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Abstract 

This master thesis is written in cooperation with SINTEF Manufacturing AS and aims to answer 

the following research question; Can Statistical Process Control and be extended to function as 

a tool in Condition Based Maintenance for determining machine condition and Remaining 

Useful Life estimation, and how does this influence the usefulness of SPC in Industry 4.0? 

Through using methods including literature review and quantitative methods utilizing the 

widely used NASA C-MAPSS dataset to construct a model using SPC test data to determine 

machine condition and estimate RUL, the aim of the thesis is to answer this question in a 

satisfactory manner. 

X-Bar and R control charts are constructed and analyzed in a time-series using the complete 

Western Electric ruleset. A condition indicator score is constructed for every time-series chart 

by using a scoring algorithm. The distribution of indicator scores across all engines is tested for 

normal distribution, allowing for calculating probabilities on remaining useful life. 

The thesis concludes that the constructed model probably can be a useful manual alternative to 

Machine Learning for RUL estimation, and that SPC as a tool is likely to be increasingly useful 

in Industry 4.0. The thesis recommends further research into the viability of SPC as a tool for 

RUL estimation, but also focusing on the benefits of researching human-driven methods for 

condition monitoring and estimating remaining useful life. Creating real-life run-to-failure 

datasets should also be a priority. 
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1. Introduction 

Beginning with a German article on an upcoming fourth industrial revolution (Kagermann, 

Lukas and Wahlster, 2011), and later expanded upon in a manifesto by the German National 

Academy of Science and Engineering (Acatech, 2013), industries in the industrialized countries 

are currently in the process of moving towards what we call Industry 4.0 (I4.0). I4.0 combines 

the Internet of Things, allowing physical devices, machines and objects to connect to the 

internet, and manufacturing (Hermann, Pentek and Otto, 2016). 

The developments towards I4.0 systems highlights the importance of system reliability and 

availability, and maintenance is increasingly important. The field of maintenance is moving 

from utilizing reactive or time-based strategies towards predictive maintenance. By utilizing 

predictive maintenance strategies in I4.0 with technologies for monitoring machine condition, 

industrial plants will be able to identify faults before they happen (DIN, 2018). This allows for 

more efficient maintenance strategies where maintenance can be planned optimally and only 

utilized when needed. 

Statistical Process Control (SPC) has been used as a tool in quality engineering for monitoring 

and controlling processes for nearly a century. The American statistician Walter A. Shewhart 

developed control charts that allowed for determining whether a process is in or out of statistical 

control (WEC, 1956). By analyzing process variation, finding the causes for this variation and 

eliminating the cause, process performance can be improved. SPC is commonly utilized in some 

form in industry and is a central tool within the philosophy of Zero-Defect Manufacturing 

(ZDM).  

Considering SPC is most often used as a tool for monitoring product variables, there is a 

theoretical foundation for extending SPC into monitoring process variables and constructing 

control charts based on these (Scherkenbach, 1986, Nomikos and MacGregor, 1995, Wood, 

1994, Fugate, Sohn and Farrar, 2001). An increased focus on processes is also supported by 

fundamental theory within the field of quality engineering (Taguchi, 1995, Scherkenbach, 

1986). 

A central term within Condition Based Maintenance is remaining useful life (RUL), and a 

central challenge is to develop tools for determining the condition of processes and estimate 

when they are expected to break down. This in order to utilize maintenance at an optimal time 

and to avoid maintaining processes more often than necessary (Si et al., 2011). Most of the 
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research into RUL estimation today is conducted using methods based on artificial intelligence 

and Machine Learning (ML). Although much of this research has produced positive results, ML 

methods does have some challenges. Developing manual, quantitative methods for estimating 

remaining useful life based on statistical analysis can be beneficial in many ways and help 

motivate a perhaps undervalued part of RUL estimation research. 

Examining if SPC can be extended, not only to monitor process variables, but to be used as a 

tool for determining the condition of the monitored process and estimating RUL is an interesting 

challenge, as it can potentially be increasingly useful as a tool in Industry 4.0 environments but 

also provide a manual and transparent alternative to ML RUL estimation methods. 

1.1 Problem statement 

There are some components that have helped motivate the research in the thesis. Working as an 

employee at SINTEF Manufacturing and working with analyzing sensor data in part by utilizing 

SPC methods has affected the choice of topic. Dr. Odd Myklebust at SINTEF Manufacturing 

has provided a suggested topic for the thesis containing four tasks. The first task describes state 

of the art for Cyber-Physical Systems and digital twins and includes a discussion on how this 

can be used as a base for Zero Defect Manufacturing. The second task is to provide an updated 

framework for the CPS-Plant project, focusing on SME implementation. The third task 

concerns Statistical Process Control and Six-Sigma, and how these and other quantitative 

methods can be extended for implementation in Industry 4.0 approaches. The last task describes 

Taguchi methods, use of quantitative methods in Taguchi and setting up an experiment that can 

lead to a Zero-Defect Manufacturing solution. 

The final motivation for the thesis is the cooperative work conducted with postdoc Harald 

Rødseth at NTNU related to a project called CPS-Plant, specifically concerning Predictive 

Maintenance and Remaining Useful Life estimation, and working towards publishing a paper 

on this topic.  

Taking all this into account, a choice was made to focus on SPC more in depth, and examine 

the potential for extending the method into Condition Based Maintenance and RUL estimation 

by constructing an experimental quantitative model capable of determining the condition of a 

machine, and use that capability to estimate RUL. Based on these motivational influences, this 

thesis will focus on answering the following main research question; 
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Can Statistical Process Control and be extended to function as a tool in Condition Based 

Maintenance for determining machine condition and Remaining Useful Life estimation, 

and how does this influence the usefulness of SPC in Industry 4.0? 

To be able to answer the first part of this question, the aim of the thesis is to construct an 

experimental quantitative model using SPC control charts on process variables from a simulated 

run-to-failure dataset and construct time-series of individual variables to test for process 

statistical control using the complete Western Electric ruleset (WEC, 1956). An algorithm will 

be constructed attempting to transform process variable test failures into a condition indicator. 

Indicator scores will be aggregated from all included processes and all distributions will be 

tested using a Kolmogorov-Smirnov test for normal distribution to determine if and how RUL 

can be estimated (Lilliefors, 1967). 

The thesis will attempt to answer the second part of the main research question by performing 

a literature review on connected topics to create background and context. The review will cover 

theory on the concepts behind Industry 4.0 and central architectures to build a foundation for 

connecting the other topics. Basic theory on artificial intelligence and machine learning is 

presented to allow for discussion on ML RUL estimation methods versus manual methods using 

statistical methods. Fundamental theory on quality engineering is presented to put SPC into a 

broader perspective and to connect it to I4.0. Two frameworks are used to show the connection 

between quality engineering and I4.0. Fundamental theory on SPC and the construction of 

control charts is necessary to increase understanding of methods used to construct the model, 

and to provide theoretical background for discussing the usefulness of using SPC to monitor 

process variables. The last part of the literature review will present theory on Condition Based 

Maintenance and the concept of remaining useful life within the field of maintenance 

management and predictive maintenance and to connect this to I4.0. The aim is to argue for the 

usefulness of SPC in Industry 4.0 through discussing these concepts, how they are connected 

and how they influence each other. 

1.2 Boundaries of the thesis 

When constructing a model for determining machine condition and estimating RUL in the 

results section, the thesis will include data from one of the datasets included in the NASA C-

MAPSS simulation data package. No other datasets will be included or reviewed. The model 

will utilize a sample size of 90 and subgroup size of 3. Some tests will include sample size 60 

and subgroup size 5. No other combination will be considered. The model will consider X-Bar 
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charts and R charts. All other types of control charts are outside of the thesis boundaries. The 

model will use the complete WE ruleset when testing the control charts, scoring will be equal 

for all types of test failures and all process variables are scored equally. No other combinations 

of these will be considered. 

The literature review includes theory on topics central to increase understanding of central 

concepts used in constructing the model and topics related to setting I4.0 as a background for 

the thesis. Theory on other topics is included to provide material for discussing the main 

research question. Theory that is not considered relevant for this specific purpose is not included 

and is deemed to be outside of the thesis boundaries. 

1.3 Thesis roadmap 

The thesis has a section on the methodology used while developing the contents, and a literature 

review consisting of theory and concepts deemed necessary to describe and discuss the main 

research question with a systems and manufacturing perspective. The results section goes 

through the experimental design model in detail, where SPC and control charts are used on a 

simulated jet engine dataset to attempt to create an engine condition indicator and to predict 

remaining useful life. The discussion part contains an in-depth interpretation of the model 

presented in the results section, implication of the results and how SPC can be used as a tool in 

I4.0 based on perspectives presented in the literature review and limitations of the research done 

in the thesis. The thesis concludes that SPC probably can be useful as an alternative to ML 

methods in determining machine condition and estimating RUL. It also concludes that SPC 

most likely will be an increasingly important tool in I4.0. The last part of the conclusion section 

makes some recommendations on future work regarding the research done in the thesis. 
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2. Research Methodology 

This section will go through the methodological view and the research method for the thesis. 

Work has been done on choosing a strategy for collecting relevant data, choosing a 

methodological perspective to interpret and analyze the data, and constructing a framework for 

presenting and discussing the data collected in the thesis 

The chosen methodological perspective in the thesis is the systems perspective. The exception 

to this is the results section, where the perspective is more analytical. The reasoning behind the 

chosen perspective is the ability to include concepts and principles from different areas of study, 

and to study system interrelations and dynamics (Arbnor and Bjerke, 2009). This is relevant 

when interpreting and discussing the impacts of the constructed experimental model on Industry 

4.0 and when discussing how this influences the usefulness of SPC in Industry 4.0. The thesis 

is written as a combined literature review and experimental quantitative study and is therefore 

multimethodological.  

2.1 Research goals 

The main research question of this thesis has two different parts, where the first part includes 

extending SPC as a tool to include machine condition determination and RUL estimation. This 

is a question that can be answered using a quantitative experimental study. Answering the 

second part on the usefulness of SPC in I4.0 is more qualitative and requires a literature review. 

Based on this, the main goal of the research is to provide a useful framework to maximize the 

ability to answer the two parts of the main research question. To help fulfill this main goal, 

there are certain research sub-goals: 

• Obtain full run-to-failure control charts for all variables and all included engines in 
the C-MAPSS simulator dataset used. 

• Create control chart time-series of all variables in all engines. 

• Test all produced control charts using the complete Western Electric ruleset. 

• Create an algorithm to transform variable test results into a condition indicator. 

• Test distributions of indicator scores at different times from the point of failure. 

• Calculate sigma values for the distributions to allow for failure-time estimation. 

• Use a literature review to build a theoretical foundation. 

• Interpret the results and discuss the implications related to both parts of the 
research question. 

 

The hope is that by fulfilling these sub-goals, the ability to answer the main research question 

in a satisfactory manner will be strengthened. 
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2.2 Methods used in the thesis 

Two different methodological approaches were used in this thesis. A literature review was done 

to gather relevant information on theory relevant to the topic of the thesis to better understand 

related theoretical concepts. Reading the reference lists of other articles has also helped in 

finding new relevant theory and additional insights for the thesis. In addition, the theory from 

the literature review was used to aid in interpreting results and discussing the implications of 

both parts of the research question. This review was instrumental in highlighting areas where 

the different theories included interconnect and was useful in helping create the discussion 

section of the thesis. 

A decision was made to answer the first part of the main research question by constructing a 

quantitative experimental model using SPC as a central analytical tool on a dataset containing 

complete run-to-failure data. The decision on including run-to-failure data was influenced by 

the assumption that predicting and estimating failure using SPC and statistical methods would 

be more likely to produce meaningful results if the analysis was based on historical data.  

The C-MAPSS dataset was included because of its availability and abundance of run-to-failure 

data. The fact that the dataset is widely used in RUL estimation research was also a contributing 

factor. The data is based on simulations of jet engines and is therefore not based on real-world 

historical failure data and not necessarily directly related to industrial processes. The lack of 

such datasets from more related processes contributed towards the decision of using the 

simulator dataset for constructing the model. 

The data was extracted from the first of four datasets in the C-MAPSS data folder, and 100 

excel sheets were made, each containing complete run-to failure data for one engine. All 

variables were identified and appropriately named in the excel sheets. External control variables 

and static variables were removed from each engine, and 11 dynamic internal engine variables 

remained. This decision was in large part influenced by an idea that the methods used in the 

model construction would allow for increased generalization towards industrial processes. 

The Shewhart X-Bar and R control charts were initially manually constructed in Excel and 

testing each chart using the complete WE ruleset was a very slow process. Even learning some 

Excel algorithms for speeding up the process could not help with producing charts at a 

reasonable speed. An attempt was made to import engine datasets into MATLAB to allow for 

automation in making the control charts and specifying test ruleset. Although faster, the process 
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was deemed not sustainable for constructing several thousand control charts. The solution was 

using Minitab. This allowed for greater automation in producing X-bar and R charts and in 

addition automatically provided full documentation on all test results. 

Initially, tests were performed using sample sizes of 90 and 60, and in addition subgroup sizes 

of 3 and 5. Calculating degrees of freedom and coefficient of variation led to sample size 90 

being preferred. Subgroup size 3 was chosen based on subjective preference. Control charts and 

full test data for the entire runtime were constructed for every variable and for all the 20 engines 

included to gain insight into variable behavior throughout the runtime and to consider 

similarities or differences in the same variable across multiple engines. 

