auth Block per reply
currently!
 217 //lang tag header length begins at the 13th byte and extends to
the 14th
 218 byte[] langLenByte = new byte[] { buff[12], buff[13] };
 219 //int langLen = BitConverter.ToInt16(langLenByte,0);
 220 int langLen = SLPUtil.FromByte16(langLenByte);
 221 int header =
 222 1 /* Version */
 223 + 1 /* Function-ID */
 224 + 3 /* Length */
 225 + 2 /* Flags */
 226 + 3 /* Extension Offset */
 227 + 2 /* XID */
 228 + 2 + langLen; /* Lang Tag Len/Value */
 229 int urlLenOffset = header +
 230 2 + /*Error Code*/
 231 2 + /*URLEntity count*/
 232 1 + /*Reserved*/
 233 2; /*Lifetime*/
 234
 235 //URL Length starts at this offset.
 236 byte[] urlLenBytes = new byte[] { buff[urlLenOffset],
buff[urlLenOffset + 1] };
 237 //int urlLen = BitConverter.ToInt16(urlLenByte, 0);
 238 int urlLen = SLPUtil.FromByte16(urlLenBytes);
 239 //The url string starts at url ofst + url length (start from 0)
 240 int urlStarts = urlLenOffset + 2;
 241 byte[] urlBytes = new byte[urlLen];
 242 Array.Copy(buff, urlStarts, urlBytes, 0, urlLen);
 243 String url = ascii.GetString(urlBytes, 0, urlBytes.Length);
 244 //System.Console.WriteLine("SlP UA INFO: Got SrvRply URL: {0}",
url);
 245
 246 return new SLPServiceReply("", url);
 247
 248 /*
 249 * authentication block.
 250 0 1 2 3
 251 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 252 +-+

113

 253 | Block Structure Descriptor | Authentication Block Length |
 254 +-+
 255 | Timestamp |
 256 +-+
 257 | SLP SPI String Length | SLP SPI String \
 258 +-+
 259 | Structured Authentication Block ... \
 260 +-+
 261
 262 0 1 2 3
 263 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 264 +-+
 265 | ASN.1 encoded DSA signature \
 266 +-+
 267 */
 268
 269 int authBlockStarts = urlStarts //the start point of the url
 270 + urlLen //plus the lenght of the url
 271 + 1; //# of URL auths
 272
 273 int timeStampStarts = authBlockStarts
 274 + 2 /*BSD*/
 275 + 2; /*Auth block len*/
 276
 277 byte[] timeStampBytes = new byte[] { buff[timeStampStarts],
 278 buff[timeStampStarts + 1], buff[timeStampStarts + 2],
 279 buff[timeStampStarts + 3] };
 280 Int32 timeStamp = SLPUtil.FromByte32(timeStampBytes);
 281 System.Console.WriteLine("Time stamp = " + timeStamp + "\n");
 282 int spiLenStarts = timeStampStarts
 283 + 4; /*timestamp*/
 284
 285 byte[] spiLenBytes = new byte[] { buff[spiLenStarts],
buff[spiLenStarts + 1] };
 286 int spiLen = SLPUtil.FromByte16(spiLenBytes);
 287 int spiStarts = spiLenStarts
 288 + 2 /*spi len*/;
 289 byte[] spiBytes = new byte[spiLen];
 290 Array.Copy(buff, spiStarts, spiBytes, 0, spiLen);
 291 String spi = ascii.GetString(spiBytes,0,spiBytes.Length);
 292 System.Console.WriteLine("SPI= " + spi + "\n");
 293
 294 int signitureStarts = spiStarts + spiLen;
 295
 296 System.Console.WriteLine("Auth Block = " +
 297 BitConverter.ToString(buff, signitureStarts) + "\n");
 298 int signitureLen = buff.Length - signitureStarts;
 299 byte[] signitureBytes = new byte[signitureLen];
 300 Array.Copy(buff, signitureStarts, signitureBytes, 0,
signitureLen);
 301 System.Console.WriteLine("Signiture:" +
 302 BitConverter.ToString(signitureBytes) + "\n");
 303 byte[] authDataBytes = new byte[spiLenBytes.Length
 304 + spiBytes.Length
 305 + urlLenBytes.Length
 306 + urlBytes.Length
 307 + timeStampBytes.Length
 308];
 309 /*The components listed are
 310 used as if they were a contiguous single byte aligned buffer in
the
 311 order given.
 312
 313 URL
 314 16-bit Length of SLP SPI String, SLP SPI String.
 315 16-bit Length of URL, URL,
 316 32-bit Timestamp.
 317 */

