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Topological magnetic textures have attracted considerable interest since they exhibit new prop-
erties and might be useful in information technology. Magnetic hopfions are three-dimensional (3D)
spatial variations in the magnetization with a non-trivial Hopf index. We find that in ferromagnetic
materials, two types of hopfions, Bloch-type and Néel-type hopfions, can be excited as metastable
states in the presence of bulk and interfacial Dzyaloshinskii-Moriya interactions, respectively. We
further investigate how hopfions can be driven by currents via spin-transfer torques (STTs) and
spin-Hall torques (SHTs). Distinct from 2D ferromagnetic skyrmions, hopfions have a vanishing
gyrovector. Consequently, there are no undesirable Hall effects. Néel-type hopfions move along the
current direction via both STT and SHE, while Bloch-type hopfions move either transverse to the
current direction via SHT or parallel to the current direction via STT. Our findings open the door
to utilizing hopfions as information carriers.

Topological solitons are of fundamental interest in non-
linear field theories. Additionally, their magnetic real-
izations are promising candidates as information carri-
ers in the next generation of data storage and process-
ing devices [1, 2]. Low-dimensional topological soliton-
like textures in ferromagnetic (FM) and antiferromag-
netic (AFM) materials, such as 1D magnetic domain
walls [3–6], 2D magnetic vortices [7, 8], and 2D mag-
netic skyrmions [9–17], have been extensively studied in
recent years.

The existence of 3D topological solitons with string-
like properties has been proposed by Ludvig D. Faddeev
[18] as a limit of the Skyrme model [19]. These 3D
topological solitons are known as Faddeev-Hopf knots
[20] or hopfions, which are classified by a topological
charge called the Hopf index [21]. Hopfions have been
discussed in many physical systems, such as gauge theo-
ries [18, 22], cosmic strings [23], ferromagnets [24] (as a
special case of dynamical vortex rings), low-temperature
bosonic systems [25–27], fluids [28], and liquid crys-
tals [29–31]. Recently, stable magnetic hopfions were
numerically predicted in finite-size noncentrosymmet-
ric FM systems with Dzyaloshinskii-Moriya interaction
(DMI) [32, 33] and interfacial perpendicular magnetic
anisotropy (PMA) [34–36] or higher-order exchange in-
teraction [37]. However, 3D topological solitons such as
hopfions in magnetic systems are still underexplored com-
pared to well-studied 1D and 2D solitons.

In this Letter, we show that, in addition to interfa-
cial PMA, a bulk PMA assists in stabilizing a local-
ized hopfion that can exist in nanostrips, in contrast to
the boundary-confined hopfions in nanodisks proposed in
previous studies [34, 35]. In addition to the Bloch-type
hopfions studied previously [34–36], which can be sta-
ble in the presence of bulk DMI [32, 33, 38], we identify
another type of hopfion, Néel-type hopfions, which can
be stable in the presence of interfacial DMI [39]. We also
introduce an ansatz that can accurately describe the hop-
fion profile. We then study the current-driven dynamics

of ferromagnetic hopfions in nanostrips. Although the
hopfions are topologically nontrivial, their gyrovectors
vanish. This is in contrast to magnetic skyrmions, whose
nontrivial topology induces an unwanted “skyrmion Hall
effect” [40–42] and hinders the device applications [43–
45]. As a result, hopfions move along the current via spin-
transfer torques (STTs) [46]. Spin Hall torques (SHT)
[47] also cause Néel-type hopfions to move along the cur-
rent, while Bloch-type hopfions move transverse to the
current. Hopfions may be superior to skyrmions as infor-
mation carriers in racetrack memories since their current-
induced motion is more straightforward.

We consider a magnetic film of thickness d with interfa-
cial PMA at the top and bottom surfaces as well as bulk
PMA in the bulk. The zero-temperature micromagnetic
free energy of the system reads

F =

∫
V

Aex

[
|∇m|2 + D

(
m,

∂m

∂xi

)
+Kb(1−m2

z)

+BMs(1−mz)

]
dV +

∫
z=±d/2

Ks(1−m2
z)dS + Ed,

(1)

where Aex is the exchange constant; D is the DMI en-
ergy density functional, which depends on the symmetry
of the system; Kb and Ks are the bulk PMA and the
interfacial PMA, respectively; B is a perpendicular mag-
netic field; Ms is the saturation magnetization; and Ed

is the demagnetization energy. In bulk noncentrosym-
metric materials such as FeGe and MnSi, the DMI is
bulk-like D = Dbm · (∇×m), where Db is the bulk DMI
strength in units of J/m2 [10]. In inversion-symmetry-
broken films such as Pt/Co/AlOx, the DMI is interfacial-
like D = Di [(ẑ ·m)∇ ·m− (m · ∇)(ẑ ·m)], where ẑ is
the direction normal to the film and Di is the interfa-
cial DMI strength in units of J/m2 [9, 39]. Because the
hopfions are non-isomorphic maps from R3 ∪ {∞} to S2,
the topological invariant of hopfions, known as the Hopf
index H, differs from the skyrmion number. This index
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FIG. 1. (a)(b) Midplane cross-sections in the xy-plane (up-
per panel) and the xz-plane (lower panel) of (a) a Bloch-type
hopfion and (b) a Néel-type hopfion. (c)(d) The preimages of
m = (0, 0,−1), (1, 0, 0) and (0, 1, 0) for (c) a Bloch-type hop-
fion and (d) a Néel-type hopfion. The tori are the isosurfaces
of mz = 0. The colors of the arrows in (a)(b) and the preim-
ages in (c)(d) depict the full orientation of the corresponding
m. The color sphere and the coordinate system are shown in
the insets.