Control charts and test results were then constructed in a time series containing 90 samples with 

subgroup size 3 in 10 cycle increments until the point of failure for all variables and for all 20 

engines. All charts and test data were imported into Excel. Different algorithms were tested for 

creating a scoring system that would indicate the condition of the engine across its runtime. A 

decision was made to utilize an algorithm that used a condition indicator score of 100 as a 

starting point. The algorithm gave all variables an initial score of 9, and then subtracted half a 

point per test failure at that point in time up to 18 test failures. A variable failing tests at 18 or 

more points in one chart would lead to the condition index score decreasing by 9 caused by that 

one variable. Aggregating scores from all 11 variables meant that maximum condition index 

score would be 100, and minimum score possible 1. 

Condition index scores for all 20 engines were produced using test data from all variables from 

the entire time series. The different engines in the data set had vastly differing runtimes, so a 

meaningful way of comparing index scores was to start at the point of failure and back in time. 

This allowed for calculating indicator mean scores and standard deviation or sigma. Testing the 

distributions of indicator scores from all engines using a Kolmogorov-Smirnov test for normal 

distribution allowed for simple calculation of the probability of an index value being inside or 

outside of the distribution at the points passing the normal distribution test. This then in turn 

allowed the model to probabilistically estimate RUL for all jet engines placed into the model. 

The total construction of all in all between 5500 and 6000 control charts and test results resulted 

in time spent constructing the model being close to 1000 hours. This meant that including data 

from more than 20 engines could not reasonably be done within a 20-week timeframe. 
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2.3 Validity and reliability 

An attempt has been made to maximize the opportunity to check the reliability of this thesis in 

terms of transparency and description of methods utilized allowing easy access to attempt to 

reproduce results. In terms of reliability as in how well the results are transferable to a process 

population of real jet engines and even industrial machines requires extensive testing using the 

same or similar methods to determine (Golafshani, 2003). 

The reliability of the thesis is increased through ensuring that articles are peer-reviewed, and 

by using commonly accepted books, articles and reports on the topics included in the thesis. An 

attempt has been made to avoid bias when presenting theory in the literature review section, but 

there is a possibility of misunderstanding or misinterpreting arguments from the original 

author(s). Any subjective bias in the discussion part also has a possibility of negatively 

influencing the reliability of the thesis (Leedy and Ormrod, 2015). 

In terms of validity, an assumption is made that it seems likely that there is a correlation between 

SPC test failures and process condition. The model estimating RUL and determining the 

condition of the process is based on valid and generally accepted statistical methods. However, 

mistakes can occur. More testing and similar research can help determine the real validity of 

the thesis. It is assumed that the model probabilistically with at least some accuracy measures 

engine condition. 

A thesis can never be fully objective, and any personal biases and subjective interpretations of 

data or information may negatively influence validity (Leedy and Ormrod, 2015). External 

validity may be limited, as the data is subjectively interpreted and discussed. This thesis’ 

priorities and measures of relevance may differ from other researchers, and this is an element 

that can be criticized.  
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3. Literature review 

3.1 Industry 4.0 

Industry 4.0 or Industrie 4.0 (I4.0) is a term describing a currently ongoing and future fourth 

industrial revolution and associated concepts that may be difficult to clearly define in individual 

cases. This industrial revolution is happening as a result of an integration of the Internet of 

Things (IoT) with manufacturing (Hermann, Pentek and Otto, 2016). Substantial advancements 

in multiple technologies have been influential in enabling I4.0 development. A rapid increase 

in data volumes, cloud storage, the renting of computing power from external sources enabling 

data analysis on a level previously unattainable, increased capabilities in analytics, human-

machine interactions like Augmented Reality and further innovation and developments in data 

transfer to physically usable objects (Lee, Bagheri and Kao, 2015). 

The two main drivers of I4.0 is an application pull and a technological push. By application 

pull, the reasoning is that there is a need for changes through social, economic and political 

means in operative framework conditions (Lasi et al., 2014). The time allocated for 

development and innovation should be shortened, and the capability for innovation should be 

maximized. Individualization on demand or “batch size one”, in large part caused by buyers 

having more market power, leads to increased individualization of products and individual 

products. There should be an increased focus on the flexibility of product development and 

production, decision making should be more efficient, and this may cause decentralization and 

reduced organizational hierarchies. Shortages and increased price of resources forces increased 

resource efficiency.  

Secondly, there is an increased technological push in industrial practice (Lasi et al., 2014). 

Technical aids that support physical work will be increasingly utilized in the future, and 

automatic solutions will independently control and optimize manufacturing. Increases in the 

digitalization of manufacturing and manufacturing support result in a substantial rise in 

registered actor- and sensor-data. Technical components are also increasingly networked and 

that leads to fully digitized environments. This in turn drives new technologies, like simulation, 

digital protection and augmented reality. The development also trends towards miniaturization, 

where computers require less space and have increased capacity. This enables new application 

development within production and logistics. 



17 

 

Industry 4.0 can be described by different concepts. Factories where sensors connected through 

IoT are utilized in manufacturing machines and processes, Smart Factories, and systems can 

communicate with both humans and other systems with different levels of autonomy. Digitized 

models of products and factories are developed and autonomously controlled (Lasi et al., 2014). 

Cyber-Physical Systems (CPS) are created by the merging of the physical and the digital levels 

in a way that blurs the differentiation of physical and digital representations. CPS can be defined 

as an integration of computation, networking and physical processes (Lee, 2008). Processes 

parameters and component wear and tear are measured and recorded digitally. As mentioned, 

manufacturing systems trend towards decentralization, and traditional hierarchies decompose. 

This contributes to a change towards more decentralized self-organization. Distribution, 

procurement and development of products and services will be increasingly individualized to 

adapt to human needs. Lastly, there is an increased focus on sustainability and resource-

efficiency that influence the design of manufacturing processes. To aid the implementation of 

Industry 4.0 goals, an implementation of horizontal and vertical integration, networked 

manufacturing systems and end-to-end digital integration of engineering across the entire value-

chain is needed (Kagermann, Wahlster and Helbig, 2013). 

The foundation of Industry 4.0 can be described by advances in nine main technologies, and 

many of them are already used in manufacturing. In Industry 4.0, these technologies will lead 

to integration, automation and production flow, increased efficiency and changing supplier, 

producer, customer and human-machine relations (Rüßmann et al., 2015). These technologies 

are; automated robots, simulation, horizontal and vertical system integration, the Industrial 

Internet of Things (IIoT), cybersecurity, the cloud, Additive Manufacturing, Augmented 

Reality and big data and analytics. IIoT integrates machine sensors, middleware, software and 

backend cloud compute and storage systems to increase visibility and insight into operations 

and assets (Sadeghi, Wachsmann and Waidner, 2015). Advances in sensor technologies allow 

for precision, self-awareness and even prediction of own remaining life. Developments in 

miniaturization and sensor technology makes using sensors more practical, as they can more 

easily be embedded. 

Relatively recent advances in computer technology allows for analysis of large data sets to 

optimize production quality, efficiency and service, so-called Big-Data. This provides 

historical, predictive and prescriptive analysis that can aid in revealing current functionality 

inside machines or processes. Through Industry 4.0, the collection of data from all sources in 

the value-chain will become increasingly standard, and will support the ability for real-time 
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decision-making (Rüßmann et al., 2015). More autonomous, flexible and cooperative robots 

lead to closer robot-robot and human-robot interactions. Simulation of products, materials and 

processes allow businesses to model the real world in real-time, and to test and optimize setting 

before implementing them in the physical world, leading to increased quality and reduced set-

up time. 

Going towards I4.0, IT-systems will be increasingly integrated horizontally and vertically, and 

this allows for more automated value-chains. Through the Internet of Things, devices are 

connected and can communicate with each other or to centralized controllers. This decentralizes 

analysis and decision-making, and enables real-time responses (Rüßmann et al., 2015). The 

increased connectivity and communication protocols will drastically increase the need to 

protect critical systems and manufacturing lines through secure, reliable communications and 

identity and access management of machines and users. Integrated cloud-based software will 

allow for more data-driven services for production systems with low response times. 

The development of Additive Manufacturing allows for effective prototyping and individual 

component manufacturing (Wong and Hernandez, 2012). In Industry 4.0, this will develop 

further into small-batch production of customized products, and decentralized production 

facilities will reduce transport distances and stock (Rüßmann et al., 2015).  Augmented reality 

can contribute toward supporting warehouse part selection, repair instructions, real-time 

decision-making and work procedures. 

Large scale implementation of Industry 4.0 will be time-consuming, as there are scientific, 

technological, economic, social and political challenges involved. A smart factory will involve 

more artificial devices, requiring less workers, and there is still a need for more time and money 

to develop smart device technology (Zhou, Liu and Zhou, 2015). Building Cyber-Physical 

Systems must consider the collaboration of physical and computing systems and assuring access 

to information from physical systems is complex. Big Data analysis introduces issues within 

information security and privacy. To combat challenges in implementation, some argue for the 

development of international standards (Kagermann, Wahlster and Helbig, 2013). 

When working toward the implementation of I4.0, security is one of the most important aspects. 

Data contained within systems need to be protected against misuse and unauthorized access 

(Kagermann, Wahlster and Helbig, 2013). The highly networked systems of CPS-based 

systems, often containing critical data, and a greatly increased number of actors involved in the 
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value chain, reveals multiple security issues that must be addressed before implementation. As 

such, security must be designed into the system from the start, and security strategies, 

architectures and standards need to be developed and implemented. 

What investments are necessary and how different I4.0 technologies are implemented will differ 

from organization to organization. It is necessary to obtain an overview of current state of the 

art in the organization concerning technologies and systems already in place. An Acatech study 

on I4.0 (Schuh et al., 2017) proposes a Maturity Index, where an organization inputs its 

corporate strategy and the technologies and systems that have been implemented. An analysis 

on current capabilities and future desired benefits is performed. Then, the missing capabilities 

to achieve these benefits is identified, and a gap analysis can be utilized. This methodological 

analysis allows for the creation of a digital roadmap, including a step-by-step approach, 

reducing risk for both investments and implementation. 

3.1.1 5C architecture 

Cyber-Physical Production Systems (CPPS) is a subset of CPS. The main characteristics of 

CPPS are; intelligence as in the ability to acquire information from surroundings and act 

autonomously, connectedness as in the ability to set up and utilize connections to other elements 

of the system for collaboration and cooperation and responsiveness to internal and external 

changes. CPS consists of two components; real-time data acquisition from the physical world 

and information feedback from the cyber space through advanced connectivity and secondly, 

intelligent data management, analytics and computational capability that allows for building the 

cyber space (Lee, Bagheri and Kao, 2015). A proposed architecture, 5C, describes 5 levels of 

sequential workflow and describes the steps from data acquisition to value creation. The 5C 

architecture is shown in Figure 1. 
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Figure 1 5C architecture for CPS implementation based on (Lee, Bagheri and Kao, 2015). 

3.1.2 IIRA architecture 

As a part of the IIoT, Industrial Internet Systems (IISs) will enhance business process flows and 

analysis. To make this possible, IISs need a standard-based architectural framework. One such 

framework, The Industrial Internet Reference Architecture (IIRA), is proposed by the Industrial 

Internet Consortium (IIC) (Lin et al., 2017). The framework describes four viewpoints; 

business, usage, functional and implementation. Business describes system value delivery and 

business strategy alignment among others. Usage addresses the creation of user and system 

activities that deliver required outcomes. Functional relates to the functional components and 

how they relate and integrate internally and externally. An IIS can further be divided into five 

domains; Control, Operations, Information, Application and Business. A visualization of the 

IIRA architecture is shown in Figure 2. 



21 

 

 

Figure 2 IIRA architecture based on (Lin et al., 2017). 

3.1.3 RAMI 4.0 

As much as the IIRA architecture is the American reference model for American industry, its 

European counterpart is called the Reference Architecture Model Industry 4.0 or RAMI 4.0. 

The model has been developed by BITCOM, VDMA and ZWEI, and is a three-dimensional 

model based in large part on the Smart Grid Architecture Model (SGAM) developed for 

renewable energy sources network communication (Zezulka et al., 2016). The three dimensions 

of the RAMI 4.0 model can be described through referring to three specific axis; the vertical 

axis with layers, the left horizontal axis describing the life cycle and value stream of production 

and finally the right horizontal axis describes the hierarchy from product through enterprise to 

the connected world at the top level.  

The bottom level of the vertical axis is the Asset Layer is a model representation of the real 

physical world and can describe elements like documentation, diagrams, product parts and even 

humans. The Integration Level transforms data from the Asset Level to be suitable for computer 

processing, can perform controls on data, generates events based on the assets and handles data 

from for example RFID chips, sensors and actuators. The Communication Level standardizes 

the data format and can also perform control on the previous level. The Information Layer 

handles event pre-processing, rule execution, ensures data integrity to provide high-quality 

data, information and knowledge. On the Functional Layer level, formal function descriptions 

are enabled and a platform for horizontal integration is created. The top level, the Business 
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Layer, ensures value stream function integrity, maps different business models and overall 

process results and contains framework conditions for laws and regulations. This top layer also 

links the different business processes (Zezulka et al., 2016). 

