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Multi-dimensional semi-analytical
model for axial stick–slip of a rod
sliding on a surface with Coulomb
friction

Sigve Hovda

Abstract
A multi-dimensional lumped element model of a long non-rotating rod that moves on a slick surface with both dynamic
and static Coulomb friction is outlined. The rod is accelerated to a constant velocity, and the free end of the rod experi-
ences the effect of stick and slip. This article describes a new modeling approach, where the model is able to switch
between different linear semi-analytical sub-models, depending on how much of the rod is moving. Fundamental under-
standing of the stick–slip effect is revealed, and a potential shortcoming of the model is also discussed. The model is
computationally effective and may be suitable for real-time applications in, for instance, oil-well drilling.
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Introduction

The complex phenomenon named dry friction occurs
when two surfaces are in contact with each other.
Experiments indicate dependence on a number of para-
meters such as normal force, combination of materials,
roughness, temperature, sliding speed, and even accel-
eration. Depending on the application, the friction
models may have functional relations with velocity,
time lag, or dwell time, or include pre-slip displace-
ment. In Berger’s study,1 a multi-disciplinary review of
the plethora of friction models is given, while in Feeny
et al.’s study,2 a historical review on dry friction and
the stick–slip effect is given.

However, in many applications, the original model
by Charles Augustin Coulomb is often a sufficient
approximation. The sliding Coulomb friction force is
directed opposite to the sliding motion, and the magni-
tude is equal to the normal force multiplied by a kine-
matic friction coefficient. When the surfaces stick

together, the static Coulomb friction force can have
any direction, and the magnitude can be anything
between zero and the static friction coefficient multi-
plied by the normal force. Mathematically, this model
is therefore highly non-linear.

A common way to model the Coulomb friction force
is to use a functional relationship with velocity, that is,
m(v)N , where N is the normal force and m(v) is the fric-
tion coefficient that is a function of the velocity v. The
function is typically a continuous step function such as
the inverse tangent function with various parameters
(see Zhao et al.3). This modeling approach is believed
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to be robust when the static friction coefficient is not
high compared to the kinetic friction coefficient.4

Another way to model the Coulomb friction is to
work directly with the discontinuous relations and
switch between models when the surfaces go from stick
to slip, and vice versa. The sub-models are typically lin-
ear and can sometimes be solved analytically. In Cull
and Tucker,5 torsional vibrations of an oil-well drill-
string are analyzed with both modeling types. It was
shown that the models compare well, when the kine-
matic friction coefficient is not small compared to the
static friction coefficient, and the viscous damping is
relatively small.

A switching modeling approach with sub-models
that are linear with analytic or semi-analytic solutions
is well suited for real-time applications such as control
algorithms, fault detection, and parameter estimation.
This is therefore the model of choice in this article.

Similar to Cull and Tucker,5 our motivation is related
to oil-well drilling where kilometer-long pipes are fre-
quently run into or pulled out of wellbores. The models in
Cull and Tucker5 contain only two degrees of freedom
and describe important physical phenomena but are not
appropriate for the complex geometries of real wells.

Fortunately, a number of semi-analytical models for
both the axial and torsional movements of an oil-well drill-
string in both vertical and deviated wellbores are devel-
oped. In Hovda,6 axial vibrations of a vertical wellbore
are described, while the axial vibrations of a deviated well-
bore while reaming are outlined in Hovda.7 A model for
the torsional vibrations is presented in Hovda.8

These semi-analytical models are particularly suited
for a switching model approach, since they can include
three-dimensional wellbore geometries and non-
homogeneous pipe sizes. For the sake of exposure, we
have focused our study to a straight rod with uniform
thickness, with homogeneously distributed friction
forces along the rod. This model can easily be general-
ized in many ways, but this is outside the scope of this
article. The goal of this article is merely to describe and
validate the model with a variety of computational
experiments that are physically intuitive.

The general model is outlined in the next section, and
computational experiments are given in the section after
that. The model relies on various assumptions, which
are defined when needed, and furthermore discussed
and summarized in the ‘‘Discussion’’ section. The article
is concluded in the last section.

Dynamic model of a long non-rotating rod
that is moving on a surface with Coulomb
friction

We consider a rod of length L that is modeled as a set
of n blocks that are connected by n spring elements (see

Figure 1). The inclination angle of the rod is denoted
by u. A one-dimensional coordinate system along the
rod with positive direction downward is introduced.
The first block is hanging from the first spring which is
attached to a point that is denoted by Q(t), and the
origo of the coordinate system is chosen so that
Q(0)= 0.

The center point on each block is denoted as Xi(t),
where t is time. When all springs are not in compression
and not in tension, the distance between the points is
equal to h. We define qi(t) as Xi(t)� ih and the physical
state of the drillstring at any time is therefore uniquely
defined by the generalized coordinates, qi(t)s.

