
June 2008
Peter Herrmann, ITEM
Frank Alexander Kraemer, ITEM

Master of Science in Communication Technology
Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Telematics

Automatic Detection and Correction of
Flaws in Service Specifications

Vidar Slåtten





Problem Description
The SPACE approach uses UML collaborations and activities to express service specifications as
compositions from reusable building blocks. In previous work, a transformation from these
specifications to TLA was implemented, so that the specifications may be analyzed using the
model checker TLC.

While this transformation made it easier for developers to use formal techniques, knowledge from
this domain was still necessary when interpreting the feedback from TLC in the form of error
traces. In this work, the present approach should be taken one step further towards a fully
automated approach, in which the system not only derives the theorems automatically from the
UML models, but also interprets any error traces to find design flaws and in some cases even
suggests improvements of the design.

Assignment given: 29. October 2007
Supervisor: Peter Herrmann, ITEM





Automatic Detection and Correction of Flaws in
Service Specifications

Vidar Sl̊atten

June 2008





Abstract

While rigorous, mathematical techniques are helpful for improving the quality of
software engineering, the threshold of learning and adapting formal methods keep
many practitioners from embracing these kinds of approaches. We present the
Arctis Analyzer, a tool for supporting a developer by formal methods, without
the developer having to understand any formal language. To realize this tool,
we developed an extensible analysis framework that is used by the analyzer to
assist the user when problems are encountered. We combine model checking with
syntactic analysis so as to provide a developer with not only symptoms, but also
diagnoses and fixes for the underlying flaws in the specifications.

Our work is based in SPACE, an approach for specifying reactive and distributed
systems. In this approach, systems are composed of service specifications as op-
posed to traditional component specifications. Services are expressed by UML
collaborations and activities representing their structure and behavior, respec-
tively. This work focuses on analyzing the behavior of the services, hence on the
UML activities.

The analyzer transforms the UML models into TLA+, the language of the Tem-
poral Logic of Actions, TLA. It also generates TLA theorems for a number of
properties that should hold. In order to detect property violations, the tool uses
the model checker TLC to check the entire state space of the formal specifications.
The analyzer can visualize any error traces from TLC in terms of the graphical
model that the user is working on.

This thesis presents the analyzer and how it is implemented. It also presents the
analysis framework detailing twelve theorems, eleven symptoms, seven diagnoses
and nine fixes. Out of these, ten theorems, six symptoms, three diagnoses and
two fixes, have been implemented in the analyzer as proof of concept. The thesis
also contains a number of examples showing the use of the analyzer within Arctis.

i





Preface

This master’s thesis is submitted for my Master of Science degree in Communica-
tion Technology at the Norwegian University of Science and Technology (NTNU).
The work has been carried out at the Department of Telematics during winter of
2007 and spring of 2008. My subject teacher has been Professor Peter Herrmann
and my supervisor has been Ph.D. candidate Frank Alexander Kraemer.

I would like to thank Peter Herrmann and Frank Alexander Kraemer for all the
guidance and feedback I have been given while working on the thesis.

München, June 17th 2008

Vidar Sl̊atten

iii





Contents

1 Introduction 1

2 Background 13

2.1 The SPACE Approach . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.1 Properties of Building Blocks . . . . . . . . . . . . . . . . 18

2.1.2 Tool Support . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Temporal Logic (of Actions) . . . . . . . . . . . . . . . . . . . . . 19

2.2.1 Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.2 TLC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 The Formulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Identifying Specification Flaws 35

3.1 What is a Flaw? . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Towards an Analysis Framework . . . . . . . . . . . . . . . . . . . 36

3.2.1 Phase 1: Transformation and Detection . . . . . . . . . . . 37

3.2.2 Phase 2: Determining the Problem . . . . . . . . . . . . . 41

3.3 Preview: Analysis of SPACE Specifications . . . . . . . . . . . . . 43

3.3.1 What is Currently Implemented? . . . . . . . . . . . . . . 46

3.4 Completeness of Analysis Framework . . . . . . . . . . . . . . . . 46

3.5 Alternative Approach: Graph Analysis . . . . . . . . . . . . . . . 48

v



vi CONTENTS

4 Implementation 51

4.1 Architecture of the Analyzer . . . . . . . . . . . . . . . . . . . . . 51

4.2 Changes from the Original Formulator . . . . . . . . . . . . . . . 54

4.2.1 Improved Mapping Between TLA+ and UML . . . . . . . 54

4.2.2 Transforming Sub-Activities to TLA+ . . . . . . . . . . . . 55

5 ESM Consistency 59

5.1 Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.1.1 Enabled Action . . . . . . . . . . . . . . . . . . . . . . . . 63

5.1.2 Sometimes Enabled Action . . . . . . . . . . . . . . . . . . 64

5.1.3 Not Enabled Action . . . . . . . . . . . . . . . . . . . . . 65

5.1.4 ESM Ready . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.1.5 Never Enabled Action . . . . . . . . . . . . . . . . . . . . 67

5.1.6 ESM Transitions Without Any Implementing Steps . . . . 67

5.2 Symptoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.3 Diagnoses and Fixes . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.3.1 Extra ESM Transition . . . . . . . . . . . . . . . . . . . . 69

5.3.2 Missing ESM Transition . . . . . . . . . . . . . . . . . . . 69

5.4 An Example, the Timeliness Observer . . . . . . . . . . . . . . . . 70

5.4.1 Example with a Flaw . . . . . . . . . . . . . . . . . . . . . 77

6 Mutual Exclusion and Distributed Behavior 79

6.1 Mutual Exclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.1.1 Theorem and Symptom . . . . . . . . . . . . . . . . . . . 80

6.1.2 Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.1.3 Fixes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.2 General Diagnoses . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.2.1 Diagnosis: Out-of-Order Delivery . . . . . . . . . . . . . . 84

6.2.2 Diagnosis: Delayed Delivery . . . . . . . . . . . . . . . . . 87



CONTENTS vii

7 Bounded Queues 91

7.1 Theorem and Symptom: (Un)bounded Queue . . . . . . . . . . . 92

7.2 Diagnosis: Unrestrained Producer . . . . . . . . . . . . . . . . . . 93

7.2.1 Alternative 1: Syntactic Cycle Detection . . . . . . . . . . 93

7.2.2 Alternative 2: TLA Refinement . . . . . . . . . . . . . . . 95

7.2.3 Alternative 3: Analyzing the Trace . . . . . . . . . . . . . 96

7.2.4 A Pragmatic Compromise . . . . . . . . . . . . . . . . . . 97

7.3 Fix: Insert Fork / Join Combo . . . . . . . . . . . . . . . . . . . . 97

7.4 Alternative Fix: Give Grant . . . . . . . . . . . . . . . . . . . . . 100

8 One-Boundedness 101

8.1 Theorem and Symptom . . . . . . . . . . . . . . . . . . . . . . . . 102

8.2 Diagnoses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

8.3 Fixes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

9 Other Theorems and Symptoms 107

9.1 Respect ESM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

9.1.1 ESM Violation . . . . . . . . . . . . . . . . . . . . . . . . 108

9.1.2 Multiplicity ESM Violation . . . . . . . . . . . . . . . . . 108

9.2 Number of Executions . . . . . . . . . . . . . . . . . . . . . . . . 109

9.3 Deadlock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

9.4 Sub-Activity Terminates . . . . . . . . . . . . . . . . . . . . . . . 111

10 Future Work 113

10.1 Further Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

10.1.1 Partition Termination . . . . . . . . . . . . . . . . . . . . 113

10.1.2 Automatic Refinement Proof . . . . . . . . . . . . . . . . . 114

10.2 Holistic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

10.2.1 Check for All Errors at Once . . . . . . . . . . . . . . . . . 115



viii CONTENTS

10.2.2 Rank Fixes According to Effect . . . . . . . . . . . . . . . 117

10.2.3 Find Most Relevant Parts of a Trace . . . . . . . . . . . . 117

10.3 Modularized Architecture . . . . . . . . . . . . . . . . . . . . . . 119

11 Conclusion 121

List of Figures 126

Bibliography 132



Chapter 1

Introduction

In the SPACE approach [KH06, KBH07, KSH07], reactive systems are specified
by UML collaborations and activities.1 Systems are hereby decomposed along-
side a horizontal axis [Mik99], so that services crossing the boundaries of their
participating components can be represented explicitly. A (sub-)service is encap-
sulated in a building block that has a behavioral interface description to allow
for easy reuse inside other specifications.

Figure 1.1 shows a graphic representation of the approach. Services are composed
of building blocks to form the system. This is transformed to a component-
oriented specification so as to be able to generate the executable code for each
deployable component.

The Arctis tool suite, shown in Fig. 1.2, gives support for creating and storing
the service specifications. It also gives access to existing building blocks through
a library and provides automated checks (so-called inspectors) that make sure
the specifications are syntactically correct.

While syntactic inspection can detect and supply fixes for many types of errors,
there are other properties that can only be verified by exploring the behavior of
the specifications. For example, we cannot check that transmission queues will
be bounded just by looking at the syntax of the activities.

We want to use formal methods to verify behavioral properties of our specifi-
cations. Unfortunately, all such methods require the user to be experienced in
their use for them to give a valuable contribution to the development process.
This threshold is seen as too big by many, and they avoid formal methods all
together. Rushby argues in [Rus00] that the best way to increase their use in

1All UML elements in this work are from the UML 2 specification.

1



2 CHAPTER 1. INTRODUCTION

2

r4r3

r2r1

c3

c2
c1

x1 x2 x3
componentcollaboration

composite
collaboration

collaboration
role

intra-component

inter-component

Composition:

Fig. 1. Components and collaborations

Library

Executable System
Service Application Code
Execution Framework

Service Components
UML State Machines,
Composite Structures

Service Specifications
UML Collaborations,
Activities

Code GenerationModel Transformation

Fig. 2. Approach

A promising next step forward is to adopt a collaboration-oriented approach,
where the main structuring units are collaborations and their partial object
behaviors, called roles. This is made practically possible by the new UML2 col-
laboration concept, albeit many of the underlying ideas have been around for
a long time [OORAM and others]. As we shall, see in the following this opens
many interesting opportunities.

Figure 1 illustrates with a coarse system architecture the relations between
a service, collaborations and components. A service is delivered by the system
through the components x1 to x3, which may be physically distributed. The
collaboration role behavior necessary is expressed by the logic denoted by the
circles r1 to r4.

However, instead of expressing the behavior of the system in terms of its com-
ponents, we decompose the service into sub-services described by sub-collaborations
c2 and c3.

Communication between components (“inter-component”) is asynchronous
by means of buffered signals (cf. [1]), while the communication within one compo-
nent may in addition include shared variables as well as synchronously executed
actions, where statements belonging to one collaboration are executed within the
same state machine transition as statements belonging to another collaboration.
(The event in one collaboration can cause actions in another collaboration.)

Explain that we transform to get code, and show the approach. implemented
java platforms, explain for this, but very general

Service Specifications
UML Collaborations,
Activities

Executable System
Service Application Code
Execution Framework

Service Components
UML State Machines,
Composite Structures

Library

Service Engineering 
Composition of Services 
from Building Blocks 

x1 x2 x3

Code Generation

Model Transformation

Figure 1.1: The SPACE approach. Figure from [KBH07]

software engineering, is to hide them inside development tools that automatically
apply them and use them to support the user in the development process.

To accomplish what Rushby suggests, we must overcome several obstacles. We
have to automatically generate a formal specification from the specification that
the user is developing, the UML collaborations and activities. In addition we
need to automatically generate a formal expression for the properties that should
hold for the specification. Then we have to formally analyze the specification
without requiring any manual intervention. Finally, the results of the analysis
must be automatically interpreted so that meaningful feedback can be given to
the user.

To summarize the task at hand: We aim to create a tool that brings users the
benefits of formal methods, when developing reactive systems using the Arctis
tool, without requiring any knowledge in the field of formal methods from them.
In addition to the benefit of automatic detection of problems, we also aim to
demonstrate that automatic correction is possible.

For this task, we first need a suitable formalism and to transform the model,
that the user is working on, into a corresponding language. The semantics of our
service-oriented models is already expressed in the form of cTLA [HK00, KH07a],
which is based on the linear-time temporal logic TLA [Lam94]. TLA+ is the
language of TLA and also the input language for the model checker TLC [YML99].
Moreover, a tool for transforming our UML models to TLA+, the formulator, was



3

Arctis Editor

UML 
Activity

Modifies

Projected in

Syntactic 
Inspectors

Registers problems

Input to

Manipulates

Analyzer

Registers problemsInput to

TLA+ 
Module

Creates

TLC

Library

TLC 
Trace

Input to

Creates

Input to

Input to

Informs

Figure 1.2: The Analyzer in the context of the Arctis tool suite

created in [Sl̊a07]. While we make some alterations in this work, the main features
can be reused.

Once we have transformed our models into a formal language, the next obstacle
is to express the properties that we want to verify. These are either default
properties that should hold for all specifications, or they are given as assertions
on the UML models, by the user.

Once the formal specification and the properties are written, the newly developed
tool runs TLC and parses the returned output. If a property is violated, TLC
returns an error trace of states and transitions that lead to the violating state.
Such a trace can be very helpful in debugging a specification and is a major
benefit from using a model checker. Unfortunately, the trace from TLC is in
a textual format that is hard to read and impossible to interpret without also
looking at the formal specification. Hence the trace in its original form is useless
to our intended users. We therefore parse the trace and transform it back into
states and steps of the UML activity, so that we can visualize the trace in the
activity editor (see Fig. 1.3 for a screenshot of the editor).

In addition to the states and transitions leading up to the violating state, the



4 CHAPTER 1. INTRODUCTION

trace also gives information about what specific property is violated. We take
advantage of this to do specialized analysis on the activity and the trace to look
for clues as to what caused a specific violation.

Both the expression of properties and the analysis of a violation is handled by an
analysis framework that has been developed in this work. It contains elements
of four types: theorems, symptoms, diagnoses and fixes. It is easy to expand the
framework by adding more elements.

We are able to automate the analysis because we claim that the majority of
mistakes made in specifying reactive systems can be put in a limited number of
categories. Hence we focus on providing automated support for the most com-
mon problems, leaving the user more time to deal with the more specific ones.
For example, many problems stem from the fact that the user is developing a
distributed system. The user can easily forget to take into account the commu-
nication delays of the asynchronous channels as well as the fact that in-order
delivery of messages is not guaranteed.

We refer to the tool that carries out the transformation, model checking and
analysis as the Arctis Analyzer, or the analyzer for short. It is implemented as a
plug-in to the Arctis tool suite. Figure 1.2 shows the analyzer in the context of
the Arctis tool suite.

We have chosen to limit our scope by not focusing on the performance of the
analysis; Every example that is presented in this thesis, is analyzed within one
or two seconds2. In other words, performance is not yet a practical problem.

Introductory Example

We will briefly demonstrate the use of the analyzer through an example that
we will revisit later (in Chapter 7), the Location Tracker. Figure 1.3 shows the
Location Tracker as it appears in the Arctis activity editor. It is a building block
that serves to track the location of a mobile client of some sorts. It is instantiated
with a target location which is sent to the location server. The client then sends
its position to the location server at certain intervals. If the client is within some
given distance of the target, the building block will first send a notification on
the server side and then to the client, terminating itself.

The building block has an External State Machine, ESM, that acts as a behavioral
interface. The ESM of the Location Tracker is shown in Fig. 1.4. The syntax
will be explained in more detail later, see Sect. 2.1. For now, we will just state

2Running Eclipse 3.3 with JVM 1.5.0 on a MacBook Pro with 2 GB memory and an Intel
Core 2 Duo processor at 2.2 GHz.



5

Figure 1.3: The Location Tracker in the Arctis editor

Figure 1.4: The ESM of the Location Tracker

that the labels on the arrows correspond to parameter nodes (the boxes on the
outside of the activity). A token arriving or leaving through one of these causes
a transition of the ESM.

We will explain the semantics of activities properly in Chapter 2. For now, we
say that their semantics is based on tokens flows, like in Petri nets.



6 CHAPTER 1. INTRODUCTION

The behavior of the Location Tracker can be understood by imagining a token
entering the activity through the activity parameter node target, and following the
directed edges. It first encounters a fork node where it is split into two tokens.
One will stop as the edge crosses from the mobileClient to the locationServer,
and the other token will pass through a merge node and a call operation action,
detectPosition, before reaching a new fork node. At this point, one duplicate will
stop at the timer, while the other one will stop at the partition boundary. This
is because timers and queues between partitions are stateful, whereas merge and
fork nodes are not.

After this first step, there are three tokens in the activity. One in the timer, and
one in each of the queues that the edges crossing from mobileClient to location-
Server represent. There are now three more steps that are enabled:

• If the token in the top queue arrives at the locationServer, it will pass
through the call operation action storePosition and then be removed by
the flow final node.

• If the token in the bottom queue arrives at the locationServer, it will pass
through the call operation action comparePositions and then a decision
node. Depending on the result of comparePositions, the decision node will
either send the token to the flow final node to be removed, or it will let it
continue to the fork node. In the latter case, one token will exit through
the clientclose parameter node, while the other duplicate ends up in the
queue from locationServer to mobileClient.

– When the token in the queue from locationServer to mobileClient ar-
rives, it will exit through the close parameter node and terminate the
activity.

• If the timer expires, the token that was waiting inside will pass through the
merge node and behave just like the token that passed through it in the
first step.

Arctis provides inspectors that make sure that the specification is syntactically
consistent. Once any syntactic problems have been resolved, we run the analyzer
to see if there are any problems with the behavior of the specification.

The analyzer creates a TLA+ specification, containing both the behavior as well
as the properties that should hold, from the UML activity (and its ESM) rep-
resenting the Location Tracker. The analyzer then runs TLC with the TLA+

specification as input to see if any of the properties are violated. It parses the
output from TLC and notifies the user of any problems. All of this is done
automatically.



7

For every property violated, a symptom will be reported. In some cases, the
analyzer will also be able to set or at least suggest a more detailed diagnosis
explaining not only what is wrong, but what the underlying cause is. Here we
use a combination of model checking and syntactic analysis. Since the model
checker gives us a violated theorem as well as a trace, we can syntactically analyze
the activity starting with the relevant elements and/or we can analyze the trace.
Hence the syntactic analysis does not have to be completely general, but can
utilize the information about what kind of symptom is found and what elements
are affected, increasing both performance and accuracy.

Figure 1.5: The Location Tracker in state 1

The resulting view in the activity editor, once this analysis has been run on the
example, is shown in Fig. 1.5. Specifically, it shows the first state of the error
trace. There are two problems reported, as seen in Fig. 1.6:

• An error saying the queue between mobileClient and locationServer, e7, is
not bounded

• and a warning saying an unrestrained producer might be the problem.



8 CHAPTER 1. INTRODUCTION

The unbounded queue is a symptom. There is only general advice on what to
do or look for. The unrestrained producer is a more detailed diagnosis and even
supplies an automated fix as shown in Fig. 1.7.

Figure 1.6: Semantic errors of the Location Tracker

Selecting an error or warning, we can open a diagnosis view, Fig. 1.7. In this
view, an explanation of what has happened is given as well as instructions for
what to do.3 It may also provide automated fixes that modify the activity to
resolve the problem.

Figure 1.7: Diagnosis view showing the fix of a possible unrestrained producer

3In Fig. 1.7, only the “So what should I do?” part is expanded, so as to keep the screenshot
somewhat small.



9

(a) Transition 1 (b) State 2

(c) Transition 2 (d) State 6

(e) Transition 6 (f) State 7

Figure 1.8: Trace for the Location Tracker

We decide to have a look at the trace to see what happened for ourselves. Fig-
ure 1.8 shows an excerpt of the visualized trace.4 A state is visualized as tokens
filling various token places in the activity and labels showing the name of the

4The visualization is at an early stage of development. The queue tokens are therefore
not placed on the partition border. Also, when showing transitions, the border crossing edges
should only be highlighted up to the border, whereas now the entire edge is highlighted.



10 CHAPTER 1. INTRODUCTION

current state of the involves ESMs. The steps are visualized by highlighting the
edges that the tokens will travel to reach the next state.

The trace shows how tokens can build up in one of the queues. In state 7, this
queue contains six tokens. This violates the property of maximum five tokens in a
queue, which is the default threshold set by the analyzer to check for unbounded
queues. We can also spot the unrestrained producer that was diagnosed; In the
same step as the timer expires, a token is duplicated in a fork node and one of
the resulting tokens flows back into the timer, effectively activating it again in
the same step. Hence there is nothing to stop this process from repeating itself
over and over.

Having reviewed the trace in the activity editor and even spotted the unrestrained
producer manually, we decide to apply the fix suggested by the analyzer. The fix
creates a feedback loop forcing the producer to wait for the queue to be emptied
before inserting another token, as shown in Fig. 1.9.

Figure 1.9: The Location Tracker after the fix has been applied

This fixes the current symptom, but will reveal others. More on this in Sect. 7.3.



11

Overview

There are several advantages to having the analyzer as part of the Arctis tool.
The user neither has to learn a new language (TLA+) nor learn to use a model
checker (TLC). Hence knowledge of the formal methods domain is removed from
the list of prerequisites. Intuitive graphical feedback directly in the model editor
shortens the time to find and correct design mistakes. The analysis framework
has potential for aiding the user beyond a visualized trace by diagnosing the
underlying flaws and even giving automated fixes.

According to the “rush to code” syndrome [SGW94], developers often hurry
through the early stages of development, like modeling, so that they can start
creating something “tangible”, as well as have good tool support. We believe
that having tool support for not only syntactic, but also behavioral analysis of
our service specifications, will give developers more confidence in their work and
motivate to do the early stages of the development properly.

In the next chapter, we will give an overview of the background material that
is relevant for the work presented in this thesis. Based on this, Chapter 3 will
introduce some new concepts and develop an analysis framework for finding flaws
in the specifications. Chapter 4 examines the architecture of the implemented
tool, the analyzer, and also points out the changes done to the existing part, the
formulator. Chapters 5 to 9 detail the various elements of the analysis framework
and provide examples of their use. Chapters 5 to 8 each present a specific category
of framework elements, while Chapter 9 presents the remaining ones. Chapter 10
discusses several ideas for future work, and finally, Chapter 11 presents the con-
clusion.





Chapter 2

Background

Before we go into the details of what has been done in this master’s thesis, we will
present some background information. To aid us in this, we will use an example,
the Hotel Wakeup System, taken from [KSH07]1. The outermost UML activity
of the system is shown in Fig. 2.1.

a: Alarm

stop
start

h: Hotel Wakeup

display "Ready"

aborted confirmed

start

display "Aborted"

display "Confirmed"

reception
Hotel Wakeup System

guest room

stop alarm
start alarm

Figure 2.1: The Hotel Wakeup system. Figure from [KSH07].

The system models a hotel that has a semi-automatic wakeup system installed.
When the system is started, the message “Ready” will be displayed at the recep-
tion. The receptionist manually triggers the alarm in the guest room by pressing
a button at the reception. The guest can confirm the alarm by pressing a button
in the room. If the receptionist receives no confirmation within reasonable time,
he or she can abort the alarm and proceed to manually check whether the room

1An earlier version of this example is presented in [Sl̊a07]

13



14 CHAPTER 2. BACKGROUND

is already empty or the guest is simply a heavy sleeper. Whether the alarm was
confirmed or aborted will be shown on a display a the reception for a short while,
and then the system will be reset to allow for another wakeup.

