
June 2009
Danilo Gligoroski, ITEM
Jostein Jensen, SINTEF
Peeter Laud, Tartu University

Master in Security and Mobile Computing
Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Telematics

Security in SOA-Based Healthcare
Systems

Richard Sassoon

Problem Description
National ICT is an institution coordinating ICT initiatives in the Norwegian specialised health
services, and to achieve a common platform for those health services they suggest using service
oriented architectures (SOA). Personal privacy in eHealth applications is protected by law, thus
security is a crucial quality attribute for healthcare platforms. However, as pointed out by Epstein
et al., implementing security in SOA is not trivial.

A European research project called MPOWER has already developed a home care service
platform, including security functionality, based on SOA. In this thesis, the student will use the
MPOWER platform as test case to act in the role as hacker, and perform a penetration test on the
system. Solutions to increase the security of the platform should be suggested and possibly
implemented to improve user privacy. A discussion related to information security aspects of SOA
Web Services as building blocks for healthcare platforms is expected, where results from the
penetration test and vulnerability elimination can be used to exemplify theories and claims.

Assignment given: 15. January 2009
Supervisor: Danilo Gligoroski, ITEM

Abstract

Healthcare organizations need to handle many kinds of information and inte-
grate different support systems, which may be accessed from external corpo-
rations. Service Oriented Architecture (SOA) provides the means to achieve
a common platform to deploy services that can be used across the organi-
zation and its boundaries, but introduces new security concerns that need
to be evaluated in order to implement a secure system, while still suffering
from standard threats. Web Services are the common way to implement SOA
applications, having several standards related to security (such as XML En-
cryption, XML Signature and WS-Security). Still, other security mechanisms
such as input validation and SSL/TLS need to be thought of as well.

A penetration test based on recognized methodologies and guidelines, such as
the NIST Technical Guide to Information Security Testing and Assessment,
OWASP Testing Guide and SIFT Web Services Security Testing Framework,
was performed on a case study system. A proof of concept application mak-
ing use of a set of middleware (web) services, the MPOWER platform, was
audited in order to expose vulnerabilities.

After conducting the penetration test on the system, 10 out of 15 scenarios
presented security issues. The vulnerabilities found were described, demon-
strating several risks from misusing, or not implementing at all, security
mechanisms. As a consequence, countermeasures and recommendations were
proposed in an attempt to improve the overall security of SOA-based (health-
care) systems.

The results of the assessment show us how important is to validate the secu-
rity of a system before putting it into production environment. We also come
to the conclusion that security testing should be an inherent part of a secure
software development life cycle. Moreover, not only healthcare systems may
benefit from this study, and also not only SOA-based ones.

i

Preface

This thesis concludes my Master of Science degree at the Norwegian Univer-
sity of Science and Technology (NTNU), with a project carried out within
SINTEF.

I would like to thank my supervisor at SINTEF, Jostein Jensen, for his
valuable input throughout the development of this thesis. His knowledge,
comments and support were really important during the whole process. I
also would like to thank my co-supervisor at the University of Tartu, Peeter
Laud, for his feedback during the project. In addition, I wish to thank
professor Danilo for the opportunity to work with this thesis.

I wish to give my special thanks to Mona Nordaune for her assistance during
the NordSecMob program. Always helpful and thoughtful person.

I also would like to thank my fellow students with whom I shared great
experiences and had interesting talks and support during these two years of
master’s.

I am very grateful to my parents Jairo and Jacqueline who motivated me
along all my studies, and to my girlfriend Pia who helped and supported me
since the beginning.

Trondheim, June 2009

Richard Sassoon

ii

Contents

List of Figures v

List of Tables vi

Abbreviations vii

1 Introduction 1
1.1 SOA, Healthcare and Security 1
1.2 Research Goals . 2
1.3 Limitations . 2
1.4 Chapters’ Outline . 3

2 Background Information 5
2.1 Important Definitions . 5

2.1.1 Encryption . 5
2.1.2 Hash Functions . 6
2.1.3 Digital Signatures . 6
2.1.4 Public Key Infrastructure - PKI 7

2.2 SOA and Web Services . 7
2.2.1 SOA . 8

2.2.1.1 Security Challenges 9
2.2.2 Web Services . 13

2.2.2.1 Basic Standards 14
2.2.2.2 Security Related Standards 18

2.3 MPOWER Platform . 27
2.3.1 About the Project . 27

2.3.1.1 Architecture 29
2.3.2 Security Requirements 30

2.3.2.1 Security Design 32

3 Methodologies and Guidelines for Security Assessment 34

iii

CONTENTS

3.1 Benefits of Using a Methodology 35
3.2 Open Source Security Testing Methodology Manual - OSSTMM 36
3.3 Technical Guide to Information Security Testing and Assess-

ment - NIST-SP800-115 . 40
3.4 OWASP Testing Guide . 43
3.5 SIFT Web Services Security Testing Framework 45
3.6 Chosen Method . 46

4 Preparations 49
4.1 Testing Environment . 49
4.2 Tools . 50
4.3 Test Cases . 51

5 Assessment Evaluation 66
5.1 Problems . 66
5.2 Roles and Interfaces . 67
5.3 Results and Countermeasures 69

6 Recommendations 85
6.1 Summary of Risks and Security Review 85
6.2 Configuration Aspects . 87
6.3 Distribution Model . 88
6.4 Final Comments . 89

7 Discussion 90

8 Conclusions and Further Work 93
8.1 Conclusions . 93
8.2 Further Work . 94

Bibliography 95

Appendices 105

A Fuzzing 105
A.1 Attack Vectors’ File . 105
A.2 SOAP Template . 106
A.3 Script for Generating SOAP Requests 106
A.4 Script for Sending SOAP Requests 107

iv

List of Figures

2.1 Digital signature process . 7
2.2 Consumer-Producer interaction 9
2.3 Traditional client/server approach to security 10
2.4 A possible SOA setting, with services being called from differ-

ent applications/organizations boundaries 10
2.5 The mechanics of the SSO concept 22
2.6 The MPOWER framework . 29
2.7 MPOWER reference architecture 30
2.8 MPOWER security components 32

4.1 Expected testing environment 50

5.1 Doctor’s homepage interface (before a patient is selected) . . . 67
5.2 Doctor’s interface after a patient is selected 67
5.3 Patient’s interface . 68
5.4 Doctor’s interface - send message 68
5.5 The soapUI tool . 69
5.6 Doctor as a victim of XSS . 77
5.7 Session does not expire . 83

6.1 MPOWER distribution model 88

v

List of Tables

2.1 Security requirements and the associated standards 18
2.2 Security requirements and the associated laws and regulations 31
2.3 MPOWER security components 33

3.1 A summary of methodologies, indicating how they are related
to our chosen method . 48

5.1 Use of salted hash on passwords 80

6.1 Summary of risks . 85

vi

Abbreviations

ACL Access Control List

CEN/TC 251 European Committee for Standardization of Health
Informatics

DOM Document Object Model

DoS Denial-of-Service

DTD Document Type Definition

ebXML e-business XM

FTP File Transfer Protocol

HL7 Health Level Seven

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IDE Integrated Development Environment

IDS Intrusion detection system

IETF Internet Engineering Task Force

MPOWER Middleware Platform for eMPOWERing cognitive disabled and
elderly

NIST National Institute of Standards and Technology

OASIS Organization for the Advancement of Structured Information
Standards

OMG Object Management Group

OSSTMM Open Source Security Testing Methodology Manual

vii

ABBREVIATIONS

OWASP Open Web Application Security Project

PGP Pretty Good Privacy

PKI Public Key Infrastructure

POCA Proof of Concept Application

RBAC Role-Based Access Control

REST Representational state transfer

SAML Security Assertion Markup Language

SDLC Software Development Life Cycle

SMTP Simple Mail Transfer Protocol

SOA Service Oriented Architecture

SQL Structured Query Language

SSL Secure Sockets Layer

SSO Single Sign-On

STS Security Token Service

TLS Transport Layer Security

UDDI Universal Description, Discovery, and Integration

W3C World Wide Web Consortium

WS-I Web Services Interoperability Organization

WSDL Web Services Description Language

WSS Web Services Security

XAMCL eXtensible Access Control Markup Language

XDoS XML Denial-of-Service

XKMS XML Key Management Specification

XML Extensible Markup Language

viii

Chapter 1

Introduction

The purpose of this chapter is to give some insight on SOA and the problem
to be solved, what gives us the motivation for this thesis. The goals and
scope are presented as well as an outline of the chapters.

1.1 SOA, Healthcare and Security

Information systems are part of every organization nowadays. They are
needed for the most varied purposes such as Intranet, accounting, business
intelligence, etc.

Since Service Oriented Architecture (SOA) was introduced to the business
scenario, it has been adopted by more than fifty percent of companies world-
wide for their IT systems and architecture, particularly in Europe and North
America, according to independent reports by Computer Economics [1] and
Gartner [2]. SOA provides the means for integrating people, processes and
information in an organization, by integrating the company’s different appli-
cations. This is accomplished by using a set of technologically independent
linked services that can be accessed over a network [3]. One of the main focus
is the reuse of these services, in order to avoid redundancy and thus reduce
development time and costs, while maintaining consistency in the company’s
processes.

This also holds for healthcare organizations that have to deal with many
different kinds of information and support systems and need some way to
integrate them. Often these systems need to be contacted from outside the
organization and interoperability issues arise. By using a service oriented ap-
proach, it is possible to standardize data management and use different sys-
tem capabilities, as services, across the organization’s units and beyond [4].

1

Chapter 1. Introduction

The National ICT is a Norwegian institution coordinating ICT initiatives in
specialized health services, and they recommend SOA as a mean to achieve
a common platform for those services [5].

The use of SOA introduces some security concerns, as pointed out by Epstein
et al. [6] and the New Rowley Group [7], that are of special interest for the
healthcare sphere, one of the main ones being data handling of patients, since
services can be accessed inside and outside of the organization. One would
expect that this data should only be accessed by personnel with the right
authorization and should not be tampered with. Besides that, each country
has its own laws and regulations that influence the security requirements for
processing personal data, mainly concerned with availability, confidentiality
and integrity of the data. The European Union Directive 95/46/EC [8] regu-
lates these issues with private data for the member states of EU, giving some
freedom for them to define more precisely how to transpose this directive
into their internal law.

We see that information security has already an important role in healthcare
systems [9] in order for them to be trusted to deal with sensitive data, and the
above mentioned factors make us think how SOA can be beneficial to current
and future healthcare systems, as long as the security aspects are verified
thoroughly to make sure these systems are compliant with the regulations.

1.2 Research Goals

The purpose of this thesis is to identify security risks that affect SOA-based
healthcare systems, more specifically Web Services based ones, and propose
solutions to mitigate these risks. As a case study, a proof of concept ap-
plication (POCA) making use of a set of middleware (web) services, the
MPOWER platform [10], will be assessed in order to identify vulnerabilities.

Through the use of different security testing techniques, the system will be
audited, to verify the compliance to the security requirements, and the vul-
nerabilities exposed. In the end, a detailed report reflecting the actual find-
ings will be generated and used as guidelines and future improvement of such
systems. The results will be relevant for supporting the secure development
of applications based on such a system architecture in the health domain,
where data privacy is a big concern.

1.3 Limitations

The scope of the tests has to be narrowed down, since there is a great number
of attack vectors. We need to select the most relevant ones to be able to
perform the assessment within the given time frame. There will be no tests

2

Chapter 1. Introduction

concerning operating system’s specific flaws, wireless transmissions, physical
security1 or social engineering2. The focus will be on the MPOWER services,
along with the application making use of them, and the security they provide.

To be able to implement SOA, there is a need for an infrastructure that
allows the use of the services. This is the enterprise service bus (ESB) [12].
We are not concerned with peculiarities of the ESB.

SOA can be realized through different technologies. Web Services is the most
adopted one, and as such it will be the focus when dealing with SOA security
in this thesis.

Due to time constraints, the proposed solutions to the issues found will not
be implemented, and their effectiveness will not be verified in practice.

1.4 Chapters’ Outline

This thesis is organized in eight chapters. The following list contains a short
description of each one:

• Chapter 1 - Introduction

The first chapter presents the motivation for this study, along with the
desired goals and the self imposed limitations to conduct our work.

• Chapter 2 - Background

In this chapter, we present the relevant background information to
support our study. Important definitions are given, including SOA and
Web Services. Common security challenges are seen in a SOA perspec-
tive, together with some possible ways to deal with them. Some web
services standards are described, the most important for us being the
security related ones. Finally, we have an overview of the MPOWER
platform, which will serve as a case study to reach our goals.

• Chapter 3 - Methodologies and Guidelines for Security As-
sessment

Here we review some methodologies and testing frameworks for per-
forming security tests, and discuss what are the benefits for using a
standardized approach. At the end, we present the method that will
be used to conduct the tests.

1Controlled physical access to systems.
2Social engineering is an attempt to trick someone into revealing information such as

credit card numbers or passwords [11].

3

Chapter 1. Introduction

• Chapter 4 - Preparations This chapter presents how the testing
environment is set up and also the tools that will be used to perform
the required analysis. A list of test cases is introduced, each dealing
with different threats and security aspects.

• Chapter 5 - Assessment Evaluation

Here we describe the problems faced to carry out the assessment, rel-
evant information to understand some test cases, and the results ob-
tained, together with countermeasures.

• Chapter 6 - Recommendations

This chapter proposes recommendations, based on the test results, to
improve the overall level of security of the MPOWER platform, which
may be useful for other SOA-based (healthcare) systems as well.

• Chapter 7 - Discussion

This chapter has the objective to reflect about some aspects of the work
conducted in this thesis.

• Chapter 8 - Conclusions and Further Work

In this chapter we summarize the achievements of our work and discuss
further possibilities related to this project.

4

Chapter 2

Background Information

This chapter has the objective to present background information on some
important definitions, SOA, Web Services and the security challenges in-
troduced by using a SOA-based implementation. Secondly, the MPOWER
platform is described along with its security aspects.

2.1 Important Definitions

To better understand this thesis it is relevant to introduce some concepts
that will be mentioned in later sections. These definitions are not compre-
hensive and, if needed, the reader should look for the appropriate mentioned
references.

2.1.1 Encryption

Encryption, in cryptography1, is a mechanism/process that uses specific al-
gorithms to transform some plaintext into a ciphertext2, through the use of a
key, to achieve confidentiality [14]. The reverse process is called decryption.
There are two types:

• Symmetric: Encryption and decryption are performed using the same
key. One difficult problem with this approach is the key distribution,
since both parties, involved in some communication, need to know the
key.

1Cryptography, as defined by the Internet Security Glossary [13], is ”the mathematical
science that deals with transforming data to render its meaning unintelligible ..., prevent
its undetected alteration, or prevent its unauthorized use”.

2Usually, the plaintext input is cleartext, but in some cases it can be ciphertext resulting
from another encryption, which is known as super encryption[13].

5

Chapter 2. Background Information

• Public key: Also known as asymmetric, this scheme uses a public key
for encryption and a private key for decryption. This key-pair is related
in a way that is easy to perform encryption and decryption operations
but computationally infeasible to derive the private key from the public
key and the encryption algorithm. It is also infeasible to recover the
plaintext from the public key and the ciphertext.

With public key it is possible to perform a session key exchange in
a secure way so symmetric encryption can be used, since public key
encryption is computationally expensive [15]. It is also possible to
perform one’s authentication, by means of digital signatures.

Key distribution is also of importance in this case. Public keys are
supposed to be public, so there should be a way to announce them.
The most interesting for us is the use of certificates, that are issued
by a trusted third party (certificate authority), after receiving a user’s
public key. The certificate contains the public key, is signed by the
authority and can be used to verify the user’s identity. X.5093 is a
widely accepted standard for formatting these certificates.

2.1.2 Hash Functions

A hash function H produces a fingerprint of a message M. It receives a block
of data and outputs a fixed-length digest h through a one-way mathematical
function [16]. H(M) should be easy to compute but, given h, it is compu-
tationally infeasible to find M such that H(M) = h [14]. A hash function is
a useful mechanism for verifying the integrity of the message, because any
change in it would produce a completely different hash value, what is known
as the avalanche effect.

2.1.3 Digital Signatures

Resulting from the public key encryption scheme, digital signature is a mech-
anism that provides sender’s authentication and message integrity [14]. To
create a signature, the hash of the message is generated and encrypted with
the sender’s private key. To verify the signature, the recipient generate the
hash of the message, decrypt the attached signature with the sender’s public
key and compare the hash values. This process guarantees the identity of the
sender as well as the integrity of the message. Figure 2.1 shows the necessary
steps.

3http://tools.ietf.org/html/rfc4158

6

Chapter 2. Background Information

Figure 2.1: Digital signature process. Figure extracted from NIST SP
800-21 [17].

2.1.4 Public Key Infrastructure - PKI

The Internet Security Glossary [13] defines Public Key Infrastructure (PKI)
as ”the set of hardware, software, people, policies, and procedures needed
to create, manage, store, distribute, and revoke digital certificates based on
asymmetric cryptography”. A Certificate Authority (CA) is responsible for
authenticating an entity, such as a person, organization, account, or site, and
generating a certificate binding its identification information to its public key
[18]. This method makes it possible to acquire public keys efficiently and
securely. The Public Key Infrastructure X.509 (PKIX) is the model based
on X.509 certificates and is the one of interest here.

2.2 SOA and Web Services

There is still people who think that SOA and Web Services are synonymous
and that the first needs the second to be implemented, but that is just a
misconception. To make it clear we say that SOA is a design principle,
or paradigm, and Web Services is an implementation technology [12, 19].
This confusion happens because Web Services are considered as the de-facto
standard for realizing SOA, but there are other possibilities4.

The next sections will present some basic definitions of both concepts in or-
der to understand the security threats that are related to each one. Detailed

4See, for example, http://searchsoa.techtarget.com/news/article/0,289142,
sid26_gci1261398,00.html.

7

Chapter 2. Background Information

information can be found in the relevant bibliography at the References sec-
tion.

2.2.1 SOA

There are many definitions of what SOA means, and IBM states [19]:

”SOA is an approach to build distributed systems that deliver application
functionality as services to end-user applications or to build other services”

It is possible to see it through an ecosystem perspective [20] or as a business
community [12]. In the end it comes to the main concept of producing
reusable components, each of them encapsulating some kind of logic. The
size and scope of this logic vary according to the context being considered.
The service can provide some authentication mechanism or a complete sales
environment, for example. The latter service could use the functionality of
the former.

Important definitions to help understand the relationship between services
are the following [21]:

• Service Consumer (Requestor): ”An entity which seeks to satisfy a
particular need through the use [of] capabilities offered by means of a
service”.

• Service Producer (Provider): ”An entity (person or organization) that
offers the use of capabilities by means of a service”.

Business processes are comprised of several steps that are executed according
to predefined sequences and rules. A service can be responsible for an indi-
vidual step or a set of steps. As said before, services can be used by other
services, what it is seen as a service composition or service chaining [22], and
in order to have such an interaction they have to know about each other.
This is made possible due to the use of service descriptions.

The service description represents the information needed in order to use, or
consider using, a service [21]. The purpose of the description is to facilitate
interaction and visibility. While this makes available information on service
reachability, functionality, interface and policies, it does not include technical
details of the implementation, what gives us the concept of loose coupling
between services. This allows software on each side of the communication
to change with no impact on the other, thus reducing dependencies between
different systems [12].

8

Chapter 2. Background Information

The service provider publishes the description of its service in some Service
Registry. This registry is looked up by a service requestor in order to obtain
the necessary information to interact with a service.

Comparing to the traditional client/server model we can say that a service
provider behaves as a server and a service requestor as a client. Figure 2.2
shows the relation between provider, requestor and registry:

Figure 2.2: Consumer-Producer interaction. Figure adapted from Graham
et al. [23]

2.2.1.1 Security Challenges

In sections 1.1 and 2.2.1 we saw the motivation and the basic principles
of a SOA-based system, what makes it easier to understand this section.
The way SOA is structured introduces new challenges regarding security
that have to be addressed by non standard means [24]. The main idea is
that services are meant to be discovered by other services, including from
different applications and even organizations, and to inter-operate regardless
of technology, blurring the concept of boundaries.

In traditional approaches, there is not much doubt about the security model
to adopt. Figure 2.3 shows how a server application provides its functionali-
ties to clients, via secure channels, and how it relies on one security module
responsible for all security decisions, such as authentication, authorization
and firewall policies.

9

Chapter 2. Background Information

Figure 2.3: Traditional client/server approach to security. Figure extracted
from Kanneganti et al. [24]

Applications in a SOA context can be exemplified by the figure 2.4, where we
see ”client application 4” requesting service ”p2”, that in turn uses the service
”2b”. Theses services are made available by different organizations and thus
there is a need to impose limits on what the corresponding applications can
see and manipulate, since there could be sensitive information meant to be
read only by the last service/application in the chain.

Figure 2.4: A possible SOA setting, with services being called from different
applications/organizations boundaries. Figure extracted from Kanneganti

et al. [24]

The key security requirements are the same as for traditional applications,
but they are tackled in different ways [24]. The following list presents these
requirements and some alternatives to deal with them in SOA:

10

Chapter 2. Background Information

• Authentication: Is the act of confirming one’s legitimate identity to a
system. In a SOA context, services can be invoked in many ways, affect-
ing the usual authentication procedure. When called directly by a client
application, the user can be authenticated via a standard username/-
password approach against the application’s user database/directory.
If the call comes from another service within the same organization,
the requested service can trust the previous authentication or perform
a re-authentication. In the last case, where the service requested is
invoked by another organization’s application, relying on this other
application’s authentication could be a solution.

The issue here is that the SOA model, where a user requests services
across different trust domains (organizations), needs a common au-
thentication process, in order to attain a seamless interaction with the
system. An identity that is verified in a trust domain and wants to
prove itself and its rights in another trust domain, is called portable
[25]. In section 2.2.2.2 we will see how SAML addresses these portable
identities.

Some standard approaches include the use of Kerberos 5, a network
authentication protocol, and a PKI to provide authentication across
services [24].

• Authorization: Determines if an authenticated user has the rights
to access a requested functionality. One of the most common access
control models is the Role Based Access Control (RBAC) [24], where
roles are granted permission to perform actions on resources. Users
can be assigned roles in order to interact with an application. Access
control rules are usually defined for each service, what implies that a
composite application should be able to verify the rules for each of its
services in order to perform some action.

A central service that manages users and their associated roles is called
an identity provider/manager [12] and is a way to provide authorization
across the services of a composite application, via a security token that
contains an unified user credential [26], also referred as single sign-on
(SSO) method. The use of a security token, together with a user-
name/password or PKI certificates [22], for example, can also address
the authentication requirement outlined above, via SAML. Important
to note that the integrity of this token should be verified before autho-
rization decisions are performed.