Newton’s second law on every block gives

0=m1€q1 � m1g cos uð Þ+ k1 q1 � Qð Þ�
k2 q2 � q1ð Þ+ c1 _q1 � R1

0=mi€qi � mig cos uð Þ+ ki qi � qi�1ð Þ�
ki+ 1 qi+ 1 � qið Þ+ ci _qi � Ri for 2 ł i ł n� 1

0=mn€qn � mng cos uð Þ+ kn qn � qn�1ð Þ+ cn _qn � Rn

ð1Þ

where for block i, mi is the mass and ki is the spring
constant of the spring that is located above the block.
The gravity constant is g and the cis are some constants
related to damping. This could, for instance, be the vis-
cous damping that is discussed in Hovda.6 Finally, the
Coulomb friction forces are denoted by the Ris.

Coulomb friction forces

Coulomb friction states that the friction force between
two sliding surfaces is proportional to the normal force
with direction that opposes the motion. Moreover, two
surfaces stick together unless the force between the

Figure 1. Schematic view of the model of the rod that is sliding
on the surface. The rod is modeled as a set of n blocks with
masses denoted by mi. These masses are connected to n springs,
where the spring constants are denoted by ki. The surface is
shown as the line that the rod or blocks are sliding on.
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surfaces exceeds the normal force multiplied by the sta-
tic friction coefficient. The static friction coefficient is
typically higher than dynamic friction coefficient. The
static friction is considered to arise as a result of surface
roughness features across multiple length scales at solid
surfaces.

The kinematic Coulomb friction on block i is
Ri = d2, imk, imig sin (u), where mk, i is the kinematic
Coulomb friction constant and d2, i is plus one when
_qi ł 0 and minus one when _qi.0. For convenience in
this model, _Q is used, instead of _qi, and therefore we
have d2 = d2, i. Moreover, the static Coulomb friction
on block i is Ri = d2ms, imig sin (u), where ms, i is the sta-
tic Coulomb friction constant. More precisely

Ri =

SFi for jSFijł ms, imig sin uð Þ
and _qi = €qi = 0

d2mk, imig sin uð Þ else

8<
:

where SFi is the sum of all other forces than the
Coulomb friction forces, that is

SF1 = � m1g cos uð Þ+ k1 q1 � Qð Þ � k2 q2 � q1ð Þ
SFi = � mig cos uð Þ+ ki qi � qi�1ð Þ � ki+ 1 qi+ 1 � qið Þ

for 2 ł i ł n� 1

SFn = � mng cos uð Þ+ kn qn � qn�1ð Þ
ð2Þ

In this article, situations when the rod is starting
from rest and being pulled out are discussed. In this
case, it makes sense to make the assumption that if a
block i is stalled in static friction, that is,
jSFijł ms, imig sin (u) and _qi = 0, then all blocks below
this block are also stalled, that is, _qj = 0 for j ø i. In the
case when the pulling out motion is stopping, the first
element stops before the elements below are stopped.
The current model can be generalized to include this,
but this is outside the scope of this article.

Consequently, in the situations discussed in this arti-
cle, we have nd blocks that are moving and ns blocks
that are not moving due to static friction. Therefore,
nd + ns = n, where ns is zero when the whole rod is
moving.

At a certain time, a model for the rod involves a sub-
model of the top nd blocks, while the bottom ns blocks
rest at its initial conditions. This sub-model is valid
until either _qnd

becomes zero or _qnd + 1 becomes different
than zero. In the case of pulling the rod out from an ini-
tial rest position, the model will switch between differ-
ent sub-models until the whole rod is moving. In the
first sub-model, nd will be zero and then nd will increase
to n.

In order to find a model for when block number
nd + 1 will start to move (provided that nd 6¼ n), we inves-
tigate jSFnd + 1j=ms, nd + 1Nnd + 1. It is clear that SFnd + 1

can only be close to �ms, nd + 1mnd + 1g sin (u) when

running in and that SFnd + 1 can only be close to
ms, nd + 1mnd + 1g sin (u) when running out. We therefore
conclude that block number nd + 1 will start to move
(provided that nd 6¼ n) when SFnd + 1 = d2ms, nd + 1

mnd + 1g sin (u). Mathematically, this is

Q= 1+ k2

k1

� �
q1 � k2

k1
q2�

m1g cos uð Þ+ d2ms, 1m1g sin uð Þ
k1

for nd = 0

qnd
= 1+

knd + 2

knd + 1

� �
qnd + 1 �

knd + 2

knd + 1

qnd + 2�
mnd + 1g cos uð Þ+ d2ms, nd + 1mnd + 1g sin uð Þ

knd + 1

for 1 ł nd ł n� 2

qnd
= qn �

mng cos uð Þ+ d2ms, nmng sin uð Þ
kn

for nd = n� 1

ð3Þ

This concludes the criterion for moving to a model
with nd + 1 blocks. The model with nd � 1 blocks is
changed when _qnd

= 0.