The left horizontal axis is split into two parts; type and instance. Type describes a product, 

machine, software or hardware from an idea through development, design and testing up to 

production prototype and eventual validation. Instance describes the production of unique, 

individual products that are sold to customers. These products are then used and may need 

maintenance (Zezulka et al., 2016). A visual representation of the RAMI 4.0 model is found in 

Figure 3. 

 

Figure 3 RAMI 4.0 architecture based on (Adolphs et al., 2015). 

3.2 Machine Learning and Artificial Intelligence 

Modern Artificial Intelligence (AI) traces back to early 20th century inventions in electronics 

and the rise of modern computers post-WWII. In its infancy, AI was influenced by a number of 

disciplines like engineering, biology, experimental psychology, communication theory, game 

theory, mathematics and statistics, logic and philosophy and linguistics (Buchanan, 2005). 

Machine Learning (ML) involves the construction of sets of algorithms that can learn from and 

make predictions based on data. ML can be either supervised, learning by example, or 

unsupervised. Unsupervised learning is feeding data to the learning system without any labels, 

and letting the algorithms try to identify distributions, structure, clusters, probabilities and so 

on by statistical inference (Dunjko and Briegel, 2018). 
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In ML, there is a distinction between artificial neural networks (NN) and support vector 

machines. NNs are inspired by biology, where a set of multiple artificial neurons interact with 

inputs and other neurons to produce an output, and each neuron is a function or an algorithm. 

The set of neurons can be layered in multiple levels, and signals can be sent back and forth from 

one layer to another, depending on the type of NN. The NN can be feed-forward with no loops, 

or recurrent where the output is fed back into the network. Support vector machines are 

generally supervised systems that analyze and classify data using mostly non-probabilistic 

methods and for kernel methods which is a form of pattern recognition (Dunjko and Briegel, 

2018). An example of a simplistic NN is shown in Figure 4.  

 

Figure 4 Artificial neural network of interconnected neurons through inputs, hidden layers and outputs. 

The Machine Learning sub-topic of Deep Learning (DL) functions by using so called 

representation learning, which can be explained as feeding raw data to a system, which then 

automatically discovers the representations needed for detection and classification (LeCun, 

Bengio and Hinton, 2015). This process then goes through multiple levels, transforming the 

data into ever higher and more abstract levels. DL is thought to have a very high potential, 

especially because of the low amount of engineering the system requires to function. 

Reinforcement learning (RL) is a form of ML where the system is not fed static data but is 

connected to an interactive environment of tasks. The system learns through interaction with 

the environment. The outcome of the learning algorithms can be modified through four modes 

of system conditioning; positive reinforcement where the system is rewarded when correct, 

negative reinforcement where a negative state is removed when correct, positive punishment as 

in introducing a negative reward when incorrect and negative punishment where a reward is 
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removed when the outcome is incorrect (Dunjko and Briegel, 2018). This process of learning 

emulates similar ways of biological conditioning. 

Using ML software solutions, with one example being Microsoft Azure ML, raw data is 

collected and run through an iterative series of data pre-processing modules that gradually 

prepares the data. The learning algorithms are then applied to the data, and again through an 

iterative process gradually builds a candidate model. The model that is chosen, is then deployed 

and can be applied to various purposes (Chappell, 2015). In most cases a series of candidate 

models is produced and improved upon, before choosing a final model.  

As a result of the often-probabilistic nature of NN algorithms outputs will seldom be of a binary 

yes or no nature, but will often return a probability between 0 and 1. Depending on the type of 

problem the algorithms are set to solve, choosing a probability that is acceptable is subjective 

and dependent on the individual case (Chappell, 2015).  

Multi-layered NNs, often called convoluted neural networks (CNN) and deep NNs, have some 

challenges. The complexity of the functions realized by the NN can be difficult or impossible 

to interpret. Even if output results often are very successful, there is a lack of understanding of 

why they are successful. The ability to successfully interpret the results from NN algorithms is 

a central issue when decision-making is increasingly delegated to these systems. The result of 

this general lack of understanding and interpretability, NNs are generally not used for decision-

making in critical systems where the consequence of a failure might be catastrophic (Dunjko 

and Briegel, 2018). 

The possibilities of future developments in AI raises some ethical issues. If machine learning 

algorithms are based on complicated neural networks, it may be extremely difficult or even 

impossible to determine how the algorithm functions. ML software does in most cases include 

modules that are so-called “Black boxes”, where some or most of the inner workings of the 

software is hidden (Wikipedia, 2019), making it impossible to get a complete view of how the 

software algorithms works. If an AI produces recommended actions as outputs, and statistical 

analysis shows that these recommendations prefer solution X and not Y, and choosing X over 

Y is ethically questionable, discriminatory or morally ambiguous, how do we determine why 

this is happening (Bostrom and Yudkowsky, 2014)? 
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3.3 Quality Engineering 

Traditional definitions of quality tend to be qualitative and based on attributes. A precise 

quantitative definition is absent, and they tend to be binary, as in they describe if a product or 

service is within or outside set specifications. This motivates improving quality until it is within 

acceptable levels. There has also been a historical focus on the result of the manufacturing 

process, and less focus on the design stage. This entails an application of the concepts of quality 

at the end of the manufacturing process instead of at the beginning. Definitions of quality should 

connect functionality with the engineering design process and promote never-ending or 

continuous improvement. In addition, any definitions of quality should increase the focus on 

process instead of product, to prevent instead of contain lack of quality(Wang, 2013, 

Scherkenbach, 1986). Quality should be measured as a function of customer losses instead of 

producer losses. 

3.3.1 Deming 

The Deming method is heavily influenced by statistics in both philosophy and methods. Deming 

lists 14 points that are beneficial when working towards improving quality. Management should 

be able to adopt a long-term strategic perspective on research and education and be able to adopt 

the idea that quality is a never-ending process of improvement. The focus should be moved 

from defect detection to defect prevention. Controlling the process is more beneficial in 

identifying root causes than controlling the product (Scherkenbach, 1986). The difference 

between product control and process control for quality is shown in Figure 5 and Figure 6. 

 

Figure 5 Product-oriented quality model. 
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Figure 6 Process-oriented quality model. 

Continuous improvement of production, service, quality and productivity is paramount in the 

Deming approach, as it will lead to a constant decrease of costs. This is the basis of the Deming 

cycle, a four-step iterative procedure; recognize the existence of an opportunity, test a theory to 

be able to achieve this opportunity, observe the results of this test and act on the opportunity. 

All these can be placed in a feedback loop, and gives insight into how Deming defines 

continuous improvement (Scherkenbach, 1986). 

3.3.2 Taguchi 

The Taguchi method is not only concerned about building a quantitative formulation to the 

design of experiments (DOE), but perhaps more importantly on building an understanding of a 

philosophy. This foundation of this philosophy is based on three basic ideas; quality should be 

part of the design of a product, not by inspection of the product, quality is achieved by 

minimizing variance from an optimal target by design and the cost of quality should be 

measured by how product variables deviate from this optimum. These losses should be 

measured across the entire system (Roy, 2010). 

Traditional perspectives on product quality describes loss when a product deviates from an 

optimal target in such a way that it is no longer inside a set of given specifications for the 

product, causing rework or discarding the product. Taguchi identifies that two samples of a 

product both can be within specifications, but still be very different in how product variables 

deviate from an optimum. When quantifying this perspective, the result is a continuous function 

of loss as product variables deviate from a perfect or optimal product (Roy, 2010). An 

illustration of the difference between a traditional within/outside of spec loss function and a 

Taguchi loss function is found in Figure 7. Taguchi methods can be beneficial when applied at 

the earliest stage of product or process development and tend to become costlier in later 

development stages. The Taguchi quality loss function can be described by 
fv o eeQL C C C + +
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, where QL is quality loss, 
fvC  is cost due to functional variation, oC  is operating cost and eeC  

is cost due to environmental effects (Taguchi, 1995). 

 

Figure 7 Example of within/outside of spec loss function and Taguchi continuous loss function. 

When quantifying loss of quality by monetary means with Taguchi loss functions, an interesting 

question is the cost of achieving quality by reducing variance. By interpreting the loss function 

philosophy literally, one would assume an optimal point of level of quality and cost of achieving 

that quality. This would in effect be contrary to a philosophy that promotes continuous 

improvement. But when costs related to maintaining a system for quality control, maintaining 

a system for quality assurance, losses, scrap and rework in manufacturing and warranty, repair 

and service, any logical assumption on optimal quality would lead to quality within acceptable 

limits. By adhering to the Taguchi perspective on loss, a central question is the cost of not 

having quality or not continually working on quality when this work could lead to 

improvements in production management, increased flexibility and adaptability, creating and 

enhancing opportunities for innovation and breakthroughs, encourage employees by 

transparency in the search for improvements and an increased ability to identify flaws in the 

processes(Lofthouse, 1999). 

3.3.3 Zero Defect Manufacturing 

The concept of zero-defect was introduced in the US Army during the 1960s. It generally 

discusses manufacturing practices that seek to minimize the number of process defects and 

errors and to instill a practice of doing things right the first time. The utilization of Zero-Defect 

Manufacturing (ZDM) practices in a manufacturing environment can help improve quality and 

minimize cost (Wang, 2013). 
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In order to achieve zero defects, quality monitoring and optimization tools must be used. A 

ZDM system has some requirements; automatic capture, cleaning and formatting of data using 

a sensor system, automatic signal processing, filtering and extraction of features, data mining 

and knowledge discovery for the purpose of diagnosis and prognosis, provide clear and concise 

information and advice on defects and the ability to self-adapt and optimize (Wang, 2013). 

A ZDM framework named intelligent fault diagnosis and prognosis system (IFDAPS) has been 

developed at the Knowledge Discovery Laboratory at the Norwegian University of Science and 

Technology (NTNU) (Wang and Wang, 2012). The functions of this framework are; continuous 

collection of data from sensors, continuous processing of sensor data and online evaluation of 

equipment and processes, identification of conditions or faults and inform operators and 

managers if and where components, machines or processes have degraded to a degree that 

actions should be taken. As a result of condition identification, remaining useful life or possible 

future faults can be predicted, operation and plans can be optimized and produced performance 

indicators can be used for self-adjustment to correct or compensate for faults (Wang, 2013). An 

EU-project called Intelligent Fault Correction and self-Optimizing Manufacturing Systems or 

IFaCOM has worked on building a methodology and a framework for connecting ZDM 

philosophies to Industry 4.0 and Cyber-Physical Systems (Eleftheriadis and Myklebust, 2016). 

Figures 8 and 9 visualizes the IFDAPS and IFaCOM models. 

 

Figure 8 Intelligent fault diagnosis and prognosis system (IFDAPS) based on (Wang, 2013). 
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Figure 9 IFaCOM framework based on (Eleftheriadis and Myklebust, 2016). 

3.3.4 Statistical Process Control 

Statistical Quality Control analyzes data using scientific methods, and applies this data to solve 

problems within engineering, management, maintenance and more or less any other activity 

that can be expressed using numbers (WEC, 1956). Statistical refers to methods drawing 

conclusions from numbers, quality has to do with the characteristics of what is being studied 

and control is related to keeping what is being observed within specific boundaries. In Statistical 

Process Control or SPC, the object being observed and analyzed is a process. SPC is closely 

related to ideas from both Taguchi and Six Sigma in that it seeks to identify, monitor and 

minimize process variation (Montgomery, 2007). 

A process can be defined as a set of conditions or causes, that work together to produce a result 

(WEC, 1956). Another definition is a set of interrelated or interacting activities that use inputs 

to deliver a result (EN17007, 2017). This includes single and multiple machines, single or 

multiple human actions, measuring or assembly methods, anything else that can be expressed 

as a series of numbers and any combination of these. It can refer to a single operation or a 

complicated combination of multiple operations. 

Process data of a multitude of processes are collected and charted by most industrial enterprises, 

but often only used in reports or summaries before they are archived. How these data are 

connected to the historical performance of processes is seldom properly analyzed. Shewhart 

control charts uses process data to ascertain if a process is in or out of statistical control. A 

process is controlled if, using historical data, it is possible to predict, within limits, how the 

process will vary in the future (WEC, 1956). 
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A process out of statistical control may influence productivity and economic efficiency and is 

in effect wasteful and inefficient. A process may produce products within the set quality 

parameters, but still be out of statistical control. Producing within specifications meets customer 

expectations, while producing within specifications and while the process is in statistical control 

meets customer expectations economically (WEC, 1956). 

Multiple types of data can be used to detect causes of process disturbance. In order of 

sensitivity, ranges, averages, percentages or individual numbers like temperature or pressure 

can be useful in identifying problems in a process (WEC, 1956).  

The X-Bar and R charts measure how process variable means and variance behave over time 

and uses upper and lower control limits to analyze whether the variance within the charts is 

common cause, variance within the control limits, or special cause, outside the limits. This can 

also be referred to as normal or abnormal variance (WEC, 1956). The Shewhart control charts 

can serve as a tool to identify faults in a process, help identify root causes for process behavior 

and form a statistical basis for any actions to improve the process. In addition, the charts can 

inform decisions on whether a process needs adjusting or maintenance or can be left alone.  

