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a b s t r a c t 

Coalescence in the presence of low surfactant concentrations is investigated via a film drainage model, 

where the interface is a Boussinesq surface fluid with surfactant concentration dependent physical prop- 

erties. Three cases are considered representing the systems where water is the continuous phase and the 

dispersed phase is either high viscosity droplets, droplets of comparable viscosity to water or gas bubbles. 

In the former, the immobilization of the interface is due to high dispersed phase viscosity and surface 

viscosities, whereas in the latter two, the Marangoni flow plays an important role, too. When droplets 

of comparable viscosity to water or gas bubbles are considered, it is seen that both the Marangoni flow 

and the surface viscosities can change the coalescence time significantly for the experimentally encoun- 

tered values of the initial surfactant concentration, and the Boussinesq and surface Péclet numbers. In all 

cases, the impact of the surface phenomena amplifies with the approach velocity, especially for the dim- 

pled interfaces. A complete immobilization criterion that is independent of the dispersed phase viscosity 

is proposed as a function of the continuous phase and surface viscosities, and the particle radii. 

© 2019 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Efficient operation of many engineering units, such as chemi-

al and biochemical reactors or separators, requires precise under-

tanding on the nature of the multiphase flow within them. The

ow in such units is often characterized by the size and the dis-

ribution of the fluid particles dispersed in the continuous phase,

hich depend strongly on the coalescence and the breakage of the

articles. Thus, these phenomena should be studied both on the

quipment scale, where a large number of fluid particles interact

imultaneously, and on an individual level, where a single event

f coalescence or breakage is considered. This work focuses on the

atter, more specifically, on the significance of the surface tension

riven flows along the interface and the surface viscosities on the

oalescence of two fluid particles. 

Following Liao and Lucas (2010) , the physical models describ-

ng the coalescence probability of interacting fluid particles can

e summarized under three approaches. The film drainage ap-

roach starts with the studies of Shinnar and Church (1960) , and

hinnar (1961) , where they observe the emergence of a thin film

n between the fluid particles once they are brought into con-
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act. As the emergent thin film has to be drained before the co-

lescence, it delays the process, and thus, immediate coalescence

s rarely seen. On the other hand, Howarth (1964) concludes that

here exists a critical particle approach velocity distinguishing be-

ween two different regimes, where higher approach velocities re-

ult in rapid coalescence, and for lower values coalescence is un-

ikely. This conclusion forms the basis of the energy models, where

he coalescence efficiency is expressed in terms of the kinetic en-

rgy of the colliding particles and the interfacial energy of the fluid

articles. The third approach arises from the experimental findings

f Lehr et al. (2002) , where they observe a new regime in which

he particles bounce instead of coalescing rapidly. As the critical

elocity of Howarth (1964) indicates the beginning of the immedi-

te coalescence, and the one of Lehr et al. (2002) is defined at the

nd of the same regime, it can be claimed that the latter corre-

ponds to higher approach velocities than the former. Similar criti-

al approach velocities to that of Lehr et al. (2002) are proposed by

irkpatrick and Lockett (1974) , and Chesters and Hofman (1982) in

heir theoretical works via a film drainage model and energy con-

iderations, respectively. This implies that although all three ap-

roaches are given through different arguments, they might yield

imilar conclusions. 

The film drainage approach uses two characteristic time scales

o estimate the coalescence probability after collision: the con-
nder the CC BY-NC-ND license. ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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a  
tact time of the particles and the time required for coalescence.

Furthermore, it is assumed that the coalescence process has two

consecutive steps after the formation of the thin film. First, the

thin film drains until its thickness reaches to a critical value, and

then, the film ruptures and coalescence occurs. Since the drainage

time is typically much larger than the time of rupture, the coa-

lescence time is often approximated as the drainage time. Then,

an expression for the coalescence efficiency λc is proposed by

Coulaloglou (1975) as 

λc = exp 

(
− t drainage 

t contact 

)
(1)

Thus, there has been extensive effort s on the models estimating

the drainage time in the literature. One popular type of approach

employs the lubrication equations, in which the thin film is treated

as having a disc-like shape and the interfaces as being either flat or

very close to flat. The flow in the film is given as the sum of two

contributions, the parabolic and the plug components, which are

driven by the pressure gradient within the film and the tangen-

tial speed of the interface, respectively ( Lee and Hodgson, 1968 ).

In this class of models, the deformability and the tangential mo-

bility of the interface also play key roles as discussed by Lee and

Hodgson (1968) , Chesters (1991) and Liao and Lucas (2010) . The

models considering deformable interfaces are capable of simulating

the dimple formation, which is frequently observed in experimen-

tal studies ( Derjaguin and Kussakov, 1939; Allan et al., 1961; Klase-

boer et al., 20 0 0 ). Its tangential mobility, on the other hand, result

in the classification of the interface as immobile, partially mobile

or fully mobile ( Chesters, 1991; Liao and Lucas, 2010 ). The primary

reasons behind the immobilization of the interface are usually con-

sidered as high dispersed phase viscosities and the presence of sur-

factants at the interface ( Lee and Hodgson, 1968 ). Regardless of

the immobilization mechanism, the models with immobile inter-

faces neglect the tangential velocity of the interface and the plug

component of the film flow. Davis et al. (1989) carry out a dimen-

sional analysis on the characteristic scales governing the coales-

cence, and defines a measure of the interface mobility, m , which

is inversely proportional to the dispersed to continuous phase vis-

cosity ratio. According to their definition, when m ≈ 1 the interface

is partially mobile and when m > > 1 its fully mobile. On the other

hand, Chesters (1991) emphasizes the treatment of the tangential

stress at the interface to define the same concepts: zero tangential

stress corresponds to inertial collision/film drainage and the inter-

face is said to be fully mobile, whereas for partially mobile inter-

faces the stress is non-zero and the drainage is controlled by the

dispersed phase viscosity. 

First proposed by Davis et al. (1989) , the determination of the

tangential velocity of the interface via the boundary integral form

of the Stokes flow, has been preferred in many studies ( Yiantsios

and Davis, 1991; Abid and Chesters, 1994; Saboni et al., 1995;

Klaseboer et al., 20 0 0; Bazhlekov et al., 20 0 0; Alexandrova, 2014;

Ozan and Jakobsen, 2019 ). Yiantsios and Davis (1991) investigate

the buoyancy driven interactions between two deformable fluid

particles. They show that, as the strength of the van der Waals

forces decreases, the location at which the rupture occurs shifts

from the center of the axisymmetry to a rim emerging due to

the dimple formation, i.e., the type of rupture shifts from being a

nose rupture to a rim rupture. The constant approach velocity and

the constant interaction force collisions in liquid-liquid systems are

studied by Abid and Chesters (1994) and Saboni et al. (1995) , re-

spectively. In both studies, the film flow is driven only by the mo-

bility of the interface and the parabolic component is neglected.

Klaseboer et al. (20 0 0) discuss two film drainage models, in which

the interface is either immobile or mobile. In both models, the in-

terface is deformable and the relative approach velocity of the par-

ticles throughout the collision is kept constant. They carry out a
omparison between their experiments and the theoretical model

redictions by tracking the minimum film thickness, the film thick-

ess at the center of the film and the radial position of the rim,

hich reveals that the immobile model matches the experimen-

al data more accurately. Bazhlekov et al. (20 0 0) introduce the dis-

ersed to continuous phase viscosity ratio to the thinning equa-

ion. The viscosity ratio weighs the parabolic component of the

lm flow and allows the investigation of different degrees of inter-

acial mobility, instead of the strictly mobile or immobile models

reviously used in the literature. Ozan and Jakobsen (2019) esti-

ate the coalescence time as a function of the relative approach

elocity and the viscosity ratio via a similar model, in which

he van der Waals forces are also taken into account. They iden-

ify three consecutive regimes as the approach velocity increases.

t lower velocities, the coalescence time decreases with the ap-

roach velocity. Here, the rupture is a nose rupture and the coa-

escence time is a power function of the velocity. Then, in the sec-

nd regime, the dimple formation at the interface starts and the

upture position shifts to the rim. Consequently, the coalescence

ime continues to decrease with the approach velocity, but less

nd less dramatically as the velocity increases. In the beginning

f the last regime, the coalescence time reaches a minimum value

nd starts to increase due to the emergence of additional rim-

ike structures at the interface. The power law type relation be-

ween the coalescence time and the approach velocity in the first

egime and the minimum point in the second regime they observe,

eem to agree with the findings of recent experimental studies car-

ied out in air-liquid systems such as Del Castillo et al. (2011) and

rvalho et al. (2015) . In addition, the values Ozan and Jakob-

en (2019) determine via their simulations for the exponent of the

ower law type relation in the first region, match the value of

0 . 85 given by Orvalho et al. (2015) . However, the experimental

orks do not report a trend similar to the third region seen in the-

retical work of Ozan and Jakobsen (2019) . This discrepancy may

ndicate that there are additional mechanisms playing key roles at

igher velocities. 