5http://web.mit.edu/Kerberos/

11

Chapter 2. Background Information

• Confidentiality: Information should be only visible to parties with
the authorization to do so. When data is exchanged over a network, it
is necessary to provide a mechanism to protect this data from eaves-
droppers. The usual way to provide data confidentiality is by using
encryption. The traditional approach is to establish secure commu-
nication channels by means of Secure Sockets Layer (SSL)/Transport
Layer Security (TLS) [27]. While this ensures data confidentiality be-
tween two points (point-to-point encryption), it does not prevent an
intermediary service, from some other organization for example, from
reading/manipulating data that is meant to be used by another ser-
vice. One solution to this problem is using message-layer security as
an end-to-end encryption solution6 [12], where only the contents of the
message are encrypted, so the information regarding routing can be
processed separately. For this to be possible, all endpoints need to be
able to communicate with each other securely, and to achieve this a
PKI can be employed [22].

• Data integrity and non-repudiation: A receiver has to be sure that
the message received is the same as the one sent by the sender, and not
something else, that could have been modified during the transmission.
Applications are responsible for verifying the integrity of data received
over a network. On top of that, a sender cannot repudiate/deny that
it sent a message, as this could be the cause of disputes if, for example,
this sender commits to perform some contractual job and later says
that there was never such an agreement, i.e., a unilateral modification
should not be possible. Similarly, the receiver should be able to verify
that the message was indeed sent by the claimed sender.

Here SSL/TLS also plays an important part, by verifying data integrity
and ensuring non-repudiation, but suffer from the same problem of not
being end-to-end. In this case, the use of digital signatures is a way to
solve this issue, as long as all endpoints have the right certificates to
verify the signatures of received messages, once again using PKI [24].

• Protection against attacks: Applications available over the Internet
need to be protected against attacks that target common vulnerabilities
such as insecure code (not performing input validation), poor admin-
istrative practices (weak passwords), and operating systems and net-
working infrastructure (TCP/IP implementation, for example), which
have their own specific flaws. The usual defense strategy makes use of
firewalls to protect web servers and isolate internal applications from

6Digital signatures are also part of message-layer security.

12

Chapter 2. Background Information

outsiders, run applications within sandboxes 7 in order to limit risk/-
damage of compromise, perform audition of the system and use intru-
sion detection systems (IDS) to look out for strange activities [24].

With SOA, services and code get exposed to external parties, making
room for attack opportunities. Standard network perimeter firewalls
do not protect the interfaces of the available services of an application,
since they can be reached via ports usually left open for web traffic.
With web services, for example, communication between services is
done via SOAP messages sent over protocols such as HTTP/HTTPS8,
SMTP, FTP, in order for them to flow without restrictions through
network firewalls [29], which do not detect threats inside the applica-
tion layer SOAP messages [6]. Application layer firewalls (e.g., XML
firewalls) could be used to address this problem [30].

Information available through a service’s description can be used by
attackers to gather interesting information about an application, and
formulate attacks, as explained by Yunus et al. [30] with regard to web
services and WSDL. In another study [31], WSDL is also described
as a good way to learn about functions, and parameters, in order for
an attacker to break the application. In this case, access control poli-
cies to prevent unauthorized access to business logic, and strict input
validation to prevent malicious inputs are of great importance.

Security in SOA should keep the services as open and simple to use as pos-
sible [24], and preferably be implemented as a service, as argued by Josuttis
[12] and Kanneganti et al. [24], in order to deal with the different security
contexts among other services. Security should not be a barrier to the inter-
operability aspect of SOA services. In an environment where services can be
used by an organization and its partners, without boundaries, the complexity
of designing and implementing a secure system rise considerably and need to
be well thought and taken care of.

The next section present the specifics about Web Services, including the
security standards that help addressing the issues mentioned above.

2.2.2 Web Services

Web Services are the most used approach to implement SOA applications.
They can be seen as a set of standards that cover interoperability between
systems communicating via a network [12] or as ”a software system designed

7A sandbox provides a tightly-controlled set of resources for programs to run.
8HTTPS designates HTTP over SSL/TLS [28].

13

Chapter 2. Background Information

to support interoperable machine-to-machine interaction over a network”, as
defined by the World Wide Web Consortium (W3C) 9 [32].

2.2.2.1 Basic Standards

There are many standards related to Web Services, specified by different
standards bodies, such as the W3C, Organization for the Advancement of
Structured Information Standards (OASIS) 10, and the Web Services Inter-
operability Organization (WS-I) 11 [33], but to be able to understand how
they are realized the fundamental ones are just five [12]:

• XML: The Extensible Markup Language (XML) lets you structure
information in a hierarchical way, via the use of tags, incorporating
semantic meaning to it [23]. XML can be used to describe models,
formats and data types, which in turn makes it easier to exchange data
between different applications [24]. One can define his own markup
language to structure data based on specific needs, for example:
<r e c : r e c i p e s xmlns : rec=” ht tp : // i n t e rna t i ona l−r e c i p e s . com/myRecipe”>

<r e c : r e c i p e id=”1”>
<rec:name>Br igade i ro</name>
<r e c : d e s c r i p t i o n>This i s a b r a z i l i a n candy</ d e s c r i p t i o n>
<r e c : i n g r e d i e n t id=”1” qt=”1 can”>Condensed milk</ i ng r ed i en t>
<r e c : i n g r e d i e n t id=”2” qt=”5 spoons ”>Powder choco la t e</ i ng r ed i en t>
<rec:HowToPrepare>Do th i s and that</HowToPrepare>

</ r e c : r e c i p e>
<r e c : r e c i p e id=”2”>

. . .
</ r e c : r e c i p e id=”2”>
. . .

</ r e c : r e c i p e s>

Listing 2.1: Example of an XML data structure

In the above example we see how a simple data structure can be accom-
plished, by using the top level tag element <recipes> which groups all
the individual <recipe> declarations. A recipe is then defined by its five
sub-elements. The id attribute represents the unique identifier of the
elements recipe and ingredient. The prefix rec represents the namespace
(or vocabulary), identified by ”http://international-recipes.com/”, that
is associated with an element, and it is necessary to avoid ambiguity
between elements with the same name but are defined differently, by
different organizations for example. In this way, it is possible to share,
or even merge, recipes between applications that understand a prede-
fined format, which bring us the concept of XML Schema.

XML Schema is a model document that defines the structure of XML
documents, specifying what kind of elements are allowed, as well as the

9http://www.w3.org
10http://www.oasis-open.org
11http://www.ws-i.org

14

Chapter 2. Background Information

order they are supposed to appear and with what content [34]. This is
useful for using schema validators in order to verify if the XML docu-
ment follows the expected structure and can be used by an application.

• HTTP: The Hypertext Transfer Protocol (HTTP) is an application-
level protocol for distributed, collaborative, hypermedia information
systems [35]. It has been in use in the Wold Wide Web as a request/re-
sponse standard between a client and a server since 1990. It is one
possible protocol that can be used to send SOAP messages from ser-
vice requestor to service provider, besides SMTP, FTP, among others
[23].

• WSDL: Web Services Description Language (WSDL) defines what in-
formation a service provider requires to perform its service, by describ-
ing its signature (name and parameters) and its binding and deploy-
ment details (protocol and location) [12]. At the moment of this writing
there are versions 1.1 and 2.0 of WSDL.

A Web Service is described in two stages [36]:

– Abstract description: Establishes the interface characteristics of
the Web Service without any reference to the technology used
to host or enable a Web Service to transmit messages. In that
way the description continues valid even if there are changes to
the underlying technology. This interface (called ”portType” in
WSDL 1.1) consists of operations with input and output param-
eters. These parameters are defined in <message> sections (or
<types> section) [12].

– Concrete description: Defines the communication aspects of the
Web Service. A binding specifies the protocol and data formats
for the service operations. An endpoint (or ”port”) defines the
physical location where the service is available. Finally, a service
groups together related endpoints.

It is easier to understand these concepts with an example (in WSDL
1.1):

<d e f i n i t i o n s name=”RecipeExchange”
xmlns:xsd=” ht tp : //www.w3 . org /2001/XMLSchema”
xmlns:soap=” ht tp : // schemas . xmlsoap . org /wsdl / soap/”
xmlns : rec=” ht tp : // i n t e rna t i ona l−r e c i p e s . com/myRecipe”
xmlns=” ht tp : // schemas . xmlsoap . org /wsdl /”>

<types>
<xsd:schema . . .>

. . .
</xsd:schema>

</ types>

<message name=”getRecipeRequest ”>

15

Chapter 2. Background Information

<part name=” r e c i p e I d ” type=” x s d : s t r i n g ”/>
</message>

−−>
<message name=”getRecipeResponse ”>

<part name=” rec ipeResp ” type=” r e c : r e c i p e ”/>
</message>

<portType name=”RecipeExchangePortType”>
<operat ion name=” getRec ipe ”>

<input message=” getRecipeRequest ”/>
<output message=”getRecipeResponse ”/>

</ operat ion>
</portType>

<binding name=”RecipeExchangeSOAPBinding” type=”RecipeExchangePortType”>
<soap :b ind ing s t y l e = . . . />
. . .

</ binding>

<s e r v i c e name=”RecipeExchangeService ”>
<port name=”RecipeExchange” binding=”RecipeExchangeSOAPBinding”>

<soap :addre s s
l o c a t i o n=

” ht tp : // l o c a l h o s t : 8 0 8 0 / s e r v i c e s /RecipeExchange”/>
</ port>

</ s e r v i c e>
</ d e f i n i t i o n s>

Listing 2.2: Example of a WSDL document

We can see how a WSDL file is defined and its relation with listing 2.1,
where the element recipe is used as the return type for the getRecipeRe-
sponse message. The operation getRecipe triggers this output message
after being called and receiving a recipeId.

• SOAP: Before version 1.2, SOAP was an acronym for ”Simple Ob-
ject Access Protocol”, but this is no longer valid [37]. SOAP provides
a standard model for exchanging structured information between ap-
plications in a distributed environment. It uses XML to define an
extensible messaging framework providing a message format that can
be exchanged over different underlying protocols. The framework was
designed to be technology independent.

The SOAP processing model assumes that a SOAP message originates
at an initial SOAP sender and is sent to an ultimate SOAP receiver via
zero or more SOAP intermediaries [37].

A SOAP message has up to four components [26]:

– Envelope: It is the outermost part of the message and identifies
it as a SOAP message rather than any other kind.

– Header: Provides a way to add user defined extensions to SOAP.
These can be activities like authorization and authentication, that
are not normally included for a service to be carried out.

– Body: Contains the information, for a final SOAP receiver, that
is generated from a service request or response.

16

Chapter 2. Background Information

– Fault: Used to report an error and related information, it is a
direct child of the SOAP body element, and should also be the
only one [37].

Below we can observe an example of a SOAP request message and a
SOAP response message, both related to the WSDL example in listing
2.2.

<soap:Envelope xmlns:soap=” ht tp : // schemas . xmlsoap . org / soap/ envelope /”>
<soap:Header>

. . .
</ soap:Header>
<soap:Body>

<r ec :ge tRec ipeReques t xmlns : rec=” ht tp : // i n t e rna t i ona l−r e c i p e s . com/myRecipe”>
<r e c : r e c i p e I d>1</ r e c : r e c i p e I d>

</ rec :ge tRec ipeReques t>
</ soap:Body>

</ soap:Envelope>

Listing 2.3: Example of a SOAP request message

<soap:Envelope xmlns:soap=” ht tp : // schemas . xmlsoap . org / soap/ envelope /”>
<soap:Header>

. . .
</ soap:Header>
<soap:Body>

<rec :ge tRec ipeResponse xmlns : rec=” ht tp : // i n t e rna t i ona l−r e c i p e s . com/myRecipe”>
<r e c : r e c i p eRe sp>

<rec:name>Br igade i ro</name>
<r e c : d e s c r i p t i o n>This i s a b r a z i l i a n candy</ d e s c r i p t i o n>
<r e c : i n g r e d i e n t id=”1” qt=”1 can”>Condensed milk</ i ng r ed i en t>
<r e c : i n g r e d i e n t id=”2” qt=”5 spoons ”>Powder choco la t e</ i ng r ed i en t>
<rec:HowToPrepare>Do th i s and that</HowToPrepare>

</ r e c : r e c i p eRe sp>
</ rec :ge tRec ipeResponse>

</ soap:Body>
</ soap:Envelope>

Listing 2.4: Example of a SOAP response message

• UDDI: The Universal Description, Discovery, and Integration (UDDI)
is a standard for a platform-independent, XML-based services registry
[26]. It provides means for discovery of services and retrieval of their
WSDL descriptions [24]. As long as a service is supposed to be used,
it needs to be discovered somehow, but first need to be published. The
UDDI can be seen as the registry box in figure 2.2.

A standard that can be considered as an alternative to UDDI is the
ebXML [5], but it is also possible to extend other registry solutions such
as Lightweight Directory Access Protocol (LDAP) 12 or Java Naming
and Directory Interface(JNDI) 13 [12], for example.

This concludes the fundamental information about Web Services. The next
section deals with the security standards that need to be taken into account
when developing secure services.

12http://tools.ietf.org/html/rfc4511
13http://java.sun.com/products/jndi/

17

Chapter 2. Background Information

2.2.2.2 Security Related Standards

The fundamental Web Services standards don’t deal with security, they were
designed to provide connectivity [29] and, as we have seen in section 2.2.1.1,
this can affect the system’s security considerably. Considered as a gap, web
services security was brought to life through several standards, introduced by
different organizations, that do not necessarily lead to interoperability [12].
A possible solution is to use a WS-I 14 Basic Security Profile, that is ”based on
a set of non-proprietary web services specifications, along with clarifications
and amendments to those specifications which promote interoperability” [38].

Before going into details, it is relevant to have an overview of which security
aspects the main standards cover. We can see in the table 2.1 the functional
security requirements, the standards that apply to each of them, and the
organizations behind the specifications.

Authentication OASIS WS-Security, OASIS WS-Trust, OA-
SIS SAML, OASIS WS-SecureConversation, WS-
Federation15, W3C XML Key Management Spec-
ification(XKMS)

Authorization OASIS XAMCL, OASIS SAML, WS-Security
Confidentiality W3C XML Encryption, WS-Security
Integrity W3C XML (Digital) Signature, WS-Security
Non Repudiation W3C XML (Digital) Signature, WS-Security

Table 2.1: Security requirements and the associated standards

WS-Security (WSS) was initially developed by Microsoft, IBM and Verisign,
being submitted to OASIS for standardization [39]. We see that WSS is re-
lated to all the key requirements mentioned in the table 2.1, the reason is that
it explains how to extend SOAP messages to accommodate security, based
on other standards designed for XML security, such as XML Encryption and
XML Signature (derived from a joint work between IETF and W3C [25]).

Starting with the XML security standards, we have:

14The WS-I is an open industry organization that promotes best practices for web
services interoperability. They create profiles and supporting testing tools based on best
practices for selected sets of web services standards. More information at http://www.ws-
i.org/.

15Several organizations contributed to this specification. As indicated in
http://www.ibm.com/developerworks/library/specification/ws-fed/, these are: BEA Sys-
tems, BMC Software, CA, Inc., IBM, Layer 7 Technologies, Microsoft, Novell, VeriSign.

18

Chapter 2. Background Information

• XML Signature: It is a standard for signing all or part of an
XML document or even external documents [25]. As specified by the
W3C [40], ”XML Signatures provide integrity, message authentication,
and/or signer authentication services for data of any type”. Signer au-
thentication is what we call a mechanism for non-repudiation. Clearly,
we see how the basic concept of XML Signatures is identical to regular
digital signatures.

One important issue that is taken care of in this standard is the fact that
syntactically equivalent XML messages could produce different signa-
tures. The solution is the use of the XML canonicalization (c14n) speci-
fication, that transforms any well-formed XML document in a standard
equivalent representation [24].

Listing 2.5 show a simple example of a signature. Later we will see how
this signature, and other XML security standards, can be incorporated
in SOAP messages through WS-Security.

<r e c : r e c i p e s xmlns : rec=” ht tp : // i n t e rna t i ona l−r e c i p e s . com/myRecipe”>
<r e c : r e c i p e id=”1”> . . .</ r e c : r e c i p e>

<ds :S i gna tu r e xmlns:ds=” ht tp : //www.w3 . org /2000/09/ xmldsig#”>

<ds :S i gned In f o>
<ds :Canonica l i zat ionMethod Algorithm=” . . . ”/>
<ds:SignatureMethod Algorithm=” . . . ” />

<ds :Re f e r ence URI=”#1”>
<ds:DigestMethod> . . .<ds : /DigestMethod>
<ds :Diges tValue> . . .<ds : /DigestValue>

<ds : /Reference>

</ ds :S i gned In f o>

<ds :S ignatureVa lue> . . .</ ds :S ignatureVa lue>

<ds :KeyInfo> . . .</ ds :KeyInfo>

</ ds :S i gna tu r e>
</ r e c i p e s>

Listing 2.5: Example of an XML signature

To understand this example, let us explain the three sub-elements that
the Signature element has [25]:

– SignedInfo: Contains information of what is actually signed, in-
dicating it via the URI attribute of the Reference element, that
points to the id of recipe. The DigestMethod specifies the algo-
rithm used to calculate the digest (hash) of the information to be
signed. The DigestValue, as the name says, represents the digest
value. SignatureMethod defines the algorithm used to sign and
verify signatures.

– SignatureValue: Is the signature itself, resulting from the encryp-

19

Chapter 2. Background Information

tion of the digest of the SignedInfo element.

– KeyInfo: Provides the key that will be used to validate the signa-
ture or the necessary information to look up the key.

• XML Encryption: Similarly to XML Signature, XML Encryption
lets you encrypt all or part of an XML document or other arbitrary
data [41], using one or more keys. In a context where messages are ex-
changed between different parties, it is possible that parts of a message
are visible to one party while completely hidden to another [25]. As
mentioned before, SSL/TLS provides point-to-point confidentiality but
it is not sufficient to protect a message’s contents from possible eaves-
droppers (intermediary nodes), on the other hand, XML Encryption is
a useful mechanism for secure end-to-end communication, by providing
persistent encryption, which also allows for encrypted messages to be
stored [39].

Using the example presented in the listing 2.1, we can think of en-
crypting only the ingredients and the preparation method, as shown in
listing 2.6:
<r e c : r e c i p e id=”1”>

<rec:name>Br igade i ro</name>
<r e c : d e s c r i p t i o n>This i s a b r a z i l i a n candy</ d e s c r i p t i o n>

<xenc:EncryptedData id=”EncRec”
xmlns:xenc=’ h t tp : //www.w3 . org /2001/04/ xmlenc#’
Type=’ h t tp : //www.w3 . org /2001/04/ xmlenc#Content ’>
<xenc:EncryptionMethod Algorithm=’ . . . ’ />
<ds :KeyInfo xmlns:ds=’ h t tp : //www.w3 . org /2000/09/ xmldsig#’>

. . .
</ ds :KeyInfo>
<xenc:CipherData>

<xenc:CipherValue>B3F28AC0</ xenc:CipherValue>
</xenc:CipherData>

</xenc:EncryptedData>

<xenc:EncryptedKey Id=’EncKey ’ . . .>
<xenc:EncryptionMethod Algorithm=” . . . ”/>

<ds :KeyInfo . . .> . . .</ ds :KeyInfo>
<xenc:CipherData> . . .</xenc:CipherData>
<Re fe r enceL i s t>

<DataReference URI=’#EncRec ’ />
</ Re f e r enceL i s t>

</EncryptedKey>

</ r e c : r e c i p e>

Listing 2.6: Example of an XML Encryption

Explaining the main elements [25]:

– EncryptedData: This element replaces the information to be en-
crypted, in our case the ingredient and HowToPrepare elements,
which are contents of the recipe element. We can also see how
the encryption algorithm is specified, and the information regard-
ing the encryption key. The element CipherData contains the
encrypted value.

20

Chapter 2. Background Information

– EncryptedKey: Provides an encrypted encryption key used in the
EncryptedData block. The usefulness of this is to use a symmet-
ric key to encrypt (parts of) a message and transmit this key
encrypted with the recipient’s public key. The element provides
all the information necessary for the receiver to decrypt the sym-
metric key, along with a list of elements that were encrypted with
that key. This element is optional, in case the involved parties
already agreed on some key.

• XKMS: The W3C defines it as a set of ”protocols for distributing and
registering public keys, suitable for use in conjunction with the standard
for XML Signatures ... and companion standard for XML encryption”
[42]. XKMS provides the means to access a trusted PKI as a service,
allowing a simple client to use complex key management functionality
[25]. There are two services specified by XKMS:

– XML Key Information Service Specification (X-KISS): Is ”a pro-
tocol to support the delegation by an application to a service of the
processing of key information associated with an XML signature,
XML encryption, or other usage of the XML Signature” [42].

– XML Key Registration Service Specification (X-KRSS): Is ”a pro-
tocol to support the registration of a key pair by a key pair holder,
with the intent that the key pair subsequently be usable in con-
junction with the XML Key Information Service Specification or
a Public Key Infrastructure (PKI)” [42].

• SAML: Security Assertion Markup Language is, as defined in the
SAML Executive Overview [43], ”an XML-based framework for commu-
nicating user authentication, entitlement, and attribute information”.
SAML messages assert the (portable) identity and authorizations of
a subject, and can be used by different trust domains to grant ac-
cess to resources to this specific entity [25]. This process establish a
shared identity between different domains and is called identity feder-
ation. There are three types of assertions that can be provided by an
assertion issuer (SAML authority), defined by the core standard [44]
as:

– Authentication: ”The assertion subject was authenticated by a
particular means at a particular time”.

– Attribute: ”The assertion subject is associated with the supplied
attributes”.

– Authorization Decision: ”A request to allow the assertion subject

21

Chapter 2. Background Information

to access the specified resource has been granted or denied”.

SAML specifies different profiles [45] that define the use of its assertions
and request-response messages. A profile defines constraints and/or
extensions for the use of SAML in an application, with the goal of im-
proving interoperability [43]. The web browser SSO profile is the most
relevant for us, enabling a scenario where a web user either accesses a
resource at a service provider, or accesses an identity provider for au-
thentication [45]. The identity provider generates assertions that can
be verified by the service provider to establish a security context for
the user, including access to desired resources. Figure 2.5 presents the
SSO concept.

Figure 2.5: The mechanics of the SSO concept. This figure
was based on the SAML V2.0 Technical Overview [46].