114

 318 Array.Copy(spiLenBytes, 0, authDataBytes, 0, spiLenBytes.Length);
 319 Array.Copy(spiBytes, 0, authDataBytes, spiLenBytes.Length,
spiBytes.Length);
 320 Array.Copy(urlLenBytes, 0, authDataBytes,
 321 (spiLenBytes.Length + spiBytes.Length), urlLenBytes.Length);
 322 Array.Copy(urlBytes, 0, authDataBytes,
 323 (spiLenBytes.Length + spiBytes.Length + urlLenBytes.Length),
urlBytes.Length);
 324 Array.Copy(timeStampBytes, 0, authDataBytes,
 325 (spiLenBytes.Length + spiBytes.Length +
 326 urlLenBytes.Length + urlBytes.Length),
timeStampBytes.Length);
 327
 328 System.Console.WriteLine("Auth Data= " +
 329 BitConverter.ToString(authDataBytes, 0) + "\n");
 330
 331 //Compute the hash
 332 SHA1 sha = new SHA1CryptoServiceProvider();
 333 byte[] digest = sha.ComputeHash(authDataBytes);
 334
 335 // Load the Public Key
 336 AsnKeyParser keyParser = new
AsnKeyParser("\\minisip\\public.dsa.cs.ber");
 337
 338 DSAParameters publicKey = keyParser.ParseDSAPublicKey();
 339 // Initailize the CSP
 340 CspParameters csp = new CspParameters();
 341 //since user profile is not loaded we have to set this flag.
 342 //csp.Flags = CspProviderFlags.;
 343
 344 // Cannot use PROV_DSS_DH
 345 const int PROV_DSS = 3;
 346 csp.ProviderType = PROV_DSS;
 347
 348 const int AT_SIGNATURE = 2;
 349 csp.KeyNumber = AT_SIGNATURE;
 350
 351 csp.KeyContainerName = "DSA Test (OK to Delete)";
 352
 353 //
 354 // Initialize the Provider
 355 //
 356 DSACryptoServiceProvider dsa = new DSACryptoServiceProvider(csp);
 357 dsa.PersistKeyInCsp = false;
 358
 359 //
 360 // The moment of truth...
 361 //
 362 dsa.ImportParameters(publicKey);
 363
 364 ///
 365 //// load the key
 366 //X509Certificate2 x = new X509Certificate2("ca.pfx");
 367 //DSACryptoServiceProvider provider =
(DSACryptoServiceProvider)x.PublicKey.Key;
 368
 369 //convert the signiture from DER to P1363 format
 370 AsnParser par = new slpua.AsnParser(signitureBytes);
 371 par.NextSequence();
 372 byte[] r = par.NextInteger();
 373 byte[] s = par.NextInteger();
 374 byte[] b40 = new byte[40];
 375 Array.Copy(r, 0, b40, 0, 20);
 376 Array.Copy(s, 0, b40, 20, 20);
 377 //System.Console.WriteLine("B40: " + BitConverter.ToString(b40));
 378
 379