Depending on the patterns that are formed within these charts, these can aid in identifying 

cycles, trends, shifts, instability or interactions between two or more variables (WEC, 1956). 

Shewhart control charts are largely based on analysis of a normal distribution, and the H0 

hypothesis is that the X-Bar and the range mean is equal to the process means. By applying 

control limits of +/- 3 sigma to the y-axis, where the α is 0,3% and the significance level is 

99,7%, points outside the control limits will lead to rejection of the H0. In addition, the x-axis 

represents time, and adds another dimension to the hypothesis testing. This introduces a more 

complex ruleset for assessing whether the H0 should be rejected or not(WEC, 1956). 

The aim of SPC is to use historical data to improve future performance, and traditionally the 

analysis has tended to focus on the output rather than the process or processes. An output in the 

form of a product can be a result of multiple process variables and using control charts to 

identify root causes to why there are problems with the process might be difficult or impossible. 

By analyzing individual process variables, the chances of identifying root causes rises, and 

therefore is a logical step. This perspective also makes control charts viable within service 

systems and other systems that have no tangible output to measure (Wood, 1994). 
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Today, most processes are monitored by computers, and a single process can have 50 or more 

variables that are monitored every second or multiple times per second (Nomikos and 

MacGregor, 1995). As mentioned, a process can be partly defined as anything that can be 

represented by a series of numbers (WEC, 1956). Monitored process variables have this trait, 

and when the data from multiple variables are synchronized, SPC can be performed across all 

monitored process variables (Nomikos and MacGregor, 1995). 

Experiments have been done, using SPC to construct control charts of vibration variables from 

bridge columns. In this case, the method is used to detect anomalous vibration measurements 

from the construction. In all cases, the control charts were successful in detecting some system 

anomaly. Testing on method robustness also confirmed that there was no indications of 

producing false-positive warnings when using the charts for anomaly detection. Outliers in the 

control charts did not necessarily indicate structural damage but did indicate statistically 

significant changes to the vibration signature of the bridge columns. Damage to the columns 

that does not change the vibration data significantly cannot be detected by the control charts 

(Fugate, Sohn and Farrar, 2001). 

3.3.5 Constructing the X-Bar and R charts 

The variable or variables to measure must be chosen, number of datapoints included in the 

sample and the size of the subgroup. Degrees of freedom is a measure of uncertainty in 

estimated sigma. Related to sample size, degrees of freedom will rise as sample size rises, and 

the better the estimate of moving range and sigma. The coefficient of variation (COV) measures 

uncertainty in sigma and is defined as 
sigma

COV
mean

= . When constructing X-Bar and R control 

charts, degrees of freedom can be calculated using 0,9 ( 1)df k n= − for n<7, and where k is 

number of subgroups and n is subgroup size. COV is calculated using 
1

(2 )
COV

df
= . Using  

these formulas, it is possible to calculate good sample sizes for the control charts (Wheeler, 

1995). The relation between sample size and degrees of freedom is shown in Figure 10. An 

example of the relation between degrees of freedom and coefficient of variation can be seen in 

Figure 11. 
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Figure 10 Number of subgroups vs degrees of freedom at subgroup size 3. 

 

Figure 11 COV vs degrees of freedom. 

Means are calculated for every subgroup in the sample using 1 2... nX X X
X

n

+
= where X is the 

average of a series of X’s, X is an individual observation and n is the number of observations 

in a group. N should be 2,3,4 or more, but should not exceed 10(WEC, 1956). Then the mean 

of all subgroup means is calculated. This provides the points in the X-Bar chart and the center 

line in the chart. The standard deviation of the sample or sigma is calculated using 

2

1

1
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1

n

i

i

s X X
N =

= −
−
 , and +/- 3 sigma marks the upper and lower control lines. Ranges are 

calculated for every subgroup using 
max minR N N= − . The mean of R is calculated to find the 

center line of the R chart. The control lines for the R chart is found using constants, where the 

formulas are 4UCL d R= and 3LCL d R= . A table showing these constants are shown in Table 

1. 
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Table 1 Constants for calculating R chart UCL and LCL. 

To analyze the results from the control charts, 8 tests are performed. (1) Any points outside the 

control limits of both X-Bar and R charts signals a process out of control. (2) 2 out of 3 points 

> 2 sigma in the X-Bar chart signals an out of control process. (3) 4 out of 5 points > 1 sigma 

in the X-Bar chart signifies an out of control process. (4) 8+ successive points above or below 

the center line of both X-Bar and R charts indicates that the process has shifted. (5) 6+ points 

in either chart continually increasing or decreasing indicates a systemic trend. (6) 14+ points 

oscillating up and down in either chart also indicates a systemic trend. (7) 8+ points in a row 

on either side outside of +/- 1 sigma in the X-Bar chart indicates an out of control process. (8) 

If 15+ points in a row in the X-Bar chart are within the +/- 1 sigma area, this indicates that the 

process is out of control (WEC, 1956). 

3.4 Maintenance management and predictive maintenance 

Maintenance can be defined as a set of activities that are used to restore an item to a state where 

it can perform the functions it was designed for (Ahmad and Kamaruddin, 2012). Another 

definition is “a combination of all technical, administrative and managerial actions during the 

life cycle of an item intended to retain it in, or restore it to, a state in which it can perform the 

required function” (EN13306, 2017). 

As technologies evolve over time, so has maintenance functions. Strategies for maintenance 

can be divided into Corrective Maintenance and Preventive Maintenance. Corrective 

Maintenance is used to restore equipment to a required functional state after failure. This 

generally leads to high machine downtime and maintenance costs (Ahmad and Kamaruddin, 

2012). Preventive maintenance involves performing maintenance prior to failure, where the 

goal is to reduce failure rate or frequency. This leads to lower cost of failures and less machine 

downtime. Time-based maintenance is a form of preventive maintenance, where analysis of 

previous failure times is used to predict expected lifetime of a machine. 

Subgroup n d3 d4

2 0 3,267

3 0 2,575

4 0 2,282

5 0 2,115

6 0 2.004

7 0,076 1,924

8 0,136 1,864

9 0,184 1,816

10 0,223 1,777
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3.4.1 Condition Based Maintenance 

With modern technology evolving rapidly, products increasing in complexity and with higher 

reliability requirements, the cost of preventive maintenance has increased substantially. 

Condition-based maintenance (CBM) is an attempt to manage this situation. A CBM approach 

acquires information from a machine that is relevant to the machine’s condition or health. This 

information is then analyzed to increase system understanding. Based on the analysis, a decision 

is made as to which maintenance policies are most efficient (Jardine, Lin and Banjevic, 2006). 

Being able to detect faults in the observed system and identify the nature of these faults is an 

important part of CBM. In addition, system analysis should provide knowledge that help 

estimate when and how a fault is likely to occur. Prediction is potentially a very effective tool 

in reducing system downtime, but the ability to diagnose faults is essential when these 

predictions fail (Jardine, Lin and Banjevic, 2006). 

Using statistical methods when analyzing signal data from a system is relatively common in 

CBM. A connection between CBM fault detection using SPC has been discussed, where control 

charts are used to detect anomalies in monitored vibration variables for a concrete bridge 

column (Fugate, Sohn and Farrar, 2001). 

A motivation for CBM is that in 99 percent of all cases there will be signs, conditions or 

indications that a failure is going to occur before the failure affects the machine observed. If the 

critical variables are monitored, detection of the failure indicated is possible (Lee et al., 2014). 

Monitoring can be performed on-line, while the machine is running, or off-line. In addition, 

monitoring can be periodical or continuous. Continuous monitoring is expensive and can cause 

signal noise, while periodical monitoring runs the risk of missing critical information between 

intervals. 

3.4.2 Remaining Useful Life (RUL) 

Remaining useful life is an estimation of the useful life left of a machine or asset at a given 

time. This estimation is central to CBM and health management. Typically, RUL for any given 

machine or process is random and unknown. As such, an estimation is done based on existing 

information from the observed machine. There are several different approaches concerning 

RUL estimation methods, but there is not necessarily any best method, at least not a method 

that can be generally used universally (Si et al., 2011). 
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A definition of useful life can be the period where an asset or property can be used for the 

purpose it was intended for. Another definition can be the time where a depreciating asset will 

be productive (Si et al., 2011). Being able to estimate RUL accurately is critically important in 

CBM, as it influences maintenance planning, acquisition of spare parts, performance of 

operations and profitability. RUL is also an important part of product reuse and recycling and 

is therefore connected to sustainable strategies. 

RUL of any given asset is random and depends in large part on the age of the asset observed, 

operation environment and condition monitoring. An estimation of RUL can be calculated using 

( )
( | ) ( )

( )

t
t t t

f t x
f x Y f x

R t

+
− − , where tx is the random variable RUL, ( | )t tf x Y is the probability 

density function and tY  is the history of operational profiles and condition monitoring up to 

time t(Si et al., 2011). 

Applying statistical data driven approaches to estimate RUL, relies on available historical data 

and statistical models. The data used can be event data or condition data. Event data is 

synonymous with historical failure data. Depending on the process being analyzed, failure data 

may be difficult or impossible to acquire. The process in question may not be allowed to ever 

run to failure. Any statistical approach to RUL estimation is dependent on data availability and 

nature (Si et al., 2011). 

Data obtained from monitoring a process can be classified as direct or indirect condition 

monitoring (CM) data. Direct CM data can describe the state of the system directly, and 

threshold levels of that variable can be used for prediction purposes. Indirect CM data can only 

indirectly or partially indicate the condition of the system observed, and there may be a need 

for additional failure data to be able to estimate RUL (Si et al., 2011). A visualization of 

common statistical approaches with direct and indirect DM data can be found in Figure 12. 
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Figure 12 Overview of statistical methods used for RUL estimation. 

Generally, failure cases are caused by several correlated processes degrading, and the severity 

of this degradation can be close to impossible to detect without using advanced equipment. 

However, data from variables that reflect the underlying degradation are substantially easier to 

obtain given appropriate sensor use. If critical variables in a process is identified and sensored 

appropriately, close to continuous variable data can be collected at a relatively low cost (Liao, 

Zhao and Guo, 2006). The data from these variables can provide insight into the state, condition 

or health of the process being observed. A challenge is that the same degradation can be cause 

by another combination of process variables, and therefore the failure boundaries can be 

difficult to define. Root causes to degradation or failure may be unidentified or not measured 

properly, and degradation may happen without being observed until process failure.  

The ability to estimate RUL accurately can be crucial in many areas of industry. Sectors like 

aircraft industry, medical equipment and powerplants are examples where inaccurate estimation 

of RUL can lead to catastrophic results. Being able to schedule maintenance well in advance 

order parts in time helps create more efficient strategies for replacement and maintenance, and 

also minimizes costs by avoiding machine maintenance when unnecessary (Zheng et al., 2017). 

With the ongoing technological developments within the field of information and 

communications technology (ICT), there is considerable work being done on using artificial 

intelligence (AI) and specifically Machine Learning and neural networks to build prediction 

models for estimating RUL. An example uses Echo State Networks (ESN), a type of recurring 

neural network (RNN), which inputs signal data into a set of internal units consisting of hidden 

layers and dynamical reservoirs. Machine Learning algorithms treat the input data through this 

set of algorithms, and finally produces outputs. The named echo state property, specific to ESN, 



37 

 

has the effect that initial conditions gradually disappear as time passes, and ESN is therefore 

theoretically an interesting application for RUL estimation experiments (Rigamonti, Baraldi 

and Zio, 2016).  

A proposed approach to using ESN for RUL estimation is to use sensor data and perform pre-

processing procedures, which includes normalization of data, filtering of signal noise and 

selecting prognostic signals. The pre-processing output is then normalized and filtered 

prognostic signals that are significant. The point where signal degradation occurs, the elbow 

point, is detected using Z-tests. The ESN algorithms then uses this data to predict RUL for the 

component being observed through a learning process (Rigamonti, Baraldi and Zio, 2016). 

Using NNs for RUL estimation can be very data intensive, especially when training the NN. 

Using 70-80% of datasets for training purposes is not unusual (Zheng et al., 2017). This means 

that a vastly superior percentage of data is used for training, leaving a lesser percentage of data 

for testing the NN models. 
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4. Results 

The object of the experiment performed in this thesis is to attempt to model sensor data from a 

machine process using Statistical Process Control (SPC) and use this model to indicate process 

condition and Remaining Useful Life (RUL). When attempting to model predictive process 

failure, one important element to consider is previous failure data (Goode, Moore and Roylance, 

2000). Having a set of run-to-failure data from the process being modelled is beneficial 

regarding quality of analysis. Collecting real-world run-to-failure data is often problematic, as 

the datasets tend to be incomplete (Saxena et al., 2008), or organizations may be unwilling to 

provide the datasets for various reasons. 

To combat the lack of availability of such real-world datasets, the experiment will use a dataset 

from the Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) at NASA 

(NASA, 2008). For the purpose of this experiment, the dataset contained in the text file 

test_FD001.txt will be used. 

When importing the dataset into an Excel spreadsheet, the variables are identified and 

appropriately named. The variables can be split into 3 different categories; identifier variables, 

control variables and system response variables. The variables are shown in Table 2. The data 

is then ordered by engine, copying each engine’s data into a separate spreadsheet. The 

experiment will focus on the 11 dynamic system response variables, and all control variables 

and static system response variables are excluded from analysis and modelling. 