2.1 The SPACE Approach

The work done within this thesis is based on the approach for modeling reac-
tive software systems, SPACE [KH06, KBH07, KSH07], depicted in Fig. 1.1. In
this approach, services are used as reusable building blocks to compose reac-
tive systems. Service specifications are expressed by UML collaborations, fo-
cusing on their structure, and UML activities describing their detailed behavior.
This service-oriented model can be transformed into a component-oriented model
which is again used to generate the code of the executable system.

The structural view of services consists of the participating components and the
various collaborations they take part in. A collaboration is denoted by a dot-
ted oval and a title. Collaborations may be composed of other collaborations.
This composition is achieved by collaboration uses that reference other collabo-
rations. A collaboration which is not composed of others, is called an elementary
collaboration.

The structure of the Hotel Wakeup System is shown in Fig. 2.2. The reception
role of the Hotel Wakeup collaboration, represented by the collaboration use h,
is assigned to the component by the same name. The guest room is assigned the
role of the room. In addition, the guest room has an alarm device, represented
by a one-part collaboration Alarm.

reception guest room

h:
Hotel Wakeup a: Alarm

Hotel Wakeup System

reception room site

Figure 2.2: Structure of the Hotel Wakeup system.

The UML activities describing the service behavior show the components as ac-
tivity partitions and the collaboration uses as call behavior actions, which are
references to sub-activities [Obj07]. In addition, activities contain logic nodes



2.1. THE SPACE APPROACH 15

like join, fork, merge and decision nodes to synchronize the flows from the vari-
ous sub-activities.

In Fig. 2.1, we easily recognize the activity partitions reception and guest room
as the components shown in Fig. 2.2. The collaboration uses h of type Hotel
Wakeup and a of type Alarm are also represented by correspondingly named call
behavior actions.

Activities have a semantics like Petri nets [Obj07]. Tokens flow along the directed
edges of the graph and interact with the activity nodes along the way. The
activity describes a state transition system where every token movement is a
transition from one state to another. We call the path a token can travel in a
single transition a step.

Figure 2.3 explains some common nodes found in activity diagrams. The seman-
tics of SPACE style activities is a specialization of the semantics of activities
as described in the UML Superstructure Specification [Obj07]. For example, a
decision node where all outgoing edges are connected to join nodes, is called a
waiting decision node and is represented as a filled diamond. Its semantics is
that it represents a shared token place between the join nodes. Also, any edge
crossing a partition boundary is considered a queue, to represent the channels
between the physically distributed components. Currently, we do not model any
data. Hence, a decision node is always non-deterministic since we do not know
the value of the data the decision is based on.

Technically, both timers and receive signal actions are really accept event actions
that refer to a time event or a signal event respectively. We simplify by treating
them as different nodes.

Figure 2.4 shows an initial proposal for the activity of the Hotel Wakeup ref-
erenced by call behavior action h in Fig. 2.1. The buttons alert and abort are
used by the receptionist to start and stop the alarm while the confirm button is
used by the hotel guest to confirm that he or she is awake. Note that the dotted
lines in this example are not standard for UML activities, but a way of outlining
the parts of the specification that will later be replaced as we find flaws in this
version.

The activity is started by a token arriving on the parameter node start, activating
the alert button. Once the alert button is pushed, it emits a token which is
duplicated in the following fork node. One of the tokens activates the abort
button while the other heads off towards the room partition. Here it will make
a stop at the partition border, as it cannot reach another partition in a single
step. This stop at the border models the time it takes for signal transmission
between physically distributed components. Next, the token can arrive in the



16 CHAPTER 2. BACKGROUND

Fork Node. A token arriving on the 
incoming edge will be split into one 
token for each outgoing edge.

Join Node. When a token has arrived 
on each incoming edge, a token is sent 
on the outgoing edge.

Merge Node. A token is sent on the 
outgoing edge if a token is received on 
either of the incoming edges.

Decision Node. When a token is 
received on the incoming edge, a token 
is sent on one of the outgoing edges.

Waiting Decision Node. This node 
represents a shared token place 
between two join nodes.

Queue Place. An edge crossing a 
partition boundary is considered a queue, 
representing a communication channel.

Starting Parameter Node. The 
activity starts once a token arrives on 
the incoming edge.

Terminating Parameter Node. 
When the activity terminates, a token 
is emitted on the outgoing edge.

Alternative Terminating Parameter 
Nodes. When the activity terminates, 
a token is emitted on the outgoing 
edge of one of the terminating nodes.

Streaming Parameter Nodes. These 
nodes can receive or send tokens while 
the activity is running.

Call Behavior Action. This node 
instantiates another activity. It has 
pins that correspond to the parameter 
nodes of the instantiated activity.

do 
task

Call Operation Action. A local 
method call is performed when a token 
passes through.

Timer. An incoming token will activate 
the timer. When the timer expires, a 
token is sent on the outgoing edge.

Initial Node. Sends a token on the 
outgoing edge when the system starts.

Activity Final Node. Terminates the 
system when a token is received on the 
incoming edge.

Flow Final Node. Tokens that arrive in 
the incoming edge are simply removed, 
without affecting the rest of the activity.

sig 1
Send Signal Action. A signal i sent 
when a token passes through.

sig 2

Receive Signal Action. A signal can 
only be received when a token is 
waiting inside. The token is emitted 
when the signal arrives.

Figure 2.3: Activity node explanations. Figure adapted from [KH06].



2.1. THE SPACE APPROACH 17

room partition to activate the confirm button and start the alarm, or the abort
button may be pushed. Once both buttons are active, the first one that is pressed
will deactivate the other as well as stop the alarm.

abortedconfirmed

reception
Hotel Wakeup

confirm: Button

pushed
stopstart

start

abort

confirm

alert: Button

pushed
stopstart

abort: Button

pushed
stopstart

room

start

alarm

stop
alarm

start

Figure 2.4: Hotel Wakeup, solution 1. Figure from [KSH07].

The nodes start, start alarm, stop alarm, confirmed and aborted on the outside
of the Hotel Wakeup activity are called activity parameter nodes or parameter
nodes for short. They have their counterparts in the pins that are located on
the outside of the call behavior action h in the Hotel Wakeup System activity,
Fig. 2.1. It can be easy to mix the concepts of parameter nodes and pins. Put
simply, a pin is to a parameter node what a call behavior action is to an activity,
a reference to an instance of that type.

We distinguish between system activities and sub-activities. A system activity
is an activity without any parameter nodes. Instead it will contain at least one
initial node and may contain several activity final nodes as well. Sub-activities
are the opposite in that they do have parameter nodes and are hence supposed
to be instantiated in other activities through call behavior actions. Sub-activities
always have an ESM.

An External State Machine, ESM, is a state machine that acts as a behavioral
interface for a sub-activity. The ESMs relieve us from having to look into the
implementation details of every sub-activity and also mitigates the state explosion
problem when we later model check the specification.

The ESM of a sub-activity tells when a token can be emitted or received on
the various parameter nodes. Each transition is labeled with the name of one
or two parameter nodes separated by a “/”. The parameter node before the
slash is called the trigger parameter node. This means that the transition is
triggered by a token traveling through this parameter node. There may be an
effect parameter node, in which case it means that a token will travel through this
parameter node as a consequence of the transition being triggered. The states of
an ESM are simply those states of the sub-activity that can be told apart by an



18 CHAPTER 2. BACKGROUND

external observer from looking at which parameter nodes send or receive tokens.

Figure 2.5 shows the ESMs of the sub-activities Hotel Wakeup, Alarm and Button.
We see that the ESMs describe the behavior of the sub-activities as it can be
observed from the outside.

start/
active

stop/
start/

confirmed/

aborted/

start
alarm/

stop
alarm/

started alerting stopped

«esm» Hotel Wakeup «esm» Alarm

start/
pushed/

stop/
active

«esm» Button

Figure 2.5: ESMs of Hotel Wakeup, Alarm and Button. Figure adapted from
[KSH07].

Sometimes, we want to express a reusable piece of local behavior without spec-
ifying the details using inner nodes. We do this by a shallow building block, a
building block that is completely specified by its ESM, and hence has no UML
activity [Kra08]. Shallow building blocks do not necessarily need a starting pa-
rameter node, as they can be said to be implicitly activated when the surrounding
activity partition becomes active. An example is the Sequencer, which is intro-
duced in Fig. 2.11.

Note that the general term building block encompasses both system activities,
sub-activities and shallow building blocks [Kra08].

2.1.1 Properties of Building Blocks

We assume a number of general properties that should hold for all building blocks.

Bounded queues. All queues must be of finite length so they will be imple-
mentable.

Respect ESM. When composing building blocks from others, the activity of
the surrounding building block must not send tokens into the sub-activity
when its ESM is not ready for it.

One-boundedness of inner places. An activity cannot have more than one
token in a single inner place.

In addition, we allow the user to specify a range of allowed executions for an
action element. For example, that a timer should expire at least once in a single
run of an activity.



2.2. TEMPORAL LOGIC (OF ACTIONS) 19

We will discuss these properties, as well as some new ones developed through this
work, in greater detail later in the thesis.

2.1.2 Tool Support

There exists a tool, Arctis (see Fig. 1.2), for editing the UML collaborations and
activities. The tool is a plug-in to the Eclipse development platform [Ecl08b], and
it takes advantage of the UML2 projects’s implementation of the UML metamodel
[Ecl08a]. The implementation of the work presented in this thesis, runs as a plug-
in to Arctis.

Arctis checks that the specifications are syntactically sound by a number of in-
spectors. Each inspector checks for a certain kind of problem. Examples are that
every node belongs to at least one activity partition and that all nodes, with the
exception of initial nodes, have at least one incoming edge. Arctis also provides a
framework that makes it easy to add new syntactic inspectors and present their
results to the user.

Through a plug-in, the formulator, Arctis can transform UML activities into
TLA+. See Sect. 2.2 for information on TLA+ and Sect. 2.3 for information on
the plug-in.

Arctis also provides the transformation from collaborations and activities to com-
ponents and state machines [KH07b]. From this model, code generators [Kra03]
can create executable code [KHB06].

2.2 Temporal Logic (of Actions)

In order to do model checking on the specifications created by the Arctis tool, we
need a formalism. In [KH07a], the semantics of the UML activities are defined in
cTLA [HK00], which is based on Lamport’s TLA [Lam02, Lam94], the Temporal
Logic of Actions. In this section, we will give an introduction to TLA and its
specification language TLA+.

Temporal logic is a variant of modal logic. Modal logics are formal logics that
deal with degrees of truth. There are two basic modal operators

2 – necessarily

3 – possibly

In temporal logic these modalities are used to represent aspects of time



20 CHAPTER 2. BACKGROUND

2 – always

3 – eventually

The modal operators of temporal logic can also be combined. Let P be a propo-
sition like “The deadline is approaching”.

23P – “always eventually P”, that means, P will be true infinitely often.

32P – “eventually always P”, that means, P will at one point become true
and stay that way forever.

The two operators are related as follows: 3P ≡ ¬2¬P . Eventually P is equiva-
lent to “not always not P”, or “not never P”.

TLA is a linear-time temporal logic [Pnu77, MP92], meaning that for a property
to be true, it must hold in all possible variants of the future. This is unlike
branching-time temporal logic [CE82] where there are additional operators for
“at least one” or “all” possible futures.

In TLA, behavior is expressed as sequences of states, and a state is an assignment
of values to all variables. We use the modal operators to express properties about
these sequences. When we express a property that should hold in all states, we
call it an invariant.

Figures 2.6, 2.7 and 2.8 show a TLA+ specification of the Hotel Wakeup Sys-
tem activity shown in Fig. 2.1, as generated by the formulator tool. In TLA+,
specifications are structured into modules.

Line 1 tells the name of the module, HotelWakeupSystem. Line 2 tells that this
TLA+ module imports another module that contains the axioms and operators
necessary to model the natural numbers and do arithmetic on them.

Next comes a list of variables declared by the variable keyword. The formulator
has generated comments for each of them to explain what they are. Note that
in the case that a line is too long, the comment belonging to a variable will be
located on the following line. The status variable is a bit special in that it does
not represent any particular element, but rather keeps track of whether the entire
system is active or not.

Lines 16 and 17 contain the declaration vars which is simply a short hand way
of referring to all the variables.



2.2. TEMPORAL LOGIC (OF ACTIONS) 21

1 module HotelWakeupSystem
2 extends Naturals
3 variable status
4 Represents the state of the entire activity (active/inactive)
5 variable display Ready Represents a CallOperationAction
6 variable h Represents the state of the ESM of a CBA
7 variable h counter
8 This variable counts the number of times a CBA is started
9 variable display Aborted Represents a CallOperationAction

10 variable t The state of a timer
11 variable t counter This variable counts the number of times a timer expires
12 variable display Confirmed Represents a CallOperationAction
13 variable a Represents the state of the ESM of a CBA
14 variable a counter
15 This variable counts the number of times a CBA is started
16 vars

∆
= 〈 status , display Ready , h, h counter , display Aborted , t , t counter ,

17 display Confirmed , a, a counter〉

19 Init
∆
=

20 ∧ status = “pre execution”
21 ∧ display Ready = 0
22 ∧ h = “ initial”
23 ∧ h counter = 0
24 ∧ display Aborted = 0
25 ∧ t = 0
26 ∧ t counter = 0
27 ∧ display Confirmed = 0
28 ∧ a = “ initial”
29 ∧ a counter = 0

31 initialaction
∆
=

32 ∧ status = “pre execution”
33 ∧ status ′ = “executing” Setting activity to active
34 ∧ display Ready ′ = display Ready + 1
35 Increasing counter for CallOperationAction
36 ∧ h = “ initial”
37 ∧ h ′ = “started”
38 ∧ h counter ′ = h counter + 1 Incrementing counter for CBA
39 ∧ unchanged 〈display Confirmed , a counter , a, t , display Aborted ,
40 t counter〉

Figure 2.6: TLA+ specification for Hotel Wakeup System, part 1



22 CHAPTER 2. BACKGROUND

42 e9
∆
=

43 ∧ status = “executing”
44 ∧ h = “stopped”
45 ∧ h ′ = “ initial”
46 ∧ display Aborted ′ = display Aborted + 1
47 Increasing counter for CallOperationAction
48 ∧ t = 0
49 ∧ t ′ = 1
50 ∧ unchanged 〈 status , display Confirmed , a counter , a, display Ready ,
51 t counter , h counter〉

53 e4
∆
=

54 ∧ status = “executing”
55 ∧ h = “stopped”
56 ∧ h ′ = “ initial”
57 ∧ display Confirmed ′ = display Confirmed + 1
58 Increasing counter for CallOperationAction
59 ∧ t = 0
60 ∧ t ′ = 1
61 ∧ unchanged 〈 status , a counter , a, display Ready , display Aborted ,
62 t counter , h counter〉

64 e11
∆
=

65 ∧ status = “executing”
66 ∧ h = “started”
67 ∧ h ′ = “alerting”
68 ∧ a = “ initial”
69 ∧ a ′ = “active”
70 ∧ a counter ′ = a counter + 1 Incrementing counter for CBA
71 ∧ unchanged 〈 status , display Confirmed , t , display Ready ,
72 display Aborted , t counter , h counter〉

74 e12
∆
=

75 ∧ status = “executing”
76 ∧ h = “alerting”
77 ∧ h ′ = “stopped”
78 ∧ a = “active”
79 ∧ a ′ = “ initial”
80 ∧ unchanged 〈 status , display Confirmed , a counter , t , display Ready ,
81 display Aborted , t counter , h counter〉

Figure 2.7: TLA+ specification for Hotel Wakeup System, part 2



2.2. TEMPORAL LOGIC (OF ACTIONS) 23

83 e8
∆
=

84 ∧ status = “executing”
85 ∧ t = 1
86 ∧ t ′ = 0
87 ∧ t counter ′ = t counter + 1 Incrementing counter for timer
88 ∧ display Ready ′ = display Ready + 1
89 Increasing counter for CallOperationAction
90 ∧ h = “ initial”
91 ∧ h ′ = “started”
92 ∧ h counter ′ = h counter + 1 Incrementing counter for CBA
93 ∧ unchanged 〈 status , display Confirmed , a counter , a, display Aborted〉

95 Liveness
∆
=

96 ∧WFvars( initialaction)
97 ∧WFvars(e9)
98 ∧WFvars(e4)
99 ∧WFvars(e11)

100 ∧WFvars(e12)
101 ∧WFvars(e8)

103 Next
∆
=

104 ∨ initialaction
105 ∨ e9
106 ∨ e4
107 ∨ e11
108 ∨ e12
109 ∨ e8

111 Spec
∆
= Init ∧2[Next ]vars ∧ Liveness

112

113 theorem status h
∆
= 2(( status = “pre execution”)⇒ (h = “ initial”))

114 theorem h t
∆
= 2((h = “stopped”)⇒ (t = 0))

115 theorem h a
∆
= 2((h = “started”) ⇒ (a = “ initial”))

116 theorem h a 2
∆
= 2((h = “alerting”)⇒ (a = “active”))

117 theorem t h
∆
= 2((t = 1)⇒ (h = “ initial”))

118

Figure 2.8: TLA+ specification for Hotel Wakeup System, part 3



24 CHAPTER 2. BACKGROUND

Lines 19 to 29 contain the Init statement. This statement tells what the values of
all the variables will be in the initial state. All the inner places and their counters
are set to “0” as they are empty to begin with. The call behavior actions h and a
are given the special value “ initial” to represent the initial node of their ESMs.
The status variable is given the value “pre execution” to show that the activity
has not yet started.2

The following part contains the TLA actions. Each one describes a transition
between two states. We can separate a TLA action into two parts, the precondi-
tions and the effects. The preconditions are all the variable – value pairs where
the variables are not primed. Together they describe the set of states where this
action is enabled. The effects are the variable – value pairs where the variables
are primed (with a ′). Each effect pair tells the value of that variable in the next
state.

We use the enabled keyword to refer to just the preconditions of an action.
This is useful when writing theorems that are naturally connected. For example,
instead of writing ∧ status = “executing”∧h = “alerting”∧a = “active”, we can
just write enabled (e12).

The first TLA action3, on lines 31 to 40, is named initialaction. This is a special
name given to the action that represents a token leaving from all initial nodes in
the activity. In our example, there is only one initial node, so the action represents
the step where a token leaves the initial node, passes through the merge node
and is duplicated in the fork node. One token then executes the display “Ready”
call operation action before stopping in a flow final node. The other token enters
the call behavior action h through the start pin, changing its state to “started”.

Lines 42 to 51 contain an action that maps to the step of a token leaving call
behavior action h through the aborted pin, changing its state back to “ initial”,
executing display “Aborted”, passing through a merge node and setting the timer.
The action is simply named after the edge that it starts with, e9, but the edges
are not annotated with names in Fig. 2.1. The order in which the actions are
executed has no bearing on the order in which they appear in the TLA module.

Lines 53 to 62 contain an action like the one above. It exits h through confirmed
and executes display “Confirmed” instead.

Lines 64 to 72 contain the action derived from the step of a token leaving h
through start alarm , changing its state from “started” to “alerting”, and entering
a through start, changing its state from “ initial” to “active”.

Lines 74 to 81 contain an action similar to the one above, only it leaves h through

2The starting underscores are there to make sure that there are no name collisions, as we
do not allow any UML elements to have a name starting with underscore.

3In the context of a TLA+ specification, we will often just refer to TLA actions as actions.



2.2. TEMPORAL LOGIC (OF ACTIONS) 25

stop alarm and stops the alarm.

Lines 83 to 93 contain the last action. It is derived from the step where the timer
expires, emitting a token. The token passes through the merge node and then
does exactly like in the step starting from the initial node.

Having specified all that is allowed to happen is enough to check that something
which is not allowed will not happen, so called safety properties. However, it is
not sufficient to check that something eventually will happen, so called liveness
properties. There are two types of liveness that we can give to an action A, in
TLA+.

• Weak fairness – WFvars(A).4 If action A is always enabled from some point
on, it will eventually be executed.

• Strong fairness – SFvars(A). If action A is infinitely often enabled, it will
eventually be executed.

By default, the formulator gives each action weak fairness. The Liveness state-
ment is shown in lines 95 to 101.

Lines 103 to 109 give a disjunction of all the actions that are valid transitions5

of the specified behavior. This is used in line 111 where the entire specification
is given as a single temporal formula. First there is the Init statement. As said
before, this gives the initial state(s) of the system. Then comes the so called
next-state relation as a second conjunct. The syntax 2[A]vars means that every
transition that change any of the variables in vars, must be a transition caused
by A. The implication of this is that it is also allowed to have two subsequent
states that are the same. This is called a stuttering step. So the next-state
relation really says that any two subsequent states must either be identical or the
difference between them must correspond to one of the actions listed in the Next
statement. Finally there is the Liveness conjunct to ensure that the behavior
will not just be a list of identical states, but that TLA actions will actually be
executed.

We express specification properties in the form of TLA theorems. Lines 113 to
117 contain some theorems that the formulator generates for the specification.
They are understood in the context of Fig. 2.1 and Fig. 2.5.

The first theorem states that when the activity has not yet started, the call
behavior action h must not be started either. This is since when the activity is

4Where vars is the tuple of all declared variables
5TLA transitions are often referred to as steps, but as we also use this word to describe

token movements in activities in this work, we just call them transitions here.



26 CHAPTER 2. BACKGROUND

started, a token will travel from the initial node into the start pin of h and this
is only allowed when h is not yet started.

The theorem on line 114 states that whenever h is in state “stopped”, the timer
t must not already contain a token. This is because in this state, h may output
a token through pin confirmed or aborted (see Fig 2.5), both which lead to the
timer t. And due to the one-boundedness of inner places, t cannot receive a token
when it already has one.

The following three theorems are similar to the above in that they state what the
state of the receiving call behavior action must be if the sending node is ready to
emit a token.

2.2.1 Refinement

In addition to writing theorems for checking safety and liveness properties, TLA
allows us to check whether one specification is a refinement of another. We can
also say that we check if Spec1 implements Spec2. Spec1 is the more detailed
specification whose states are mapped onto the state space of Spec2. Implemen-
tation is expressed using the implication operator, ⇒.

To check refinement, one needs to provide a refinement mapping. This is a
mapping that expresses the variables of the abstract specification in terms of the
detailed one. For a detailed introduction to refinement, see [Lam96].

Refinement is useful when one wishes to check whether a detailed implementation
conforms to a more abstract interface specification. It is also useful if one needs
to check more complex properties, as one can express such properties as abstract
specifications and then check if the detailed specification implements them.

2.2.2 TLC

The purpose of creating a TLA+ specification is so we can model check it. For
this we use the model checker TLC [YML99, Lam02]. TLC takes two files as
input, A spec.tla file containing the specification and a spec.cfg file containing
some configuration parameters for the model checking.

TLC will default to checking the entire state space of the specification, checking
that every property is satisfied. If any state (or sequence of states) violates a
property, it returns a textual trace of all the states leading up to the violation.
Such a trace specifies the value of every variable at every state as well as which
TLA action triggered the transition between every pair of successive states.



2.3. THE FORMULATOR 27

TLC will also give the name of the violated theorem, but only if it is an invariant.
That is, any theorem expressing a liveness property, usually by means of the 3

(eventually) operator, is not identified by name. In this case, the message “Error:
Temporal properties were violated” will be given instead of the theorem name.
Later in the thesis, we describe how to work around this issue.

A deadlock is a state where none of the actions specified in the next-state relation
are enabled. TLC defaults to reporting deadlocks as violations and showing a
trace to them. We turn this off by use of the -deadlock parameter, since many of
our specifications are supposed to terminate at some point. Instead, we introduce
our own deadlock theorem (Sect. 9.3).