115

 380 DSASignatureDeformatter verifier = new
DSASignatureDeformatter(dsa);
 381 verifier.SetHashAlgorithm("SHA1");
 382 bool result = verifier.VerifySignature(digest, b40);
 383 System.Console.WriteLine("****Verify****: " + result);
 384 }
 385 else
 386 {
 387 System.Console.WriteLine("SLP UA ERROR: Unsupported function
id:{0}", buff[1]);
 388 return;
 389 }
 390 return null;
 391 }

116

I. Partial listing sendAckWithSDP() method
 696 void SipTransactionInviteClient::sendAckWithSDP(MRef<SipResponse*>
resp, string br){
 697 MRef<SipCommonConfig *> conf;
 698 if (dialog){
 699 conf = dialog->getDialogConfig()->inherited;
 700 }else{
 701 conf = sipStack->getStackConfig();
 702 }
 703 //Create a request line for ACK similar to "local"
<sip:192.168.2.90:5060;lr>
 704 string requestLine = SipDialog::localResp-
>getHeaderValueContact()->getString();
 705 size_t startPos = requestLine.find(":");
 706 size_t endPos = requestLine.find(";");
 707 requestLine = requestLine.substr(startPos+1,(endPos-startPos));
 708 requestLine = requestLine.erase(requestLine.find(">"));
 709 merr<<"**Request line: "<<requestLine<<end;
 710 MRef<SipAck*> ack= new SipAck(getBranch(),
 711 (MRef<SipMessage*>)*SipDialog::localResp,
 712 requestLine,
 713 conf->sipIdentity->sipDomain
 714);
 715 //add route headers, if needed
 716 if(dialog->dialogState.routeSet.size() > 0) {
 717 //merr << "CESC: SipTransInvCli:sendACK : adding header
route! " << end;
 718 MRef<SipHeaderValueRoute *> rset = new SipHeaderValueRoute
(dialog->dialogState.routeSet);
 719 ack->addHeader(new SipHeader(*rset));
 720 }
 721 //ADD SDP WITH CRYPTO ATTRIBUTE:
 722 // a=crypto:<tag> <crypto-suite> <key-params> [<session-params>]
 723 // tag=0,1,2...
 724 // crypto-suite= AES_CM_128_HMAC_SHA1_80
 725 // key-param = "inline:" <key||salt> ["|" lifetime] ["|"
MKI ":" length]
 726 //example a=crypto:0 AES_CM_128_HMAC_SHA1_80 key-param =
inline:d0RmdmcmVCspeEc3QGZiNWpVLFJhQX1cfHAwJSoj|2^20|1:4
 727 list<MRef<StreamingKey*>>::iterator i;
 728 string sdpCryptoAttribute = "";
 729 int j=0;
 730 for(i=SipDialog::securityContexts.begin();i!=SipDialog::securityC
ontexts.end();i++)
 731 {
 732 sdpCryptoAttribute = "a=crypto:";
 733 sdpCryptoAttribute = sdpCryptoAttribute.append(itoa(j));
//add the tab
 734 sdpCryptoAttribute = sdpCryptoAttribute.append("
AES_CM_128_HMAC_SHA1_80");//crypto suite
 735 sdpCryptoAttribute = sdpCryptoAttribute.append("
inline:");//key param
 736 unsigned char keyMaterial[30];
 737 int k;
 738 MRef<StreamingKey *> key = (*i);
 739 memcpy(keyMaterial, key->masterKey, 16);
 740 memcpy(&keyMaterial[16], key->masterSalt, 14);
 741 //Encode key material in base64
 742 string encodedKeyMaterial = base64_encode((unsigned
char*)keyMaterial,30);