is defined as

H =
1

(4π)2

∫
V

F ·AdV, (2)

where Fi = εijkm · (∂jm× ∂km) /2, in which i, j, k =
{x, y, z} and ε is the Levi-Civita tensor, and A is a vector
potential, which satisfies ∇ × A = F [48]. The compo-
nents of F are solid angle densities in different coordinate
planes. F can be understood as the gyrovector density
[49], emergent magnetic field [50], or topological charge
[10].
Figures 1(a) and 1(b) show the typical magnetiza-

tion profiles of Bloch-type and Néel-type hopfions, re-
spectively, obtained by numerical simulations. We con-
sider a 16-nm-thick film with Aex = 0.16 pJ m−1 and
Ms = 1.51 × 105 A m−1, representing MnSi parameters
[34]. No external field is applied. The Bloch-type (Néel-
type) hopfions are favorable in bulk (interfacial) DMI sys-
tems. In Fig. 1(a), we use Ks = 0.5 mJ m−2, Kb = 41
kJ m−3, and Db = 0.115 mJ m−2, while in Fig. 1(b), we
use Ks = 0.5 mJ m−2, Kb = 20 kJ m−3, and Di = 0.115
mJ m−2 (these parameters are also used in the study
of current-driven dynamics below). The simulations are
mainly performed using mumax3 [51] at zero tempera-
ture (additional details of the simulations can be found in

the Supplemental Materials [52]). We compute that the
Hopf indices are 0.96 (Bloch) and 0.95 (Néel) by numeri-
cal integration of Eq. (2) [52]. The two types of hopfions
are topologically equivalent but behave differently in the
presence of SHT, which we will discuss later. The upper
and lower panels are the midplane cross-sections in the
xy-plane and xz-plane. The magnetization profile in each
xy-midplane cross-sections is Bloch-type (a) or Néel-type
(b) skyrmionium or the target skyrmion [18, 58], while
the xz-midplane cross-section shows a pair of vortices
with opposite chirality. The right (x > 0) xz-midplane
contains a vortex (antivortex) with chirality +1 (−1) for
an H = +1 (H = −1) hopfion. Outside the hopfions and
at the center of the hopfions, the magnetization is along
the z direction, and the donut-shape transition region
is chiral (for Bloch-type hopfions) or hedgehog-like (for
Néel-type hopfions). Figure 1(c) and (d) show the corre-
sponding preimages (constant-m curves in real space) of
Fig. 1(a) and (b). The preimages link with each other
once, which is consistent with the Hopf index calculation,
justifying the hopfion nature of the textures in (a) and
(b).

Different from the hopfions observed in previous stud-
ies [34–36] that are confined in small magnetic disks, the
introduction of a finite bulk PMA causes the hopfions in
our work to be metastable, localized objects that can ex-
ist in long strips with a hopfion radius R, defined as the
radius of the preimage m = (0, 0,−1). Thus, these hop-
fions can be candidates of information carriers, and de-
vices such as hopfion racetrack memories can be designed
[4? ]. Moreover, unlike skyrmions, although the topol-
ogy of a hopfion is nontrivial, the gyrovector G =

∫
FdV

of a hopfion vanishes. Consequently, the main drawback
of a FM skyrmion racetrack memory, the skyrmion Hall
effect, is absent in the hopfion racetrack memory. In
addition to the numerical verification, the vanishing gy-
rovector of a hopfion can be understood as follows. Con-
sider a film that is isotropic in the xy plane. The hopfion
profile centered at a certain location can be expressed via
Θ(r, ϕ, z), Φ(r, ϕ, z), where (r, ϕ, z) are cylindrical spatial
coordinates, and Θ, Φ are the polar and azimuthal angles
of the magnetization. Because of the isotropy in the xy
plane, it is natural to assume that Θ is independent of
ϕ, and Φ(r, ϕ, z) = ∆Φ(r, z) + nϕ, where n is an integer
and ∆Φ is a function independent of ϕ. These assump-
tions are well justified by our numerical results. Thus, in
cylindrical coordinates, Fz = n sinΘ

r
dΘ
dr . We can rewrite

Gz =
∫
FzdV as

Gz =

∫
V

Fzrdrdϕdz = −2nπ

∫ d/2

−d/2

(
cosΘ

∣∣r=∞
r=0

)
dz.

(3)
Since in a hopfion the magnetization directions are the
same at both the periphery (r = ∞) and the center (r =
0), Gz vanishes. Since the two vortices in any xz (or yz)
midplane cross-section have opposite chirality, as shown



3

(a) (b)

FIG. 2. (a) The profile of mz of the hopfion shown in Fig.
1(a). The bottom axis and black squares show the profile
along the radial direction at z = 0. The top axis and red
circles show the profile along the z direction at r = R. The
solid lines are the ansatz (4). (b) The dependence of the Hopf
index H and layer-averaged gyrovector component Gz/d on
the integration radius R0. The symbols are numerical results,
and the solid lines are obtained from the ansatz (4).