TLC also has a parameter -continue to make it continue model checking even
though it encounters a violation. It then reports all found violations in the
end. A problem with using this functionality is that the behavior after the first
violation may be irrelevant, as fixing the first violation may change the following
behavior.

2.3 The Formulator

The architecture of the original formulator is shown in Fig. 2.9. The job of
the formulator is to transform a UML activity into a TLA+ specification. The
traverser class traverses the activity and calls corresponding methods in the TLA
module class as it encounters various nodes and edges. Theorems are created
directly in the TLA module. The TLA module consists of several lists and maps
containing text strings. It also contains TLA action objects that represent TLA
actions. Once the traversal is complete, the formulator tells the TLA module to
return the entire TLA+ specification as a text string. This is then written to a
file and the user can use this file as input when running TLC.

TLA Module

Traverser

Creates

TLA Action

Consists of *

UML Activity

Is input to

TLC

Is input to

Figure 2.9: Formulator architecture



28 CHAPTER 2. BACKGROUND

The formulator can only transform complete system activities. Sub-activities are
encapsulated in an environment activity that contains initial and activity final
nodes. Sub-activities are then checked by adding a stereotype �specimen� to
the referencing call behavior action, to tell the formulator to traverse into the
sub-activity and create a TLA+ specification for both the environment activity
and the sub-activity at once.

When transforming and model checking the Hotel Wakeup System in Fig. 2.1
with the �specimen� stereotype applied to call behavior action h, we get a
textual trace leading up to a state where a theorem is violated. We present a
visualized version of this trace in Fig. 2.10.

abortedconfirmed

Hotel Wakeup

confirm: Button
stopstart

alert: Button
stopstart

abort: Button
stopstart

abortedconfirmed

Hotel Wakeup

confirm: Button
stopstart

alert: Button
stopstart

abort: Button
stopstart

abortedconfirmed

Hotel Wakeup

confirm: Button
stopstart

alert: Button
stopstart

abort: Button
stopstart

abortedconfirmed

Hotel Wakeup

confirm: Button
stopstart

alert: Button
stopstart

abort: Button
stopstart

off

off

off

active

off

active

off
off

off

off

off
off

State 1 State 2

State 3 State 4

off

started started

started

x1

x2

Figure 2.10: Trace for solution 1 of Hotel Wakeup. Figure from [KSH07]

In state 1, the activity is not yet active. The token has yet to arrive through the
start parameter node. Note that in visualizing the trace, we use the string “off”
to denote the initial state whereas in TLA+ it is denoted by “ initial”.

In state 2, the activity has been started and its ESM has changed state to
“started”. The alert button is also started and has changed state to “active”.

State 3 shows how the alert button has been pushed, activating the abort button.
A token is also waiting to cross over to the room partition. In this state, a theorem
is violated. If the abort button is pushed, a token will leave through the aborted
parameter node. Yet, the ESM of Hotel Wakeup does not allow this when its
state is “started”.

For the sake of brevity, we also show the next state, state 4, in Fig. 2.10. The
violation shown here would occur even if we first fixed the violation in state 3.
Here, the abort button has been pushed and a second token is waiting to cross



2.3. THE FORMULATOR 29

over into the room partition. Since we do not guarantee in-order delivery of
tokens traveling from one partition to another, this last token may arrive before
the first. It will then reach the confirm button on the stop pin, before the confirm
button is ever started.

Figure 2.11 shows a second attempt at a solution for the Hotel Wakeup activity.
We fix the violation in state 3 by moving the fork node that creates an extra
token to be sent to the aborted parameter node, to the room partition. This
makes sure a token will leave through the stop alarm parameter node first. The
second violation is fixed by introducing a sequencer. This is a shallow building
block that takes two inputs and simply makes sure that they are sent on in a
specified order. In this case, o1 before o2.

seq: Sequencer

abortedconfirmed

reception
Hotel Wakeup

confirm: Button

pushed
stopstart

start

abort

confirm

alert: Button

pushed
stopstart

abort: Button

pushed
stopstart

room

start
alarm

stop
alarm

start
i1

i2

o1

o2

aborted

Figure 2.11: Solution 2 of Hotel Wakeup. Figure from [KSH07]

We run the transformation and TLC again. The result is another violation. The
trace is visualized in Fig. 2.12. We start from state 3 as states 1 and 2 correspond
to states 1 and 2 of the first attempt. We name the queues q1 to q4, starting
from the top of the diagram.

State 3 shows a token waiting in q1 and the abort button waiting for a push or a
stop. State 4 shows that the token has been consumed from q1, passed through
the sequencer and been duplicated. One token has then left the activity through
parameter node start alarm, changing the state of the ESM to “alerting”, while
the other has started the confirm button.

State 5 shows that the confirm button has been pushed and a token is hence
waiting in q3, to stop the abort button and terminate the activity through pa-
rameter node confirmed. A duplicate of the token emitted from the button also
left the activity through the stop alarm parameter node, changing the ESM state
to “stopped”.

State 6 shows that the abort button is pushed before the token is consumed from



30 CHAPTER 2. BACKGROUND

q3. This puts a token in q2, and it also makes it illegal for the token in q3 to
now arrive at the stop pin of the abort button. It is also illegal for the token in
q2 to try to stop the confirm button which is already stopped, as well as leaving
through stop alarm now that the ESM is in state “stopped”.

abortedconfirmed

Hotel Wakeup

confirm: Button
stopstart

alert: Button
stopstart

abort: Button
stopstart

off

active
off

s0

abortedconfirmed

Hotel Wakeup

confirm: Button
stopstart

alert: Button
stopstart

abort: Button
stopstart

off

active
active

s1

abortedconfirmed

Hotel Wakeup

confirm: Button
stopstart

alert: Button
stopstart

abort: Button
stopstart

off

active      
off

s1

abortedconfirmed

Hotel Wakeup

confirm: Button
stopstart

alert: Button
stopstart

abort: Button
stopstart

off

off
off

s1

State 5

State 3

State 6

State 4started alerting

stopped stopped

x4

x3

Figure 2.12: Trace for solution 2 of Hotel Wakeup. Figure from [KSH07]

Looking at the trace, we see that we have a situation where both sides may take
initiative before being stopped by the other, due to the delay of the communi-
cation channels. We call this a mixed initiative situation. Looking through the
library of building blocks, we find a Mixed Initiative Secondary Starter (MISS)
block. Its purpose is to solve exactly this kind of problem, by giving one side
priority over the other. The non-priority side must then be able to handle that
it could be overruled even after taking initiative itself. The ESM of the MISS
building block is shown in Fig. 2.13.

Figure 2.14 shows the Hotel Wakeup activity after we have applied the MISS
block. The primary taking initiative alone is distinguished from the secondary
being overruled by how we must stop the abort button in the first, but not in the
latter case. We generate another TLA+ specification and run TLC on it. This
time, there are no violations reported.



2.4. RELATED WORK 31

start

started

sec.
initiative

sec.
initiative

sec.
initiative

started

prim.
initiative

prim. action

sec.
action

sec.
accepted

sec.
overruled

prim.
initiative

«esm» Mixed Initiative Secondary Starter

Figure 2.13: The ESM of the MISS building block. Figure from [KSH07]

abortedconfirmed

reception
Hotel Wakeup

confirm: Button

pushed
stopstart

start

abort

confirm

alert: Button

pushed
stopstart

abort: Button

pushed
stopstart

mi: Mixed Initiative 
Secondary Starter

start
primarysecondary

started

prim. initiativeprim. action

sec. initiative sec. action

sec. accepted

sec. overruled

room

start

alarm

stop
alarm

start

Figure 2.14: Solution 3 of Hotel Wakeup. Figure from [KSH07]

2.4 Related Work

The application of formal methods in combination with tools is also done with
OMEGA [Hoo02], FUJABA [BGHS04] and HUGO[BBK+04]. However, they do
not focus on UML activities such as we do, rather state machines and sequence
diagrams. Also, they do not present the error trace on the UML model or attempt
at making any automatic interpretations.

vUML [LP99] automatically creates PROMELA specifications from UML state
charts and can create a sequence diagram from the error trace provided by the
SPIN model checker. Like us, they mostly check general properties that the users
do not have to specify themselves, but they also allow for marking a state as an
error state or a goal state.

Theseus [GCKK06] visualizes error traces from the SPIN and SMV model check-
ers onto UML state diagrams, and also generates UML sequence diagrams from
the trace. Theseus is one component in a round trip engineering tool suite that



32 CHAPTER 2. BACKGROUND

also supports transforming UML to PROMELA and formulating properties as
LTL or CTL formulas. Theseus is independent of a certain UML editor, but is
currently only implemented as a plug-in to the ArgoUML CASE tool.

There are approaches where UML activities are used. In [Esh06], the NuSMV,
a symbolic model checker, is used to check the consistency of activity diagrams.
In [GM05], UML activities are checked by the SPIN model checker [Hol03]. In
[DS03], they transform UML activities into the π-calculus and use modal mu-
calculus to express safety and liveness properties. This is then checked by the
MWB tool [VM94]. In [Stö05], UML 2.0 activities are transformed into Colored
Petri Nets, hence enabling analysis by Petri net tools.

In [FF06], a method is proposed for visualizing soundness violations of workflow
Petri nets [Aal98] in the WoPeD tool [Wop08]. The violations themselves are
detected by the Woflan tool [Aal99]. Soundness violation is separated into five
violation classes and a list of eleven error reasons is presented. Some of these
error reasons map to our symptoms while others map to our diagnoses. In the
case of a violation, the violating node(s) is (are) highlighted with the violation
class and the error reason. If a violation is caused by a certain firing sequence of
the net, an animation can be shown.

The above approaches all use UML activities or Petri net (derivatives), but not
for distributed reactive systems with asynchronous communication. Rather it is
applied for business processes and they assume synchronous communication or a
central clock.

In [SGK+05], activity charts (their version of activity diagrams) are animated,
showing how tokens flow when a system is running. However, there is no formal
verification, just a simulation engine. There is also no concept of distributed
components, everything is local to the same machine.

There are some approaches that utilize multiple traces to locate the cause of an
error. In [GV03], Java PathFinder [VHBP00] is used to find both traces that lead
to a violation of a Java program and traces that do not. Three ways of computing
the most relevant differences between the violating and the non-violating traces
are presented. One example is that they locate any transitions that exist in all
violating traces and in none of the non-violating traces. They cannot, at the time
of writing, handle infinite traces (traces with loops), so they can only check for
safety properties.

Similarly, [BNR03] uses the SLAM toolkit [BR01] to verify software programs
written in C. They exclude the violating transition of each model checking run
from the next, hence collecting several different traces for an error. They then
report which lines were executed in the error traces compared to successful traces.
Like [GV03], they only check for safety properties.



2.4. RELATED WORK 33

Naturally, these approaches do not visualize the trace, as they are working directly
with code. They simply give a list of code lines that should be inspected closer.
They also differ in that they are using several traces instead of combining one
trace with syntactic analysis, like we do.

The focus of this work is to interpret error traces and find flaws automatically. To
the best of our knowledge, there are no other approaches that offer animation and
interpretation of error traces in terms of UML activities. And with the exception
of the WoPeD tool, we have not found anyone that try to give the user an answer
as to what exactly the problem is. Finally, we have found no tools that can
suggest automatic fixes based on the feedback from a model checker. To the best
of our knowledge, we are unique in this respect.





Chapter 3

Identifying Specification Flaws:
Towards a Framework

In this chapter we will look at how we find flaws in the specifications we create
in the SPACE approach, and how we create a framework for dealing with them.

3.1 What is a Flaw?

A flaw is the part of a specification that causes undesired behavior. Said in
another way, it is what causes a specification not to behave as intended. So what
is desired behavior? What is the intention of the user?

A computer cannot reason about what the users really wants. All it can do is
to compare two behaviors and tell if they are consistent. Hence, the first step
is to decide how to express desired behavior in a practical manner. We could
write a complete specification that behaves in the way we want the system we
are currently specifying to behave. But how do we know that this one is any more
correct than the first one? We need to be able to express an abstract version of the
intended behavior that we can easily understand and then check that the detailed
version is actually doing the same. In fact, we want to be able to give just subsets
of this abstract behavior, so we do not have to think of everything at once. We
solve this by giving a set of properties that must hold for the specification.

So what properties must hold for a specification to give an end result with the
intended behavior? There are two ways to determine this.

General properties. Since the user is using the Arctis tool to specify a sys-
tem or service, we can assume that the user intends for it to comply with

35



36 CHAPTER 3. IDENTIFYING SPECIFICATION FLAWS

some general properties that apply to all SPACE specifications and that are
assumed to hold for the transformation to component models [KH07b]. Ex-
amples are: one-boundedness of inner places, bounded queues and freedom
from deadlocks.

Assertions. Assertions are explicit redundant information that the user can
append to the UML model in the form of UML stereotypes. These give
information like how many times an action should be executed or whether
two actions are supposed to be mutually exclusive.

It is hard to decide just how many and what assertions a specification should
have. One extreme would be to assert every property, but this would just be
another way of creating the specification. Instead we limit the assertions to those
that are most abstract. These are useful as they provide a way to check that the
detailed specification is consistent with the intention of the user, expressed in the
assertion.

3.2 Towards an Analysis Framework

We now know that we can express properties that should hold for the specifi-
cations we create. This section will introduce some new concepts and outline a
framework for identifying and correcting flaws. To illustrate the following con-
cepts, we look at the example of the Button building block. Figure 3.1 shows
both its ESM and an (erroneous) activity as displayed in the Arctis editor.

(a) ESM (b) Activity

Figure 3.1: Button Building Block (with a flaw)



3.2. TOWARDS AN ANALYSIS FRAMEWORK 37

The Button is a very simple building block designed to listen for an external
signal, a push. A button can also be stopped meaning that it will stop listening
for the push.

Figure 3.2 shows a flowchart of how the analyzer works. It may be useful to
compare this to the architecture presented in Sect. 4.1. We will now discuss the
process from start to end, introducing new concepts and giving examples as we
go.

3.2.1 Phase 1: Transformation and Detection

The first phase of the analyzer’s work is to transform the UML specification into
TLA+, generate theorems and detect any violations. We will now describe these
three tasks in more detail.

Creating the TLA+ Specification

The process of checking a specification for flaws begins by transforming the UML
activity of the Arctis specification into a TLA+ specification. The result is a TLA
module. An excerpt from the TLA module of the Button specification is shown
in Fig. 3.31.

The specification starts with a list of variables:

r0 represents the receive signal action that is waiting for the push.

r0 counter is a counter that is increased every time r0 receives a signal.

ButtonWrong represents the state of the ESM as seen in Fig. 3.1(a).

status is a variable that we add to keep track of whether the activity is about
to start executing, is executing or has terminated (is done executing).

vars is not really a variable, but a shortcut for writing all the variable names
later on in the specification. However, its use is not shown further in the
excerpt in Fig. 3.3.

After the variables comes the Init statement which allocates the initial values of
all the variables. The receive signal action r0 is empty and its counter is 0. The

1There is a mistake in this version. This is why it is named ButtonWrong



38 CHAPTER 3. IDENTIFYING SPECIFICATION FLAWS

UML 
Activity

Create TLA+ 
Specification

TLA 
Module

Add Theorems

TLA 
Module + 
Theorems

Run TLC

TLC 
Trace

Theorem 
violated?

Yes No

No problems 
found

Start 
Analyzer

(a) Phase 1

TLC 
Trace

Analyze trace and 
syntax to confirm 

diagnoses

At least
one diagnosis 
confirmed?

Yes

Diagnosis 
(+ Fix)

Symptom

No

Register as 
Validation Result

Problem 
reported

(b) Phase 2

Figure 3.2: Work flow of the Analyzer



3.2. TOWARDS AN ANALYSIS FRAMEWORK 39

module ButtonWrong
extends Naturals
variable r0 The state of a receive signal action
variable r0 counter Counter for receive signal action
variable ButtonWrong Represents the state of the ESM of an Activity
variable status

Represents the state of the entire activity (active/inactive)
vars

∆
= 〈r0, r0 counter , ButtonWrong , status〉

Init
∆
=

∧ r0 = 0
∧ r0 counter = 0
∧ ButtonWrong = “ initial”
∧ status = “pre execution”

start initial active
∆
=

∧ r0 = 0
∧ ButtonWrong = “ initial”
∧ status = “pre execution”
∧ status ′ = “executing” Setting activity to active
∧ r0′ = 1 Getting ready to receive signal
∧ ButtonWrong ′ = “active” Token arrived through start
∧ unchanged 〈r0 counter〉

e1
∆
=
∧ status = “executing”
∧ r0 = 1 Ready to receive signal
∧ r0 counter ′ = if r0 counter < 2 then r0 counter + 1 else 2

Incrementing counter
∧ r0′ = 0 Signal received
∧ unchanged 〈 status , ButtonWrong〉

stop active
∆
=

∧ status = “executing”
∧ ButtonWrong = “active”
∧ unchanged 〈 status , r0 counter , r0, ButtonWrong〉

Figure 3.3: Excerpt of TLA+ specification of erroneous Button building block



40 CHAPTER 3. IDENTIFYING SPECIFICATION FLAWS

starting node of the ESM is represented by the string “ initial” and the status
variable is “pre execution” which means it is not yet started.

After the Init statement, three TLA actions follow:

start initial active represents a token arriving through the parameter node
start and a token filling the receive signal action r0. This TLA action also
changes the state of the ESM from “ initial” to “active”.

e1 represent the signal being received by r0 and a token leaving through stopped.
However, since there are no ESM transitions that match this behavior, this
action does not alter the state of the ESM.

stop active represents a token being received on parameter node stop, some-
thing which the ESM only allows when in state “active”. But since the
token exits through parameter node push, there is no match found in the
ESM for this TLA action either.

Adding Theorems

Every property of a specification can be transformed into a TLA theorem which is
then added to the TLA module. We give a few examples of the theorems created
for the ButtonWrong activity.

The TLA action stop active must never be enabled for execution. This is because
there is not a single transition in the Button ESM that matches it. (A matching
transition would have to have the label stop/push). If it were to be enabled,
the activity would not be consistent with its ESM. To detect this particular
inconsistency, we write the theorem

theorem stop active neverEnabled , 2¬enabled (stop active) (3.1)

Whenever the ESM is ready to accept a token through parameter node start, the
TLA action implementing the transition from the initial state to “active” will be
enabled. This is also necessary for the ESM and the activity to be consistent and
is expressed by the theorem

theorem enabled start initial active ,

2(( status = “pre execution” ∧ ButtonWrong = “ initial”⇒
enabled (start initial active))

(3.2)



3.2. TOWARDS AN ANALYSIS FRAMEWORK 41

Whenever the ESM is in a state where it accepts a token on start, the receive
signal action r0 must be empty. This is expressed by the theorem

theorem status ButtonWrong r0 ,

2(( status = “pre execution” ∧ ButtonWrong = “ initial”)⇒ (r0 = 0))
(3.3)

A violation of the theorem would be a violation of the one-boundedness property,
meaning that the activity cannot be correctly transformed to state machines as
the next step towards a deployable system (see Fig. 1.1).

Running TLC

The TLA module and the theorems are fed to TLC which either returns “no errors
found” or a trace. The trace is returned in the event of a theorem violation and
also has information on which theorem was violated (with the exceptions noted
in Sect. 2.2.2).

Running TLC on our button example, gives the trace shown in Fig. 3.4. The
analyzer converts the textual trace, which is expressed in terms of the TLA+

variables, to a graphical representation in terms of the UML elements that con-
stitute the activity. Being such a simple example, the trace is not very extensive,
but it shows how we arrive in the state where r0 is ready to emit a token. In
this state, the TLA action stop active is enabled even though it has no matching
ESM transitions.

3.2.2 Phase 2: Determining the Problem

If TLC finds a theorem to be violated, we enter the second phase of the analy-
sis. In this phase, we analyze the activity and the trace from TLC looking for
properties that are relevant to the violated theorem.

When a theorem is violated, we can always present the user with a symptom. A
symptom describes what the problem detected by the violated theorem is, but
not the cause of it.

Once we have a specific symptom, we can analyze the trace and the syntax of
the activity to try to pinpoint what is the underlying reason for it. Based on the
results, we may be able to find one or more diagnoses. A diagnosis represents a
candidate for what the cause of the problem may be. We say that it is confirmed,
if all the criteria for setting the diagnosis are met. There can be several diagnoses



42 CHAPTER 3. IDENTIFYING SPECIFICATION FLAWS

(a) State 1 (b) Transition 1

(c) State 2

Figure 3.4: Visual Trace of Button Building Block

for a single flaw, yet only one of these will be the correct one. Since what is correct
depends on the user’s intentions, the correct diagnosis is simply the one that the
user chooses to act upon.

In the button example, a Missing ESM Transition diagnosis is set. Whenever
the activity wants to output a token and the ESM does not allow it, we can solve
it by adding a new ESM transition. Hence this is a candidate for the flaw, that
an ESM transition was simply missing. We will discuss this diagnosis further in
Sect. 5.3.2.

Each symptom can define its own logic for what to report depending on what
diagnoses are confirmed. Often, the symptom is withheld if an accurate diagnosis
can be set. This is to avoid overloading the user with too much redundant
information. The symptom and/or diagnosis is wrapped in a validation result



3.3. PREVIEW: ANALYSIS OF SPACE SPECIFICATIONS 43

which is an object that the Arctis editor can present to the user.

Both symptoms and diagnoses, may contain textual advice for what the user
should do. An example could be “Make sure to have feedback from the con-
suming side to the producing side of this queue”. If a diagnosis is set, we can
sometimes suggest a correction that can be applied automatically to the specifi-
cation. We call such corrections fixes. A fix corresponding to the above advice
might be something like “Automatically create a feedback loop from consumer
to producer”.

There is a variant of fixes that give grants. A grant is a piece of information that
is added to alter the way the model is interpreted. The only existing example
so far, is that we can grant that one partition will consume tokens from a queue
faster than the other partition will put tokens into the queue.

In our current example, the mere presence of the symptom and diagnosis is enough
to cause us to have a closer look at the Button(Wrong) activity. The parameter
nodes push and stopped have been swapped. After the flaw is corrected, a second
run of the analyzer reports no problems.

3.3 Preview: Analysis of SPACE Specifications

The proposed analysis framework is independent of a certain specification style.
For example, we could also use it on state machine models. However, the focus
of this work has been on SPACE specifications, and we will now give a preview
of the contents of the framework specifically developed for the SPACE approach.

Figures 3.5, 3.6 and 3.7 shows the theorems, symptoms, diagnoses and fixes we
found in our work so far. The figures demonstrate that the relationship between
theorems, symptoms, diagnoses and fixes is not only one-to-one. For example,
there are several theorems that if violated, will give an Activity Violates ESM
symptom, and several symptoms can be caused by an Unrestrained Producer.

After Chapter 4 which deals with the analyzer from an implementation perspec-
tive, Chapter 5 will cover the theorems, symptoms, diagnoses and fixes shown in
Fig. 3.5. In this chapter, we will also present a detailed example where we show
part of the TLA+ specification as well as the mapping between theorems, activity
steps and ESM transitions.