117

 743 sdpCryptoAttribute =
sdpCryptoAttribute.append(encodedKeyMaterial);//encoded key material
 744 sdpCryptoAttribute =
sdpCryptoAttribute.append("|2^20");//life time
 745 sdpCryptoAttribute =
sdpCryptoAttribute.append("|1:4\n");//MKI not used for now
 746 j++;
 747 }
 748 //append the crypto attribute to the response sdp
 749 string respSDP = resp->getContent()->getString();
 750 //remove the a=key-mgmt:mikey
 751 size_t posKeyMgmt = respSDP.find("a=key-mgmt:mikey");
 752 size_t posMedia = respSDP.find("m=audio");
 753 respSDP = respSDP.replace(posKeyMgmt,(posMedia-posKeyMgmt),"");
 754 if(sdpCryptoAttribute!=""){
 755 respSDP += "\n" + sdpCryptoAttribute;
 756 }
 757 //code to ecrypt and sign SDP using S/MIME.
 758 //set content lenght
 759 MRef<SipHeaderValueContentLength*> contLen = new
SipHeaderValueContentLength(respSDP.length());
 760 ack->addHeader(new SipHeader(*contLen));
 761 //append the result to the ack
 762 ack->setContent(new SdpContent(respSDP));
 763 //send method is defined in SipTransaction...
 764 list<MRef<SipTransaction*>>::iterator k;
 765 list<MRef<SipTransaction*>> transactions =
SipDialog::localDialog->getTransactions();
 766 for(k = transactions.begin();k!=transactions.end();k++){
 767 (*k)->send(MRef<SipMessage*>(*ack), true, br);
 768 wprintf(L"Sending ACK to local %s.\n",(*k)->toaddr-
>getString().c_str());
 769 merr<<"***Local ACK Body\n"<<ack->getString()<<end;
 770 }
 771 }

118

J. OpenSLP configuration files (three files)

################################## slp.cnf#################################

OpenSLP configuration file

Format and contents conform to specification in IETF RFC 2614 so the
comments use the language of the RFC. In OpenSLP, SLPD operates as an SA
and a DA. The SLP UA functionality is encapsulated by SLPLIB.

###

#--
--
Static Scope and Static DA Configuration
#--
--

net.slp.useScopes = Openarea,Desk,Mint,Grimnton,default

#--
--
DA Specific Configuration
#--
--

net.slp.isDA = false
net.slp.DAHeartBeat = 30

#--
--
SA Specific Configuration
#--
--

;net.slp.watchRegistrationPID = false

#--
--
UA Specific Configuration
#--
--

;net.slp.maxResults = 256

#--
--
Network Configuration Properties
#--
--

;net.slp.isBroadcastOnly = true
;net.slp.passiveDADetection = false
;net.slp.activeDADetection = false
;net.slp.DAActiveDiscoveryInterval = 1
;net.slp.multicastTTL = 255
;net.slp.DADiscoveryMaximumWait = 2000
;net.slp.DADiscoveryTimeouts = 500,750,1000,1500,2000,3000

119

;net.slp.multicastMaximumWait = 5000
;net.slp.multicastTimeouts = 500,750,1000,1500,2000,3000
;net.slp.unicastMaximumWait = 5000
;net.slp.unicastTimeouts = 500,750,1000,1500,2000,3000
;net.slp.datagramTimeouts = IGNORED
;net.slp.randomWaitBound = 5000
;net.slp.MTU = 1400
;net.slp.interfaces = 1.2.3.4,1.2.3.5,1.2.3.6

#--
--
Security
#--
--

net.slp.securityEnabled=true
;net.slp.checkSourceAddr=false

#--
--
Tracing and Logging
#--
--

;net.slp.traceDATraffic = true
;net.slp.traceReg = true
;net.slp.traceDrop = true
net.slp.traceMsg = true

#################################slp.reg###################################

OpenSLP registration file

May be used to register services for legacy applications that do not use
the SLPAPIs to register for themselves

Format and contents conform to specification in IETF RFC 2614 so the
comments use the language of the RFC. In OpenSLP, SLPD operates as an SA
and a DA. The SLP UA functionality is encapsulated by the libslp
library.