Mathematical model for nd elements

We follow the same procedure as in Hovda6 and
develop equation (1) into a system of nd coupled
second-order ordinary differential equations. The
matrix form is

M€q+C _q+Kq� g� r= f tð Þ ð4Þ

where all matrices are square of the size nd 3 nd and q is
a vector of size nd . Here,M and C are diagonal matrices
with the mis and the cis on the respective diagonals. The
tridiagonal matrix K is equal to

k1 + k2 �k2 . . . 0 0

�k2 k2 + k3 . . . 0 0

0 �k3 . . . 0 0

..

. ..
. . .

. ..
. ..

.

0 0 . . . �knd�1 0

0 0 . . . knd�1 + knd
�knd

0 0 . . . �knd
knd

+ knd + 1

2
6666666664

3
7777777775

where kn+ 1 is defined to be zero. The elements of g are
constants of the form mig cos (u), and the vector r has
the elements d2mk, imig sin (u) when i ł nd � 1 and
rnd

= d2mk, nd
mnd

g sin (u)+ knd + 1qnd + 1. The first ele-
ment of f(t) is equal to k1Q(t), while the others are zero.

We make the coordinate transformation
q= y+K�1(g+ r) where the inverse of K is given ana-
lytically in Hovda.9 The constant shift from q to y cor-
responds to the vector of strains from the tension and
compression forces that are acting on the drillstring
when the driving force has been zero for a long time.
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Then, equation (4) takes the form

M€y+C _y+Ky= f tð Þ ð5Þ

which means that when all derivatives are zero and the
driving force is zero, all yis are also zero. We choose a
new timescale which is t =(cs=L)t, where cs is the speed
of sound in the rod (typically steel). We define E as the
Young’s modulus and rs as the density of the material
in the rod, so that c2

s =E=rs. This means that equation
(5) can be written as

A1€y+
ncs

Eâ
C _y+ n2A2y=

nL
Eâ
f tð Þ ð6Þ

where A1 is a diagonal matrix with ais on its diagonal
and A2 is a tridiagonal matrix that is similar to K,
where the kis are substituted by the ais. The parameter
ai is the cross-sectional area of the ith block, divided by
â, which is the geometric mean of all n (and not nd)
cross-sectional areas. Note that ki =Eâai=h. In the case
when nd = n, the determinant of A1 is one.

This is a linear system of first-order ordinary differ-
ential equations

_yb =Abyb + fb tð Þ, where

yb =
y
_y

� �
,Ab =

0 1

�n2A1
�1A2 � ncs

Eâ
A1
�1C

� �
and

fb tð Þ= 0
nL
Eâ
A1
�1f

� �

which has the solution by using integrating factors

yb =

ðt

0

exp t � uð ÞAbð Þfbdu+ exp tAbð Þyb 0ð Þ

=U exp tEð Þð ÞU�1�tfb(t)+U exp tEð ÞU�1yb 0ð Þ
ð7Þ

where yb(0) is the concatenation of the initial conditions
y(0) and _y(0). Moreover, the operation �t is convolu-
tion with respect to t on the interval zero to t, and the
matrix exponential is decomposed by eigenvalue decom-
position such that Ab =UEU�1. From Tisseur and
Meerbergen,10 we have that the system has two times nd

finite eigenvalues that appear in conjugate pairs.
This decomposition contains all the parameters in

the model, which limits the possibilities of detection of
unknown parameters. We have therefore found a trick
to avoid this by assuming that C=(c1=a1)A1. This is
the same as assuming that the system is proportionally
damped. By taking an eigenvalue decomposition
A1
�1A2 =VDV�1, we can approximate Ab by

Ab =
0 1

�n2VDV�1 �c1

� �

where

c=
ncsc1

Ea1â

We define vi = n
ffiffiffiffiffiffi
Dii

p
, zi = c=(2vi), and the damped

angular frequency vd, i =vi

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

i

q
. By solving the

characteristic equation of Ab, we get that

E=
L1 0

0 L2

� �

where the diagonal elements of the diagonal matrices
L1 and L2 are �c=2+ ivd, i and �c=2� ivd, i, respec-
tively. Moreover, by solving that AbU=UE we get
that

U=
V V

VL1 VL2

� �

and the inverse of this block matrix is

U�1 =
L2 L2 � L1ð Þ�1

V�1 � L2 � L1ð Þ�1
V�1

�L1 L2 � L1ð Þ�1
V�1 L2 � L1ð Þ�1

V�1

� �

which is easily verified by checking that U�1U= 1.
From equation (7), we see that it is interesting to inspect
the upper-left and the upper-right block matrices of
U exp (tE)U�1. They are equal to