 

Table 2 C-MAPSS variable list. 
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The per-engine data is then imported into Minitab for analysis. Testing 60 and 90 samples with 

subgroup sizes 3 and 5, calculations can be made to determine a good combination for 

producing the control charts (Wheeler, 1995). Estimating degrees of freedom by using the 

formula 0,9 ( 1)df k n= − , where df is degrees of freedom, k number of subgroups and n is 

subgroup size. Coefficient of variance (COV) or 
sigma

mean
 is calculated using the formula 

1

(2 )
COV

df
= . Using 90 samples in 3*30 subgroups, the degrees of freedom is 54 and the 

COV is about 9,6%. This is deemed as satisfactory for the control charts as increasing df further 

will only slightly lower COV. Subgroup size 3 is preferred as opposed to 5 based on personal 

preference. The control charts are constructed using X-Bar and R charts. The ruleset used is 

shown in Table 3.  

 

Table 3 Ruleset for testing X-Bar and R charts. 

For the experiment, 20 engines are included and all 11 dynamic variables in each engine are 

analyzed. To get an overview of how the different variables look and behave over time, charts 

are made for each variable for the entire runtime for all 20 engines. An example of this is shown 

in Figure 13. These charts generally indicate a more stable period, a period of degradation and 

a point of failure. 

Ruleset

1 point > 3 sigma from center line

9 points on the same side of the center line

6 points in a row, all decreasing or increasing

14 points in a row, alternating up and down

•2 out of 3 points > 2 sigma from the center line (same side)

•4 out of 5 points > 1 sigma from the center line (same side)

•15 points in a row within 1 sigma of the center line (either side)

•8 points in a row > 1 sigma from the center line (either side)
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Figure 13 Example of X-Bar and R charts of engine variable full run-to-failure. 

To be able to analyze and test how the variables perform over time, 90 samples with subgroup 

size 3 are used for every 10 cycles in a time-series until failure. This provides a better view of 

when the process variable is under statistical control or not and increases the probability of 

understanding the timeframes of variable degradation until failure. These control charts are then 

constructed for every variable and for all 20 engines. In addition, complete test results are 

provided for every chart. An example of process variable control charts in the stable part and 

before point of failure is shown in Figure 14. An example of test results for the variable is 

shown in Table 4. 
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Figure 14 SPC time-series of engine variable in stable phase and close to failure. 

 

Table 4 Test results from SPC time series of engine variable in stable phase and close to failure. 

The number of test failures will generally increase over time as the process variable moves 

closer to the point of failure. In order to use this information to create an indicator for engine 

condition, some assumptions have been made. The first assumption is that a correlation exists 

between engine condition and SPC test results. The second assumption is that it is feasible to 

construct an algorithm that transforms SPC test data into a meaningful engine condition 

indicator value. 

After testing different algorithms, the following formula is used to create a condition indicator 

value: 
11

1

1
100 ( 9 ( ))

2
n

n

CI VTF
=

= − − , where CI is the engine condition indicator value, VTF is 

the number of test failures for the variable and n is the numbered variable calculated. This 

provides an indicator value starting from 100 and subtracts half a point per test failure per 

variable up to 18 failures or 9 points per variable, meaning a minimum indicator value of 1. The 

variables are weighted equally, and scoring is equal for all variables and for failures in both X-

Xbar-R Chart of Physical fan speed Xbar-R Chart of Physical fan speed

Test Results for Xbar Chart of Physical fan speed Test Results for Xbar Chart of Physical fan speed
TEST 1. One point more than 3,00 standard deviations from center line. TEST 1. One point more than 3,00 standard deviations from center line.

Test Failed at points:  30 Test Failed at points:  3; 5; 12; 24; 25; 27; 28; 29; 30

Test Results for R Chart of Physical fan speed TEST 2. 9 points in a row on same side of center line.

TEST 1. One point more than 3,00 standard deviations from center line. Test Failed at points:  9; 10; 11; 12; 13; 14; 15; 29; 30

Test Failed at points:  25 TEST 5. 2 out of 3 points more than 2 standard deviations from center line (on one side of CL).

Results include specified rows: 1:90 Test Failed at points:  2; 3; 4; 5; 6; 7; 8; 13; 15; 24; 25; 26; 27; 28; 29; 30

98 rows are excluded. TEST 6. 4 out of 5 points more than 1 standard deviation from center line (on one side of CL).

* WARNING * If graph is updated with new data, the results above may no longer be correct. Test Failed at points:  4; 5; 6; 7; 8; 14; 15; 25; 26; 27; 28; 29; 30

TEST 8. 8 points in a row more than 1 standard deviation from center line (above and below CL).

Test Failed at points:  8; 29; 30

Test Results for R Chart of Physical fan speed
TEST 1. One point more than 3,00 standard deviations from center line.

Test Failed at points:  9

Results include specified rows: 101:190

100 rows are excluded.

* NOTE * 2 empty rows ignored.

* WARNING * If graph is updated with new data, the results above may no longer be correct.
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Bar and R charts. This translates to an engine with process variables with a low amount of test 

failures receiving higher indicator scores, and as the sum of test failures rises, indicator values 

will be lower. An example of engine condition index scoring is shown in Table 5 and 

graphically represented in Figure 15. This algorithm is then used on all 20 engines to construct 

the model. 

 

Table 5 Engine Health Indicator scoring chart. 

 

Figure 15 Engine Health Indicator Graph. 

The simulated engines have vastly differing runtimes, and to be able to calculate means, 

distributions and sigma, the engines are compared from the point of failure and -10(n) cycles. 

Indicator values from all 20 engines are then tested using a Kolmogorov-Smirnov test for 

normal distribution. The test is performed as the number of engines included in the model is 

low enough so that the principles of the central limit theorem may not apply, and therefore 

testing for normal distribution are is reasonable. The formula for the Kolmogorov-Smirnov test 

can be defined as *max | ( ) ( ) |x ND F X S X= − , where ( )NS X is the sample cumulative 

distribution function and *( )F X is the cumulative normal distribution function. The value of D 

is then compared to a D-table of critical values, where the H0 hypothesis claims that the 

distribution is normal, and a Ha claiming the distribution is not normal (Lilliefors, 1967). A D 

Samples T at LPC o/l T at HPC o/l T at LPT o/l PSI at HPC o/l Fan RPM Core RPM Rat of FF to Ps 30 Corr fan RPM Corr core RPM HPT coolant LPT coolant CI value

1-90 0 3 0 4 1 8 1 1 3 3 2 87

11-100 1 1 0 2 0 18 2 2 12 0 0 81

21-110 1 0 0 4 0 18 0 3 18 0 0 78

31-120 1 11 0 2 0 18 1 2 18 1 3 71,5

41-130 0 1 2 2 0 18 1 3 18 0 0 77,5

51-140 3 2 1 3 0 18 0 0 18 1 1 76,5

61-150 12 7 3 1 0 18 4 2 18 1 0 67

71-160 2 2 7 2 0 18 8 1 18 6 0 68

81-170 2 5 11 6 0 18 7 0 18 8 8 58,5

91-180 12 16 18 6 6 18 18 5 18 15 18 25

101-190 16 18 18 18 15 18 18 18 18 18 18 3,5

111.200 18 18 18 18 18 18 18 18 18 18 18 1
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value exceeding the critical value in the table will lead to H0 being rejected and the claim that 

the distribution is not normal. 

Plotting the indicator values for all 20 engines into a chart is useful to observe behavior and 

distribution. This is shown in Figure 16. For the purpose of the Kolmogorov-Smirnov test, H0 

is that the data follow a normal distribution and Ha is that the data do not follow a normal 

distribution. Using the formula 1

1
max ( ( ) , ( ))i N i i

i i
D F Y F Y

N N
 

−
= − − , where F is the 

cumulative distribution of the distribution tested and with α=0,05, we can test all 20 engines. 

The point of failure is expected to fail the test, but most other points is expected to pass. The 

test is performed using Minitab. 

 

Figure 16 Condition indicators for all 20 engines from point of failure and -10(n) cycles. 

The point of failure does indeed fail the test and is not normal distributed. Points 2-13 and 15-

16 passes the test and can be assumed normal distributed. The remaining points fail the test, 

most probably caused by few remaining engines. This means that when means and standard 

deviation is calculated, there is a strong assumption that for the points that passed the 

Kolmogorov-Smirnov test, point of failure -10 cycles to -120 cycles and -140 cycles to -150 

cycles, +/- 1,2 and 3 sigma and so on can be used to ascertain the probability of all tested engines 

health indicator values in the future with probabilities 68,3%, 95,5% and 99,7% and so on. 

Plotting the mean and sigma values into a chart indicates probabilities of engine health 

indicators in that range for all points passing the Kolmogorov-Smirnov. This plot is shown in 

Figure 17. Using 3 sigma as an example cutoff point at an indicator value of 43,5 at point 2 or 

failure minus 10 cycles, ( 43,5) 1 ( 43,5)P X P X = −  when μ = 12,58 and σ = 10,29 is 0,0014, 

and about 1 out of 1000 engines will be 10 cycles from failure and average RUL will be between 

30 and 40 cycles. Using an indicator value of 45 as a cutoff, the P-value is 0,08%, and at 50 the 
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P value is 0,014% or about 1 out of 10.000 engines. Mean RUL at an indicator value of 50 is 

just over 40 cycles. For all points that have passed the Kolmogorov-Smirnov test for normal 

distribution, probabilities can be calculated for any engine falling inside or outside of the 

distribution, based on sigma value, and in effect calculate RUL based on observed current 

engine condition index score. 

 

Figure 17 Engine condition means and +/- 1,2 and 3 sigma ranges. 

Testing the model, an engine was randomly selected from the dataset and a condition index was 

constructed for every point in the time series. This data is then put into the model. This is 

visualized in Figure 18. Using a condition index value of 40 as a cutoff point, this engine will 

be stopped for maintenance 30 cycles before failure. Using 45 as the cutoff, the engine will be 

stopped for maintenance 40 cycles before failure, and at 50 as the cutoff, 50 cycles before 

failure. 

 

Figure 18 Engine condition distribution with test engine example graphed. 
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5. Discussion 

Generally, the control chart time-series show a more stable period with no or very few test 

failures, evolving towards a period of increasing test failures until the engine fails. This is 

generally the case for all variables in all 20 engines. The assumption that there is a correlation 

between engine condition and the control chart test failures is strengthened. By using the 

transformation algorithm, the new engine condition indicator shows values between 100 and 1, 

where start values are closer to 100 and values closer to or at the point of failure is closer to 1. 

This is true for all 20 engines. The Kolmogorov-Smirnov test shows that most indicator 

distribution points are normally distributed, and this allows for simple calculations on 

probabilities of less than 10 cycles remaining until failure, where the probability is dependent 

on what indicator value is set as a critical value. This suggests that by using SPC on dynamic 

engine variables in a time series, scoring the test failures per X-Bar and R chart, creating an 

algorithm for scoring each engine and including scores for every time-series for all 20 engines 

into a model, there is a strong assumption that the individual condition scores are linked to 

engine condition and a high probability that the model can predict if any engine at a given 

condition index score has less than or more than X cycles of run-time remaining until the point 

of failure.  

5.1 Interpretation 

Including the dataset from the C-MAPSS simulator gives the experiment access to complete 

run-to-failure data. This was done for several reasons. The access to industry-related run-to-

failure datasets is in most cases difficult or impossible to acquire (Goode, Moore and Roylance, 

2000, Saxena et al., 2008). The access to run-to-failure data from a multitude of machines, in 

this case jet engines, would provide data useful for building the experimental prediction model 

that available industrial datasets could not. The assumption was that building a model predicting 

failure using statistical methods and SPC control charts should be based on historical failure 

data, and that access to such data would increase the precision of failure estimation. In addition, 

there was an assumption that it would be possible to generalize from the model towards 

industrial machines and processes. The dataset is also widely used as a benchmark in RUL 

research (Zheng et al., 2017). 

The decision to exclude control variables is based on the view that they are external to the 

machine and do not describe what is happening inside the engine, but rather variables that can 

influence engine behavior from the outside. The SPC control charts used in this experiment 
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should represent internal machine variables, not external. Exclusion of the static variables was 

done because they do not in this case provide any useful data. 

The reasoning for weighting the variables equally is based on lack of expertise and knowledge 

on jet engine physics and mechanics. There was also an assumption that this could cause the 

model to be more specific towards jet engines and less general in nature. A decision was also 

made to score all test failures from the WE ruleset equally, even though test failures in test 4,5 

and 6 signify shifts or trends and not out of control processes. This was done because the goal 

of the control charts was not to indicate a process in or out of statistical control, but to provide 

information for the purpose of constructing a condition indicator.  

Constructing control charts for the entire runtime of each variable in all 20 engines generally 

indicated a stable period, and then a sudden shift up or down in value until the point of failure. 

This indicates that a correlation between control chart test failures and engine condition is a 

plausible assumption. This assumption is strengthened when looking at the time-series control 

charts. The sum of all variable control charts for any of the 20 engines included show a stable 

period with no or very few test failures, until a point where test failures occur increasingly until 

engine failure. This happens in every engine and is generally true for individual variables as 

well. 