There are several authentication mechanisms supported by SAML, such
as passwords, Kerberos, Public Key – X.509, Public Key – PGP and
smartcards [47]. The following listing presents an example where a user
was authenticated via a password:

<saml :As s e r t i on . . .>
<saml :Authent icat ionStatement

AuthenticationMethod=” urn:oas i s :names : tc :SAML:1 . 0 :am:password”
Authent i ca t i on Ins tant=”2009−03−17T14:02:00Z”>

<saml :Sub jec t>
<saml :NameIdent i f i e r

Format=” urn:oas i s :names : tc :SAML:1 . 0 : a s s e r t i o n#emailAddress ”>
johndoe@somewhere . com

</ saml :NameIdent i f i e r>

<saml :SubjectConf i rmat ion>
<saml:ConfirmationMethod>

22

Chapter 2. Background Information

. . .
</ saml:ConfirmationMethod>

</ saml :SubjectConf i rmat ion>
</ saml :Subjec t>

</ saml :Authent icat ionStatement>
</ saml :As s e r t i on>

Listing 2.7: Authentication assertion for a ”johndoe” using a
password. Example adapted from Rosenberg et al. [25]

• XAMCL: eXtensible Access Control Markup Language is a specifica-
tion for representing authorization and entitlement policies [25]. OA-
SIS defines it as ”an XML-based language for access control” [48]. The
standard describes two languages:

– Access control policy language: This language ”is used to express
access control policies (’who can do what when’)” [48].

– Request/Response language: This language ”expresses queries
about whether a particular access should be allowed (requests) and
describes answers to those queries (responses)” [48]. Access re-
quests are handled by a policy enforcement point (PEP). A policy
decision point (PDP) is contacted to check if the request is allowed
before granting access to services [49].

The need for a standard way to define security policies is one of the mo-
tivations for XACML. In general, a large enterprise has several points
of enforcement for its security policy and different information systems,
each one requiring their own set of rules. The usual approach is to man-
age the configuration of each point of enforcement independently, what
makes the process of modifying the security policy an expensive and
unreliable one. XACML allows the enterprise to manage the enforce-
ment of all the elements of its security policy in all the components of
its information systems [49].

XACML defines three top-level policy elements [49]:

– <Rule>: This element contain a boolean expression that can be
evaluated alone. It is a basic unit meant to be used in several
policies.

– <Policy>: This element contains a set of <Rule> elements and a
procedure to join their evaluations.

– <PolicySet>: This element contains a set of <Policy> or other
<PolicySet> elements, and a a procedure to join their evaluations.
It is the standard way to combine different policies into a unified
policy.

23

Chapter 2. Background Information

The newest versions of XACML and SAML have been designed to
complement each other; for example, an XACML policy can specify
what a service provider should do when it receives a SAML assertion,
and XACML-based attributes can be expressed in SAML [48].

Starting with WS-Security and using it as a base for extension, we have some
other standards of the WS-* branch, which can be composed to solve specific
security needs [25]. The main ones are:

• WS-Security: The goal of WS-Security is to provide mechanisms for
securing web services via a set of SOAP header extensions [50]. Three
main mechanisms are defined by the standard: ”ability to send security
tokens as part of a message, message integrity, and message confiden-
tiality”.

Message integrity is provided by XML Signature while message confi-
dentiality is achieved by using XML Encryption; both can be used in
conjunction with security tokens. A security token represents a set of
claims, where a claim is a statement about an entity (e.g. name, iden-
tity, key, etc). The specification allows a number of technologies to be
used for including security tokens, such as X.509 certificates, Kerberos
tickets, Username or SAML assertions [50]. These mechanisms enable
the desired end-to-end (message-layer) security.

The following example shows how to include a signature in a SOAP
message:

<soap:Envelope>
<soap:Header>

<wss e :S e cu r i t y>
<wsse :BinarySecur i tyToken

ValueType=”wsse:X509v3”
EncodingType=”wsse:Base64Binary ”
wsu:Id=”X509Token”>

FIgEZzCRF1EgILBAgIQEmtJZc0rqrKh5i . . .
</wsse :BinarySecur i tyToken>

<ds :S i gna tu r e>
<ds :S i gned In f o>

. . .
<ds :Re f e r ence URI=”#body”>

. . .
</ ds :Re f e r ence>

</ ds :S i gned In f o>

<ds :S ignatureVa lue> . . .</ ds :S ignatureVa lue>

<ds :KeyInfo>
<wsse :Secur i tyTokenReference>

<wsse :Re f e r ence URI=”#X509Token”/>
</ wsse :Secur i tyTokenReference>

</ ds :KeyInfo>
</ ds :S i gna tu r e>

</ ws s e : S e cu r i t y>
</ soap:Header>

<soap:Body wsu:Id=”body”>
. . .

</ soap:Body>
</ soap:Envelope>

24

Chapter 2. Background Information

Listing 2.8: Inclusion of a digital signature in a SOAP header.
Example adapted from Rosenberg et al. [25]

We see the elements with the namespace wsse representing the WS-
Security extensions. The <BinarySecurityToken> element identifies a
X.509 public key certificate that is to be used to verify a signature.
The element <SecurityTokenReference> points to the token related to
its enclosing signature, which references the <Body> element.

The listing 2.9 presents the use of encryption on a SOAP message:
<soap:Envelope>

<soap:Header>
<wss e :S e cu r i t y>

<xenc:EncryptedKey>
<xenc:EncryptionMethod Algorithm=” . . . ”/>
<ds :KeyInfo>

<wsse :Secur i tyTokenReference>
<ws s e :Key Id en t i f i e r EncodingType=”wsse:Base64Binary ”

ValueType=”wsse:X509v3”>
F2JfLa0GXSq . . .

</ ws s e :Key Id en t i f i e r>
</ wsse :Secur i tyTokenReference>

</ ds :KeyInfo>
<xenc:CipherData> . . .</xenc:CipherData>
<xenc :Re f e r enc eL i s t>

<xenc:DataReference URI=”#body”/>
</ xenc :Re f e r enc eL i s t>

</xenc:EncryptedKey>
</ ws s e : S e cu r i t y>

</ soap:Header>
<soap:Body>

<xenc:EncryptedData Id=”body”>
. . .

</xenc:EncryptedData>
</ soap:Body>

</ soap:Envelope>

Listing 2.9: Use of encryption on a SOAP body element. Example
adapted from Rosenberg et al. [25]

In this example, the public key used to encrypt the session key is inside
the <SecurityTokenReference> element.

• WS-Policy and WS-SecurityPolicy: The WS-Policy standard [51]
specifies a framework that allows web services to exchange their con-
straints and requirements, which are expressed as policy assertions [52],
in order for them to discover what is necessary to interact. Such infor-
mation can include the supported algorithms for encryption and signa-
tures, which fields should be encrypted and/or signed, and what kind
of security token is required [25]. These requirements are used for both
ways of a communication. WS-SecurityPolicy defines the security pol-
icy assertions for the WS-Policy framework. The following example
illustrates a policy defined with such assertions:
<wsp:Pol i cy

xmlns:sp=” ht tp : // docs . oa s i s−open . org /ws−sx/ws−s e c u r i t y p o l i c y /200702”

25

Chapter 2. Background Information

xmlns:wsp=” ht tp : //www.w3 . org /ns/ws−po l i c y ” >
<wsp:ExactlyOne>

<wsp:Al l>
<sp :S ignedPart s>

<sp:Body/>
</ sp :S ignedPart s>

</wsp:Al l>
<wsp:Al l>

<sp :EncryptedParts>
<sp:Body/>

</ sp:EncryptedParts>
</wsp:Al l>

</wsp:ExactlyOne>
</ wsp:Po l i cy>

Listing 2.10: A WS-Policy defined by WS-SecurityPolicy assertions.
Example extracted from the WS-Policy standard [51]

Policy operators, such as ”ExactlyOne”, group policy assertions into
policy alternatives, and therefore the policy in listing 2.10 defines that
the SOAP body will be either signed or encrypted when a web service
is invoked [51].

• WS-Trust: The goal of this specification is to enable applications to
participate in trusted SOAP message exchanges. As defined in the
standard [53], WS-Trust provides:

– ”Methods for issuing, renewing, and validating security tokens”.

– ”Ways to establish, assess the presence of, and broker trust rela-
tionships”.

A security token service (STS) is a web service responsible for issuing
security tokens, and can be seen as a trust broker [53]. In this case,
when a service requestor, from a different (possibly unknown) trust do-
main, needs a security token to access a service provider, the requestor
can ask the STS for such a token, which can be used to request a service
from the provider. The provider will, then, determine if it will accept
this request, provided that it trusts the issuing STS and can verify the
token in some way, such as requesting another token service to validate
it or performing the validation itself [53]. During token acquisition it
is possible to use a challenge-response protocol to guarantee message
freshness and verification of authorized use of the token by a requestor.

• WS-SecureConversation: Build on top of both WS-Trust and WS-
Security, WS-SecureConversation provides mechanisms for establish-
ing and sharing a security context, as well as session key derivation.
WS-Security focuses on individual message authentication, while WS-
SecureConversation is used to establish a security context between two
parties, which allows the authentication of several messages, and im-
proves the communication performance. Another advantage is the ne-

26

Chapter 2. Background Information

gotiation of session key(s), derived from a shared secret associated with
the context, for encryption/decryption and signing/verification in the
secure context. One possible way to establish a security context is the
use of a challenge-response protocol [54].

• WS-Federation: This specification was defined by several organiza-
tions and, at the time of this writing, is in process to be a OASIS
standard [55]. WS-Federation is a framework that builds on the WS-*
specifications, such as WS-Security and WS-Trust, to provide an ex-
tensible mechanism for federation, a concept already mentioned for
SAML. A federation should be able to accommodate different security
domains, making it possible to authenticate users in one domain and
use its declaration (brokering) of identity, attribute, authentication and
authorization assertions to request access to resources in other domains.
Trust relationships between domains will influence the final access con-
trol decision. Each security domain can use different security tokens,
e.g., X.509 certificates, Kerberos tickets or SAML assertions, and as
in WS-Trust it is possible to contact an STS to acquire security to-
kens from the resource’s domain or validate security tokens from the
requestor’s domain via the resource’s STS [56].

2.3 MPOWER Platform

In this section we present the subject of our test case, the MPOWER
project, including the goals, the architecture, security aspects and two
proof-of-concept applications (POCAs).

2.3.1 About the Project

The MPOWER project (Middleware Platform for eMPOWERing cognitive
disabled and elderly) aims to develop an open middleware platform to sim-
plify and speed up the task of developing and deploying services for persons
with cognitive disabilities and elderly. The platform was defined within an
iterative process including end-user requirements, design, platform develop-
ment, development of proof-of-concept applications and end-user trials [10].

One of the main motivations is the, already mentioned, fact that healthcare
services depends on different systems that need to share information. Due to
lack of interoperability, this task can be quite challenging. By applying an
agile model-driven development process, the MPOWER project developed a
service framework that provides reusable, flexible, and interoperable service
specifications and implementations [57].

Two end user scenarios have been described in order to span out the needs in

27

Chapter 2. Background Information

relation to the MPOWER architecture, middleware components and proof-
of-concept applications. They cover the focus areas [10]:

• Norwegian POCA: A collaborative environment for distributed and
shared care, providing requirements for information security, informa-
tion models, context awareness, usability and interoperability.

• Polish POCA: A SMART HOUSE environment, providing require-
ments for information security, information models and usability.

The platform should make it commercially feasible for the IT industry to de-
velop distributed integrated applications offering innovative services to cogni-
tive disabled and elderly. The focus is to make it possible to develop services
where [10]:

• Bio-sensors and SMART HOUSE technology are integrated.

• Interoperability between systems is central.

• The system has to cope with various user contexts (e.g., change of ter-
minal used for interacting with the system), where usability is central.

• Information security is enabled through security components facilitat-
ing storage security, communication security, access rights and client
security.

The project promotes standardization by aligning its work with OMG16/HL717

(Object Management Group and Health Level Seven) and CEN/TC 25118

(European Committee for Standardization of Health Informatics).

The figure 2.6 presents the MPOWER framework:

16http://www.omg.org/
17http://www.hl7.org/
18http://www.cen.eu/CENORM/Sectors/TechnicalCommitteesWorkshops/

CENTechnicalCommittees/CENTechnicalCommittees.asp?param=6232&title=CEN\
%2FTC+251

28

Chapter 2. Background Information

Figure 2.6: The MPOWER framework. Figure extracted from Mikalsen et
al. [57]

2.3.1.1 Architecture

The MPOWER platform uses SOA as a reference architecture, and imple-
ments its services as Web Services. The figure 2.7 shows the MPOWER
architecture.

The specified layers are organized into three groups [58]:

1. Application Specific Components

These components are, usually, designed for a specific purpose in an
organization. Reusability is not the primary concern in this case. The
two layers included in this group are:

• Application Layer: It provides a user interface for the use of the
underlying services.

• Business Process Layer: It includes compositions of services,
which then act together as a single application.

2. Domain Specific Components

These components are specific for the operational domain, e.g., smart-
house solutions and homecare systems. The services are designed with
focus on reusability and loose coupling. This group has only one layer:

29

Chapter 2. Background Information

Figure 2.7: MPOWER reference architecture. Figure extracted from the
MPOWER Project Deliverable D1.1 [58]

• Services Layer: Implemented, and other exposed, services reside
in this layer. They can be discovered or statically bound and then
invoked, or included in a composite service.

3. System Specific Components

These components are independent of both application and domain
and can be used by many applications in different domains. However,
they are strongly coupled with the underlying system, being a software
component or a hardware interface. This group includes two layers:

• Service Components Layer: This layer provides a high-level access
to the functionality of components and services in the resource
layer.

• Resource Layer: It consists of existing applications, such as
databases, and information from (smart) sensors, e.g., tempera-
ture sensors.

2.3.2 Security Requirements

As mentioned before, healthcare systems require strict measures to protect
sensitive personal data. The MPOWER project makes use of the Norwe-

30

Chapter 2. Background Information

gian implementation of the European Union’s Data Protection Directive
95/46/EC, together with other relevant laws and regulations, in order to
derive a set of security requirements based on a service oriented architecture
[59]. As a direct product of this work, a list of security requirements was
generated, which could help in future projects related to healthcare. The
table 2.2 presents them.

The inclusion of references to the laws and regulations related to the defi-
nitions of these requirements is vital to provide traceability to their origins,
and verify the desired compliance [59].

Requirement type Description
Identification and
authentication
requirements

Services should identify and verify the identity of all its human users
before allowing them access to their resources.
[60] §21, [61] §14, [62] §3-6, [63] §2-11, §2-12
Services should identify and verify the identity of corresponding ser-
vices before they are allowed to communicate.
[64] §5-4, [61] §14

Authorization
requirements

Services should verify the authorization level of users before access to
sensitive data can be given.
[60] §21, §22, [62] §3-6, [63] §2-11, §2-12

Integrity
requirements

The platform should support integrity protection of sensitive personal
data while it is stored.
[64] §5-5, [65] §16, [66] §13, [63] §2-13
The platform should be able to detect unauthorized manipulation of
data that is being transmitted.
[64] §5-5, [65] §16, [66] §13, [63] §2-13

Privacy
requirements

The platform must protect any stored sensitive personal data from
unauthorized access.
[62] §3-6 and §5-3, [65] §16, [66] §13, [63] §2-11
Personal sensitive data must be confidentiality protected while trans-
mitted over open, untrusted communication lines.
[64] §5-5, [62] §3-6 and §5-3, [65] §16, [66] §13, [63] §2-11

Security
Auditing
Requirements

The platform should be able to log security incidents, such as failed
login attempts or unauthorized access attempts to services in order
to discover and trace system abuse.
[63] §2-14
The platform should be able to log activities related to access of sen-
sitive information.
[63] §2-14

Survivability
requirements

Input validation should be performed at time of data reception to re-
duce threats represented by malicious content and malformed packets.
[64] §5-9
Multiple levels of security should be ensured to avoid a single point
of failure.
[64] §5-4
Data freshness should be controlled to prevent chances of replay at-
tacks.
[64] §5-5

Non-repudiation
requirements

A patient journal should show who has added content, e.g., through
electronic signatures.
[60] §40, [61] §7

Table 2.2: Security requirements and the associated laws and regulations.
Table adapted from Jensen et al. (2009) [59]

31

Chapter 2. Background Information

2.3.2.1 Security Design

Based on the security requirements identified previously, the security compo-
nents were designed, and their dependencies mapped, as the figure 2.8 shows
us.

Figure 2.8: MPOWER security components. Figure extracted from the
MPOWER Project Deliverable D5.2 [67]

Important to notice the difference between security services and security
mechanisms, as defined in the MPOWER Project Deliverable D5.2 [67]:

• Services are security components that can be implemented as web
services.

• Mechanisms describe functionality that is desirable, and in many
cases required, as an inherent part of MPOWER services to ensure
a satisfying level of security.

The table 2.3 provides us with a short description of what each component
in figure 2.8 is responsible for:

32

Chapter 2. Background Information

Component Description
Access Control Access control includes the Authentication and Authorization ser-

vices. The Authentication service verifies a user’s credentials and
allows access to the system only if they are valid. The Authorization
service determines which operations and data an authenticated user
can access, allowing access to resources only to legitimate, authorized
users. Authorization in MPOWER is based on a Role-Based Access
Control (RBAC) scheme, extended by a Context-Based protection19.

User Management The user management service enables the administrator to manage
the users of the system. The administrator may:

• Add/delete users
• Update the user’s roles
• Get the user information

Role Management The role management service enable the administrator to manage the
roles of the system. The administrator may:

• Add/delete roles
• Assign users to roles
• Get the role information
• Get the users assigned to a role

Access Management The access management service manages the permissions and access
profiles associated with the access control system.

Token Management The token management service is used by the Authentication and
Authorization services to manage the login sessions.

Public Key Infrastructure The PKI service provides the interface for general management of
certificates, i.e, issue, renew and revoke, and verification of the validity
of a certificate.

Audit The audit service provides an interface enabling other services to store
data that needs to be logged for future audit purposes. Additionally,
it provides operations to retrieve logged data that is necessary for
auditing.

Encryption The encryption mechanism describes functionality related to confi-
dentiality and integrity protection of data.

Secure Storage The secure storage mechanism describes functionality for storing data
securely and for retrieving secured data from storage.

Secure Communication Secure communication is the mechanism describing functionality
needed to secure data being transmitted between two endpoints.

Table 2.3: MPOWER security components. Table adapted from the
MPOWER Project Deliverable D5.2 [67]

The implementation of these components should make use of a selection of
the standards presented at section 2.2.2.2 to achieve the required level of
security, measured in levels of availability, confidentiality and integrity [67].

19Context information is important for limiting a role’s access to a subset of target
objects, depending on context elements associated to the user that was assigned the role
[68]. Such elements include the relationship this user has with the requested information,
e.g., a user with a doctor role that should have access only to his patients’ data.

33

Chapter 3

Methodologies and Guidelines
for Security Assessment

This section presents the motivation for a security assessment methodology,
along with some information about one of the most widely accepted, the OS-
STMM, and a few recommendations and views from NIST. We also present
a testing guide from OWASP and a testing framework from SIFT. At the
end, the approach chosen to perform the tests will be described.

As NIST [11] defines:

• Information security assessment is a process that determines how effec-
tively an object, or target, being assessed (e.g., host, system, network)
meets security requirements. There are three methods that may be
used to accomplish this (testing, examination, and interviewing), of
which we describe the two most relevant for us:

– Testing is a process that exercises one or more assessment ob-
jects, under specific conditions, to compare actual and expected
behaviors.

– Examination is the process of checking, inspecting, reviewing, ob-
serving, studying, or analyzing one or more targets to facilitate
understanding, achieve clarification, or obtain evidence.

Before continuing, it is valid to have in mind the following definitions:

• Asset: Everything that has some value to an organization such as a
person, information, hardware or software. Each organization should
identify what it considers as assets [69].

• Vulnerability: ”A flaw or weakness in a system’s design, implementa-

34

Chapter 3. Methodologies and Guidelines for Security Assessment

tion, or operation and management that could be exploited to violate
the system’s security policy” [13].

• Threat: ”A possible danger that might exploit a vulnerability” [13].

One major reason for the presence of vulnerabilities in an application is the
fact that security is, many times, not considered as part of the software de-
velopment life cycle (SDLC). The opposite approach could potentially reduce
the number of these vulnerabilities as the software is developed [69, 70]. Even
when care is taken in the development process, testing the overall security
should be part of it, e.g., a component may be secure, but when it interacts
with other components, a security compromise can happen [70].

3.1 Benefits of Using a Methodology

Every organization should have some standard methods for performing its
activities, including the security tests of its applications. A poorly conducted
test, i.e., one that does not find critical vulnerabilities, could greatly put in
risk the company’s assets, e.g., causing leakage of sensitive data and, con-
sequentially, financial loss. As Herrman points out [71], the disclosure of
private information makes the company liable for not complying to govern-
ment and industry regulations, and to lawsuits from clients or customers,
besides the damage to its credibility. At the time of this writing, recent
data-breach cases include Heartland [72] and RBS Worldplay [73], not to
mention insiders’ threats, as it happened with Sprint1 [74].

The use of a consistent, documented and repeatable methodology allows for
benefits such as [11]:

• Structured security testing, minimizing testing risks, where the results
are properly documented for future reference, providing the means to
assure the test has been conducted as it should be.

• Facilitate the transition of new assessment personnel.

• Effective planning of resources (e.g., staff, hardware, software) to use
for performing the assessments, thus reducing overall costs and time to
conduct them.

1Other cases can be found at http://www.privacyrights.org/ar/ChronDataBreaches.htm.

35

Chapter 3. Methodologies and Guidelines for Security Assessment

3.2 Open Source Security Testing Methodol-

ogy Manual - OSSTMM

The Open Source Security Testing Methodology Manual (OSSTMM) [75,
76] provides a methodology for a thorough security test, referred to as an
OSSTMM audit. As the manual claims, an OSSTMM audit is an accurate
measurement of security at an operational level. Since it was created in 2000,
the OSSTMM was improved and ended up as a standard for performing
reliable security tests. The latest version, 3.0, is not yet available with its
full contents to the open public at the time of this writing, so the version 2.2
will be also referenced.

3.2.1 Overview

The primary purpose of the OSSTMM is to provide a scientific methodology
for the accurate characterization of security through examination and corre-
lation in a consistent and reliable way [75]. The methodology is adaptable to
several audit types, such as vulnerability scanning, ethical hacking2 and pen-
etration testing3, which is one of the most used approaches to test a system’s
security [70].

Another purpose is the establishment of guidelines, in order to assure [75]:

1. The test was conducted thoroughly.

2. The test included all necessary channels.

3. The posture for the test complied with the law.

4. The results are measurable in a quantifiable way.

5. The results are consistent and repeatable.

6. The results contain only facts as derived from the tests themselves.

3.2.2 Phases

There are four defined phases in the methodology [75]:

1. Regulatory Phase: The audit requirements, the scope, and the con-
straints to the auditing of this scope need to be understood in this

2According to the OSSTMM: ”Ethical Hacking refers generally to a penetration test
of which the goal is to discover trophies throughout the network within the predetermined
project time limit” [76].