V L2 exp tL1ð Þ � L1 exp tL2ð Þð Þ L2 � L1ð Þ�1
V�1

and

V � exp tL1ð Þ+ exp tL2ð Þð Þ L2 � L1ð Þ�1
V�1

respectively. We therefore have the full solution

yk tð Þ=Q tð Þ�ts1, k tð Þ+ s2, k tð Þ, where

s1, k tð Þ= n2 exp � c

2
t

� �Xnd

i= 1

VkiV
�1
i1

vd, i
sin vd, itð Þ

s2, k tð Þ= exp � c

2
t

� �Xnd

i= 1

Xnd

j= 1

VkiV
�1
ij

vd, i
3

vi sin vd, it + arccos zið Þð Þyj(0)+ sin vd, itð Þ _yj 0ð Þ
h i

ð8Þ

By noting that the derivative of
exp (� ct=2) sin (vd, it) is equal to �vi exp (� ct=2)
sin (vd, it � arccos (zi)) and that the derivative of
exp (� ct=2) sin (vd, it + arccos (zi)) is equal to �vi exp
(� ct=2) sin (vd, it), we see that the derivatives are given
by
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_yk tð Þ=Q tð Þ�t _s1, k tð Þ+ _s2, k tð Þ, where

_s1, k tð Þ= � n2 exp � c
2

t
	 
 Pnd

i= 1

VkiV
�1
i1ffiffiffiffiffiffiffiffi

1�z2
i

p 3

sin vd, it � arccos zið Þð Þ
_s2, k tð Þ= � exp � c

2
t

	 
 Pnd

i= 1

Pnd

j= 1

VkiV
�1
ijffiffiffiffiffiffiffiffi

1�z2
i

p 3

vi sin vd, itð Þyj 0ð Þ+ sin vd, it � arccos zið Þð Þ _yj 0ð Þ
h i

ð9Þ

Similarly, we see that the accelerations are given by

€yk tð Þ=Q tð Þ�t€s1, k tð Þ+€s2, k tð Þ, where

€s1, k tð Þ= n2 exp � c
2

t
	 
 Pnd

i= 1

viVkiV
�1
i1ffiffiffiffiffiffiffiffi

1�z2
i

p 3

sin vd, it � 2 arccos zið Þð Þ and

€s2, k tð Þ= exp � c
2

t
	 
 Pnd

i= 1

Pnd

j= 1

viVkiV
�1
ijffiffiffiffiffiffiffiffi

1�z2
i

p 3

vi sin vd, it � arccos zið Þð Þyj 0ð Þ+
�
sin vd, it � 2 arccos zið Þð Þ _yj 0ð Þ

i

ð10Þ

The challenges with solving this set of equations are
to compute the convolutions Q(t)�ts1, k(t),
Q(t)�t _s1, k(t), and Q(t)�t€s1, k(t). However, they can be
solved analytically by demanding that Q is a polyno-
mial. By using the rule of partial integration m times,
we see that

tm�ts1, k tð Þ=m!(D�(m+ 1)s1, k) tð Þ�Pm
j= 0

m!
j! D�(m�j+ 1)s1, k

	 

0ð Þtj

tm�t _s1, k tð Þ=m! D�(m)s1, k

	 

tð Þ�Pm

j= 0

m!
j! D�(m�j)s1, k

	 

0ð Þtj

tm�t€s1, k tð Þ=m! D�(m�1)s1, k

	 

tð Þ�Pm

j= 0

m!
j! D�(m�j�1)s1, k

	 

0ð Þtj

ð11Þ

Here, when m is positive, the operator (Dmf )(t)
denotes the mth derivative of f with respect to t. When
m is negative, (Dmf )(t) denotes the �mth antiderivative
with respect to t. Also, (D0f )(t)= f (t).

By noting that the mth derivative of exp (� ct=2)

sin (vd, it) is equal to (� vi)
m exp (� ct=2) (� ct=2)

sin (vd, it � m arccos (zi)) and that the mth antideriva-
tive of exp (� ct=2) sin (vd, it) is equal to (� vi)

�m

exp (� ct=2) sin (vd, it +m arccos (zi)), we get that

Dms1, kð Þ tð Þ= n2 exp � c
2

t
	 
 Pnd

i= 1

�við ÞmVkiV
�1
i1

vd, i
3

sin vd, it � m arccos zið Þð Þ
ð12Þ

This means that when Q is a polynomial, we have an
analytic solution for movement anywhere in the rod.

Moreover, it is important to note that we can also use
piecewise polynomials which allow for a rich variety of
movements at the top. An obvious recommendation is
that the derivative should be continuous over the
breaks.

Computational experiments

Although the outlined model describes a rod with vary-
ing cross-sectional areas, where both the static and the
dynamic Coulomb friction coefficients can vary any-
where along the rod, we focus our attention on the most
basic cases.