Alexandrova (2014) studies the effect of the presence of sur-

actants in droplet coalescence by introducing surfactant balance

cross the interface and surface tension gradients resulting in

arangoni type flows along the interface. In the physical system

onsidered, the viscous effects in the thin film are neglected, and

he interaction force between the droplets is constant. She con-

ludes that as the Péclet number increases the rate of drainage

lows down, and for its very high values no rims emerge at the

nterface. Li (1996) introduces the dilatational and the shear vis-

osities of the surface in the film drainage model by employing a

inear Boussinesq surface fluid expression for the interface. How-

ver, his approach is different than the other works mentioned

arlier, as the boundary integral method is not employed, and

nstead the bubble side tangential stress is neglected. Therefore,

e is not able to extend the examination to droplets. In addi-

ion, the boundary conditions are applied at a predefined rim po-

ition, and consequently the model fails to capture the mechan-

cs of the rim/dimple formation. He presents explicit expressions

or the coalescence time as functions of various physical proper-

ies and the droplet size, which seem to fit some experimental

esults better than the preexisting models with immobile inter-

aces. In an earlier work, Zapryanov et al. (1983) investigate the

ffect of the interfacial properties on the drainage rate of a thin

lm between two droplets with non-deformable interfaces. They

how that the surface viscosity increases the drainage time as it

mmobilizes the interface, but the effect of the Marangoni flow is

uch more pronounced. Additionally, they conclude that the sur-

ace viscosities affect the drainage only when they are in between

0 −6 Pa · m · s and 10 −3 Pa · m · s . These limits correspond to 10 −3 sp

nd 1 sp , respectively, where sp stands for surface Poise and is
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qual to g / s . However, it is not easy to compare these values to

eal systems, as there is an ongoing disagreement in the literature

n the measurements of the surface viscosities, mainly due to dif-

culties in isolating the effect of the surface viscosities from those

f the bulk properties and Marangoni stresses ( Shen et al., 2018 ).

jabbarah and Wasan (1982) report surface viscosities as large as

 sp in their experiments with aqueous sodium lauryl sulfate so-

utions. Ting et al. (1984) measure values up to 0.3 sp for a sim-

lar system with aqueous solutions of octanoic acid. Both studies

mploy deep channel viscous traction viscometer (as described by

intar et al., 1971 ) and longitudinal wave apparatus (as described

y Maru and Wasan, 1979 ) to determine the shear and the dilata-

ional surface viscosities, respectively. They conclude that the sur-

ace shear viscosity is orders of magnitudes smaller than the di-

atational ones, whereas Edwards et al. (1991) argue that the shear

nd the dilatational components might be on the same order of

agnitude. In a more recent study, Zell et al. (2014) use microbut-

on surface rheometry to create only surface shear deformations

nd conclude that the surface shear viscosity of sodium dodecyl

ulfate monolayer is below the sensitivity of their measurement

echnique, which corresponds to 10 −5 sp, whereas they measure

alues as high as 10 −1 sp for an insoluble monolayer of 1-eicosanol.

Some recent studies on thin films and on fluid particles re-

ealed that the surface viscosities might be important under spe-

ific conditions, or in explaining some experimental observations

hat cannot be explained by other surface phenomena such as

arangoni flows. Scheid et al. (2010) examine the significance of

urface viscosities in film coating, and shows that there is a new

egime of film thickening governed by the surface viscosities in-

tead of the Marangoni effects. In their study on the breakup of

 pendant drop, Ponce-Torres et al. (2017) , show that the addition

f the surface viscosities in their model is a must to successfully

imulate their experiments, where a large amount of surfactants

ccumulate in the satellite droplets. Shen et al. (2018) come to the

onclusion that the critical wavelength of the capillary waves can

e affected significantly even by small surface viscosities. All these

ecent findings naturally raise a question on the extent to which

he surface viscosities has an effect on the coalescence of the fluid

articles. Although, both the Marangoni stresses and the surface

iscosities immobilize the interface, they achieve this through dif-

erent mechanisms. The Marangoni stresses due to the surface ten-

ion gradients create local flows from low to high surface ten-

ion, whereas the surface viscosities’ effect is twofold: they reduce

he overall magnitude of the surface velocities and their gradients

long the interface, and as they lower the gradient they weaken

he Marangoni flows. Therefore, investigating the effect of the sur-

ace viscosities together with the Marangoni stresses might shed

ight on to the importance of the interfacial dynamics during coa-

escence. 

In this work, we aim to simulate both liquid–liquid and

as–liquid systems, in which low amounts of surfactants are

resent. When non-uniformly distributed along the interface, the

urfactants result in surface tension gradients and consequently

arangoni flow. Furthermore, regardless of the uniformity of the

istribution, the surfactants might also affect the viscous proper-

ies of the interface. Both the surface viscosities and the Marangoni

ow can immobilize the interface, and consequently affect the co-

lescence time drastically. To check the degree of their impact,

e extend the model of Ozan and Jakobsen (2019) by introduc-

ng the surface excess concentration distribution along the inter-

ace, and a viscous interface represented by the Boussinesq sur-

ace fluid model with concentration dependent properties. We fol-

ow the same framework and examine the coalescence time as a

unction of the approach velocity of the particles, at various lev-

ls of initial surfactant concentration. The key parameters, the sur-

ace Péclet and the Boussinesq numbers, signify the ratio of con-
ective to diffusive rate of transport along the interface, and the

atio of the surface viscous forces to their bulk counterparts, re-

pectively. The analysis is carried out for three distinct cases based

n the dispersed to continuous phase viscosity ratio to simulate

he systems with: high droplet to water viscosity ratio, compara-

le droplet to water viscosity ratio, and gas bubbles in water. For

ll systems, the conditions under which the Marangoni flow and/or

he surface viscosities affect the coalescence time, are determined

n terms of the initial surfactant concentration, and the surface Pé-

let and the Boussinesq numbers. Finally, a limit for the interfaces’

omplete immobilization is identified as a function of the continu-

us phase and the surface viscosities. 

The physical configuration and the corresponding mathemati-

al model are presented in Section 2 , followed by the numerical

rocedure in Section 3 . The results and discussion are given in

ection 4 and organized under three subtitles. The drainage with-

ut the coalescence is discussed in Section 4.1 . In Section 4.2 , the

esults for the coalescence of the droplets with high viscosity are

hown. The results of the comparable droplet to water viscosity

atio and the gas bubbles in water cases are given together in

ection 4.3 , as the same model is used for both. Finally, the con-

lusions drawn throughout the study are summarized in Section 5 .

. Physical system and mathematical model 

Fig. 1 depicts two particles of the same fluid, with radii R 1 
nd R 2 , approaching each other at a constant relative approach ve-

ocity, V app , along their centerlines through a continuous medium.

oth the dispersed and the continuous phases are incompressible

nd Newtonian, characterized by the viscosities μd and μc , respec-

ively. The interfaces are deformable and exhibit Newtonian behav-

or, i.e., they obey the Boussinesq surface fluid model. The surfac-

ants present in the system are not soluble in the dispersed phase.

Three distinct length scales governing the phenomenon can be

dentified: the particle radii, the radius and the thickness of the

lm. The relation between the magnitudes of these characteris-

ic lengths play a significant role in the interaction between the

uid particles. In this work, the collisions considered are gentle

nes, and they result in formation of a thin film of the continu-

us phase in between the fluid particles. Here, a gentle collision

efers to a collision where the radius of the emerging thin film is

uch smaller than the radii of the fluid particles; whereas the thin

lm indicates that the film thickness is much smaller than the film

adius. For coalescence to occur, this thin film has to be drained

ntil a critical thickness of the film is reached. Although, the par-

icle sizes are allowed to be different, i.e., R 1 � = R 2 is possible, the

quivalent particle radius, 

 p = 2 

(
1 

R 1 

+ 

1 

R 2 

)−1 

(2) 

an be used to characterize both particles, as the collision is a gen-

le one ( Chesters, 1991 ). Following Ozan and Jakobsen (2019) , the

ength scales governing the collision can be written in terms of the

quivalent particle radius: 