3According to the OSSTMM: ”Penetration Testing refers generally to a goal-oriented
project of which the goal is the trophy and includes gaining privileged access by pre-
conditional means” [76].

36

Chapter 3. Methodologies and Guidelines for Security Assessment

phase.

2. Definitions Phase: This stage defines the scope in relation to interac-
tions with the targets.

3. Information Phase: In this phase the auditor uncovers several types of
misplaced and mismanaged information, such as the target’s configu-
ration.

4. Interactive Controls Test Phase: The tests in this stage are focused on
penetration and disruption.

3.2.3 Channels and Metrics

The OSSTMM 3.0 considers tests in five channels - Human , Physical, Wire-
less, Telecommunications, and Data Networks. A set of security metrics,
called Risk Assessment Values (RAVs), is used to provide a graphical repre-
sentation of the security state. The accuracy of these metrics is higher if the
security test is thorough, and is also influenced by the auditor’s experience.
The objective is to quantify three areas (operational security, controls, and
limitations) within the scope of the test which together define the Actual
Security state, presented as a percentage [76].

The methodology identifies a number of possible errors during the testing
process, related to observed states and assumptions made by the auditor
[76]. Such errors are responsible for lesser accurate results. The following
list presents some of them:

• False positive: The target indicates some kind of anomalous action,
when this action is, in fact, legitimate [77].

• False negative: The target indicates that an actual intrusive action is
a normal one [77]. The main problem is the identification of a non
existent secure state [76].

• Sampling error: The target is a biased sample of a larger system or
a larger number of possible states. This may be a result of time con-
straints on the test or a bias of testing only that which is designated
as “important” within a system [76].

• Human error: Errors caused by lack of ability, experience, or compre-
hension, are always present regardless of methodology or technique.
There is an indirect relationship between experience and human error
[76].

37

Chapter 3. Methodologies and Guidelines for Security Assessment

3.2.4 Rules of Engagement

To better understand this concept, let us define the role of a penetration
tester. A penetration tester is an ethical hacker4 responsible for conduct-
ing security tests on a company’s systems and network, by attempting to
compromise it, exploiting vulnerabilities [78, 79]. The importance of assets,
together with the level of impact of vulnerabilities found, can be related to
some metric in order to perform a risk analysis process and better evaluate
the security state of the system.

Rules of engagement set the acceptable and ethical practices for market-
ing and selling testing, performing testing work, and handling the results
of testing engagements [76]. Mainly, these rules specify boundaries that a
tester should not cross when offering his services to a client. If contractual
boundaries are not respected, the tester will be committing illegal actions
[78].

The are several factors to take into account, including, but not limited to
[76]:

• The scope of test, indicating what parts of a system should be assessed.

• Signed agreement by the client allowing the tester to trespass within
the scope.

• Specific permissions for tests involving denial of service and social en-
gineering.

• High risk vulnerabilities must be reported, along with a solution, as
soon as they are found.

3.2.5 Tests

Sticking to some concepts from the version 2.2, the security model can be
broken up into sections, each one containing a collection of modules, which
in turn defines security tests, or tasks. The results of the tasks are considered
the output of the module, while the input is the information used to perform
each task. One module and some of its tasks are presented [76]:

• Vulnerability research and verification:

1. Integrate the currently popular scanners, hacking tools, and ex-
ploits into the tests.

4An ethical hacker is the one that uses the same tools and hacking skills as a malicious
hacker, but for defensive purposes.

38

Chapter 3. Methodologies and Guidelines for Security Assessment

2. Measure the target organization against the currently popular
scanning tools.

3. Attempt to match vulnerabilities to services.

4. Identify all vulnerabilities according to applications.

5. Verify all vulnerabilities found during the exploit research phase
for false positives and false negatives.

3.2.5.1 Types of Tests

The manual allows individual testing practices, as long as the requirements
defined in it are followed. Six common types of test are presented [75]:

• Blind: The auditor engages the target with no prior knowledge of its
defenses, assets, or channels. The target is prepared for the audit,
knowing in advance all the details of the audit.

• Double Blind: The auditor engages the target with no prior knowledge
of its defenses, assets, or channels. The target is not notified in advance
of the scope of the audit, the channels tested, or the test vectors.

• Gray Box: The auditor engages the target with limited knowledge of
its defenses and assets and full knowledge of channels. The target is
prepared for the audit, knowing in advance all the details of it.

• Double Gray Box: The auditor engages the target with limited knowl-
edge of its defenses and assets and full knowledge of channels. The
target is notified in advance of the scope and time frame of the audit
but not the channels tested or the test vectors.

• Tandem: The auditor and the target are prepared for the audit, both
knowing in advance all the details of it.

• Reversal: The auditor engages the target with full knowledge of its
processes and operational security, but the target knows nothing of
what, how, or when the auditor will be testing.

3.2.6 Results

To measure both the thoroughness of the test and the security of the target,
version 3.0 introduces the Security Test Audit Report (STAR) [75], while
version 2.2 has other report templates [76]. The report should contain, among
others, all the findings, as well as how and when the tests were conducted for
every target in the scope, and possible issues during the tests. The auditor
must accept responsibility and limited liability for inaccurate reporting.

39

Chapter 3. Methodologies and Guidelines for Security Assessment

3.3 Technical Guide to Information Security

Testing and Assessment - NIST-SP800-

115

This document provides guidelines for planning and conducting an informa-
tion security assessment via technical testing and examination techniques.
The objective is to identify, validate, and assess technical vulnerabilities, as-
sisting organizations to understand and improve the security posture of their
systems and networks [11]. The recommendations offered by this guide can
be used for other methodologies, e.g., OSSTMM.

3.3.1 Phased Methodology

NIST recommends at least three phases for an information security assess-
ment methodology [11]:

• Planning: Used to gather information for assessment execution, such
as assets to be assessed, relevant threats against the assets and security
controls to mitigate them; and to define the assessment approach. A
plan should address goals and objectives, scope, requirements, team
roles and responsibilities, limitations, success factors, assumptions, re-
sources, timeline, and deliverables.

• Execution: Main goals in this phase are to identify vulnerabilities and
validate them.

• Post-Execution: This phase focuses on analyzing identified vulner-
abilities to determine root causes, establish mitigation recommenda-
tions, and develop a final report.

3.3.2 Technical Assessment Techniques

The guide groups the most common techniques used to conduct security
assessments in three categories [11]:

• Review Techniques: These are passive techniques, offering minimal
risk to systems and networks. They are used to examine systems,
applications, networks, policies, and procedures to discover security
vulnerabilities. Review techniques include documentation, log, ruleset,
system configuration review, network sniffing, and file integrity check-
ing. Code review is also regarded as an important technique for finding
security flaws.

• Target Identification and Analysis Techniques: These testing
techniques can identify active devices and their associated ports and

40

Chapter 3. Methodologies and Guidelines for Security Assessment

services, and analyze them for potential vulnerabilities. They may be
performed manually or via automated tools. Such techniques include
network discovery, network port and service identification, vulnerability
scanning, wireless scanning, and application security examination.

• Target Vulnerability Validation Techniques: These techniques
assure the existence of vulnerabilities, and demonstrate the security
exposures that occur when they are exploited. They may be performed
manually or via automated tools, depending on the specific technique
used and the skill of the test team. These techniques include password
cracking, penetration testing, social engineering, and application secu-
rity testing. The risk involved in this case is the highest, since they
have more potential to impact the targets than other techniques.

NIST explains how these techniques can be performed, providing the means
for an organization to choose the ones that best fit to its needs. As an ex-
ample, penetration testing is a technique that performs network port/service
identification and vulnerability scanning to identify vulnerable targets [11].

3.3.3 Comparing Examinations and Tests

Examination deals with the review of documents such as policies, security
plans, security requirements, standard operating procedures, architecture di-
agrams, engineering documentation, asset inventories, system configurations,
rulesets, and system logs. They are conducted to verify if a system is prop-
erly documented, and to analyze aspects of security that are only available
through documentation [11].

Testing deals with the activities performed on systems and networks to iden-
tify vulnerabilities, and can be executed on the whole enterprise or just se-
lected targets. The use of scanning and penetration techniques can uncover
important information regarding potential vulnerabilities and the odds that
they are exploited. It is also possible to measure levels of compliance in
other areas such as patch management, password policy, and configuration
management [11].

Even though testing offers a better view of an organization’s security posture
than what is obtained via examinations, it is more intrusive and some test
cases can impact systems or networks in the target environment. In a pro-
duction environment, tests which cause high impact (e.g., denial of service)
are not allowed by some organizations and examination techniques should
be used instead as a complement, helping to identify problems related to
security policy and configuration.

41

Chapter 3. Methodologies and Guidelines for Security Assessment

3.3.4 Testing Viewpoints

The guide compares two different viewpoints that can be used during a test.
One for an external attacker and another for a malicious insider. The knowl-
edge of the organization’s IT staff about the test is also considered as a
parameter [11].

3.3.4.1 External and Internal

External security testing is conducted from outside the organization’s se-
curity perimeter, allowing the environment’s security posture to appear as
seen, usually, from the Internet, with the goal of revealing vulnerabilities
that could be exploited by an external attacker [11].

External testing often begins with reconnaissance techniques that search pub-
lic available information to collect details (e.g., system names, IP addresses,
operating systems) that may help the assessor to identify vulnerabilities.
Next, enumeration begins by using network discovery and scanning tech-
niques to determine external hosts and listening services. Assessors can use
techniques to avoid perimeter defenses such as firewalls, and access control
lists, in the same way an attacker would, to be able to invade the inter-
nal network. Externally accessible servers are tested for vulnerabilities that
could allow such invasions. Commonly allowed protocols (e.g., HTTP, FTP,
SMTP) are good initial targets for attacks [11].

For internal security testing, assessors work from the internal network and
assume the identity of a trusted insider or an attacker who has penetrated
the perimeter defenses. This approach reveals internal vulnerabilities that
could be exploited, demonstrating the potential damage this type of attacker
could cause. Internal security testing also focuses on system-level security
and configuration, including application and service configuration, authenti-
cation, access control, and system hardening [11].

Internal testing is not as limited as external testing because it takes place
behind perimeter defenses. If both tests are to be performed, the external
testing usually takes place first. In the case where the tests are conducted
by the same assessors, the advantage is that they do not acquire insider
information not available to an attacker, what would affect the legitimacy of
the test [11].

3.3.4.2 Overt and Covert

Overt security testing involves performing external and/or internal testing
with the knowledge and consent of the organization’s IT staff, enabling com-
prehensive evaluation of the network or system security posture. The staff

42

Chapter 3. Methodologies and Guidelines for Security Assessment

may be able to provide guidance to limit the test’s impact, and also learn
form the activities and methods used by assessors to evaluate and potentially
circumvent implemented security measures [11].

Covert security testing takes an adversarial approach by performing testing
without the knowledge of the organization’s IT staff but with the full knowl-
edge and permission of upper management. In this case, it is important to
know if an attack is really happening, or what is being detected is due to the
tests, so appropriate measures can be carried out. This type of test is useful
for testing technical security controls, IT staff response to perceived secu-
rity incidents, and staff knowledge and implementation of the organization’s
security policy [11].

Covert testing fails to identify many vulnerabilities. Since its objective is
to examine what impact or damage an adversary can cause, it normally
identifies and exploits the most rudimentary vulnerabilities to obtain network
access. Boundaries are, usually, defined in order for the test to be considered
over when some goal has been reached, such as obtaining a certain level of
access [11].

Other disadvantages of covert testing are its time-consuming and cost as-
pects, caused by the need to slow down its actions to avoid being detected.
Overt testing is less expensive, offers fewer risks, and is more frequently used,
but does not provide an everyday security view of the target systems, since
the staff is already expecting something to happen [11].

3.4 OWASP Testing Guide

The Open Web Application Security Project (OWASP) is ”a worldwide free
and open community focused on improving the security of application soft-
ware” [80]. They have several projects related to application security, in-
cluding the OWASP Testing Guide [81], that has the objective to address all
aspects of testing a web application.

This guide covers the scope of testing, the principles for a successful testing,
and the necessary testing techniques. The focus is the integration of testing
in the software development life cycle [81]. The main part covers penetration
testing as a way to find specific vulnerabilities, but other techniques are also
mentioned, such as manual inspections & reviews, threat modeling and code
review. The latter has its own guide, the OWASP Code Review Guide [82].

43

Chapter 3. Methodologies and Guidelines for Security Assessment

3.4.1 Method

The OWASP method is based on a black box penetration test, where the
tester does not have (much) information about the application to be tested.
The test is divided in two phases [81]:

• Passive mode: The tester gathers information about the application
and tries to understand how it works, by playing with it. At the end, the
tester should understand all the access points (gates) of the application
(e.g., HTTP headers, parameters, and cookies), which represents points
of testing.

• Active mode: The OWASP methodology is used by the tester to per-
form the security assessment. The active tests are grouped in nine
categories: configuration management, business logic, authentication,
authorization, session management, data validation, denial of service,
web services, ajax. Each category has its own set of controls to be
tested.

To understand how to test the security controls, the guide presents several
explanations, examples and references, including tools used to perform the
tests.

3.4.2 Web Services

The guide defines controls to be tested specific to web services. These are
[81]:

• WS Information Gathering: The purpose is to determine the web ser-
vice’s entry points, as described in a WSDL file, such as its methods
and inputs.

• Testing WSDL: The entry points discovered earlier should be tested,
including possible hidden operations (operations not used in a standard
SOAP request).

• XML Structural Testing: An XML parser needs to inspect the entire
XML message to assure it is well-formed. This task is CPU intensive
and can be exploited if very large or malformed XML messages are
sent, creating a denial of service attack.

• XML content-level Testing: Content-level attacks target the server
hosting the web service and other applications used by it. This control
tests for SQL injection, XPath injection, buffer overflow, and command
injection.

• HTTP GET parameters/REST Testing: Web services that can be in-

44

Chapter 3. Methodologies and Guidelines for Security Assessment

voked by passing parameters via HTTP GET string, can be attacked
through use of malicious content in the request.

• Naughty SOAP attachments: This control deals with web services that
accept attachments, where the danger lies in processing them on the
server and redistribution to clients.

• Replay Testing: This man-in-the-middle attack occurs when an at-
tacker assume the identity of a user, by intercepting a message and
resending it, modified or not.

3.4.3 Prioritizing

The need for a focused approach to perform a security test is also tackled by
OWASP. It is important to determine the most important security concerns
for an organization, that should be prioritized during testing. This is usually
done via threat modeling techniques, that should be created early in the
SDLC [81]. A threat can be classified, for example, by using STRIDE [83], as
Spoofing, Tampering, Repudiation, Information disclosure, Denial of service,
and Elevation of privilege.

After vulnerabilities are found, it is important to estimate the risks asso-
ciated to the business, in order to decide what is more critical to fix, and
include them in the testing report. The basic risk model is: Risk = Like-
lihood*Impact, where likelihood indicates how likely a vulnerability can
be discovered and exploited, and impact indicates how badly it affects the
technical aspects of the application (e.g., loss of confidentiality, loss of in-
tegrity) or the business aspects of the organization (e.g., financial damage,
reputation damage) [81]. The guide describes in detail how to achieve such
estimates.

3.5 SIFT Web Services Security Testing

Framework

SIFT is a consulting, intelligence and training firm [84]. They are specialized
in information security, risk and audit services. Noticing that there were
no methodology specifically designed for testing web services security, SIFT
created an approach to address this niche, the Web Services Security Testing
Framework [85], using the OWASP Testing Guide as a model.

The Framework is comprised of five standard phases: Threat Modeling, Scop-
ing, Test Planning, Test Execution and Reporting. There are not many news
in this process, except the focus on web services. The most relevant informa-
tion is presented in the Test Execution phase; an extensive list of test cases,

45

Chapter 3. Methodologies and Guidelines for Security Assessment

many of them specific to web services, grouped in different categories.

3.6 Chosen Method

Our objective is to demonstrate the level of security that a SOA-based health-
care system can achieve, but without the illusion of uncovering every possible
flaw, as this would be unrealistic. By following some recommendations and
guidelines from the methodologies and guides presented above, we defined a
custom approach to perform the security testing on the MPOWER platform.
Such method consists of the same three phases outlined by NIST, adapted
in some ways, and simplified, to represent the reality of our tests:

• Planning: In order to plan what kind of tests should be part of
our assessment, we look at the security requirements identified in the
MPOWER Project Deliverable D5.2 [67], presented in section 2.3.2, as-
sociated to the security components, outlined in section 2.3.2.1. This,
and knowing that the system is implemented via web services, makes
the basis for selecting test cases associated to relevant threats. The
tester may also play with the application to better understand it, and
use this knowledge to perform incremental changes to the test cases.
Chapter 4 presents these test cases and also describes the testing envi-
ronment.

During this phase is important to characterize:

– Test target: The assessment will be performed on a POCA, that
makes use of the MPOWER middleware services. The tests will
be conducted in a controlled environment, with no restrictions
regarding scope or techniques to be employed.

– Objective: The main objective is to verify if the MPOWER se-
curity components offer the desired security level or fall short of
their intent. Security problems discovered in the POCA imple-
mentation may be considered as a consequence of the assessment.

– Techniques: A mix of techniques will be used to perform the tests,
the main one being penetration testing and, to a lesser extent,
code and configuration reviews. As McGraw [70] tells us, passing
a penetration test does not assure that an application is free of
vulnerabilities.

Important to point out that the tester has direct access to the
necessary resources (i.e., source code, WSDL, application server,
database).

46

Chapter 3. Methodologies and Guidelines for Security Assessment

– Scope and limitations: As already mentioned in section 1.3, the
scope of the tests will not be as extensive as it could be, leav-
ing out, operating system’s specific flaws, wireless transmissions,
physical security and social engineering.

The focus will be on the functionalities provided by the MPOWER
platform and the observed security when using them. The test
cases define better the intended scope and, since the assessment
is performed in a controlled academic environment, there are no
restrictions in executing tests that may crash the application, pro-
voking a denial of service.

– Constraints: The team responsible for the tests is small, with most
of the work being done by just one person, whom does not have
much experience in security testing. The time frame is also quite
limited, so the focus will be on the most important test cases.
Such factors may influence negatively the end result.

– Remarks: The MPOWER project lacks documentation regarding
the implementation, making it harder to understand the decisions
taken during the development cycle. Another issue is related to
the security design document, that was elaborated in parallel with
the coding process.

• Execution: Having established the test cases, these should be put
into practice in order to identify vulnerabilities. Chapter 4 explains
the tools that are needed for this phase.

• Post-Execution: The results generated during the execution phase
are analyzed and presented in chapter 5 together with the respective
countermeasures. General recommendations based on these findings
are proposed in chapter 6.

The methodologies and guidelines presented before offer much more details,
which are necessary when the objective is to conduct a professional security
assessment for some organization, and therefore are not our focus. Since
we work in an academic environment with limited scope, several concepts
are not applied, such as Rules of Engagement, Overt and Covert testing,
and different channels. The choice for the NIST structure was based on the
flow already imagined by the tester and it outlined the necessary phases and
characteristics of the test. Table 3.1 presents a summary of the methodologies
studied and how they are related to our approach.

47

Chapter 3. Methodologies and Guidelines for Security Assessment

Methodology Phases Characteristics How it relates to our
chosen method

OSSTMM Regulatory, defini-
tions, information,
interactive controls
test.

Five channels are consid-
ered for testing, such as hu-
man, physical and data net-
works. A set of metrics
is used to represent the se-
curity state. Several au-
dit types are contemplated,
including penetration test-
ing. Different types of er-
rors that may occur during
the testing process are iden-
tified. Rules of engagement
are described. The security
tests are grouped by mod-
ules. Six types of testing
practices are also presented,
such as Blind and Tandem.

The only channel we con-
sider is the data networks.
Human error is considered
as a possibility due to the
tester’s lack of experience.

NIST-SP800-115 There should be at
least three: plan-
ning, execution, and
post-execution.

NIST describes review and
testing techniques. For the
latter, it presents and com-
pares different viewpoints
that can be employed such
as external and internal
testing.

The three recommended
phases were the ones
adapted to the reality of
our tests. Review tech-
niques, such as code and
configuration review, and
testing techniques, such
as penetration testing, are
included in our approach.

OWASP Guide Passive mode and
active mode.

The guide contains a great
number of test cases, in-
cluding a section on web
services. The integration
of security testing in the
SDLC is a recommended
practice. Penetration test-
ing is the main focus of
this methodology, but other
techniques are also indi-
cated such as code review.
Risk prioritization proce-
dures are described and rec-
ommended to be included in
the testing report.

The information gather-
ing during the passive
mode may be seen as part
of the planning phase of
the NIST-SP800-115, and
therefore is included in our
method. The guide was
extensively used in order
to prepare our test cases.
Penetration testing is our
chosen technique, the same
one as in the guide.

SIFT Framework Threat modeling,
scoping, test plan-
ning, test execution,
and reporting.

The framework presents an
extensive list of test cases,
many of them focused on
web services, grouped in dif-
ferent categories.

The list of test cases in-
fluenced our selection, be-
ing an important reference
throughout the planning of
the assessment.

Table 3.1: A summary of methodologies, indicating how they are related to
our chosen method

48

Chapter 4

Preparations

This chapter presents the testing environment, tools and the test cases elab-
orated for the security assessment. The test cases are based, mainly, on the
work by the OWASP Testing Guide [81] and SIFT Framework [85], while
paying attention to a number of other references [22, 24, 86, 87, 88, 89],
which the reader should refer to for more details.

4.1 Testing Environment

This section describes the elements needed to prepare the testing environment
and the Norwegian proof of concept application, which will be used for the
security assessment.

In order to establish an environment that would be constantly attacked,
and possibly suffer from DoS or be completely compromised, it was decided
to make use of virtual machines. One of the main advantages of this ap-
proach is the possibility to take snapshots of a functional environment and,
if something complicated or irreversible to fix happens, use these snapshots
to restore the environment to a previous working state [90]. Another good
point is the fact that a dedicated server is not needed for the tests.

A VMware Server [91] was installed on a windows host, and Ubuntu-Linux
was chosen as a guest system. On the guest, the following applications were
configured:

• GlassFish 2.1 [92]: This open source application server, for the Java
EE 5 platform, contains the MPOWER services.

• Oracle Database 10g Express Edition [93]: This free alternative
database from Oracle is responsible for storing the application’s data.

49

Chapter 4. Preparations

Finally, the MPOWER middleware services were deployed on GlassFish,
together with the Norwegian POCA. In this setting, we have the service
requestors (represented by the POCA) in the same server as the service
providers (i.e., the middleware services), which is not a desired web services
scenario but serves our purposes. The figure 4.1 illustrates the expected
environment.