We keep all masses and springs equal and keep both
the dynamic and static Coulomb friction coefficients
constant along the rod. As seen by equations (1) and
(4), the effect of the angle u has two effects, one is
related to the coordinate transform between q and y

and the other is basically a factor of cos (u) in front of
the Coulomb friction coefficients. We have therefore
decided to only use u=p=2, which means that the rod
is laying on a horizontal surface. For simplicity, we let
the length of the rod be equal to how far the speed of
sound travels in 1 s. This means that t = t.

In the computation experiments, we vary the static
Coulomb friction coefficients ms, the dynamic Coulomb
friction coefficients mk , and also the linear friction coef-
ficient c.

In order to get some physical intuition about the
linear friction coefficient c, we assume that the rod is
sliding inside an outer pipe that is filled with water
with viscosity of 1 cP. If we also assume that the dia-
meter of the outer pipe is twice the diameter of the
rod and that the weight of the rod is 25 kg per meter,
then an approximation of the linear friction coeffi-
cient is

c=
2pLmcs

Ea1â

1+a2

1� a2
ln a�1
	 


� 1

� ��1

=
2pm

rsa1â

5

3
ln 2ð Þ � 1

� ��1

= 0:0016

according to Hovda,6 where a is the diameter fraction
and m is the viscosity.

Furthermore, in this article, we discuss driving forces
that are limited to this piecewise polynomial

Q tð Þ=
0 for t ł 0

� V
2tacc

t2 for 0\t ł tacc

�V t � tacc

2

	 

for tacc\t

8<
:

which describes when the rod is accelerated to the speed
V in the period from t = 0 to t = tacc. Moreover, €Q(t)
is a square function of the form

Hovda 5



€Q tð Þ=
0 for t ł 0

� V
tacc

for 0\t ł tacc

0 for tacc\t

8<
:

Note that by taking the second derivative of equa-
tion (6) with respect to t, we see that the relation
between €yk(t) and €Q(t) is exactly the same as the rela-
tion between yk(t) and Q(t). Since the mass and stiff-
ness are uniform in this setting, we realize by consulting
Hovda11 that the accelerations anywhere in the rod will
be a sum of square waves, one traveling upward and
one traveling downward. We can also expect a Gibbs-
like ringing in the acceleration signals, which is depen-
dent on the choice of n.

In this article, we consider three initial conditions:

� Rest, but previous pullout: This is
q(0)=K�1(g+ r), where d2 = 1 and _q(0)= 0.
This means that the positions of the blocks are
the same as if the rod was previously pulled out
slower and slower till it finally stopped.

� Rest, but previous run in: This is
q(0)=K�1(g+ r), where d2 = � 1 and

_q(0)= 0. This means that the positions of the
blocks are the same as if the rod was previ-
ously ran in slower and slower till it finally
stopped.

� Rest, but previous rotation: This is q(0)=K�1(g)
and _q(0)= 0. This means that the positions of
the blocks are the same as if the rod was previ-
ously rotated, that is, r= 0.

Basic experiment that describes the undamped
motion with equal static and dynamic Coulomb
friction coefficients

In this case, the rod starts at rest from previous pullout.
In the beginning nd = 0, and incrementally more blocks
start to move and finally nd = n. We have c= 0,
ms =mk = 0:35, V = 1, and tacc = 4.

In Figure 2, we see the positions, the velocities, and
the accelerations of the rod at various places, where
n= 100. As expected, the first block follows Q(t)
closely. In order to describe the movement of the other

Figure 2. (a–c) The positions, velocities, and acceleration at various places in the rod. The parameters are c= 0, ms =mk = 0:35,
V = 1, and tacc = 4. (d) How the model switch from nd equals zero to n for various n. For large n, we see that the switching is
approaching the speed of sound. (a) Positions when n = 100, (b) velocities when n = 100, (c) accelerations when n = 100, and (d)
switching sub-models for various n.
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blocks, we study the acceleration plot in Figure 2(c).
Because of the initial step in acceleration, the accelera-
tion of the nth block becomes a square wave with a
period of four time units. It takes one time unit to start
the movement, which is the time sound that needs to
move to the other end of the rod. Then, €yn jumps from
zero to twice the amplitude of the step, that is,
�2V=tacc = � 0:5. It stays at this level when the sound
travels back and forth, and at t = 3, it jumps back to
zero. All of this is in accordance with the result of
Hovda.11

At t = 4, the acceleration at the top jumps back to
zero, which sets of a new square wave that cancels out
the previous square wave. This is a consequence of
choosing tacc to be equal to four. Note that we also see
the Gibbs-like ringing signal, whose frequency is depen-
dent on n as discussed in Hovda.11 The acceleration
anywhere else in the rod is a bit more complex, but it
helps to understand that they are essentially a sum of a
sound wave moving upward (or left) and a sound wave
moving downward (or right). This is discussed more
thoroughly in Hovda.11