Chapter 6 will cover the theorems, symptoms, diagnoses and fixes shown in
Fig. 3.6. The greyed out boxes represent elements that are still in the early



44 CHAPTER 3. IDENTIFYING SPECIFICATION FLAWS

Theorems Symptoms Diagnoses Fixes

ESM Violates 
Activity

Activity Violates 
ESM

Never Enabled 
Action

Add ESM 
Transition

Remove ESM 
Transition

Missing ESM 
Transition

Extra ESM 
Transition

Not Enabled 
Action

Enabled Action

ESM Ready

Sometimes 
Enabled Action

Figure 3.5: Current theorems, symptoms, diagnoses and fixes, part 1

Theorems Symptoms Diagnoses Fixes

Mutual 
Exclusion 
Violation

Mutual 
Exclusion

Missing Abort 
Path

Insert Abort 
Path

Redirect Control 
Flows for 

Atomic Decision

Out-of-Order 
Delivery

Insert Sequencer

Delayed
Delivery

Figure 3.6: Current theorems, symptoms, diagnoses and fixes, part 2



3.3. PREVIEW: ANALYSIS OF SPACE SPECIFICATIONS 45

Theorems Symptoms Diagnoses Fixes

Number of 
Executions

Unbounded 
Queue

Unrestrained 
Producer

Replace Merge 
with Join Node

Insert Fork / 
Join Combo

One-
Boundedness 

Violation

Misplaced Merge 
Node

Replace Merge 
Node with FTP

Multiplicity ESM 
Violation

Grant Slow 
Filling of Queue

ESM Violation

Respect ESM

Bounded Queue

Too Many 
Executions

Too Few 
Executions

Deadlock

Sub-Activity 
does not 

Terminate

No Deadlock

Sub-Activity 
Terminates

One-
Boundedness

Chap. 7 Chap. 7 Chap. 7

Chap. 7

Chap. 8 Chap. 8

Chap. 8

Chap. 8

Chap. 8

Chap. 7

Figure 3.7: Current theorems, symptoms, diagnoses and fixes, part 3



46 CHAPTER 3. IDENTIFYING SPECIFICATION FLAWS

stages of development. The arrows going into Out-of-Order Delivery and De-
layed Delivery signify that every symptom we have so far, attempts to set these
diagnoses.

Chapter 7 will discuss the Bounded Queue theorem and the symptoms, diagnoses
and fixes related to it.

Chapter 8 will discuss One-Boundedness theorem and the symptoms, diagnoses
and fixes related to it.

The remaining theorems and symptoms will be covered by Chapter 9.

3.3.1 What is Currently Implemented?

To show that the proposed framework works well in practice as well as theory, we
have implemented several of the elements in Java, as part of the analyzer tool.
Figure 3.8 gives an overview over those that are currently implemented.

3.4 Completeness of Analysis Framework

It is not always clear what the intention of a developer is. Therefore, we may
not find all flaws, and the path from symptom to fix may not be clear. As a
conceptual aid for discussing how well a flaw can be handled, we identify the
following categories.

Cat. A Flaws that we are sure to detect and give a single accurate diagnosis
for.

Cat. B Flaws that we are sure to detect, but we can only guarantee that at
least one of the proposed diagnoses is the correct one.

Cat. C Flaws that we are sure to detect, but we may not be able to give a
diagnosis for. (And even if we do, it may not be correct.) However, we will
be able to give a visual trace up to the violating state.

Cat. D - E Same as above, only we do not have all the theorems required to
detect the flaw every time.

While category A is obviously the ideal, being able to place a flaw in any category
is a contribution, and it helps the user to create specifications that behave as
intended. Even if we only have a theorem and a corresponding symptom, it is



3.4. COMPLETENESS OF ANALYSIS FRAMEWORK 47

Theorems Symptoms Diagnoses Fixes

Deadlock

Sub-Activity 
does not 

Terminate

Number of 
Executions

Deadlock

Sub-Activity 
Terminates

Unbounded 
Queue

Unrestrained 
Producer

Insert Fork / 
Join Combo

One-
Boundedness 

Violation

ESM Violates 
Activity

Activity Violates 
ESM

Never Enabled 
Action

Not Enabled 
Action

Enabled Action

ESM Ready

Respect ESM

Bounded Queue

One-
Boundedness

Out-of-Order 
Delivery

Insert Sequencer

Misplaced Merge 
Node

Figure 3.8: Currently implemented theorems, symptoms, diagnoses and fixes



48 CHAPTER 3. IDENTIFYING SPECIFICATION FLAWS

still better than not having any support for that flaw at all. In any case, we can
present a trace and that will often be enough for the user to figure out what the
flaw is.

This thesis is the start of creating a more complete solution for the analysis of
specification behavior. As our experience grows, we can incrementally improve
the quality of the tool by adding more elements to the framework. The idea is
that we add a theorem and a symptom when we find that a specification is not
behaving as intended. Then we add a diagnosis when we see a pattern for what
is causing the symptom. Finally we may be able to add an automated fix when
we see a pattern for how to fix the flaw. With the addition of new elements to
the framework, some flaws will travel further up the categories towards category
A. And so, quality will improve.

It is hard, if not impossible to determine exactly what category a flaw should
be placed in at a given time. For example, we may think that we can always
detect a missing ESM transition, only to later find that it can manifest itself in
yet another way, meaning we need yet another theorem (and perhaps symptom)
to detect it. Hence a great deal of experience with the tool would be required
to at least form an opinion. For example, if no new theorems or diagnoses are
added for a symptom for a long time, one could perhaps consider the underlying
flaw to be in one of the higher categories.

3.5 Alternative Approach: Graph Analysis

We are currently using TLC to verify all the behavioral properties of our spec-
ifications. There are however, other ways of checking the behavior of an Arctis
specification. During the process of this thesis, some time was spent investigating
how graph analysis might be used as a compliment to TLC.

The idea to use graph analysis came from working on diagnosing an unrestrained
producer, see Sect. 7.2. Here we ideally want to state a property that a queue
or other element cannot be filled with a token twice without being emptied once
in-between. This is not possible to express as a standard TLA theorem. We later
found that it could be manually expressed as a refinement proof [Lam96], but we
did not have the time to investigate whether this could be automated.

The idea we came up with was to transform the UML activity into a semantic
graph. But instead of the conventional way of creating a vertex for every state and
an edge for the transitions between them, we thought of an alternative solution:
What is now a TLA action would be a vertex and a directed edge from one vertex
to the other would mean that the downstream action would be enabled once the
upstream one had taken place.



3.5. ALTERNATIVE APPROACH: GRAPH ANALYSIS 49

The idea was that we could get a smaller graph since we would not have to express
every state, just the ones that differed with respect to enabling the following
actions. Since no actions have, for example, a counter being a certain value as
their precondition, we could ignore counters completely.

Once we had a graph, we could then use existing java graph frameworks like
JGraphT [JGr08], JDSL [JDS08] or JUNG [JUN08] for checking some properties.
Diagnosing an unrestrained producer would then be as simple of asking for all
cycles containing the filling action and see if there are any of these that do not
contain the emptying action of the violated queue or node.

However, in order to ensure that an action would be enabled after another one,
each action would explicitly have to state the resulting values of any variables that
could appear as a precondition for another action. Hence we could no longer have
a single action for removing a token from a queue, but one action for removing a
token and leaving 4 tokens, another one for leaving 3 tokens, and so on.

At this point we decided to stop investigating this approach any further. It
does not seem to be a suitable method for checking general behavioral proper-
ties. Graph analysis of a semantic graph, may, however, show some promise for
efficiently checking very specific properties that may not be possible to check
automatically in TLC. Further work is needed to determine this.





Chapter 4

Implementation

In this chapter, we will look at the analyzer from a technical point of view. The
first section discusses the architecture of the analyzer, while the second gives
an insight in the changes from the previous formulator tool and how the new
transformation of sub-activities works.

4.1 Architecture of the Analyzer

The original formulator focuses on expressing the semantics of the SPACE UML
specifications in TLA+. It also generates some theorems that can be violated,
but does not offer any assistance in interpreting them.

The analyzer aims to build on this and hide the details of the model checking
from the user. In order to do this, we had to substantially expand the original
architecture. The analyzer consists of many entities that all are related to one or
more other entities. Figure 4.1 shows the architecture of the analyzer including
the relationships between the different entities1. We will now introduce each of
them from an implementation point of view.

The Controller is given a reference to the UML activity that is to be transformed,
when it is started from Arctis. This reference is simply passed on to the formula-
tor which then returns a reference to the TLA module when done. The controller
can then later invoke a TLC process to run TLC on the TLA+ specification.

The Formulator entity traverses the nodes and edges of a UML activity and its
ESM (if it has one) to slice it into steps. During the traversal, it calls methods
in the TLA module, gradually constructing it.

1Where there is no cardinality specified, a cardinality of “1” is implied.

51



52 CHAPTER 4. IMPLEMENTATION

TLC TraceTLA Module

Controller

Formulator

Creates 

TLA Action

Consists of *

TLA Variable

Theorem 
Factory

Theorem

Consists of 1..*

TLC Process

Runs

Creates 0..1

Diagnosis

Test

Violates

Tries to confirm *

Runs *

Validation 
Result

Creates 0..1

Creates 0..1

Consists of *

Creates

UML Activity
Is input to

Fix
Offers *

Symptom

Reports
Reported by 1..*

Consists of * Consists of *

Runs

Consists of *

Figure 4.1: Relationships of Analyzer entities



4.1. ARCHITECTURE OF THE ANALYZER 53

The TLA Module contains the data structures and methods necessary to create
a TLA+ specification. We also need to use this information after the TLA+

specification has been written to file, and so the TLA module consists of TLA
Variable and TLA Action objects. The TLA variables contain references to the
UML elements they were derived from. This allows us to annotate these UML
elements later, if a theorem is violated. TLA actions contain the TLA variables
that they alter or have as preconditions. TLA actions also contain references to
all edges they traverse allowing the TLA actions to be visualized when showing
the TLC trace.

The Theorem Factory handles the creation of each theorem and keeps a register
of them for later lookup. Any new theorem types have to be registered here to
be included when the theorems are generated.

The TLC Process is basically a wrapper around TLC that allows us to run TLC as
a separate process from within the analyzer and parse the output TLC produces.
If any of the theorems are violated, the TLC process will create a TLC trace.

A TLC Trace consists of TLA actions and TLA variables, just like the TLA
module. The difference being that these are contained in lists ordering them
according to the states of the trace from TLC. Hence we can get iterate through
the trace getting state 1, action 1, state 2, action 2, state 3 etc. A TLC trace
object also implements the interface IAnimationProvider so that it can be given
to the Arctis editor to visualize itself onto the UML activity.

A Theorem not only produces a text string to be inserted into the TLA+ spec-
ification, but has a checkup method that is run if the theorem is violated. In
this method it will determine the correct symptom to report and instantiate this
symptom with the violating TLC trace as input.

A Symptom will try to confirm one or more diagnoses or simply register itself.
Each symptom type is free to choose an algorithm for how it does this. For
example, some symptoms will only register themselves if none of the attempted
diagnoses are confirmed. A symptom is reported by creating a validation result.
This is then registered in Arctis and annotated to a UML element as an error or
a warning.

The purpose of a Diagnosis is to point out what may be causing a symptom.
In other words, a diagnosis represents a typical flaw in a UML activity. The
diagnosis checks to see if it is applicable by running one or more tests on the trace
and/or the activity. If all tests give the right result, we say that the diagnosis is
confirmed. It then registers itself in Arctis by creating a validation result. Note
that a validation result is not a part of the analyzer plug-in, but part of the Arctis
inspection framework (see Sect. 2.1.2).

Some diagnoses have references to one or more Fixes. A fix takes one or more



54 CHAPTER 4. IMPLEMENTATION

UML elements as input and alters them (and their surrounding elements). A fix
is not run directly from the analyzer, but given as a result to the editor where
the user is presented with the option to run it.

A Test is a method for answering a specific question about a TLC trace or a
UML activity. The tests are basically a toolbox that various diagnoses can reuse.

4.2 Changes from the Original Formulator

The work in this thesis focuses on the interpretation of the model checking results,
phase 2 of Fig. 3.2. But we changed some parts that have to do with the trans-
formation from UML to TLA+ as well, like mapping TLA+ variables to UML
elements. Also, we changed the way sub-activities are transformed into TLA+.
This section describes these changes from the original formulator of [Sl̊a07], to
the corresponding software entities of the analyzer.

4.2.1 Improved Mapping Between TLA+ and UML

In the original formulator, TLA+ modules are constructed as a structure of
strings, directly derived from the UML building block. This is sufficient to cre-
ate the file containing the TLA+ specification, so we can run TLC on it. When
creating the analyzer, we found that we needed a richer representation where we
could go from TLA+ back to the UML model as well.

Hence the TLA module class was enhanced to be able to access data after the
TLA+ specification was built from it. To achieve this, we introduced the TLA
variables as proper objects with references to the UML element they were derived
from. This allows us to annotate these UML elements if a theorem is violated.
The TLA actions were also extended with references to all edges they traverse,
to be able to visualize a TLA action when showing the TLC trace.

The mapping between UML elements and TLA variables is not one-to-one. For
example, all parameter nodes of a sub-activity map to the ESM variable. A join
node maps to one variable for each incoming edge it has. Initial and activity final
nodes map to the status variable. Hence we have two structures, mapping in the
opposite direction of each other. This enables us to go both ways, if necessary.



4.2. CHANGES FROM THE ORIGINAL FORMULATOR 55

4.2.2 Transforming Sub-Activities to TLA+

Perhaps the biggest change from the original formulator is how sub-activities,
activities with parameter nodes, are transformed into TLA+. The original formu-
lator can only transform system activities, not sub-activities. Hence one always
has to create a surrounding environment activity to be able to test these. We
can then detect if the environment activity sends a token into the sub-activity as
allowed by its ESM, but the activity itself cannot cope with it. Or we can detect
if the sub-activity is about to output tokens when not allowed by its ESM.

This may still allow for some inconsistencies to go undetected. It can often be
hard to design an environment activity that can send a token on every pin in
every state the ESM allows this, hence properly testing the activity. This is also
quite a bit of unnecessary work for the developer.

In order to do the analysis described in Chapter 5, we decided to enabled the
analyzer to create an independent TLA+ module (/specification) based on a sub-
activity and its ESM alone.

For this we need to express the relationship between steps in the UML activity
and transitions of its ESM, in the TLA+ specification. If a step that visits2 a
parameter node can take place when the ESM is in different states, there will be
several TLA actions derived from it, one for each state. Yet we still want to be
able to reference a step in TLA+ without referencing a particular transition of
the ESM (see Chapter 5).

The consequence of this is that there are now two kinds of TLA actions in TLA+

specifications for sub-activities:

• Normal TLA actions that take into account the ESM state if they visit any
parameter nodes. These represent things that can happen.

• TLA helper actions that correspond one-to-one with a step of the activity
and make no mention of the ESM even though they visit parameter nodes.
These are not actually executed, they are not part of the next-state relation
of the specification. They are only used for writing theorems using the
enabled keyword.

To show the difference between normal and helper actions, we will take another
look at the Button building block that was presented in Sect. 3.2. Figure 4.2
shows two TLA actions that are present in the TLA+ specification derived from
the ButtonWrong activity of Fig. 3.1.

2A step visits a parameter node if it sends or receives a token through one. See Sect. 5.1 for
further explanation.



56 CHAPTER 4. IMPLEMENTATION

start is a TLA helper action. Notice how it makes no reference to the ESM
variable ButtonWrong.

start initial active is a normal TLA action that when executed, will change
the state of ButtonWrong’s ESM from “ initial” to “active”. Figure 4.3
illustrates the parts of the ESM and the activity that this TLA action
represents.

start
∆
=

∧ status = “pre execution”
∧ r0 = 0
∧ r0′ = 1 Getting ready to receive signal
∧ unchanged 〈 status , r0 counter , ButtonWrong〉

start initial active
∆
=

∧ r0 = 0
∧ ButtonWrong = “ initial”
∧ status = “pre execution”
∧ status ′ = “executing” Setting activity to active
∧ r0′ = 1 Getting ready to receive signal
∧ ButtonWrong ′ = “active” Token arrived through start
∧ unchanged 〈r0 counter〉

Figure 4.2: Actions derived from the start step of the ButtonWrong TLA+ specifica-
tion

(a) ESM transition (b) Activity step

Figure 4.3: TLA action: start initial active

Similarly, Fig. 4.4 shows the TLA actions derived from the stop step, the step
where a token enters through the stop parameter node and leaves through the
pushed parameter node. In this simple example, the TLA helper action has no
other content than the predicate that the activity must be executing. And the
normal TLA action simply adds that a token is only allowed through the stop
parameter node when the ESM is in state “active”.



4.2. CHANGES FROM THE ORIGINAL FORMULATOR 57

stop
∆
=

∧ status = “executing”
∧ unchanged 〈 status , r0 counter , r0, ButtonWrong〉

stop active
∆
=

∧ status = “executing”
∧ ButtonWrong = “active”
∧ unchanged 〈 status , r0 counter , r0, ButtonWrong〉

Figure 4.4: Actions derived from the stop step of the ButtonWrong TLA+ specifica-
tion

Figure 4.5 shows how none of the helper actions are part of the Next statement
and hence are not executable. Instead it only contains the normal actions shown
here and in Fig. 3.3.

Next
∆
=

∨ stop active
∨ start initial active
∨ e1

Figure 4.5: The Next statement of the ButtonWrong TLA+ specification





Chapter 5

ESM Consistency

When we reuse sub-activities, we assume their ESMs to be correct. This is what
enables our approach to scale, as we abstract away the internal states and are left
with just those that are visibly different to the outside. However, making sure
the internals of a sub-activity are consistent with its ESM can be a challenging
task, especially for larger ones. Hence we want the analyzer to aid the user in
creating building blocks where the activity and its ESM are consistent.

59



60 CHAPTER 5. ESM CONSISTENCY

Theorems Symptoms Diagnoses Fixes

ESM Violates 
Activity

Activity Violates 
ESM

Never Enabled 
Action

Add ESM 
Transition

Remove ESM 
Transition

Missing ESM 
Transition

Extra ESM 
Transition

Not Enabled 
Action

Enabled Action

ESM Ready

Sometimes 
Enabled Action

Figure 5.1: Topic: ESM Consistency

Note that the diagnoses and fixes we present in this chapter mainly support a
bottom-up approach where the activity is created first and one wishes to check
that the ESM matches. The theorems and symptoms work equally well in a top-
down approach where the ESM is first specified and an implementing activity is
to be created.

We will now take a look at the theorems, symptoms, diagnoses and fixes illus-
trated in Fig. 5.1. To aid the explanation of the concepts, we will go thoroughly
through an example in the end.

5.1 Theorems

There are several things that can cause inconsistency when we design a sub-
activity in Arctis. We will first take a look at how we create theorems to detect
the different cases and report them as symptoms.

We follow the outline of Fig. 5.1 meaning we first discuss the two theorems that
report the ESM Violates Activity symptom before we move on to the three that
report the Activity Violates ESM symptom. At the end, we will also discuss a
syntactic check that the analyzer performs.



5.1. THEOREMS 61

Before we describe the first type of theorems that we create to check consistency
between a sub-activity and its ESM, we must introduce a few new concepts as
well as an example to help explain both the concepts and the following theorems.

Figure 5.2 shows a rather artificial example of an activity and its corresponding
ESM. Its purpose is only to aid our following explanation. The activity is started
through parameter node S. At this point it may receive a token through either
parameter node A or C. If the timer has expired, an token entering through
parameter node A may continue all the way through parameter node B, otherwise
it will stop at join node j1. Note that a token arriving through parameter node
A could also leave through parameter node D. The ESM does not specify this
from state s1, hence there is an inconsistency between it and the activity. The
remaining steps can be worked out by examining the activity diagram, but the
interesting ones will be pointed out as we present the theorems.

B

C

S

A

D

Sub-Act

s1

s3

A/

s2 s4

A/B C/B

A/

s5

B/ A/D

S/

C/

C/

j1
j2

j3

w1

t1

Figure 5.2: ESM consistency example

In Sect. 2.1, a step is explained to be the path a token can travel in a single
transition of the activity. Figure 5.3 shows the four steps from a token arriving
through parameter node A. Step a1 is always enabled (when a token can arrive
through parameter node A), as the decision node is non-deterministic. Step a2 is
only enabled if both token places in join node j1 are empty. Step a3 is enabled if
there is a token waiting in the place from the edge arriving from timer t1 instead,
and none of the token places belonging to join node j2 are filled. Step a4 needs
both w1 to be filled and the timer t1 to have expired, to be enabled.

We say that a step or the resulting TLA action(s) visit(s) a parameter node if



62 CHAPTER 5. ESM CONSISTENCY

B

C

S

A

D

Sub-Act

j1
j2

j3

w1

t1

(a) Step a1

B

C

S

A

D

Sub-Act

j1
j2

j3

w1

t1

(b) Step a2

B

C

S

A

D

Sub-Act

j1
j2

j3

w1

t1

(c) Step a3

B

C

S

A

D

Sub-Act

j1
j2

j3

w1

t1

(d) Step a4

Figure 5.3: The steps from a token arriving through parameter node A



5.1. THEOREMS 63

it implies a token traveling through the parameter node.1 A step or resulting
TLA action(s) visiting exactly the one or two parameter nodes specified in an
ESM transition, is said to implement that ESM transition. From the example,
we can see that step a1 implements all transitions labeled “A/D”, in this case
s4→A/D→ initial. Step a2 and a3 implement all transitions labeled “A/” and
step a4 implements those labeled “A/B”.

The relationship between theorems, steps, TLA actions, ESM transitions and
ESM states is rather complex:

• The theorems we create relate to the source state of an ESM transition, not
the transition itself. Each ESM transition only has one source state, but
an ESM state can have many outgoing ESM transitions, like states s1 and
s4 in the example.

• Several ESM transitions may be implemented by a single step. For example,
step a2 implements both s1→A/→s3 and s4→A/→s5. In this case, there
will be two normal TLA actions created. One that is enabled in s1 and one
that is enabled in s4.

• There may be several steps and hence TLA actions implementing an ESM
transition. For example, both step a2 and a3 implement s1→A/→s3 (and
s4→A/→s5 ).

In the following sections, a step named a b visits parameter nodes A and B.
Hence it implements any transition labeled “A/B”. We will use this as a short
hand way of denoting steps that we have not properly described and named.

5.1.1 Enabled Action

The reason for creating Enabled Action 2 theorems is that we want to ensure that
the activity is ready for any tokens let through by the ESM. More specifically,
we create them in order to ensure that (one of) the right step(s) will be executed
when a token enters through a certain parameter node. In order to create these
theorems we reason as follows from every state of the ESM:

• S is the set of outgoing transitions from the current state.

1We use the word implies since a parameter node does not have an explicit variable in
TLA+, and hence it will not explicitly show up in the TLA action.

2The reason we name the theorem type Enabled Action (as opposed to Enabled Step), is
that it refers to a step’s TLA+ counterpart, a TLA helper action. The same reasoning applies
to the other theorem types.



64 CHAPTER 5. ESM CONSISTENCY

• Sin is the subset of S where the trigger of each transition is an incoming
parameter node.

• TA is the intersection of Sin and the set of all transitions with incoming
trigger A

• For each set TX , at least one of the steps implementing these transitions
must be enabled when the ESM is in the current state.

For our example, we can express the same for state s1 as follows: When the
ESM is in state s1, all helper actions implementing a transition leaving from it,
with an incoming trigger parameter node, must be enabled. However, if there
are several transitions that share the same trigger, only one of them need to be
enabled. This results in the Enabled Action theorems

theorem enabled a
∆
=

2(ESM = “s1”⇒ (enabled (a2) ∨ enabled (a3) ∨ enabled (a4)))
(5.1)

theorem enabled c
∆
= 2(ESM = “s1”⇒ enabled (c b)) (5.2)

Step c b is the step that starts from parameter node C, continues through join
node j3 and stops at parameter node B.