in the lower panels of Fig. 1(a)(b), the integration of Fx

(or Fy) over the volume gives a vanishing contribution to
Gx (or Gy). The components of G are invariant under
continuous deformation [10]; therefore, G = 0 applies to
all the hopfions.
The magnetic hopfions discussed in previous studies

[34–36] were Bloch-like. In the following, we mainly focus
on Néel-type hopfions. Although the analytical expres-
sion of the hopfion profile is unknown, we find an ansatz
that describes the H = +1 Néel-type hopfion profile very
well:

mx =
4r′
[
2z′ sinϕ+ cosϕ

(
r′

2
+ z′

2
+ 1
)]

(
1 + r′2 + z′2

)2 ,

my =
4r′
[
−2z′ cosϕ+ sinϕ

(
r′

2
+ z′

2
+ 1
)]

(
1 + r′2 + z′2

)2 ,

mz = 1− 8r′
2(

1 + r′2 + z′2
)2 ,

(4)

where r′ = eR/wR−1
er/wR−1

, z′ = z
|z|

e|z|/wh−1
eh/wh−1

. R, wR, h and wh

are lengths parametrizing the hopfion profile. R is the
hopfion radius, defined from mz(r = R, z = 0) = −1. h
is the hopfion height describing the extent of the hop-
fion in the out-of-plane direction, defined from mz(r =
R, z = h) = 1/9. wR and wh are hopfion wall widths
in the radial and out-of-plane directions respectively, de-
scribing the length scale of the magnetization variation
from mz = +1 to mz = −1 [13]. The ansatz (4) is based
on the well-known ansatz [20] augmented by a non-linear
rescaling of r and z [13] and can also describe Bloch-type
hopfions and H = −1 hopfions after simple transforma-
tions [52]. Figure 2(a) shows a comparison ofmz between
the above ansatz and the numerical data along the x di-
rection for y = z = 0 (bottom axis) and along the z direc-

tion for r = R (top axis), with R = 8.3 nm, wR = 5.6 nm,
h = 6.3 nm and hw = 1.6 nm obtained from fitting. The
comparison gives good agreement (more comparisons can
be found in the Supplemental Materials [52]). The nu-
merical data along the z direction are slightly asymmetric
with respect to z = 0, which is because of the asymmet-
ric bulk magnetic charge. If the dipolar interaction is
turned off, or if the hopfion is a Bloch-type hopfion, this
asymmetry will vanish.

Next, we numerically calculate the Hopf index H and
the layer-averaged gyrovector Gz/d by integrating over
a cylinder of height d and radius R0 (symbols), and we
compare the numerical results with the analytical result
calculated using the ansatz (4) (solid lines), as shown in
Fig. 2(b). As R0 increases, H converges toward 1, and
Gz/d converges toward 0. Note that the R0 used here is
smaller than the sample size of our numerical simulation
such that the edge structures are discarded. Below, we
use this ansatz to discuss the current-driven dynamics of
the hopfions, and we compare the results with numerical
simulations.

Disregarding deformations, the motion of a hopfion, as
a rigid body, is governed by Thiele’s equation [8, 49]:

γ

Ms
T+G× (v − u)−

↔
D · (αv − βu) = 0, (5)

where γ is the gyromagnetic ratio; α is the Gilbert damp-
ing; β is the STT non-adiabaticity [46]; v is the ve-
locity of the hopfion; u = −µBpJ/[eMs(1 + β2)] is a
vector with dimension of velocity proportional to the
current density J, in which p is the spin polarization
and e is the electron charge; G is the above-mentioned

gyrovector; and
↔
D is the dissipation tensor defined as

Dij =
∫
∂im · ∂jmdV . T is the force on the hopfion,

expressed as Ti = −∂
∫
FdV

∂Xi
−
∫

∂m
∂xi

· (m × τ )dV , where
F is the free-energy functional (1), Xi is the center po-
sition of the hopfion, and τ represents non-conservative
torques other than STT such as the SHT. In our model,
all the material parameters are spatially homogeneous;
therefore, the first term in T is 0. Since G = 0, the hop-
fions move along the applied current via STT with veloc-
ity v = β

αu. Figure 3(a) shows the trajectory during a
period of 15 ns of the Néel-type hopfion driven by STT
under J = 1011 A m−2, with p = 0.12 (a typical value
for Co [59]), α = 0.05 and β = 0.1, obtained by numeri-
cally solving the Landau-Lifshiz-Gilbert (LLG) equation
[4] with STT [46, 51]. The strip is 128 nm-wide in the
y direction, and periodic boundary conditions are used
in the x direction. The trajectory is almost along the
x direction after moving for 15 ns. The small deviation
may come from the discretization and the deformation of
the hopfion. Figure 3(b) shows the longitudinal compo-
nent of the hopfion velocity vx versus the applied current
density J . The numerical data from LLG simulations
(black squares) are in good agreement with the analyti-
cal formula v = β

αu (black line). Above J = 2 × 1011 A
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FIG. 3. (a) Trajectory of Néel hopfion driven by STT during
a period of 15 ns. The midplane cross-section of m in the xy-
plane is shown. (b) Current density J dependence of the longi-
tudinal velocity vx of the Néel hopfion. The black squares (red
circles) are numerical results for STT-driven (SHT-driven)
motion. The solid lines are theoretical predictions. (c) Tra-
jectory of Néel hopfion driven by SHT during 15 ns. The
midplane cross-section of m in the xy plane is shown. The
color map of (a) and (c) is the same as in Fig. 1.

m−2, the hopfion becomes distorted, and at even higher
currents J = 5 × 1011 A m−2, the hopfion is destroyed.
In contrast to the threshold current for the annihilation
of FM skyrmions, this limitation on the current is not
intrinsic and can be improved by material engineering.
For the Bloch-type hopfion in Fig. 1(a), similar results
are obtained.