¯
 = ε2 R p , r̄ = εR p (3) 

here h̄ and r̄ , the characteristic length scales for the thickness

nd the radius of the film, and the small parameter ε is defined as

= 

√ 

h̄ 
R p 

. The introduction of R p also suggests symmetry around

 axis in addition to the inherent axisymmetry due to the cen-

erline collision of the fluid particles, and creates four equivalent

uadrants around rz coordinate system shown in Fig. 1 . Due to

he symmetric nature of the physical configuration, the problem is

nly solved in the r ≥ 0, z ≥ 0 quadrant, where the interface is rep-

esented by the axisymmetric surface z = h (r, t) / 2 . Following Ap-

endix B of Johns and Narayanan (2007) , such a surface can be
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Fig. 1. Physical system depicting two fluid particles approaching each other at a constant relative velocity, and the thin film entrapped between them. The interfaces are 

deformable and viscous. The surfactants in the system are either confined to the interface or soluble in the continuous phase. 
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described by choosing r and θ as the surface coordinates. Then, by

using the position vector on the surface, r = re r + 

h (r,t) 
2 e z , the tan-

gent and the normal unit vectors are found as 

t 1 = 

∂r 
∂r ∣∣ ∂r 
∂r 

∣∣ = 

e r + 

1 
2 

∂h 
∂r 

e z √ 

1 + 

1 
4 

(
∂h 
∂r 

)2 
, t 2 = 

∂r 
∂θ∣∣ ∂r 
∂θ

∣∣ = e θ , 

n 

(c,d) = t 1 × t 2 = 

e z − 1 
2 

∂h 
∂r 

e r √ 

1 + 

1 
4 

(
∂h 
∂r 

)2 
(4)

respectively. Here, the superscript ( c, d ) indicates that the unit nor-

mal vector, n 

( c,d ) , is directed from the continuous phase to the dis-

persed phase. The surface gradient operator, ∇ s , and the surface

identity tensor, I s , can be written as 

∇ s = 

t 1 √ 

1 + 

1 
4 

(
∂h 
∂r 

)2 

∂ 

∂r 
+ 

t 2 
r 

∂ 

∂θ
, I s = t 1 t 1 + t 2 t 2 (5)

2.1. Governing equations and boundary conditions at the interface 

The continuous phase flow is governed by the Navier–Stokes

and the continuity equations 

ρc 

(
∂v c 

∂t 
+ v c · ∇v c 

)
= −∇ P c + μc ∇ 

2 v c (6)

∇ · v c = 0 (7)

and the dispersed phase is approximated by the incompressible

Stokes equations 

μd ∇ 

2 v d = ∇P d (8)

∇ · v c = 0 (9)

where ρ , μ, v and P stand for the density, the viscosity, the ve-

locity field and the pressure, respectively. The subscripts c and d

denote the continuous and the dispersed phases. At the interface,

the kinematic and the no-slip conditions give 

v c | z= h/ 2 · n 

(c,d) = u · n 

(c,d) (10)

and 

v c | z= h/ 2 · t 1 = u · t 1 (11)
here u = U n n 

(c,d) + U t 1 is the interface velocity. Following Ap-

endix C of Johns and Narayanan (2007) , the normal speed of a

urface can be written in terms of its implicit form, where f ( r , t ) =
 describes the surface. As the surface is given by z = h (r, t) / 2

n this work, f ( r , t ) corresponds to f = z − h (r,t) 
2 . Thus, the normal

omponent of the interfacial velocity becomes 

 n = −
∂ f 
∂t 

| ∇ f | = 

1 
2 

∂h 
∂t √ 

1 + 

1 
4 

(
∂h 
∂r 

)2 
(12)

nd its tangential component, U , is obtained by employing the

oundary integral form of the Stokes flow (reader may refer to

avis et al., 1989; Pozrikidis, 1992 , and Ladyzhenskaya, 1969 for

urther information on the method.) 

 = 

1 

μd 

∫ r ∞ 

0 

φ(r ′ , θ ) τd dr ′ (13)

(r ′ , θ ) = 

r ′ 
2 π

∫ π

0 

cos θ√ 

r 2 + ( r ′ ) 2 − 2 r r ′ cos θ
d θ (14)

here τ d is the tangential component of the particle side stress,

.e., τd = −
(
T d | z= h/ 2 · n 

(c,d) 
)

· t 1 . The stress balance across the inter-

ace reads 

 s · T I = 

[
T c | z= h/ 2 − T d | z= h/ 2 

]
· n 

(c,d) (15)

here, T c = −P c I + μc 

[∇v c + ( ∇v c ) T
 

]
and T d = −P d I +

d 

[∇ v d + ( ∇ v d ) T
 

]
are the bulk stress tensors, and T I is the

nterfacial stress tensor. Following Edwards et al. (1991) ’s Eq.

4.A-1) T I for an interface exhibiting Newtonian behavior can be

ritten as 

 I = I s [ σ + ( κI − μI ) ∇ s · u ] + μI 

[∇ s u · I s + I s · ( ∇ s u ) T
 

]
(16)

he dilatational and the shear surface viscosities, κ I and μI , and

he interfacial tension, σ , are functions of the surfactant concen-

ration at the interface. The surfactant is only allowed to be solu-

le in the continuous phase and its distribution inside the film is

overned by 

∂c c 

∂t 
+ v c · ∇c c = −∇ · J c (17)

nd the concentration balance across the interface yields 

∂� + ∇ s · ( �u ) + ∇ s · ( J I · I s ) = J c | z= h/ 2 · n 

(c,d) (18)

∂t 
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here, c c and � are the surfactant concentration inside the film

nd surface excess concentration, respectively. The concentration

ux J c and its interfacial counterpart J I are approximated by Fick’s

aw as J c = −D c ∇c c and J I = −D I ∇ s �. Here, D I and D c stand for the

nterfacial and the continuous phase diffusivity of the surfactant,

espectively. 

.2. Dimensionless equations 

The following transformations are applied to the Eqs. (6) –(7)

nd (10) –(18) to render them dimensionless 

˜ h = 

h 

ε2 R p 
, ˜ r = 

r 

εR p 
, ˜ σ = 

σ

σ0 

, ˜ v r = 

v r μd 

ε2 σ0 

, ˜ U = 

Uμd 

ε2 σ0 

, 

˜ v z = 

v z μd 

ε3 σ0 

, ˜ V app = 

V app μd 

ε3 σ0 

˜ t = 

tεσ0 

μd R p 
, ˜ κI = 

κI 

εμd R p 
, ˜ μI = 

μI 

εμd R p 
, ˜ p = 

pR p 

σ0 

, 

˜ τd = 

τd R p 

εσ0 

, ˜ � = 

�

�m 

, ˜ c c = 

c c R p 

�m 

(19) 

here, v r and v z are the r and z components of v c , p is the film side

xcess pressure, �m 

is the surface excess concentration when the

ritical micelle concentration is reached, and σ 0 is the initial value

f the interfacial tension. In the next step, the dominant terms in

ach transformed equation are determined based on the lubrica-

ion theory, as the small parameter ε < < 1. Then, the simplified

ersions of Eqs. (6) –(7) and (10) –(11) in the dimensionless form

ive 

∗ ∂ ̃  p 

∂ ̃  r 
= 

∂ 2 ˜ v r 
∂ ̃  z 2 

, 
∂ ̃  p 

∂ ̃  z 
= 0 (20) 

∂ ˜ v z 
∂ ̃  z 

+ 

1 

˜ r 

∂ 

∂ ̃  r 
( ̃ r ̃  v r ) = 0 (21) 

1 

2 

∂ ̃  h 

∂ ̃  t 
= 

˜ v z | ˜ z = ̃ h / 2 −
1 

2 

∂ ̃  h 

∂r 
˜ v r | ˜ z = ̃ h / 2 (22) 

˜ v r | ˜ z = ̃ h / 2 = 

˜ U (23) 

here λ∗ = 

εμd 
μc 

. The normal and the tangential components of the

tress balance, Eq. (15) , become 

˜ p = 2 − 1 

2 ̃

 r 

∂ 

∂ ̃  r 

(
˜ r 
∂ ̃  h 

∂ ̃  r 

)
+ 

A 

∗

˜ h 

3 
(24) 

nd 

∂ 

∂ ̃  r 

[
( ̃  κI + ˜ μI ) 

1 

˜ r 

∂ 

∂ ̃  r 

(
˜ r ̃  U 

)]
+ 

∂ ̃  σ ′ 
∂ ̃  r 

− 2 

∂ ˜ μI 

∂ ̃  r 

˜ U 

˜ r 
= 

1 

λ∗
∂ ˜ v r 
∂ ̃  z 

∣∣∣∣
˜ z = ̃ h / 2 

+ ˜ τd 

(25) 

espectively. In the normal component of the stress balance, the

eviations in the particle side pressure is neglected and the non-

imensionalized Hamaker constant, A 

∗ = 

A 

6 πε6 R 2 p σ0 
, represents the

ffect of the attractive van der Waals forces. In the tangential com-

onent, T I is determined via Eq. (16) , and ˜ σ ′ = 

1 
ε2 ˜ σ . The surface

xcess concentration is taken as uniformly distributed initially, and

he initial condition is given by ˜ �( ̃ r , 0) = �0 . As relatively low sur-

ace excess concentration values are examined in this work, the

urface viscosities are assumed to be linear functions of ˜ � and de-

cribed using the initial condition �0 as: 

˜ I = Bo κ
˜ �

�0 

, ˜ μI = Bo μ
˜ �

�0 

(26)

here the dilatational and the shear Boussinesq numbers are de-

ned via the initial values of the surface viscosities, ˜ κ and ˜ μ , as
I0 I0 
o κ = ˜ κI0 = 