If an enabled action theorem is violated, the interpretation is that the ESM allows
a token through when none of the TLA actions supposed to deal with that token
are enabled. Hence we report an ESM Violates Activity symptom. More on this
in Sect. 5.2.

5.1.2 Sometimes Enabled Action

Some ESM transitions are spontaneous outputs. This means that they specify
that the activity will output a token through a parameter node without this
having been triggered by an incoming token in the same step. An example can
be seen in Fig. 5.2 where the ESM transition s3→B/→s5 is a spontaneous output,
since it is triggered by the internal timer.

We want to create a theorem that detects if the activity complies with the ESM
in these cases. One may think the previously discussed Enabled Action theorems
would be right for the job, but this is not the case. They are used to express that
the activity must be ready to execute a certain step whenever the ESM is in a
state that allows token in through a certain parameter node. But now we want to
express that the activity can output a token when the ESM is in a state that has
spontaneous output transitions originating from it, such as s3 in the example.



5.1. THEOREMS 65

For this we create theorems stating that the activity at least has the possibility
of outputting a token as specified by the ESM. However, TLA is not a branching-
time temporal logic (see Sect. 2.2), so we cannot state “the TLA action im-
plementing the spontaneous output transition must be enabled in at least one
alternative future”. We can, however, state that it must “not never” be enabled.
This is good enough for our purposes.

Hence, for the example in Fig. 5.2, we create the theorem

theorem sometimesenabled b
∆
= ¬2(ESM = “s3”⇒ ¬enabled (b)) (5.3)

Step b is the step that starts from the timer t1 and continues all the way through
j1 and j2 to parameter node B.

Using that 3 ≡ ¬2¬ (see Sect. 2.2), we can rewrite the above theorem

theorem sometimesenabled b
∆
= ¬2(ESM = “s3”⇒ ¬enabled (b))
∆
= 3¬(ESM = “s3”⇒ ¬enabled (b))
∆
= 3¬(¬ESM = “s3” ∨ enabled (b))
∆
= 3(ESM = “s3” ∧ enabled (b))

(5.4)

We now see that we are really considering an infinitely long timeline of infinitely
many runs of the example activity. Hence the “not never” becomes “eventually”.
If we run the activity infinitely many times, it must eventually be able to output
a token when in the state that has a spontaneous output transition.

To implement this theorem, we need to modify the TLA+ specification in such
a way that there is a TLA action from the terminated state to the initial state,
a reset action. This is so that TLC can find a looping behavior that does not
satisfy the liveness property expressed in the theorem. Also, we may need to add
strong fairness (see Sect. 2.2) to the TLA actions implementing the spontaneous
output. This is to make sure they are chosen in some of the executions, if they
depend on a decision node.

Should a Sometimes Enabled Action theorem be violated, we interpret this as
the ESM having promised something to the environment that the activity cannot
keep. Hence we report an ESM Violates Activity symptom.

5.1.3 Not Enabled Action

In state s4 of the example, the transitions labeled “A/” and “A/D” are allowed,
but not any labeled “A/B”. This brings us to the point of the Not Enabled Action
theorems. We create these under the following conditions:



66 CHAPTER 5. ESM CONSISTENCY

• The current step has parameter node X as trigger.

• Parameter node X is an incoming parameter node.

• A state is found that does not have any outgoing transitions implemented
by the current step, but there are ESM transitions with trigger X.

In this case, the ESM is allowing tokens to be received on parameter node X,
but not for the transition implemented by the current step to happen. Hence we
must make sure that the current step is not enabled in this state.

For our example, we create the theorem

theorem notenabled a b
∆
= 2(ESM = “s4”⇒ ¬enabled (a b)) (5.5)

We also create such theorems for step a d from state s1, step c b from state s2
etc. We do not show these theorems here.

If a Not Enabled Action theorem is violated, it means that the activity is ready
to take the incoming token and do something other than what is specified in the
ESM with it. Hence we report this as an Activity Violates ESM symptom.

5.1.4 ESM Ready

If a step implements a transition where the trigger is an outgoing parameter node,
another type of theorem is created, an ESM Ready theorem. These are created
to ensure that whenever a step is enabled, the ESM is in a state that allows a
token to be emitted on this parameter node.

The algorithm is quite straightforward: For every step that implements spon-
taneous output transitions, write a theorem that when this step is enabled, the
ESM must be in the source state of one of those transitions.

For step b that implements the transition labeled B/ in the example, we would
write an ESM Ready theorem

theorem ESMready b
∆
= 2(enabled (b)⇒ (ESM = “s3”)) (5.6)

If there were more than one transition labeled B/, we would simply add the source
state of each as a disjunct.

theorem ESMready b
∆
=

2(enabled (b)⇒ (ESM = “s3” ∨ ESM = “sX” ∨ . . .))
(5.7)



5.1. THEOREMS 67

Should an ESM Ready theorem be violated, it means that the activity is about to
spontaneously output a token when the ESM is in a state that does not allow this.
In other words, the activity violates the ESM and we report that as a symptom.

5.1.5 Never Enabled Action

It is quite likely that syntactically there will exist a step implementing a non-
existing ESM transition. A step, or rather the corresponding TLA action(s), that
does not implement any ESM transitions is OK, as long as it is never executed. If
the step has an incoming trigger parameter node, a Not Enable Action theorem
will be written to detect if it can be executed. Examples are the steps s b j2 and
s b j3 from state initial. Step s b j2 starts from parameter node S, continues
through w2 and j2 before it arrives at B. Similarly, step s b j3 takes the route
via join node j3.

When dealing with a step that does not visit an incoming parameter node, no
such theorem is written. This would have been the case for step b, the step where
the timer expires and outputs a token through parameter node B, if there were no
transitions labeled “B/” in the ESM. For these cases, we write a Never Enabled
Action theorem stating that they must never be enabled for execution.

An example, if there were no transitions labeled “B/” in the example ESM, would
be:

theorem neverenabled b
∆
= 2¬enabled (b) (5.8)

If there is a violation of a Never Enabled Action theorem, we reports this as an
Activity Violates ESM symptom. The reason for this is that such a violation
represents the activity doing something that is not specified by the ESM. It
could be both doing unspecified things with a received token or spontaneously
outputting tokens on parameter nodes that are not allowed to do so.

5.1.6 ESM Transitions Without Any Implementing Steps

From a technical point of view, there is another case that belong here with the
others. There can be ESM transitions that do not have a single implementing step
(a step that visits all parameter nodes that occur in the label of the transition).

All ESM transitions that only have a trigger parameter node will necessarily
have at least one step implementing them since the alternative would be to have
a parameter node without any connected edges. This would be picked up by the



68 CHAPTER 5. ESM CONSISTENCY

regular syntactic inspectors. An ESM transition from an incoming trigger param-
eter node to an outgoing effect parameter node, like s1→A/B→s2 in Fig. 5.2,
can, however, end up without any implementing steps. Imagine an ESM transi-
tion s4→C/D→ initial in the example from Fig. 5.2. There are simply no edges
connection parameter node C to D.

The analyzer checks for this by mapping all ESM transitions to a set of imple-
menting steps. If there are any ESM transitions with empty sets, the user is
notified. This is actually a syntactic check as we do not write any theorems for
TLC to check. Hence we should ideally make a syntactic inspector just for this,
but so far it is far more practical to use the existing code than to write a very
large3 syntactic inspector just to check this one thing.

5.2 Symptoms

There is a subtle difference between an ESM Violates Activity and an Activity
Violates ESM symptom. They both mean that there is an inconsistency between
an activity and its ESM, but they differ in a manner of causality.

An ESM Violates Activity symptom is reported when the ESM is making promises
to the environment that the activity cannot keep. The flaw may very well lie in
the activity, and not the ESM, but it is detected because the ESM claims that
the activity will do something which, in fact, it cannot. The advice given by such
a symptom is to “Alter (expand) the activity so that it conforms to the ESM or
see Extra ESM Transition diagnosis.”

An Activity Violates ESM symptom, on the other hand, is reported when the
activity is doing more than the ESM has specified. Here the flaw may also lie in
the activity or the ESM, but it is detected because the activity can do something
other than what the environment can expect from looking at the ESM. The advice
given by this symptom is to “Alter (reduce) the activity so that it conforms to
the ESM or see Missing ESM Transition diagnosis.”

5.3 Diagnoses and Fixes

The diagnoses discussed in this section are not very exciting, as they can always
be set if the prerequisite symptom is detected. They do however differ from the
symptoms in that while the symptoms do not specify whether an inconsistency
is caused by the activity or its ESM, the diagnoses do make such an assumption.

3The code necessary to find the steps and TLA actions is around 1000 lines



5.3. DIAGNOSES AND FIXES 69

The following diagnoses assume the ESM to be at fault, and are hence only helpful
in a bottom-up approach.

In addition, there are two general diagnoses that every symptom tries to confirm:
Out-of-Order Delivery and Delayed Delivery. These are presented in Chapter 6.

5.3.1 Extra ESM Transition

Every time we have the symptom ESM Violates Activity, we can suggest that
the cause is that there is one or more extra ESM transitions that should be
removed. The user may also solve the issue by changing the internals of the
activity, to prevent it from being violated by the ESM. However, we have no
specific suggestions as to what the user should do, so this is just advice given in
the symptom.

The diagnosis comes with a corresponding fix. The algorithm for removing the
extra transition(s) is as follows:

• Find the state of the ESM of the activity as the violation happened. This
is found from the last state in the trace. Call this “x”.

• Find the parameter node that the token enters the activity through from
the TLA Variable of the violated theorem. Call this “y”

• Remove all transitions from the ESM where the source of the transition is
“x” and the trigger is “y”.

5.3.2 Missing ESM Transition

Whenever we have the symptom Activity Violates ESM, we can suggest the di-
agnosis that there is a missing ESM transition. This could also be solved by
changing the internals of the activity, but yet again this is advice for the symp-
tom to give.

Adding an ESM transition cannot be completely automated. We know from the
trace what the transition should have as source state, and we can also determine
the triggering parameter node from the theorem. If the theorem is a Not Enabled
Action or Never Enabled Action theorem, we can also determine the effect pa-
rameter node. But we cannot determine what the target state of the transition
should be. It may even be a completely new state not already in the ESM. Hence
the user must be given a dialog to choose or input the target state.



70 CHAPTER 5. ESM CONSISTENCY

5.4 An Example, the Timeliness Observer

We will present an example showing how an activity and its ESM correspond to
the TLA+ specification that is generated. We will have a look at the Timeliness
Observer, Fig. 5.4, discussed in [Sl̊a07] and originally from [HK07]. Since the full
example contains hundreds of lines of TLA+ we only show the initial state and
four steps/TLA actions.

Timeliness Observer

inTime

timeout

tooLate

start
event

t1 w1 w2

j2

j3

j1
e3

e12

running

waiting

start/

event/inTime timeout/

event/tooLate

Figure 5.4: The Timeliness Observer. Figure adapted from [Kra07]

The Timeliness Observer is a building block (specifically, a sub-activity) used to
detect whether an event happens within a certain period of time or not. Once
started, it enters state running where it waits to receive a token on the event
parameter node to trigger transition running→event/inTime→ initial or to emit
a token on the timeout parameter node. If it emits a token on timeout, it will
enter state waiting. When the event parameter node receives a token in state
waiting, it will trigger the transition waiting→event/tooLate→ initial and hence
output a token on the tooLate parameter node instead.

Figure 5.5 shows an annotated version of the Timeliness Observer where the
variables have been marked by circles. It also shows the first part of the TLA+

specification which contains all the variables and their initial values.

Step: start

Figure 5.6 shows the step where a token arrives on the start parameter node and
fills both t1 and w1. This matches the ESM transition labeled start/ and hence
the corresponding TLA action changes the ESM state from initial to running.



5.4. AN EXAMPLE, THE TIMELINESS OBSERVER 71

running

waiting

start/

event/inTime timeout/

event/tooLate

Timeliness Observer

inTime

timeout

tooLate

start
event

t1 w1 w2

j2

j3

j1
e3

e12

1 module TimelinessObserver
2 extends Naturals
3 variable w1 The token place of a waiting decision
4 variable w2 The token place of a waiting decision
5 variable j 3e12 The token place for the join j3 and the edge e12
6 variable t1 The state of a timer
7 variable t1 counter
8 This variable counts the number of times a timer expires
9 variable j 1e3 The token place for the join j1 and the edge e3

10 variable TimelinessObserver Represents the state of the ESM of an Activity
11 variable status
12 Represents the state of the entire activity (active/inactive)
13 vars

∆
= 〈w1, w2, j 3e12, t1, t1 counter , j 1e3, TimelinessObserver , status〉

15 Init
∆
=

16 ∧ w1 = 0
17 ∧ w2 = 0
18 ∧ j 3e12 = 0
19 ∧ t1 = 0
20 ∧ t1 counter = 0
21 ∧ j 1e3 = 0
22 ∧ TimelinessObserver = “ initial”
23 ∧ status = “pre execution”

Figure 5.5: The variables and initial state of the Timeliness Observer

Since this is a starting transition, the value of the status variable is changed
from pre execution to executing.

We do not show the corresponding TLA helper action as it would be the same as
the TLA action shown in the figure, except without references to TimelinessOb-



72 CHAPTER 5. ESM CONSISTENCY

Timeliness Observer

timeout

inTime tooLate

start
event

t1 w1 w2

j2

j3

j1
e3

e12

running

waiting

start/

event/inTime timeout/

event/tooLate

start initial running
∆
=

∧ t1 = 0 Checking that incoming token place is free
∧ w1 = 0 Checking that incoming token place is free
∧ Checking that at least one other token place is empty
∨ j 1e3 = 0
∧ Checking that at least one other token place is empty
∨ w2 = 0
∧ TimelinessObserver = “ initial”
∧ status = “pre execution”
∧ w1′ = 1 Adding a token in a waiting decision
∧ status ′ = “executing” Setting activity to active
∧ t1′ = 1 Setting timer
∧ TimelinessObserver ′ = “running” Token arrived through start
∧ unchanged 〈j 1e3, j 3e12, w2, t1 counter〉

Figure 5.6: Step start

server and status. We will not show the helper actions in the following steps
either.

There is no one to one mapping between TLA actions and One-Boundedness
theorems. Still we say that a TLA action contributes to such a theorem.

TLA action start initial running contributes to the following theorem.

theorem status TimelinessObserver w1
∆
=

2(( status = “pre execution” ∧ TimelinessObserver = “ initial”)

⇒ (w1 = 0))

(5.9)

It states that whenever Timeliness Observer is in the state initial, the waiting
decision w1 must be empty.



5.4. AN EXAMPLE, THE TIMELINESS OBSERVER 73

It also contributes to

theorem status TimelinessObserver t1
∆
=

2(( status = “pre execution” ∧ TimelinessObserver = “ initial”)

⇒ (t1 = 0))

(5.10)

stating that whenever Timeliness Observer is in the state initial, the timer t1
must be empty.

The analyzer also creates the theorem

theorem enabled start initial
∆
=

2(( status = “pre execution” ∧ TimelinessObserver = “ initial”)

⇒ enabled (start))

(5.11)

stating that when the activity has not yet started, the step (or really, TLA helper
action) start must be enabled since it implements the starting transition of the
ESM.

Step: event

Figure 5.7 shows the step where the Timeliness Observer is in the running state,
receives a token on parameter node event and neither j2 nor j3 are ready to
fire. There are actually two TLA actions generated from this step. One which
is enabled when TimelinessObserver is in state “running” and one for when it is
in state “waiting”. Only the first is shown in Fig. 5.7. In addition, there is the
TLA helper action event which is also not shown.

The analyzer produces the theorem

theorem notenabled event running
∆
=

2(TimelinessObserver = “running”⇒ ¬enabled (event))
(5.12)

as there is a transition labeled event/inTime leaving from state running. This
transition shares the trigger with the current TLA action. Likewise,

theorem notenabled event waiting
∆
=

2(TimelinessObserver = “waiting”⇒ ¬enabled (event))
(5.13)

is created because of the situation in state waiting.

This step also contributes to

theorem status TimelinessObserver w2 2
∆
=

2(( status = “executing” ∧ TimelinessObserver = “running”)

⇒ (w2 = 0))

(5.14)



74 CHAPTER 5. ESM CONSISTENCY

Timeliness Observer

timeout

inTime tooLate

start
event

t1 w1 w2

j2

j3

j1
e3

e12

running

waiting

start/

event/inTime timeout/

event/tooLate

event running
∆
=

∧ status = “executing”
∧ w2 = 0 Checking that incoming token place is free
∧ Checking that at least one other token place is empty
∨ w1 = 0
∧ Checking that at least one other token place is empty
∨ j 3e12 = 0
∧ TimelinessObserver = “running”
∧ w2′ = 1 Adding a token in a waiting decision
∧ unchanged 〈w1, status , j 1e3, j 3e12, t1, TimelinessObserver ,

t1 counter〉

Figure 5.7: Step event

stating that whenever Timeliness Observer is in the state running, the waiting
decision w2 must be empty. Likewise it contributes to the following theorem.

theorem status TimelinessObserver w2
∆
=

2(( status = “executing” ∧ TimelinessObserver = “waiting”)

⇒ (w2 = 0))

(5.15)

Step: event j2

Figure 5.8 shows the step where a token is received on the event parameter node
and a token is in w1. This causes j2 to fire and a token to be output on the
parameter node inTime. This matches the ESM transition event/inTime and
hence a TLA action is created that changes the ESM from running to initial.
Since this is a terminating transition, the value of the status variable is set to
post execution as well.

This step also contributes to Theorem 5.14 and Theorem 5.15, stating that when-



5.4. AN EXAMPLE, THE TIMELINESS OBSERVER 75

running

waiting

start/

event/inTime timeout/

event/tooLate

Timeliness Observer

timeout

inTime tooLate

start
event

t1 w1 w2

j2

j3

j1
e3

e12

event j 2 running initial
∆
=

∧ status = “executing”
∧ w1 = 1 Checking that all other token places are filled
∧ w2 = 0 Checking that incoming token place is free
∧ TimelinessObserver = “running”
∧ w1′ = 0 Firing join
∧ status ′ = “post execution” Setting activity to inactive
∧ TimelinessObserver ′ = “ initial”

Token arrived through event and exited through inTime
∧ unchanged 〈j 1e3, j 3e12, t1, w2, t1 counter〉

Figure 5.8: Step event j2

ever Timeliness Observer is in the state running, the waiting decision w2 must
be empty.

The existence of the event j2 step, causes the analyzer to create the theorem

theorem enabled event inTime running
∆
=

2(TimelinessObserver = “running”⇒ enabled (event j 2))
(5.16)

This states the property that whenever the ESM is in state running, the TLA
helper action event j2 must be enabled.

The final theorem created as a result of the step shown in Fig. 5.8 is

theorem notenabled event inTime waiting
∆
=

2(TimelinessObserver = “waiting”⇒ ¬enabled (event j 2))
(5.17)

It states that the TLA helper action event j2 must not be enabled when the ESM
is in state waiting. This is because there is another transition with the same
trigger as event j2 leaving from that state in the ESM. Section 5.1.3 explains
this.



76 CHAPTER 5. ESM CONSISTENCY

Step: e3 j1

Timeliness Observer

timeout

inTime tooLate

start
event

t1 w1 w2

j2

j3

j1
e3

e12

running

waiting

start/

event/inTime

event/tooLate

timeout/

e3 j 1 running waiting
∆
=

∧ status = “executing”
∧ t1 = 1 Timer is set and hence ready to fire
∧ j 1e3 = 0 Checking that incoming token place is free
∧ w1 = 1 Checking that all other token places are filled
∧ j 3e12 = 0 Checking that incoming token place is free
∧ Checking that at least one other token place is empty
∨ w2 = 0
∧ TimelinessObserver = “running”
∧ w1′ = 0 Firing join
∧ j 3e12′ = 1 Adding a token in a normal join token place
∧ t1′ = 0 Firing timer
∧ TimelinessObserver ′ = “waiting” Token arrived through timeout
∧ t1 counter ′ = if t1 counter < 2 then t1 counter + 1 else 2

Incrementing counter
∧ unchanged 〈 status , j 1e3, w2〉

Figure 5.9: Step e3 j1

Figure 5.9 shows the step where the timer t1 is ready to output a token and there
is already a token in w1. This will then cause a token to be output on timeout
and another token to be placed in j3e12.

This step contributes to

theorem status t1 j 1e3
∆
=

2(( status = “executing” ∧ t1 = 1)⇒ (j 1e3 = 0))
(5.18)

which states that j1e3 must be empty if t1 is already filled.



5.4. AN EXAMPLE, THE TIMELINESS OBSERVER 77

This step also contributes to

theorem status t1 w1 j 3e12
∆
=

2(( status = “executing” ∧ t1 = 1 ∧ w1 = 1)⇒ (j 3e12 = 0))
(5.19)

which says that j3e12 must be empty if both t1 and w1 are already filled.

The step also makes the analyzer create

theorem ESMready timeout running
∆
=

2(enabled (e3 j 1)⇒ TimelinessObserver = “running”)
(5.20)

which states that whenever the TLA helper action e3 j1 is enabled, the ESM
must be in state running.

5.4.1 Example with a Flaw

Now that we have presented how the activity, its ESM, the TLA+ code and the
theorems are related, we will look at how a flaw may be detected by the analyzer.

We modify the Timeliness Observer by connecting the edge that should lead to
the timeout parameter node to a flow final node instead. The modified version is
shown in Fig. 5.10 which also shows the trace resulting from running the analyzer.

Since no token ever left through the timeout parameter node, the ESM of the
activity is still in state “running” when it reaches state 3. This leads to the
following violations (refer to Sect. 5.1 for the theorem types):

Enabled Action: The step event inTime is not enabled even though the ESM
is in state “running”.

Not Enabled Action: The step event tooLate is enabled when the ESM is in
state “running”. This state allows transitions trigger by a token through
parameter node event, but does not allow the transition labeled event/-
tooLate.

ESM transition without any implementing steps: There are no steps that
implement the transition labeled timeout/. As said before, this is not a
theorem, but a syntactic check that the analyzer makes.

The analyzer does not report all these violations at once. In fact, it will only
report one, even if more violations occur in the same state4. See Sect. 10.2.1 for
a discussion on how we may improve on this in the future.

4To produce this list, we manually removed each violated theorem so that the next one
would be reported.



78 CHAPTER 5. ESM CONSISTENCY

(a) Transition 1 (b) State 2

(c) Transition 2 (d) State 3

Figure 5.10: Trace for the erroneous Timeliness Observer



Chapter 6

Mutual Exclusion and
Distributed Behavior

In this chapter, we first present the theorem, symptom, diagnosis and fixes that
have to do with the mutual exclusion of two or more UML action elements.
We then present two general diagnoses, that are especially relevant to mutual
exclusion situations, and a fix for one of them. All framework elements that are
handled in this chapter are depicted in Fig. 6.1. We illustrate the how the last two
diagnoses are general by drawing arrows with dots between them, representing
how all symptoms can call these diagnoses.

6.1 Mutual Exclusion

The user may assert that two UML action elements are to be mutually exclusive.
This means that at most one of them may be executed (in a single run of the
activity). This is done by applying a stereotype, �mutual exclusion�, that
references the mutually exclusive action elements.1

We will now describe the theorem that leads to a Mutual Exclusion Violation
symptom, before we outline a future diagnosis and some future fixes for it.