###

#comment
;comment
#service-url,language-tag,lifetime,[service-type]<newline>
#["scopes="scope-list<newline>]
#[attrid"="val1<newline>]
#[attrid"="val1,val2,val3<newline>]
#<newline>

##Register Speaker Service
service:speaker://speaker1@192.168.2.238,en,65535
scopes=Mint, OpenArea
description=OpenSLP Testing Service
authors=Bemnet

##Register Video Projector Service
service:projector://projector1@192.168.2.238,en,65535

120

scopes=OpenArea

##Register Camera Service
service:camera://camera1@192.168.2.238,en,65535
scopes=Mint

##Register Microphone Service
service:mic://mic1@192.168.2.238,en,65535
scopes=Desk
###################################slp.spi#################################
#########

OpenSLP SPI file

Security Parameter Index (SPI) is an unformated string that us used
by SLP to identify security information used to authenticate SLPv2
message. See RFC 2608 for more information.

Format and contents conform of this file are specific to the OpenSLP
implementation of SLPv2 authentication. See comments below for more
explaination of the file format.

NOTE: OpenSLP only supports DSA keys!!!

###

#-------------
File format:
#-------------
Each line of this file maps an SPI string to a PEM encoded key file.

<PRIVATE|PUBLIC> <spi_string_without_whitespace> <PEM key file>

PRIVATE spi1 /home/bemnet/privkey.pem
PUBLIC spi1 /home/bemnet/pubkey.pem

121

K. SER configuration file
debug=3
fork=yes
log_stderror=yes

listen=130.237.15.238 # put your server IP address here
listen=192.168.2.238
port=5060
children=4

dns=no
rev_dns=no

#Load general modules
loadmodule "/usr/local/lib/ser/modules/mysql.so"
loadmodule "/usr/local/lib/ser/modules/sl.so"
loadmodule "/usr/local/lib/ser/modules/tm.so"
loadmodule "/usr/local/lib/ser/modules/rr.so"
loadmodule "/usr/local/lib/ser/modules/maxfwd.so"
loadmodule "/usr/local/lib/ser/modules/usrloc.so"
loadmodule "/usr/local/lib/ser/modules/registrar.so"
loadmodule "/usr/local/lib/ser/modules/uri_db.so"
loadmodule "/usr/local/lib/ser/modules/auth.so"
loadmodule "/usr/local/lib/ser/modules/auth_db.so"

#Presence related modules
loadmodule "/usr/local/lib/ser/modules/dialog.so"
loadmodule "/usr/local/lib/ser/modules/pa.so"
loadmodule "/usr/local/lib/ser/modules/presence_b2b.so"
loadmodule "/usr/local/lib/ser/modules/xlog.so"

#Set module-specific parameters
modparam("auth_db|uri_db|usrloc", "db_url",
"mysql://ser:heslo@localhost/ser")
modparam("auth_db", "calculate_ha1", 1)
modparam("auth_db", "password_column", "password")
modparam("usrloc", "db_mode", 2)
modparam("rr", "enable_full_lr", 1)

#presence module related params
modparam("pa", "use_db", 1)
modparam("pa", "db_url", "mysql://ser:heslo@localhost/ser")
modparam("pa", "offline_winfo_timer", 3600)
modparam("pa", "offline_winfo_expiration", 259200)

mode of PA authorization: none, implicit or xcap
modparam("pa", "auth", "none")
modparam("pa", "winfo_auth", "none")
modparam("pa", "use_callbacks", 0)
modparam("pa", "accept_internal_subscriptions", 0)
modparam("pa", "max_subscription_expiration", 3600)
modparam("pa", "timer_interval", 1)

module param for b2b
modparam("presence_b2b", "on_error_retry_time", 60)
modparam("presence_b2b", "wait_for_term_notify", 33)
modparam("presence_b2b", "resubscribe_delta", 30)
modparam("presence_b2b", "min_resubscribe_time", 60)
modparam("presence_b2b", "default_expiration", 3600)

122

#----Main routing logic--------
route {

 # ---
 # Sanity Check Section
 # ---
 if (!mf_process_maxfwd_header("10")) {
 sl_send_reply("483", "Too Many Hops");
 break;
 };

 if (msg:len > max_len) {
 sl_send_reply("513", "Message Overflow");
 break;
 };