Figure 4.1: Expected testing environment

4.2 Tools

This section focuses on the description of the main tools that will be used
for the security assessment. These are:

• WebScarab [94]: WebScarab is a framework for analyzing applications
that communicate through HTTP and HTTPS. There are a number of
plugins available, implementing several modes of operation. The proxy
function is the most common used functionality, being able to intercept
HTTP and HTTPS traffic, and allowing the operator to review and
modify requests and responses that go through. Another possibility is
the use of previous requests in replay attacks.

• Burp Suite [95]: Burp Suite is a platform for attacking web appli-
cations. It has some similarities with WebScarab, including a better
proxy functionality, which keeps the history of both requests and re-
sponses for further analysis.

50

Chapter 4. Preparations

• Wireshark [96]: Wireshark is a network protocol analyzer, also called
a packet sniffer, that can be used to inspect packets that passes by
a specified network interface (including the loopback). The user can
create filters to match the packets that need to be observed, and save
the capture data for later analysis.

• soapUI [97]: This tool is specialized for the development and testing
of web services. Its features include WSDL inspection, WSDL service
invocation, web service functional and load testing. It has a good
support for WS-Security, allowing signatures, encryption and security
tokens. The main functionality for us is the ability to load a WSDL
file and generate standard requests from it, being able to send them
afterwards.

• WSFuzzer [98]: WSFuzzer has the objective to automate SOAP-based
web services penetration testing by dynamically generating several at-
tack vectors, based on the target, to be used for fuzzing1 parameters.

4.3 Test Cases

Each test case is associated to a vulnerability/threat or security aspect, and
is briefly explained in the Motivation section.

TC-1: SQL Injection

Objective
Verify SQL injection resistance.

Motivation
SQL injection is a threat that results from poor validation of user input,
when performing a dynamic query, one formed by concatenating strings, in
an application’s database. Such attack can allow access to private data and
modify the database in a number of ways, via select, insert, update, and
delete operations [81]. The following query exemplifies one attack:

SELECT ∗ FROM p r e s c r i p t i o n s WHERE pat ientID = ’ + $pat ientID + ’;

If $patientID does not contain just a patient’s ”id” but something in this
format:

$pat ientID = 3521 ’ ; DROP TABLE p a t i e n t s ;

The resulting query will be:

1Fuzz testing or fuzzing, is a testing technique that makes use of unexpected, random,
data as input to an application, to verify the application’s response to it [99].

51

Chapter 4. Preparations

SELECT ∗ FROM p r e s c r i p t i o n s WHERE pat ientID = ’3521 ’ ;
DROP TABLE p a t i e n t s ;

In this case, the table patients would be deleted from the database2.

The presence of characters such as single quote (’) and semicolon (;), allied
with SQL keywords, not properly handled, constitutes the means for the
attack.

Test method
Test the application’s queries for known attack vectors, i.e., malicious inputs.
One of the basic tests is to use, as input to a query, a single quote, and check
if an error is returned. The WSFuzzer tool provides a file with common
injections (Appendix A contains an example).

Blind SQL injection is outside of our scope and will not be tested.

Tools
WSFuzzer, Burp Suite.

Requirements tested
Survivability, privacy, integrity, security auditing, authorization.

TC-2: WSDL Scanning

Objective
Identify service’s entry points and test them.

Motivation
Since the WSDL contains information on a service’s exposed methods and
their parameters, by analyzing such a file, an attacker get to know about
the inner workings of the service, using this knowledge to perform malicious
requests [85]. It is also possible to guess unpublished methods based on the
names of the public ones.

Test method
Check how WSDL files are published, obtain a few of them, and analyze
their contents. Test the invocation of the operations, with or without the
necessary access levels. Verify if there are any hidden operations that should
not be available for external (public) use, and assess the outcome of their
invocations. A common way to obtain these files is through the service’s
endpoint, by appending ”?wsdl” to it. For example:

” http :// somepage/ s e r v i c e / endpoint ? wsdl ”

2Considering the authorization to do so.

52

Chapter 4. Preparations

Tools
Wireshark, soapUI.

Requirements tested
Survivability, authentication, authorization, security auditing, privacy, non-
repudiation.

TC-3: Replay Attacks

Objective
Verify if replay attacks are effective against the application.

Motivation
By capturing a valid accepted message (e.g., an authentication message), and
resending it at a later time, an attacker can pose as a legitimate user, gaining
access to sensitive information and performing malicious actions [85].

Other use of replay attacks is to launch a DoS attack, by resending well
formed, valid, messages over and over again, in an attempt to deplete the
application’s resources.

Test method

• Capture valid messages and replay them. Test for several time intervals,
checking if the application accepts these messages. Test if freshness
protection can be circumvented.

• Resend the same message multiple times, checking for a DoS situation.

Tools
Wireshark, WebScarab, soapUI.

Requirements tested
Survivability, authentication, authorization, privacy, integrity, security au-
diting.

TC-4: Parameter Tampering

Objective
Verify the application resilience regarding unexpected modification to re-
quests.

Motivation
Improper protection of the communication channels allows an attacker to
modify requests, bypassing access control and (client-side) input validation

53

Chapter 4. Preparations

mechanisms [22], resulting in unauthorized access to information and/or com-
promise of the application.

Test method
Capture requests, modify and relay them, checking for the application’s re-
sponse afterwards. Modifications include manipulating security tokens, in-
serting malicious code or just bogus information.

This test case can be used in conjunction with replay attacks.

Tools
WebScarab, Wireshark, soapUI.

Requirements tested
Survivability, integrity, authorization.

TC-5: Forced Browsing

Objective
Verify if the application allows path guessing.

Motivation
An attacker may try to bypass authentication and authorization procedures
by typing specific locations in the URL bar of the browser, in order to access
different areas of the application [81]. Knowing already some path to an
interface, the attacker can also try to guess the location of other interfaces.

Test method

• Select some addresses available to a specific role and try to access them
without authentication. Try to log in and log out and try them again.

• Try to access locations from other roles, being authenticated as a user
without such roles.

Tools
A browser.

Requirements tested
Authentication, authorization, security auditing, non-repudiation.

TC-6: Buffer Overflow

Objective
Verify the resistance to buffer overflow attacks.

Motivation
Problems in memory management lead to this threat, since it may allow write

54

Chapter 4. Preparations

and read access to other parts of memory than the ones allocated for the ap-
plication’s input buffers. When these buffers get overloaded, an attacker can
execute arbitrary data on the host, by overwriting specific memory locations,
or cause a Denial of Service, by crashing the application [22].

Test method

• Input large strings in several forms, verifying if there is a limit to avoid
the overflow or if an error is caused due to insufficient buffer size.

• Try to avoid input size validation on client side, by intercepting mes-
sages and altering the input’s value.

In particular, the objective is to test the DoS scenario.

Tools
WebScarab, WSFuzzer, soapUI, a browser.

Requirements tested
Survivability.

TC-7: XDoS Attacks

Objective
Verify if the application falls victim of XDoS attacks.

Motivation
Besides other DoS attacks caused by buffer overflows and replay attacks,
XML Denial of Service (XDoS) can also disrupt the service’s availability.
Common ways to perform such attacks deal with the exhaustion of system’s
resources:

1. Oversized payload: Due to high memory consumption to process XML
documents [87, 100], it is easy to overload an XML parser by sending
large SOAP messages to the server, locking all the resources to a single
process. Document Object Model (DOM) parsers are more susceptible
to this attack, since it loads the complete XML document representa-
tion into memory.

2. Recursive payload: By creating a deeply nested XML structure within
a SOAP message, an attacker makes the XML parser deplete system’s
resources since it needs to process and validate each element in the
structure [89].

3. SOAP array attacks: It may happen that the server pre-allocates mem-
ory for arrays declared in SOAP messages, which can cause an exhaus-
tion of memory resources if the array size is too large [86].

55

Chapter 4. Preparations

4. Entity attacks: This category is explained in its own test case, TC-8.

Test method

1. Create a large SOAP request such as [81, 85]:

<soap : Body>
<Item . . . > l a r g e s t r i n g . . . </ Item>
.

<Item . . . > l a r g e s t r i n g . . . </ Item>
</soap : Body>

2. Generate a deeply nested XML structure inside a SOAP request [85,
87]:

<rc r sv >
<rc r sv >

<rc r sv >
. . .

3. Declare a large array inside a SOAP message:

<bigArray xmlns : xs = ” . . . ”
xmlns : enc = ” . . . ”
enc : arrayType=”xs : i n t [1000000]” >

<item>blabla </item>
<item>blabla </item>
. . .

</bigArray>

Tools
soapUI.

Requirements tested
Survivability.

TC-8: Entity Attacks

Objective
Verify if the application allows DTD entities.

Motivation
XML allows for the definition of internal and external entities, via Document
Type Definition (DTD). When the XML parser encounters them, these en-
tities are replaced by the contents that they reference [86]. Internal entities
can be defined as constants or referencing other entities recursively. The
latter may cause large documents to arise when fully expanded, since linear
inputs can produce exponential expansions [24], which can exhaust system’s
resources. This attack is also known as XML-Bomb [86].

56

Chapter 4. Preparations

External entities allows a DTD to include some of its contents from external
sources, and can be dangerous if their referenced URIs are not validated by
the XML parser. This makes it possible for an attacker to inject references
to locations in the target system that contains sensitive information [22], to
access limited resources multiple times [24], or to load malicious code from an
unknown, untrusted, URL [89]. The last two scenarios can lead to a XDoS.

Test method
Internal entities can be of the form [86]:

<!DOCTYPE xmlBomb [
<!ENTITY bomb ”bombombombombombomb”>
<!ENTITY bomb2 ”&bomb ; &bomb;”>
. . . .
<!ENTITY bomb1000 ”&bomb999 ; &bomb999;”>

]>
<node>&bomb1000;</node> <!−− i nvoca t i on o f the ent i ty−−>

External entities can be defined as [81, 24]:

<!−−p r i v a t e f i l e −−>
<!ENTITY a c c e s s F i l e SYSTEM ” f i l e :/// e t c /passwd”>

<!−−a c c e s s to re source−−>
<!ENTITY acces sRsr SYSTEM ” f i l e : /// dev/random”>
<!ENTITY accessURL SYSTEM ” http :// ma l i c i ou s . com”>

The SOAP definition [37] specifies that a SOAP message must not contain
DTD entities. We should verify if that is the case by sending messages
containing these entities.

Tools
soapUI.

Requirements tested
Survivability.

TC-9: Cross Site Scripting (XSS)

Objective
Test for XSS vulnerability.

Motivation
XSS attacks happen when malicious code (e.g., javascript) is injected into a
web page hosted at the server side, and are executed at the client side via
a web browser [86]. Once more, improper input validation leads to an XSS
vulnerability. Cross site scripting is featured as the number one security issue
in the OWASP Top 10 web application vulnerabilities [101].

Let us consider three types of XSS attacks:

57

Chapter 4. Preparations

1. Reflected: Also called non-persistent, this attack is possible when a user
is convinced to click on a specially crafted URL, having the mischievous
script as a GET parameter3. After clicking, the request is sent to
the web server, which does not sanitize the parameter, the response is
returned to the user, and the script is executed [81]. Ex:

http :// u r l . edu/par . j sp ? user=<s c r i p t >a l e r t (:P)</ s c r i p t >

2. Persistent: If the web application allows a user to store data, and
sanitization is not done properly, it may be possible to inject a script
that will be triggered when a user visits the infected page. Ex:

<s c r i p t s r c=”http :// l o c a l h o s t / xss−a l e r t . j s ”/>

3. DOM-based: DOM may be used to represent documents in a browser,
and enables dynamic scripts to reference elements of such documents.
A specially crafted request allied with the poor validation of user in-
put, which is used on the client side for dynamic content under DOM
elements, can result in an XSS vulnerability. The malicious code, in
this case, does not need to be sent to the server in order to be reflected
to the user [81, 102]. Ex:

<s c r i p t >
document . wr i t e (” Locat ion : ” +

document . l o c a t i o n . h r e f + ” . ”) ;
</s c r i p t >

http :// u r l . edu/par . html#user=
<s c r i p t >a l e r t (:P)</ s c r i p t >

Everything after the ’#’ is considered as a fragment, i.e., not part of
the query, and is not sent to the server.

Test method
Check for links that make use of GET parameters and choose some of the
input forms available in the application, using them to test for harmless
scripts (such as a pop up alert) that should be executed if there is an XSS
vulnerability.

It is also important to test for character encoding, since an attacker can
substitute the normal representation of characters such as ’<’ and ’>’ by
’%3c’ and ’%3e’, respectively, or by their entities representation ’<’ and
’>’. These are two ways of circumventing input validation. The OWASP
Testing Guide [81] explains in more details the problems regarding character

3Earlier we limited our scope to not include social engineering, but this is an important
attack vector and a typical example of an attack that happens by tricking a user.

58

Chapter 4. Preparations

encoding, among other tests. For an extensive list of XSS attacks, please
refer to the XSS Cheat Sheet [103].

Tools
WSFuzzer, soapUI, a browser.

Requirements tested
Survivability, privacy.

TC-10: XML Injection

Objective
Verify if the application allows injection of XML tags into SOAP requests.

Motivation
This is another flaw caused by improper input validation. The injection of
XML elements and attributes effectively change the structure of a document
[85], by adding or overwriting nodes, and can also allow XSS attacks.

Test method
Insert special characters into input fields, causing malformed documents.
There are a number of metacharacters to try out such as [81]:

• Single quote (’). If the input will be part of an attribute, a possible
result would be: <node att=’input’ ’>.

• Double quote (”). Same case as with single quote.

• Angular parenthesis (< and >). Ex: <node>>input</node>.

• Comment tag (<!- - / - ->). Ex:<node>input<!- -</node>.

• Ampersand (& - used to represent XML entities). It may be used to
test indirect XML injection, by using the entity representations of the
special characters. Ex: < (<), > (>), ' (’), " (”),
& (&).

• CDATA tags (<![CDATA[/]]> - contents inside these tags are not
parsed by the XML parser). These are usually used when metacharac-
ters need to be considered as text values. Ex:

<node ><![CDATA[]] >]] > </ node> /// ’]] > ’ i s not parsed .
−−−
<node>
< ! [CDATA[< s c r i p t >a l e r t (’XSS’) </ s c r i p t >]]>
</node>

The above code may launch an XSS attack .

59

Chapter 4. Preparations

If an error is returned that means that the input is not being properly sani-
tized.

Tools
WebScarab, soapUI, a browser.

Requirements tested
Survivability.

TC-11: Test the username/password authentication scheme

Objective
Verify if this scheme provides an adequate level of security.

Motivation
Not having a secure authentication procedure, it is easier for an attacker to
access users’ accounts and private information.

Test method
It is usual to check if an application requires a strong password, one that
makes use of upper case and lower case letters, special characters (e.g., !, $),
and numbers. Considering that the target group consists of elderly people,
requiring such passwords is just a way to force the user to write it down, not
offering much security. Instead, what should be verified is if the login is per-
formed over a secure connection (via SSL/TLS), to avoid packet sniffing, and
if the passwords are stored in an encrypted format, preventing unauthorized
access to users’ credentials.

Another defense mechanism to be tested is the account lockout, which pre-
vents brute force password discovery by locking an account after a certain
number of failed login attempts with a known username4 [81].

Tools
WebScarab, Wireshark, a browser.

Requirements tested
Authentication, privacy, security auditing.

TC-12: Test the transmission of security tokens

Objective
Verify if the security tokens are being transmitted securely.

4We do not consider account lockout attacks, which have the objective to lock valid
accounts [81].

60

Chapter 4. Preparations

Motivation
The security token is issued to a valid authenticated user, and provides in-
formation that should be used to prevent unauthorized access to the appli-
cation’s resources. As an example, we present listing 4.1:

<secur ityToken>
<userID>1</userID>
<sess ionID >agzn4kdKtcDgQAB/AQFmzg==</sess ionID >
<primaryRoleName>Patient </primaryRoleName>
<authenticat ionTime>

2009−05−18T10 : 2 3 : 4 1 . 2 2 4
</authent icat ionTime>
<s e rv i c e IDs >

C a l e n d a r Q u e r y r e t r i e v e E x i s t i n g A c t i v i t i e s A
</se rv i c e IDs >
. . .

</securityToken>

Listing 4.1: Example of a security token

The tag <serviceIDs> identify the service name and the corresponding op-
eration that can be performed by the user. Allowed operations are based
on the user’s role in the system, identified by the <primaryRoleName> tag.
Each role has its own set of pairs service-operation.

An attacker that manages to acquire a valid security token can execute badly
intentioned operations, even though they are legitimate in the application’s
point of view.

Test method
Sniff the connection between the service requestor (requesting the issuance
of the token) and service provider (returning the token), and verify if the
token can be distinguished.

Tools
Wireshark.

Requirements tested
Authentication, authorization, privacy.

TC-13: Test the effectiveness of the security token

Objective
Verify if the security token prevents unauthorized access to the services.

Motivation
As said before, the security token contains the user’s permissions on the sys-
tem, and should be checked before allowing the user to execute an operation.
A user that fails to present valid credentials should be denied access to the

61

Chapter 4. Preparations

application’s services. A flawed verification of the token may provide the
attacker with means to perform unauthorized operations.

Test method
Remove the security token from the requests, or just modify it, observing the
responses received.

Tools
soapUI.

Requirements tested
Authentication, authorization, integrity, security auditing.

TC-14: Session Management

Objective
Verify if the session management is properly handled.

Motivation
The OWASP Testing Guide [81] tells us: ”In order to avoid continuous au-
thentication for each page of a website or service, web applications implement
various mechanisms to store and validate credentials for a pre-determined
timespan.”

Such mechanisms are responsible for the session management and can be
exploited by an attacker to gain access to a user account, even without the
necessary credentials. We are interested in the cookie mechanism and how
it is configured in the POCA server to interact with the clients. Cookies are
briefly explained in the Guide: ”When a user accesses an application which
needs to keep track of the actions and identity of that user across multiple
requests, a cookie (or more than one) is generated by the server and sent
to the client. The client will then send the cookie back to the server in all
following connections until the cookie expires or is destroyed”.

We see that an attacker that gets hold of a valid cookie can impersonate a
user and act on his behalf, therefore cookies have to be well protected.

Test method
This test has the objective to verify how easy is to capture a cookie and
impersonate a user. Traditional methods start with packet sniffing and XSS
attacks. If a cookie is obtained, the next step is to use it (e.g., via a browser)
in requests sent to the application, observing if access to the user’s account is
possible. Important cookie attributes have to be checked to validate if they
meet a secure configuration:

62

Chapter 4. Preparations

• Secure: Cookies containing session IDs should be transmitted via secure
channels (e.g., HTTPS). The flag ”;secure” should be set in such cases,
serving as a security advice for the browser, indicating that the cookie
should be protected [104].

• HttpOnly: Even if some browsers do not support this attribute, it
should be set through the flag ”;HttpOnly”. The purpose is to prevent
a client side script from accessing the cookie.

• Expires: A cookie can be used until it expires or is destroyed. A session
ID cookie should have a short timespan to avoid being used for long
time if captured.

Tools
WebScarab, Wireshark, a browser.

Requirements tested
Authentication, authorization, privacy.

TC-15: SOAPAction Spoofing

Objective
Verify the workings of the SOAPAction header.

Motivation
First, let us present some definitions: A SOAPAction HTTP header indicates
the intent of a SOAP HTTP request. As specified in the SOAP 1.1 definition
[105] and better explained in the WS-I Basic Profile 1.1 [106], this header is
required when a client issues a SOAP HTTP request. The WS-I Basic Profile
2.0 [107] clarifies that this header is not necessary for SOAP 1.2, and should
not be expected in order to process the message. SOAP 1.2 [37] defines an
optional action parameter, with similar purposes as the SOAPAction HTTP
header, for the ”application/soap+xml” content-type header.

Jensen et al. (2007) [87] shows that the HTTP header may be used as the
trigger for a web service operation, regardless of the one requested in the
SOAP body. The study argues that a SOAP request which tries to invoke
a certain operation on a web service may end up invoking a different one,
if the SOAPAction HTTP header says so. Furthermore, the header can be
modified in any of the intermediary nodes.

Another problem can arise if an application-layer firewall is configured to
decide if it accepts or not SOAP requests based on this HTTP header, and
the server invokes the operation contained in the SOAP body, ignoring the
header, even if it was not supposed to be allowed.

63

Chapter 4. Preparations

Test method
The message below exemplifies the above mentioned situations and can be
adapted to meet our needs. It should be considered tests with and without
firewall filtering on the HTTP header, checking if one of the problems occurs.

POST / Tes tSe rv i c e HTTP/1.1
. . .
SOAPAction : ” editRecord ”

<Envelope>
<Body>

<deleteRecord>
. . .

</deleteRecord>
</Body>

</Envelope>

Tools
soapUI.

Requirements tested
Authorization.

Remarks
The choice for these test cases was not arbitrary, it were included attacks
that target standard web applications as well as SOA-based ones, and specific
attacks (considering a web services realization of SOA). Some cases also deal
specifically with the MPOWER middleware services, in order to evaluate the
security level that they achieved.

The number of test cases is not as comprehensive as it could be; the literature,
mentioned at the beginning of this chapter, defines many more cases that
should be taken into account in a security assessment. Time constraints
and project specifics, such as the ones that will be mentioned in section 5.1,
limited the list of cases to a set that could be accomplished and were relevant
for this study.

Other threats and test cases not dealt with in this assessment, but of interest
nonetheless, include:

• UDDI Poisoning

• Routing Detours

64

Chapter 4. Preparations

• XPATH Injection

• Schema Poisoning

• Metadata Spoofing (e.g., WSDL Spoofing)

• Transmission of Certificates

• Validation of Audit Logs

• Secure Storage of Sensitive Data

65

Chapter 5

Assessment Evaluation

In this chapter we present the problems faced before and during the testing
phase, relevant information to understand some scenarios, and the report
detailing the results obtained after performing the tests, identified in the
previous chapter, along with countermeasures.

5.1 Problems

It is very difficult to predict what is going to happen in a project for a person
who has little knowledge about it, and that was the case for the researcher.
The main issue was the delay in the preparation of the testing environment,
which compromised the available window to conduct the assessment. Having
less than one month to check the application and its functionalities, test
them thoroughly for security flaws, and propose recommendations, was barely
enough for the tester.

A second issue is related to the security configuration aspects. The WS-
Security standards, presented in section 2.2.2.2, were not put into practice
for the POCA and middleware services, preventing the tester from evaluating
their effectiveness to deploy a secure SOA Web Services healthcare applica-
tion. In fact, both links 1 and 2 from figure 4.1 were not secured in any way.
No SSL/TLS channels were established for secure communication, allowing
packet sniffing and, consequently, several attacks.