Because the jet engine dataset simulates engines with differing amounts of wear, their runtimes 

vary. Because of this, looking at the indicator scores across all engines from the point of failure 

and back in time, a decreasing number of engines will be included. However, the most critical 

information is believed to be gathered from the period of indicator value decline until the point 

of failure, and the Kolmogorov-Smirnov tests lead to not being able to reject the hypothesis that 

the distributions are normal distributed. On this basis, estimating probabilities of remaining 

useful life based on indicator value is believed to be statistically sound. Using sigma values in 

a normal distribution, the model can predict the probability of more than or less than X cycles 

remaining until failure. This indicates that RUL can be probabilistically estimated by the model. 

5.2 Implications 

Continuous improvement is a central term within most philosophies in quality engineering. 

Deming was a proponent in increasing focus on processes and less on the products themselves. 

Focusing too much on the product as a measure of quality can lead to improvements until the 

product is inside of specifications, and it can be argued that this is directly contradictory to the 
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idea of continuous improvement. Taguchi also shares this view of process importance. Focusing 

on the process today includes focusing on process variables. Even if the vast amount of data 

obtained from process sensors today is under-utilized, there is an increasing number of 

proponents for using SPC as a tool for monitoring these variables (Scherkenbach, 1986, Wood, 

1994, Nomikos and MacGregor, 1995, Fugate, Sohn and Farrar, 2001). 

A product can be within set specifications, when the process is out of statistical control. Using 

SPC on the product will most likely not provide optimal insight into if there are problems with 

a process and how optimized the process is. Using control charts on process variables provides 

superior insight into process behavior and increases the ability to detect faults, shifts and trends 

in the process. This can aid process optimization and root cause detection. 

Working towards Industry 4.0, industrial systems will increase in complexity. Information will 

be sent from machine to machine, from machine to humans and across the value chain, both 

vertically and horizontally. Some of this information will be sensor data. Assuming the 

usefulness of using SPC as a tool to monitor sensor data, control charts can be constructed both 

on-line, off-line and if needed in real-time. This provides the ability to monitor individual 

process variables, which in turn provides insight into process stability over time. This can be a 

tool for building process knowledge and understanding. The data produced from SPC analysis 

can be useful for a multitude of purposes; simulations, digital twins, process condition 

monitoring and RUL estimation. The ability to monitor processes in real-time and provide up-

to-date feedback on process condition can lead to new insights that help further optimization 

and improvement work. 

Assuming increasingly complex industrial systems going towards I4.0, making informed 

decisions, optimizing strategies and planning across the value chain can be difficult. Using SPC 

as a tool and having real-time access to control chart data can help inform these activities. 

Knowledge on the current condition of all connected and monitored processes can greatly help 

with making more optimal decisions, and the ability to predict machine RUL not only optimizes 

maintenance planning but can be a tool for other planning activities and overall strategy. 

The advent of Big Data has seen a substantial increase in process data. Many, if not most, 

businesses only use a fraction of this data to optimize their processes. Tools used to analyze 

this data must be able to provide meaningful information that businesses can utilize. SPC can 
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be one of these tools. Using control charts on the datasets can help increase the use of Big Data 

as a resource in optimizing processes. 

The two main components of Cyber Physical Systems, acquiring information from the physical 

world and providing valuable feedback from the cyber to the physical, assumes the existence 

of a toolset for managing and analyzing data to provide optimal information. Use of existing 

tools can in many cases be extended, and assuming the usefulness of SPC in such cyber-physical 

environments, the ability to provide process information both on-line, off-line and real-time can 

be beneficial in CPS. Historical analysis of process variables in and out of statistical control, 

control chart time-series to give insight into how the process variables develop over time, 

monitoring current, historical and time-series machine condition and the ability to estimate 

remaining useful life for all monitored processes should help increase the value of information 

from the cyber realm. 

Looking at different architectures for I4.0, specifically 5C, IIRA and RAMI 4.0, SPC can be 

useful for a multitude of activities. In the 2nd layer of 5C, SPC can be used for monitoring 

machine health, degradation and predicted performance. In the 3rd layer, SPC can be helpful 

when building digital twin model and for identifying and monitoring process variation. From 

an IIRA and RAMI 4.0 perspective, utilizing process control can improve control in that it can 

provide accurate, up-to-date and if needed real-time information on all monitored processes. 

Knowledge gained from control chart analysis can improve information in the system, which 

can help system resilience and reliability. Increasing the quality and detail of the information 

sent between the different layers of these architectures can provide additional insights that can 

be useful for optimization and continuous improvement. 

The field of artificial intelligence and machine learning is complex. Experiments using ML for 

specific tasks has yielded impressive results but understanding of why these systems are so 

good at some tasks is generally limited. Most research being done on estimating RUL is done 

using ML methods, and much of this research has provided valuable insights into RUL 

estimation. However, when most ML software uses black boxes for their algorithms and the 

understanding of why a ML system produces the outputs it does in most cases is limited, the 

estimation does come with some challenges. Utilizing information systems and tools for 

analysis that are mostly or completely transparent is beneficial for several reasons. A 

transparent system can help build understanding and knowledge. Understanding how the tool 

works can help optimize not only the processes but also the tool itself. The tool can be tweaked 
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to better fit specific processes to provide more precise estimations. There is a reluctance in 

using AI and ML for decision-making in critical processes today. Perhaps utilizing a manual, 

transparent tool based on statistical methods can be a useful addition to RUL estimation based 

on ML? 

Both the IFDAPS and the IFaCOM ZDM frameworks describe the usefulness of evaluating 

equipment and processes to be able to identify conditions and faults. In addition, there are 

benefits in acquiring the ability to estimate RUL and predict future faults to optimize planning 

and operation. Using SPC as a tool for monitoring process variables can be useful for fault 

diagnosis and prognosis. SPC can also be helpful for predicting future production system 

behavior. 

The ability to precisely predict process failures can be greatly beneficial in reducing downtimes 

and minimizing losses by avoiding unnecessary maintenance and maximizing uptime. But 

when probabilistic predictions and estimates fail, tools should be employed to diagnose failure 

causes. Using process control as a tool for monitoring process variables can increase the 

probability of identifying root causes to failures and help optimize process variables so that 

failures occur less frequently. Assuming the usefulness of the model, SPC can additionally 

provide an alternative for monitoring process condition and predict remaining useful life for 

processes. 

Estimating RUL relies on historical failure data and the availability of such data. ML methods 

for RUL estimation can be very data intensive, and often require a large percentage of large 

datasets to train the algorithms. Examples of neural networks using 70-80% of the dataset for 

training purposes is not uncommon. An assumption is that the usefulness of ML RUL 

estimation relies on the availability of run-to-failure datasets that are large enough to allow for 

extensive training and then testing. The SPC-based model presented in this thesis uses 20% of 

the dataset for building a statistically sound model, which is considerably less that using ML 

methods. In addition, future testing of the model does not require run-to-failure data but can 

predict based on real-time process condition index score. 

Process degradation and failure can be caused by multiple combinations of variables, and this 

can increase the difficulty of detecting and identifying root causes to problems or failures. In 

99 percent of all failure cases, failures will be preceded by signs or indications that failures will 

occur (Lee et al., 2014). Using SPC to monitor critical process variables both real-time, on-line 
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and off-line increases available information on the state of the process and process variables. 

Combining the ability to efficiently monitor the process and all monitored variables with using 

SPC to estimate current process condition and RUL, shows that SPC can probably be a valuable 

tool for condition-based maintenance work and RUL estimation. 

5.3 Limitations 

The thesis uses a dataset from the NASA C-MAPSS simulator. This dataset is based on jet 

engine simulation and is not related to industrial process data. Although this dataset is widely 

used for RUL estimation purposes, the external validity of the model may be limited when 

applied to industrial processes. The lack of available run-to-failure data from industry meant 

that using the C-MAPSS dataset was the only option to allow for model construction. However, 

this model is not constructed specifically for jet engines, and the same concepts that allow for 

model construction based on engine variable data are assumed to apply to industrial machines 

as well. This assumption must be tested. 

Constructing an experimental model for estimating RUL based on SPC, is a mostly manual 

method. Using SPC control charts for constructing engine condition indicators and estimating 

RUL meant going beyond state of the art for SPC, and this required extensive testing. In the 

20-week span of this thesis, around 900-1000 hours was spent testing different sample sizes, 

subgroup sizes, creating full run-to-failure X-Bar and R charts for 11 variables in 20 engines, 

creating control charts in time series for all variables in all engines and producing test results 

from all variables and engines both for the complete run-to-failure charts and the time series. 

In addition, control charts were produced for both sample size 60 and 90 for around half of the 

engines. This produced around 5500-6000 X-Bar and R charts with full test results for all charts. 

The time spent constructing the model has been a limiting factor in the rest of the thesis and 

may have contributed to mistakes and errors. It may also have limited the depth of the literature 

review. Given the results of the model produced, showing a transparent, statistically driven 

manual method for calculating machine condition and estimating RUL, this is believed to be a 

reasonable trade-off, as most research into RUL estimation today is based on ML methods and 

not based on manual statistical analysis.  

The model constructed is relatively simplistic in methods applied. The goal was to be able to 

test the viability of using SPC and control charts on process variables to construct condition 

indicators and to estimate RUL. When building a proof-of-concept model, using relatively 

simple statistical methods is believed to be a reasonable approach, also considering the 
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timeframe. However, this implies that there is a potential for more extensive and advanced 

statistical method to be applied to the model, and this could help improve model precision and 

general usefulness. 
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6. Summary and conclusion 

The main question this thesis aimed to answer was the following; Can Statistical Process 

Control be extended to function as a tool in Condition Based Maintenance for determining 

machine condition and Remaining Useful Life estimation, and how does this influence the 

usefulness of SPC in Industry 4.0?  

6.1 Can SPC be extended to function as a tool in Condition Based Maintenance for 

determining machine condition and Remaining Useful Life estimation? 

By using X-bar and R charts to monitor all dynamic variables across all 20 engines included in 

the model through a time-series, using 90 samples in 10 cycle increments, the results from 

applying the complete WE ruleset indicate a stable period with no or very few test failures. 

During the time-series analysis, at a certain point the number of test failures will start to 

increase, and this acceleration of test failures will generally happen in most or all variables in 

all engines until the engines fail. By using an algorithm, the number of test failures in each 

variable at each point in the time-series is counted and subtracted from a theoretical starting 

condition indicator score of 100. This number is divided by the number of variables and rounded 

to the closest whole number. The algorithm subtracts half a point for every test failure up to 18 

per time per variable. This translates to a minimum indicator score of one. The results show 

that applying this method gives the engines a starting value closer to 100. This will vary 

somewhat but is expected due to the simulation of different levels of wear in the different 

engines. This number will stay somewhat stable or decline slowly. At a certain point, the scores 

will decrease more rapidly and tend to be close to 1 at the point of failure. 

Using the Kolmogorov-Smirnov test for normal distribution reveals that most condition 

indicator mean points must be assumed to be normal distributed. By calculating sigma, it is 

elementary to calculate the probability of an engine with a specific indicator value being inside 

or outside of the distribution, thereby calculating remaining useful life of that engine 

probabilistically.  

Based on these findings it is probable that SPC can be used as an alternative to ML methods to 

determine machine condition and estimate RUL. Assuming this is the case, this demonstrates 

the usefulness of monitoring process variables as part of SPC, and this allows us to answer the 

second part of the research question; how does this influence the usefulness of SPC in Industry 

4.0? 
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6.2 How does this influence the usefulness of SPC in Industry 4.0? 

Theory within the field of quality engineering underlines the importance of continuous 

improvement. Both Deming and Taguchi states that a focus on products can be contradictory 

to the philosophy of never-ending work towards improving processes. Assuming the 

importance of focusing on the processes and their variables, SPC can be a valuable tool for 

monitoring processes, detecting problems and identifying root causes. The complexity of 

industrial systems going towards Industry 4.0 is likely to increase and this includes information. 

Using SPC as a tool can help create more detailed insight into processes and individual process 

variables. In today’s industrial environment control chart time-series can be constructed on-line 

and real-time, and the ability to monitor the processes and process variables using control 

charts, inform on process condition and remaining useful life can greatly improve decision-

making, strategies and planning activities. 

Meaningful utilization of most sensor data, ideally all, can help build knowledge and 

understanding on processes, how to improve them and how to optimize them. The increasing 

amount of sensor data collected today is greatly under-utilized, and Big Data is often used as a 

tool for storing data, not for analyzing. Tools are needed for improving the use of sensor data 

for analytic purposes, and SPC can be one such tool. Increasing utilization of sensor data can 

help improve the quality of information in Cyber Physical Systems, where feedback and 

analytic results from the cyber realm can inform decisions for all stakeholders in the physical 

world. Improving the quality of information is an important part of CPS and the resilience and 

reliability of the systems, and SPC can be an important part of that improvement work. Access 

to detailed and precise information and analysis on processes and process variables can improve 

the ability to construct digital twins and conducting simulated experiments. CPS ZDM 

frameworks like IFDAPS and IFaCOM highlight the importance of evaluating equipment and 

processes, identifying conditions, faults and fault diagnosis, prognosis and prediction. SPC can 

be helpful as a tool for all these purposes. 