Recently, spin-orbit torques (SOTs) have attracted at-
tention for driving magnetic textures because of their
possibly higher angular momentum transfer efficiency
[61]. SOTs arise from a variety of origins such as inter-
facial Rashba spin-orbit coupling [62], spin-Hall-effect-
induced spin currents from adjacent heavy metal layers
[47], and the intrinsic SOT in magnetic materials [63].
The field-like component of the torque [62, 63] can be re-
garded as a uniform magnetic field on the system. Since a

hopfion is a localized object in a domain, a uniform mag-
netic field deforms (or even destroys) the hopfion without
exerting a net force on it. We consider the antidamping-
like SHT [47, 64],

τ =
γ~

eMsd
θSHm× [m× (Ĵ× ẑ)], (6)

which is usually the dominant SOT for a heavy
metal/magnet system where θSH is the spin Hall an-
gle. Consider a current applied along the x direction.
The SHT is then τ = τ0m × (m × ŷ), where τ0 de-
notes the prefactors in (6). Using the ansatz (4) with
R, wR, h and wh obtained by fitting the numerical data,

we can calculate the force T and dissipation tensor
↔
D.

According to the polarity of the hopfion profile, the force
on a Bloch-type hopfion is along the y direction, while
the force on a Néel-type hopfion is along the x direc-
tion, similar to the skyrmion or target skyrmion [18, 41].
Thus, only Néel hopfions move along the current under
SHT, while the Bloch hopfions move transverse to the
current and are blocked by the edge of the racetrack.

Because of the isotropy in the xy plane,
↔
D is diagonal,

with Dxx = Dyy ≡ D. Thus, we have vx = T
αD for Néel

hopfions. The trajectory of the Néel-type hopfion dur-
ing 15 ns driven by SHT under J = 1011 A m−2 and
θSH = 0.05 (a typical value for Pt [47]) obtained from
the LLG simulation is shown in Fig. 3(c). The damping
is assumed to be α = 0.05. The Néel hopfion propagates
along the wire. The longitudinal velocity component vx
under different current densities is plotted in Fig. 3(b)
by red circles. The analytical formula (red line) agrees
well with the numerical data. Note that the values of T
and D depend on the hopfion profile. Since the ansatz
introduced gives very good agreement with the numer-
ical results, it may be useful in other investigations on
hopfions.

Note that hopfions can also be stabilized in AFM sys-
tems, where the staggered Néel field forms a hopfion pro-
file [52, 65].

The Néel-type hopfions should be realizable in exper-
iments [12–14, 52? ]. In device application, a hopfion
can be created by applying a spin-polarized current or a
localized magnetic field through a ring-shaped nanocon-
tact [11, 14, 15, 18, 19, 52]. A strong out-of-plane mag-
netic field can eliminate a hopfion. The creation and
elimination of hopfions will be studied in detail in fu-
ture. Since the hopfions have finite magnetic moment,
any existing techniques that can detect local magnetic
moment are also capable to detect hopfions [20, 21, 34].
The hopfions that we found remain geometrically con-
fined by the thickness of the film with the help of strong
PMA. Indeed, in the presence of DMI, Derrick’s theorem
[73], which prohibits the existence of 3D solitons in infi-
nite conventional (non-chiral) magnets, is no longer valid
[74]. Whether it is possible to stabilize hopfions in 3D
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chiral magnets without confinement is still an open ques-
tion for further investigations. Our study also implies
that magnetic systems represent a fertile playground for
research on nonlinear 3D topological solitons.

In conclusion, we identified a new type of hopfion, the
Néel-type hopfion, and studied the current-driven dy-
namics of hopfions. In FM systems, despite the nontrivial
topology, neither Bloch- nor Néel-type hopfions exhibit
Hall effects and propagate along external currents via
spin transfer torque. The SHT only drives the Néel-type
hopfions to move along the current. Hopfions have the
potential to be efficient information carriers.
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170 (2017).

[43] M. W. Yoo, V. Cros, and J. V. Kim, Phys. Rev. B 95,
184423 (2017).

[44] R. Tomasello, E. Martinez, R. Zivieri, L. Torres, M. Car-
pentieri and G. Finocchio, Sci. Rep. 4, 6784 (2014).

[45] X. Zhang, M. Ezawa, and Y. Zhou, Sci. Rep. 5, 9400
(2015).

[46] S. Zhang and Z. Li, Phys. Rev. Lett. 93, 127204 (2004).
[47] L. Liu, T. Moriyama, D. C. Ralph, and R. A. Buhrman,

Phys. Rev. Lett. 106, 036601 (2011).
[48] J. H. C. Whitehead, Proc. Natl. Acad. Sci. U.S.A. 33,

117 (1947).
[49] A. A. Thiele, Phys. Rev. Lett. 30, 230 (1973).
[50] S. Zhang and S. S.-L. Zhang, Phys. Rev. Lett. 102,



6

086601 (2009).
[51] A. Vansteenkiste, J. Leliaert, M. Dvornik, M. Helsen, F.

