
June 2009
Rolv Bræk, ITEM
Frank Alexander Kraemer, ITEM

Master of Science in Communication Technology
Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Telematics

Developing Android Applications with
Arctis

Stephan Haugsrud

Problem Description
Developing Android Applications with Arctis

Android applications for mobile phones typically consist of code and resources for user interfaces,
interfaces to network resources and hardware features of the phone and code to interact with
other services. Despite that a single Android application is usually not distributed, this means that
there can be a high number of events that
occur at each interface. The user interface, for instance, produces events upon every action by the
user, location services may update a status at any time, or applications may be notified by other
services
available on the phone. An application developer faces the complex task of coordinating the
behaviors that all these interfaces have.

Coordinating concurrent behavior is one of the strengths of the Arctis tool, in which applications
are specified by means of UML activity diagrams. These activities are constructed by the
composition of building blocks that encapsulate certain functionalities. Executable
code is generated automatically via a transformation into state machines.

The task in this thesis is to examine how Arctis can be used for the development of Android
applications. The existing code generator for Java should be extended to produce Android
applications, and mechanisms should be investigated and proposed to encapsulate Android
services provided by the API of the phone as building blocks in Arctis. To demonstrate the
effectiveness of the proposed solutions, a simple application should be developed.

Assignment given: 15. January 2009
Supervisor: Rolv Bræk, ITEM

Abstract

The focus of this thesis is the design of Android applications from building
blocks in Arctis. The Arctis tool is used for modeling applications with UML
activities, which already can be deployed on the Java ME and Java SE plat-
forms. State machines and a runtime support system are generated. Creation of
a generator for Arctis, enabling deployment to the Android platform, is the key
element in this work. The Android platform is presented using an example ap-
plication. A discussion on challenges, solutions and architectures for the design
and implementation of Android applications using Arctis is presented. Then,
the example application is redesigned using Arctis building blocks and deployed
as a Java project using the existing code generator for Java SE. The adaptations
necessary for turning the Java project into a runnable Android project is stud-
ied in detail and serves as a basis for the development of our code generator,
along with the discussion. After describing our code generator, several building
blocks are designed for an Android building block library. Demonstration of the
code generator and the building blocks are done by designing and deploying an
Android application named TwitterFromAndroid.

II

Preface

This thesis is a result of my work in the course TTM4900, from the Department
of Telematics (ITEM) at the Norwegian University of Science and Technology
(NTNU). The academically responsible for my subject has been Professor Rolv
Bræk and my supervisor has been Frank Alexander Kraemer.

I would like to thank Frank Alexander Kraemer for valuable and continuous
feedback and guidance on my work. I would also like to acknowledge Marius
Bjerke for his input and Sverre Bye Grimsmo for help with LaTeX.

Trondheim June 10, 2009

Stephan Haugsrud

III

Contents

Table of Contents IV

List of Figures IX

Acronyms XI

1 Introduction 1

1.1 Contribution . 2

1.2 Outline . 3

2 Android 4

2.1 Introduction . 4

2.1.1 Platform . 4

2.1.2 Architechture . 4

2.2 The HelloLocationWorld Application 6

2.3 Components in an Android Application 6

2.4 Activity . 8

2.4.1 Activity Lifecycle . 8

2.4.2 Activity Life Cycle of HelloLocationWorld 10

2.5 Broadcast Receiver . 11

2.6 Service . 12

2.6.1 Service Life Cycle . 13

2.7 Intent and Intent Filters . 14

2.8 Permissions . 14

2.9 Manifest . 15

IV

2.9.1 Manifest File Structure 15

2.9.2 File Conventions . 16

2.10 Notifications . 17

2.11 Android Project in Eclipse . 19

3 Methods, Tools and Languages 21

3.1 Arctis and Ramses . 21

3.2 Java JET . 21

4 Android Application Design in Arctis 23

4.1 Introduction . 23

4.2 Architecture . 23

4.2.1 Initial Architecture Design for Android on Arctis 25

4.2.2 Revised Architecture . 26

4.2.3 Final Architecture . 27

4.2.4 The Receiver Classes . 30

4.2.5 The Customized Service Class 30

4.2.6 The Common Screen Layout 31

4.2.7 Permissions . 32

4.3 The Thread Problem . 32

4.3.1 Solution Alternative 1 . 33

4.3.2 Solution Alternative 2 . 34

4.3.3 Conclusion on Thread Problem 34

4.4 Considerations . 34

4.4.1 Strengths . 35

4.4.2 Challenges . 35

5 Manual Adaption of Generated Code 37

5.1 The Example Application - HelloLocationWorld 37

5.2 Adapting to an Android Application 38

5.2.1 Implementing And Moving the Project 39

5.2.2 The Start.java Class . 39

5.2.3 Add Android Specific Classes 42

V

5.2.4 Update the Android Manifest 43

5.2.5 Resources . 43

6 The Android Code Generator 45

6.1 Generation Overview . 45

6.2 Generation Components . 46

6.2.1 Extension Markup Language (XML) Generators 46

6.3 Templates . 48

6.3.1 Start Class Generator . 49

6.4 The Java for Android Generator 49

6.4.1 The generateComponents method 50

6.4.2 The generateAndroidLaunchClasses Method 51

7 Building Block Library 53

7.1 Commonalities . 53

7.1.1 Logic for Restarting a Service 53

7.2 ShowNotification . 54

7.3 ListenForCalls . 55

7.4 ProximityManager . 56

7.5 SetAlarmManager . 58

7.6 Cancelling a Service . 59

8 Example Application - TwitterFromAndrid 61

8.1 Specification . 61

8.2 Arctis Behavior for TwitterFromAndroid 62

8.3 Source Code for System Entity 62

8.4 Manifest.xml . 65

8.5 The Twitter Account . 65

8.6 Demonstration of TwitterFromAndroid 66

8.7 Possible Future Work on TwitterFromAndroid 68

9 Conclusion and Future Work 69

9.1 Conclusion . 69

VI

9.2 Future Work . 70

Bibliography 71

VII

VIII

List of Figures

1.1 Application development with Arctis for Android 2

2.1 Android Architecture, from [8] 5

2.2 The HelloLocationWorld application 7

2.3 The activity life cycle, from [5] 9

2.4 The default service life cycle, from [2] 13

2.5 No notification . 17

2.6 Notification has arrived . 18

2.7 Notification bar expanded . 18

2.8 An Android project in Eclipse . 19

3.1 Application developement using Arctis and Ramses, from [23] . . 22

4.1 Structure of the building blocks 24

4.2 Initial Architecture for Android on Arctis 25

4.3 Revised Architecture for Android on Arctis 27

4.4 Final Architecture for Android on Arctis 28

4.5 Non-thread dependent service initiation 29

4.6 Thread dependent service initiation 29

4.7 The common screen layout for applications designed in Arctis . . 32

5.1 LocationAlertSystem behavoir . 38

5.2 Implement and deploy as Java SE 39

5.3 Create a new Android project . 40

5.4 Copy Predefined Android Classes Into the Android Project . . . 42

IX

5.5 Add logo image . 44

5.6 Step 10: Add build path for the updated Arctis runtime 44

6.1 Resources contributed by which part of the generator 46

7.1 ShowNotification behavoir . 54

7.2 ListenForCalls behavior . 55

7.3 ProximityManager behavior . 56

7.4 SetAlarmManager behavior . 58

8.1 TwitterFromAndroid behavoir . 63

8.2 TwitterFromAndroid part 1 . 66

8.3 TwitterFromAndroid part 2 . 67

X

Acronyms

OS Operating System

API Application Programming Interface

SDK Software Development Kit

VM Virtual Machine

SMS Short Message Service

UI User Interface

UML Uniform Markup Language

GPS Global Positioning System

XML Extension Markup Language

jar Java Archive

JET Java Emitter Templates

JSP JavaServer Pages

JRE Java Runtime Environment

EMF Eclipse Modeling Framework

SQL Structured Query Language

NTNU Norges teknisk-naturvitenskapelige universitet

J2SDK Java 2.0 Software Development Kit

SE Standard Edition

PDE Eclipse Plug-in Development Environment

JDT Java Development Tool

GUI Graphical User Interface

XI

XII

Chapter 1

Introduction

Android is an open-source Operating System (OS) for mobile devices. Applica-
tions can be developed using the Android Software Development Kit (SDK) and
run on Android devices without central approvement. The SDK provides ac-
cess to several Android system services which includes a location service, alarm
service and a notification service. A typical Android application may consist
of quite an amount of User Interface (UI) code which has to be programmed
manually. On the other hand, core functionality like the use of Android services
can be standardized.

The use of Android services means that the applications have to be reactive.
Applications have to respond to user inputs, e.g starting a service, or system
input such as location updates, incoming calls or alarms going off.

Development of reactive applications might provide a challenge due to a
possible high degree of concurrency. Arctis, an Eclipse based tool used for
designing systems and services, uses state machines and runtime support as a
means to handle concurrency. The state machines are generated automatically
from building blocks.

Use of Arctis building blocks in developing Java SE applications have been
shown in Arctis system designs for the Uno card game [16] and Treasure Hunt
[15]. The building block approach could be useful also for Android applications.

The goal of this work is to use Arctis building blocks and a code generator
when developing Android applications, as can be seen in figure 1.1. An Arctis
library containing building blocks that access Android services or perform other
tasks are used in developing system designs for Android applications. From
that, a code generator will be used to generate Android executable code for the
designed application.

Arctis currently has a deployment option for Java SE, enabling implemen-
tation of Arctis system designs into executable Java code. The executable Java
code is capable of running on an Android device, but as the generated project is
not yet an Android project, adaptations are needed. These will be documented.
To avoid having to make manual adaptations every time an Android application

1

Figure 1.1: Application development with Arctis for Android

is to be generated, we will use the documented adaptations in creation of a code
generator, Java SE for Android. Upon developing the generator, a discussion
on the solution architecture, including possible challenges and problems, will be
done. The resulting generator is used in development of example applications
used for demonstration in this work.

Designing building blocks for every single service provided by the Android
platform is out of the scope of this thesis. Hence, it is important to develop a
solution which focus on a general structure. This will allow developers to design
new building blocks and implement them using the Android code generator.

Graphical user interfaces are not of focus, as all processes are supposed to
be run in the background and the goal is that the designed applications should
react to input from either the Android device’s services or input through remote
calls from a connection.

1.1 Contribution

The highlighted parts of figure 1.1 represents our contribution. The Arctis
editor will be equipped with an Android building block library which contain all
blocks developed for use by Android applications. Two example applications are
designed using Uniform Markup Language (UML) activities, existing building
blocks and building blocks developed for use by Android. State machines and
model checking are done as for every application designed in Arctis. A new
code generator is developed, using parts from the currently existing Java SE
generator, and adding functionality for generation of Android projects. A new
deployment option for Arctis is added, Java SE for Android, which uses our
Android generator in creation of an Android project. This project will be able
to run on the Android emulator or mobile device.

2

1.2 Outline

This work is outlined as follows:

Chapter 2 provides an example driven description of the Android plat-
form.

Chapter 3 presents the tools used in this work.

Chapter 4 discuss the goals of Android application design in Arctis. The
architecture, problems and challenges of the solution is also described.

Chapter 5 illustrates what changes are needed when adapting a Java SE
generated project into an Android project. This will be used as a ground
stone for our Java SE for Android generator.

Chapter 6 describes the Android code generator in detail.

Chapter 7 provides a look at all Arctis building blocks for Android ap-
plications developed in this work.

Chapter 8 presents an example Android application built using the de-
veloped building blocks.

Chapter 9 concludes the work and suggest future work.

3

Chapter 2

Android

2.1 Introduction

Android is a complete, open and free mobile platform initiated by the Open
Handset Alliance [27]. Android comes with a set of core functionalities which
can be accessed through standard Application Programming Interface (API)’s.
All applications on the mobile device are created equal and can be replaced or
extended. Applications running on Android can be run in parallel. The below
subsections describe the basics of the Android system, based on [8].

2.1.1 Platform

The Android platform includes an operating system, middle ware and key ap-
plications. Any developer can construct new applications for the platform using
the Android SDK. All applications are written in Java and is run on the Dalvik
Virtual Machine (VM) [31, 9].

2.1.2 Architechture

Figure 2.1 depicts the Android architecture. A bottom-up explanation of the
architecture follows.

Linux Kernel lies on the bottom of the Android Architecture and acts
as an abstraction layer between the hardware and the rest of the stack. The
kernel provides drivers for the different parts of the mobile phone, as well as
handling the power management. Also, security, memory management, process
management and network stack are handled by the Linux kernel.

Libraries provides a set of C/C++ libraries which are used by various
components of the Android system. The Media Framework libraries are used to
store and playback video as well as images. SQLite is a lightweight relationship
database available for all applications. SGL are the underlying 2D graphics

4

Figure 2.1: Android Architecture, from [8]

engine, while the 3D libraries are based on an OpenGL ES implementation.
LibWebCore is a web browser engine.

All of these libraries and their capabilities are available for the developer
through the Android application framework.

Android Runtime includes core libraries and the Dalvik VM, [31]. The
core libraries provide most of the basic functionality available in the core libraries
of the Java programming language. The Dalvik VM is written as to reduce
memory footprint and enable a device to run multiple VM’s effectively.

The Application Framework architecture allows for reuse of components.
Any application can make use of the capabilities of a component and also publish
its own capabilities. Every application has underlying components, including:

- Views consisting of i.e buttons, lists, text boxes and a web browser, all
used to build an application.