 # ---
 # Record Route Section
 # ---
 if (method!="REGISTER") {
 record_route();
 };

 # ---
 # Loose Route Section
 # ---
 if (loose_route()) {
 route(1);
 break;
 };

 # ---
 # Call Type Processing Section
 # ---
 if (uri!=myself) {
 route(1);
 break;
 };

 if (method=="ACK") {
 route(1);
 break;
 } else if (method=="INVITE") {
 route(3);
 break;
 } else if (method=="REGISTER") {
 route(2);
 break;
 } else if(method =="SUBSCRIBE") {
 route(4);
 break;
 } else if(method =="PUBLISH"){
 route(5);
 break;
 };

 if (uri!=myself) {
 route(1);
 break;
 };

123

 if (!lookup("location")) {
 sl_send_reply("404", "User Not Found");
 break;
 };

 route(1);
}

route[1] {

 # ---
 # Default Message Handler
 # ---
 if (!t_relay()) {
 sl_reply_error();
 };
}

route[2] {

 # ---
 # REGISTER Message Handler - Currently we implemnet no
authentication.
 # --
 sl_send_reply("100", "Trying");

 if (!save("location")) {
 sl_reply_error();
 };
}

route[3] {
 # ---
 # INVITE Message Handler - Currently we implement no authentication.
 # ---
 if (uri!=myself) {

 route(1);
 break;
 };

 if (!lookup("location")) {
 sl_send_reply("404", "User Not Found");
 break;
 };

 route(1);
}

route[4] {
 # ---
 # SUBSCRIBE Message Handler - Currently we implement no
authentication.
 # ---
 if (!t_newtran()) {
 sl_reply_error();
 break;
 };

 xlog("L_ERR", "PA: handling subscription: %tu from: %fu\n");
 handle_subscription("registrar");

124

 break;
}

route[5] {
 # ---
 # PUBLISH Message Handler - Currently we implement no authentication.
 # ---
 if (!t_newtran()) {
 sl_reply_error();
 break;
 };

 xlog("L_ERR", "PA: handling publish: %tu from: %fu\n");
 handle_publish("registrar");
 break;
}

125

L. Minsip configuration file for the iPAQ PDA
<version>
 2
</version>
<network_interface>
 {123456789-1234-1234-1234-123456789ABC}
</network_interface>
<account>
 <account_name>
 ipaq
 </account_name>
 <sip_uri>
 ipaq@192.168.2.238
 </sip_uri>
 <proxy_addr>
 192.168.2.238
 </proxy_addr>
 <register>
 yes
 </register>
 <proxy_port>
 5060
 </proxy_port>
 <proxy_username>
 ipaq
 </proxy_username>
 <proxy_password>
 123456
 </proxy_password>
 <pstn_account>
 no
 </pstn_account>
 <default_account>
 yes
 </default_account>
 <auto_detect_proxy>
 no
 </auto_detect_proxy>
 <register_expires>
 1000
 </register_expires>
 <transport>
 UDP
 </transport>
</account>
<tcp_server>
 yes
</tcp_server>
<tls_server>
 no
</tls_server>
<secured>
 yes
</secured>
<ka_type>
 dh
</ka_type>
<psk>
 No Psk1
</psk>

126

<certificate>
\minisip\bob_cert.pem
</certificate>
<private_key>
\minisip\bob_key.pem
</private_key>
<ca_certificate>
\minisip\ca_cert.pem
</ca_certificate>
<dh_enabled>
 yes
</dh_enabled>
<psk_enabled>
 no
</psk_enabled>
<check_cert>
 no
</check_cert>
<local_udp_port>
 5060
</local_udp_port>
<local_tcp_port>
 5060
</local_tcp_port>
<local_tls_port>
 5061
</local_tls_port>
<sound_device>
 wave:test
</sound_device>
<mixer_type>
 simple
</mixer_type>
<codec>
 G.711
</codec>
<phonebook>
 file:\\./minisip.addr
</phonebook>
<auto_answer>
 no
</auto_answer>
<use_srtp>
 yes
</use_srtp>
<use_ipsec>
 no
</use_ipsec>
<use_stun>
 no
</use_stun>
<stun_server_autodetect>
 no
</stun_server_autodetect>
<stun_server_domain>
</stun_server_domain>
<stun_manual_server>
</stun_manual_server>
<ringtone>
</ringtone>