In Figure 2(d), we see a plot that describes how the
model is switching between various sub-models. As
expected, when the rod is at rest, nd is equal to zero
and as the rod starts to move, nd increases to n. Since
ms =mk and the previous movement was being pulled
out, a point in the rod starts to move when the sound
wave reaches that point. In this case, movement of the
nth block should start at exactly one time unit, which is
in accordance with Figure 2(a)–(c). However in Figure
2(d), we see that the nth block actually starts to move
at about t = 0:78. The movement is very small before
t = 1. Moreover, since the speed of sound is constant,
the graph in Figure 2(d) should also be linear, but we
see that the movement of the first block happens
earlier.

This is believed to be a consequence of the way we
model the rod. Movement of the first block starts faster
than the speed of sound, since the sub-model has too
few blocks to incorporate this effect. Sub-models that
contain more blocks are more accurate and the propa-
gation speed becomes the speed of sound. By increasing
n, we see in Figure 2(d) that this inaccuracy is reduced,
that is, the movement at the bottom approaches the
logical limit of one. However, the problem will always
occur in the first few blocks.

Experiment that describes the undamped motion
when the static is larger than the dynamic Coulomb
friction coefficient

In this case, the rod also starts at rest from previous
pullout. In the beginning nd = 0, and incrementally
more elements start to move and finally nd = n.

Different from the experiment in this section, we have
ms = 0:55, while the other parameters are unchanged,
that is, mk = 0:35, c= 0, V = 1, and tacc = 4.

In Figure 3(a), we show the velocities at various
places in the rod for n= 100. The graphs are similar to
Figure 2(b), when ms =mk = 0:35. However, move-
ment starts later, because the sum of the forces that are
acting on the blocks has to overcome the static
Coulomb friction forces (which are larger than the
kinematic Coulomb friction forces). In Figure 3(c), we
see a close-up of the movement of the first four blocks.
We see that the movement of a block accelerates much
faster than Q(t), but this acceleration reduces and actu-
ally becomes negative when this block has moved suffi-
ciently far away from the next block. Eventually, the
next block cuts loose and a new wave of motions hap-
pens. In Figure 3(d), we see that increasing n to 200 has
the effect of increasing the frequency of these wave
motions. This is an interesting result, because if we are
modeling a slick pipe with a number of blocks and
springs, we get these wave motions that are a conse-
quence of dividing the rod into a set of springs and
masses. For a perfect slick pipe, these motions will not
happen in reality.

In Figure 3(b), we see the effect of switching between
sub-models. For the first block, it does not start to
move before the rod has moved long enough to over-
come the static friction force. This is slower than the
speed of sound. The movement of the last block is lim-
ited by the speed of sound. Increasing n has the effect
of driving the nth block movement closer to the speed
of sound.

Experiment that describes the damped motion for
various acceleration lengths

In this case, the rod also starts at rest from previous
pullout. Different from the experiment in this section,
we have c= 0:0016 and we vary tacc. To be precise,
ms =mk = 0:35, c= 0:016 (10 times more viscous than
the example given in this section), V = 1, and n= 100.

In Figure 4(a), we see the velocities at various parts
of the rod when the acceleration length is one time unit.
In the undamped case (not shown), the acceleration at
the bottom is a sum of two square waves, where the sec-
ond square wave has opposite amplitude and starts one
time unit later. Therefore, the acceleration at the bottom
is zero in first time unit, �2V in the second time unit,
zero in the third time unit, and finally 2V in the last time
unit. The solid graph in Figure 4(a) shows a damped
version of this, meaning that the amplitude of the square
acceleration waves is damped. The shapes of the other
graphs can be understood in the same manner.

The important result of Figure 4(a) and (b) is that
the velocity can reach zero when tacc ł 2. When the

Hovda 7



velocity anywhere in the rod reaches zero, we can have
the stick–slip effect, which will be described more in
this section. We added the damping coefficient in this
experiment to avoid the complexity of explaining stick–
slip at this point in the article.

Figure 4(c) and (d) is added to show that the move-
ment in the rod continues if the acceleration phase
exceeds four time units. We therefore suggest that if
one wants to avoid vibrations, the acceleration phase
should be about four time units. In a practical system
with damping and possibly non-homogeneous pipe size,
one should aim for four times the first eigenfrequency.

Experiment that describes the effect of stick–slip

In this case, the rod also starts at rest from previous
pullout. We let the acceleration phase be one time unit,
that is, tacc = 1. Moreover, we have ms = 0:55,
mk = 0:35, c= 0:0016, V = 1, and n= 100.