Garcia-Sanchez, and B. Van Waeyenberge, AIP Adv. 4,
107133 (2014).

[52] See Supplemental Material, which includes Ref. [53–56].
[53] M. J. Donahue and D. G. Porter, OOMMF User’s Guide,

Interagency Report NISTIR 6376, NIST, Gaithersburg,
MD, 1999, http://math.nist.gov/oommf.

[54] M. R. Hestenes and E. Stiefel, J. Research Natl. Bur.
Standards 49, 409 (1952).

[55] J. Gladikowski and M. Helimund, Phys. Rev. D 56, 5194
(1997).

[56] C. P. McNally, Mon. Not. R. Astron. Soc. 413, L76
(2011).

[57] X. Zhang, J. Xia, Y. Zhou, D. Wang, X. Liu, W. Zhao,
and M. Ezawa, Phys. Rev. B 94, 094420 (2016).

[58] F. Zheng, H. Li, S. Wang, D. Song, C. Jin, W. Wei, A.
Kovács, J. Zang, M. Tian, Y. Zhang, H. Du, and R. E.
Dunin-Borkowski Phys. Rev. Lett. 119, 197205 (2017).

[59] E. Villamor, M. Isasa, L. E. Hueso, and F. Casanova
Phys. Rev. B 88, 184411 (2013).

[60] T. L. Gilbert, IEEE. Trans. Magn. 40, 3443 (2004).
[61] A. Brataas, A. D. Kent, and H. Ohno, Nat. Mater. 11,

372 (2012).
[62] A. Manchon and S. Zhang, Phys. Rev. B 79, 094422

(2009).
[63] K. M. D. Hals and A. Brataas, Phys. Rev. B 87, 174409

(2013); K. M. D. Hals and A. Brataas, ibid. 88, 085423
(2013).

[64] Y. Zhang, H. Y. Yuan, X. S. Wang, and X. R. Wang,
Phys. Rev. B 97, 144416 (2018).

[65] X. S. Wang, A. Qaiumzadeh, and A. Brataas (to be pub-
lished).

[66] S. Woo, K. Litzius, B. Krüger, M.-Y. Im, L. Caretta, K.
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SUPPLEMENTAL MATERIALS

Simulation Details

Most of the simulations are performed using the mumax3 package [S1]. Some of the results of the static hopfion
profile are double-checked by the oommf package [S2]. All the calculates are performed at zero temperature. The
mesh size is 0.5 nm×0.5 nm×0.5 nm. The surface pinning is modeled by imposing a very strong PMA K = 106 J m−3

on two additional layers attached to the top and bottom surfaces. This corresponds to a surface anisotropy Ks = 0.5
mJ m−2 by multiplying the mesh size.

For the static hopfion profile, the conjugate gradient method [S3] is used to minimize the total energy with an error
toleration of 10−5. The sample size is 128 nm×128 nm×16 nm, as shown in Fig. S1. To be consistent with the current-
driven dynamical simulations, periodical boundary conditions are imposed along the x direction to mimic a long strip
along the x direction. Two sets of initial magnetizations are used. One magnetization is a ring of m = (0, 0,−1) at
25 nm≤ r ≤ 40 nm and |z| < 5 nm inside a uniform domain of m = (0, 0, 1). The other magnetization is a profile
of a well-known ansatz that will be discussed below. Both sets of initial magnetizations give the same results. For
the current-driven dynamics, the RK45 method is used for the temporal integration of the Landau-Lifshitz-Gilbert
(LLG) equation [S4]. The spin-transfer torque is in the Zhang-Li form [S1, S5].

Exchange constant Aex = 0.16 pJ m−1 and saturation magnetization Ms = 1.51× 105 A m−1, are used throughout
the paper, representing MnSi parameters. Other material parameters used are Ks = 0.5 mJ m−2, Kb = 41 kJ m−3

and Db = 0.115 mJ m−2 [for the Bloch-type hopfion shown in Fig. 1(a)], and Ks = 0.5 mJ m−2, Kb = 20 kJ m−3,
and Di = 0.115 mJ m−2 [for the Néel-type hopfion shown in Fig. 1(b) as well as Fig. 2 and Fig. 3.]

Calculation of Hopf Index

Analytical discussions-As mentioned in the main text, for an infinite system, the Hopf index is defined as

H =
1

(4π)2

∫
F ·AdV, (S1)

where Fi = 1
2εijkm · (∂jm× ∂km), in which i, j, k = {x, y, z} and ε is the Levi-Civita tensor, and A is a vector

potential satisfying ∇×A = F.

We now demonstrate that the Hopf index is well-defined for an infinite system. Straightforward derivation shows
that F is divergenceless (∇ ·F = 0) when |m| =constant such that the vector potential A exists. However, obviously,
A is not unique. For any continuous function φ(r), A′ = A+∇φ is also a vector potential. The corresponding Hopf
index is

H ′ =
1

(4π)2

∫
F ·A′dV = H +

1

(4π)2

∫
F · ∇φdV. (S2)

The integral in the extra term can be rewritten as∫
F · ∇φdV =

∫
∇ · (φF)dV −

∫
φ∇ · FdV =

∮
φF · dS− 0 =

∮
φF · dS, (S3)

where Gauss’s theorem has been used and
∮

means the integration over the surface of the volume. In an infinite
system, the surface is infinitely far away, and the m field should be homogenous such that, on the surface, F is 0, and
the integral

∮
φF · dS vanishes. Thus, we have H ′ = H, meaning that the Hopf index is well-defined independent of

the choice of A.