- An Activity Manager that controls navigation and manages the life
cycle of an application.

- A Notification Manager that enables all applications to have notifica-
tions displayed as alerts in the status bar.

- A Resource Manager providing access to non-code resources such as
localized strings, graphics, and layout files.

5

- Content Providers that enables applications to share their own, and
access data from other applications.

- Applications, written in Java and provided as default within Android.
These core applications includes Short Message Service (SMS) program,
calendar, browser, maps, email client and other.

2.2 The HelloLocationWorld Application

HelloLocationWorld is an application where the user will be notified when closing
in on a selected location. To achieve this, the default Android location service
will be used, along with customized screens, alerts and notifications. Below
follows an illustration, see figure 2.2, and a description on how the application
works.

On start, the application will provide a welcome screen to the user, display-
ing four buttons. The first three buttons have the name of a location on the
Norges teknisk-naturvitenskapelige universitet (NTNU) campus, while the last
one stops the service. After the user has selected a preferred location, an alert
will pop up, displaying information on the service started. The welcome screen
with the alert is depicted in Step 1 of figure 2.2. The "‘Stop Service"’ button
will, correspondingly, stop the started service and display an alert with this
information.

An Android service is now running in the background, constantly checking
for location updates, regardless of what other applications the user is currently
running on the Android device. Figure 2.2 Step 2 shows the Android device’s
desktop background, as a result of the Home button being pressed.

As the user moves within the set limit of the selected location (movement is
simulated on the emulator console [7]) a notification is displayed at the top of the
screen, as seen in figure 2.2 Step 3. The user may then extend the notification
view to get more information on the notification, Step 4.

The following sections will describe the different elements of an Android
application and how they work. References to elements used in the HelloLoca-
tionWorld application is used whenever possible.

2.3 Components in an Android Application

An android application may consist of four kinds of elements:

- Activity, described in section 2.4

- Broadcast Intent Receiver, described in section 2.5

- Service, described in section 2.6

- Content Provider, used when applications want to share their
data. Not relevant for this work.

6

Figure 2.2: The HelloLocationWorld application

7

All Android applications are written using some combination of the listed ele-
ments. The elements composing an application have to be declared in a manifest
file, AndroidManifest.xml, which is described in section 2.9.

2.4 Activity

This element is common in Android applications. An activity is a single class
extending the base class Activity. Almost all activities interacts with the user.
Because of this, the base class comes with a method setContentView(View) in
which you can place your own UI. It is important to note that one activity
usually is related to a single screen in an application, meaning every new UI is
related to its own class. In our example application we operate with a single UI,
depicted in figure 2.2 Step 1, but many applications consists of multiple screens.
In a multi screen application the different activity classes are called due to user
or system input.

Android allows only one activity running at a time and the activity base
class has several life cycle methods. Regardless of running a single screen or
multi screen application, each activity class will need to consider the activity
life cycle. At all times an activity could be put on hold due to i.e an incoming
phone call or when a new activity is started. A description of the Android
activity life cycle follows belows.

2.4.1 Activity Lifecycle

The Android system uses an activity stack to manage activities. A new activity
is put on top of the stack and comes to the foreground, while the previous ones
remain below and will not come to the foreground before the newly created one
exits.

Figure 2.3 depicts the life cycle of an Android activity. onCreate() is always
called whenever an activity is started for the first time, and this method is
mandatory for every activity.

The entire lifetime of an activity yields from onCreate() is called until
onDestroy() is called. Usually, as in the HelloLocationWorld application, the
UI is set in onCrate() along with the global state of the activity. onDestroy()is
called when the activity should be shut down, as when we push the Stop Service
button in the activity of the example application.

In between the entire lifetime we have the visible lifetime of the activity.
This is the time between onStart() and onStop() is called. During this time the
activity is visible to the user, although it might not be a foreground activity.
This means the activity might not interact with the user at all times, but may
maintain resources that are needed to show the activity to the user. An example
resource is a Broadcast Receiver monitoring changes which impact the UI. The
receiver, see 2.5, is registered in onStart() and closed in onStop(). This cycle

8

Figure 2.3: The activity life cycle, from [5]

9

could repeat itself several times during the entire lifetime of the activity as seen
in figure 2.3.

Lastly there is the foreground lifetime which represents the time the ac-
tivity is interacting with the user and is in front of all other activities. The
foreground lifetime yields from onResume() is called until onPause() is called.
onPause() is frequently called as applications start new activities, services and
broadcasts. Additionally, onPause() is called when the mobile device goes to
sleep or receives an incoming call. onPause() is typically used for handling of
unsaved data.

The Android activity has essentially four states, which are:

- running, where the activity is active and runs in the in the foreground.

- paused, where the activity has lost focus, but is still alive and visible.

- stopped, meaning the activity maintains state information, but is obscured
by another activity and might be killed if the system needs extra memory.

- terminated, where the activity is either killed or shut down by the system.
The activity is dropped from memory and will need to be completely
recovered in a new startup.

2.4.2 Activity Life Cycle of HelloLocationWorld

This subsection provides a simulation of mobile device inputs and an explanation
on how HelloLocationWorld’s activity reacts to the given inputs. The simulation
is done as a means to give the reader a better understanding of the life cycle of
an Android activity, depicted in figure 2.3.

- Application is started.
Methods called: onCreate() -> onStart() -> onResume().
This is the default path an activity follows from startup until it reaches
the running state.

- Button is clicked, indicating which location we want to track.
Methods called: None.
As described in 2.2, there is no new activity started after a location but-
ton click, and hence the current activity is neither paused, stopped or
destroyed. If a new activity was to be started after the button click, the
current activity would have been paused.

- An incoming call is received.
Methods called: onPause() -> onStop() -> (after hangup) onRestart() ->
onStart() -> onResume().
When a call arrives the activity immediately exits the foreground, but
both onPause() and onStop() is first called. During these methods all

10

state necessary for correctly resuming the pre-call state need to be saved.
In HelloLocationWorld no state information is required, but in a similar
case where the user would need to type in the destination, the case would
have been different. The onPause() or onStop() method should then save
the currently written text. As an incoming call may arrive at all times,
this is of importance for every Android activity in all Android applica-
tions. onRestart(), onStart() or onResume() should accordingly check for
previously saved state before returning the activity to the foreground.

- The home button is pushed, returning the mobile device to the main
desktop screen, see figure 2.2 Step 2.
Methods called: onPause() -> onStop().
Pushing the home button means we exit our current screen and applica-
tion. When removing an activity from the foreground, onPause() is called.
Making the activity non-visible triggers the onStop() method.

- A location update is done and the mobile device is within the correct area
of our preferred location. A notification is received and opened, returning
focus to the activity.
Methods called: onStart() -> onResume().
Our activity has been non-visible for an amount of time, but it has never
been destroyed. As focus is shifted back to our activity onStart() is called,
jumping back in to the visible lifetime. As we also get our activity to the
foreground onResume() is called.

- Stop Service is pushed, ending the activity and the application, before
returning to the main screen.
Methods called: onPause() -> onResume() -> onDestroy().
We finish our activity. The default finish operations are called in the
given sequence. After onDestroy() has been called the entire lifetime of
our activity ends.

2.5 Broadcast Receiver

Most Android applications are started by the user, but some applications should
be started as a result of an external event. In these cases, a broadcast receiver
is used. An application does not have to be running for its broadcast receiver to
be called. When the receiver is triggered, the system will start the application.

In addition to starting an application, the broadcast receiver can e.g send
notifications or have text appearing on screen to alert the user that something
has happened, but they do not display an UI.

The lifetime of the broadcast receiver is the duration of the onReceive(Context,
Intent) call. During this time the process executing the Broadcast receiver is
considered to be a foreground process. When onReceive finishes, the system re-
gards the object as no longer being active. As a consequence of this, one cannot

11

use a receiver with asynchronous operations, such as showing a dialog or start
an Android service.

An example use of a receiver is alerting the user with an on screen message
when the clock turns midnight. To achieve this, an application with a registered
broadcast receiver in its Manifest.xml file, see 2.9, is created. On startup, the
application uses the default Android service Alarm Service to set an alarm
which is to be triggered at midnight. The alarm service is told to respond
to the receiver when triggered. The code for the receiver class is given below.
Toast is a Android feature used for showing on screen messages. When the clock
turns midnight a call to the receiver’s onReceive method is done, displaying the
desired message.

public class AlarmAlerter extends BroadcastReceiver {
public void onReceive(Context context, Intent intent) {
Toast.makeText(context, "It is midnight!", Toast.LENGTH_LONG).show();
}}

As seen above, a broadcast receiver class could be written quite simple. In-
stead of the Toast message one could use a notification manager to display a
notification, see section 2.10. Other triggers for a receiver could be when the
phone rings, when a new data network is available or a location update is done.

2.6 Service

As described in 2.4, only one Android activity can be run at the same time.
Applications might want classes which can run code continually, i.e listening
for incoming location updates, incoming SMS or phone calls. To enable this,
Android provides the Service extension. A service is code which runs without a
UI. There are two categories of services used in Android applications, namely
default Android services and user defined services. The default services are
predefined in the Android API and includes among others location-, alarm-,
telephone-, wifi-, and notification services. A complete list can be found at
[3]. Basically, the default services provide access to all native functions of the
mobile device. As they are part of the API, they cannot be altered and the
source code is not available. User defined services, on the other hand, is written
by the developers. These services can be composed by using a mix of the default
services and written code.

A typical use of a default service is exemplified in HelloLocationWorld, see
section 2.2, where we want to receive an alert after reaching a targeted location.
To achieve this, the default service (LOCATION_SERVICE) is used to poll the
location provider for location updates and check whether or not we are within
the correct distance of our target location. The service will run even though we
exit the application’s activities and perform other tasks on the mobile device.
When either reaching the correct location or manually canceling the service,
will the service stop.

12

2.6.1 Service Life Cycle

The Android service life cycle, depicted in figure 2.4, have four essential life
cycle methods.

- onCreate(), called by the system when the service is created or called
upon for the first time by startService().

- onDestroy(), called by the system to notify a service that it is being
removed.

- onStart(), called each time a service is called upon with startService().

- stopSelf(), stops the service, if it was previously started.

Figure 2.4: The default service life cycle, from [2]

A service can be run by the system for two reasons. If someone call Con-
text.startService(), in which the system calls onCreate() followed by onStart().
The service will be running until someone call Context.stopService() or stop-
Self(). If the service is running, Context.startService() calls result in multiple
calls to the services onStart()method. Calls to stopSelf() or Context.stopService()
will result in the service being stopped, no matter how many times the service
has been started.

Another possibility for the system to be running a service is when clients
obtain a connection to the service using Context.bindService(). This binding will
return an iBinder object allowing the client to make call backs to the service.
On Context.bindService(), onCreate() is called but no call is made to onStart(),
as the iBinder object is used instead. The service calls onDestroy () when there
are no active connections left. This way of connecting to a service will not be
discussed in further detail as it is not relevant in this work.

13

2.7 Intent and Intent Filters

When focus is to be shifted between activities, or services react as a result of
inputs or events, the Android system needs to know what to do next. The
Android Intent resolves this, as it names the action being requested. An intent
contain information describing what an application wants to have done. This
is how Android moves from activity to activity, register a broadcast receiver
or starts a service. The most common intent constructor used in this work
is Intent(Context context, Class class). The context describes which Android
context is used upon creation of the intent. The class parameter names which
class is to be started upon fulfillment of the intent.

In the general example of starting a new activity, let us say we are currently
running the activity class named, FirstActivity.java. Focus should be shifted
to the class SecondActivity.java. To achieve this, an intent is created with the
context from the FirstActivity.java and the class SecondActivity.java. When
starting a new activity with this newly created intent, the system will try to
run, and shift focus to the SecondActivity.java class. The example code is given
below.

Intent intent = new Intent(this, SecondActivity.class);
startActivity(intent);

There are several other attributes used with intents, where the most impor-
tant ones are category and extras. Category is used for setting which application
component will be launched on application startup. Extras is a Bundle of ad-
ditional information, used to provide extended information to the component.
For example, if we are going to perform an action of sending an email, the title,
body and address could be added as extras to the intent.

2.8 Permissions

The security architecture of an Android application uses permissions which are
described in the manifest file, see [6]. Every permission declared in the manifest
will have to be approved by the user of the Android device upon installation.
This is done among other reasons as a precaution for installing malicious soft-
ware. The user will at all times have control over what applications are able to
access on your phone.

E.g if a map -and localization application wants permission to make calls,
use the camera or send SMS, one might suspect the application to access areas
it should not and one can then reject the installation.

14

2.9 Manifest

An Android application consists of several components, intent filters and other
specifications. For the Android system to run properly, it needs to obtain a
detailed description of the application and how it is composed before being able
to run it. The AndroidManifest.xml, a necessary file in all Android applications,
contain this description and displays important information to the Android
system. The manifest has many responsibilities, with important ones such as:

- Describing all components included in the application. All Activities,
Broadcast Receivers, Services and Content Providers used in the applica-
tion.

- Declaring the permissions the application must have in order to interact
with other applications and access protected parts of the API. One can
also declare permissions necessary to interact with the components in the
described application.

- Naming the Java package for the application and addition version code
and version name for the application.

- Declaring necessary libraries and a minimum level of the Android API
that the application requires.

The following subsections will have a closer look at different parts of the
manifest file, and the manifest file of the HelloLocationWorld application will
be used as demonstration. The manifest file has to be located in the root
directory of an Android project.