Research on AI and machine learning is very much in fashion. Reading articles on determining 

machine condition and estimating remaining useful life using ML and neural networks reveals 

that almost all focus is on this field. Very few articles focus on extending and developing 

manual, statistical tools for handling the increasing complexities of CPS and Industry 4.0. 

Although results from ML systems can be promising regarding RUL estimation, the lack of 
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understanding as to exactly why ML is good at predicting can be problematic. Black boxes in 

these ML systems also prevents effective learning and changing settings or attempting to 

improve the ML system can be challenging or impossible. Having a manual, statistically driven 

method for determining current machine condition and predicting useful life might be a useful 

alternative to ML methods, and the transparency of a manual method may help increase 

knowledge on the processes and optimization. Transparency also makes it possible to improve 

on the method itself, by changing or adding statistical methods, improving scoring and more 

detailed and specific weighting of the different process variables. ML RUL estimation can also 

be very data intensive, whereas a manual method requires far less data to allow for model 

construction. This makes it less difficult to obtain real world failure data compared to ML 

estimation models. 

Given the ability to monitor processes and process variables, and assuming the ability to 

determine process condition and RUL, it seems very likely that SPC will be increasingly 

important as a tool in Industry 4.0. 

6.2 Recommendations 

The results, discussion, limitations and conclusion of this thesis leads to several suggestions 

concerning further work. The model was constructed within a limited timeframe and uses a set 

of basic statistical methods to produce a proof-of-concept model. Developing a quantitative 

statistical model for determining process condition and estimating remaining useful life is a 

very useful alternative to solely focusing on ML methods. The model constructed in this thesis 

needs to be extensively tested for real-world industrial process viability. The methods applied 

in the model construction can be improved upon to make the model more precise in its 

estimation capabilities, specifically critical variable identification, process knowledge, variable 

weighting and scoring. Alternatively, the model constructed here can serve as inspiration for 

constructing similar statistical tools for determining process condition and RUL estimation 

based on different approaches. Much of this work will require industrial partners, academic 

learning factories or both. This can potentially be included in future project work related to I4.0 

and can be both interesting and suitable for master level students, PhD. candidates, postdocs 

and others.   

The C-MAPSS dataset utilized in this thesis is widely used by researchers in subjects 

concerning both ML and RUL estimation. There is a need for real-world industrial run-to-

failure datasets. Creating precise methods for predicting RUL and many other types of statistical 
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analysis is potentially of great value not only for academia, but for industrial companies as well. 

Prioritizing partnerships between academia and industry to allow for producing real-world run-

to-failure datasets would be beneficial for all parties. Academic learning factories can also 

contribute towards constructing these datasets in their laboratories. 

Further research is needed in determining the usefulness and value of monitoring process 

variables. Allowing SPC to analyze the state of processes by utilizing sensored variable data 

can potentially provide a wealth of information that can help improve process knowledge and 

ability to optimize them. Perhaps an increased academic focus on SPC state of the art can help 

motivate industry towards using more of the data that their process sensors provide, to better 

prepare them for I4.0 environments and to aid in continuous improvement work?  
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Appendices 

Appendix I – Complete set of X-Bar and R control charts with test results from example 

variable in simulated engine 1. 
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Appendix II – Complete score chart and condition index score for all engines 

 

 

 

 

 

Engine 1 T at LPC o/l T at HPC o/l T at LPT o/l PSI at HPC o/l Fan RPM Core RPM Rat of FF to Ps 30 Corr fan RPM Corr core RPM HPT coolant LPT coolant CI value

1-90 0 0 4 1 1 0 0 1 1 1 0 95,5

11-100 0 0 10 11 2 0 2 3 0 0 4 84

21-110 0 0 10 9 2 1 11 3 0 0 2 81

31-120 2 0 8 2 10 4 6 8 1 0 3 78

41-130 3 0 5 3 8 2 9 8 0 0 4 79

51-140 5 0 7 13 8 0 13 8 2 2 2 70

61-150 12 1 4 12 16 1 18 18 11 4 7 48

71-160 6 7 14 18 18 1 18 18 14 6 7 36,5

81-170 7 6 18 18 18 3 18 18 18 18 15 21,5

91-180 10 9 18 18 18 3 18 18 18 18 18 17

101-190 16 15 18 18 18 5 18 18 18 18 18 10

111-200 13 14 18 18 18 7 18 18 18 18 18 11

Engine 2 T at LPC o/l T at HPC o/l T at LPT o/l PSI at HPC o/l Fan RPM Core RPM Rat of FF to Ps 30 Corr fan RPM Corr core RPM HPT coolant LPT coolant CI value

1-90 1 0 1 0 1 1 0 0 0 0 0 98

11-100 0 6 2 0 1 0 0 0 0 0 0 95,5

21-110 1 0 1 0 1 1 0 0 0 1 0 97,5

31-120 1 0 1 0 0 0 0 0 4 0 0 97

41-130 0 4 2 0 1 2 3 0 0 1 1 93

51-140 0 0 0 1 0 7 4 0 0 0 1 93,5

61-150 1 0 1 1 0 2 5 0 0 1 0 94,5

71-160 1 2 1 1 0 3 4 1 1 2 1 91,5

81-170 0 1 0 2 0 9 6 3 0 0 0 89,5

91-180 1 1 0 5 1 4 6 2 6 0 0 87

101-190 3 1 2 3 2 9 0 7 1 2 2 84

111-200 4 1 3 0 6 13 5 9 1 1 5 76

121-210 5 2 2 12 5 15 12 8 5 0 6 64

131-220 10 2 8 12 5 18 9 8 10 0 18 50

141-230 18 7 10 9 12 18 18 13 16 0 18 30,5

151-240 18 9 17 15 18 18 16 18 16 7 14 17

161-250 18 18 18 18 18 18 18 17 18 14 12 6,5

171-260 16 18 18 18 18 18 18 18 18 18 18 2

181-270 16 18 18 18 18 18 18 18 18 18 18 2

191-280 18 18 18 18 18 18 18 18 18 18 18 1

200-290 18 18 18 18 18 18 18 18 18 18 18 1

Engine 3 T at LPC o/l T at HPC o/l T at LPT o/l PSI at HPC o/l Fan RPM Core RPM Rat of FF to Ps 30 Corr fan RPM Corr core RPM HPT coolant LPT coolant CI value

1-90 0 0 4 0 0 18 2 0 11 0 0 82,5

11-100 2 2 4 0 2 18 1 0 18 1 0 76

21-110 0 0 3 0 0 18 2 0 18 0 0 79,5

31-120 2 0 0 0 1 18 2 1 18 2 0 78

41-130 0 1 4 2 5 18 1 0 18 7 2 71

51-140 0 0 4 3 4 18 4 0 18 5 10 67

61-150 5 2 9 8 2 18 11 2 18 7 17 50,5

71-160 13 14 18 18 8 18 18 0 18 15 18 21

81-170 18 18 18 18 15 18 18 3 18 18 18 10

91-180 18 18 18 18 18 18 18 18 18 18 18 1

Engine 4 T at LPC o/l T at HPC o/l T at LPT o/l PSI at HPC o/l Fan RPM Core RPM Rat of FF to Ps 30 Corr fan RPM Corr core RPM HPT coolant LPT coolant CI value

1-90 0 1 0 1 1 14 0 0 15 2 3 81,5

11-100 12 1 1 0 0 18 2 0 18 0 0 74

21-110 1 0 1 6 0 18 0 0 18 1 1 77

31-120 0 1 0 2 1 18 0 0 18 0 0 80

41-130 3 1 0 0 0 18 2 0 18 2 0 78

51-140 3 2 2 2 0 18 2 0 18 2 0 75,5

61-150 1 4 0 13 1 18 5 0 18 2 5 66,5

71-160 8 2 12 13 2 18 18 0 18 8 8 46,5

81-170 10 15 18 18 5 18 18 1 18 18 13 24

91-180 18 14 18 18 8 18 18 6 18 18 18 14

101-190 18 18 18 18 18 18 18 16 18 18 18 2
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Engine 5 T at LPC o/l T at HPC o/l T at LPT o/l PSI at HPC o/l Fan RPM Core RPM Rat of FF to Ps 30 Corr fan RPM Corr core RPM HPT coolant LPT coolant CI value

1-90 14 1 1 1 0 0 0 0 4 2 0 88,5

11-100 3 2 1 0 3 0 0 0 0 0 0 95,5

21-110 3 0 0 1 1 2 0 0 0 0 0 96,5

31-120 7 0 1 5 0 2 2 1 1 1 0 90

41-130 2 0 1 3 0 6 3 0 2 0 0 91,5

51-140 0 0 2 0 1 3 1 1 6 0 2 92

61-150 0 1 1 0 0 4 5 2 1 0 0 93

71-160 0 0 1 0 0 4 10 1 5 1 1 88,5

81-170 1 4 1 2 6 10 5 0 9 1 2 79,5

91-180 0 4 0 4 0 12 7 1 16 0 0 78

101-190 1 1 4 4 3 18 6 2 18 4 0 69,5

111-200 4 0 5 18 4 18 7 2 18 4 4 58

121-210 7 9 9 18 6 18 18 6 18 1 2 44

131-220 8 4 14 18 5 18 18 7 18 11 6 36,5

141-230 12 10 18 18 8 18 18 16 18 13 12 19,5

151-240 18 18 18 18 9 18 18 18 18 18 18 5,5

161-250 18 18 18 18 18 18 18 18 18 18 18 1

171-260 18 18 18 18 18 18 18 18 18 18 18 1

181-270 18 18 18 18 18 18 18 18 18 18 18 1

Engine 6 T at LPC o/l T at HPC o/l T at LPT o/l PSI at HPC o/l Fan RPM Core RPM Rat of FF to Ps 30 Corr fan RPM Corr core RPM HPT coolant LPT coolant CI value

1-90 0 1 2 2 2 4 0 0 0 0 1 94

11-100 3 1 4 1 1 1 3 0 1 3 1 90,5

21-110 0 3 0 0 0 2 0 0 0 0 0 97,5

31-120 1 3 2 2 7 3 0 0 0 2 0 90

41-130 2 0 4 2 9 2 4 3 2 1 1 85

51-140 2 0 0 5 12 1 6 8 1 1 3 80,5

61-150 2 1 6 13 12 1 12 6 18 3 2 62

71-160 9 2 14 12 18 2 18 18 14 4 7 41

81-170 9 2 18 18 18 7 18 18 16 7 18 25,5

91-180 18 6 18 18 18 10 18 18 18 14 18 13

101-190 18 18 18 18 18 16 18 18 18 18 18 2

Engine 7 T at LPC o/l T at HPC o/l T at LPT o/l PSI at HPC o/l Fan RPM Core RPM Rat of FF to Ps 30 Corr fan RPM Corr core RPM HPT coolant LPT coolant CI value

1-90 0 0 3 0 2 0 0 1 0 1 0 96,5

11-100 1 0 1 0 0 1 0 2 0 0 0 97,5

21-110 1 0 1 0 0 1 0 0 4 3 5 92,5

31-120 0 0 0 0 3 0 4 5 0 5 0 91,5

41-130 0 0 0 0 0 1 2 2 1 2 0 96

51-140 0 0 2 1 0 1 4 1 5 5 0 90,5

61-150 0 0 0 3 3 4 13 1 3 2 2 84,5

71-160 2 0 2 4 6 2 12 2 2 0 0 84

81-170 0 1 5 2 7 1 8 3 4 1 0 84

91-180 2 1 5 11 13 3 10 4 0 1 1 74,5

101-190 5 1 1 16 17 1 13 3 0 1 3 69,5

111-200 4 7 17 17 18 1 18 7 2 4 11 47

121-210 7 18 11 18 14 0 18 17 0 2 10 42,5

131-220 3 16 18 18 11 0 18 18 1 9 13 37,5

141-230 15 18 18 18 18 1 18 18 1 18 18 19,5

151-240 18 17 18 18 18 0 18 18 0 18 18 19,5

161-250 18 15 18 18 18 0 18 18 1 18 18 20

171-260 18 14 18 18 18 0 18 18 1 18 18 20,5

Engine 8 T at LPC o/l T at HPC o/l T at LPT o/l PSI at HPC o/l Fan RPM Core RPM Rat of FF to Ps 30 Corr fan RPM Corr core RPM HPT coolant LPT coolant CI value

1-90 1 0 2 0 8 1 2 1 0 1 2 91

11-100 1 3 1 0 10 0 3 14 0 4 0 82

21-110 2 0 2 2 18 2 3 8 3 1 0 79,5

31-120 2 0 8 1 18 0 11 3 1 6 3 73,5

41-130 7 4 15 13 18 3 18 17 0 18 8 39,5

51-140 18 4 18 18 18 3 18 18 4 18 18 22,5

61-150 18 9 18 18 18 0 18 18 3 18 18 22
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Engine 9 T at LPC o/l T at HPC o/l T at LPT o/l PSI at HPC o/l Fan RPM Core RPM Rat of FF to Ps 30 Corr fan RPM Corr core RPM HPT coolant LPT coolant CI value