For a rotationally symmetric system, it is natural to assume that the hopfion profile following Θ is independent of
ϕ, and Φ(r, ϕ, z) = ∆Φ(r, z) + nϕ, where n is an integer. This form means that the polar angle (or z component)
of m is independent of ϕ, and when transversing a whole circle centered at the origin in real space (ϕ changes from
0 to 2π), the azimuthal angle Φ of m uniformly rotates by 2nπ. With this assumption, we can write the F field in
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cylindrical coordinates as

Fr = m ·
(
∂m

r∂ϕ
× ∂m

∂z

)
= −n

sinΘ

r

∂Θ

∂z
, (S4)

Fϕ = m ·
(
∂m

∂z
× ∂m

∂r

)
= sinΘ

(
∂Θ

∂z

∂∆Φ

∂r
− ∂Θ

∂r

∂∆Φ

∂z

)
, (S5)

Fz = m ·
(
∂m

∂z
× ∂m

r∂ϕ

)
= n

sinΘ

r

∂Θ

∂r
. (S6)

The vector potential A is

Ar = −(1 + cosΘ)
∂∆Φ

∂r
, (S7)

Aϕ =
n

r
(1− cosΘ), (S8)

Az = −(1 + cosΘ)
∂∆Φ

∂z
. (S9)

Then, the Hopf index is

H =
1

(4π)2

∫
F ·AdV =

n

4π

∫ +∞

−∞

∫ +∞

0

sinΘ

(
∂Θ

∂z

∂∆Φ

∂r
− ∂Θ

∂r

∂∆Φ

∂z

)
drdz. (S10)

Thus, the Hopf index equals the whirling number n along the ϕ direction multiplied by the skyrmion number at the
rz half plane [S6].

−y

x

z

FIG. S1. A sample of the simulation for the static hopfion. One octant is made transparent to visualize the magnetization
profile inside. The volume in the Hopf index calculation is indicated by the red box.

Numerical evaluation of Hopf index- As discussed above, the Hopf index is well-defined when
∮
(φF) · dS = 0

is satisfied. To numerically evaluate the Hopf index, we first cut off the nonhomogeneous edge such that m is
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homogeneous on the surface of the sample to ensure that the Hopf index is well-defined (see Fig. S1). We then
employ two methods to calculate the Hopf index: a real space method and a Fourier space method.
In real space, we first numerically calculate F from m utilizing the standard central finite difference method. Then,

we employ a radial basis function (RBF) interpolation to ensure that F is divergenceless [S7]. We use a Gaussian

function g(xi,xj) = e−ϵ(|xi−xj |2) as the RBF with control parameter ϵ = 1. Here, i and j label two grid points, and
xi and xj denote the positions of i and j. The interpolated field is

F(x) =
∑
i

(
∇∇−∇2

)
g (x,xi) ci. (S11)

After obtaining the RBF coefficients ci, A can be directly calculated:

A(x) = −
∑
i

(ci ×∇)g (x,xi) , (S12)

where the Coulomb gauge is used. Then, the standard numerical integration is performed to calculate H = 1
(4π)2

∫
F ·

AdV .
The Fourier space method has been introduced in Ref. [S8]. The relative difference between the two methods is

less than 5%. In the main text, we show the Fourier space result.

Construction and Verification of the Ansatz for Hopfion Profile

We start from the well-known ansatz for hopfions [S9]:

mx =
4
[
2xz − y

(
x2 + y2 + z2 − 1

)]
(1 + x2 + y2 + z2)

2 , (S13)

my =
4
[
2yz + x

(
x2 + y2 + z2 − 1

)]
(1 + x2 + y2 + z2)

2 , (S14)

mz = 1−
8
(
x2 + y2

)
(1 + x2 + y2 + z2)

2 , (S15)

which describes anH = −1 Bloch-type hopfion withm upward at the center and infinity. Note that in some references,
the definitions of Hopf index differ by a sign. Here, we use the definition mentioned in the main text. The radius
is 1 because at r2 = x2 + y2 = 1, m = (0, 0,−1). The magnetization rotates counterclockwise (clockwise) at r > 1
(r < 1) in the top view. An H = +1 hopfion ansatz can be obtained simply by inverting the sign of the first term in
the numerators of mx and my:

mx =
4
[
−2xz − y

(
x2 + y2 + z2 − 1

)]
(1 + x2 + y2 + z2)

2 , (S16)

my =
4
[
−2yz + x

(
x2 + y2 + z2 − 1

)]
(1 + x2 + y2 + z2)

2 , (S17)

mz = 1−
8
(
x2 + y2

)
(1 + x2 + y2 + z2)

2 . (S18)

In cylindrical coordinates:

mx =
4r
[
−2 cosϕz − sinϕ

(
r2 + z2 − 1

)]
(1 + r2 + z2)

2 , (S19)

my =
4r
[
−2 sinϕz + cosϕ

(
r2 + z2 − 1

)]
(1 + r2 + z2)