1To avoid having multiple, redundant stereotypes, the �mutual exclusion� stereotype is
simply applied to the activity as a whole.

79



80 CHAPTER 6. MUTUAL EXCLUSION AND DISTRIBUTED BEHAVIOR

Theorems Symptoms Diagnoses Fixes

Mutual 
Exclusion 
Violation

Mutual 
Exclusion

Missing Abort 
Path

Insert Abort 
Path

Redirect Control 
Flows for 

Atomic Decision

Out-of-Order 
Delivery

Insert Sequencer

Delayed
Delivery

Figure 6.1: Topic: Mutual Exclusion and Distributed Behavior

6.1.1 Theorem and Symptom

When the analyzer transforms an activity into TLA+, it generates counter vari-
ables for each UML action element. These are variables that are incremented
every time a UML action element like a receive signal action, timer, call op-
eration action or call behavior action2 are executed. The range of the counter
variables is 0 to 2. The values 0 and 1 mean never and once respectively, whereas
2 means more than once.

When the user asserts that two action elements are mutually exclusive, we write
a theorem

2¬(action1 counter > 0 ∧ action2 counter > 0) (6.1)

We can also assert the mutual exclusion of three or more actions. We think the
mutual exclusion of two actions will be the most common and useful variant, but
there is nothing to stop us from making a completely general variant. In this case,
we cannot make a single theorem that detects all violations. For example, if three
action elements are asserted to be mutually exclusive, we create the theorems

2(action1 counter > 0⇒ (action2 counter = 0 ∧ action3 counter = 0)) (6.2)

2We plan to add a counter for every pin of a call behavior action, to be able to express
assertions in more detail.



6.1. MUTUAL EXCLUSION 81

2(action2 counter > 0⇒ (action1 counter = 0 ∧ action3 counter = 0)) (6.3)

2(action3 counter > 0⇒ (action1 counter = 0 ∧ action2 counter = 0)) (6.4)

If a mutual exclusion violation is detected it means that the user failed to make
sure that at most one of the action elements received a token. There are two
ways of making sure of this.

• A choice is made at some point in the activity, and a token is only sent
towards one of the mutually exclusive action elements.3

• The activity sends tokens towards both action elements, but as soon as one
of them executes, the path of the token heading for the other action element
is blocked. This is really a case of mixed initiative [Flo03] where we need
to avoid that both initiatives are taken. Mixed initiative is also known as
conflicting initiative [BH93] or non-local choice [BAL97] and an example is
discussed in [KSH07].

If any of the above theorems are violated, we report a Mutual Exclusion Violation
symptom. Such a symptom gives advice that either a decision must be made
upstream of the elements, or there must be “abort paths” (explained shortly)
between them.

6.1.2 Diagnosis

We have an idea for a diagnosis for the mixed initiative scenario. In this case,
there must be a path leading from somewhere in the step(s) that traverse(s)
action 1 to somewhere upstream of action 2. This is the only way to stop a token
that is heading towards action 2. An example is shown in Fig. 6.2. We can find
whether such an abort path exists by syntactic graph traversal. We will present
how this can be done in Sect. 7.2.

Of course, for the mutual exclusion to work both ways, there should be a similar
path from action 2 to action 1. Hence, in this example, the diagnosis would be
confirmed, as the execution of action 2 does not prevent the execution of action 1
afterwards.

In this example, there is a shallow building block, Switch. The ESM of a switch
is shown in Fig. 6.3. It is used to make a decision depending on whether some
token has arrived on the flip pin or not.

3By sending a token towards an element, we mean that it will eventually reach it, not
necessarily in the same step.



82 CHAPTER 6. MUTUAL EXCLUSION AND DISTRIBUTED BEHAVIOR

action 1

action 2

flip sw:
Switch

in

out1 out2

Figure 6.2: Example of feedback from action 1 to action 2

normal

normal

in/out1

in/out1

«ESM» Switch

flip/

flipped

flipped

in/out2flip/

Figure 6.3: ESM of Switch

6.1.3 Fixes

There are two fixes we can think of, depending on whether the mutually exclusive
actions are in the same partition or not.

If both action elements are located in the same partition, we can easily insert a
switch before each action, as well as edges between them, to create the kind of
structure shown in Fig. 6.4.

If the two actions are located in different partitions, there is no way to abort one
just as the other has taken place. We therefore need to lead the control flow from
both partitions to a common partition where a decision can be made in a single
atomic step. Then the winning control flow can return to its originating partition
to execute the action there. An example of this is shown in Fig. 6.5. The ESM



6.1. MUTUAL EXCLUSION 83

action 1 action 2

flip sw:
Switch

in

out1 out2

flipsw:
Switch

in

out1 out2

Figure 6.4: Example of mutual feedback between action 1 and 2

of a First shallow building block, is shown in Fig. 6.6.

action 1 action 2

in1
fi: First

out1 out2

in2

Figure 6.5: Example of First block to ensure mutual exclusion

However, as the example in the following section will show, what exactly should
be considered upstream of an action element is not so easy to determine. If the
mutually exclusive action elements are not normal action elements, but pins of a
call behavior action, one needs to analyze the ESM to see if an “abort path” is
provided by the specification. The automatic insertion of a First block, or even
a full blown MIPS/MISS (see Sect. 6.2.2 and [KSH07]), is currently out of reach.



84 CHAPTER 6. MUTUAL EXCLUSION AND DISTRIBUTED BEHAVIOR

first1

first1

in1/out1

in2/

«ESM» First

in2/out2

first2

first2

in1/in1/out1 in2/out2

Figure 6.6: ESM of First

Both the diagnosis and the fixes therefore need some further work.

6.2 General Diagnoses

This section introduces two general diagnoses, Out-of-Order Delivery and De-
layed Delivery. We say they are general because they are applicable from every
symptom we have found so far, although they may be more relevant for some than
others. We will also introduce a fix that can be applied to one of the diagnoses.

To demonstrate the diagnoses, we introduce an example building block, Button
Game, as shown in Fig. 6.7. It represents a part of a game where a local and a
remote player compete to be the first one to press their button, once started.4 It
is somewhat artificial in that it does not ensure that the buttons are activated at
the same time, but it serves its purpose of demonstrating the diagnoses, without
being too large and complicated. The Button building block, is introduced in
Sect. 3.2.

6.2.1 Diagnosis: Out-of-Order Delivery

When we analyze the first version of Button Game, we find a Respect ESM the-
orem to be violated, causing an ESM Violation symptom to be reported (see
Sect. 9.1.1). A token can arrive on pin stop of call behavior action remote, before

4The example can also be interpreted as a simplified version of the Hotel Wakeup activity
from Fig. 2.4.



6.2. GENERAL DIAGNOSES 85

startstart

Button Game
local player remote player

pushed

stop

stopped

local:
Button

stopped

stop

pushed

remote:
Button

start

remote wins local wins

Figure 6.7: Button Game 1

it has even been started. In other words, the token sent to start the remote but-
ton is still in the queue between the local player and the remote player partition.
Figure 6.8 illustrates the violating state of the activity.

startstart

Button Game
local player remote player

pushed

stop

stopped stopped

stop

pushed

start

remote wins local wins

off off

Figure 6.8: Button Game 1, violating state

There are no specific diagnoses for an ESM Violation symptom, as it is so general.
One of the diagnoses we still check if can be confirmed is an Out-of-Order Delivery
diagnosis. This diagnosis is confirmed if the following holds true:

• Somewhere in the trace leading up to the violation, two queues entering the



86 CHAPTER 6. MUTUAL EXCLUSION AND DISTRIBUTED BEHAVIOR

same partition carry tokens

– and the one that was filled last, is emptied first

– or the violating state is the first state where the second queue is filled.

We illustrate these two cases in Fig. 6.9. In the first case, one token has overtaken
another. This is possible since our semantics does not guarantee channels between
components to deliver signals in FIFO order. In the second case, the violation
happens just as the second queue is filled. Hence the violation is caused by a
state in which the second queue can now emit a token. This also means that the
token would overtake the one in the first queue.

Figure 6.9: Traces that confirm an Out-of-Order Delivery diagnosis

We attempt to confirm this diagnosis because many problems could potentially be
due to the fact that the developer is wrongfully assuming FIFO channels between
components. If two tokens have been delivered “out-of-order”, we explicitly notify
the developer of this so he or she may pay special attention to whether this was
the cause of the symptom.

Fix: Insert Sequencer

Whenever we report an Out-of-Order Delivery diagnosis, we also give the user the
option of automatically inserting a sequencer. We apply this fix to our example
and get the activity shown in Fig. 6.10. The nodes that make up the sequencer
are circled.



6.2. GENERAL DIAGNOSES 87

startstart

Button Game
local player remote player

pushed

stop

stopped

local:
Button

stopped

stop

pushed

remote:
Button

start

remote wins local wins

Figure 6.10: Button Game 2

For this fix to be automatic, we assume that the queue that is first filled, is the
one that is intended to deliver its token to the receiving partition first. We call
this the primary queue.

The fix inserts three nodes in the activity, and all nodes are inserted in the target
partition of the queues. A fork node is inserted in the edge that represents the
primary queue and a join node in the edge that represents the secondary queue.
These are connected via a timer. The timer is there to ensure that both tokens
are not consumed simultaneously, should the secondary queue be emptied first.

6.2.2 Diagnosis: Delayed Delivery

We analyze the second version of the Button Game and find that there is yet
another problem: Both buttons can be pressed before the token sent to stop the
other has arrived, as shown in Fig. 6.11. This also results in an ESM Violation
symptom, as both buttons could receive a token on pin stop when they have
already terminated. See Fig. 3.1(a) for the ESM of the Button building block.

We could also imagine that we had specified that not both buttons may be pushed
by applying the mutual exclusion stereotype to the pushed pin of both buttons.
In this case, we would rather get a Mutual Exclusion Violation symptom. But as
we have yet to complete any diagnoses specific for this symptom, we will continue
in the same manner from both symptoms.5

5In fact, in this example both theorems would be violated by the same state, so we do not
know which theorem TLC would first report as violated.



88 CHAPTER 6. MUTUAL EXCLUSION AND DISTRIBUTED BEHAVIOR

startstart

Button Game
local player remote player

pushed

stop

stopped stopped

stop

pushed

start

remote wins local wins

off off

Figure 6.11: Button Game 2, violating state

The analyzer will still try to confirm an Out-of-Order Delivery diagnosis and in
fact, that diagnosis will be confirmed. But having already applied the fix for
this, we look to the next diagnosis reported, a Delayed Delivery diagnosis. This
diagnosis is confirmed under the following condition:

• There is a state in the trace where

– a queue from partition A to B has at least one token

– and a queue from B to A has at least one token.

Said in another way, there are tokens crossing in each direction between two
partitions. This kind of error trace is typical of a mixed initiative situation. While
there are no corresponding automated fixes to this diagnosis, it does inform the
user of this textually and suggests to have a look at the MIPS and MISS building
blocks that are designed to solve mixed initiative situations.

Following its advice, we choose to insert a MISS (Mixed Initiative Secondary
Starter) block between the two partitions. This gives the activity shown in
Fig. 6.12. The secondary side now has to take into account that it can be overruled
even after taking initiative. In our example, being overruled is no different to
loosing normally, except that when overruled, we do not have to stop the local
button.

The ESM of the MISS building block is shown in Fig. 2.13. It gives priority to
the non-starting side, as explained in [KSH07].



6.2. GENERAL DIAGNOSES 89

m: MISS

startstart

Button Game
local player remote player

pushed

stop

stopped

local:
Button

stopped

stop

pushed

remote:
Button

start

remote wins local wins

started

primInitiativesecInititive

secWins

primaryWins

secOverruled

secAccepted

start

Figure 6.12: Button Game 3





Chapter 7

Bounded Queues

The reactive systems we specify are typically distributed. The services provided
within such systems are spread across several components that communicate
asynchronously through buffered channels. Since real channels have finite buffers,
we want to detect if they could potentially be overflown by tokens.

A channel, or queue, is represented by an edge crossing the border between two
partitions of an activity. The model checker can only work in a finite state space,
so we provide a parameter that the user can set, for how many tokens a queue
can contain before we assume it to be unbounded. By default, this parameter is
set to five tokens. We will use the default value in the following discussion.

We will illustrate how we may find an unrestrained producer by going through
the scenario shown in Fig. 7.1.

Theorems Symptoms Diagnoses Fixes

Unbounded 
Queue

Unrestrained 
Producer

Insert Fork / 
Join Combo

Grant Slow 
Filling of Queue

Bounded Queue

Figure 7.1: Scenario: Unbounded Queue

To aid our explanations, we revisit the example introduced in Chapter 1, the
Location Tracker. This building block tracks the position of a mobile client of

91



92 CHAPTER 7. BOUNDED QUEUES

some sort, and notifies both the serves side and the client side when the client is
close to a target location.

Figure 7.2: The Location Tracker

7.1 Theorem and Symptom: (Un)bounded Queue

To detect an unbounded queue, we write a theorem stating that the number of
tokens in the queue should be at most five (or the value the user has set). We
call this a Bounded Queue theorem.

theorem queue name K bounded
∆
= 2(queue name ≤ 5) (7.1)

For the example, one theorem would be written for each of the three edges that
cross the partition border.

This theorem only has one symptom and hence there is no additional processing
required to determine that the symptom is an Unbounded Queue. This symptom
explains that the queue is likely to be unbounded, but that the user may change
the number of tokens allowed in the queue, to see if this makes a difference.



7.2. DIAGNOSIS: UNRESTRAINED PRODUCER 93

7.2 Diagnosis: Unrestrained Producer

A queue (or other element) can only be overflown by tokens if they are being
duplicated somewhere. The only activity node with the ability to duplicate a
token, is the fork node. Hence we start by looking for fork nodes that could have
caused caused other elements to be overflown. We only need to consider fork
nodes that occur in the trace as any other fork nodes will never have received
a token and hence could not have duplicated it. For the fork node to perform
the duplication more than once, at least one of the duplicates must return to the
fork node. This can only happen if there is a cycle in the activity that contains
the fork node. We call such a cycle a producer. Yet, if this cycle also contains
the overflown element, a token will leave the element just as often as a token will
arrive. In other words, the producer will be restrained by this element and the
element will not be overflown. Hence the cause can only be a cycle that contains
a fork node, but not the overflown element. We call such a cycle an unrestrained
producer.

Figure 7.3 shows a producer cycle containing the fork node f1. This producer
is restrained with respect to queues q1 and q2, but unrestrained with respect to
q3. Remember that we only try to confirm a diagnosis after we have a symptom.
Hence, if queue q3 is overflown, the figure would show an unrestrained producer,
otherwise not.

q1

q2

f1
q3

Figure 7.3: A Producer Cycle

We will now present three ways of detecting an unrestrained producer, as well as
a pragmatic compromise between two of them.

7.2.1 Alternative 1: Syntactic Cycle Detection

We can detect an unrestrained producer by the algorithm shown in Fig. 7.4. We
find all fork nodes that have been visited in the trace. Then we find any paths
from these fork nodes back to themselves, but remove any cycles that also contain



94 CHAPTER 7. BOUNDED QUEUES

the overflown element. We are then left with a list of unrestrained producers.

The FindCycle() method is a recursive implementation of depth-first search. To
get a demonstrator ready in time, the current implementation of the FindCycle()
method, is quite simple. That implementation does not take into consideration
that to continue from a join node, you must be able to arrive via all incoming
edges. Also, for sub-activities the implemented method follows all outgoing edges
(from all output pins), but ideally it should only follow those that are reachable
via direct or indirect transitions from the input pin.

Data: Trace from TLC
Data: UML Activity
Data: Violated element (node or queue)

// List of fork nodes

List〈ForkNode〉 ForkNodesInTrace;1

foreach TLA Action in trace do2

foreach Visited edge do3

if Target of edge is a fork node then4

Add to ForkNodesInTrace;5

end6

end7

end8

// A map from each fork node to a list of cycles containing

that fork node

Map〈ForkNode, List〈List〈Edge〉〉〉 CycleMap;9

foreach Fork node in ForkNodesInTrace do10

// Recursive method that finds all paths from the fork node

back to itself and add them to CycleMap

FindCycle(ForkNode target, List〈Edge〉 pathSoFar);11

end12

foreach Entry in CycleMap do13

for All cycles in map entry do14

Remove all cycles containing the violated element from CycleMap;15

end16

if Fork node has no remaining cycles then17

remove entry from CycleMap;18

end19

end20

return CycleMap21

Figure 7.4: Detecting an unrestrained producer, syntactic algorithm



7.2. DIAGNOSIS: UNRESTRAINED PRODUCER 95

For our example, the algorithm would start with the two first fork nodes, as these
are the only ones that will have received a token when the violation occurs (see
Fig. 1.8). For the first fork node (the one closest to the starting parameter node),
it will follow all outgoing edges, but never be able to arrive back to the starting
fork node. When the algorithm examines the second fork node, it will find a path
through the timer, the merge node and the call operation action detectPosition,
that leads back to this very fork node. It then checks if the second queue from
the top is contained in this path. Since it is not, it reports a possible unrestrained
producer.

Unfortunately, it is not possible to set an accurate diagnosis for an unrestrained
producer purely syntactically. There could be sub-activities that we have to
traverse in order to get back to the fork node. Imagine, for example, that the
cycle containing the fork node goes through the Timeliness Observer (see Fig. 5.4)
via the transition “event/inTime”. There is no way to syntactically check whether
or not this transition will be enabled. That depends on the state of the timeliness
observer something which cannot be determined by syntactic analysis. Hence our
syntactic algorithm takes a “worst case” approach in that it assumes that tokens
will be able to travel along all the edges. This means that the diagnosis will
sometimes be confirmed for a producer that is actually restrained.

Even though syntactic analysis can give too many unrestrained producer diag-
noses, we claim that it is still useful. In the case of there being only one unre-
strained producer in addition to another producer, restrained due to a join node
or some time dependent choice, we will give a warning on both of them. Through
common sense and with the help of the visual trace, the user should be able to
decide which one is the real problem.

7.2.2 Alternative 2: TLA Refinement

To set a truly accurate diagnosis, we need to analyze the behavior. We need a
theorem stating that “If we reach a state where we can fill the queue, we can only
reach such a state again via a state where we just emptied the queue”. Unfortu-
nately this is not that straightforward as most other theorems. This theorem is
a small program in itself as pointed out in [Lam94, Sect. 6.3]. Hence we would
have to use a TLA refinement proof [Lam96] stating that the specification derived
from the UML activity implies an abstract specification where you never reach
two filling states in a row without going through an emptying state. We did not
have time to explore further if creating the refinement mapping (see Sect. 2.2.1)
necessary for this proof can be done automatically, but this is something we aim
to investigate later.



96 CHAPTER 7. BOUNDED QUEUES

7.2.3 Alternative 3: Analyzing the Trace

There is another way to analyze the behavior of the specification. We still have
the trace from TLC caused by the violation of the Bounded Queue theorem.
This trace contains a subset of the activity behavior, the one leading up to the
violating state. We can use the trace to look for cycles as well. This avoids the
problems of a syntactic analysis in that we are only given the steps that actually
took place. An abstraction of the algorithm is as follows:

• Add every fork node you encounter when going through the trace to a list.

• If you encounter the violated element, empty the list.

• If you encounter a fork node that is already in the list, you have found an
unrestrained producer.

Data: Trace from TLC
Data: Violated element (node or queue)

// List of fork nodes

List〈ForkNode〉 ForkNodesInTrace;1

// List of fork nodes that are part of unrestrained producers

List〈ForkNode〉 UnrestrainedProducerForkNodesInTrace;2

foreach TLA Action in trace do3

foreach Visited edge do4

if Target of edge is a fork node then5

if ForkNodesInTrace.contains(Target) then6

Add target to UnrestrainedProducerForkNodesInTrace;7

else8

Add target to ForkNodesInTrace;9

end10

else if Target of edge is the violated element then11

Empty ForkNodesInTrace;12

end13

end14

end15

return UnrestrainedProducerForkNodesInTrace16

Figure 7.5: Detecting an unrestrained producer, trace analysis algorithm

Figure 7.5 shows the new algorithm written out in detail. It does not give the
complete unrestrained producers, since it only knows what fork nodes are part



7.3. FIX: INSERT FORK / JOIN COMBO 97

of one, not what edges form the cycles. However, the current fix (see Sect. 7.3)
does not need to know the full cycle to work, just the fact that the violation is
caused by an unrestrained producer.

Applying this algorithm to our example, we add the first fork node (right after
the starting parameter node), then the second one (right after detectPosition)
and then encounter the second fork node again. We can hence be certain to have
found an unrestrained producer.

The problem with this algorithm is that it is not guaranteed to find an un-
restrained producer that violates the one-boundedness of a node.1 The one-
boundedness property is violated before the token actually fills an already filled
node, see Sect. 8.1. We could imagine an example such as the Location Tracker
where all the queues between mobileClient and locationServer are replaced by
timers. The property would be violated in state 2 (see Fig. 1.8), where the
fork node has still only received a token once. The reason for this is that One-
Boundedness theorems are of the type

2(n1 = 1⇒ n2 = 0) (7.2)

where n1 and n2 are inner place nodes. In contrast, Bounded Queue theorems
are of the type

2(queue size ≤ 5) (7.3)

meaning that a One-Boundedness theorem is violated one state earlier than a
Bounded Queue theorem.

7.2.4 A Pragmatic Compromise

The best practical solution currently, is to choose either alternative 1 or 3 de-
pending on whether the symptom is an unbounded queue or something else. The
syntactic algorithm finds all unrestrained producers, but may give too many con-
firmed diagnoses. The algorithm analyzing the trace is accurate, but only works
if the symptom is an unbounded queue.

7.3 Fix: Insert Fork / Join Combo

We have implemented an automated fix that can be applied if the diagnosis of an
unrestrained producer is confirmed. The fix takes as input the triggering node

1Figure 3.7 shows that the Unrestrained Producer diagnosis can be called from a One-
Boundedness Violation symptom.



98 CHAPTER 7. BOUNDED QUEUES

of the action that puts the token in the violated element (the queue) and the
violated element itself.

The fix does the following, as illustrated in Fig. 7.6:

• Inserts a fork node right after the violated element.

• Inserts a join node right after the triggering node of the action that puts a
token in the violated element.

• Inserts an edge from the fork node to the join node.

The fix seems to work nicely on the example, but there is a catch: By applying
the fix, we have created a new producer that contains the previously violated
element. If there are more stateful elements downstream of it, they will now be
overflown. Hence a better idea would be to apply the fix to the last stateful
element downstream of the producer. But this is hard to implement as the last
violation will not show up before all the elements between the producer and
the last element has had the fix applied. We could then suggest to remove the
formerly applied fixes and supply the user with an automatic way of doing that.
This is not a very elegant solution, though.

Another solution might be to let TLC run with the “-continue” keyword (see
Sect. 2.2.2) to discover all violations at once. This could work as the specifications
are made in such a way that actions overflowing nodes are not enabled2 and hence
the behavior past the point of the first violation should be correct. However, this
is not currently the case for queues. We could add the precondition that a queue
must contain less than five tokens to put a token into it. Then the specification
would give meaningful behavior even after the state where the first violation is
detected. We will revisit this topic in more detail in Sect. 10.2.1.