κI0 
εμd R p 

and Bo μ = ˜ μI0 = 

μI0 
εμd R p 

. The surface tension gra-

ient is expressed as 

∂ ̃  σ ′ 
∂ ̃  r 

= ˜ σ ′ 
˜ �

∂ ̃  �

∂ ̃  r 
(27) 

here ˜ σ ′ 
˜ �

= 


 ˜ σ

 ˜ �

1 
ε2 , and an estimation on its magnitude is given in

ppendix A . Then, the tangential stress balance, Eq. (25) , can be

ritten as 

o 
∂ 

∂ ̃  r 

[
˜ �

�0 

1 

˜ r 

∂ 

∂ ̃  r 

(
˜ r ̃  U 

)]
+ ˜ σ ′ 

˜ �

∂ ̃  �

∂ ̃  r 
− 2 Bo μ

∂ 

∂ ̃  r 

(
˜ �

�0 

)
˜ U 

˜ r 
= 

1 

λ∗
∂ ̃  v r 
∂ ̃  z 

∣∣∣∣
˜ z = ̃ h / 2 

+ ˜ τd 

(28) 

ere, Bo = Bo κ + Bo μ is the Boussinesq number. The boundary in-

egral equations, Eqs. (13) and (14) , become 

˜ 
 = 

∫ ˜ r ∞ 

0 

˜ φ
(

˜ r ′ , θ
)

˜ τd d ̃ r ′ (29) 

nd 

˜ ( ̃ r ′ , θ ) = 

˜ r ′ 
2 π

∫ π

0 

cos θ√ 

˜ r 2 + ( ̃ r ′ ) 2 − 2 ̃

 r ̃ r ′ cos θ
d θ (30)

otice that, the transformation of r also applies to the integration

ariable r ′ . The governing equation for the concentration inside the

lm, Eq. (17) reduces to 

2 P e 

(
∂ ̃  c c 

∂ ̃  t 
+ 

˜ v r 
∂ ̃  c c 

∂ ̃  r 
+ 

˜ v z 
∂ ̃  c c 

∂ ̃  z 

)
= 

∂ 2 ˜ c c 

∂ ̃  z 2 
(31) 

here the Péclet number is defined as Pe = ε3 R p σ0 
D c μd 

. Eq. (31) in-

icates that its left hand side is negligible unless 
R p σ0 
D c μd 

is on the

rder of ε−5 or greater, which is shown to be unlikely in Appendix

 . Then, by neglecting the left hand side, the concentration equa-

ion can be written as 

 ≈ ∂ 2 ˜ c c 

∂ ̃  z 2 
(32) 

ndicating that ˜ c c is a linear function of ˜ z . Also, due to the symme-

ry around the r axis, ∂ ̃  c c 
∂ ̃ z 

∣∣
˜ z =0 

should be zero, meaning that ˜ c c is

ctually constant within the film. The concentration balance across

he interface, Eq. (18) , gives 

 e s 

[
∂ ̃  �

∂ ̃  t 
+ 

1 

˜ r 

∂ 

∂ ̃  r 

(
˜ r ˜ � ˜ U 

)]
− 1 

˜ r 

∂ 

∂ ̃  r 

(
˜ r 
∂ ̃  �

∂ ̃  r 

)
= 0 (33) 

otice that the right hand side of the equation appears to be zero

ince ˜ c c is constant throughout the film, and consequently the sur-

actant is confined to the interface. Therefore, the analyses car-

ied out via Eq. (33) should be valid for both insoluble surfac-

ants and for the ones that are only soluble in the continuous

hase. The surface counterpart of the Péclet number is defined as

e s = ε3 R p σ0 
D I μd 

. Although the surface Péclet number has a factor of

3 in it, for the typical systems of interest, it is not always small

nough to render the convective terms in Eq. (33) negligible. In

ppendix A , the estimates for Pe s for systems of 1 mm fluid parti-

les in water with different viscosity ratios are found as: between

e s ≈ 200 and Pe s ≈ 20 0 0 for bubbles in water ( μd / μc < < 1), in the

ange of Pe s ≈ 2.5 to Pe s ≈ 25 for droplets with comparable viscosity

 μd ≈μc ), and Pe s < < 0.25 for highly viscous droplets ( μd > > μc ).

he estimated values imply that the convective terms are only neg-

igible for the droplets with high viscosity. Therefore, when μd is

ot significantly larger than μc , the concentration jump condition

s used as presented in Eq. (33) . When μd > > μc , on the other

and, it simplifies to 

1 

˜ r 

∂ 

∂ ̃  r 

(
˜ r 
∂ ̃  �

∂ ̃  r 

)
= 0 (34) 
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in the low Pe s limit. Eq. (34) has a solution in the form of ˜ � =
K 1 ln ( ̃ r ) + K 2 , where K 1 and K 2 are integration constants. Since ˜ �

has to be finite at the center of axisymmetry, i.e., at ˜ r = 0 , K 1 must

be zero. Then, ˜ � attains a constant value, i.e., ˜ �
(

˜ r , ̃  t 
)

= �0 , and as

a result the interfacial properties, ˜ κI , ˜ μI and ˜ σ ′ are also constants

throughout the interface. 

Hereafter, tildes in the dimensionless variables are omitted. So-

lution of Eq. (20) subjected to the no-slip condition, Eq. (23) , to-

gether with the symmetry condition around r axis, gives 

v r = 

λ∗

2 

∂ p 

∂r 

( 

z 2 −
(

h 

2 

)2 
) 

+ U (35)

The z component of the velocity, then, can be determined via

Eq. (21) . By substituting v r and v z into the kinematic condition,

Eq. (22) , the thinning equation is found as: 

∂h 

∂t 
= 

1 

r 

[
λ∗

12 

∂ 

∂r 

(
r 
∂ p 

∂r 
h 

3 

)
− ∂ 

∂r 
( rUh ) 

]
(36)

By inserting v r from Eqs. (35) , (28) is rewritten as 

Bo 
∂ 

∂r 

[
�

�0 

1 

r 

∂ 

∂r 
( rU ) 

]
+ σ ′ 

�

∂�

∂r 
− 2 Bo μ

∂ 

∂r 

(
�

�0 

)
U 

r 
− h 

2 

∂ p 

∂r 
= τd 

(37)

Then, the boundary integral equation, Eq. (29) , is rewritten by sub-

stituting τ d through Eq. (37) 

 = 

∫ r ∞ 

0 

φ
(
r ′ , θ

){
Bo 

∂ 

∂r 

[
�

�0 

1 

r 

∂ 

∂r 
( rU ) 

]
+ σ ′ 

�

∂�

∂r 

− 2 Bo μ
∂ 

∂r 

(
�

�0 

)
U 

r 
− h 

2 

∂ p 

∂r 

}
dr ′ (38)

In the case of uniform � distribution, where �(r, t) = �0 ,

Eqs. (37) and (38) simplify into 

Bo 
∂ 

∂r 

[
1 

r 

∂ 

∂r 
( rU ) 

]
− h 

2 

∂ p 

∂r 
= τd (39)

and 

 = 

∫ r ∞ 

0 

φ
(
r ′ , θ

){
Bo 

∂ 

∂r 

[
1 

r 

∂ 

∂r 
( rU ) 

]
− h 

2 

∂ p 

∂r 

}
dr ′ (40)

which can be used for the high viscosity droplets ( μd > > μc ) case.

The axsymmetric nature of the problem requires 

∂ p 

∂r 

∣∣∣∣
r=0 

= 0 , 
∂h 

∂r 

∣∣∣∣
r=0 

= 0 , U | r=0 = 0 , 
∂�

∂r 

∣∣∣∣
r=0 

= 0 

(41)

and it is assumed that at a large enough radial distance, at r = r ∞ 

,

the collision does not affect the local shape of the interface, V app ,

U or �

p | r= r ∞ = 0 , 
∂h 

∂t 

∣∣∣∣
r= r ∞ 

= −V app , 
∂U 

∂r 

∣∣∣∣
r= r ∞ 

= 0 , 
∂�

∂r 

∣∣∣∣
r= r ∞ 

= 0 

(42)

In addition, the axisymmetry also implies τd = 0 at r = 0 . By sub-

stituting this condition together with the symmetry conditions in

Eq. (41) into the tangential stress balance, Eq. (37) or Eq. (39) , an

additional constraint that has to be satisfied by U emerges: {
∂ 

∂r 

[
1 

r 

∂ 

∂r 
( rU ) 

]}∣∣∣∣
r=0 

= 0 (43)

Finally, the initial condition, h ( r , 0), is taken as 

h (r, 0) = 2 + r 2 (44)

to resemble the shape of a perfect sphere initially. 
. Numerical procedure 

The problem requires the solution of Eqs. (24) , (33) , (36) , and

38) , where the boundary conditions Eqs. (41) and (42) hold to-

ether with the constraint given by Eq. (43) . In the limit of

mall Pe s , on the other hand, Eq. (33) is not solved as � is uni-

orm throughout the interface, and Eq. (40) is employed instead

f Eq. (38) . The spatial derivatives are discretized via a spectral

cheme based on the Chebyshev polynomials as described in Chap-

er 6 of Trefethen (20 0 0) , whereas the second order backward dif-

erentiation is employed for the time derivatives. As can be seen

rom Eq. (30) , the boundary integral equation kernel, φ, has a sin-

ularity of mathematical origin, appearing when r = r ′ and θ = 0 .

o treat this singularity, Ozan and Jakobsen (2019) is followed and

he integration in Eq. (38) (or in Eq. (40) ) is written in matrix form

s 

 = [ A ] τd = [ A ] 

{
Bo 

∂ 

∂r 

[
�

�0 

1 

r 

∂ 

∂r 
( rU ) 

]
+ σ ′ 

�

∂�

∂r 

− 2 Bo μ
∂ 

∂r 

(
�

�0 

)
U 

r 
− h 

2 

∂ p 

∂r 

}
(45)

r as 

 = [ A ] 

{
Bo 

∂ 

∂r 

[
1 

r 

∂ 

∂r 
( rU ) 

]
− h 

2 

∂ p 

∂r 

}
(46)

he details for the purely geometric integration matrix [ A ] is pro-

ided in the Appendix of Ozan and Jakobsen (2019) . 