2.9.1 Manifest File Structure

The manifest starts with declaring the package name, plus version and name
information.

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="ntnu.android"
android:versionCode="1"
android:versionName="1.0.0">

Then, a permission for the application is added, permitting it to access the
API’s location updates. Several other permission could be added here and one
could also create new ones. If other SDK’s are needed for the application, these
are added in this part of the manifest with the tag, <uses-sdk />.

<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />

The next part of the manifest is used to describe the application with all its
components. Usually, an application is labeled with a name and an icon. This is

15

to provide users with an clickable icon in the Android devices’ menu. After the
<application> -tag all components have to be listed. Both activities, services
and broadcast receiver are built in the manifest using the same structure. First
comes the <activity>, <service> or <receiver> tag, followed by a description
of the component’s intent-filter and additional meta data. The intent-filter and
meta data are not required for all components, as can bee seen in the code below
for the activity named Alert, which have none of these. Definition of content
providers follows a different structure, but is not relevant for this work.

<application android:icon="@drawable/icon" android:label="@string/app_name">
<activity android:name=".AlarmService"

android:label="@string/app_name">
<intent-filter>

<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>
</activity>

<activity android:name=".Alert"
android:label="@string/app_name">
</activity>

</application>

After all components have been described, any prospective libraries necessary
for the application is defined using the <uses-library> -tag. Then, the manifest
-tag is finished, ending the AndroidManifest.xml file.

2.9.2 File Conventions

This section will present some general rules and conventions which apply to all
elements and attributes in the manifest.

- Elements: There are a few necessary elements in the manifest, namely
<manifest> and <application>. These elements can only appear once,
in contradiction to most other elements which might appear many times
or none at all. An application does need other elements than the two
required, in order to do something meaningful. The sequence in which the
other elements are described does not matter, meaning one can have <ac-
tivity>, <service> and <receiver> elements unordered. Element values
are always set through attributes.

- Attributes: The bottom line is all attributes are optional, although some
are needed for different components to accomplish its purpose. This means
applications does not fail when lacking certain attributes, although they
might not function as intended. Some attributes are truly optional as
the Android system will use a default value for them in case of absence.
All attribute names, except someone used in the <manifest> -tag uses
android: as prefix.

16

- Declaring class names: Many elements, such as activities, services,
broadcast receivers and content providers have corresponding Java classes.
These classes need to be referenced in the manifest file and this is declared
through the name attribute. The name attribute must include the full
package designation. If the Java class is part of the same package as
defined in the <manifest> -tag, one does not need the full path. Instead, a
."’class name"’ notation is used. The manifest for the HelloLocationWorld
application uses this notation.

- Resource and string values: Attributes might have values, such as
labels and icons, that can be displayed to the user. The values of these
attributes have to be localized. The above given manifest code have two
examples of this. The icon attribute uses an icon localized @drawable
and has the name icon. Same goes for the label attribute which value is
localized @string with the name app_name.
The general way of referencing a resource value is by definition @[pack-
age:]type:name. The package name can be omitted if the resource is within
the same package as the application. The type is the type of resource, such
as seen above, @drawable or @string. The name is the name that identifies
the resource.

2.10 Notifications

The user of an Android device should be able to receive information on events
that has occurred, at all times. These messages have to be able to arrive even
though other applications are running and have focus. Android solves this by
the use of notifications. Notifications are used for displaying messages to the
user. This is the only type of messages which can displayed by the Android
system at any time, since notifications arrive regardless of what is currently
being performed by the Android device.

Figures 2.5, 2.6 and 2.7 shows how the Android device behaves as a no-
tification arrives. When no notification has arrived, the status bar is blank.
Then a notification arrives and the status bar is updated with an icon for the
notification along with a text. When the user expands the status bar of the
Android device, more details on the current notification (along with possible
other notifications) is shown. Selecting a notification from the expanded status
bar will result in an action such as opening an Android activity.

Figure 2.5: No notification

17

Figure 2.6: Notification has arrived

Figure 2.7: Notification bar expanded

Notifications can be created at any time during the life of an application.
An Android component, being a broadcast receiver, service or activity, creates
the notification object and feeds it to the default Android notification manager.
Using this manager, the Android system will start the notification service which
in turn will display the notification on the Android device. Below follows a
walk through of the code used for displaying the notification in our example
application, HelloLocationWorld.

First off, the manager is configured using a default Android service.

NotificationManager mNM = (NotificationManager)getSystemService(
NOTIFICATION_SERVICE);

Then the notification is created using values from the resources. An icon from
the drawable folder and a text from strings.xml. The current system time is
used for setting the time in which the notification was created. This is the
information shown in figure 2.6.

Notification notification = new Notification(R.drawable.icon, getText(
R.string.dest_found), System.currentTimeMillis());

The next step is to create a pending intent. This is an intent which is triggered
as someone selects the notification. It tells the Android system what activity
or service to run on selection. In this case, the activity having the class name
AlarmService.class will be run.

PendingIntent contentIntent = PendingIntent.getActivity(

18

this, 0, new Intent(this, AlarmService.class), 0);

By now, we can configure the notification to include the pendingintent and set
a body text. R.string.location_found_notif contains the message which will be
shown upon expansion of the status bar, see figure 2.7.

notification.setLatestEventInfo(this, getText(R.string.
location_found_notif), getText(R.string.dest_found), contentIntent);

All necessary parameters are now set and we can use the notification manager to
display the notification on the Android device. The Android device can handle
several notifications at the same time. To be able to tell them apart, a layout
id is used since it is a unique number. This number is later used to cancel the
notification.

mNM.notify(R.string.alarm_service_started, notification);

All notifications have a set of flags that can be set. The most common, and
the one used in this work, is the FLAG_AUTO_CANCEL flag which tells
the Android system to cancel the notification when it is clicked by the user.
Canceling the notification removes it from the status bar.

2.11 Android Project in Eclipse

Figure 2.8: An Android project in Eclipse

Figure 2.8 depicts the project hierarchy of an Android project created in
Eclipse. The project has one package containing an Android Activity class and

19

an R.java class. These classes are necessary for running the application. The
activity class will be the launch class and the R.java class is an auto generated
class containing references to the application’s resources. The project may, as
a standard Java project, have several other classes in the same package or in
other packages.

Android Library contains the default Java Archive (jar) for Android, but
may also contain application specific external jars.

The res folder is an important part of any Android project. res is short
for resources and the sub folders all describe a type of resources which can be
used when designing the application. Every picture, screen-layout, and text
string used in the application have to be defined in these sub folders. The
folder drawable will for a large application typically contain several pictures, as
applications may use pictures for notification (see 2.10) icons and other pictures
as part of different screens. The layout folder contain all layouts for every
screen used in the application. Each layout demands its own XML file. Lastly,
there is the values folder, which as standard contain one XML file, namely
strings.xml. In this file, every text-string used in the application is defined.
When resources are added to the folders mentioned above, the R.java file is
automatically updated with references to the new resources. Writing Android
code with use of resources is done by calling the R.java file and locating the
correct resource.

The .classpath and .project files respectively describe class path entires and
build specifications plus nature of the project. Finally, there is the AndroidMan-
ifest.xml file which describe the project’s components. The manifest is described
in detail in 2.9.

20

Chapter 3

Methods, Tools and
Languages

3.1 Arctis and Ramses

Figure 3.1 depicts development using the SPACE approach [11, 19, 20, 21, 10]
and the Arctis and Ramses tools. SPACE focus on using collaborative building
blocks to compose services, which are transformed into executable state ma-
chines and components. The collaborative building blocks is built using UML
2.0 activities, collaborations and external state machines. The Arctis tool [18],
developed at NTNU, provides functionality for editing building blocks, collab-
orations and composing services. Arctis also have a model transformer which
transforms the service specifications into executable state machines. Ramses,
a tool suite also based on the UML 2.0 repository and developed at NTNU,
provides plug-ins contributing to cover modeling tasks. Ramses has a code gen-
erator which is used to generate code from the executable state machines. Upon
generation, a Java 2.0 Software Development Kit (J2SDK) generator class from
Ericsson is called.

3.2 Java JET

Java Emitter Templates (JET) is a tool which generates source code by the
use of templates. It is part of the Eclipse Modeling Framework (EMF) project
and uses a subset of the JavaServer Pages (JSP) syntax in writing templates
expressing the code that is to be generated. The JET template engine may be
used to generate, among others, Structured Query Language (SQL), XML and
Java source code and is located in the EMF version 2.0 code gen plug-in.

Before the templates can be written, EMF will need to be installed and
the java project, in which generation is wanted, has to be converted to a JET
project. After creating a folder for the templates and selecting which folder

21

Figure 3.1: Application developement using Arctis and Ramses, from [23]

(usually the src folder) will contain the translated templates, JET template
files can be created. Each JET template file will have to be declared with a
dedicated package name a file name for the translated template.

The template files uses JSP syntax for passing arguments, importing pack-
ages and changing tags to the translated template. The translated template
will have a public method named generate(java.lang.Object argument) which is
called upon generation. To build a generated file, a java.lang.Stringbuffer is
used. The generated file is built line by line using the Stringbuffers append
method.

The information above is based on the tutorial on JET found at [28].

22

Chapter 4

Android Application Design
in Arctis

4.1 Introduction

This chapter discuss different solutions on how Android applications can be
designed in Arctis. Solutions will be proposed as to cover the initial goals of the
implementation given below. Design challenges and problems will be considered
and discussed before a final solution is proposed. The final solution will be used
for the Android code generator implementation.

The main goal is to design applications in Arctis for the Android platform.
To achieve this, a set of building blocks that access Android services will be
developed. These building blocks provide access to Android services. A com-
mon structure for the blocks is wanted, as to enhance design of new building
blocks. Another important goal is to design the architecture with regards to
code generation, making sure implementation of the design is feasible. The
classes generated by Arctis and Ramses should not be altered to a great extend.

4.2 Architecture

An Android application has a designated Android activity which is run on
startup. To have all processes run in the background, it is convenient to start the
arctis.runtime.scheduler in the startup Android activity. Before the scheduler
is started, all Ramses state machine classes should be initialized.

The initialization process leads to all objects and threads being spawned
from the startup Android activity. This is favorable as the Android system will
not kill the startup activity unless there is an extreme demand for memory,
see section 2.4. Also, the startup activity can first be killed after all activities
stacked on top of the startup activity is killed.

23

Figure 4.1: Structure of the building blocks

The Arctis building blocks provides access to Android system services. An-
droid services, see section 2.6, consists of a number of managers, which all
provide one or more services. This leads to a design decision for the building
blocks. Blocks can either represent all services or a single service for a given
manager. Some managers, such as the location manager, provides several ser-
vices. A building block including all possible services for these managers will
lead to a complex block with a wast amount of input and output -pins. Also,
the building blocks will differ, as a result of the different manager’s amount of
services provided. How we partition Android services into building blocks may
be a matter of taste, but for us a goal was to have a design with a general
structure, hence the second solution will be chosen. This results in each build-
ing block providing one service. In the following, we will focus on applications
without Graphical User Interface (GUI), since GUI development comes with its
own challenges not part of this thesis.

The building blocks will be based on the common structure depicted in figure
4.1. A service building block will start with an input object. The object type will
vary depending on the service. Then, the serviceCallingMethod will be called,
setting up the correct service and feeding it with the necessary parameters.
Most blocks now goes into an accept input signal action. The signal is usually
a confirmation of the service being finished. After receiving the input signal,
the building block outputs via a streaming output pin. Every block could have
a range of variables associated with them, although none are depicted in the
common structure. Nor is any logic for resetting the service depicted, as figure
4.1 provides a simplistic structure of the building blocks.

Some services, such as the proximity alert service, will provide a response
to the system when an event has occurred. This is reflected in Arctis using
an accept signal action (labeled with an generic input signal in figure 4.1).
Further, this demands that the Android service is capable of sending signals
to the arctis.runtime.sheduler. The default Android services are not capable of
alternation, meaning there is no way they can send signals to the scheduler.
The architectural solution to this is to introduce custom built classes, which
will handle all service calls to default Android services. System responses from
event happenings will hence be handled by the custom classes, which are able
to send signals to the scheduler.

24

Figure 4.2: Initial Architecture for Android on Arctis

4.2.1 Initial Architecture Design for Android on Arctis

The initial system architecture is depicted in figure 4.2. Java classes are de-
picted, belonging to one of two threads, Android application thread or Runtime
thread. The first thread contain all classes which are Android components. The
second contain runtime classes generated by Ramses and Arctis. Below follows
an explanation of the model followed by a discussion on the architecture design.

As described above, the first class that is run is the Android StartActivity.
This class will be in the Android thread. Both the Scheduler and the Statema-
chine will be started from the start activity, but these classes will be run in the
separate Runtime thread.

The state machine is an auto generated class which instantiates all building
blocks used in the Arctis designed system. Figure 4.2 depicts a system with
two building block classes for demonstration purposes. If these building blocks
are designed for use with Android services, they will make calls to a customized
Android service with information on what service they will have initiated. The
custom service class will be created upon the first call. From the second call
and on, only a certain part of the class’s code will be run, see section 2.6.1.

Customized Android Service, see section 4.2.5, will start default Android
services on demand from the building blocks. Setup of the default service,
along with information on what Android receiver class the service will respond
to is the responsibility of the customized Android service. This setup is possible
as the class is an Android service and hence is running in the Android thread.