1-90 0 0 4 1 3 5 1 2 10 0 1 86,5

11-100 1 1 3 0 0 13 2 1 18 0 0 80,5

21-110 0 1 1 0 1 18 4 0 18 0 0 78,5

31-120 1 0 2 1 1 18 3 2 18 0 0 77

41-130 6 2 2 1 0 18 6 2 18 1 0 72

51-140 7 8 0 0 0 18 7 1 18 0 1 70

61-150 10 6 2 0 0 18 3 7 18 1 2 66,5

71-160 8 3 3 1 1 18 4 1 18 5 6 66

81-170 9 1 11 1 0 18 9 3 18 10 17 51,5

91-180 10 5 18 6 1 18 18 8 18 14 18 33

101-190 18 18 18 18 10 18 18 18 18 15 18 6,5

111-200 18 18 18 18 18 18 18 18 18 18 18 1

121-210 18 18 18 18 18 18 18 18 18 18 18 1

Engine 10 T at LPC o/l T at HPC o/l T at LPT o/l PSI at HPC o/l Fan RPM Core RPM Rat of FF to Ps 30 Corr fan RPM Corr core RPM HPT coolant LPT coolant CI value

1-90 1 1 1 1 0 2 1 4 0 3 0 93

11-100 0 1 1 0 0 5 0 5 2 2 1 91,5

21-110 2 1 1 4 0 2 1 2 0 1 2 92

31-120 1 1 0 2 2 3 6 3 4 0 2 88

41-130 2 1 2 2 1 11 2 4 5 1 0 84,5

51-140 9 0 1 5 3 11 1 1 3 2 5 79,5

61-150 10 1 1 10 3 18 6 1 9 2 7 66

71-160 9 0 10 11 3 18 12 2 17 6 14 49

81-170 14 1 9 15 10 18 18 5 18 8 3 40,5

91-180 18 3 18 14 16 18 18 6 18 17 10 22

101-190 18 4 18 18 13 18 18 14 18 18 17 13

111-200 17 6 18 18 12 18 18 18 18 18 18 10,5

121-210 18 15 18 18 18 18 18 18 18 18 18 2,5

131-220 18 18 18 18 18 18 18 18 18 18 18 1

141-230 18 18 18 18 18 18 18 18 18 18 18 1

Engine 11 T at LPC o/l T at HPC o/l T at LPT o/l PSI at HPC o/l Fan RPM Core RPM Rat of FF to Ps 30 Corr fan RPM Corr core RPM HPT coolant LPT coolant CI value

1-90 0 2 0 0 0 1 0 1 3 1 0 96

11-100 0 6 0 0 0 2 0 0 0 1 1 95

21-110 0 1 0 1 1 1 0 1 7 2 0 93

31-120 1 2 0 0 1 4 0 0 3 0 0 94,5

41-130 4 1 1 1 0 8 0 0 2 0 7 88

51-140 1 0 4 2 2 10 1 0 3 0 13 82

61-150 0 0 3 0 2 13 4 1 8 0 2 83,5

71-160 1 0 4 8 3 18 1 0 18 0 5 71

81-170 3 0 6 9 5 18 4 0 18 1 8 64

91-180 0 0 7 14 8 18 12 1 18 2 6 57

101-190 2 2 11 18 7 18 13 3 18 8 8 46

111-200 12 8 12 18 2 18 15 4 18 6 6 40,5

121-210 12 18 18 18 2 18 18 3 18 4 11 30

131-220 18 18 18 18 12 18 18 9 18 13 18 11

141-230 18 18 18 18 12 18 18 15 18 18 18 5,5

151-240 18 18 18 18 11 18 18 18 18 18 18 4,5

Engine 12 T at LPC o/l T at HPC o/l T at LPT o/l PSI at HPC o/l Fan RPM Core RPM Rat of FF to Ps 30 Corr fan RPM Corr core RPM HPT coolant LPT coolant CI value

1-90 0 0 0 3 1 0 2 0 0 0 1 96,5

11-100 1 0 0 7 1 0 5 2 0 1 2 90,5

21-110 0 1 0 1 4 0 10 1 0 0 3 90

31-120 3 2 6 1 9 1 4 2 0 2 4 83

41-130 2 4 5 4 13 0 12 6 0 3 6 72,5

51-140 5 4 18 5 10 0 18 18 0 5 11 53

61-150 7 6 18 14 18 2 17 18 0 7 3 45

71-160 13 8 18 16 18 0 18 18 4 18 11 29

81-170 18 7 18 18 18 4 18 18 0 18 18 22,5

Engine 13 T at LPC o/l T at HPC o/l T at LPT o/l PSI at HPC o/l Fan RPM Core RPM Rat of FF to Ps 30 Corr fan RPM Corr core RPM HPT coolant LPT coolant CI value

1-90 0 0 2 0 0 2 1 0 4 0 0 95,5

11-100 0 2 7 1 0 16 4 1 17 1 5 73

21-110 1 0 4 4 1 18 2 0 18 0 1 75,5

31-120 5 0 7 4 1 18 5 0 18 3 1 69

41-130 5 0 7 18 0 18 18 3 18 7 4 51

51-140 3 7 17 18 0 18 16 5 18 3 4 45,5

61-150 3 8 18 18 4 18 16 2 18 11 11 36,5

71-160 9 18 18 18 9 18 18 6 18 18 18 16

81-170 17 18 18 18 9 18 18 12 18 17 18 9,5
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Engine 14 T at LPC o/l T at HPC o/l T at LPT o/l PSI at HPC o/l Fan RPM Core RPM Rat of FF to Ps 30 Corr fan RPM Corr core RPM HPT coolant LPT coolant CI value

1-90 5 1 2 3 0 3 7 0 4 0 0 87,5

11-100 0 0 7 0 0 7 1 0 10 1 5 84,5

21-110 0 0 2 3 0 18 2 0 11 0 1 81,5

31-120 1 0 18 7 5 18 2 1 17 0 3 64

41-130 0 1 18 13 4 18 1 0 18 1 8 59

51-140 1 2 18 10 7 18 6 0 18 7 9 52

61-150 0 10 18 12 11 18 9 2 18 5 6 45,5

71-160 0 5 14 17 11 18 15 4 18 8 10 40

81-170 3 14 18 18 3 18 18 18 18 16 13 21,5

91-180 9 18 18 18 15 18 18 18 18 18 18 7

Engine 15 T at LPC o/l T at HPC o/l T at LPT o/l PSI at HPC o/l Fan RPM Core RPM Rat of FF to Ps 30 Corr fan RPM Corr core RPM HPT coolant LPT coolant CI value

1-90 6 0 0 0 2 2 3 0 0 2 0 92,5

11-100 1 0 1 7 5 1 1 2 1 8 2 85,5

21-110 0 1 3 11 1 0 3 1 0 0 0 90

31-120 2 0 0 18 1 1 4 4 0 2 0 84

41-130 0 0 2 13 11 2 4 8 3 6 5 73

51-140 0 0 9 18 18 0 5 10 2 3 2 66,5

61-150 1 0 8 15 18 2 18 18 3 12 3 51

71-160 9 0 10 11 18 3 18 18 9 11 10 41,5

81-170 9 2 18 11 18 0 18 18 16 18 16 28

91-180 18 4 18 18 18 0 18 18 18 18 18 17

101-190 18 11 18 18 18 3 18 18 18 18 18 12

111-200 18 18 18 18 18 12 18 18 18 18 18 4

121-210 18 18 18 18 18 16 18 18 18 18 18 2

Engine 16 T at LPC o/l T at HPC o/l T at LPT o/l PSI at HPC o/l Fan RPM Core RPM Rat of FF to Ps 30 Corr fan RPM Corr core RPM HPT coolant LPT coolant CI value

1-90 3 1 0 0 0 1 0 1 1 4 0 94,5

11-100 0 0 0 0 0 0 0 1 1 1 0 98,5

21-110 0 1 3 0 0 0 0 3 1 1 2 94,5

31-120 3 0 0 0 0 0 0 4 0 0 0 96,5

41-130 0 0 0 6 1 0 5 9 0 0 0 89,5

51-140 0 0 1 6 1 0 8 3 3 2 0 88

61-150 2 2 3 3 5 1 6 14 0 2 0 81

71-160 1 2 0 6 9 1 5 12 0 1 0 81,5

81-170 0 4 0 11 8 1 11 11 1 2 5 73

91-180 1 5 4 9 9 1 11 14 0 3 6 68,5

101-190 2 8 9 13 7 1 15 18 0 9 4 57

111-200 6 4 18 18 18 1 18 18 1 16 16 33

121-210 11 2 18 18 18 1 18 18 0 13 17 33

Engine 17 T at LPC o/l T at HPC o/l T at LPT o/l PSI at HPC o/l Fan RPM Core RPM Rat of FF to Ps 30 Corr fan RPM Corr core RPM HPT coolant LPT coolant CI value

1-90 0 0 3 0 0 4 0 1 2 2 1 93,5

11-100 0 0 0 1 0 1 2 1 2 0 0 96,5

21-110 0 0 5 0 0 1 6 0 3 1 0 92

31-120 0 0 8 1 3 3 0 1 4 1 0 89,5

41-130 0 0 0 0 0 8 1 0 1 0 3 93,5

51-140 0 0 6 0 0 8 7 0 5 1 2 85,5

61-150 0 0 2 3 6 17 1 0 10 0 0 80,5

71-160 0 0 0 0 1 18 3 0 18 0 0 80

81-170 0 0 1 3 2 18 10 0 18 0 4 72

91-180 0 0 0 3 0 18 6 0 18 1 0 77

101-190 0 0 0 0 0 18 3 1 18 0 1 79,5

111-200 2 1 0 2 0 18 4 2 18 0 0 76,5

121-210 0 0 4 2 0 18 7 1 18 4 5 70,5

131-220 0 0 9 2 1 18 9 0 18 6 6 65,5

141-230 5 0 15 8 3 18 18 2 18 5 9 49,5

151-240 6 2 18 18 3 18 18 2 18 8 18 35,5

161-250 16 5 18 17 18 18 18 5 18 14 18 17,5

171-260 18 10 18 18 18 18 18 13 18 18 18 7,5

181-270 18 18 18 18 18 18 18 18 18 18 18 1

191-280 18 18 18 18 18 18 18 18 18 18 18 1
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Engine 18 T at LPC o/l T at HPC o/l T at LPT o/l PSI at HPC o/l Fan RPM Core RPM Rat of FF to Ps 30 Corr fan RPM Corr core RPM HPT coolant LPT coolant CI value

1-90 0 3 0 4 1 8 1 1 3 3 2 87

11-100 1 1 0 2 0 18 2 2 12 0 0 81

21-110 1 0 0 4 0 18 0 3 18 0 0 78

31-120 1 11 0 2 0 18 1 2 18 1 3 71,5

41-130 0 1 2 2 0 18 1 3 18 0 0 77,5

51-140 3 2 1 3 0 18 0 0 18 1 1 76,5

61-150 12 7 3 1 0 18 4 2 18 1 0 67

71-160 2 2 7 2 0 18 8 1 18 6 0 68

81-170 2 5 11 6 0 18 7 0 18 8 8 58,5

91-180 12 16 18 6 6 18 18 5 18 15 18 25

101-190 16 18 18 18 15 18 18 18 18 18 18 3,5

111-200 18 18 18 18 18 18 18 18 18 18 18 1

Engine 19 T at LPC o/l T at HPC o/l T at LPT o/l PSI at HPC o/l Fan RPM Core RPM Rat of FF to Ps 30 Corr fan RPM Corr core RPM HPT coolant LPT coolant CI value

1-90 6 1 4 2 0 0 0 2 0 1 4 90

11-100 4 3 2 4 3 0 1 4 0 6 3 85

21-110 12 2 2 1 8 0 8 3 1 4 6 76,5

31-120 10 3 6 3 10 0 4 8 0 7 7 71

41-130 8 5 18 14 18 0 11 12 1 16 10 43,5

51-140 5 2 18 18 18 0 18 18 17 16 16 27

61-150 8 5 18 18 18 0 18 18 18 18 16 22,5

71-160 8 10 18 18 18 3 18 18 18 18 18 17,5

Engine 20 T at LPC o/l T at HPC o/l T at LPT o/l PSI at HPC o/l Fan RPM Core RPM Rat of FF to Ps 30 Corr fan RPM Corr core RPM HPT coolant LPT coolant CI value

1-90 0 2 0 0 0 4 1 0 0 1 0 96

11-100 0 7 0 3 0 2 0 0 1 2 0 92,5

21-110 2 0 0 5 0 1 0 0 0 2 0 95

31-120 0 3 0 2 0 3 1 0 0 1 0 95

41-130 0 3 7 2 0 4 0 0 0 3 0 90,5

51-140 3 3 5 0 0 8 0 0 0 5 0 88

61-150 0 3 0 1 1 7 0 1 0 0 1 93

71-160 0 0 9 4 2 1 0 2 0 6 0 88

81-170 1 1 5 1 3 1 5 1 0 1 3 89

91-180 0 4 3 4 10 0 7 11 0 2 0 79,5

101-190 3 12 5 5 8 3 7 12 4 5 0 68

111-200 9 5 8 18 10 1 16 9 10 4 11 49,5

121-210 4 2 12 18 18 4 18 14 3 4 9 47

131-220 10 6 18 18 18 4 18 18 3 8 11 34

141-230 18 6 18 18 18 8 18 18 7 11 16 22

151-240 18 6 18 18 18 10 18 18 3 9 12 26
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