. Results and discussion 

The results presented in this work are divided into three

roups: In Section 4.1 , coalescence of the particles is not taken into

onsideration by neglecting the attractive Van der Waals forces

 A 

∗ = 0 ), to investigate the effect of the surface viscosities on the

lm drainage process and the tangential velocity of the interface.

hen, the coalescence behavior (e.g. the coalescence time and the

ype of rupture) in the presence of the surface viscosities is ex-

mined for the droplets with high viscosity in the low Pe s limit in

ection 4.2 , and for the fluid particles whose viscosity is compa-

able to/lower than that of the continuous phase, in Section 4.3 .

n Section 4.2 , as Pe s is low, the surface excess concentration is

niformly distributed throughout the interface. On the other hand,

n Section 4.3 , the distribution is non-uniform and governed by

q. (33) . The non-uniform distribution of the surface excess con-

entration also results in surface tension gradient driven flows

long the interface. This allows a comparison between the effects

f different surface related mechanisms, i.e., the surface viscosities

nd the surface tension driven flow. The model employed in this

ork is an extension of the model proposed by Ozan and Jakob-

en (2019) to contaminated interfaces. Therefore, in the absence

f the surfactants, the current model is capable of reproducing

heir results, as well as the results of Bazhlekov et al. (20 0 0) and

laseboer et al. (20 0 0) as shown in Figs. 3 and 6 of Ozan and

akobsen (2019) . 

.1. Drainage without attractive van der Waals forces 

In this section, the effect of the surface viscosities, κ I and

I , on the drainage and the mobility of the interface is exam-

ned. The magnitude of κ I and μI are manipulated through the

oussinesq number, Bo , and the other parameters are kept con-

tant. The viscosity ratio and the approach velocity are selected

s λ∗ = 10 and V app = 1 , respectively. Since the viscosity ratio is

arge, the results are obtained in the low Pe s limit where � is

niformly distributed. The non-dimensionalized Hamaker constant,
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Fig. 2. Time evolution of the film thickness profile (a) for an immobile interface, (b) for Bo = 10 , (c) for Bo = 1 and (d) for an inviscid interface ( Bo = 0 ). All profiles are 

obtained with λ∗ = 10 , A ∗ = 0 and r ∞ = 30 . 

Fig. 3. The minimum film thickness as a function of time for different values of Bo . All results are obtained with λ∗ = 10 , A ∗ = 0 and r ∞ = 30 . 
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Fig. 4. Time evolution of the tangential velocity of the interface (a) for Bo = 10 , (b) for Bo = 1 , (c) for Bo = 0 . 1 and (d) for an inviscid interface ( Bo = 0 ). All profiles are 

obtained with λ∗ = 10 , A ∗ = 0 and r ∞ = 30 . 

Fig. 5. The maximum value of the tangential velocity of the interface as a function of time for different values of Bo . All results are obtained with λ∗ = 10 , A ∗ = 0 and 

r ∞ = 30 . 
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∗, is taken as zero, and consequently the rupture of the inter-

face is not considered. Figs. 2 and 3 present the time evolution

of h ( r, t ), and the minimum film thickness as a function of time,

respectively, for different values of Bo . The time evolution of h ( r, t )

and the minimum thickness curve for λ∗ = 10 and Bo = 0 , given in

Figs. 2 (d) and 3 respectively, are in perfect visual agreement with

Bazhlekov et al. (20 0 0) ’s results for λ∗ = 10 (their Figs. 4 (b) and
 ), where the surface viscosities are not considered in the drainage

odel. The results for the immobile interface case are obtained by

eglecting the second term on the right hand side of Eq. (36) . 

Fig. 3 shows that as Bo increases, i.e., the interface becomes

ore viscous, the drainage behavior approaches to that of the im-

obile interface’s. This implies that even when the surface excess

oncentration is uniformly distributed, i.e., in the absence of sur-
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Fig. 6. Coalesence time as a function of the approach velocity and Bo for (a) λ∗ = 100 , (b) λ∗ = 10 , (c) λ∗ = 1 and (d) λ∗ = 0 . 1 . All results are obtained with A ∗ = 10 −3 and 

r ∞ = 30 . 
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ace tension gradients, the immobilization of the interface is still

ossible due to surface viscosities. The minimum film thickness at

 given time is observed to be higher for more viscous interfaces,

howing that the drainage rate is slower for higher values of Bo .

his can be explained through Eq. (36) . Since the surface viscosi-

ies, κ I and μI , denote the resistance of the interface to tangential

eformations, as the value of Bo increases, the magnitude of U is

nticipated to decrease. As a result, the last term in Eq. (36) sig-

ifying the contribution of U to the thinning of the film is smaller

or more viscous interfaces, and consequently, the drainage rate is

lower for them. Fig. 3 also reveals that Bo values as small as 0.1

ay affect the drainage rate, as the minimum thickness curve cor-

esponding to Bo = 0 . 1 is different than the one for the inviscid

nterface with Bo = 0 . On the other hand, the curve for Bo = 100

s almost indistinguishable from the curve for the immobile inter-

ace, showing that the interface can be modeled as an immobilized

ne for Bo ≥ 100 for the particular parameter set considered here.

n addition, as can be seen from Fig. 2 , the dimple formation is

bserved around the same time ( t ≈ 5) regardless of the value of

o , and the radial position of the rim shifts towards larger r with

ime. The latter observation is expected to be seen in the constant

pproach velocity collisions as the interaction force between the

articles increases with time ( Abid and Chesters, 1994; Chan et al.,

011 ). However, Fig. 3 reveals that the minimum film thickness at

hich the dimpling starts (at t ≈ 5), is larger for more viscous in-

erfaces, as the drainage rate is smaller for them. 
The time evolution of U for different values of Bo is presented

n Fig. 4 . Although the maximum value of U decreases drastically

ith increasing values of Bo , the radial position at which U attains

ts maximum value is approximately same for all Bo values pre-

ented. To achieve clearer visualization, the profiles in Fig. 4 are

resented for r = [0 , 15] instead of the whole computational do-

ain, r = [0 , 30] . However, it should be noted that the tangen-

ial velocity not only satisfies the boundary condition given by

q. (42) at r = r ∞ 

= 30 , but also plateaus around U ≈ 0 before r ∞ 

is

eached, indicating that the selected value of r ∞ 

is indeed a large

nough value and the collision has no effect on the conditions at

he end of the domain. 

The immobilization due to the surface viscosities can be more

learly seen via Fig. 5 , where the maximum value of U is given as

 function of time for different values of Bo . An order of magni-

ude increase in the values of the surface viscosities for Bo ≥ 1 re-

ults in an order of magnitude decrease in the maximum value of

he tangential velocity, and as a result U quickly becomes insignifi-

ant for the drainage process. Previously in this section, it has been

oncluded that the interfaces immobilize for Bo ≥ 100. By merging

his observation with Fig. 5 , it can be seen that the same condi-

ion can be roughly expressed in terms of U as max (U) ≤ 10 −3 . On

he other hand, Fig. 5 also reveals that max( U ) profiles are identi-

al when Bo = 0 . 01 and Bo = 0 , showing that the effect of the sur-

ace viscosities on the drainage is negligible around and below this

alue. Then, for the particular set of parameters investigated here,
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Fig. 7. Coalescence time as a function of Bo at (a) V app = 0 . 001 , (b) V app = 0 . 1 , (c) V app = 1 and (d) V app = 10 . The asterisk and the circle mark Bo = 0 and immobile case 

results. All results are obtained with λ∗ = 10 , A ∗ = 10 −3 and r ∞ = 30 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

h  

o  

c  

c  

a  

o  

t  

c  

i  

t  

s  

i  

N  

f  

t  

s  

s

 

O  

h  

F  

l  

t  

c  

o  

a  

t  

v  

d  

t  

t  

c  

B  
a conclusion can be drawn to understand the importance of sur-

face viscosities in the film drainage: When Bo ≥ 100, the interface

is completely immobilized, the effect of U on the drainage is neg-

ligible and consequently the drainage behavior becomes indepen-

dent of the magnitude of the surface viscosities; when Bo ≤ 0.01,

the surface viscosities are not large enough to affect U significantly

and therefore can be excluded from the model; when Bo is in be-

tween these limits, the surface viscosities play an important role

and have to be taken into account in the drainage model. 