In our example, the queue from locationServer to mobileClient can be overflown
once the fix has been applied. So we see that although the fix solved the first
problem, there is a better way: We could connect the edge that is currently
connected to a flow final node, to the join node created by the fix. This would
mean that there is no feedback if the client is close to the target, but this is OK.
In fact, Location Tracker 2 will not be consistent with its ESM (Fig. 1.4) unless
we do this: The current solution would allow the activity to send more than one
token through parameter node clientclose, before it is terminated.

This illustrates that even though we can supply automated fixes in some cases,
the user still has to think about whether applying the fix is consistent with the

2For example, the TLA action in Fig. 5.6 requires both t1 and w1 to be empty.



7.3. FIX: INSERT FORK / JOIN COMBO 99

Figure 7.6: Fix: Insert Fork / Join Combo

intentions for the specification. For this specific example, the fix may act more
like an inspiration for how to fix the problem.



100 CHAPTER 7. BOUNDED QUEUES

7.4 Alternative Fix: Give Grant

There is another way to solve the problem of an unbounded queue. The user
could give a grant in the form of a UML stereotype, stating that the queue is
emptied faster than the producer fills it [KHB06, Sect. 6]. This is not really a fix
in that it does not change the model, rather the way the model is interpreted. In
TLA+ the proposed grant would take the form of an extra precondition on the
action(s) filling the queue “ ∧ queue < 5”

Giving such a grant has the unfortunate effect of tying the specification closer
to the implementation. The implementation is now responsible for emptying the
queue faster than it is filled. This somewhat defeats the purpose of a thorough
analysis at the specification level to avoid problems later. Still, there will be
times when a queue obviously is not going to be overflown, like when a signal is
receive once an hour and the processing of it takes mere milliseconds. Then it
is useful for the developer to have the option of giving a grant instead of having
to change the specification to accommodate the tool, which should never be the
case.



Chapter 8

One-Boundedness

According to the semantics that we assume for activities, all inner places need to
be one-bounded (see [KH07b]), meaning that they can hold at most one token.
An inner place is any token place such as a timer or a join node except for the
queues between partitions.

We will now have a look at the scenario outlined in Fig. 8.1 where a One-
Boundedness theorem is violated leading us to report a One-Boundedness Vi-
olation symptom. We will then see how we can set a Misplaced Merge Node
diagnosis, and in the end we will take a look at the available fixes.

Theorems Symptoms Diagnoses Fixes

Replace Merge 
with Join Node

One-
Boundedness 

Violation

Misplaced Merge 
Node

Replace Merge 
Node with FTP

One-
Boundedness

Figure 8.1: Scenario: One-Boundedness

To aid the readability of this section, we provide an example, the Operate Door
service, as shown in Fig. 8.2. The example is inspired by the Access Control
System from [KH06] and models the operation of a door.

101



102 CHAPTER 8. ONE-BOUNDEDNESS

Operate Door
door control authentication server

card_pin

a:
Authenticate

door
open

denied

close

unlock

lock

ok

done

nok

ok

pid

authenticating

ready

card_pin/

denied/ ok/

opening

open/

open/
denied/

done/

waiting

ok/

Figure 8.2: Operate Door, First Attempt

The operator must first authenticate, but may send the next command (via pin
open) even before the authentication is completed. We only model that this
command can be to open the door, but imagine that there are more, like locking
the door for the night, not allowing any normal users to pass.

8.1 Theorem and Symptom

To assure one-boundedness of all inner places, we need to make sure that any
token that can be emitted cannot reach a filled inner place in a single step. We
do this by creating a One-Boundedness theorem for all starting nodes and every
inner place a token sent from them can reach in a single step.

In our example, there is only one theorem like this.The theorem is illustrated in
Fig. 8.3 and states that whenever the Operate Door service is active/executing,
and there is a token in the queue, there must not already be a token in the close
receive signal action:

theorem status DoorControl Door e6 close
∆
=

2(( status = “executing” ∧ DoorControl Door e6 > 0)⇒ (close = 0))
(8.1)



8.2. DIAGNOSES 103

door

close

unlock
e6

Figure 8.3: Illustration of theorem 8.1

Have another look at the Timeliness Observer example in Sect. 5.4 for several
other examples of theorems that are created to ensure one-boundedness.

When a One-Boundedness theorem is violated, we report a One-Boundedness
Violation symptom. The symptom explains that two tokens are about occupy
the same token place and reports any diagnoses that are confirmed.

8.2 Diagnoses

A One-Boundedness Violation symptom currently only has two specific diagnoses
that it attempts to confirm: Unrestrained Producer (discussed in Sect. 7.2) and
Misplaced Merge Node.

A merge node, unlike a join node, for example, passes on every token that it
receives. Hence it is a candidate for causing a One-Boundedness Violation symp-
tom.

To confirm a Misplaced Merge Node diagnosis, the analyzer checks for merge
nodes in the trace. It does this by simply checking if the target node of any
of the traversed edges in the trace is a merge node. If the same merge node
occurs two or more times, meaning that at least two token passed through it, the
diagnosis is confirmed.

The Misplaced Merge Node diagnosis is only reported by a One-Boundedness Vio-
lation symptom if no other diagnoses were confirmed. This is because for any ex-
ample where an Unrestrained Producer diagnosis would be confirmed, there would
most likely be a merge node in the trace as well. Hence the One-Boundedness
Violation symptom gives lowest priority to the Misplaced Merge Node diagnosis.

When we analyze the behavior of the Operate Door building block, theorem 8.1
is violated and a One-Boundedness Violation symptom is reported. The ana-
lyzer first tries to confirm the Unrestrained Producer diagnosis, but does not find
anything suspicious. The analyzer then attempts to confirm the Misplace Merge
Node diagnosis. It finds two occurrences of the merge node in the trace and
reports this as a possible cause of the symptom.



104 CHAPTER 8. ONE-BOUNDEDNESS

8.3 Fixes

There are currently two fixes available for a misplaced merge node:

1. Replace merge node with join node

2. Replace merge node with a special building block that only lets one token
pass.

The first is self-explanatory while the latter needs an introduction.

An FTP, First Token Passes, is a shallow building block that allows the first
token through and then stops all others. The building block with its ESM is
shown in Fig. 8.4.1

in1 in2

out

First Token 
Passes

(a) Building Block

blocking

blocking

in1/out

in1/

in2/out

in2/

(b) ESM

Figure 8.4: First Token Passes, shallow building block

Both fixes replace the merge node by something that has different behavior, but
looks syntactically similar. While the first is obvious, the last one could also
serve as a way of informing the user about a building block that he or she was
not previously aware of.

In our example, we can easily see that replacing the merge node with a join node
is going to change the behavior into the intended one. The application of the fix
is illustrated in Fig. 8.5. Note that applying the last fix would also have gotten
rid of the symptom. This underlines the point that we still need the user to
make choices according to what the intentions really are. We just try to make
the process as comfortable as possible.

1We show a version with two inputs, but it could have more.



8.3. FIXES 105

Operate Door
door control authentication server

card_pin

a:
Authenticate

door

open

denied

close

unlock

lock

ok

done

nok

ok

pid

Operate Door
door control authentication server

card_pin

a:
Authenticate

door
open

denied

close

unlock

lock

ok

done

nok

ok

pid

Figure 8.5: Application of Replace Merge Node with Join Node on Operate Door





Chapter 9

Other Theorems and Symptoms

There are still some theorems and symptoms from Fig. 3.7 that have not yet been
discussed. Figure 9.1 depicts the remaining ones, that we will go through in this
chapter.

9.1 Respect ESM

An ESM violation is found if a token can enter a call behavior action through a
pin when the ESM of the referred sub-activity is not in a state where is accepts
this. An example is if the surrounding activity of the Operate Door building
block (Fig. 8.2) is wired in such a way that it tries to send a token through the
open pin before it has sent one through the card pin pin.

Figure 9.2 shows an example where we instantiate a Timeliness Observer in
a system activity. The instance, to, is started and after a delay, a token is sent
through the event pin. Any outputs are simply discarded or terminate the system.
The ESM of Timeliness Observer is also shown for convenience.

In the example shown in Fig. 9.2, the theorem derived from the step between the
timer t and the event pin would look like

2(t = 1⇒ (to = “running” ∨ to = “waiting”)) (9.1)

107



108 CHAPTER 9. OTHER THEOREMS AND SYMPTOMS

Theorems Symptoms Diagnoses Fixes

Number of 
Executions

Multiplicity ESM 
Violation

ESM Violation

Too Many 
Executions

Too Few 
Executions

Deadlock

Sub-Activity 
does not 

Terminate

No Deadlock

Sub-Activity 
Terminates

Respect ESM

Figure 9.1: Remaining theorems and symptoms

9.1.1 ESM Violation

We report an ESM Violation symptom if a Respect ESM theorem is violated.
Note that this is different from Chapter 5 where we discuss how we can detect
if the inside of an activity is consistent with its ESM. Here we check if the
environment where such an activity is instantiated, respects that ESM.

We have yet to device any specific diagnoses for this symptom, as it is such a
general one. More on this in the following section.

9.1.2 Multiplicity ESM Violation

A Multiplicity ESM Violation symptom is detected by a Respect ESM theorem
(see theorem 9.1) just like an ESM Violation symptom. What sets a Multiplicity
ESM Violation symptom apart from a normal ESM Violation symptom is that
a Multiplicity ESM Violation symptom is reported when a token arrives on a



9.2. NUMBER OF EXECUTIONS 109

running

waiting

start/

event/inTime timeout/

event/tooLate

to: Timeliness Observer

inTime
timeout

tooLate

start
event

«ESM» Timeliness Observer

Figure 9.2: A system activity instantiating a Timeliness Observer.

pin of a call behavior action after a transition triggered by this pin has already
happened. In this sense, it is similar to a One-Boundedness Violation symptom
in that several tokens arrive at the same place too quickly.

The reason for separating this symptom from a normal ESM Violation symptom
is that it warrants that we try to confirm some specific diagnoses. In fact, when
a Multiplicity ESM Violation symptom is found, we attempt to confirm the same
specific diagnoses as for a One-Boundedness Violation symptom: Unrestrained
Producer and Misplaced Merge Node (in addition to the general diagnoses).

9.2 Number of Executions

The user may assert that a UML action element should be executed a certain
number of times. As with all assertions, this is done by applying a UML stereo-
type, that contains this meta-information, to the affected element .

As mentioned earlier, the range of the counter variables is 0 to 2, 2 meaning more
than once. We chose to limit it in this way as it still allows the expression of the
most useful execution ranges, yet keeps the state space small.

The user can choose between the following alternatives. The corresponding TLA
theorem is shown for each entry.

0..* No restriction on the number of executions. This is the default setting.



110 CHAPTER 9. OTHER THEOREMS AND SYMPTOMS

0..1 The action may be executed at most once.

2action counter ∈ 0..1 (9.2)

1 The action must be executed exactly once.

32action counter = 1 (9.3)

1..* The action must be executed at least once.

32action counter > 0 (9.4)

There are two types of symptoms that can be reported when a Number of Ex-
ecutions theorem is violated: Too Few Executions and Too Many Executions.
While there are currently no specific diagnoses available if there are too few ex-
ecutions, we attempt to confirm both the Unrestrained Producer and Misplaced
Merge Node diagnoses if there are too many executions. Additionally, we always
try to confirm the general diagnoses.

We can determine which symptom to report by seeing which sub-type of theorem
is violated. A theorem like theorem 9.2 being violated, leads to a Too Many
Executions symptom to be reported.

For the other theorem types, it is not so easy to give a symptom. TLC does not
identify what theorem is violated if the theorem expresses a liveness property
(see Sect. 2.2.2). Hence we do not get a reference back to the violated theorem,
which would contain a reference to the UML action element in question as well
as the counter variable name.

We have to work around this problem by finding the violated theorem(s) our-
selves. The theorem factory of the analyzer contains a list of theorems that
express liveness properties. We check each of these against the trace to find
which ones are violated.

Hence, for theorems of the same type as theorem 9.3, we examine the trace to see
if they are violated and if there are too many or too few executions. Similarly,
if the examination shows that a theorem like theorem 9.4 is violated, it will also
show that there were not enough executions.

9.3 Deadlock

A deadlock occurs when there are no tokens that can travel further, yet the
activity has not terminated. By terminated we mean that a token exited through



9.4. SUB-ACTIVITY TERMINATES 111

a terminating parameter node or reached an activity final node. To detect a
deadlock, we write a theorem

2(enabled (Next) ∨ ( status = “post execution”)) (9.5)

which states that either one of the actions in the Next statement is enabled or
the activity has terminated.

If we detect a deadlock, the user will, as always, be able to view the trace of
states and steps leading up to it. Naturally, something along the trace needs
to be altered to avoid the deadlock. There are currently no specific diagnoses
available, only the general ones.

9.4 Sub-Activity Terminates

Whenever a sub-activity is instantiated through a call behavior action, we want
to make sure that it terminates before the surrounding activity does. This is so
that we do not have any leftover tokens inside of them that, in the real system,
could still be there when the surrounding activity is restarted.

We check for this by creating a theorem

2( status = “post execution”⇒ cba name = “ initial”) (9.6)

for every call behavior action in the activity. It states that the call behavior
action must not be active when the activity has terminated.

There are currently no specific diagnoses that the analyzer tries to confirm when
a Sub-Activity does not Terminate symptom is found. The user can use the trace
to see how the activity terminated while the call behavior action was still active
and hopefully see what has to be changed.





Chapter 10

Future Work

In this chapter, we outline some ideas for future work based on this thesis. We
start by presenting some ideas for further analysis following in the same direction
as this work. We then discuss how we may adopt a more holistic approach to the
analysis by considering multiple traces, as well as multiple fixes. At the end we
outline a modularized architecture for the implementation of the analyzer.

10.1 Further Analysis

We have developed an analysis framework and started filling it with contents.
There are surely new properties that can be checked for and more ways to ana-
lyze violations. Naturally, we also aim to complete the elements that have been
introduced, but are not yet fully developed (see Sect. 6.1.2 and Sect. 6.1.3). We
now present some ideas for further contributions.

10.1.1 Partition Termination

Currently, an activity is terminated globally when a token reaches an activity
final node or a terminating parameter node. This is a rather large simplification
since different activity partitions model parts of distributed components.

We do not currently know what underlying semantics will be the most useful.
We need to see what problems we encounter when creating more and bigger
specifications. This decision also relies heavily on what we can expect from the
underlying execution platform.

One extension to the present framework would be to implement a theorem that

113



114 CHAPTER 10. FUTURE WORK

makes sure that all queues inside of an activity are empty when it terminates.
Currently, the execution platform is responsible for solving any problems due to
tokens that are in transit when an activity terminates.

To investigate further how activity termination can cause problems, we propose
an extension where termination is modeled on a partition level. In such a scenario,
all knowledge is local to a partition unless it is explicitly shared by sending tokens
to other partitions. Hence a partition may not be aware of how another one has
terminated their shared instance of an activity. As long as the partition(s) that
is (are) still executing do not attempt to send any tokens to the terminated
partition, this could be acceptable.

In order to write theorems to check that terminated partitions do not receive
tokens, we would first have to alter the way a TLA+ specification is created. We
need a separate variable for each partition to contain the execution status of it.

We then imagine that the following would be useful to check for:

• A token is in an incoming queue of a terminated partition. It could be that
such tokens would just be discarded by the real system, but this may not
be the intention of the developer, who hence should be made aware of it.
A worse scenario is that tokens could appear in the next instance of the
service and cause unspecified behavior.

• A call behavior action referencing a sub-activity is restarted before it has
been terminated in all participating partitions. In the real system, tokens
from the new instance could perhaps reach the not yet terminated partition
of the old instance and cause unspecified behavior.

One might wish to solve such issues at the implementation level, perhaps by
having a session ID on every signal to filter out those that belong to older or
newer sessions. Again, this would be a restriction on what kind of executions
platforms are supported. We would like our specifications to be as platform
independent as possible.

10.1.2 Automatic Refinement Proof

As mentioned in Sect. 7.2.2, the most elegant way to prove more complex prop-
erties is to create a TLA refinement proof. But for TLC to check this, one must
make a refinement mapping between the variables of an abstract specification
that models the property and the detailed TLA+ specification that the analyzer
creates. We would like to investigate if this can be done automatically. If so, we
believe it would open up many possibilities of checking advanced properties.



10.2. HOLISTIC ANALYSIS 115

Creating automatic refinement mappings would allow us to write “diagnostic the-
orems”, theorems that if violated (or not violated) constitute a diagnosis directly.
The theorem described in Sect. 7.2.2 is itself an example of this. If violated, it
would tell us of an unrestrained producer, not just an unbounded queue.

One of the main features of our approach is that we can reduce the state space
by just considering the ESM of an activity, hence allowing model checking to
scale. It is therefore important that every ESM is indeed a correct abstraction
of the activity it belongs to. If we can create an automatic refinement mapping,
we would like to apply this to checking consistency between activity and ESM.
Given the mapping, we could achieve consistency checking by writing a theorem
stating that the activity implements (is a refinement of) the ESM.

10.2 Holistic Analysis

The way we currently use TLC, it searches the state space until it finds a violation
of a theorem and terminates. We then get a single trace showing how the property
is violated. We will now discuss how we can consider more than one trace (or
violation) at a time to improve our analysis and hence the support provided to
the user.

10.2.1 Check for All Errors at Once

As mentioned in Sect. 2.2.2, TLC has the option of continuing its search even if it
finds a violated theorem. It then reports all violations in the end, after searching
the entire state space. The problem with this is that the behavior past the first
violation may not be useful to us. There are two reasons for this:

1. The following behavior violates our semantics for activities. For example,
if a Bounded Queue theorem is violated, the following behavior is likely to
be that of an ever increasing number of tokens in the queue. In this case,
TLC will keep going until it runs out of memory.

2. The following behavior may be irrelevant as fixing the first flaw may change
the behavior.

There is a way of avoiding the first problem: being careful of how we write our
TLA+ specifications. There are (at least) two styles of expressing properties and
TLA actions:



116 CHAPTER 10. FUTURE WORK

1. The TLA actions simply increase the number of tokens in a token place. A
TLA action filling a timer would then contain
∧ timer ′ = timer + 1

To check for one-boundedness, we would write a theorem

2(timer ≤ 1) (10.1)

2. On the other hand, we can state that the filling TLA action is only enabled
if the timer is empty. A TLA action filling the timer would then contain:
∧ timer = 0
∧ timer ′ = 1

To detect a violation, we then have to state that if it is possible for a token
to arrive at the timer, it must be empty. If we assume the timer to be filled
from an incoming parameter node, we might have a theorem like

2((ESM = “active”)⇒ (timer = 0)) (10.2)

For the last alternative, if the timer is already full, another TLA action will be
chosen to be executed. If no TLA actions are enabled, a deadlock will occur (and
be detected).

By altering our specifications so that all theorems are violated as the property is
about to be violated (one state before), and that all actions are specified in such
a way that only the legal behavior can happen, we could make sure that TLC
only explores semantically correct behavior, even after a violation.

Currently, both inner places and ESM states are already treated this way. Queues
between partitions are currently not, but the changes needed would not be great.
We would simply need to add a precondition “ ∧ queue name < 5” to every action
that puts a token into a queue. The Bounded Queue theorems would also have to
change to say that “whenever a node can emit a token into a queue, that queue
has less than five tokens in it”. For a timer that emits a token into a queue, the
theorem would look like:

2((timer = 1)⇒ (queue name < 5)) (10.3)

Once our TLA+ specifications are made in this way, we could then find all current
violations at once (in one run of TLC). While we would still have the problem that
fixing one flaw may change the following behavior, we would have the potential
for creating better symptoms, diagnoses and fixes by comparing the different
violations.

Could we find a way for the analyzer to decide which violations are related?
Would it be possible to give them a meaningful ranking, for example by comparing
the length of the trace?



10.2. HOLISTIC ANALYSIS 117

In Sect. 7.3, we point out how we risk applying the fix for an unrestrained pro-
ducer over and over again. If we can group violations by cause and rank them, the
analyzer could recommend to apply the fix to the very last (furthest downstream)
violation caused by an unrestrained producer. This might be better advice for
what to do, but further study is required to determine if there is a pattern we
can detect for when to do this.

Finding all property violations at once has another benefit: We may get several
traces that violate the same theorem. We will discuss the implications of this in
Sect. 10.2.3.

10.2.2 Rank Fixes According to Effect

If the framework for behavioral analysis is expanded sufficiently and we also start
checking for all violations at once, there may come a time when developers are
somewhat overwhelmed by the number of options given to them. To address the
specific issue of a large number of automatic fixes, we think it would be interesting
to see if it is possible to rank them according to how likely they are to fix the
underlying flaw.

When the analyzer confirms one or more diagnoses, it could make a copy of the
model for every fix that is available. It could then apply the fixes to the copies
and run itself on the copies. We would then have to find a way to compare and
rank the fixes depending on the resulting traces. Maybe the length of the shortest
trace could be used as a useful indicator? Perhaps the total number of violations,
after the fix has been applied, will tell us how well it worked? Further work is
needed to provide answers.

The downside of this approach is likely to be performance. The ranking is more
valuable if there is a large number of fixes. But this is when the time to perform
the ranking would be the longest. Since applying the fixes and analyzing the
altered models are independent tasks, the performance drop could be countered
by doing them in parallel.

10.2.3 Find Most Relevant Parts of a Trace

In Sect. 2.4, we discuss some approaches that compare a number of error traces
to find the most relevant parts of them. By relevant parts, we here mean the
parts of the trace that contain the states and transitions that made this path
through the state space lead to a violation.

It would be very interesting to see such an approach adapted to the analyzer.



118 CHAPTER 10. FUTURE WORK

If we are successful, we could highlight the key transitions when displaying the
trace. For long traces, we could use this new information to skip “uninteresting”
parts of the trace, so that the developer does not have to click through a large
number of inevitable states and transitions, before coming to the relevant part.

In [BNR03], they describe a method for finding the most relevant part of an error
trace for a program written in C. They exclude the actual transition that causes
a violation from the following runs of the model checker. In this way they can
collect several traces leading up to the same violation. This is similar to what we
propose in Sect. 10.2.1. In [GV03], they do something similar for Java programs.

Both approaches describe ways of finding the most relevant part of the error
traces. Even though they work on the source code of programs, we believe that
their approaches could be adapted to ours.

We have already described a way of getting multiple error traces. We could group
these according to what theorem they violate. If we could also get TLC to return
traces that reach the terminated state without causing any violations, we could
analyze the differences between the “successful” traces and the error traces that
violate a specific theorem. We briefly present the three types of analysis that are
given in [GV03].

Transition Analysis. Traces are here referred to as positives (successful traces)
or negatives (error traces). Traces are divide into pairs 〈s , a〉 where s is a
control state and a is an action. They then define a number of sets for pairs
that are represented in all negatives (all(neg)) or all positives (all(pos)),
as well as only in negatives (only(neg)) or positives (only(pos)). They
then define a set cause(neg) as all(neg) ∩ only(neg) and a set cause(pos)
as all(pos) ∩ only(pos). These are interesting as they contain what all
negatives (or positives) have in common yet does not happen in the other
type of trace. In some cases, these sets may be empty, though.

Invariant Analysis. In this analysis, they compute data invariants over nega-
tives and positives. They choose instrumentation points in the code where
they check the variable values. They use an existing approach for dynami-
cally discovering invariants. Finally, they compare the invariants from the
negatives to those from the positives.