Figure 5(a) and (b) shows the movement of the rod
in various places. Stick–slip occurs when 4\t\5, and
this is shown in Figure 5(c), where we see that about
the last 30% of the rod are experiencing stick–slip. In

Figure 5(d), we have reduced both V and ms � mk by a
factor of 10. Notice the similarity between Figure 5(b)
and (d). This is explained as follows.

By investigation equation (3), we see that the yj(0)s
in equation (8) are dependent on the difference ms � mk .
Moreover, since Q(t) is proportional to V, we see from
equation (8) that yk(t)=V is a function of (ms � mk)=V .
To be more general, we can say that yk(t)=V is a func-
tion of (ms � mk)=V , c, and tacccs=L, where tacc is the
acceleration time in seconds, that is, tacc= taccL=cs

.

Experiment that describes when the initial conditions
are not pulling out

In this case, the rod starts at rest from previous rotation
or previous running in. We let the acceleration phase be
one time unit, that is, tacc = 1, V = 1, ms = 0:55,
mk = 0:35, c= 0:0016, and n= 100.

Figure 6(a) shows the velocities of the rod in vari-
ous places, when the previous motion was rotation.
Because the rod needs to stretch before it moves, it
actually takes exactly two time units before the nth
block is moving. This is a consequence of choosing

Figure 3. (a) The velocities in various places of the rod, when the parameters are c= 0, mk = 0:35, ms = 0:55, V = 1, tacc = 4,
and n= 100. Close-up plots for the first four blocks are given in (c) and (d) for n equal to 100 and 200, respectively. We see plots
regarding the switching between various sub-models for various n in (b). (a) Velocity overview n = 100, (b) switching sub-models, (c)
velocity close-up n = 100, and (d) velocity close-up n = 200.
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mk = 0:35. When the nth block is starting to move,
sound has traveled back and forth once and this is

why €yn is equal to �V=tacc (and not �2V=tacc). Notice

the striking similarity to Figure 4(b). Moreover, by

investigating Figure 6(b), we see that stick and slip do

not even occur. This means that removing the stretch

in the rod with rotation is a way to prevent axial

stick–slip.
In Figure 6(c), we see the velocities of the rod in var-

ious places, when the previous motion was pulling in. It

takes even longer for the whole rod to move, because

the previous motion was running in. After t = 1 and

before the nth block slips, there are square acceleration

waves that travel back and forth, which explains the

plots in Figure 6(c).
Model switching is shown in Figure 6(d). There is a

shift in how fast the models are changing around
t = 1:6. The reason for this is intuitive. At t = 1, accel-

eration of the first block stops and this sets of a sound

wave which reaches the last moving block. This is block

number 60, which reaches after 0.6 s. Notice also that

there is a stick–slip in the nth block at approximately

t = 7:5.

Discussion

The results of the computational experiments are obvi-
ously dependent on the physical assumptions that are
made. In this section, we summarize and briefly discuss
all assumptions that are made.

The rod is assumed to be perfectly elastic which
means that the axial stresses are always far away from
the yield stress. Moreover, we have made the assump-
tion that c2

s =E=rs, which is common for long rods.
This assumption is fair when the diameter of the rod is
less than one wavelength of a propagating pressure
wave. This means that the assumption is valid for low-
and medium-frequency components of the motion. The
problem with the higher frequency components can be
neglected, since we realize that the higher frequency
components are damped quickly. Notice that all the
relevant material properties and the length of the rod
are taken into account by the timescale.

Furthermore, we have assumed that the damping is
perfectly linear, where viscous damping is given as an
example of such damping. As discussed in Hovda,6 vis-
cous damping is not perfectly linear due to the time-
and acceleration-dependent Basset forces. However, in

Figure 4. The derivative of the position in various places in the rod for various acceleration lengths. The other parameters are
c= 0:016, ms =mk = 0:35, V = 1, and n= 100. It is clear that stick–slip may occur if the acceleration phase is less than two time
units. (a) Velocities when tacc = 1, (b) velocities when tacc = 2, (c) velocities when tacc = 5, and (d) velocities when tacc = 6.
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the case when the system is strongly underdamped,
such as when the rod is a drillstring in an oil well, this
approximation may still be appropriate. We have also
assumed that the system is proportionally damped by
using the relation C=(c1=a1)A1. This is likely a fair
assumption in oil-well drilling.6

We have also made the assumption that the rod is
having no lateral motion. The rod has to move in a
straight line without leaving contact at any point with
the supporting surface.

In this article, we have induced some restrictions to
the movement at the top. In particular, the topside
movement is constrained to that start from rest and end
with constant pullout. How the motions are stopped is
not described. This would require that the movement of
the first few blocks would stop, while blocks below are
in movement. This is a violation of the assumption that
if a certain block is at rest, all the blocks below are also
at rest. It is also a violation of the assumption that d2, i

is always equal to d2.
We are confident that the model can be expanded to

yield any movement that is starting from any initial
conditions by changing the above assumptions.
Describing this is an expositional challenge within the

constrained space of a scientific paper, and hence, this
generalization is not described in this article.