4.2. Coalescence of high viscosity droplets 

Although the rupture of the interface itself is not modeled in

this work, it is possible to estimate the rupture, thus the coales-

cence of the particles, by taking the attractive van der Waals forces

into consideration via a non-zero value of A 

∗. As the film drains,

the attractive forces become more and more significant, and over-

come the resistance within the film once the film thickness reaches

a small enough value. Consequently, the film begins to drain very

rapidly. This is expected to result in the rupture of the film and the

coalescence of the particles. Therefore, the rapid thinning regime

is accepted as the onset of the rupture/coalescence in our simula-

tions, and the drainage time is taken as the time of coalescence, as

the time scale of the rupture is typically much smaller than that

of the film drainage. 

Since this section focuses on the coalescence of the droplets

with high viscosities, as discussed in Section 2.2 , the model is

once again solved in the low Pe s limit, meaning that the surfactant

distribution is uniform and Marangoni stresses are negligible. The

time of coalescence, t c , is given as a function of the relative ap-

proach velocity, V app , and the Boussinesq number Bo , for A 

∗ = 10 −3 

and different values of λ∗ in Fig. 6 . It should be noted that the

smallest λ∗ value in Fig. 6 , λ∗ = 0 . 1 , still corresponds to a relatively
igh value μd / μc as λ∗ has a factor of ε in it (for further details

n the estimation of the dimensionless parameters the reader may

onsult to Appendix A ). The immobilizing effect of the surface vis-

osities that has been discussed in Section 4.1 , is also revealed here

s the t c curves are closer to the immobile ones for higher values

f Bo for all λ∗. From Fig. 6 (a), it is seen that the t c values for

he immobile interface and the inviscid interface ( Bo = 0 ) are very

lose to each other, meaning that roughly λ∗ ≥ 100 is sufficient to

mmobilize the interface by itself, without requiring immobiliza-

ion due to surface phenomena such as the Marangoni flow or the

urface viscosities. The results for λ∗ < 100 show that Bo λ∗ ≈ 10 0 0

s the limit after which the interface is completely immobilized.

otice that this criterion signifies the ratio of the surface viscous

orces to the film side bulk viscous forces and do not change with

he dispersed phase viscosity or depend on the small parameter ε,

ince Boλ∗ = 

κI0 + μI0 
εμd R p 

εμd 
μc 

= 

κI0 + μI0 
μc R p 

. On the other hand, Bo values as

mall as 1 seem to affect t c dramatically. 

The three distinct drainage/coalescence regimes reported by

zan and Jakobsen (2019) as V app increases, are also observed

ere, apart from some exceptions, e.g. for Bo = 10 and λ∗ = 0 . 1 in

ig. 6 (d). In the first region, a linear relation between log( t c ) and

og( V app ) is observed until a critical velocity, V dimp , is reached. In

his linear regime, no dimples are observed and the rupture oc-

urs at r = 0 . When V app ≥ V dimp , the interface dimples, the rupture

ccurs at the rim instead of r = 0 , and the trend between log( t c )

nd log( V app ) starts to deviate from a linear one. As V app is fur-

her increased, t c passes through a minimum at another critical

elocity, V mult . This critical velocity marks the end of the dimpled

rainage regime and once it is reached, multiple rim-like struc-

ures appear. The slope d (log( t c ))/ d (log( V app )) in the first regime,

he critical velocities and their dependence on λ∗ and A 

∗ are dis-

ussed in detail in Ozan and Jakobsen (2019) . Fig. 6 shows that

o has little to no effect on t c in the first region. However, the
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Fig. 8. Coalescence time for μd ≈μc and Pe s = 2 . 5 as a function of V app and Bo with (a) �0 = 10 −5 , (b) �0 = 10 −4 , (c) �0 = 10 −3 and (d) �0 = 10 −2 . All results are obtained, 

A ∗ = 10 −3 and r ∞ = 30 . 
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ffect is amplified as V app increases, especially with the begin-

ing of the deviations in the interface shape, i.e., after the linear

egime. This behavior can be observed through Fig. 7 in a more

lear way, where t c is given as a function of Bo for λ∗ = 10 at

hosen values of V app . These values are chosen to represent dif-

erent drainage/coalescence regimes: V app = 0 . 001 corresponds to

inear regime for all values of Bo , at V app = 0 . 1 the dimple forma-

ion is observed only for very high values of Bo , V app = 1 falls into

he dimpled drainage region for all values of Bo , and at V app = 10

he interface has multiple rims regardless of the value of Bo . The

mmobilization of the interface gives only a negligible increase of

0.2 in t c at V app = 0 . 001 , i.e., when the drainage falls into the lin-

ar region. However, when the dimples begin to emerge, the dif-

erence becomes non-negligible and increases drastically with V app ,

s it is ≈ 4% and ≈ 40% for V app = 0 . 1 and V app = 1 , respectively.

hen V app is further increased to 10, the immobilization of the in-

erface results in a change in the order of magnitude of t c , as the

ifference is found as ≈ 500%. Thus, the effect of the surface vis-

osities on t c is negligible only when both the immobile and the

nviscid interfaces do not exhibit any dimple formation. 

.3. Coalescence of droplets with μd ≈μc or bubbles 

As shown in Appendix A , for the systems where μd is not much

arger than μc , Pe s is typically not small enough to make the con-

ective terms in Eq. (33) negligible. Therefore, the distribution of
he surface excess concentration, �, is governed by Eq. (33) in-

tead of being uniform. The non-uniform distribution introduces

urface gradient driven flows along the interface, i.e., Marangoni

ows, as well as gradients of the surface viscosities. Furthermore,

ow an initial condition for the surface excess concentration is

equired. The initial condition, �0 , is chosen to be small, to rep-

esent the concentration levels that might be considered as un-

ntentionally introduced ‘impurities’. For the systems with com-

arable dispersed and continuous phase viscosities, other param-

ters are taken as λ∗ = 10 −2 and Pe s = 2 . 5 or Pe s = 25 , whereas

or bubbles in liquids with viscosities comparable to that of wa-

er λ∗ = 10 −4 and either Pe s = 200 or Pe s = 20 0 0 are used. For all

ases, σ ′ 
�

= −50 0 0 is used as discussed in Appendix A . The results

iven for immobile interfaces are obtained by neglecting the sec-

nd term in Eq. (36) and the results for the clean interface case

tands for �0 = 0 . As the coalescence time of a clean interface with
∗ ≤ 0.1 shown to converge to the λ∗ = 0 case by Ozan and Jakob-

en (2019) , for both λ∗ = 10 −2 and λ∗ = 10 −4 the clean interface

esults are obtained by setting λ∗ = 0 in Eq. (36) . 

The coalescence time for the systems where μd ≈μc is given as

 function of V app and Bo in Figs. 8 and 9 , in which Pe s = 2 . 5 and

e s = 25 , respectively. The results can be broken down into four

ypes of curves: the immobile curves stand for completely immo-

ilized interfaces regardless of the immobilization mechanism, the

lean curves stand for an interface without any impurities ( �0 = 0 ),

o = 0 curves show the individual effect of the Marangoni flow
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Fig. 9. Coalescence time for μd ≈μc and Pe s = 25 as a function of V app and Bo with (a) �0 = 10 −5 , (b) �0 = 10 −4 , (c) �0 = 10 −3 and (d) �0 = 10 −2 . All results are obtained, 

A ∗ = 10 −3 and r ∞ = 30 . 
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since the surface viscosities are neglected, and the curves with

non-zero values of Bo are used to examine the effect of the sur-

face viscosities without disregarding the Marangoni flow. In both

Figs. 8 and 9 , Bo = 0 curves reveal that the surface tension gra-

dients changes t c only when �0 > 10 −5 . Furthermore, as �0 in-

creases, the Bo = 0 results gradually deviate more and more from

the clean interface’s, and create up to 1 − 2 orders of magnitude

difference in t c at higher approach velocities. Revisiting the tangen-

tial stress balance as given by Eq. (37) , it can be seen that its sec-

ond term, which represents the surface tension driven flow, scales

with �0 through 

∂�
∂r 

(notice that σ ′ 
�

is a constant). This depen-

dence explains the amplification in the effect of the Marangoni

flow with �0 . However, a similar discussion on the surface vis-

cosity related terms in the same equation, the first and the third

terms, indicates that the effects of the surface viscosities should

not scale with the initial condition, since both terms are multi-

plied by �/ �0 , which cancels the impact of changing �0 . Figs. 8 (a)

and 9 (a) show that when the Marangoni flow is insignificant, the

coalescence time for the droplets with Bo > 0.1 is different than

the ones with clean interfaces. This observation together with the

conclusion drawn from Eq. (37) , implies that for any value of �0 

where the Marangoni flow is negligible, i.e. �0 ≤ 10 −5 , the surface

viscosities change t c noticeably for Bo > 0.1. However, this critical

value of Bo changes for larger values of �0 , as Marangoni flow be-

comes more influential and begins to compete with the surface

viscosities in terms of being the dominant immobilization mech-
nism. As can be seen in Fig. 8 (b)–(d), for Pe s = 2 . 5 , the results of