127

	Title Page
	Problem Description
	Preface
	Acknowledgment
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	List of Acronyms and Abbreviations
	1. Introduction
	2. Background
	2.1 Context Aware Computing
	2.2 Dynamic Service Discovery
	2.2.1 Universal Plug and Play (UPnP)
	2.2.2 Jini
	2.2.3 Service Location Protocol (SLP)

	2.3 Session Initiation Protocol (SIP)
	2.3.1 Components of a SIP network
	2.3.2 SIP Dialogs and Transactions
	2.3.3 Real time Transport Protocol (RTP)

	2.4 Secure Multimedia Communication
	2.4.1 Secure Signaling
	2.4.1.1 Using network and transport layer security
	2.4.1.2 Using S/MIME

	2.4.2 Media Security
	2.4.2.1 Encryption of RTP stream
	2.4.2.2 Authentication and Integrity Protection of RTP packets
	2.4.2.3 Replay protection

	2.4.3 Key Exchange
	2.4.3.1 Multimedia Internet KEYing (MIKEY)
	2.4.3.2 SDP Security Descriptions for Media Streams

	2.4.4 Minisip support for security

	2.5 Trust Relationships
	2.5.1 Policy based trust negotiation

	2.6 Presence and Instant Messaging

	3. Related Work
	3.1 Exploiting devices around us
	3.2 Occupancy sensor system
	3.3 Context-addressed messaging
	3.4 Redirecting RTP Media
	3.5 An Intelligent presentation System

	4. Context Modeling Framework
	4.1 Requirements of our application
	4.1.1 What aspects should the model include?
	4.1.2 How should we represent context?
	4.1.3 How should we manage context?
	4.1.4 How do we address privacy issues

	4.2 The CoolBase Platform
	4.3 The Wasa Sensor Board
	4.4 The Passive Infrared Sensor
	4.5 Proposed context model
	4.5.1 Alternative 1: Using a mobile Presence Watcher
	4.5.2 Alternative 2: Using a Room Locator Service

	4.6 Implementation
	4.6.1 Test bed and development environment
	4.6.2 IR-Reader for the iPAQ PDA
	4.6.3 Light and temperature sensors
	4.6.3.1 Computing the light intensity value
	4.6.3.2 Computing the temperature

	4.6.4 Room status watcher
	4.6.5 Room locator client
	4.6.6 Room locator server

	5. Trust Relationships & Media Redirection
	5.1 Service Discovery using SLP
	5.1.1 Provisioning service discovery

	5.2 Establishing a Trust Relationship
	5.3 Secure Media Redirection
	5.4 Implementation
	5.4.1 Test bed and development environment
	5.4.2 Configuring OpenSLP
	5.4.2.1 Installing OpenSLP
	5.4.2.2 Configuring OpenSLP with security support

	5.4.3 Implementing SLP UA for the iPAQ
	5.4.3.1 Authenticating Services

	5.4.4 Configuring SER
	5.4.5 Implementing secure media redirection in Minisip

	6. Evaluation and Discussion
	6.1 Performance of the room locator client
	6.1.1 Measuring performance of the client
	6.1.2 Performance analysis for the locator client

	6.2 Accuracy of the room locator server
	6.3 Secure media redirection delay

	7. Conclusion and Future Work
	7.1 Goal Attainment
	7.2 Conclusion
	7.3 Future Work

	References
	Appendices