A final comment about topside movements is that Q
is constrained to follow piecewise polynomials. In a
practical setting, this makes sense, since the polyno-
mials can approximate any discrete sequence.

A final point regarding approximations that are made
in this article is that the mass of the rod is modeled as dis-
tinct point masses rather than distributed uniformly. In
Cull and Tucker,5 we have discussed that a Gibbs-like
pattern is evolved when the topside movement is discon-
tinuous. In a practical setting, this ringing artifacts will
be seen in the accelerations. The frequency of the ringing
is dependent on the number of blocks. The number of
blocks in the sub-models increases from 0 to n, meaning
that this artifact is always present in the beginning when
the movement is starting from rest. This is important for
interpreting results from the simulations correctly.

Conclusion

This article describes the movement of a long rod that
is sliding on a surface with static and dynamic
Coulomb friction. The model is using a method for

Figure 5. Movements in various places in the rod in the case of stick–slip. The other parameters are c= 0:0016, ms = 0:55,
mk = 0:35, V = 1, and n= 100. (a) Positions when V = 1 and ms � mk = 0:2, (b) velocities when V = 1 and ms � mk = 0:2, (c)
model switching when V = 1 and ms � mk = 0:2, and (d) velocities when V = 0:1 and ms � mk = 0:02.
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switching between various linear lumped element mod-
els. Since the sub-models have analytic solutions, the
only computational complexity is finding zero-crossing
related to the sub-model switching. The model is there-
fore suitable for a real-time application.

The experiments conducted in this article show that
the model makes physical sense and seems appropriate
for describing the effect of stick–slip. We have also
shown that yk(t)=V is a function of (ms � mk)=V , c, and
tacccs=L. Furthermore, if the previous action is pulling
out, then stick–slip can occur when the acceleration
length is less than the time sound that needs to travel
back and forth along the rod. When the previous action
is rotation or running in, stick–slip can be avoided with
shorter acceleration lengths.

A shortcoming of the model is that the friction is
limited to happen at certain distinct points. For a per-
fect slick pipe, increasing n will give n-dependent oscil-
lations that are not real as discussed in this section.
However, in the case of a drillstring that is made up of

a number of pipe joints, the connection points between
the pipe joints are typically the only points of contact.
In the case of a drillstring sliding in a deviated well-
bore, we can therefore expect these oscillations, and
choosing an n that is equal to the number of pipe joints
may be an excellent choice.
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Figure 6. Movements in various places in the rod in the case when the initial condition is not previous pullout. The other
parameters are c= 0:0016, ms = 0:55 mk = 0:35, V = 1, tacc = 1, and n= 100. (a) Velocities when initial condition is previous
rotation, (b) model switching when initial condition is previous rotation, (c) velocities when initial condition is previous running in,
and (d) model switching when initial condition is previous running in.

Hovda 11



References

1. Berger EJ. Friction modeling for dynamic system simula-
tion. Appl Mech Rev 2002; 55: 535–577.

2. Feeny B, Guran A, Hinrichs N, et al. A historical review
on dry friction and stick-slip phenomena. Appl Mech Rev

1998; 51: 321–341.
3. Zhao D, Hovda S and Sangesland S. Abnormal down

hole pressure variation by axial stick-slip of drillstring. J
Petrol Sci Eng 2016; 145: 194–204.

4. Bengisu MT and Akay A. Interaction and stability of
friction and vibrations. In: Singer IL and Pollock HM
(eds) Fundamentals of friction: macroscopic and micro-

scopic processes (NATO ASI Series) (Series E: Applied
Sciences), vol. 220. Dordrecht: Springer, pp.533–566.

5. Cull SJ and Tucker R. On the modelling of Coulomb fric-
tion. J Phys A Math Gener 1999; 32: 2103–2113.

6. Hovda S. Semi-analytical models on axial motions of an

oil-well drillstring in vertical wellbores. J Sound Vib

2018; 417: 227–244.
7. Hovda S. Semi-analytical models on axial motions of an

oil well drillstring in deviated wellbores. J Sound Vib

2018; 433: 287–298.
8. Hovda S. Automatic detection of abnormal torque while

reaming. J Petrol Sci Eng 2018; 166: 13–24.
9. Hovda S. Closed-form expression for the inverse of a

class of tridiagonal matrices. Numer Algebra Contr Optim

2016; 6: 437–445.
10. Tisseur F and Meerbergen K. The quadratic eigenvalue

problem. SIAM Rev 2001; 43: 235–286.
11. Hovda S. Gibbs-like phenomenon inherent in a lumped

element model of a rod. Adv Mech Eng. Epub ahead of

print 3 August 2017. DOI: 10.1177/1687814017713703

12 Advances in Mechanical Engineering