o > [0.01, 0.1, 1] differ from the respective coalescence time curve

or Bo = 0 , for �0 = [10 −4 , 10 −3 , 10 −2 ] , meaning that the surface

iscosities affect t c when Bo / �0 > 100; or from another point of

iew, the Marangoni flow is the dominant immobilization mech-

nism when Bo / �0 ≤ 100. Similarly, from Fig. 9 (b)–(d), the critical

alues can be read as Bo = [0 . 1 , 1 , 10] for �0 = [10 −4 , 10 −3 , 10 −2 ]

iving the criterion Bo / �0 > 10 0 0 for Pe s = 25 . A more careful in-

pection of Bo = 0 curves at different Pe s and fixed �0 , e.g. a com-

arison between Bo = 0 curves in Figs. 8 (c) and 9 (c), shows that

he effect of the Marangoni flow becomes more significant with

e s , and consequently t c increases. This observation agrees with

he conclusion of Alexandrova (2014) , where she observes slower

rainage rates with increasing Pe s . As it indicates the strength of

he Marangoni flow, a rise in Pe s also increases the critical ratio

f Bo / �0 , showing that the surface should be more viscous to be

ble to change t c noticeably for larger Pe s . Finally, in all results,

o = 10 5 is the value at which the interface is completely immo-

ilized. This conclusion agrees with the immobilization condition

ound in Section 4.2 , Bo λ∗ ≈ 10 0 0, as λ∗ = 10 −2 is employed in the

d ≈μc case. 

The dimensionless numbers fed to the solver for the μd < < μc 

ase corresponds to the systems with 1 mm bubbles in water. The

oalescence time as a function of Bo and V app is given for Pe s = 200

nd Pe s = 20 0 0 in Figs. 10 and 11 , respectively. The complete im-

obilization criterion ( Bo λ∗ ≈ 10 0 0) holds, as t c converges to the
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Fig. 10. Coalescence time for μd < < μc and Pe s = 200 as a function of V app and Bo with (a) �0 = 10 −5 , (b) �0 = 10 −4 , (c) �0 = 10 −3 and (d) �0 = 10 −2 . All results are 

obtained, A ∗ = 10 −3 and r ∞ = 30 . 
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c  
mmobile case around Bo ≈ 10 7 when λ∗ = 10 −4 . Once again, for

oth values of Pe s investigated, the Marangoni flow only affects t c 
hen �0 ≥ 10 −4 . From Figs. 10 (a) and 11 (a), it is seen that when

arangoni flow is negligible, the immobilization due to the surface

iscosities starts after Bo ≈ 1, as the t c curves after that value devi-

tes from the one for the clean interface. Fig. 10 (b)–(d) shows that

he surface viscosities has an impact on t c if Bo / �0 ≥ 10 4 , since the

esults converge to the Bo = 0 curves at Bo = [1 , 10 , 100] respec-

ively when �0 = [10 −4 , 10 −3 , 10 −2 ] ; otherwise the Marangoni flow

vershadows their effect. Same analysis in Fig. 11 yields the corre-

ponding values as Bo = [1 , 100 , 10 0 0] for �0 = [10 −4 , 10 −3 , 10 −2 ] .

hroughout the study the critical value of Bo = 1 for �0 = 10 −4 and

e s = 20 0 0 , is the only exception to the linear relation between the

ritical Bo and �0 . However, it should be noted that our model in-

olves equations with nonlinear terms affected by multiple dimen-

ionless parameters, such as the tangential stress balance, Eq. (37) .

herefore, it cannot be claimed the relation between the critical

alue of Bo and �0 has to be strictly linear, and such exceptions

an be encountered. 

Using the conclusions of Section 4.2 and the insight obtained

rom Figs. 8–11 , the surface properties/phenomena affecting the

oalescence time can be summarized in a map where �0 (or
∗ in μd > > μc case) and Bo are the key parameters determin-

ng the behavior. Accordingly, four different regions together with

he complete immobilization zones are identified and shown in
ig. 12 for all three viscosity ratio cases discussed in this work.

he complete immobilization observed here occurs either due to

igh dispersed phase viscosity or high surface viscosities. The

ormer is only possible in the high viscosity droplet case when
∗ ≥ 100 regardless of the value of the other parameters, whereas

he latter applies to all cases and indicates immobilization when

o λ∗ ≥ 10 0 0. In the first and the second regions, the coalescence

ime is not affected by the Marangoni flow, since there are ei-

her no surface tension gradients present in the system, or they

re not large enough. This is due to the uniform concentration dis-

ribution in μd > > μc case, and due to low amount of surfactants

 �0 ≤ 10 −5 ) in μd ≈μc and μd < < μc cases. The surface viscosi-

ies, on the other hand, are negligible in the first region, but have

oticeable impact on t c in the second region. The boundary be-

ween the first and the second regions seems to be independent

f the value of Pe s in all cases, and also independent of λ∗ for

igh viscosity droplets. In regions three and four, the Marangoni

ow becomes significant, whereas the effect of the surface viscosi-

ies are only noticeable in the fourth region and negligible in the

hird. These regions do not exist in the μd > > μc case, since the

arangoni flow is always negligible due to the uniform � distri-

ution. The solid lines in Fig. 12 (b) and (c) separate regions three

nd four, and labeled with the corresponding Pe s values. 

By using the numerical values provided in Appendix A , the

haracteristic scale for the surface viscosities, εμd R p , can be es-
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Fig. 11. Coalescence time for μd < < μc and Pe s = 20 0 0 as a function of V app and Bo with (a) �0 = 10 −5 , (b) �0 = 10 −4 , (c) �0 = 10 −3 and (d) �0 = 10 −2 . All results are 

obtained, A ∗ = 10 −3 and r ∞ = 30 . 
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timated as 5 × 10 −6 sp and 10 −7 sp for 1 mm droplets in water

( μd ≈μc ), and for 1 mm air bubbles in water ( μd < < μc ), respec-

tively. Here the unit sp stands for surface Poise and equivalent to

g / s . These scales can be used to convert Bo into dimensional values

of surface viscosities through the definition, Bo = 

κI0 + μI0 
εμd R p 

, where

κ I 0 and μI 0 correspond to the initial values of the surface viscosi-

ties, i.e., to their values at �0 . Then, by converting the dimension-

less values separating the first two regions in Fig. 12 (b) and (c),

it is seen that for �0 ≤ 10 −5 , the surface viscosities affect t c only

if κI0 + μI0 is larger than 5 × 10 −7 sp and 10 −7 sp, respectively for

μd ≈μc and μd < < μc cases. On the other hand, by converting the

lines separating regions three and four, a relation based on the ra-

tio of the surface viscosities to the surface excess concentration can

be obtained via Bo/ �0 = 

( κI0 + μI0 ) /εμd R p 
�0 

. Notice that, although κ I 0 

and μI 0 are dimensional variables, �0 is still scaled by �m 

. Then,

for μd ≈μc , the effect of the surface viscosities is significant when
( κI0 + μI0 ) 

�0 
≥ 5 × 10 −4 sp and 

( κI0 + μI0 ) 
�0 

≥ 5 × 10 −3 sp for Pe s = 2 . 5 and

Pe s = 25 , respectively. Similarly, the limits for μd < < μc corre-

sponds to ( κI0 + μI0 ) 
�0 

≥ 10 −3 sp and 

( κI0 + μI0 ) 
�0 

≥ 10 −2 sp, when Pe s =
20 0 and Pe s = 20 0 0 . The converted limits can be extrapolated by

setting �0 = 1 , only to make a very rough comparison to the ex-

perimental values in the literature, to have an idea on whether

the values where the surface viscosities are significant accord-

ing to our simulations, are reasonable or not. �0 = 1 corresponds
o the critical micelle concentration, and most likely is the point

here the highest surface viscosities are measured in experiments.

hen, by revisiting works of Djabbarah and Wasan (1982) and

ing et al. (1984) , it can be seen that the maximum values they

bserve are ≈ 2 sp and ≈ 0.3 sp , respectively. Both values seems

o be much larger than all the critical values we observed, show-

ng that the surface viscosities would be crucial in the coales-

ence of fluid particles with such interfaces. On the other hand,

ell et al. (2014) measure the surface shear viscosities of a sol-

ble surfactant monolayer as below 10 −5 sp and that of an in-

oluble one as 10 −1 sp, which indicate that the values rendering

he surface viscosities non-negligible in coalescence is only achiev-

ble for the insoluble surfactant in their work. Another compar-

son can be done between the μd ≈μc case and the conclusions

f Zapryanov et al. (1983) . For a liquid-liquid system, they deter-

ine the range where the surface viscosities are non-negligible for

he film drainage as from 10 −3 sp to 1 sp , and they claim that the

arangoni flow is always much more influential than the surface

iscosities. These values correspond to Bo = 200 and Bo = 2 × 10 5 ,

espectively, when εμd R p ≈ 5 × 10 −6 sp is taken. The complete im-

obilization criterion of Bo ≈ 10 5 for μd ≈μc seem to agree well

ith their upper limit of Bo = 2 × 10 5 , whereas their lower limit

s orders of magnitude larger than most of the values separating

egions 1 and 2, and regions 3 and 4 in Fig. 12 (b). The main rea-

on behind this discrepancy might be their approach in modeling
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Fig. 12. Regions showing the effect of the surface properties/phenomena on the coalescence time for (a) μd > > μc , (b) μd ≈μc and (c) μd < < μc . In region 1, neither 

Marangoni flow nor the surface viscosities affect the coalescence time. In region 2, the effect of the surface viscosities is dominant over the Marangoni flow and vice versa 

in region 3. In region 4, both the Marangoni flow and the surface viscosities have significant impact on the coalescence time. 

t  

s  

t  

t  

t  

l  

fl  

r  

fi  

d  

w  

t

 

d  

s  

d  

c  

F  

e  

l  

s  

n  

f  

i  

a  

s  

b  

i  

o  

a  

v

5

 

M  

c  

f  

p  

r  

(  

a  

i  

g  

w  

s  

e  

a  

B  

o  

a  

p  

p  

b

 

d  
he interface as being non-deformable. As discussed earlier both

urface phenomena promote the dimple formation, which affects

he drainage/coalescence behavior dramatically. Therefore, failing

o capture interfacial deformations results in underestimation of

he role of the surface phenomena, and predicts a higher lower

imit. In addition, the current analysis reveals that the Marangoni

ow is much more influential than the surface viscosities only in

egion 3, i.e., only when Bo / �0 is smaller than a certain value. As a

nal remark, it should be noted that the regions and critical values

escribed in this section are only order of magnitude estimates,

hich are useful to describe the change in behavior with respect

o Bo and �0 (or λ∗), rather than being strictly defined values. 

The shape of the t c curves given in Figs. 8–11 should also be

iscussed following the framework proposed by Ozan and Jakob-

en (2019) . Although, all three regimes of coalescence behavior

iscussed by them are observed in most of the coalescence time

urves presented here, in some curves, e.g. Bo = 10 4 curve in

ig. 11 (b), the third regime in which t c increases with V app does not

xist. Instead, t c follows a trend with V app that is almost parallel (in

og-log scale) to the clean interface curve. The introduction of the

urface viscosities might be responsible for the emergence of this

ew trend, as it is not encountered in any case where the inter-

ace is inviscid. For all sets of parameters investigated in Figs. 8–11 ,

t can be seen that Bo = 0 curves begin to deviate from linearity

t lower V app values as �0 increases, i.e., as Marangoni flow gets

tronger. Since this deviation is a result of dimple formation, it can

e concluded that the Marangoni flow promotes dimpling of the

nterface, regardless of the values of Pe s or λ∗. Similarly, the value
f V app at which the deviation starts, seems to decrease with Bo for

ll values of Pe s , �0 and λ∗ investigated, showing that the surface

iscosities also promote dimpling. 

. Conclusions 

This work studies the effects of the surface viscosities and the

arangoni stresses on the coalescence behavior and the coales-

ence time, t c , via a film drainage model with deformable inter-

aces obeying the Boussinesq surface fluid model. Based on the dis-

ersed to continuous phase viscosity ratio, the analyses are sepa-

ated in three cases, where high droplet to water viscosity ratio

 μd > > μc ), comparable droplet to water viscosity ratio ( μd ≈μc )

nd gas bubbles in water ( μd < < μc ) systems are considered. It

s seen that the surface Péclet number, Pe s , is small enough to

uarantee uniform surfactant distribution along the interface only

hen μd > > μc . The uniform distribution indicates that the re-

ults are independent of the value of Pe s , provided that it is small

nough. In that case, the surface tension gradients are neglected

nd only the effect of the surface viscosities is examined via the

oussinesq number, Bo . As Bo increases, the tangential velocity

f the interface decreases, consequently the drainage slows down,

nd t c increases. In all cases, when Bo λ∗ ≥ 10 0 0 the interface ap-

ears to be completely immobilized, whereas for λ∗ > 100 the dis-

ersed phase viscosity is large enough to immobilize the interface

y itself. 

When μd is comparable to or lower than μc , the surfactant

istribution becomes non-uniform creating Marangoni stresses and
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surface tension gradient driven flows along the interface. It is con-

cluded that both the Marangoni flow and the surface viscosities

have immobilizing effects on the interface, yet they might over-

shadow each others effect depending on the values of �0 , Bo and

Pe s . When, �0 ≤ 10 −5 , Marangoni flow do not change the coales-

cence time in any case, and the surface viscosities are only signifi-

cant in that limit when Bo ≥ 0.1 and Bo ≥ 1, respectively for μd ≈μc 

and μd < < μc . However, the surface tension gradients get larger

as �0 increases, and eventually for �0 ≥ 10 −4 the Marangoni flow

also starts to affect t c . Here, the ratio Bo / �0 shows whether the

surface viscosities has significant effect on t c or not. The ratio after

which the surface viscosities have noticeable impact on the system

are found as Bo / �0 ≈ 100 and Bo / �0 ≈ 10 0 0 for Pe s = 2 . 5 and Pe s =
25 for μd ≈μc , and for the bubble-water system as Bo / �0 ≈ 10 4 

and Bo / �0 ≈ 10 5 for Pe s = 200 and Pe s = 20 0 0 , respectively. Since

Pe s indicates the magnitude of the surface tension gradients and

the strength of the Marangoni flow, as it increases, the critical

values of Bo / �0 also increase. Below these limits the Marangoni

flow appears to be the only non-negligible surface phenomena.

For the liquid-liquid systems, the limit above which the surface

viscosities affect the drainage/coalescence shown to be orders of

magnitude lower than the previously suggested value of 1 sp by

Zapryanov et al. (1983) . The interfacial deformations are found to

be crucial in understanding the role of the surface phenomena. A

comparison between sample calculations based on 1 mm fluid par-

ticles and experimental results in the literature indicates that the

experimental values of the surface viscosities might fall into the re-

gions where they have significant effects on the coalescence time. 

In all cases investigated, the effects of the surface phenomena

seems to amplify with the approach velocity. At very low veloci-

ties, corresponding to the linear drainage regime, neither the sur-

face viscous nor the Marangoni flows change the coalescence time

significantly. However, they both reduce the critical velocity after

which dimple formation is observed, i.e., promote the dimple for-

mation at the interface. 
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Appendix A 

This appendix aims to explain the estimation of the dimension-

less parameters used in the simulations. The small parameter ε
is approximated as 10 −2 , the viscosity of the continuous phase is

taken as μc = 10 −3 kg/ms to represent water. For μd > > μc case,

the dispersed phase is chosen as ten times or more viscous than

water, i.e., μd ≥ 10 μc , which corresponds to λ∗ = ε
μd 
μc 

≥ 0 . 1 . The

case μd ≈μc represents the system of droplets and continuous

phase with similar viscosities, and by taking μc = μd , the input

is determined as λ∗ = 10 −2 . Finally, μd < < μc case stands for gas

bubbles in water, therefore the dispersed viscosity is taken as a

typical value to represent air, 1 . 8 × 10 −5 kg/ms, and λ∗ = 10 −4 is

set since it is the order of magnitude of μd / μc . In the cases where

droplets are considered the surface tension is taken as σ0 = 50 ×
10 −3 kg/s 2 , whereas for bubbles it is σ0 = 72 . 8 × 10 −3 kg/s 2 . All cal-

culations are done for 1 mm fluid particles, and both the contin-

uous phase and the surface diffusion coefficients, D c and D I , are

either 10 −8 m 

2 /s or 10 −9 m 

2 /s. Then, the maximum value of ε2 Pe

appearing in Eq. (31) is 

ε2 P e = ε6 R p σ0 

D c λ∗μc 
≈ 3 × 10 

−5 1 

λ∗ (47)

showing that even for the smallest λ∗ value used in this work, the

term in Eq. (31) can be neglected. The surface Péclet numbers for
roplets become 

 e s = ε4 R p σ0 

D I λ∗μc 
= 2 . 5 × 10 

−10 1 

D I λ∗ (48)

hich gives Pe s = 2 . 5 and Pe s = 25 respectively for D I = 10 −8 m 

2 /s

nd D I = 10 −9 m 

2 /s for μd ≈μc ( λ∗ = 10 −2 ) case. Similarly for bub-

les 

 e s = ε3 R p σ0 

D I μd 

= 2 . 0 × 10 

−6 1 

D I 

(49)

stimating Pe s = 200 and Pe s = 20 0 0 . Finally, a typical value signi-

ying the dependence of the dimensionless surface tension to di-

ensionless surface excess concentration, 
 ˜ σ

 ˜ �

is chosen as −0 . 5 ,

ielding ˜ σ ′ 
˜ �

= ε2 
 ˜ σ

 ˜ �

= −50 0 0 to be used in simulations. 
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