The Android receiver classes, see section 4.2.4, are designed to be corre-

25

sponding with a building block. Typically, a building block sets up a service
before it is prepared to receive an incoming signal. It is the receiver class’ re-
sponsibility to send the correct signal to the correct state machine. The signal
will be sent when the default Android service triggers the Android receiver as
a result of certain device events.

Review of Initial Architecture

An apparent question regarding the initial architecture is the choice of using
a customized Android service class. Why are not the building block classes
accessing the default Android services directly? The answer is a result of several
factors.

- First of all, if the building block classes were to setup default services
directly, they would need to be able to access default Android services
using the getSystemService method. Usually, this implies that building
block classes extend either Activity or Service.

- For the Android system to be able to include the building blocks as An-
droid activities or services, they would need to be started using startAc-
tivity or startService. This requires that either the Android StartActivity
having knowledge of all building blocks or the StateMachine being able
to call startActivity or startService. As each Arctis designed application
could have a varying range and amount of building blocks it seems unfea-
sible for the Android start activity to have knowledge of all. Having the
state machine calling startActivity or startService contradicts the goal of
not alternating the Ramses and Arctis code generator.

There is however a significant drawback to the initial architecture. For every
new building block added to the library, the service class should be updated
as to handle calls from the new building blocks. The challenge is not updating
the code itself, but rather providing access to the class containing the code.
The customized service class will be part of the Java SE for Android generator
and hence generated upon deployment. A developer wanting to update this
class needs access to the code generator for Android. To give a wast amount of
developers access to the source code of the Android generator is unwanted.

An architecture without the customized service class would allow developers
to design new building blocks without altering the code generator.

4.2.2 Revised Architecture

Figure 4.3 depicts the architecture without the customized service class. Re-
moving the customized service class implies that the challenges referenced above
in 4.2.1 has to be resolved.

getSystemService can be called without the building block being either an
Android service or activity if the Android StartActivity’s context is used. This is
the same context used when starting the customized service class in the initial

26

Figure 4.3: Revised Architecture for Android on Arctis

design. The building block will now have the possibility to create and use
Android service managers. How the context is referenced is discussed in section
4.3.

This solution has one essential difference from the initial, namely where the
code responsible for setting up the default services are run. In the initial solution
this was done in the customized service class, an Android service component
and part of the Android application thread. In the revised solution this is done
within the building block, which is neither an Android component or run in the
Android thread. This has implications on what default services can be called
from the building blocks.

Some services, such as listening to the telephony state or displaying notifi-
cations, demand that this is done from an Android application thread, meaning
this cannot be done directly from our building blocks as the runtime thread is
not an Android thread. These services are thread dependent. Other services,
provided by e.g the location manager or alarm manager can be called directly
from our building blocks.

The above implications require another revision of our architecture.

4.2.3 Final Architecture

Figure 4.4 depicts our final version of the architecture. This is a hybrid from
the two previous version. Some building blocks will be able to reach the default
Android services directly while the other, thread dependent, have to call the
service via our customized service class.

27

Figure 4.4: Final Architecture for Android on Arctis

This architecture will allow developers to create new building blocks without
having access to the code generator as long as the services used are not thread
dependent.

A simplified sequence diagram for setting up the proximity alert (non-thread
dependant service) and a call listener (thread dependent service) are given be-
low, figures 4.5 and 4.6.

Our proposed architecture has some drawbacks. The ideal solution would
be to have specific code for a certain service contained within the building block
for all services. The receiver class should also ideally be contained within the
building block class as this would remove the need for specific receiver classes
being declared in the Android application. Unfortunately, this could not be
achieved in this work due to the problem regarding separate threads.

An apparent solution to both of the above problems would be to adjust
the runtime scheduler into an Android service, and the state machine and all
building blocks into Android components. This would result in all code being
run in an Android thread, hence allowing service calls and receiver classes to be
contained within the building blocks. However, a setup like this would demand
complex alternation of the current scheduler and state machine. All building
blocks designed for use with Android would have to be started as Android
components, whereas other building block classes should be initiated the original
way. This alternative solution is not feasible for us in regards to the goal of only
small alternations to the classes generated by Ramses and Arctis.

28

Figure 4.5: Non-thread dependent service initiation

Figure 4.6: Thread dependent service initiation

29

4.2.4 The Receiver Classes

The task for the receiver classes is to send signals to the scheduler. The signals
should reflect the ones the corresponding building blocks is prepared to receive.
The role of the receiver class can be seen in figures 4.4, 4.5 and 4.6. The scheduler
and the state machine address necessary for sending signals is retrieved from
the Android start activity. The default class code for a receiver class is given
below.

public class ReceiverName extends BroadcastReceiver {
private Scheduler scheduler;

public void onReceive(Context context, Intent intent) {
scheduler = Start.scheduler;
scheduler.sendToMe(Start.SMAdrTable.get("SMName"), "signalName");
}
}

The SMName reflects the name used when adding the address to the hash
table in the start activity class. This work concerns systems with a single
state machine and hence will we use a universal name for the state machine.
Addressing in systems with multiple state machines is left as future work.

4.2.5 The Customized Service Class

The customized service class binds together building blocks with the default
Android services they want to access. Inside this class is all the logic for setting
up default Android services based on input from the building blocks.

In order for the customized service class to start a service, all necessary
information has to be provided. This information might consists of user specific
input. Android allows information to be sent to a service by attaching it to
the Intent which starts the service. Attaching and retrieving information is
respectively done by putExtras(name, value) and getExtras().get(name). This
means that e.g a notification object could be passed along from the building
block to the customized service using the intent starting the service.

As there is one customized class, but possibly several building blocks making
calls to it, there is a need to be able to separate the different calls. This is done
by having each building block add two Extras with information on what Android
service manager should be used and what type of service is wanted.

There are one last Extra which is used for every thread dependent building
block. This is a boolean value which indicates whether or not the service should
be stopped. When a user of the Android application wants to shut down a
service, this extra’s value is set to true before the intent is sent from the building
block. Our customized service class will read this value and stop the service for
the given building block if true.

30

All of the logic in the customized service class is written inside the class’
onStart method in accordance to the service lifecycle, see section 2.6.1. The
onCreate method cannot contain the logic as this is only run the first time the
service is started. onStart on the other hand is run each time startService is
called.

Below follows some demonstration code on how the service class works.

public void onStart(Intent i, int StartID){
NotificationManager nMN = (NotificationManager)getSystemService(
NOTIFICATION_SERVICE);
TelephonyManager tMN = (TelephonyManager)getSystemService(
TELEPHONY_SERVICE);

First onStart is called and the Android managers are retrieved by calling get-
SystemService.

if(i.getExtras().get("ManagerName").equals("TelephonyManager")){
try{
tMN.listen(new PhoneStateListener(){
public void onCallStateChanged(int state, String incomingNumber){
super.onCallStateChanged(state, incomingNumber);
switch(state){
case TelephonyManager.CALL_STATE_OFFHOOK:
Intent TelephonyIntent = new Intent(
AndroidServiceForArctisBuildingBlocks.this, TelephonyReceiver.class);
sendBroadcast(TelephonyIntent);
break;
}}, PhoneStateListener.LISTEN_CALL_STATE);
catch(Exception e){System.err.println(e);}}

Above is the code snippet from the case of the ListenForCalls being set. First,
a check is done for the manager name. Then, a phone state listener is setup. In
case of the state being OFFHOOK, an intent is created determining what class
should be run next. This intent is broadcasted so the receiver class can receive
it and send the correct corresponding signal to the scheduler.

Every thread dependent service is started in this fashion, by using else-if
sentences checking the manager name.

4.2.6 The Common Screen Layout

Every application created using the Java SE for Android generator will be
equipped with a common screen layout displaying two simple buttons. One
for starting the service(s) the application provides and one for stopping it. The
XML file describing this layout is added to the generator and will be used in
the onCreate() method of the Android start activity. The common application
screen is shown in figure 4.7.

31

Figure 4.7: The common screen layout for applications designed in Arctis

To enable the buttons to work, listeners have to be set. The method called
when Start service! is pressed perform setup of the scheduler, state machines
and other variables. The scheduler is started. The method called for Stop
service! will send a stop signal to the scheduler, initiating shutdown of all
started services.

4.2.7 Permissions

The permissions, see section 2.8 and 2.9.1, used in our architecture will reflect
the ones necessary for having all our designed building blocks run after de-
ployment. This is not the best solution possible as there will be applications
developed which does not use all of our building blocks. E.g will an application
which does not use the location service still ask for permission to access the
phones location. This might cause dis concern to the user upon installation.

As our solution does not involve dynamic creation of the XML files, such as
the manifest, the recommended solution to this will be to develop applications
as normal and remove the excess permissions before the application is published.

4.3 The Thread Problem

Android applications designed in Arctis and running the arctis.runtime.scheduler
will be run in two major threads, because the generated scheduler is not defined
as an Android component. One thread will run the Android activities, services
and other Android components, while the other will run the scheduler and the
state machines, as seen in figure 4.4. The challenge is to enable classes spawned
from the two separate threads to make calls on each other. The solution will
have to take the code generation process into consideration.

The building blocks have to use an android.content.context object when call-

32

ing upon services. This is usually done by calling startService(Intent intent) for
a typical Android application. The startService method call is only available
for classes which have an Activity, Service or Receiver extension, hence being
an Android component. An apparent solution is to extend the Arctis building
block classes with the Activiy extension.

But, even after adding an extension, one cannot call startService from the
building block class. The main problem is that the context is only set when
the class is created from another Android component, using the correct method
call. In our case, the building block classes are instantiated upon creation of
the state machines. The auto generated state machine class will initialize the
classes using the new class call and not one of the required Android calls such as
startActivity. Also, since the state machine is not an Android component, calls
to this.context in the building block classes will return null. The building blocks
does not acquire the necessary Android context required for starting services.

The second problem is that the above described custom service and receiver
classes can not reference and send messages to the scheduler, as the service
and the scheduler are running in separate threads. This will be solved using
a java.util.hashmap where all state machine addresses are saved upon creation.
The hash map will be public and localized in the startup activity, enabling all
Android activities to retrieve state machine addresses.

The below subsections will describe two different solutions regarding the
context problem before concluding on which is chosen.

4.3.1 Solution Alternative 1

The first solution is to provide the state machine classes with an Android context
on initialization. This allows the state machine classes to provide the building
block classes with a valid context which can be used upon service calls. To
achieve this, both building block - and state machine classes need to add a new
constructor, taking the context object as a parameter.

The context used will be the one of the class that initialized the state ma-
chine, in our case, the Android startup activity. Calls made to start an An-
droid service will then be perceived by the Android system as coming from the
startup activity. As the startup activity is the last activity killed before appli-
cation shutdown, the context reference will be usable during the lifetime of the
application.

Implications from this solution is to add to the current Arctis generator, en-
abling it to handle creation of state machine classes with a context as parameter
in addition to the standard scheduler. Also, the generator needs to be able to
separate Android building block classes from other building blocks, as only the
Android classes makes use of the new constructor.

33

4.3.2 Solution Alternative 2

The second solution is based on making the building block classes able to ref-
erence the Android context without the use of a constructor parameter. To
achieve this, the scheduler will be used. A hash map is added to the scheduler,
enabling it to hold Android context objects.

During startup, the Android context is added to the scheduler’s hash map.
As the building block classes are part of the same thread as the scheduler, they
can access the hash map by making calls to the AbstractRuntime.

This solution demands a quick and simple alternation of the scheduler class
and the abstract runtime.

4.3.3 Conclusion on Thread Problem

The conclusion is based on the overall implementation goals listed in the intro-
duction of this chapter. Both solutions were tried implemented and they both
worked on examples.

The first solution demanded addition of a constructor class extending the
state machine class. The Arctis generator was adapted and the state machine
were started in the Android startup activity using new StateMachine(scheduler,
context). The solution ran without any problems. However, the example appli-
cation used for testing consisted only of building blocks developed for use with
Android. If other building blocks were to be used, the state machine class could
not start them as they have no constructor which includes an Android context.
To solve this, the state machine class would have been able to differentiate be-
tween Android building blocks and regular ones. This would demand severe
alternations to the current generators, contradicting an implementation goal.

The second solution demanded adding of a hash map to the scheduler. The
hash map could be reached through the interface of the scheduler. Unlike the
first solution, this one has the strength of demanding no alternation to the state
machine class. The solution will work just as well for regular building blocks
and building blocks built for Android use.

The second solution will be chosen as it requires the least alternations and
has no apparent drawbacks.

4.4 Considerations

This chapter has discussed thread dependent and non-thread dependent Android
services. Our solution will contain building blocks of both types. The Android
API contain a wast amount of other services. A complete list or overview over
which of these are thread dependent or not are not included in this work, as the
documentation on the API does not state in a clear fashion what services needs
to be called from an Android thread.

34

4.4.1 Strengths

The main strength is that, given the library consisting of Android building
blocks, applications can be rapidly designed and deployed on an Android de-
vice. New building blocks can be designed for non-thread dependent Android
services without necessary alternation of generated classes. The default design
for building blocks enhances design of new ones.

Our architecture relieves the building blocks created for use with Android
from the constraint of having the Activity or Service extension. This simpli-
fies the Android manifest. Another benefit is regarding multiple instances of
building blocks. Our solution uses one receiver class for every building block no
matter how many instances might be used in the system design. With the Ac-
tivity or Service extension, multiple instances in the system design would result
in multiple descriptions in the manifest.