2 , (S20)

mz = 1− 8r2

(1 + r2 + z2)
2 . (S21)
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This operation can invert the Hopf index and retain the rotational sense, which is preferred for Db > 0. For Db < 0,
we let mx → −mx and my → −my. For a realistic hopfion with a given radius R and height, it is natural to consider
a linear rescaling , where h describes the extent of the hopfion in the z direction. This profile is used as the initial
condition, with R = 20 nm and h = 10 nm. However, this ansatz cannot describe the numerical data well. In Fig.
S2(a), we show the numerical magnetization profile along x at y = z = 0 (symbols), and the above ansatz (dashed
blue line) with R = 7.8 nm obtained from the numerical data for the Bloch-type hopfion is shown in Fig. 1(a) of the
main text. Obviously, the numerical data show a much faster decay away from x = R than the polynomial decay of
the ansatz. Inspired by work on skyrmion profiles [S10], we introduce another length scale to describe how fast m
decays to (0, 0, 1). Since the z direction is special because of the surface PMA, we introduce wR and wh for the xy
plane and z direction, respectively. We try a monotonic nonlinear rescaling

r → r′ =
er/wR − 1

eR/wR − 1
, z → z′ =

|z|
z

e|z|/wh − 1

eh/wh − 1
, (S22)

and use the resulting ansatz to fit the numerical result to determine the parameters R, wR, h, and wh. R and wR are
determined by fitting the radial profile mz(r) at z = 0. h and wh are determined by fitting the profile mz(z) along
z at r = R. The result of this nonlinear rescaling (solid red line) is also compared with the numerical data in Fig.
S2(a). The agreement is obversely better. For a larger hopfion (which can be obtained by using a smaller Kb), the
agreement of our ansatz is even better.
For an H = +1 hopfion, with z ̸= 0, the position of the minima of mz(r) moves outward as |z| increases according

to the ansatz, which is consistent with the numerical result, as shown in Fig. S2(b). In contrast, for an H = −1
hopfion, the minima of mz(r) moves inward, as shown in Fig. S2(c). To describe this, we further invert the rescaling
of r as

r → r′ =

(
er/wR − 1

eR/wR − 1

)−1

=
eR/wR − 1

er/wR − 1
, (S23)

which maps r = 0 to r′ = ∞ and vice versa. In cylindrical coordinates for space and spherical coordinates for m, the
ansatz can be written as

cosΘ = 1− 8r′
2(

1 + r′2 + z′2
)2 , (S24)

Φ = ϕ+ arctan

(
−1 + r′

2
+ z′

2

2z′

)
. (S25)

The Hopf index can be calculated using Eq. (S10). Because of the inverse rescaling of r, the Hopf index becomes
1. To retrieve the rotational sense, we further let mx → −mx, my → −my, or Φ → Φ + π. The resultant ansatz
gives good agreement for z ̸= 0, as shown in Fig. S2(b) by the solid lines. Although the ansatz cannot quantitatively
overlap with the numerical data, the tendency of the minima position is correct.
To verify the continuity of the ansatz, we write it in Cartesian coordinates as

mx =

4r′
[
−2z′ x√

x2+y2
− y√

x2+y2

(
r′

2
+ z′

2
+ 1
)]

(
1 + r′2 + z′2

)2 , (S26)

my =

4r′
[
−2z′ y√

x2+y2
+ x√

x2+y2

(
r′

2
+ z′

2
+ 1
)]

(
1 + r′2 + z′2

)2 , (S27)

mz = 1− 8r′
2(

1 + r′2 + z′2
)2 , (S28)

where r′ =

(
e
√

x2+y2/wR−1
eR/wR−1

)±1

. When xyz ̸= 0, the ansatz has no singularity. At z = 0, we have limz→0 z
′ = 0 and

∂zz
′
∣∣
0+

= ∂zz
′
∣∣
0−. At x = y = z = 0, it is easy to verify limx,y,z→0 m = (0, 0, 1), and all the first-order derivatives

∂imj (i, j ∈ x, y, z) are continuous. Since the highest order of derivative in the energy functional is 1, the ansatz is
well-defined in the whole space.
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To obtain a Néel-type hopfion, we can locally rotate the m by 90 degrees, as shown in the main text:

mx =
4r′
[
2z′ sinϕ+ cosϕ

(
r′

2
+ z′

2
+ 1
)]

(
1 + r′2 + z′2

)2 ,

my =
4r′
[
−2z′ cosϕ+ sinϕ

(
r′

2
+ z′

2
+ 1
)]

(
1 + r′2 + z′2

)2 ,

mz = 1− 8r′
2(

1 + r′2 + z′2
)2 .

(S29)

Because the interfacial DMI only exists in the xy plane and because there is no chiral interaction in the z direction,

the minima in mz(r) remains in the same position. Therefore, either r′ = fraceR/wR − 1er/wR − 1 or r′ = er/wR−1
eR/wR−1

can be used as the ansatz. We choose r′ = fraceR/wR − 1er/wR − 1 because it gives better results in the calculation

(a) (b)

(c) (d)

FIG. S2. (a) Comparison of mz(x) at y = 0, z = 0 between numerical data (symbols) and ansatz (lines). The solid red line is
the result of the nonlinear rescaling shown here. The dashed blue line is the linear rescaling. (b)(c)(d) Comparison of mz(x)
at y = 0 for different z. The symbols are numerical data, and the solid lines of the same color are the results of the ansatz.
(b) H = +1 Bloch-type hopfion (Kb = 41 kJ m−3, Db = 0.115 mJ m−2). (c) H = −1 Bloch-type hopfion (Kb = 39 kJ m−3,
Db = 0.115 mJ m−2). (d) H = +1 Néel-type hopfion (Kb = 20 kJ m−3, Di = 0.115 mJ m−2).
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of
↔
D and T [Fig. S2(d)].
The midplane cross-sections in the xy plane and yz plane are compared in Fig. S3(a-d) for H = +1 Bloch-type,

H = −1 Bloch-type, H = +1 Néel-type, and H = −1 Néel-type hopfions. The 2D cross-sections also give fairly good
agreement with the numerical results. The senses of the rotation of the spins are retrieved in all the cross-sections,
while the shapes of the textures in yz cross-sections are not as good as those in the xy cross-sections. Nevertheless,
the ansatz can well describe the topological properties and current-driven dynamics of the hopfions.