Transformation of Positives into Negatives. They find the smallest num-
ber of changes that must be done to a positive to get a negative. This is
called the minimal transformation. They can do this from every positive
to every negative and then sort the result according to transformation size.
The smallest transformations are likely to point out the relevant parts that
can cause errors. They can also run the transition analysis on the pairs that



10.3. MODULARIZED ARCHITECTURE 119

constitute the transformed sections of the traces. This can give non-empty
causal sets where the normal transition analysis failed to do so.

10.3 Modularized Architecture

In the current architecture (see Fig. 4.1), the Formulator creates the TLA Module
which again creates the Theorem Factory. This creates a tight coupling between
these three parts. You cannot have one without the others.

Ideally, the Formulator should simply produce a list of steps showing what nodes
and edges are traversed by a token in an atomic transition of the activity. This
list would then be independent of any specific target language and simply be a
representation of the semantics of our kind of UML activities. This could be
used by advanced syntactic inspectors as well as a starting point to transform
the activity into input for any model checker.

The list of steps from the Formulator would then be input to the TLA Module
that would build itself. Finally, the Theorem Factory would take the TLA Module
as input to create theorems. The Controller could then request that the Theorem
Factory return the TLA+ specification including theorems.

This kind of architecture would reduce the dependencies that exist in the current
one. Hence it would be easier to add new things or alter existing code without
having to spend so much energy on testing and debugging.





Chapter 11

Conclusion

We set out to provide a developer, using Arctis, with the benefits of formal
methods for verifying behavioral properties, but without requiring any knowledge
in the domain of formal methods.

We started by giving a summary of the relevant theory and the work that we build
on. We presented a framework, containing theorems, symptoms, diagnoses and
fixes, for the analysis of a property violation, through a combination of syntactic
and behavioral analysis. Later, we described each element of the framework in
detail, providing examples of their application for many of them.

In response to our goal, we presented the Arctis Analyzer, an extension to the
Arctis tool suite. The analyzer expresses our semantics for a UML activity (and
its ESM) in the form of a TLA+ specification. It also generates a number of
properties that must hold. It runs the model checker TLC to detect any property
violations. Any problems found will be accompanied by an error trace. The
analyzer can visualize this error trace in terms of the graphical model the user is
working on.

The analyzer uses the analysis framework to interpret the violation of a property.
In the event of a violated property being found, a symptom will be reported and
the analyzer may attempt to confirm a number of diagnoses. If a diagnosis is
confirmed, an automatic fix may be provided to correct the activity.

To summarize, the analyzer gives Arctis the capability of supporting the user
with formal methods, linear-time temporal logic in our case, without the user
ever having to see a single formula. This is achieved by the following features:

• The transformation from UML to TLA+ requires no user input.

• Theorems for properties are automatically generated (or generated from
high-level input on the UML model, by the user).

121



122 CHAPTER 11. CONCLUSION

• Error traces from the model checker are visualized in terms of the UML
model.

• A framework has been developed for interpreting the property violations
and uncover the underlying flaws.

• For some flaws, the framework supplies automatic fixes.

To the best of our knowledge, there are no other tools for specifying reactive
systems that have all of these capabilities (see Sect. 2.4). In particular, we have
found none that can provide automatic fixes.

We have implemented much of the analysis framework in the analyzer tool. The
analyzer has also been upgraded, from the previous formulator, to express the
semantics of a sub-activity, not only complete system activities. We presented
the architecture of the implementation, explaining the task of every entity.

We have included screenshots showing how the implemented analyzer is used
by a developer. Together with the theoretical sections of the thesis, we believe
they give a convincing argument for how the initial goal has been met: Providing
behavioral analysis through formal methods, to a developer that has no knowledge
of the applied formalism.

It is our hope that having a tool that provides behavioral analysis already at an
abstract level, will encourage developers to spend more time in the early stages
of development, weeding out problems when they are still quick and inexpensive
to fix.



List of Figures

1.1 The SPACE approach . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 The Analyzer in the context of the Arctis tool suite . . . . . . . . 3

1.3 The Location Tracker in the Arctis editor . . . . . . . . . . . . . . 5

1.4 The ESM of the Location Tracker . . . . . . . . . . . . . . . . . . 5

1.5 The Location Tracker in state 1 . . . . . . . . . . . . . . . . . . . 7

1.6 Semantic errors of the Location Tracker . . . . . . . . . . . . . . . 8

1.7 Diagnosis view showing the fix of a possible unrestrained producer 8

1.8 Trace for the Location Tracker . . . . . . . . . . . . . . . . . . . . 9

1.9 The Location Tracker after the fix has been applied . . . . . . . . 10

2.1 The Hotel Wakeup system . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Structure of the Hotel Wakeup system. . . . . . . . . . . . . . . . 14

2.3 Activity node explanations . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Hotel Wakeup, solution 1 . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 ESMs of Hotel Wakeup, Alarm and Button . . . . . . . . . . . . . 18

2.6 TLA+ specification for Hotel Wakeup System, part 1 . . . . . . . 21

2.7 TLA+ specification for Hotel Wakeup System, part 2 . . . . . . . 22

2.8 TLA+ specification for Hotel Wakeup System, part 3 . . . . . . . 23

2.9 Formulator architecture . . . . . . . . . . . . . . . . . . . . . . . 27

2.10 Trace for solution 1 of Hotel Wakeup . . . . . . . . . . . . . . . . 28

2.11 Solution 2 of Hotel Wakeup . . . . . . . . . . . . . . . . . . . . . 29

123



124 LIST OF FIGURES

2.12 Trace for solution 2 of Hotel Wakeup . . . . . . . . . . . . . . . . 30

2.13 Solution 3 of Hotel Wakeup . . . . . . . . . . . . . . . . . . . . . 31

2.14 Solution 3 of Hotel Wakeup . . . . . . . . . . . . . . . . . . . . . 31

3.1 Button Building Block (with a flaw) . . . . . . . . . . . . . . . . . 36

3.2 Work flow of the Analyzer . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Excerpt of TLA+ specification of erroneous Button building block 39

3.4 Visual Trace of Button Building Block . . . . . . . . . . . . . . . 42

3.5 Current theorems, symptoms, diagnoses and fixes, part 1 . . . . . 44

3.6 Current theorems, symptoms, diagnoses and fixes, part 2 . . . . . 44

3.7 Current theorems, symptoms, diagnoses and fixes, part 3 . . . . . 45

3.8 Currently implemented theorems, symptoms, diagnoses and fixes . 47

4.1 Relationships of Analyzer entities . . . . . . . . . . . . . . . . . . 52

4.2 Actions derived from the start step of the ButtonWrong TLA+

specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3 TLA action: start initial active . . . . . . . . . . . . . . . . . . . 56

4.4 Actions derived from the stop step of the ButtonWrong TLA+

specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.5 The Next statement of the ButtonWrong TLA+ specification . . . 57

5.1 Topic: ESM Consistency . . . . . . . . . . . . . . . . . . . . . . . 60

5.2 ESM consistency example . . . . . . . . . . . . . . . . . . . . . . 61

5.3 The steps from a token arriving through parameter node A . . . . 62

5.4 The Timeliness Observer. Figure adapted from [Kra07] . . . . . . 70

5.5 The variables and initial state of the Timeliness Observer . . . . . 71

5.6 Step start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.7 Step event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.8 Step event j2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.9 Step e3 j1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76



LIST OF FIGURES 125

5.10 Trace for the erroneous Timeliness Observer . . . . . . . . . . . . 78

6.1 Topic: Mutual Exclusion and Distributed Behavior . . . . . . . . 80

6.2 Example of feedback from action 1 to action 2 . . . . . . . . . . . 82

6.3 ESM of Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.4 Example of mutual feedback between action 1 and 2 . . . . . . . . 83

6.5 Example of First block to ensure mutual exclusion . . . . . . . . . 83

6.6 ESM of First . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.7 Button Game 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.8 Button Game 1, violating state . . . . . . . . . . . . . . . . . . . 85

6.9 Traces that confirm an Out-of-Order Delivery diagnosis . . . . . . 86

6.10 Button Game 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.11 Button Game 2, violating state . . . . . . . . . . . . . . . . . . . 88

6.12 Button Game 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.1 Scenario: Unbounded Queue . . . . . . . . . . . . . . . . . . . . . 91

7.2 The Location Tracker . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.3 A Producer Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7.4 Detecting an unrestrained producer, syntactic algorithm . . . . . 94

7.5 Detecting an unrestrained producer, trace analysis algorithm . . . 96

7.6 Fix: Insert Fork / Join Combo . . . . . . . . . . . . . . . . . . . . 99

8.1 Scenario: One-Boundedness . . . . . . . . . . . . . . . . . . . . . 101

8.2 Operate Door, First Attempt . . . . . . . . . . . . . . . . . . . . 102

8.3 Illustration of theorem 8.1 . . . . . . . . . . . . . . . . . . . . . . 103

8.4 First Token Passes, shallow building block . . . . . . . . . . . . . 104

8.5 Application of Replace Merge Node with Join Node on Operate Door 105

9.1 Remaining theorems and symptoms . . . . . . . . . . . . . . . . . 108

9.2 A system activity instantiating a Timeliness Observer. . . . . . . 109





Bibliography

[Aal98] W.M.P. van der Aalst. The Application of Petri Nets to
Workflow Management. The Journal of Circuits, Systems and
Computers, 8(1):21–66, 1998. URL citeseer.ist.psu.edu/

vanderaalst98application.html.

[Aal99] W. M. P. van der Aalst. Woflan: a Petri-net-based workflow analyzer.
Syst. Anal. Model. Simul., 35(3):345–357, 1999. ISSN 0232-9298.

[BAL97] Hanene Ben-Abdallah and Stefan Leue. Syntactic Detection of Pro-
cess Divergence and Non-Local Choice in Message Sequence Charts.
In Proc. of the 2nd Int. Workshop on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’97), 1997.

[BBK+04] Michael Balser, Simon Bäumler, Alexander Knapp, Wolfgang Reif,
and Andreas Thums. Interactive Verification of UML State Ma-
chines. In Jim Davies, Wolfram Schulte, and Michael Barnett, editors,
Proceedings of the International Conference on Formal Engineering
Methods, volume 3308 of Lecture Notes in Computer Science, pages
434–448. Springer, 2004.

[BGHS04] Sven Burmester, Holger Giese, Martin Hirsch, and Daniela Schilling.
Incremental Design and Formal Verification with UML/RT in the
FUJABA Real-Time Tool Suite. In Proc. of the International Work-
shop on Specification and Validation of UML Models for Real Time
and Embedded Systems, SVERTS2004, Satellite Event of the 7th In-
ternational Conference on the Unified Modeling Language, UML2004,
pages 1–20, October 2004.

[BH93] Rolv Bræk and Øystein Haugen. Engineering Real Time Systems:
An Object-Oriented Methodology Using SDL. The BCS Practitioner
Series. Prentice Hall International, 1993. ISBN 0-13-034448-6.

[BNR03] Thomas Ball, Mayur Naik, and Sriram K. Rajamani. From symptom
to cause: localizing errors in counterexample traces. SIGPLAN Not.,
38(1):97–105, 2003. ISSN 0362-1340.

127



128 BIBLIOGRAPHY

[BR01] Thomas Ball and Sriram K. Rajamani. The SLAM Toolkit. In
CAV ’01: Proceedings of the 13th International Conference on Com-
puter Aided Verification, pages 260–264. Springer-Verlag, London,
UK, 2001. ISBN 3-540-42345-1.

[CE82] Edmund M. Clarke and E. Allen Emerson. Design and synthesis of
synchronization skeletons using branching-time temporal logic. In
Logic of Programs, Workshop, pages 52–71. Springer-Verlag, London,
UK, 1982. ISBN 3-540-11212-X.

[DS03] Yang Dong and Zhang Shensheng. Using π-Calculus to Formalize
UML Activity Diagram for Business Process Modeling. In Proceed-
ings 10th IEEE International Conference and Workshop on the En-
gineering of Computer-Based Systems, pages 47 – 54. Huntsville, AL,
USA, 2003.

[Ecl08a] Eclipse Modeling – MDT – Home, April 2008. URL http://www.

eclipse.org/modeling/mdt/?project=uml2.

[Ecl08b] Eclipse.org home, April 2008. URL http://www.eclipse.org.

[Esh06] Rik Eshuis. Symbolic Model Checking of UML Activity Diagrams.
ACM Transactions on Software Engineering and Methodology, 15(1):
1–38, 2006. ISSN 1049-331X.

[FF06] Christian Flender and Thomas Freytag. Visualizing the Soundness of
Workflow Nets. In Proceedings 13th Workshop Algorithms and Tools
for Petri Nets, AWPN, pages 47–52. Hamburg, Germany, 2006.

[Flo03] Jacqueline Floch. Towards Plug-and-Play Services: Design and Vali-
dation using Roles. PhD thesis, Norwegian University of Science and
Technology, 2003.

[GCKK06] Heather Goldsby, Betty H. C. Cheng, Sascha Konrad, and Stephane
Kamdoum. A visualization framework for the modeling and formal
analysis of high assurance systems. In Oscar Nierstrasz, Jon Whittle,
David Harel, and Gianna Reggio, editors, MoDELS, volume 4199 of
Lecture Notes in Computer Science, pages 707–721. Springer, 2006.
ISBN 3-540-45772-0.

[GM05] Nicolas Guelfi and Amel Mammar. A Formal Semantics of Timed
Activity Diagrams and its PROMELA Translation. In APSEC ’05:
Proceedings of the 12th Asia-Pacific Software Engineering Conference
(APSEC’05), pages 283–290. IEEE Computer Society, Washington,
DC, USA, 2005. ISBN 0-7695-2465-6.



BIBLIOGRAPHY 129

[GV03] Alex Groce and Willem Visser. What went wrong: Explaining coun-
terexamples. In 10th International SPIN Workshop on Model Check-
ing of Software, pages 121–135. Portland, Oregon, May 9–10, 2003.

[HK00] Peter Herrmann and Heiko Krumm. A Framework for Modeling
Transfer Protocols. Computer Networks, 34(2):317–337, 2000.

[HK07] Peter Herrmann and Frank Alexander Kraemer. Design of Trusted
Systems with Reusable Collaboration Models. In Joint iTrust and
PST Conferences on Privacy, Trust Management and Security. IFIP,
2007.

[Hol03] G.J. Holzmann. The Spin Model Checker, Primer and Reference
Manual. Addison-Wesley, Reading, Massachusetts, 2003.

[Hoo02] Jozef Hooman. Towards Formal Support for UML-based Develope-
ment of Embedded Systems. In Proceedings PROGRESS 2002 Work-
shop, STW, 2002.

[JDS08] The Data Structures Library in Java, March 2008. URL http://

www.jdsl.org/.

[JGr08] Welcome to JGraphT - a free Java Graph Library, March 2008. URL
http://jgrapht.sourceforge.net/.

[JUN08] JUNG - Java Universal Network/Graph Framework, March 2008.
URL http://jung.sourceforge.net/.

[KBH07] Frank Alexander Kraemer, Rolv Bræk, and Peter Herrmann. Synthe-
sizing Components with Sessions from Collaboration-Oriented Service
Specifications. In Emmanuel Gaudin, Elie Najm, and Rick Reed, ed-
itors, SDL 2007, volume 4745 of Lecture Notes in Computer Science,
pages 166–185. Springer–Verlag Berlin Heidelberg, September 2007.

[KH06] Frank Alexander Kraemer and Peter Herrmann. Service Specification
by Composition of Collaborations — An Example. In Proceedings of
the 2006 WI-IAT Workshops (2006 IEEE/WIC/ACM International
Conference on Web Intelligence and Intelligent Agent Technology),
pages 129–133, 2006. 2nd International Workshop on Service Com-
position (Sercomp), Hong Kong.

[KH07a] Frank Alexander Kraemer and Peter Herrmann. Formalizing
Collaboration-Oriented Service Specifications using Temporal Logic.
In Networking and Electronic Commerce Research Conference 2007
(NAEC 2007), October 2007.



130 BIBLIOGRAPHY

[KH07b] Frank Alexander Kraemer and Peter Herrmann. Transforming Col-
laborative Service Specifications into Efficiently Executable State Ma-
chines. In Prooceedings of the 6th International Workshop on Graph
Transformation and Visual Modeling Techniques (GT-VMT 2007),
2007.

[KHB06] Frank Alexander Kraemer, Peter Herrmann, and Rolv Bræk. Align-
ing UML 2.0 State Machines and Temporal Logic for the Efficient
Execution of Services. In R. Meersmann and Z. Tari, editors, Proceed-
ings of the 8th International Symposium on Distributed Objects and
Applications (DOA), 2006, Montpellier, France, volume 4276 of Lec-
ture Notes in Computer Science, pages 1613–1632. Springer–Verlag
Heidelberg, 2006.

[Kra03] Frank Alexander Kraemer. Rapid Service Development for Service
Frame. Master’s thesis, University of Stuttgart, 2003.

[Kra07] Frank Alexander Kraemer. Building Blocks, Patterns and Design
Rules for Collaborations and Activities. Avantel Technical Report
2/2007 ISSN 1503-4097, Department of Telematics, NTNU, Trond-
heim, Norway, March 2007. Draft.

[Kra08] Frank Alexander Kraemer. UML Profile and Semantics for Service
Specifications. Avantel Technical Report 1/2007 ISSN 1503-4097,
Department of Telematics, NTNU, Trondheim, Norway, June 2008.

[KSH07] Frank Alexander Kraemer, Vidar Sl̊atten, and Peter Herrmann. Engi-
neering Support for UML Activities by Automated Model-Checking
— An Example. In Proceedings of the 4th International Workshop
on Rapid Integration of Software Engineering Techniques (RISE),
November 2007.

[Lam94] Leslie Lamport. The temporal logic of actions. ACM Trans. Program.
Lang. Syst., 16(3):872–923, 1994. ISSN 0164-0925.

[Lam96] Leslie Lamport. Refinement in state-based formalisms. Technical
report, Digital Equipment Corporation, Systems Research Center,
Palo Alto, California, December 1996. URL http://research.

microsoft.com/users/lamport/pubs/refinement.pdf.

[Lam02] Leslie Lamport. Specifying Systems. Addison Wesley, 2002.

[LP99] J. Lilius and I.P. Paltor. vUML: a tool for verifying UML models. 14th
IEEE International Conference on Automated Software Engineering,
pages 255–258, October 1999.



BIBLIOGRAPHY 131

[Mik99] Tommi Mikkonen. The two Dimensions of an Architecture. In
WICSA1, First Working IFIP Conference on Software Architecture,
1999.

[MP92] Zohar Manna and Amir Pnueli. The temporal logic of reactive and
concurrent systems. Springer-Verlag New York, Inc., New York, NY,
USA, 1992. ISBN 0-387-97664-7.

[Obj07] Object Management Group. Unified Modeling Language: Superstruc-
ture, version 2.1.2, November 2007.

[Pnu77] Amir Pnueli. The temporal logic of programs. In FOCS, pages 46–57.
IEEE, 1977.

[Rus00] Disappearing formal methods, 2000. URL http://ieeexplore.ieee.

org/xpls/abs_all.jsp?arnumber=895446.

[SGK+05] Stefan Sarstedt, Dominik Gessenharter, Jens Kohlmeyer, Alexander
Raschke, and Matthias Schneiderhan. ActiveChartsIDE - An Inte-
grated Software Development Environment comprising a Component
for Simulating UML 2 Activity Charts. In The 2005 European Sim-
ulation and Modelling Conference (ESM’05), pages 66 – 73, October
2005.

[SGW94] Bran Selic, Garth Gullekson, and Paul T. Ward. Real-Time Object-
Oriented Modeling. John Wiley & Sons, Inc., New York, NY, USA,
1994.

[Sl̊a07] Vidar Sl̊atten. Model Checking Collaborative Service Specifications in
TLA with TLC. Project Thesis, August 2007. Norwegian University
of Science and Technology, Trondheim, Norway.

[Stö05] Harald Störrle. Semantics and Verification of Data Flow in UML
2.0 Activities. In Electronic Notes in Theoretical Computer Science,
volume 127, pages 35 – 52, 2005. ISSN 1571-0661.

[VHBP00] Willem Visser, Klaus Havelund, Guillaume Brat, and SeungJoon
Park. Model Checking Programs. In ASE ’00: Proceedings of the
15th IEEE international conference on Automated software engineer-
ing, page 3. IEEE Computer Society, Washington, DC, USA, 2000.
ISBN 0-7695-0710-7.

[VM94] Björn Victor and Faron Moller. The Mobility Workbench — A Tool
for the π-Calculus. In David Dill, editor, CAV’94: Computer Aided
Verification, volume 818 of Lecture Notes in Computer Science, pages
428–440. Springer-Verlag, 1994.



132 BIBLIOGRAPHY

[Wop08] Welcome - The WoPeD Homepage, May 2008. URL http://woped.

ba-karlsruhe.de/woped.

[YML99] Yuan Yu, Panagiotis Manolios, and Leslie Lamport. Model Checking
TLA+ Specifications. In L. Pierre and T. Kropf, editors, Proceedings
of the 10th IFIP WG 10.5 Advanced Research Working Conference on
Correct Hardware Design and Verification Methods (CHARME’99),
volume 1703 of Lecture Notes in Computer Science, pages 54–66.
Springer-Verlag, 1999. ISBN 3-540-66559-5.


	Title Page
	Problem Description
	Introduction
	Background
	The SPACE Approach
	Properties of Building Blocks
	Tool Support

	Temporal Logic (of Actions)
	Refinement
	TLC

	The Formulator
	Related Work

	Identifying Specification Flaws
	What is a Flaw?
	Towards an Analysis Framework
	Phase 1: Transformation and Detection
	Phase 2: Determining the Problem

	Preview: Analysis of SPACE Specifications
	What is Currently Implemented?

	Completeness of Analysis Framework
	Alternative Approach: Graph Analysis

	Implementation
	Architecture of the Analyzer
	Changes from the Original Formulator
	Improved Mapping Between TLA+ and UML
	Transforming Sub-Activities to TLA+


	ESM Consistency
	Theorems
	Enabled Action
	Sometimes Enabled Action
	Not Enabled Action
	ESM Ready
	Never Enabled Action
	ESM Transitions Without Any Implementing Steps

	Symptoms
	Diagnoses and Fixes
	Extra ESM Transition
	Missing ESM Transition

	An Example, the Timeliness Observer
	Example with a Flaw


	Mutual Exclusion and Distributed Behavior
	Mutual Exclusion
	Theorem and Symptom
	Diagnosis
	Fixes

	General Diagnoses
	Diagnosis: Out-of-Order Delivery
	Diagnosis: Delayed Delivery


	Bounded Queues
	Theorem and Symptom: (Un)bounded Queue
	Diagnosis: Unrestrained Producer
	Alternative 1: Syntactic Cycle Detection
	Alternative 2: TLA Refinement
	Alternative 3: Analyzing the Trace
	A Pragmatic Compromise

	Fix: Insert Fork / Join Combo
	Alternative Fix: Give Grant

	One-Boundedness
	Theorem and Symptom
	Diagnoses
	Fixes

	Other Theorems and Symptoms
	Respect ESM
	ESM Violation
	Multiplicity ESM Violation

	Number of Executions
	Deadlock
	Sub-Activity Terminates

	Future Work
	Further Analysis
	Partition Termination
	Automatic Refinement Proof

	Holistic Analysis
	Check for All Errors at Once
	Rank Fixes According to Effect
	Find Most Relevant Parts of a Trace

	Modularized Architecture

	Conclusion
	List of Figures
	Bibliography