The PKI service was also not available for testing and the related test cases
had to be dropped. The auditing module was not functional, so no logs
were created during the tests, making it impossible to know about attack
attempts. It was also not possible to test the administrator functionalities,
since the application did not provide the necessary interfaces.

66

Chapter 5. Assessment Evaluation

5.2 Roles and Interfaces

In order to understand some scenarios, it is convenient to inform the reader
that the Norwegian POCA defines three roles, ”patient”, ”doctor”, and
”nextOfKin”. When a user logs in, he is redirected to the interface cor-
respondent to his role. Each of them have certain permissions on the system,
and should not be able to trigger operations not allowed for his role. Figure
5.1 presents the interface for a doctor before choosing a patient, while figure
5.2 shows the interface after a patient was selected. Figure 5.3 corresponds
to the patient’s interface. The nextOfKin’s interface is similar to the doctor’s
and will not be shown.

Figure 5.1: Doctor’s homepage interface (before a patient is selected)

Figure 5.2: Doctor’s interface after a patient is selected

67

Chapter 5. Assessment Evaluation

Figure 5.3: Patient’s interface

One of the main functionalities tested was the one used by doctors to send
messages to patients. Figure 5.4 shows the associated interface.

Figure 5.4: Doctor’s interface - send message

As the soapUI tool is constantly used, we present in figure 5.5 a screenshot
of it, with a SOAP request on the left side and the response on the right.

68

Chapter 5. Assessment Evaluation

Figure 5.5: The soapUI tool

5.3 Results and Countermeasures

The ideal approach would be to validate the countermeasures in a practical
implementation, but time constraints did not allow it, leaving it as a further
work to be done.

TCR-1: SQL Injection

Status
Not vulnerable.

Results
This test was performed on requests which, when submitted, resulted in a
database operation. The authentication and send message functionalities
were the main subjects of test. The attack vectors used are the ones present
in the WSFuzzer tool, covering different approaches to detect vulnerabilities.
Some examples:

• ’ or 1=1 or ”=’

• ’ or userid like ’%

• ’;shutdown–

To perform the fuzzing, the WSFuzzer did not behave as expected when load-
ing a WSDL file to generate the attack vectors, and an alternative way had
to be employed (appendix A contains relevant information on this method):

69

Chapter 5. Assessment Evaluation

1. Create a file ”F” with SQL injection inputs (from a WSFuzzer file).

2. Create a SOAP template (via soapUI) for generating the requests, in-
dicating by a ”?” marker the parameters that should be substituted by
the attack vector.

3. Run a script responsible for parsing ”F” and creating a SOAP request,
based on the template, for each attack vector in the file.

4. Run another script to launch all the requests generated in the previous
step, through a proxy (Burp Suite).

5. Analyze the results.

The analysis demonstrated that no vulnerabilities were found, indicating that
the application is immune against the most common types of SQL injection,
at least.

Countermeasures
It seemed that the database access was implemented securely, and a code re-
view identified the use of parameterized SQL statements [108] as the method
to avoid these attacks. This method makes use of ”bound” parameters, which
considers the whole user input as the parameter for the SQL command being
triggered. In practice, the following occurs:

• SELECT * FROM users WHERE username = ?; // ’?’ is the the
bound parameter

• ? => ’ or userid like ’% // the attacker’s input

• ”There is no user with username [’ or userid like ’%]” //message re-
turned from the authentication operation

Another popular way to prevent SQL injection is through input validation,
which is discussed in the results for XSS (TCR-9).

TCR-2: WSDL Scanning

Status
Vulnerable.

Results
The WSDL files are not published in a UDDI directory, but can be retrieved
from the server. The path to the files is not trivial if the attacker does not
know the system, but if he is able to sniff on messages sent between service
requestor and provider, he can easily obtain such information since he can

70

Chapter 5. Assessment Evaluation

observe the service’s endpoint. In figure 4.1, such scenario would happen on
link 2.

Possessing the WSDL, it is possible to craft messages to be sent to the
application. It was identified that some operations can be called in two
different ways, depending on their name suffixes. For example, the operation
”ePostMessageForPatient A” indicates that authorization is needed for the
request to succeed, while ”ePostMessageForPatient” is an operation that can
be executed without authorization. The normal flow can be seen below:

1. The request is triggered targeting the ” A” version;

2. The ” A” operation perform the authentication and requests the other
version to continue the processing;

3. This second operation is responsible for the non-security related logic
and effectively completes the request.

This implementation opens a big security hole in the system, letting a mali-
cious user perform requests without any verification.

Countermeasures
First of all, the (internal) operations that do not require authentication
should be removed from the WSDL. Even then, a smart attacker could still
guess the name of these operation by just removing the ” A” suffix. The
most appropriate alternative is to have just one version of each operation,
the one that requires authorization. Another option is to restrict access to
the internal operations via an XML firewall [87].

In our case, the architecture considered is not really complex, presenting only
two web services nodes, one service requestor and one service provider, in a
typical client/server configuration. This might permit the use of SSL/TLS
communication alone, since there are no other intermediaries in the flow, and
the SOAP messages are sent just between these two nodes. This approach
would prevent the attacker from discovering the service’s endpoint, since the
HTTP headers would be encrypted. In a scenario where the middleware
services are distributed in two or more servers, each dealing with different
sensitive information, or are accessed by other services in different trust do-
mains, data can go through untrusted intermediaries. In this situation, the
added use of message-layer security is fundamental to safeguard the data
transmitted, as already pointed out in section 2.2.1.1.

TCR-3: Replay Attacks

Status

71

Chapter 5. Assessment Evaluation

Vulnerable.

Results
Considering the figure 4.1, without a confidentiality mechanism it was pos-
sible to capture clear text HTTP requests on link 1, via WebScarab, and
SOAP requests on link 2, via Wireshark. For the replayed HTTP messages
to be accepted, it was just necessary to keep the same cookie, which is set
by the server and has a JSESSIONID value as the session identifier. Lacking
integrity protection, GET and POST parameters could be modified without
problems. After the user logged out, the replayed messages were not accepted
anymore, but it was possible to replay the authentication message and get
access to the system again.

The SOAP messages were easier accepted, since they access the web services
directly. These messages could be replayed at any time along with parameter
modification, via soapUI. Issues regarding the security token will be evaluated
in its respective results sections (TCR-12 and TCR-13).

As expected, a DoS was possible by sending hundreds of messages to the
server in a short interval.

Countermeasures
The use of SSL/TLS on link 1 would guarantee the confidentiality as well
as integrity of the HTTP messages, and at the same time prevent replay
attacks [27], while WS-Security mechanisms (Timestamp, XML Encryption,
XML Signature) would protect the SOAP messages on link 2. An example
of a timestamp is given next:

<wsse : Secur i ty >
<wsu : Timestamp wsu : Id=”timestamp”>

<wsu : Created >2009−06−11T08 : 5 5 : 0 0 Z</wsu : Created>
<wsu : Expires >2009−06−11T09 : 0 0 : 0 0 Z</wsu : Expires>

</wsu : Timestamp>
. . .
</wsse : Secur i ty >

Listing 5.1: A WS-Security timestamp element

The WS-Security specification [50] tells us that the obvious measure is to
sign the timestamp element in order to prevent its modification, and to cache
recent timestamps to be able to detect a replay; on top of that, messages with
a timestamp older than a certain period of time should be rejected. However,
the specification does not deal with the problem of clock synchronization,
which is important to verify the expiration time set by the service requestor.

The security token in use by the MPOWER platform has an element that
could be useful, to a lesser extent, in avoiding replay attacks, the ”sessionID”

72

Chapter 5. Assessment Evaluation

(created at the beginning of the authenticated session). It is natural that
a session lasts longer than the transmission of a message, so the freshness
control should not rely only on this element, since a message could be replayed
during the whole time the session is active. It could be useful to avoid replay
of messages that contain expired session IDs, though.

Another possibility to help prevent replay attacks is the use of message IDs,
part of the WS-Addressing standard [109].

TCR-4: Parameter Tampering

Status
Vulnerable.

Results
Considering the figure 4.1, without confidentiality and integrity protection it
was possible to use a proxy to intercept HTTP requests on link 1 and modify
GET and POST parameters, before relaying them to the service provider.

It was not possible to do the same with SOAP messages, so the workaround
was to sniff the requests on link 2, load them in soapUI, and send the modified
messages, in a similar way as the approach for replay attacks. The lack of
WS-Security (XML Signature) made it possible to tamper with parameters
as there is no control for message integrity.

Countermeasures
Once more, the correct deployment of SSL/TLS and WS-Security would have
prevented this type of attack, as previously discussed.

TCR-5: Forced Browsing

Status
Vulnerable.

Results
The first attempt to access the application assumed that the attacker did
not have access to any valid account, but somehow knew some interfaces’
addresses. The tests demonstrated that just one page was readily accessible,
the one responsible for showing the patient’s activities (”wholeday.jsp”), but
no information was available to be seen. Furthermore, the virtual directories
for resources such as javascripts, flash and images, could also be accessed.

The next step consisted in trying to access other parts of the system that the
user logged in did not have permission to. It was possible, for a nextOfKin

73

Chapter 5. Assessment Evaluation

and a patient, to access the doctor’s interface and execute requests such as
select patient, prescribe/delete drugs, send/delete messages, and post/delete
activities on the calendar (as a matter of fact, figure 5.1 shows the patient
Michael Simons browsing the doctor’s homepage). A not so serious result
showed us that a doctor could access the patient’s interface and perform any
operation as if he was himself a patient. Below we see the URL’s of each
interface:

http : / / 1 2 9 . 2 4 1 . 2 5 2 . 1 2 1 : 8 0 8 0 / NorwegianPOCA/ fami ly / index . j sp // nextOfKin
http : / / 1 2 9 . 2 4 1 . 2 5 2 . 1 2 1 : 8 0 8 0 / NorwegianPOCA/ simple / index . j sp // pa t i en t
http : / / 1 2 9 . 2 4 1 . 2 5 2 . 1 2 1 : 8 0 8 0 / NorwegianPOCA/ doctor / index . j sp // doctor

One would assume that the RBAC scheme, mentioned in section 2.3.2.1, is
not really effective, but performing an analysis of the roles’ configuration
in the database it was discovered that the users had indeed permission to
execute all the operations mentioned. Still, the context based access control is
not in action, since the doctor’s homepage presents all the registered patients
to any authenticated user when just the patients related to this particular
doctor should be visible.

Reviewing the application’s code, we found out that access to most of the
web pages is controlled by verifying if a session attribute is set, as shown
below:

i f (s e s s i o n . getValue (”MM Username”) != null &&
! s e s s i o n . getValue (”MM Username”) . equa l s (””)) {

// t e s t e r ’ s comment : the next cond i t i on does not add
// anything to the access con t ro l

i f (true | | (s e s s i o n . getValue (”MM UserAuthorization”)==””) | |
(MM authorizedUsers . indexOf ((S t r ing) s e s s i o n .

getValue (”MM UserAuthorization”)) >=0)) {
MM grantAccess = true ;

}
}

Since all users have this attribute (”MM Username”) set after they log in,
they can access whichever pages they want, as long as the path is known.

Countermeasures
Obviously, the correct path to the desired interface has to be known for the
attack to succeed, what may not be difficult to figure out for a skilled attacker
if the alias1 is too simple. For example, the alias for the doctor interface is
”doctor”, quite simple to guess.

It is extremely important to revise the system’s configuration, specifically
regarding roles’ permissions, to prevent unauthorized access to interfaces

1A name that an entity uses in place of its real name [13]. In our case, is the mapping
to the interface.

74

Chapter 5. Assessment Evaluation

and operations. The POCA should not deal with the access control, leaving
this task for the middleware services. For example, the authorization service
would check the security token of a patient and, therefore, not grant him
access to the doctor’s homepage, and neither authorization to prescribe drugs
to other patients or to himself. To control access to interfaces, the roles should
be related to a set of them and the security token might contain such a list.
A simplified example is shown below:

<secur ityToken>
. . .

< i n t e r f a c e s >u s e r I n t e r f a c e </ i n t e r f a c e s >
< i n t e r f a c e s >userViewMessages </ i n t e r f a c e s >
< i n t e r f a c e s >userViewCalendar </ i n t e r f a c e s >
. . .

</securityToken>

−−

i f (a u t h o r i z a t i o n S e r v i c e . i s A u t h o r i z e d I n t e r f a c e (secToken ,
” d o c t o r I n t e r f a c e ”)){

MM grantAccess = true ;
}

Another measure is to consider the context in which a user is requesting a
service, to prevent that a nextOfKin ”N”, related only to a patient ”PA”,
interacts with a patient ”PB”, or that a doctor manages another doctor’s
patients.

The virtual directories should also be protected from external access.

TCR-6: Buffer Overflow

Status
Not vulnerable.

Results
The several attempt to input large strings into the application, via the in-
terface, parameter tampering or direct SOAP requests, did not cause any
special problems. What happens is that the Oracle database returns an er-
ror indicating that the operation could not be completed, but no DoS or
other out of ordinary events occur. The maximum input length tested was
of 29164162 characters.

It is important to mention that this was a simple test, not involving tools
and more refined methods as the ones specified in the OWASP Testing Guide
[81].

Countermeasures
Good coding practice. Just as a reminder, languages such as Java and C#

75

Chapter 5. Assessment Evaluation

offer protections against buffer overflows, since they tightly control data
boundaries [110], while other languages like C or C++ have direct access
to memory, which make them vulnerable. Even though a language is safer,
the risk still exists and input validation should be considered [86].

TCR-7: XDoS Attacks

Status
Not vulnerable.

Results
All attack methods in this category failed and did not produce any XDoS
situation. The following list details the inputs used for testing:

1. Oversized payload: This scenario was already tested in the buffer over-
flow test case.

2. Recursive payload: A nested structure of 100000 elements was sent,
and the request was completed successfully.

3. SOAP array attacks: An array of size 1000000 was declared and sent
in the message; the operation was executed without problems.

Countermeasures
It seems that the XML parser at the server responds well to these attacks,
but if it was the opposite, Schema Validation could be a solution, by not
allowing messages that do not comply with the defined schema [87]. Schema
validation is also the basis for Schema Hardening, which is a method to
limit the memory used to process messages. One drawback of using schema
validation is that it is resource intensive and can lead to performance issues
[22].

In this test case, it is important to point out that the use of encryption can
obfuscate these attacks and, in order to avoid such scenario, it is necessary
to decrypt the message before validation takes place [87].

TCR-8: Entity Attacks

Status
Not vulnerable.

Results
As simple as it may sound, the XML parser of GlassFish was configured
to silently ignore DTD declarations, generating an error indicating that the
entity present in the SOAP body of our request was not declared.

76

Chapter 5. Assessment Evaluation

Countermeasures
The XML parser of the application server is configured correctly to prevent
this attack.

TCR-9: Cross Site Scripting (XSS)

Status
Vulnerable.

Results
Of the three cases considered, the application is vulnerable to two of them:

1. Reflected: As seen in figure 5.6, the parameter ”PatientName”, that
is used to print the name of the selected patient on the screen, was
injected with a script.

Figure 5.6: Doctor as a victim of XSS

Below we see a valid HTTP request (#1) turned into malicious ones
(#2 and #3).:

1) / doctor / patdoctor . j sp ?PatientName=Simmons%20Michael&PatientID=21
2) / doctor / patdoctor . j sp ?PatientName=<s c r i p t >a l e r t (’ xss ’) </ s c r i p t >

&PatientID=21
3)/ doctor / patdoctor . j sp ?PatientName=<IMG SRC=’ j a v a s c r i p t :

a l e r t (document . cook i e)’>&PatientID=21

2. Stored: It was possible to insert into the database the same kinds of
scripts used for the reflected attack, via the send message interface and
its direct SOAP request. The latter was possible by substituting the
character representations of ”<” and ”>” for their entities equivalent,
and is better explained in the results for XML injection. Other forms
of scripts can also be injected, but may depend on which browser is

77

Chapter 5. Assessment Evaluation

being used to be successful, and we will not focus on this aspect.

Countermeasures
As we can see, input validation is not being properly handled. These special
characters and tags should be filtered at the service provider side, before
processing any business logic, to avoid being injected. The POCA (service
requestor side) should also validate parameters that are just used locally (e.g.,
to show the name of the patient). Regular expressions are a common way to
restrict the input received, rejecting anything that does not match pre-defined
patterns, also paying attention to encoding and entities, as mentioned in the
test case. As an example, consider the following regular expression (it rejects
strings that starts with any number of white-space characters, followed by
any number of letters and numbers, and ending with ”<” or ”<”):

”ˆ(ˆ((\ s ∗\w∗)(<|& l t ;))) $”

Shanmugam et al. [111] presents a data flow designed to prevent XSS attacks,
based on a SOA environment, making use of schema validation and regular
expressions. A more general approach is proposed by Steel et al. [112], called
Intercepting Validator, also based on regular expressions. Both solutions
define for each kind of request a set of rules to be used on the validations,
since different requests deal with different data types.

There are several other references that deal with input validation, such as
the OWASP Validation Documentation [113], and they should be evaluated
to check which approach would bring the best results.

TCR-10: XML Injection

Status
Vulnerable.

Results
The system is vulnerable to three types of (stored) XML injection:

• Comment tag: Using the tag ”<!- -” as input, via the interface, it is
possible to comment parts of the HTML page returned. After sending
the tag at least twice2, the page rendering such inputs have sections,
which are contained between two occurrences of the tag, commented
out.

• Ampersand: An input such as <!- - does not cause problems via
the interface; since the browser encodes both ”&” and ”;” characters,

2That restriction was verified for Firefox (3.0.10), while for Opera (9.64) just one oc-
currence of the tag was enough.

78

Chapter 5. Assessment Evaluation

the XML parser does not recognize anymore the entity ”<”. A SOAP
direct request has the same effects as the comment tag injection above.

Let us now consider the next inputs:

&l t ; s c r i p t> ; a l e r t (’ xss ’)& l t ; / s c r i p t> ;
&l t ; s c r i p t >a l e r t (’ xss ’)& l t ; / s c r i p t >

In this case it was possible to perform an XSS injection, since the
XML parser converts the entities to their character representations and
the script is stored in the database. Testing such inputs through the
interface was harmless, due to character encoding performed by the
browser.

• CDATA tags: Another attack that just worked via a SOAP direct
request, again causing an XSS injection. The input string for this case
was:

< ! [CDATA[<]] > s c r i p t < ! [CDATA[>]] > a l e r t (’ xss ’) < ! [CDATA[<]] >/ s c r i p t
< ! [CDATA[>]] >

Countermeasures
The same type of input validation applied for XSS attacks should be em-
ployed to prevent XML injection, with the addition of comment and CDATA
tags.

TCR-11: Test the username/password authentication scheme

Status
Insecure.

Results
The first problem is related to the non use of SSL/TLS on link 1 in figure
4.1. The login request can be easily intercepted and checked for the user’s
credentials. Even if this channel was secure, there should be another confi-
dentiality protection on link 2, since an attacker can also eavesdrop on the
SOAP messages being sent from service requestor to service provider. In this
way, it is possible to impersonate users and get access to private information
without much effort.

A second problem arises from the fact that the users’ passwords are stored
in cleartext in the database. Any person with access to the database can
obtain this confidential information.

As expected, the authentication service allows very simple passwords, which

79

Chapter 5. Assessment Evaluation

could be efficiently discovered via dictionary attacks3 if the username is
known, but the account lockout functionality prevents this by locking the
user’s account after three wrong guesses.

An attacker can find out if a username is valid or not due to the message
contained in the SOAP response to a login request:

• If the username exists and the password is wrong, an exception is re-
turned.

• If the username does not exist, the message indicates so.

Countermeasures
As already mentioned, for the first issue, use of SSL/TLS allied with WS-
Security should offer a reasonable level of confidentiality for the authentica-
tion procedure, preventing eavesdropping.

Regarding the second issue, a secure approach is to hash the passwords to-
gether with a random value (salt). Just by hashing the password, it is already
not trivial to discover the original value by looking at its digest. Consider
the attack where pre-computed hash tables (Rainbow Tables), based on large
dictionaries, are used to compare their values with the target hashes in or-
der to find matches that would reveal the passwords [15]. After appending
the salt to the original password, the hash of the concatenated string should
be completely different and the effectiveness of the attack will greatly drop.
Another advantage of the salt is that it prevents duplicate passwords from
being distinguished [14], since the hash of ”pass+salt1” will be different from
”pass+salt2”. The table 5.1 illustrates the concept.

Password Salt Hash(Password) Hash(Password+Salt)
lancaster Gb?@ ea2f71710b0082b b23b8477c901d0f
lancaster H7l1 ea2f71710b0082b d589296de65805a

Table 5.1: Use of salted hash on passwords

Finally, the message returned after a login attempt should be more generic,
such as ”There is no user X or the password does not match”, to avoid giving
too much information.

TCR-12: Test the transmission of security tokens

3Dictionary attacks are brute force attacks based on trying every word contained in
a large list [13]. Such lists may contain any kind of strings, such as common names or
birthday dates.

80

Chapter 5. Assessment Evaluation

Status
Insecure.

Results
As already mentioned, the non use of security mechanisms such as SSL/TLS
and WS-Security makes the application and middleware services really vul-
nerable and it is not different for the transmission of the security token. An
attacker can easily sniff on the SOAP response carrying the token and use
it in his own requests, impersonating an authenticated and authorized user.
Even if the service provider just offers operations that need authentication
(operations ” A”, see TCR-2), with the security token the attacker will have
access to all the resources allowed for the legitimate user.

Countermeasures
Use of SSL/TLS and WS-Security to protect the token’s confidentiality.

TCR-13: Test the effectiveness of the security token

Status
Insecure.

Results
In an ideal and unrealistic situation, the security token works relatively well,
it prevents unauthorized users from triggering operations of type ” A”. Still,
the tests showed that some of its elements were not checked to perform the
authorization and could be removed, such as ”sessionID”, ”authentication-
Time”, and ”primaryRoleName”, only being necessary the ”userID” and the
”serviceIDs” correspondent to the requested operation. The lack of integrity
protection permits that an attacker tries to craft valid ”serviceIDs” elements,
using them to request other operations not available in the security token.

Countermeasures
Integrity protection is the appropriate way to guarantee that the security
token delivers what it expected from it, access to authorized services only.
Like in most cases, the mechanisms provided by SSL/TLS and WS-Security
are essential here. Important to mention again that the security token is not
checked for operations that do not need authorization (see TCR-2).

TCR-14: Session Management

Status
Insecure.

Results

81

Chapter 5. Assessment Evaluation

The session management at the POCA server is poorly implemented, and
we saw that basic security measures are not in practice, thus it is easy to
perform a session hijacking in which the attacker ”steals” the user session
[81]4. The necessary steps for the attack are outlined below:

1. User ’U’ requests the login page.

2. Server creates a session and sends back a cookie (JSESSIONID) to be
set on the client browser.

3. ’U’ logs in via username and password (browser sends the cookie to the
server), is authenticated, the security token is created and it becomes
a session attribute, stored at the POCA server.