Antiferromagnetic Hopfions

We consider that Aex = −0.16 pJ m−1, Db = 0.115 mJ m−2, Kb = 16 kJ m−3, and the other parameters to be
the same as those in Fig. 1(a). The ground state is an out-of-plane AFM Néel state. Because the dipolar field is
negligible in an antiferromagnet, to speed up the simulation, we turn off the dipole-dipole interaction. For a numerical
cell labelled by (i, j, k), if i + j + l is even (sublattice 1), we impose the ansatz [Eq. (S19-S22)] with the collective
coordinates R = 15 nm, wR = 5 nm, h = 8 nm and hw = 5 nm. If i + j + k is odd (sublattice 2), we impose the
opposite direction. After relaxation, we obtain an antiferromagnetic Bloch-type hopfion. In Fig. S4(a), the mid-plane
cross-sections in the xy and xz planes are shown for each sublattice. If we use Kb = 5 kJ m−3 and Di = −0.115 mJ
m−2 instead, a Néel-type AFM hopfion is obtained, as shown in Fig. S4(b).
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(a) (b)

(c) (d)

Bloch, H = + 1 Bloch, H = − 1 

Neel, H = + 1 Neel, H = − 1 

FIG. S3. Comparison of m between numerical data and ansatz for (a) H = +1 Bloch-type hopfion (Kb = 41 kJ m−3, Db = 0.115
mJ m−2), (b) H = −1 Bloch-type hopfion (Kb = 39 kJ m−3, Db = 0.115 mJ m−2), (c) H = +1 Néel-type hopfion (Kb = 20 kJ
m−3, Di = 0.115 mJ m−2), (d) H = −1 Néel-type hopfion (Kb = 20 kJ m−3, Di = 0.115 mJ m−2).
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Bloch, sublattice 1 Bloch, sublattice 2

Neel, sublattice 1 Neel, sublattice 2

(a)

(b)

FIG. S4. Mid-plane cross-sections in the xy plane (upper) and xz plane (lower) of sublattices 1 (left) and 2 (right). (a)
Bloch-type AFM hopfion. (b) Néel-type AFM hopfion.
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Discussions about Experimental Realization, Writing, and Reading of Magnetic Hopfions

Candidate materials- The possible material for realization of Bloch-type hopfions has been discussed in Ref.[S11].
For Néel-type hopfions proposed in our paper, inversion-symmetry-breaking multilayer systems [S12, S13] may be
good candidates for experimental realization. Inversion-symmetry-breaking multilayer stacks such as Pt/Co/AlOx

has been shown to possess interfacial DMI and support magnetic skyrmions. The interlayer coupling is RYYK-type
and can be tuned to be ferromagnetic. The anisotropy of the ferromagnetic layers (usually Co or Co alloys) can be
engineered in the wide range, from negative PMA (in-plane anisotropy) to very strong PMA [S14]. Thus, the weak
bulk PMA and strong surface PMA are possible in these systems. In this case, the spin Hall torque is much larger
than that calculated in the main text because the torque is exerted on layers with substantially smaller thickness d.
Thus, the expected hopfion velocity can be much larger.
Writing of hopfion bits- To use hopfions as information carriers, we need to create or eliminate a hopfion to write

binary “1” or “0”. We expect that Hopfions can be created from a single domain by reversing the spins in a torus in
analogous ways as for skyrmions. The reversal can be achieved by applying a field pulse [S15, S16] or a current pulse
[S17, S18], and may be assisted by local heating [S19]. The field or current pulse can be applied through a ring-shaped
nanocontact with radius closed to the hopfion radius, with the field direction or spin-polarization direction opposite
to the magnetization direction of the domain. Since the top and bottom surfaces are pinned by the strong PMA
while the bulk PMA is much weaker, a moderate field or current pulse can reverse the magnetization only in a torus.
After relaxation, the structure is able to evolve to a hopfion state. A hopfion can be eliminated simply by applying
a uniform magnetic field that is strong enough to overcome the energy barrier between the hopfion state and the
single-domain state. The optimal pulse duration and field/current intensity for hopfion creation depend strongly on
the material parameters, and extensive numerical calculations are needed. We intend to study the writing and erasing
of hopfions in details elsewhere.
Reading of hopfion bits- Although hopfions are local solitons in a uniform domain, they have non-zero net magnetic

moments. Thus, any existing techniques that can detect local magnetic moments can be used to read the hopfion
information. For example, the possible Lorentz TEM image has been shown in Ref. [S11]. Other techniques like
magnetic force microscopy (MFM) also works for reading of hopfions. More practically, the all-electric detection [S20]
based on the non-collinear magnetoresistance effects is also possible. The use of NV-centers should be able to detect
the stray fields from the Hopfions [S21].
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