4.4.2 Challenges

The biggest challenge is to update the customized service class. For every
thread dependent building block added to the library, the service class have to
be updated as to handle calls from the new building blocks. The challenge is not
updating the code itself, but rather providing access to the class containing the
code. The customized service class is part of the Java SE for Android generator
and is generated upon deployment. A developer wanting to update this class,
pre-generation, needs access to the code generator for Android. To give a wast
amount of developers access to the source code of the Android generator is
unwanted.

There are two possible ways to handle the above challenge. Either by having
developers provide code to someone who has access to the code generator and is
able to update it, or by having the developer insert code after deployment. Dur-
ing development and testing of applications, deployment might be done several
times. There is a drawback if code has to be inserted after each deployment, as
this is time consuming.

The customized receiver classes have the same challenge, and possible solu-
tions, as described above. Most of the building blocks accepts and responds to
incoming signals and these are provided from the receiver classes depicted in
the architecture, figure 4.4. The Android receiver classes used for handling the
events have to be created as part of the the Android project and described in
the Android manifest.

35

36

Chapter 5

Manual Adaption of
Generated Code

Arctis provides an implementation option were an application can be deployed to
Java SE. This makes the application run on a Java platform, but the generated
application does not satisfy the requirements of an Android application. In the
process of developing a code generator for Android, the steps needed to make
the application runnable on Android is significant for what the Java SE for
Android generator should cover.

This chapter explains the adjustments and additions needed to make a gen-
erated Arctis application run on Android and is outlined as follows. First we
take a look at the example application, HelloLocationWorld, and how it is de-
signed in Arctis. The Arctis model will be implemented as a Java SE project.
Then a step by step explanation follows, describing in detail the changes needed
for making the application run on Android.

Discussions and figures in this chapter will be based on development using
the Eclipse tool, with an installed Android SDK [4].

5.1 The Example Application - HelloLocation-
World

The example application, described in section 2.2, generates a location and adds
a proximityAlert using the Android location manager. As the device reaches a
predefined radius of the desired location, a notification will be displayed to the
user of the Android device using the notification manager. When designing the
system in Arctis the solution was to make one building block for handling the
proximity alert and one for handling the notification. The system behavior is
depicted in figure 5.1.

As UI is not relevant for this work, the common layout (see section 4.2.6)

37

will be used for the generated version of HelloLocationWorld instead of the one
depicted in figure 2.2.

Figure 5.1: LocationAlertSystem behavoir

HelloLocationWorld, figure 5.1 starts with the method getLocation being
called. This method generates an Android location object which is fed to the
ProximityManager building block, see section 7.4 for a detailed look at this
building block. ProximityManager makes use of the Android location manager
and sets up a proximity alert, hence the name of the building block. Proximi-
tyManager outputs via the proximityAlert-pin, and triggers the createNotifica-
tion method. This method generates an Android notification which is fed into
the second building block, ShowNotification, described in detail in section 7.2.
ShowNotification terminates via the notifShown-pin, ending the UML-activity.

5.2 Adapting to an Android Application

There are several necessary steps in adjusting the generated code for running on
an Android device. The following subsections each address a part of the adap-
tation process and covers what needs to be done to have our Arctis designed
system, HelloLocationWorld, implemented and treated as an Android project.
The subsections are divided as to cover general areas of importance when adapt-
ing Java SE applications to working Android applications. These areas will be
addressed under development of the code generator, described in chapter 6.

38

5.2.1 Implementing And Moving the Project

Code generation is needed as to deploy the system as a runnable Java project.
Hence, the first step is to implement the example system and deploy it as a Java
SE project. This is illustrated in figure 5.2.

Figure 5.2: Implement and deploy as Java SE

To make the example application run on an Android device, the project has
to include all necessary components of an Android project, described in 2.11.
After implementing the system as Java SE, the resulting Java project obviously
has no Android nature. The project needs to have the Android nature. Solving
this is done by creating a new Android project. The newly created project will
automatically have the correct Android nature and contain all the mentioned
necessary components.

Figure 5.3 depicts the creation of a new Android project. Project name
and all property names may be chosen freely, but since the launch class in our
generated project is named Start.java, it is convenient to have the Android
project’s Activity name set to Start. This results in the Start activity being set
as the launch class of the Android project.

By now, code is generated and the Android project is created. The generated
packages should to be moved into the newly created Android project. This
is done by marking all packages in the source folder (src) of the generated
packagename.Systemname_exe and dragging them into the source folder (src)
of the Android project. This completes the first phase of the adjustment process,
as we now have our generated code in an Android project, effectively solving
the nature and component problems addressed above.

5.2.2 The Start.java Class

The deployment of the system generates a launch class named Start.java. This
class sets up the state machines and a scheduler for the implemented system.

39

Figure 5.3: Create a new Android project

40

The content of this class have to be moved into the launch class for the Android
application, mentioned in 5.2.1, in order for the system to run on an Android
device.

In addition to moving the generated code into the Android project’s Start.java
class, there are several other changes needed in order to have the system behave
as required, running on an Android device. Below follows an explanation of the
Start.java class, describing changes, adaptations and the reason they have been
done.

public class Start extends Activity{

First we declare the class name which extends Activity. The extension is
necessary for the Android application to run on startup and also enables the
use of the Start.java context to be used as a launcher of Android services and
other Android activities.

public static Scheduler scheduler;
public static HashMap<String, String> SMAdrTable =
new HashMap<String, String>();

Then, we create a public Scheduler and a HashMap able to hold String
values containing addresses to the system state machines. The reference to
the scheduler and the hash map is used as to address the The Thread Problem
described in 4.3. SMAdrTable and scheduler will be used by Android classes in
instances where a signal is going to be sent to the scheduler. Due to the thread
problem, the Android activity class Start.java is the only class where a reference
to the scheduler is set.

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

Is the default Android code needed for every activity. The onCreate(Bundle
savedInstanceState) method is called as to tell the Android application what
code to run as the start activity is created. All code necessary for setting up
button listeners in accordance to our common screen layout, see section 4.2.6,
is done here.

int socketServerPort = GlobalRoutingConstants.JAVA_STANDARD_TCP_SERVER_PORT;
Serializer serializer = new SoapHandler();
SocketTransporter transporter = new SocketTransporter(socketServerPort);
Router router = new JavaStandardRouter(serializer, transporter);
scheduler = new Scheduler(router);

The code above are the default code generated by the Java SE generator for
setting up the scheduler, with one exception. In the last line, the public static
scheduler object is initialized, but not started. The generated code starts this
object as default, but in order to reference the scheduler object, startup of the
scheduler is postponed.

41

scheduler.addContext("Android", Start.this);

Invokes the method addContext(String, context) on the scheduler. This
method adds a reference to the Start.java class, referenced by this. Adding
a context to the scheduler object is necessary for an Android application as to
allow UML activities to start Android activities and services. The creation of
this method is a result of the discussion on threads described in 4.3.3.

LocationSystemSM ls = new LocationSystemSM(scheduler);
SMAdrTable.put("LocationSystemSM", ls.getId());

This will create the state machine for the system and add the state machine
address (retrieved by getId() to Start.java’s hash map, SMAdrTable. The state
machine address is now available for being referenced by Android classes.

new Thread(scheduler).start();

Finally we create a new thread, starting the scheduler.

5.2.3 Add Android Specific Classes

The solution for creating Android applications in Arctis involve use of an An-
droid service class for handling service calls, as well as receiver classes. The
receiver classes are Android broadcast receivers which handle responses from
Android services as described in chapter 4.

Figure 5.4: Copy Predefined Android Classes Into the Android Project

Figure 5.4 depicts the pasting of the three classes needed for the example
application solution. These classes enables the execution of our example appli-
cation, described in 5.1. A detailed description of the pasted classes are part of
chapter 6.

42

5.2.4 Update the Android Manifest

The Android Manifest, see 2.9, needs to be updated with entries for the ac-
tivities, receivers and services added in 5.2.3. Also, permissions are required
depending on which services are used in the application. Below follows an ex-
plaination of the updates done in the AndroidManifest.xml file.

<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />

First we add the permissions of ACCESS_FINE_LOCATION inside the
manifest tag. This permissions allows the application to access the mobile de-
vice’s Global Positioning System (GPS) unit and hence derive location updates
as they arrive. This is a necessity for the example application, as a proximity
alert, which require access to location updates, is added.

<service class="AndroidServiceForArctisBuildingBlocks" android:name=".
AndroidServiceForArctisBuildingBlocks">
<intent-filter>

<action android:value="no.ntnu.item.ArcDroid.TESTSERVICEv2.0"
android:name="android.intent.action.TESTSERVICEv2.0" />

</intent-filter>
</service>

The above lines add the developed serivce class, described in 4.2.5, to the
manifest file. First, the class name is declared, followed by the android name
for the same class. In the next lines an intent-filter, see 2.7 is added. The
android:name of the intent-filter provides a means for classes in the Android
application to use the service. Classes create an intent which name equals
android::name and hence, the service class will start whenever such an intent is
used as a parameter in the StartService(Intent) method.

<receiver android:name=".ProximAlertReceiver" android:label=
"@string/proxim_name" />
<activity android:name=".NotifReceiver" android:label=
"@string/notif_name" />

Finally, we update the manifest with entries for the alert receiver and the
notification activity. These entries consists of only an android:name along with
an android:label which is a text string containing the name of the activity. The
label text will be used as a headline for the activity if put to the foreground.

5.2.5 Resources

The example application makes use of additional string values, as explained
in 5.2.3. The code below is from the XML file describing the different string
values available for the Android application. proxim_name and notif_name are
declared as required by the manifest file.

43

<?xml version="1.0" encoding="utf-8"?>
<resources>
<string name="hello">Hello World, Start</string>
<string name="app_name">ArcDroid</string>
<string name="proxim_name">Proxim</string>
<string name="notif_name">Notif</string>
</resources>

Also, the application makes use of an logo for its notifications. This logo
needs to be added to the Android application’s drawable folder. This is ob-
tained simply by copying the image file named ntnu.png to the correct folder,
as depicted in figure 5.5.

Figure 5.5: Add logo image

Figure 5.6: Step 10: Add build path for the updated Arctis runtime

This completes the adaptation of an Java SE generated project into an An-
droid project. The Android project is now runnable on an Android SDK’s
device.

44

Chapter 6

The Android Code
Generator

Section 5.2 described changes needed in order to enable Arctis designed applica-
tions, see 3.1, to run on an Android device. Changes included alternation of the
generated Start.java class and addition of an Android service class, an Android
activity and receiver classes. These classes should be generated by our Java SE
for Android generator and added to the Android project at the correct package
and folder location.

This chapter will describe how the necessary changes are handled by our
Java SE for Android generator. Our generator will be developed based on use
of the existing code generators in Arctis [22, 25, 29], Java builder, described
in Eclipse Plug-in Development Environment (PDE)[14], the Java Development
Tool (JDT) [13] and the EMF [12].

6.1 Generation Overview

Figure 6.1 depicts an overview over what packages, classes and files are con-
tributed by the Ramses, Arctis and Android parts of our Java SE for Android
generator.

Ramses contributes the Ramses runtime environment including the sched-
uler. Transport and routing used by the scheduler is also included.

The Arctis part generates packages for all building blocks used in the system
design. It also generates the system package. The system package include
the system class describing system specific methods and variables. The state
machine class are also a part the system package. The Arctis runtime provides
classes enabling interaction with the scheduler generated by Ramses.

The Android part is the focus of this work and will generate an Android
system package along with a file system. The package consist of the Start class

45

Figure 6.1: Resources contributed by which part of the generator

(an Android activity), a customized Android service class and several Android
broadcast receiver classes. All elements of our Android in Arctis architecture,
section 4.2. The file system consists of a folder containing Android resources
and the Android manifest, both required parts of an Android project.

6.2 Generation Components

6.2.1 XML Generators

The XML generators are included as to generate all necessary XML files for
the Android project. There are three types of resources in which two of them,
layout and values, contain a document describing the resource. The Android
manifest file, section 2.9, is also an XML file).

All XML generator classes are constructed in the same manner. The string
generator class code is used to illustrate.

public class AndroidStringsGenerator {
private static final String N = "\n";
public static String generateLayout() {
StringBuilder b = new StringBuilder();

First off, a final string object is created which will be used whenever a line
break is wanted. Then the method of the class, generateLayout is defined with
a string return object. A string builder, used for building the resulting XML
file is instantiated. Next is the line by line addition of the content of the XML
file.

46

b.append("<?xml version=\"1.0\" encoding=\"utf-8\"?>" +N);
b.append("<resources>" +N);
b.append("<string name=\"hello\">Welcome to the application</string>" +N);
b.append("<string name=\"app_name\">ArctisForAndroid</string>" +N);

return b.toString();

Above is the first lines of the strings.xml file. Each line is added to the string
builder using the append method. All lines of the original XML document is
added this way until the method return the string builder as a string.

The below subsections describes the generation of the different XML files.
The subsections also discuss the files in regards of dynamic creation, expansion
and adaptations to new systems.

Strings Generator

An Android project needs a strings.xml file declaring all text strings that will
be used in the application. There are no restraints on the use of textstrings
decleared in strings.xml, meaning it is possible to add text strings even though
they are not used in the application. Although, it is important to ensure that
a minimum of text string are represented in the AndroidStringGenerator class.
This minimum consists of an application name and names for every additional
Android activity, service and receiver generated by our Java SE for Android
generator.