4. The attacker ’A’ could sniff the communication at any point, waiting
for a cookie transmission, or even retrieve one through a successful XSS
attack5. Having accomplished his objective, he sets the same cookie in
his browser and requests one of the pages accessible by ’U’.

5. The attacker’s cookie presents a valid session ID, which is used to re-
trieve the associated security token. In this way, he is identified and
authenticated as ’U’, being granted access to the requested resource.

6. Now, ’A’ can perform any operation authorized for ’U’.

It was observed that the cookie does not have its expiration date set and
therefore an attacker that obtains such a cookie could access the application
at any time, as long as the user does not log out. The attacker cannot perform
any other actions if the user logs out, indicating that the session is not valid
anymore. In fact, just the session attribute responsible for the access control
(see TCR-5) is reset, as we can see next:

i f (r eque s t . getParameter (”MM Logoutnow”) != null &&
reques t . getParameter (”MM Logoutnow”) . equa l s (”1”)) {

s e s s i o n . putValue (”MM Username” , ””) ;
s e s s i o n . putValue (”MM UserAuthorization” , ””) ;

. . . .

Figure 5.7 shows the session attribute ”MaxInactiveInterval” set to ”-1”,
meaning that the session does not expire, and could be accessed again if the
user still has the associated cookie. In this case, the attacker could reuse the
cookie already obtained.

4We say steal, but the legitimate user does not have his session interrupted, still expe-
riencing normal access. Such an attack is called session ”sidejacking” by Robert Graham
of Errata Security [114], and happens when an attacker obtains a session cookie sent over
insecure channels and is able to impersonate the user [115].

5In reality, the attacker could have gotten the user’s credentials, as previously discussed,
but the objective here is to demonstrate another kind of attack.

82

Chapter 5. Assessment Evaluation

Figure 5.7: Session does not expire

The dangers of an attacker getting hold of a valid cookie are even higher
since it is possible to access all the interfaces defined for the application (see
TCR-5).

Countermeasures
SSL/TLS provides the means to prevent an attacker from stealing a session
cookie, by encrypting the data transmitted on link 1 (figure 4.1). Further-
more, the session attributes identified in TC-14 should be set accordingly to
avoid a cookie from not expiring, from being compromised via XSS attacks,
and from being sent over insecure channels. If the risk of having the cookie
stolen is acceptable (e.g., using HTTPS for the login and HTTP afterwards),
the application server should sign it to guarantee its integrity.

To avoid the reuse of a cookie by an attacker, the session at the POCA server
should be destroyed after a user logs out, besides expiring after a certain time
of inactivity.

The tester is aware that users of the application may leave it connected for a
long time and could be bothered if their sessions are interrupted periodically,
so the best option would be to secure the transmission of the cookie, so it
does not end up in malicious hands in the first place.

TCR-15: SOAPAction Spoofing

Status
N/A.

Results
It was observed that the operations triggered on the web services depend

83

Chapter 5. Assessment Evaluation

only on the request in the SOAP body, no matter what the SOAPAction
header indicates.

It was not possible to configure an application-layer firewall to perform the
second part of the tests.

Countermeasures
As Jensen et al. (2007) [87] proposes, the SOAP body should be inspected
to verify which operation is being requested and it should be compared to
the one indicated in the SOAPAction header. Any discrepancy may indicate
an attack and the request should be dropped.

84

Chapter 6

Recommendations

The aim of this chapter is to provide recommendations that the tester con-
siders useful for tightening the security of the MPOWER platform and the
POCA. These recommendations can also be applied to other SOA-based
(healthcare) systems for improving their security.

6.1 Summary of Risks and Security Review

Table 6.1 presents a summary of the issues that need to be tackled to make
sure the middleware is more secure and can be utilized in a secure manner
by any healthcare application, based on the results obtained in section 5.3.

Test Case Results
TC-2:
WSDL Scanning

Operations that do not need authorization can be in-
voked directly via SOAP messages.

TC-3:
Replay Attacks

Any kind of replay attack is possible, with or without
modification, at any time.

TC-4:
Parameter Tampering

Requests can be modified on the fly, without detection.

TC-5:
Forced Browsing

Users can access interfaces and functionalities related
to roles they do not have.

TC-9:
Cross Site Scripting (XSS)

It is possible to recover session cookies and then hijack
users’ sessions.

TC-10:
XML Injection

Can trigger XSS attacks.

TC-11:
Test the username/password authentica-
tion scheme

Login credentials are transmitted over insecure chan-
nels and passwords are stored in cleartext in the
database.

TC-12:
Test the transmission of security tokens
TC-13
Test the effectiveness of the security token

The tokens may be captured by an attacker wishing to
send direct SOAP requests, and can also be modified in
an attempt to trigger other operations not indicated.

TC-14:
Session Management

It is possible to steal session cookies and impersonate
users for long periods of time.

Table 6.1: Summary of risks

85

Chapter 6. Recommendations

The initial idea was to prepare a risk prioritization list based on the OWASP
Testing Guide’s method, presented in section 3.4.3, but in the tester’s per-
ception all the security issues are easy to exploit and can cause great impact
on the confidentiality and integrity of data.

Adoption of security schemes, such as SSL/TLS and WS-Security, should
take into consideration what is it really expected from a SOA realization.
Is it going to be used in a client/server approach or as a true interaction
between distributed services? If the goal is to achieve communication across
boundaries, as the paradigm proposes, WS-Security should be part of the
solution design and should be configured for the services, enabling message-
layer security (end-to-end). Otherwise, there is no need to worry about all
the standards under WSS, being enough the use of SSL/TLS alone. For the
remainder of the chapter, we consider the SOA standard view.

Considering the MPOWER components listed in table 2.3, we can say that
most of them could not be evaluated because they were not active, such as the
PKI service, Audit, Encryption, Secure Storage and Secure Communication.
The Audit service could provide the means for detecting attack attempts,
while the other four could help in the data protection, by safeguarding data
in transit and data at rest. Administrator operations were not assessed as
well, as mentioned in section 5.1. The following recommendations result from
the observations and countermeasures in chapter 5.

As we have seen in section 2.2.2.2, the standards XML Encryption and XML
Signature are the basis of the necessary protection for the SOAP messages,
if applied correctly, preventing attacks such as parameter tampering and ses-
sion hijacking. The PKI module of the MPOWER platform could be the
central piece of this scheme, as it provides the means for public key cryptog-
raphy, essential for session (symmetric) key exchange and digital signatures.

Regarding the Token Management service, the custom security token de-
signed for the MPOWER platform could be seen as an SSO solution, in the
same way as SAML assertions, as long as it is signed by a trusted party. The
signature would guarantee that the token is trustworthy, as well as protect
its integrity. We have seen in the TCR-12 that confidentiality is extremely
important for the token as well, since an eavesdropper could use it for his
particular requests. In a scenario where the middleware services are accessed
from an external organization, WS-Trust could be implemented in order to
generate the necessary security tokens.

The Access Control module would definitely be more successful if the con-
figuration of roles were more restrictive and the context of the requests were
considered. There is no point in allowing a patient to perform doctor’s ac-

86

Chapter 6. Recommendations

tivities, or a nextOfKin to observe and interact with unrelated patients. The
POCA should take advantage of the middleware services and base its access
control logic on them, avoiding such a weak verification of session attributes
as shown in the TCR-5.

For every operation that deals with parameters, an input validator mecha-
nism should be triggered before any other business logic, to avoid injection
attacks. Such defense is important in both POCA and middleware services,
as noted in the TCR-9.

Message freshness identifier is an element useful for preventing replay attacks,
and can be ensured via WS-Security through its Timestamp node, as we have
seen in the TCR-3.

The MPOWER Project Deliverable D5.2 [67] contains highly useful recom-
mendations for the security of the platform, some of which were contemplated
as countermeasures for the issues found in the assessment, and should be re-
viewed.

6.2 Configuration Aspects

When configuring SSL/TLS on the application servers (e.g., via the GlassFish
Admin Console), the best alternative would be to consider the most recent
standard, which is the TLS 1.2 [27] at the time of this writing. In this way,
from the available cipher suites1, on the servers, the ones that provide better
security should be chosen2.

Usually, just the server authenticates itself to the client when a secure channel
is established, but in one-way authentications there is a risk of a man-in-
the-middle attack, since the party providing its certificate cannot verify the
identity of the other party. The most secure approach would be to require a
mutual authentication, where both parties offer proof of their identity to each
other, by means of public key certificates, signed by a trusted party (e.g.,
an MPOWER CA). This method would prevent the execution of requests
coming from untrusted nodes. In this setting, the MPOWER users and
servers should have access to certificates provided by the PKI service.

Configuration of WSS may be facilitated via the Netbeans IDE , which inte-
grates well with the GlassFish application server and was the chosen platform
for the development of the middleware services, being part of the MPOWER

1Cipher suites are negotiated between client and server, and specify which crypto-
graphic algorithms will be used in the secure connection.

2TLS 1.2 removed support for DES, for example, since it is considered an insecure
cipher. The standard still supports MD5, but this hash function is also considered insecure.

87

Chapter 6. Recommendations

Tool Chain3 [58]. Online references, such as the JAX-WS Reference Imple-
mentation Project [116], offer step-by-step tutorials to configure the security
for the service requestor and service provider, using Netbeans.

6.3 Distribution Model

Figure 6.1 exemplifies a possible distribution of MPOWER servers over the
internet, and how they are accessed, even by external organizations. We
see that each server has a user interface (UIF) and a service interface (SIF).
A UIF is necessary for the users to interact with the services, and may be
represented by a web portal, while a SIF represents the machine-to-machine
interface, used by services to communicate with each other.

Figure 6.1: MPOWER distribution model. Figure adapted from the
MPOWER Project Deliverable D5.2 [67].

We can see that requests can go through untrusted zones in the scenario
shown in figure 6.1, justifying the use of message-layer security, while other
issues discussed earlier corroborates the use of SSL/TLS. Such architecture
may represent other SOA systems as well, which may benefit from following
the advices presented.

Besides the already mentioned SSL/TLS and WS-Security, network firewalls
are in place to prevent attacks on other server applications that should not
be reached from external networks, such as ftp or smtp, reducing the attack
surface of the system [67]. These firewalls could also restrict access to the

3The set of tools necessary for development, deployment and testing.

88

Chapter 6. Recommendations

middleware services, via access control lists (ACL), only allowing requests
from pre-defined network addresses or subnets. A remark though, the use of
IP based authentication, alone, is vulnerable to spoofing attacks [14].

The deployment of XML firewalls (or application layer firewalls) could add
another level of protection, by inspecting the contents of incoming and out-
going SOAP messages. A number of policies can be configured to prevent
several kinds of threats [30, 88]. Execution of a service’s internal operations
can also be avoided, as already mentioned in the TCR-2.

6.4 Final Comments

By applying the recommendations contained in this chapter, the overall secu-
rity for both the middleware services and the POCA is expected to increase,
but it is important to remind the reader that security should be part of the
whole software development life cycle and should not be overlooked. Testing
for security during the development may reveal vulnerabilities earlier in the
process and reduce costs related to mitigation. Documenting the security
related decisions, including configuration details, is another way to check for
issues and verify if the implementation and deployment satisfy the require-
ments.

To achieve the level of security required for healthcare applications, a lot
of effort has to be put into the development of secure components and their
integration. It does not matter if one component provides an acceptable level
of security but it is misused. Several scenarios have to be thought of and
tested, to guarantee that private data is protected at all times. It is normal
to say that ”security is only as strong as its weakest link”.

89

Chapter 7

Discussion

This chapter has the objective to reflect about some aspects of the work
conducted in this thesis.

What have we achieved?

The assessment proved that the POCA and the MPOWER platform are
vulnerable to common attacks targeting web applications. Considering the
OWASP Top 10 web application vulnerabilities [101], seven of them are
present in our case study system:

1. Cross Site Scripting (XSS)

2. Injection Flaws

3. Information Leakage and Improper Error Handling

4. Broken Authentication and Session Management

5. Insecure Cryptographic Storage

6. Insecure Communications

7. Failure to Restrict URL Access

Based on our observations, we can infer that SOA-based systems in general
are expected to suffer from the same problems. While this is not surprising,
the fact that an organization that is concerned with data confidentiality and
integrity does not implement basic security mechanisms, makes us think how
many other similar cases are there, completely vulnerable.

Even though we evaluated a healthcare system, we can extrapolate the results
to other domains since the vulnerabilities found are not specific. Therefore,
the findings in this report are relevant when considering the development of

90

Chapter 7. Discussion

secure applications, based on SOA or not. Problems related to disclosure of
personal information will cause a loss of users’ trust and make the organiza-
tion(s) behind the applications liable to lawsuits, no matter if it happens in
the healthcare domain or any other.

This report can be considered as an alert at the same time as a high level
guide to test for security issues and fix them.

What could have been done differently?

In the beginning, it was thought that the system to be tested would be
more secure, having implemented basic security measures that could prevent
some kinds of attacks. The figure 4.1 presented the expected testing environ-
ment, indicating what the tester imagined it to be. If this were the reality
faced during the tests, different test cases would provide us with a better
idea about the security level achieved, e.g., testing for weak ciphers in the
SSL/TLS suite, evaluating message-layer security, checking the validity of
digital certificates and verifying if forgery would be possible.

Unfortunately, there was no time to configure the environment in the desired
way, and such tests will have to be performed in a further occasion.

Was our method an appropriate one?

Naturally, the decision to exclude or include test cases could just be made
after understanding better the system and its defenses, what bring us to
the methodology aspect of our assessment. As shown in section 3.6, the
planning phase of our approach contemplates the selection of test cases and
incremental changes to the resulting list. In general, the adopted method for
performing the tests was a tentative to offer a less complex solution based
on complicated, and extensive, methodologies and guidelines. It is normal
that, in this process, some details are left out and therefore may cause some
sort of impact on the end result. We have to verify if such a simplification is
possible and if is worth it or not.

Still, the method may be modified in any way a tester wants, or needs, in
order to provide the desired results. This characteristic gives flexibility but is
also a disadvantage, since there is a need to reevaluate the standard method-
ologies in order to include additional controls if the assessment changes focus.
The need for a more comprehensive methodology, or the adoption of just cer-
tain parts of different methodologies, may depend on the conditions of the
assessment. In our case we had access to a controlled environment specifically
set up for the tests, but what if we were assessing a production environment?
Then, additional measures might have to be considered, such as Rules of
Engagement, increasing the complexity of the approach. The good part is

91

Chapter 7. Discussion

that after defining the new set of controls, the new version of the method is
ready to be applied in assessments with similar requirements.

Up to what extent our results are valid?

Even though we had a dedicated testing environment and access to any
necessary resource, fact that made it easier to execute the attacks (e.g., via
proxying or sniffing), we have to bear in mind that a skilled attacker could
perform the same actions on the system, only needing more preparation to do
so. Just having the possibility for an attack is enough reason to be worried
about the security of a system. In a production environment the system will
be exposed and, if any small security flaw is active, we should expect some
form of attack to be successful. In this way, the vulnerabilities found have
to be mitigated; since we do not know about possible hidden problems, it is
better to eliminate the ones we are sure about.

We also have to point out that both POCA and the MPOWER platform are
prototypes of an ongoing research project, which may have relaxed on the
security aspects in a first moment, and are still not ready for production.
We expect that this report will motivate the ones involved in the project to
properly integrate security in it.

92

Chapter 8

Conclusions and Further Work

This chapter summarizes the achievements of our work and discusses further
possibilities related to this project.

8.1 Conclusions

Any project dealing with sensitive information should take the appropri-
ate actions to protect this information for being disclosed or manipulated
(e.g., deleted, altered), and such is the case for the MPOWER platform.
Its objectives are noble and with a security focused approach it can fulfill
the requirements, shown in table 2.2, needed to comply with the laws and
regulations. Just in this way it will be usable by healthcare organizations.

The choice for using Service Oriented Architecture makes it easier for the
middleware services to be utilized by different organizations that wish to
share information to achieve better results in their operations. Sharing
knowledge can help all involved parties to deliver better services to their
patients, but if the means to provide such services are not secure, private
information can end up in the hands of malicious entities. SOA introduces
new challenges to safeguard data, and if these are not properly understood
when designing and implementing a SOA-based system, the results will not
be satisfactory.

Designing and implementing secure systems is not an easy task, especially
when there are many entry points into the system as is the case in SOA.
The fact that trust boundaries are crossed is just another important reason
to pay attention to security, since we do not know how secure are the zones
being traversed and what could happen to the data in transit. As seen during
the assessment, transport-layer allied with message-layer security may help

93

Chapter 8. Conclusions and Further Work

providing the level of security required in a (healthcare) SOA environment,
but other standard measures have to be taken as well, such as input validation
and proper configuration.

We have seen that SOA-based applications may be target of attacks em-
ployed against the traditional client-server architecture approach, besides a
new wave of attacks. In this way, when testing for security every possible
test case have to be considered. Regardless of the initial cost increase, having
such focus since the beginning of a project and during the whole develop-
ment life cycle could yield good results and save on mitigation or, even worse,
lawsuit costs.

8.2 Further Work

As we have seen, it was not possible for the tester to validate the proposed
solutions and to effectively evaluate the impact on security of a WS-Security
implementation for the MPOWER platform. The next steps to be taken are
to deploy the necessary countermeasures, properly configure the WS-Security
mechanisms, put into action all the security components that could not be
tested, and conduct a second assessment, based on the experiences achieved
in this report. With a hardened system, and enough time for testing, the
real effectiveness of web services security in a healthcare environment will be
obtained.

A different setting for the tests could also be insightful, such as the one
presented in figure 6.1. Such an environment could better provide us with
interesting results from a security assessment by considering distributed ser-
vices and untrusted zones, which are expected in a SOA paradigm.

94

Bibliography

[1] Computer Economics. SOA Adoption Surges (accessed 16-02-
2009). URL: http://www.computereconomics.com/article.cfm?

id=1423&tag=rbspot, January 2009.

[2] Gartner, Inc. Gartner Says the Number of Organizations Planning to
Adopt SOA for the First Time Is Falling Dramatically (accessed 16-
02-2009). URL: http://www.gartner.com/it/page.jsp?id=790717,
November 2008.

[3] IBM. New to SOA and web Services (accessed 17-02-2009). URL:
http://www.ibm.com/developerworks/webservices/newto/.

[4] Girish Juneja, Blake Dournaee, Joe Natoli, and Steve Birkel. Improv-
ing Performance of Healthcare Systems with Service Oriented Architec-
ture (accessed 26-02-2009). URL: http://www.infoq.com/articles/
soa-healthcare.

[5] Nasjonal IKT. Tjenesteorientert arkitektur i spesialhelsetjenesten
(SOA for specialized health services). Available at http://www.

nasjonalikt.no/Publikasjoner/Tjenesteorientert_arkitektur_

i_spesialisthelsetjenesten_hovedrapport_full_v1_0e.pdf,
2008.

[6] Jeremy Epstein, Scott Matsumoto, and Gary McGraw. Software se-
curity and SOA: danger, Will Robinson! Security & Privacy, IEEE,
4(1):80–83, 2006.

[7] New Rowley Group, Inc. The Challenge of Securing SOA. Avail-
able at ftp://ftp.software.ibm.com/software/uk/flexible/wp/

the_challenge_of_securing_soa.pdf, 2006.

[8] Commission of the European Communities. Directive 95/46/EC of the
European Parliament and of the Council of 24 October 1995: On the
Protection of Individuals with Regard to the Processing of Personal

95

Bibliography

Data and on the Free Movement of such Data. Official Journal of the
European Communities L 281, 23 November 1995, p. 31.

[9] Sasan Adibi and Gordon B. Agnew. On the diversity of ehealth security
systems and mechanisms. Engineering in Medicine and Biology Soci-
ety(EMBS), 2008. 30th Annual International Conference of the IEEE,
pages 1478–1481, 2008.

[10] MPOWER Consortium. Middleware Platform for eMPOWERing cog-
nitive disabled and elderly (accessed 21-03-2009). URL: http://www.
mpower-project.eu.

[11] Karen Scarfone, Murugiah Souppaya, Amanda Cody, and Angela Ore-
baugh. NIST Special Publication 800-115: Technical Guide to Infor-
mation Security Testing and Assessment. NIST, 2008.

[12] Nicolai Josuttis. SOA in Practice: The Art of Distributed System De-
sign. O’Reilly Media, Inc., 2007.

[13] R. Shirey. Internet Security Glossary. IETF RFC 2828, 2000.

[14] William Stallings. Cryptography and Network Security (4th Edition).
Prentice-Hall, Inc., 2005.

[15] Hossein Bidgoli. Handbook of Information Security, Information War-
fare, Social, Legal, and International Issues and Security Foundations
(Handbook of Information Security). John Wiley & Sons, Inc., New
York, NY, USA, 2006.

[16] D. Richard Kuhn, Vincent C. Hu, W. Timothy Polk, and Shu-Jen
Chang. NIST Special Publication 800-32: Introduction to Public Key
Technology and the Federal PKI Infrastructure. NIST, 2001.

[17] Elaine B. Barker, William C. Barker, and Annabelle Lee. NIST Special
Publication 800-21: Guideline for Implementing Cryptography In the
Federal Government. NIST, 2005.

[18] S. Chokhani and W. Ford. Internet X.509 Public Key Infrastructure.
IETF RFC 2527, 1999.

[19] IBM. Service-Oriented Architecture expands the vision of Web ser-
vices, Part 1 (accessed 21-02-2009). URL: http://www.ibm.com/

developerworks/webservices/library/ws-soaintro.html.

[20] Jeff A. Estefan, Ken Laskey, Francis G. McCabe, and Danny Thornton.
Reference Architecture for Service Oriented Architecture Version 1.0.
OASIS Open, 2008.

96

Bibliography

[21] C. Matthew MacKenzie, Ken Laskey, Francis McCabe, Peter F. Brown,
and Rebekah Metz. Reference Model for Service Oriented Architecture
1.0. OASIS Open, 2006.

[22] Anoop Singhal, Theodore Winograd, and Karen Scarfone. NIST Special
Publication 800-95: Guide to Secure Web Services. NIST, 2007.

[23] Steve Graham, Simeon Simeonov, Toufic Boubez, Doug Davis, Glen
Daniels, Yuichi Nakamura, and Ryoi Neyama. Building Web Services
with Java: Making Sense of XML, SOAP, WSDL, and UDDI. Sams
Publishing, 2001.

[24] Ramarao Kanneganti and Prasad Chodavarapu. SOA Security. Man-
ning Publications Co., 2008.

[25] Jothy Rosenberg and David L. Remy. Securing Web Services with WS-
Security: Demystifying WS-Security, WS-Policy, SAML, XML Signa-
ture, and XML Encryption. Sams Publishing, 2004.

[26] Judith Hurwitz, Robin Bloor, Carol Baroudi, and Marcia Kaufman.
Service Oriented Architecture For Dummies (For Dummies (Comput-
er/Tech)). Wiley Publishing, Inc, 2006.

[27] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Pro-
tocol Version 1.2. IETF RFC 5246, 2008.

[28] E. Rescorla. HTTP Over TLS. IETF RFC 2818, 2000.

[29] Eric Pulier and Hugh Taylor. Understanding Enterprise SOA. Manning
Publications Co., 2005.

[30] Mamoon Yunus and Rizwan Mallal. An empirical study of security
threats and countermeasures in web services-based services oriented
architectures. In WISE, volume 3806 of Lecture Notes in Computer
Science, pages 653–659, 2005.

[31] Artem Vorobiev and Jun Han. Security attack ontology for web ser-
vices. In SKG ’06: Proceedings of the Second International Conference
on Semantics, Knowledge, and Grid, page 42. IEEE Computer Society,
2006.

[32] Hugo Haas and Allen Brown. Web Services Glossary (accessed 02-03-
2009). URL: http://www.w3.org/TR/ws-gloss/.

[33] IBM. IBM DeveloperWorks: Standards and Web Services (ac-
cessed 02-03-2009). URL: http://www.ibm.com/developerworks/

webservices/standards/.

97

Bibliography

[34] David Hunter, Jeff Rafter, Joe Fawcett, Eric van der Vlist, Danny
Ayers, Jon Duckett, Andrew Watt, and Linda McKinnon. Beginning
XML, 4th Edition. Wrox Press Ltd., 2007.

[35] Fielding, et al. HTTP/1.1, part 1: URIs, Connections, and Message
Parsing. IETF RFC 2616, 1999.

[36] Thomas Erl. Service-Oriented Architecture: Concepts, Technology, and
Design. Prentice Hall PTR, 2005.

[37] Martin Gudgin, Marc Hadley, Noah Mendelsohn, Jean-Jacques
Moreau, Henrik Frystyk Nielsen, Anish Karmarkar, and Yves Lafon.
SOAP Version 1.2 Part 1: Messaging Framework (accessed 03-03-2009).
URL: http://www.w3.org/TR/2007/REC-soap12-part1-20070427/,
2007.

[38] Michael McIntosh, Martin Gudgin, K. Scott Morrison, and Abbie Bar-
bir. WS-I Basic Security Profile, Version 1.0 (accessed 11-03-2009).
URL: http://www.ws-i.org/Profiles/BasicSecurityProfile-1.

0.html, 20007.

[39] Mark O’Neill, Phillip Hallam-Baker, Seán Mac Cann, Mike Shema,
Ed Simon, Paul A. Watters, and Andrew White. Web Services Security.
McGraw-Hill, 2003.

[40] Mark Bartel, John Boyer, Barb Fox, Brian LaMacchia, and Ed Simon.
XML Signature Syntax and Processing (Second Edition) (accessed 12-
03-2009). URL: http://www.w3.org/TR/xmldsig-core, 2008.

[41] Takeshi Imamura, Blair Dillaway, and Ed Simon. XML Encryption
Syntax and Processing (accessed 16-03-2009). URL: http://www.w3.
org/TR/xmlenc-core/, 2002.

[42] Phillip Hallam-Baker and Shivaram H. Mysore. XML Key Management
Specification (XKMS 2.0) (accessed 16-03-2009). URL: http://www.
w3.org/TR/xkms2/, 2005.

[43] Paul Madsen and Eve Maler. SAML V2.0 Executive Overview. OASIS
Open, 2005.

[44] Scott Cantor, John Kemp, Rob Philpott, and Eve Maler. Asser-
tions and Protocols for the OASIS Security Assertion Markup Language
(SAML) V2.0. OASIS Open, 2005.

[45] John Hughes, Scott Cantor, Jeff Hodges, Frederick Hirsch, Prateek

98

Bibliography

Mishra, Rob Philpott, and Eve Maler. Profiles for the OASIS Security
Assertion Markup Language (SAML) V2.0. OASIS Open, 2005.

[46] Nick Ragouzis, John Hughes, Rob Philpott, Eve Maler, Paul Madsen,
and Tom Scavo. Security Assertion Markup Language (SAML) V2.0
Technical Overview. OASIS Open, 2008.

[47] Scott Cantor, John Kemp, Prateek Mishra, Rob Philpott, and Eve
Maler. Authentication Context for the OASIS Security Assertion
Markup Language (SAML) V2.0. OASIS Open, 2005.

[48] OASIS. OASIS Security Services TC (accessed 17-03-2009). URL:
http://www.oasis-open.org/committees/security/faq.php/.

[49] Tim Moses. eXtensible Access Control Markup Language (XACML)
Version 2.0. OASIS Open, 2005.

[50] Anthony Nadalin, Chris Kaler, Ronald Monzillo, and Phillip Hallam-
Baker. Web Services Security: SOAP Message Security 1.1 (WS-
Security 2004) - OASIS Standard incorporating Approved Errata. OA-
SIS Open, 2006.

[51] Asir S Vedamuthu, David Orchard, Frederick Hirsch, Maryann Hondo,
Prasad Yendluri, Toufic Boubez, and Ümit Yalçinalp. Web Services
Policy 1.5 - Framework (accessed 16-03-2009). URL: http://www.w3.
org/TR/ws-policy/, 2007.

[52] Anthony Nadalin, Marc Goodner, Martin Gudgin, Abbie Barbir, and
Hans Granqvist. WS-SecurityPolicy 1.3. OASIS Open, 2009.

[53] Anthony Nadalin, Marc Goodner, Martin Gudgin, Abbie Barbir, and
Hans Granqvist. WS-Trust 1.4. OASIS Open, 2009.

[54] Anthony Nadalin, Marc Goodner, Martin Gudgin, Abbie Barbir, and
Hans Granqvist. WS-SecureConversation 1.4. OASIS Open, 2009.

[55] OASIS. OASIS Members Form Committee to Advance WS-Federation
Identity Management Specification (accessed 19-03-2009). URL: http:
//www.oasis-open.org/news/oasis-news-2007-05-02.php.

[56] Hal Lockhart et al. Web Services Federation Language (WS-Federation)
- Version 1.1. IBM, Microsoft, et al, 2006.

[57] Marius Mikalsen and St̊ale Walderhaug. EMPOWERING THE EL-
DERLY AND THE COGNITIVELY DISABLED. Works in Progress:
Healthcare Systems and Other Applications. IEEE Pervasive Comput-
ing, 6(1):59–60, 2007.

99

Bibliography

[58] St̊ale Walderhaug and Erlend Stav. Overall Architecture - MPOWER
Project Deliverable D1.1. MPOWER Consortium, 2007.

[59] Jostein Jensen, Inger Anne Tøndel, Martin Gilje Jaatun, Per
H̊akon Meland, and Herbjørn Andresen. Reusable Security Require-
ments for Healthcare Applications. In ARES 2009: Proceedings of the
Fourth International Conference on Availability, Security, and Relia-
bility. IEEE Computer Society, 2009.

[60] Lovdata. LOV-1999-07-02-64/Helsepersonelloven. URL:
http://www.lovdata.no/cgi-wift/wiftldles?doc=/usr/www/

lovdata/all/nl-19990702-064.html, 1999.

[61] Lovdata. FOR-2000-12-21-1385/Forskrift om pasientjournal.
URL: http://www.lovdata.no/cgi-wift/ldles?doc=/sf/sf/

sf-20001221-1385.html, 2000.

[62] Lovdata. LOV-1999-07-02-6/Pasientrettighetsloven. URL:
http://www.lovdata.no/cgi-wift/wiftldles?doc=/usr/www/

lovdata/all/nl-19990702-063.html, 1999.

[63] Lovdata. FOR-2000-12-15-1265/Personopplysningsforskriften.
URL: http://www.lovdata.no/cgi-wift/ldles?doc=/sf/sf/

sf-20001215-1265.html, 2000.

[64] Lovdata. FOR-2001-07-01-744/Forskrift om informasjonssikker-
het. URL: http://www.lovdata.no/cgi-wift/ldles?doc=/sf/sf/

sf-20010701-0744.html, 2001.

[65] Lovdata. LOV-2001-05-18-24/Helseregisterloven. URL:
http://www.lovdata.no/cgi-wift/wiftldles?doc=/usr/www/

lovdata/all/nl-20010518-024.html, 2001.

[66] Lovdata. LOV-2000-04-14-31/Personopplysningsloven. URL:
http://www.lovdata.no/cgi-wift/wiftldles?doc=/usr/www/

lovdata/all/nl-20000414-031.html, 2000.

[67] Jostein Jensen. Security Middleware Design - MPOWER Project De-
liverable D5.2. MPOWER Consortium, 2008.

[68] Arun Kumar, Neeran Karnik, and Girish Chafle. Context sensitivity
in role-based access control. SIGOPS Oper. Syst. Rev., 36(3):53–66,
2002.

[69] Douglas A. Ashbaugh. Security Software Development: Assessing and
Managing Security Risks. Auerbach Publications, 2008.

100

Bibliography

[70] Brad Arkin, Scott Stender, and Gary McGraw. Software Penetration
Testing. IEEE Security & Privacy, 3(1):84–87, 2005.

[71] Mimi Herrmann. Security strategy: From soup to nuts. Information
Security Journal: A Global Perspective, 18(1):26–32, 2009.

[72] Warwick Ashford. Heartland data breach triggers
class action suit (accessed 01-04-2009). URL: http:

//www.computerweekly.com/Articles/2009/03/17/235295/

heartland-data-breach-triggers-class-action-suit.htm,
2009.

[73] Robert Lemos. Data-breach lawsuit follows $9 million heist (ac-
cessed 01-04-2009). URL: http://www.securityfocus.com/brief/

903, 2009.

[74] Brian Krebs. Sprint: Employee Stole Customer Data (accessed 01-
04-2009). URL: http://voices.washingtonpost.com/securityfix/
2009/03/sprint_employee_stole_customer.html, 2009.

[75] Pete Herzog. OSSTMM 3 LITE - Introduction and Sample to the Open
Source Security Testing Methodology Manual. ISECOM, 2008.

[76] Pete Herzog. OSSTMM 2.2 - Open Source Security Testing Methodol-
ogy Manual. ISECOM, 2006.

[77] University of Oulu. Glossary of Vulnerability Testing Ter-
minology. URL: http://www.ee.oulu.fi/research/ouspg/sage/

glossary/, 2008.

[78] Andrew Whitaker and Daniel Newman. Penetration Testing and Cisco
Network Defense. Cisco Press, 2005.

[79] James S. Tiller. The Ethical Hack: A Framework for Business Value
Penetration Testing. Auerbach Publications, 2003.

[80] OWASP. OWASP Main Page (accessed 09-04-2009). URL: http:

//www.owasp.org/index.php/Main_Page.

[81] OWASP. OWASP Testing Guide v3.0. The OWASP Foundation, 2008.

[82] OWASP. OWASP Code Review Guide v1.1. The OWASP Foundation,
2008.

[83] J.D. Meier, Alex Mackman, Michael Dunner, Srinath Vasireddy, Ray
Escamilla, and Anandha Murukan. Improving Web Application Secu-
rity: Threats and Countermeasures. Microsoft Corporation, 2003.

101

Bibliography

[84] SIFT Pty Limited. SIFT - Information Security Services (accessed
09-04-2009). URL: http://www.sift.com.au/index.asp.

[85] Colin Wong and Daniel Grzelak. A Web Services Security Testing
Framework - Version 1.0. SIFT Pty Limited, 2006.

[86] Tom Gallagher, Lawrence Landauer, and Bryan Jeffries. Hunting Se-
curity Bugs. Microsoft Press, 2006.

[87] Meiko Jensen, Nils Gruschka, Ralph Herkenhoner, and Norbert Lut-
tenberger. SOA and Web Services: New Technologies, New Standards
- New Attacks. In ECOWS ’07: Proceedings of the Fifth European
Conference on Web Services, 2007., pages 35–44, Nov. 2007.

[88] Don Patterson. XML Firewall Architecture and Best Practices for
Configuration and Auditing. SANS Institute, 2007.

[89] Walid Negm. Anatomy of a Web Service Attack. Forum Systems, Inc.,
2004.

[90] David Davis. What is a VMware Snapshot? (accessed 11-05-
2009). URL: http://www.petri.co.il/virtual_vmware_snapshot.
htm, 2009.

[91] VMware, Inc. VMware Server (accessed 11-05-2009). URL: http:

//www.vmware.com/products/server/.

[92] Sun Microsystems, Inc. GlassFish - Open Source Application Server
(accessed 11-05-2009). URL: https://glassfish.dev.java.net/.

[93] Oracle. Oracle Database 10g Express Edition (accessed 11-
05-2009). URL: http://www.oracle.com/technology/products/

database/xe/index.html.

[94] OWASP. OWASP WebScarab Project (accessed 12-04-
2009). URL: http://www.owasp.org/index.php/Category:

OWASP_WebScarab_Project.

[95] PortSwigger Ltd. Burp Suite (accessed 12-05-2009). URL: http://
portswigger.net/suite/.

[96] Wireshark Foundation. Wireshark: Go deep (accessed 14-05-2009).
URL: http://www.wireshark.org/.

[97] Eviware. The Web Service, SOA and SOAP Testing Tool - soapUI
(accessed 13-04-2009). URL: http://www.soapui.org.

102

Bibliography

[98] OWASP. OWASP WSFuzzer Project (accessed 13-04-2009). URL:
http://www.owasp.org/index.php/Category:OWASP_WSFuzzer_

Project.

[99] Michael Sutton, Adam Greene, and Pedram Amini. Fuzzing: Brute
Force Vulnerability Discovery. Addison-Wesley Professional, 2007.

[100] Eui nam Huh, Jong-Youl Jeong, Young-Shin Kim, and Ki-Young Mun.
Secure XML Aware Network Design and Performance Analysis. In
Computational Science and Its Applications - ICCSA 2005, Interna-
tional Conference, Singapore, May 9-12, 2005, Proceedings, Part I,
pages 311–319, 2005.

[101] OWASP. OWASP Top 10 2007 (accessed 03-05-2009). URL: http:
//www.owasp.org/index.php/Top_10_2007.

[102] Amit Klein. DOM Based Cross Site Scripting or XSS of the Third Kind
(accessed 05-05-2009). URL: http://www.webappsec.org/projects/
articles/071105.shtml, 2005.

[103] RSnake. XSS (Cross Site Scripting) Cheat Sheet (accessed 12-05-2009).
URL: http://ha.ckers.org/xss.html.

[104] D. Kristol and L. Montulli. HTTP State Management Mechanism.
IETF RFC 2965, 2000.

[105] Don Box, David Ehnebuske, Gopal Kakivaya, Andrew Layman, Noah
Mendelsohn, Henrik Frystyk Nielsen, Satish Thatte, and Dave Winer.
Simple Object Access Protocol (SOAP) 1.1 (accessed 03-05-2009).
URL: http://www.w3.org/TR/2000/NOTE-SOAP-20000508/, 2000.

[106] Keith Ballinger, David Ehnebuske, Christopher Ferris, Martin Gudgin,
Canyang Kevin Liu, Mark Nottingham, and Prasad Yendluri. WS-I
Basic Profile, Version 1.1 (accessed 03-05-2009). URL: http://www.
ws-i.org/Profiles/BasicProfile-1.1.html, 2006.

[107] Christopher Ferris, Anish Karmarkar, and Prasad Yendluri. WS-
I Basic Profile, Version 2.0, Working Group Draft (accessed 03-
05-2009). URL: http://www.ws-i.org/Profiles/BasicProfile-2_
0(WGD).html, 2007.

[108] OWASP. Guide to SQL Injection (accessed 18-05-2009). URL: http:
//www.owasp.org/index.php/Guide_to_SQL_Injection.

[109] Martin Gudgin, Marc Hadley, and Tony Rogers. Web Services Ad-

103

Bibliography

dressing 1.0 - Core (accessed 20-05-2009). URL: http://www.w3.org/
TR/ws-addr-core/, 2006.

[110] Gary McGraw. Software Security: Building Security In. Addison-
Wesley Professional, 2006.

[111] Jayamsakthi Shanmugam and M. Ponnavaikko. A solution to block
cross site scripting vulnerabilities based on service oriented architec-
ture. Computer and Information Science, ACIS International Confer-
ence, 0:861–866, 2007.

[112] Christopher Steel, Ramesh Nagappan, and Ray Lai. Core Security
Patterns: Best Practices and Strategies for J2EETM, Web Services,
and Identity Management. Prentice Hall PTR, 2005.

[113] OWASP. OWASP Validation Documentation (accessed 23-05-2009).
URL: http://www.owasp.org/index.php/OWASP_Validation_

Documentation.

[114] Robert Lemos. Session hijacking now point and click (accessed 25-05-
2009). URL: http://www.securityfocus.com/brief/562.

[115] Nicholas Weaver. Sidejacking, Forced Sidejacking, and Gmail
(accessed 25-05-2009). URL: http://blog.icir.org/2008/02/

sidejacking-forced-sidejacking-and.html.

[116] JAX-WS Reference Implementation Project. Configuring Se-
curity Using NetBeans IDE (accessed 29-05-2009). URL:
https://jax-ws.dev.java.net/guide/Configuring_Security_

Using_NetBeans_IDE.html, 2009.

[117] Marcin Wielgoszewski. Writing a web services fuzzer in
5 minutes to SQL injection (accessed 10-05-2009). URL:
http://www.tssci-security.com/archives/2008/12/14/

writing-a-web-services-fuzzer-in-5-minutes-to-sql-injection/.

[118] Haxx. cURL (accessed 10-05-2009). URL: http://curl.haxx.se/.

104

Appendix A

Fuzzing

This appendix presents files that were necessary during the process of fuzzing
the application for vulnerabilities related to SQL injection and XSS.

A.1 Attack Vectors’ File

The following file contains a few of the attack vectors elaborated for the
WSFuzzer tool, and that were used to generate our own specially crafted
SOAP requests:

<s c r i p t >a l e r t (”XSS”)</ s c r i p t > : : : XSS

<s c r i p t >a l e r t (document . cook i e)</ s c r i p t > : : : XSS

&l t ; s c r i p t> ; a l e r t (’ xss ’)& l t ; / s c r i p t> ; : : : XSS

<IMG%20SRC=’ j a v a s c r i p t : a l e r t (document . cook i e) ’ > : : :XSS

’%3CIFRAME%20SRC=j a v a s c r i p t : a l e r t (%2527XSS%2527)%3E%3C/IFRAME%3E : : : XSS

< ! [CDATA[<]] >SCRIPT< ! [CDATA[>]] > a l e r t (’XSS ’) ; \
< ! [CDATA[<]] >/SCRIPT< ! [CDATA[>]] > : : :XSS

’ : : : SQL I n j e c t i o n (SQLi)

” : : : SQL I n j e c t i o n (SQLi)

−− ’ ; : : :SQL I n j e c t i o n (SQLi)

0 or 1 = 1 : : :SQL I n j e c t i o n (SQLi)

’) or (’ a ’= ’ a : : : SQL I n j e c t i o n (SQLi)

’ or username l i k e ’ % : : :SQL I n j e c t i o n (SQLi)

The reader should note that the blank lines were added for better readabil-
ity and the ”\” character indicates that the line continues, and should be

105

Appendix A. Fuzzing

removed if it is to be correctly parsed by the script in section A.3.

A.2 SOAP Template

The SOAP template presented below is from the authentication request. The
”?” characters, excluding the ones on the first line, indicate where the attack
vectors should be injected:

<?xml version=” 1 .0 ” encoding=”UTF−8”?>
<soapenv:Envelope

xmlns:soapenv=” h t t p : // schemas . xmlsoap . org / soap / enve lope /”
xmlns:soap=” h t t p : // soap . types . s e c u r i t y . framework . mpower . eu”>

<soapenv:Header />
<soapenv:Body>

<soap :authent i ca t eUse rPas s>
< !−−Opt iona l :−−>
<username>?</username>
< !−−Opt iona l :−−>
<password>?</password>

</ soap :authent i ca t eUse rPas s>
</ soapenv:Body>

</ soapenv:Envelope>

A.3 Script for Generating SOAP Requests

The script below is a modified version of a script created by Marcin, from
the TS/SCI Security blog [117]:

#!/ usr / bin /env bash

Escape s l a s h e s and backs l a shes , doub le quotes and &
Receive as parameter the name of the f i l e t ha t conta ins the a t t a c k v e c t o r s
sed −e ’ s /\\/\\\\\\\\/ g ; s /\//\\\\\// g ; s / : : : . ∗ / / g ; \

s /\”/\\”/g ; s /\&/\\\\&/g ’ $1 > $1˜
#needs a l i n e f eed in the end o f the f i l e to be ab l e

#to read the l a s t l i n e in the next s t ep
echo ”\n” >> $1˜

echo −n ” Generating a t tacks ”

n=0
l i n e c o u n t=0
for i in ‘ l s −1 ∗ template . xml ‘
do

while read l i n e
do

#su b s t i t u t e a l l occurrences o f ? by
#the a t t a ck vec to r be ing read
#and genera te s the SOAP reque s t s
sed ” s /?/${ l i n e }/” $ i > $ i . $n
#f i x the change in the f i r s t l i n e o f the xml document
sed ”1 s /${ l i n e }/?/” $ i . $n > $ i . $n . $n
rm $ i . $n
echo −n ” . ”
l e t ”n+=1”

done < $1˜
l e t n=0

106

Appendix A. Fuzzing

done
echo ” done”

Cleanup
echo ”Removing temporary f i l e s no l onge r needed . ”
rm $1˜

exit 0

A snippet of the script execution:

. / fuzze rPar se r−soapUI . sh s q l a t t a c k . txt
Generating a t tacks . done
Removing temporary f i l e s no l onge r needed .

A.4 Script for Sending SOAP Requests

This is another script inspired by the work of Marcin. It uses the tool cURL
[118] to send the requests to the service provider:

#!/ usr / bin /env bash
#using proxy at l o c a l h o s t :8010
for i in ‘ l s ∗ . xml . ∗ ‘ ;
do

c u r l −A ” rsa s soon ” −s −k −x l o c a l h o s t :8010 −d @$i −H \
”Content−Type : t ex t /xml ; cha r s e t=UTF−8” −H \
”SOAPAction : \” authent i cateUserPass \”” \

http : / / 1 2 9 . 2 4 1 . 2 5 2 . 1 2 1 : 8 0 8 0 /MPOWER−Secur i ty / \
Authent icat ionWServ iceServ ice ;
done

107

	Title Page
	Problem Description
	masteroppgave.pdf