Layout Generator

The layout generators goal is to create a basic layout for the Android applica-
tion. An Android application does not need to have described a layout, if the
application does not contain any screen pictures. Although layout and screen
pictures are of small focus in this thesis, our Android code generator will gener-
ate a simple layout XML file. This layout will simply put a text string, described
in the strings.xml file, on the main screen of the Android device. The layout
will also provide a couple of buttons, one for starting the generated system, and
one for stopping it.

Layouts are developer dependent, some might want to use rich screen pic-
tures, whereas others want simplistic layouts to go with their applications. Gen-
erating screen pictures suitable for a wide range of applications and developer
desires is hence out of the scope of this thesis. When a developer wants to add
new layouts, this can be done by using the Android layout tool which is a part
of the Android SDK.

Manifest Generator

The Android manifest, see 2.9, is one of the most important parts of an Android
project. The application will not run as intended if not all activities, intent-

47

filters, services and other Android components are declared in the manifest. On
the other hand, one cannot describe components in the manifest file, which does
not exist in the Android project. The above statements need attention during
generation of the Android manifest file.

The architecture used when building Android applications using the Arctis
tool, see section 4.2, is developed with consideration to the manifest. The
solution is built around one central service class, section 4.2.5, which UML
activities may use at any time. The service class is part of any project being
implemented for Android and because of this, the service can be described in
the generated manifest file. The Android activities and receivers used in the
solution for service results are also generated for every Android implementation.
Hence, the receivers and activities may also be described in the manifest at the
generation stage.

The description of the service and the receiver activities will be as described
in 5.2.4.

As described above, the Android manifest file can be generated with fixed
descriptions of both Android activities and services. No further adaptations are
needed when using the building blocks provided in the Arctis editor. When the
generator is expanded with new services and receiver classes, the manifest file
generator needs to be updated with descriptions of the new Android activities.

6.3 Templates

This section describes how the launch class (Start.java), the Android Service
class (AndroidServiceForArctisBuildingBlocks.java) and the receiver classes are
created by the Java SE for Android generator. JET, see 3.2, will be used for
generating source code and hence, all templates have the *.javajet extension.

Every *.javajet file used in the Android generator starts off with the same
structure. Below is the first lines of the javaandroid.proximreceiver.javajet file
as to give an illustration of how the templates are written.

<%@ jet package="no.ntnu.item.ramses.generator.android.javase.jet"
imports="java.util.List java.util.Iterator"
class="JavaForAndroidProximReceiverGenerator" %>

Declares the packagename, the imports and the class name of the JET gener-
ated *.java file. When saving the *.javajet file, a *.java file named JavaForAn-
droidProximReceiverGenerator will be created in the given package. The cre-
ated file will have the imports declared in the second line above.

<% List args = (List)argument;
Iterator i = args.iterator();
String pckg = (String)i.next();

%>
package <%= pckg %>;

48

Every *.java file created from a *.javajet template will contain a method
name public String generate((Object argument), see 3.2. The code snippet above
makes use of this argument in order to set the correct package name for the
generated class. The argument passed along will have to contain a java.util.List
object. An iterator is assigned the list, and the first list object contains a String
with the package name used under generation. This package name is used when
the package name for the generated file is set.

After the above initialization, the remaining class code is pasted in the
*.javajet file with no further alternations necessary, unless the code makes use
of some input from the list or iterator.

6.3.1 Start Class Generator

The start class generator’s initialization process demands more than described
above. Every generated state machine class, see 3.1, from the Arctis design
will have to be imported into the start class. These state machines should also
be created during startup. The list of arguments passed to the template also
include lists of imports and state machines. As JET allows use of JSP written
code, the lists will be traversed, importing the correct references to the state
machine classes and creating a new instance of each state machine in Start.java’s
onCreate() method. The code is given below.

List imports = (List)i.next();
List stateMachines = (List)i.next();

First, the iterator (i) is traversed as to create a list of imports and state ma-
chines.

<% for (Object o : imports) { %>
import <%= (String)o%>;
<% }; %>
<% for (Object o : stateMachines) { %>
new <%= (String)o %>(scheduler);
<% } %>

The remaining code in the start class template is written as to mirror the
Start.java class described in section 5.2.2.

6.4 The Java for Android Generator

This section will give a description of the core methods of the main generator
class, JavaForAndroidGenerator.java. This class is developed as to cover all
required adaptations found in chapter 5. The XML files and templates described
above will come into use in the generator.

49

6.4.1 The generateComponents method

generateComponent is the main method of JavaForAndroidGenerator.java. This
method builds the whole resulting Java project by making calls to other parts
of the generator and using IGenerator2 [17] variables and methods. The source
code of the method is explained below.

IJavaProject newProject = CommonGenerator.generateCommonParts
(components, targetProject, monitor,
PlatformIdentifiers.JAVA_STANDARD);
IFolder newProjectSrcFolder = newProject.getProject().getFolder("src");
IClasspathEntry[] entries = newProject.getRawClasspath();

First off, generateComponent creates a new IJavaProject and adds objects
for the source folder of the new project and its classpath. All objects and
the generateCommonParts method, which sets up a Java project for the given
JAVA_STANDARD platform, are from IGenerator2.

ResourceHelper.writeFileToProjectRoot(newProject.getProject(),
ANDROID_MANIFEST_FILENAME, AndroidManifestGenerator.
generateManifest(components.iterator().next().
getNearestPackage().getName()), new NullProgressMonitor());
generateAndroidLaunchClasses(components, newProjectSrcFolder, monitor, newProject);

Next, the Android Manifest file is generated from the above described class
and written to the root of the project. All template defined classes are added
to the project using the generateAndroidLaunchClasses method, see 6.4.2.

IResource runtimeFolder = newProject.getProject().findMember(
"/src/no/ntnu/item/arctis/runtime/AbstractRuntime.java");
runtimeFolder.delete(false, null);
entries = JavaResourceHelper.removeEntry(entries, JavaRuntime.
getDefaultJREContainerEntry());
IClasspathEntry androidEntry = JavaCore.newContainerEntry(
new Path(ANDROID_CONTAINER_PATH));
ResourceHelper.copyFile(Activator.getDefault(), new Path(
ArctisCodeGenerationConstants.PATH_TO_ABSTRACT_RUNTIME), newProject.
getProject(), new Path(ArctisCodeGenerationConstants.
PATH_TO_ABSTRACT_RUNTIME));
entries = JavaResourceHelper.addToEntry(entries, arctisRuntimePath);
newProject.setRawClasspath(entries, new NullProgressMonitor());

Generation for the JAVA_STANDARD platform created a runtime class
and a Java Runtime Environment (JRE) container which is not suitable for
Android. These are removed and replaced with the Android container and an
updated runtime class.

ResourceHelper.addProjectNature(newProject.getProject(), ANDROID_NATURE);

50

To have the project behave as an Android project, adding features such
as designing layouts and adding to the manifest from the Eclipse editor, the
Android projectNature is added to the IJavaProject.

IPath layoutPath = new Path("res").append("layout");
IPath valuesPath = new Path("res").append("values");

ResourceHelper.writeFile(newProject.getProject(), valuesPath,
ANDROID_STRING_VALUES_FILNENAME,
AndroidStringsGenerator.generateLayout(), new NullProgressMonitor());
ResourceHelper.writeFile(newProject.getProject(),
layoutPath, ANDROID_MAIN_LAYOUT_FILENAME,
AndroidLayoutGenerator.generateLayout(), new NullProgressMonitor());
ResourceHelper.copyFile((Plugin)Activator.getDefault(),
new Path("icons/ntnu.png"),
newProject.getProject(), new Path("res/drawable/ntnu.png"));
ResourceHelper.copyFile((Plugin)Activator.getDefault(),
new Path("icons/icon.png"),
newProject.getProject(), new Path("res/drawable/icon.png"));

JavaResourceHelper.closeAndReOpenProject(newProject, monitor);

Finally, the file system has to match the one of an Android project. The
file system is constructed using IGenerator2 [17] and files are created using
the above described XML generators and copies of image files. This creates an
Android file system containing all necessary files.

6.4.2 The generateAndroidLaunchClasses Method

The second method of importance in JavaForAndroidGenerator.java is gener-
ateAndroidLaunchClasses. This method will generate classes for the templates
described in 6.3 and put these into the src folder of the newly created IJavaPro-
ject. The templates makes use of an argument object which have to contain a
list of imports, state machines and the package name. Hence, in the generateAn-
droidLaunchClasses method, an object named templateArgs is built containing
the necessary component data. The argument object will be passed along with
calls for generation of templates.

In this section there will be one example on how classes are generated from
templates and added to the file system of the generated project. The creation
and addition of the Start.java class will be used in the example.

JavaForAndroidStartGenerator startTemplate = new
JavaForAndroidStartGenerator();

First, an instance of the template created generator class is instantiated.

String startCode = startTemplate.generate(templateArgs);

51

Now, generation of Start.java code is done by calling the generate(Object
argument method on the template class. The argument passed along is the
templateArgs object referenced above. The return object will be a string con-
taining the Start.java class.

ResourceHelper.writeFile(targetFolder, new Path(path),
GenerationConstantsAndroid.START_CLASS_FOR_ANDROID_NAME,
startCode, monitor);

The generated class will now be written into the project, using the IGener-
ator2 method writeFile, which writes a file with a given name to a given path
and a given source code. In this case, the path will be the default package of the
project and the code is the string object startCode. The target name is resolved
from a class containing generation constants for the project, having the class
name for this instance being Start.java.

By now, the Start.java class will be part of the generated project and will
behave dynamically in accordance to state machines.

52

Chapter 7

Building Block Library

7.1 Commonalities

All building blocks developed in this work shares a common part. That is
the creation of an Android intent used for starting the Android services and a
context for making the service call. The intent is created with a reference to
the custom or default Android service and parameters describing the purpose
of the building block. The common setup code are given below.

public android.content.Context context;
public android.content.Intent IntentName;
context = (Context)AbstractRuntime.getRuntime(this).getContext("Android");
IntentName = new Intent();

First off, all classes declear an Android context and intent. The Android context
is retrieved from the scheduler. This is the context added at startup of the
Android application, a result of the discussion in 4.3.

Setup of the services are done in a different manner for thread dependent
and non-thread dependent building blocks, see section 4.2.

7.1.1 Logic for Restarting a Service

By restart of the services we mean how the system re initiates a service after it
has been triggered. E.g when using a proximity alert, the system has to be able
to restart tracking of a location after the alert has been triggered. Same goes
for resetting of alarms and listening for incoming phone calls.

This work does not focus on user input, resulting in the locations and alarms
that are to be monitored being coded in our examples. However, the behavioral
design of the building blocks are done with concern on resetting mechanisms.

53

Figure 7.1: ShowNotification behavoir

In cases where resetting of the service is necessary, a timer is usually used
for simulation. The timer will hold for a predefined time before re initiating the
service. This works well for demonstration purposes.

7.2 ShowNotification

Figure 7.1 depicts the behavior of the ShowNotification building block devel-
oped in this work. This building block has a simple function, namely to display
a notification on the Android device. The input of the block is named inten-
tWithNotifText and as the name suggests, the type of input is an Android intent.
This intent should always contain headline text, notification title, notification
text and the a name of the notification icon which is to be used. Creation of
an example intent is given below. The intent is fed to the building blocks only
method, showNotification. After the method call is done, the block terminates
via the notifShown pin.

public android.content.Intent createIntentForNoticationManager() {
Intent notificationIntent = new Intent();
notificationIntent.putExtra("HeadlineText", "This is the headline text!");
notificationIntent.putExtra("NotificationTitle", "This is the
notification title!");
notificationIntent.putExtra("NotificationText", "This is the text
of the notification!");
notificationIntent.putExtra("NotificationIcon", "picturename");
return notificationIntent;
}

The intent created above is fed to the notification manager’s showNotification
method where, in addition to the default setup, other parameters are set up.
The whole method is given below.

public void showNotification(android.content.Intent intent) {
Notification notification = new Notification(0, intent.getExtras().getString
("HeadlineText"), System.currentTimeMillis());
notification.flags = Notification.FLAG_AUTO_CANCEL;
context = (Context)AbstractRuntime.getRuntime(this).getContext("Android");

54

Figure 7.2: ListenForCalls behavior

intent.putExtra("Notification", notification);
intent.setAction("android.intent.action.TESTSERVICEv2.0");
intent.putExtra("ManagerName", "NotificationManager");
context.startService(intent);
}

ShowNotification is a thread dependent building block, resulting in use of our
custom service class during service setup. A notification object is created using
the headline text of the input intent. Then a flag is set as to make sure the
notification icon disappears from the status bar of the Android device when
clicked. The notification is then added to the input intent. The intent is then
set up as to start our custom service and the notification manager. Finally,
startService is called using the modified input intent as parameter.

The timer, t0, has no function, but is required in the current version of Arctis
for building blocks which only contain a single method as in this case.

7.3 ListenForCalls

The ListenForCalls building block, depicted in figure 7.2, has no object type
for its starting event, listenForCalls. The phone states such as ringing, off-hook
and idle does not need any user input when being set up. However, use of the
telephony manager is thread dependent, see section 4.2, hence will setup of the
service go through our custom service class.

After being started, this building block enter the setCallListener method.
The flow then continues to a merge node before it enters an accept signal action,
namely incomingCall. When the signal arrives the flow forks to an output
streaming pin, call, and the merge node. The output informs the environment
of the recent happening and the merge node resets the listening of calls.

This building block does not have a simulated resetting of the service as no
new input is needed for this process.

The setCallListener method is given below. Because the method has no
input arguments, all that is done is the setup towards our custom service class.

55

Figure 7.3: ProximityManager behavior

The intent is equipped with information on what manager is wants to use and
which telephone state it wants to listen to.

public void setCallListener() {
context = (Context)AbstractRuntime.getRuntime(this).getContext("Android");
TelephonyIntent = new Intent();
TelephonyIntent.setAction("android.intent.action.TESTSERVICEv2.0");
TelephonyIntent.putExtra("ManagerName", "TelephonyManager");
TelephonyIntent.putExtra("TypeOfService", "OnThePhone");
context.startService(TelephonyIntent);
}

ListenForCalls has a input streaming pin named stop, which is used to stop the
service. After calling removeListener, the block terminates via stopped.

7.4 ProximityManager

Figure 7.3 depicts the proximity manager building block. As the name illus-
trates, this building block will setup a proximity alert for a given location. It
has one variable which is an Android location object. This building block can
setup the desired service directly (non-thread dependent).

The building block starts via the addProximityAlert input pin, with the lo-
cation object as parameter. The location is stored for the building block using
set Location. Then the flow enters a merge node, after which the location vari-
able is fetched in get Location and fed into the building blocks most important
method, namely callProximAlert. This method calls upon our custom service
which sets up the proximity alert for the given location.

After setting up the proximity alert the building block now accepts input
from the system. The accepted signal is named proximityAlert. When the signal
arrives, the control flow enters a fork node, which initiates a streaming output
proximityAlert indicating that the alert has been triggered. The other control

56

flow from the fork node enters a timer, t0, used for representing the resetting of
the proximity alert as explained above in 7.1.1.

The building block also have a streaming input pin called stop which will
call the cancelProximAlert method, canceling the service.

The location object starting the proximity manager is an Android location.
The location object is created with a name of choice along with a latitude and
a longitude.

The callProximAlert method sets up the default Android location service
using information from the input location object. The method code is given
below.

public void callProximAlert(Location location) {
context = (Context)AbstractRuntime.getRuntime(this).getContext("Android");
lMN = (LocationManager)context.getSystemService(context.
LOCATION_SERVICE);
LocationIntent = new Intent();
LocationIntent.setClassName(context, context.getPackageName()
+".ProximAlertReceiver");
contentIntentLocation = PendingIntent.getBroadcast(
context,0,LocationIntent,0);
lMN.addProximityAlert(location.getLatitude(),
location.getLongitude(), 1000, 333333333, contentIntentLocation); }}

The location manager is instantiated using the getSystemService method called
via the context retrieved from the start activity. Then, the location intent is set
up with references to the context and the receiver class. The reference to the
receiver class can be fixed at context package name plus the ProximAlertReceiver
extension due to this file always being generated at this location by our code
generator. A pending intent is setup and used for adding the proximity alert
along with parameters for latitude and longitude from the input location object.

The proximity alert demands that an expiration time and a radius is set.
The expiration time determines how long, in seconds, the proximity alert is
going to be valid. For a consistent proximity alert, it is recommended to use
a large number, as we have done. The radius determines how close, in meters,
one have to be to the target location before the alert is triggered. This is set
to 1000 meters in our examples, as the emulator currently has a location bug,
but could of course be altered. A different idea could be to have this radius as
part of an input object of the building block, leaving the choice of radius to the
developer or user for each proximity alert.

The cancelProximAlert is used for cancelling the service and is done by
removing the proximity alert for the given pending intent.

lMN.removeProximityAlert(contentIntentLocation);

57

Figure 7.4: SetAlarmManager behavior

7.5 SetAlarmManager

The SetAlarmManager building block’s, figure 7.4, task is to set an alarm on the
phone. The start pin of this building block is hence named AlarmTime, with
object type long. This object variable is first set in set time before it enters
a merge node. After the merge node, the flow enters get time which retrieves
the AlarmTime object and feeds into the setAlarm method. This flow will now
accept an input signal, namely alarmTriggered. When it arrives, the flow is
forked, outputting alarmTriggered to the environment and entering a timer.

The timer t0 is used here, as in the case of the location manager, for simu-
lating resetting of the alarm.

SetAlarmManager has a streaming input pin, stop, which will call the can-
celAlarm method, before the building block terminates via stopped.

This building block is non-thread dependent. The setAlarm method sets up
the alarm in the same manner as the proximity manager added the proximity
alert above. The difference being the alarm manager being used instead of the
location manager.

public void setAlarm(java.lang.Long time) {
context = (Context)AbstractRuntime.getRuntime(this).getContext("Android");
aMN = (AlarmManager)context.getSystemService(context.ALARM_SERVICE);
AlarmIntent = new Intent();
AlarmIntent.setClassName(context, context.getPackageName()+".AlarmReceiver");
contentIntentAlarm = PendingIntent.getBroadcast(context,0, AlarmIntent, 0);
aMN.set(AlarmManager.RTC_WAKEUP, alarmTime, contentIntentAlarm);
}

58

7.6 Cancelling a Service

Cancellation of the services are done in the building blocks according to thread
dependence and other circumstances. E.g will the ShowNotification building
block need no cancellation mechanism as this is done by setting flags upon cre-
ation of the notification. For thread dependent services, the logic for canceling
a service is in the custom service class. All that needs to be done in the building
block’s method for canceling the service is to add an Extra to the intent, stating
that the service is to be stopped. By calling startService with the new extra
will stop the service. The standard code for stopping the service is given below.

IntentName.putExtra("Stop", true);
context.startService(IntentName);

For non-thread dependent classes the service is stopped by canceling, stop-
ping or removing the pending intent for a given Android manager, see example
code below.

managerInstance.cancel(pendingIntent);

59

60

Chapter 8

Example Application -
TwitterFromAndrid

Twitter is a micro blog service which allows people to send status messages
to a network of followers [30, 26, 32]. Followers are people which have made
an active choice of following your status updates. A twitter user may update
the status using the twitter website or a mobile device of choice. The updates
are mostly done manually. Some people have a high frequency of twittering,
wanting to share their every move and day-to-day life. Automating the twitter
process could be of interest for these "‘eager"’ twitters. Also, use of automatic
twitter updates could be useful in a school or work setting, as one could use it
to register which persons are in office or perhaps out to lunch.

We will develop an application which automatically creates twitter updates
as a reaction of interface events. The events could the phone ringing or use of
a location service. The application will be running on Android and developed
using the Java SE for Android code generator.

8.1 Specification

The application will be completed to a degree in which updates will be done on
a twitter account in accordance to events on the Android device. The events the
application handles are telephone calls, proximity alerts and alarms. When one
of these events are triggered, twitter should be updated with the recent event
information and the Android device should receive a notification confirming the
twitter update. All building blocks described in chapter 7 will be used. The
default Android services used is hence the alarm service, the location service,
the telephony service and notification service.

As the work done in this thesis does not focus on user interface the applica-
tion will have one user interface, the common screen layout, see 4.2.6.

61

8.2 Arctis Behavior for TwitterFromAndroid

Figure 8.1 depicts the behavioral design of the TwitterFromAndroid application.
On initialization, the control flow enters a fork node, forking the flow in several
directions. Two flows initiates method calls, namely generateAlarmTime and
generateLocation. These method calls are responsible for generation of simulated
user input. An alarm time as well as a location is generated. The resulting
Long time object and Location object is fed to its respective building blocks,
namely SetAlarmManager (see section 7.5) and ProximityManager (see section
7.4). One flow enters the ListenForCalls (see section 7.3) building block. As
no object is required upon startup for this building block, only a control flow is
needed.

A StopListener is also enabled. This listener continually listens for a stop
signal, indicating that the user have pressed the Stop Service button. When
the stop service signal arrives, StopListener will terminate via stoppedReceived.
The control flow is forked to all managers’ stop input, effectively stopping the
services started upon initiation of these managers.

Each system response from either of our services result in a method call.
Both generateAlarmTwitterMsg, generateLocationTwitterMsg and generateCallTwit-
terMsg returns a TwitterStatusUpdate object, describing the recent event. The
TwitterStatusUpdate object contain username, password and a update message.
This is fed into a SetTwitterStatus building block, see [24], updating the twitter
status for the given user with the given message. The design makes use of three
instances of SetTwitterStatus. These are necessary as each event is associated
with a different twitter message.

The SetTwitterStatus building block results in either ok or failed. If ok, the
control flow enters a method responsible for outputting an Android intent. This
intent should be in the form presented in 7.2 as the object flow enters a merge
node leading to a ShowNotification building block. A fail means the update did
not complete and the control flow enters a flow final.

ShowNotification displays the information, contained in the intent, on the
Android device and terminates via notifShown. The flow then enters a flow
final.

As both SetAlarmManager, ProximityManager and ListenForCalls have in-
ternal behavior which resets the service after an occurring event, there will pos-
sibly be several outputs from alarmTriggered, proximityAlert and call resulting
in the TwitterFromAndroid system generating several twitter status updates
and notifications. These are produced until the system receives a stop signal,
having StopListener output stoppedReceived.

8.3 Source Code for System Entity

Figure 8.1 displays several method calls. The content of some of these are given
below, presented top-down in accordance to the system’s behavioral model.

62

Figure 8.1: TwitterFromAndroid behavoir

63

public java.lang.Long generateAlarmTime() {
Long time = System.currentTimeMillis() + 10000;
return time;
}
public android.location.Location generateLocation() {
Location l = new Location("At home");
l.setLatitude(63.416014);
l.setLongitude(10.407400);
return l;
}

The two first methods generates input objects for our services. The alarm time
is set to ten seconds in the future and is a java.lang.long object. The location
is an Android location object which has a name, latitude and longitude. The
location given here is close to the NTNU campus in Trondheim.

public TwitterStatusUpdate generateCallTwitterMsg() {
return new TwitterStatusUpdate("testnordmann", "androidntnu",
"On the phone!");
}
public TwitterStatusUpdate generateLocationTwitterMsg() {
return new TwitterStatusUpdate("testnordmann", "androidntnu",
"Arrived at school!");
}
public TwitterStatusUpdate generateAlarmTwitterMsg() {
return new TwitterStatusUpdate("testnordmann", "androidntnu",
"My alarm just went off!");
}

Next, generation of twitter messages is done. These include the user name,
password (see 8.5 and update message. As described above, the twitter message
is alternated for the different kinds of events.

public android.content.Intent createAlarmTwitterNotifText() {
Intent notificationIntent = new Intent();
notificationIntent.putExtra("HeadlineText", "New twitter update!");
notificationIntent.putExtra("NotificationTitle", "Alarm twitter!");
notificationIntent.putExtra("NotificationText",
"Your twitter has been updated with a recent alarm event!");
notificationIntent.putExtra("NotificationIcon", "ntnu");
return notificationIntent;
}

All creation of intents for notifications are done as above for createAlarmTwit-
terNotifText. The only difference from the other methods, createProximTwit-
terNotifText and createTelephonyTwitterNotifText are the notification title and
notification text. These methods follows the default setup described in 7.2.

64

8.4 Manifest.xml

TwitterFromAndroid’s manifest file includes some specific permissions along
with descriptions of all necessary services, receivers and activities. All com-
ponents are declared inside an application tag as described in 2.9.

<uses-permission android:name="android.permission.INTERNET" />
<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />

Declares the permissions necessary for the example application. To enable the
twitter updates to be sent, an Internet permission is required. The access fine
location permission is required as to be able to retrieve location updates.

<activity android:name=".Start" android:label="@string/app_name">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
<service class="AndroidServiceForArctisBuildingBlocks" android:name="
.AndroidServiceForArctisBuildingBlocks">
<intent-filter>

<action android:value="no.ntnu.item.ArcDroid.TESTSERVICEv2.0"
android:name="android.intent.action.TESTSERVICEv2.0" />

</intent-filter>
</service>

Declares the default start activity and service, used for every Android applica-
tion designed in Arctis.

<receiver android:name=".ProximAlertReceiver" android:label="@string/proxim_name" />
<receiver android:name=".AlarmReceiver" android:label="@string/alarm_name" />
<receiver android:name=".TelephonyReceiver" android:label="@string/telephony_name" />
<activity android:name=".NotifReceiver" android:label="@string/notif_name" />

Finally, the receiver components for ProximityManager, SetAlarmManager and
ListenForCalls are added, as well as the activity that should be started when a
notification is selected, NotifReceiver.

8.5 The Twitter Account

To enable twitter updates to be done a twitter account is needed. Also, account
information is needed as to be able to test the application by following the
twitter updates done.

A twitter account was created with the following information.

65

Figure 8.2: TwitterFromAndroid part 1

Name: "‘Ola Testnordmann"’

Username: "‘testnordmann"’

Password: "‘androidntnu"’

The user name and password is needed when wanting to update the twitter
status. The name and user name can be used when searching for the twitter
account.

8.6 Demonstration of TwitterFromAndroid

This section will present a demonstration on how our application works on the
Android emulator. A series of events from numerous sources are simulated
on the Android emulator [7] as to give a realistic view on how the application
operates. Figure 8.2 depicts the first step of the demonstration. Our application
is opened and started by pressing the Start service! button. An on-screen

66

Figure 8.3: TwitterFromAndroid part 2

message confirms the startup. Shortly after startup, as described above in 8.3,
an alarm goes off (1. in figure 8.2) and a notification is added. As can be seen,
the title of this notification is Alarm Twitter! indicating the twitter account
being updated with an alarm message.

While browsing the extended notification bar an incoming call arrives. The
call is answered (2. in figure 8.2) and a new twitter update is done. A new twitter
update notification arrives in the status bar as the call is in progress. Figure 8.3
depicts the second part of the demonstration. The call has been terminated and
the user of the Android device is browsing the Internet while walking to school.
When approaching the school, the proximity alert is triggered. A twitter update
is done and a notification has arrived (3. in figure 8.3). Expanding the status
bar will now show a notification named Location twitter! (4. in figure 8.3).

67

The twitter update messages sent by our application is depicted in 5. of figure
8.3. In accordance to our demonstration, an My alarm just went off! message
was posted followed by an On the phone! message. As we have designed the
alarm building block with a repeating alarm for demonstration purposes, two
more My alarm just went off! messages was posted. One before and one after
the location message, Arrived at school!. (The arrival of the second and third
alarm notification was left out in the figures.)

As demonstrated will the twitter updates, notifications and services started
by the application continue to arrive and run regardless of what the user is
currently doing on the Android device. This will continue until Stop service! is
pressed on the main screen of the application.

8.7 Possible Future Work on TwitterFromAn-
droid

For the TwitterFromAndroid application to be ready for release on the Android
market [1], there are two areas which need attention. One is user interfaces,
which has been out of focus in this work. The application will benefit from
interfaces allowing the user to choose which type of twitter messages that shall
be updated and also what the content of these messages should be.

The changes described above have an impact on the behavioral model of the
application, depicted in 8.1. First of all, the fixed alarm time and location used
in our demonstration will need to be replaced with logic for receiving these from
the user. This also goes for the generation of twitter messages.

Lastly, the logic for resetting services has to be resolved for the SetAlarm-
Manager and the ProximityManager. The resetting is currently simulated using
a timer, as described in section 7.1.1.

68

Chapter 9

Conclusion and Future
Work

9.1 Conclusion

Our motivation was to find a method for developing applications for the An-
droid platform using the Arctis tool. Understanding the life cycle of Android
components, adjusting the existing Java Standard Edition (SE) code generator
to work with Android and providing building blocks for use with Android ser-
vices were central parts of this work. Also, developing an Android application
using the generator and building blocks were of focus.

The Android platform has been described, with focus on details and com-
ponents most essential to our work. An example application was developed and
used as part of the description. This application was developed in Eclipse using
the Android development kit, but without use of the Arctis tool.

Through a discussion, an architecture describing how Android applications
can be developed using Arctis was proposed. The major discussion issue was
how to resolve problems regarding the runtime scheduler running in a separate
thread from the Android components. The proposed architecture is best suited
for development of applications which use Arctis building blocks currently exist-
ing in our Android building block library. There are drawbacks to the proposed
architecture regarding applications using newly created building blocks which
access thread dependent Android services. Solutions to the problems are dis-
cussed and proposed. Building blocks accessing default Android services not
demanding an Android thread can be designed without alternation of our code
generator.

Our method for adjusting the code generator was to first design some build-
ing blocks composing an Android application in Arctis and deploy it using the
existing Java SE generator. The building blocks were designed according to our
architecture. The adaptations necessary for enabling the generated application
to run on an Android device were explored and noted. The adaption process

69

along with the architectural discussion made the foundation for development of
our new, Java SE for Android code generator.

This work has resulted in the Arctis editor being equipped with an deploy-
ment option for Android applications called Java SE for Android. A library
consisting of building blocks for use with development of Android applications
is added. We have successfully developed and deployed two applications for
the Android platform using Arctis and our Android for Java SE code gener-
ator. HelloLocationWorld is a simple location tracking application which was
used in describing the Android platform and discovering adjustments. Twit-
terFromAndroid is a more comprehensive application which uses our library’s
building blocks and the modeling abilities provided by Arctis in creating a twit-
ter application for the Android device. twitter updates for a given account will
automatically be done as a result of events on the Android device.

9.2 Future Work

The final architecture used in this work can be reviewed based on the issues
identified in this thesis. Alternative architectures which should be looked into
includes having the scheduler run as an Android service, hence possibly avoiding
the thread problems. If successful, this will yield an easier solution in regards
to designing new building blocks.

The TwitterFromAndroid application could be finalized for the Android mar-
ket. Adding a possibility for designing Android applications with several An-
droid activities and hence user interfaces are of interest as this should be part
of any complete Android application including TwitterFromAndroid.

Systems with multiple state machines and how this affects our code generator
is also of interest.

70

Bibliography

[1] Android. Android market website. http://www.android.com/market/, 2009.
online: June 2009.

[2] Android Developer. Android application fundamentals. http://developer.
android.com/guide/topics/fundamentals.html, 2009. online: June 2009.

[3] Android Developer. Android default system services. http://developer.
android.com/reference/android/content/Context.html#getSystemService(java.
lang.String), 2009. online: June 2009.

[4] Android Developer. Android sdk download website. http://developer.
android.com/sdk/1.5_r1/index.html, 2009. online: June 2009.

[5] Android Developer. public class Activity. http://developer.android.com/
reference/android/app/Activity.html, 2009. online: June 2009.

[6] Android Developer. Security and permissions. http://developer.android.com/
guide/topics/security/security.html, 2009. online: June 2009.

[7] Android Developer. Using the emulator console. http://developer.android.
com/guide/developing/tools/emulator.html, 2009. online: June 2009.

[8] Android Developer. What is Android website. http://developer.android.com/
guide/basics/what-is-android.html, 2009. online: June 2009.

[9] Google Developers. Google i/o 2008 - dalvik virtual machine internals.
http://www.youtube.com/watch?v=ptjedOZEXPM, 2008. online: June 2009.

[10] P. Herrmann F.A. Kraemer and R. Bræk. Aligning uml 2.0 state machines
and temporal logic for the efficient execution of services. In The 8th Int.
Symp. on Distributed Objects and Applications (DOA), pages 1613–1632.
Springer-Verlag, 2006.

[11] R. Bræk F.A Kraemer and P.Herrmann. Synthesizing Components
with Sessions from Collaboration-Oriented Service Specifications. SDL.
Springer-Verlag, 2007.

[12] Eclipse Foundation. The eclipse modeling framework (emf) overview.
http://help.eclipse.org/ganymede/index.jsp?topic=/org.eclipse.emf.doc/
references/overview/E, 2009. online: June 2009.

71

http://www.android.com/market/
http://developer.android.com/guide/topics/fundamentals.html
http://developer.android.com/guide/topics/fundamentals.html
http://developer.android.com/reference/android/content/ Context.html#getSystemService(java.lang.String)
http://developer.android.com/reference/android/content/ Context.html#getSystemService(java.lang.String)
http://developer.android.com/reference/android/content/ Context.html#getSystemService(java.lang.String)
http://developer.android.com/sdk/1.5_r1/index.html
http://developer.android.com/sdk/1.5_r1/index.html
http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/guide/topics/security/security.html
http://developer.android.com/guide/topics/security/security.html
http://developer.android.com/guide/developing/tools/emulator.html
http://developer.android.com/guide/developing/tools/emulator.html
http://developer.android.com/guide/basics/what-is-android.html
http://developer.android.com/guide/basics/what-is-android.html
http://www.youtube.com/watch?v=ptjedOZEXPM
http://help.eclipse.org/ganymede/index.jsp?topic=/org.eclipse.emf.doc/references/overview/E
http://help.eclipse.org/ganymede/index.jsp?topic=/org.eclipse.emf.doc/references/overview/E

[13] Eclipse Foundation. Java development tools. http://www.eclipse.org/jdt/,
2009. online: June 2009.

[14] Eclipse Foundation. Java development user guide. http://help.eclipse.org/
ganymede/index.jsp?nav=/1, 2009. online: June 2009.

[15] Stephan Haugsrud. A mobile treasure hunt as an example for collaborative
service specifications, 2008.

[16] Nina Heitmann. Towards modeling of data in uml activities with the space
method. Master’s thesis, NTNU, 2008.

[17] NTNU ITEM. Contributing a code generator. http://arctis.item.ntnu.no/
contributing_a_code_generator, 2006. online: June 2009.

[18] NTNU ITEM. Arctis web page. http://www.arctis.item.ntnu.no/, 2009. on-
line: June 2009.

[19] F.A. Kraemer and P. Herrmann. Service specification by composition of
collaborations - an example. In WI-IAT Workshops, pages 129–133, Hong
Kong, 2006. IEEE/WIC/ACM Int. Conf. on Web Intelligence and Intelli-
gent Agent Techonology.

[20] F.A. Kraemer and P. Herrmann. Formalizing collaboration-oriented service
specifications using temporal logic. In Networking and Electronic Com-
merce Research Conference. NAEC, 2007.

[21] F.A. Kraemer and P.Herrmann. Transforming collaborative service specifi-
cations into efficiently executable state machines. In The 6th Int. Workshop
on Graph Transformation and Visual Modeling Techniques, 2007.

[22] Frank Alexander Kraemer. Rapid Service Development for Service Frame.
Master’s thesis, University of Stuttgart, 2003.

[23] Frank Alexander Kraemer. Arctis and ramses: Tool suites for rapid service
engineering. Norges teknisk-naturvitenskapelige universitet, 2007.

[24] ITEM NTNU Kraemer. Updating twitter status. http://arctis.item.ntnu.
no/examples/updating_twitter_status, 2009. online: June 2009.

[25] Bemnet Yesfaye Merha. Code generation for executable state machines on
embedded java devices, 2008.

[26] Erik Nude. Introduksjon til twitter. http://www.eriknude.com/
introduksjon-til-twitter-del-1-eriknudecom, 2008. online: June 2009.

[27] OpenHandsetAlliance. Open handset alliance. http://www.
openhandsetalliance.com, 2009. online:June 2009.

[28] Eclipse Organization. Jet tutorial website. http://www.eclipse.org/articles/
Article-JET/jet_tutorial1.html, 2004. online: June 2009.

[29] A.K Støyle. Service engineering environment for amigos. Master’s thesis,
NTNU, 2004.

[30] Twitter. Twitter homepage. http://twitter.com, 2009. online: June 2009.

72

http://www.eclipse.org/jdt/
http://help.eclipse.org/ganymede/index.jsp?nav=/1
http://help.eclipse.org/ganymede/index.jsp?nav=/1
http://arctis.item.ntnu.no/contributing_a_code_generator
http://arctis.item.ntnu.no/contributing_a_code_generator
http://www.arctis.item.ntnu.no/
http://arctis.item.ntnu.no/examples/updating_twitter_status
http://arctis.item.ntnu.no/examples/updating_twitter_status
http://www.eriknude.com/introduksjon-til-twitter-del-1-eriknudecom
http://www.eriknude.com/introduksjon-til-twitter-del-1-eriknudecom
http://www.openhandsetalliance.com
http://www.openhandsetalliance.com
http://www.eclipse.org/articles/Article-JET/jet_tutorial1.html
http://www.eclipse.org/articles/Article-JET/jet_tutorial1.html
http://twitter.com

[31] Wikipedia. Dalvik virtual machine. http://en.wikipedia.org/wiki/Dalvik_
virtual_machine, 2009. online: June 2009.

[32] Wikipedia.org. Twitter. http://en.wikipedia.org/wiki/Twitter, 2009. online:
June 2009.

73

http://en.wikipedia.org/wiki/Dalvik_virtual_machine
http://en.wikipedia.org/wiki/Dalvik_virtual_machine
http://en.wikipedia.org/wiki/Twitter

74

	Title Page
	Problem Description
	Table of Contents
	List of Figures
	Acronyms
	Introduction
	Contribution
	Outline

	Android
	Introduction
	Platform
	Architechture

	The HelloLocationWorld Application
	Components in an Android Application
	Activity
	Activity Lifecycle
	Activity Life Cycle of HelloLocationWorld

	Broadcast Receiver
	Service
	Service Life Cycle

	Intent and Intent Filters
	Permissions
	Manifest
	Manifest File Structure
	File Conventions

	Notifications
	Android Project in Eclipse

	Methods, Tools and Languages
	Arctis and Ramses
	Java JET

	Android Application Design in Arctis
	Introduction
	Architecture
	Initial Architecture Design for Android on Arctis
	Revised Architecture
	Final Architecture
	The Receiver Classes
	The Customized Service Class
	The Common Screen Layout
	Permissions

	The Thread Problem
	Solution Alternative 1
	Solution Alternative 2
	Conclusion on Thread Problem

	Considerations
	Strengths
	Challenges

	Manual Adaption of Generated Code
	The Example Application - HelloLocationWorld
	Adapting to an Android Application
	Implementing And Moving the Project
	The Start.java Class
	Add Android Specific Classes
	Update the Android Manifest
	Resources

	The Android Code Generator
	Generation Overview
	Generation Components
	XML Generators

	Templates
	Start Class Generator

	The Java for Android Generator
	The generateComponents method
	The generateAndroidLaunchClasses Method

	Building Block Library
	Commonalities
	Logic for Restarting a Service

	ShowNotification
	ListenForCalls
	ProximityManager
	SetAlarmManager
	Cancelling a Service

	Example Application - TwitterFromAndrid
	Specification
	Arctis Behavior for TwitterFromAndroid
	Source Code for System Entity
	Manifest.xml
	The Twitter Account
	Demonstration of TwitterFromAndroid
	Possible Future Work on TwitterFromAndroid

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography

