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Abstract

Background: Resistance towards targeted cancer treatments caused by single nucleotide variations is a major issue
in many malignancies. Currently, there are a number of available drugs for chronic myeloid leukaemia (CML), which
are overcome by different sets of mutations. The main aim of this study was to explore if it can be possible to exploit
this and create a treatment protocol that outperforms each drug on its own.

Methods: We present a computer program to test different treatment protocols against CML, based on available
resistance mutation growth data. The evolution of a relatively stable pool of cancer stem cells is modelled as a
stochastic process, with the growth of cells expressing a tumourigenic protein (here, Abl1) and any emerging mutants
determined principally by the drugs used in the therapy.

Results: There can be some benefit to Bosutinib-Ponatinib rotation therapy even if the mutation status is unknown,
whereas Imatinib-Nilotinib rotation is unlikely to improve the outcomes. Furthermore, an interplay between growth
inhibition and selection effects generates a non-linear relationship between drug doses and the risk of developing
resistance.

Conclusions: Drug rotation therapy might be able to delay the onset of resistance in CML patients without costly
ongoing observation of mutation status. Moreover, the simulations give credence to the suggestion that lower drug
concentrations may achieve better results following major molecular response in CML.
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Background
Targeted therapies, which directly target molecular path-
ways critical to tumours instead of rapidly dividing cells
in general, have in many cases improved survival sig-
nificantly when compared to cytotoxic chemotherapy or
radiation. Unfortunately, a recurring difficulty with tar-
geted therapies is the occurrence of resistance [1]. As
these therapies target oncogenic molecular pathways with
high specificity, smaller, relatively common changes such
as mutations in the molecular drug target, activation of
alternate pathways and overexpression of the drug target
or of transporter proteins, can render them ineffective [2].
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Even if such a change occurs in a single cancer-cell it con-
fers a fitness advantage that can generate a cell lineage
which reproductively outpaces the rest of the tumour. In
competition with the other cells, this gives such a lineage
a higher probability of becoming a major fraction of the
tumour cells [3]. This clonal evolution among the tumour
cells allows major and minor resistance-giving traits to
propagate in the population [4]. Once a large proportion
of the tumour becomes resistant, the success of continued
treatment is unlikely. In many cases, the fitness advantage
which allows resistant clones to expand exists only during
treatment. Thus, by altering the treatment protocol, it is
possible that we could steer evolution towards a treatable
state [1, 5]. The vast number of possible protocols limit
our ability to explore this in experiments. On the other
hand, theoretical studies and computer modelling allow
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testing on an otherwise infeasible scale [6] and thus open
a venue for estimation of multiple treatment protocols [7].
One of the first malignancies where targeted therapies

proved effective was chronic myeloid leukaemia (CML)
that involves the constitutively active tyrosine kinase Abl1.
In most cases of CML, a chromosomal translocation
creates Bcr-Abl, a fusion protein in which the Abelson
tyrosine kinase (Abl) is stripped of its regulatory regions,
leaving the kinase domain free to catalyse any substrate
it comes across, triggering numerous growth pathways as
a result [8]. It has been shown that Bcr-Abl is sufficient
for producing the malignant phenotype on its own. As
the protein is both the sole driver and absent in healthy
cells it is also an excellent drug target [9]. Imatinib, a Bcr-
Abl specific tyrosine kinase inhibitor (TKI), was approved
in 2001 and has become the standard CML treatment
due to greatly improved outcomes over traditional ther-
apy [10]. As it inhibits Bcr-Abl it effectively shuts down
the signalling responsible for creating the malignant phe-
notype. In spite of this, Imatinib and related TKIs rarely
cure CML. Instead, a minimal residual disease remains
and most often patients continue treatment for the rest
of their lives to prevent recurrence. This is thought to be
caused by Bcr-Abl independent cancer stem cells, which
carry the gene but do not require it [9].
A significant portion of Imatinib treatment failures are

due to mutations which emerge in the kinase domain of
Bcr-Abl that reduce the efficiency of Imatinib. To rem-
edy this, a series of other TKIs have been developed that
do not share the same resistance mutations and have
an overall higher affinity for Bcr-Abl. These are most
often used as a second-line treatment. For instance, the
single nucleotide variations (SNVs) E255V and Y253H
confer resistance towards Imatinib but not Dasatinib or

Bosutinib, respectively [11]. Until recently T315I was the
only untreatable Abl1-SNV, because the mutated protein
was resistant towards all available drugs. The Bcr-Abl
inhibitor Ponatinib approved in 2012 has since changed
that but is associated with more severe side effects than
other TKIs, most notably vascular occlusion events, heart
failure, and hepatotoxicity [12]. The EPIC trial comparing
Ponatinib to Imatinib was terminated early due to arte-
rial thrombotic events in some patients [13]. Thus, despite
being less vulnerable to resistance mutations, Ponatinib is
only given when no other options are available. Moreover,
twomutations in the same copy of Abl1 (compoundmuta-
tions) can cause resistance towards Ponatinib [14], and
some SNVs, such as G250E and E255V, yield some degree
of Ponatinib resistance (at least in vitro) [11].
The sensitivity of known mutants towards approved

and experimental drugs was the subject of several stud-
ies (e.g., [11, 15, 16]). The results are often presented as
IC50-values, i.e., the TKI concentration at which cell pro-
liferation is slowed by 50%. Mutations can change the
drug binding protein such that the affinity for the drug is
reduced, resulting in less effective inhibition. These data
are a proxy for the fitness of individual mutants under
treatment, and are used as such in this work.
The type of non-trivial protocols investigated in this

paper are primarily drug rotations, where drugs are
switched according to a fixed pattern as illustrated in
Fig. 1. A range of both doses and timings were investi-
gated. The drug rotations investigated maintained a con-
stant drug pressure on the tumour, much like conventional
treatments; but the source of this pressure changes over
time. This is in contrast to the conventional treatment
model, where a patient receives the same drug as long
as the drug is tolerated and effective, and is moved to a

Fig. 1 Example of a drug rotation protocol. The protocol is defined by four variables: The drug doses (CA , CB), and the time per cycle (tA + tB = tcycle)
of either drug
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new drug (if available) otherwise. With Imatinib the dose
can sometimes be reduced after an initial effect has been
established [17]. It is however uncommon to terminate
Imatinib treatment. Termination of treatment when active
stem cells are still present is liable to cause a quick return
of symptoms and increases the risk of disease progres-
sion, possibly via accumulating secondary adaptations,
into accelerated phase or blast crisis with significantly
worse treatment outcomes. Even with newer TKIs, there
are as of yet no clear guidelines on the possibility of
seceding treatment in CML [18].
On top of the potential benefits with respect to drug

resistance, a drug rotation can help manage side effects,
which is especially pertinent for Ponatinib, while also low-
ering the overall risk of resistance. If the two drugs have
little or no overlapping resistance mechanisms the like-
lihood of adapting to both may be lower, while singly
resistant cells are still exposed to one drug towards which
they are sensitive. However, there is also a risk for devel-
opment of mutations that make the molecular drug target
resistant to both drugs. In principle, combination ther-
apies where several molecular targets are treated at the
same time are beneficial in this aspect [19], but such ther-
apies are not currently available for CML. Using multiple
Bcr-Abl TKIs simultaneously means they have to com-
pete with one another, as they all target the same binding
pocket of the enzyme. Thus such combination therapy
is expected to be less efficient in eradicating the cancer
cells. Because of these factors it is unlikely that combi-
nations would allow for significant dose reductions, and
because of side-effect concerns in giving multiple TKIs
simultaneously we decided not to pursue it in this work.
In this paper, we investigate whether drug rotation pro-

tocols using TKIs for the treatment of CML could reduce
the risk of resistance. It is shown that drug rotations
with Ponatinib have the largest potential benefits. Further-
more, the risk of developing resistance seems tied to the
achieved degree of inhibition with reduced risks for both
low (<40%) and high (>90%) degrees of inhibition.

Methods
Modelling approach and assumptions
If the growth rate of any particular mutant subject to
treatment is known, it becomes possible to simulate the
evolution of CML cells under a time-varying treatment
protocol. Since cell growth and mutation are not entirely
deterministic, the evolution of CML cells is appropriately
modelled as a stochastic process. The derivation of such
a model enables the investigation of potentially superior
non-trivial treatment protocols for CML.
The branching process [20] models cell growth as a

stochastic process where individual cells at the end of
their life give birth to (possibly mutated) offspring accord-
ing to some probability distribution. Branching processes

have previously been used to (among many examples):
optimise screening in ovarian cancer [21], evaluate the
effects of combination therapy [19] and numerous other
modelling instances of treatment response and resistance
prevention [22]. We propose a model similar to the stan-
dard branching process, albeit slightly restructured for
more convenient computer simulation. Furthermore, we
consider only a non-hierarchical, stable number of can-
cer cells (but with fluctuations about some mean) capable
of self replication (cancer stem cells, CSCs). CSCs are
important in modelling of cancers [23] and in particular
in CML [24]. It should be noted that in cells that do not
self-replicate (i.e., they are not CSCs) there can be no last-
ing adaptations, as their lineage is bound to die and no
traits can be permanently acquired. If the CSCs replicate
in a strict hierarchy the population capable of sustaining a
mutation is further reduced [25]. The CSC pool also grows
more slowly than differentiated cells [24] and the cells are
considerably less sensitive to Abl1 inhibitors [26], moti-
vating our choice to model the CSC pool as stable even
under treatment. To that end, we introduce an adaptive
death rate which means that the model proposed here is
not equivalent to a typical branching process. In the con-
text of this model, we judge resistance progression by the
makeup of the CSC pool. A common assumption is that
CML CSCs are entirely insensitive to TKIs [24, 27]; How-
ever, experimental studies show that while TKIs cannot
kill CSCs, they have some degree of antiproliferative effect
[28, 29], a phenomenon that our model replicates.

Computational model
The discrete time model of stochastic cell growth pro-
ceeds essentially as follows. Initially, a population of cells
is set up. A simple two-step procedure is then repeated
iteratively: (each step will be described in further detail
below)

1. Each cell has a chance to die.
2. Each of the surviving cells has a chance to reproduce,

with a small probability of producing a mutant.

Treatment protocols are simulated by letting the repro-
duction probability change with time in a way that
depends on the mutation status of the cell. A pseudocode
description of the algorithm is available in Section 8 of
Additional file 1.
In every iteration, there is some probability q for each

cell to die. The cells that survive reproduce with a prob-
ability si that depends on their genotype i. To reduce
the computational burden, all cells of an identical geno-
type are treated together, and thus the total number of
deaths or births for one group per iteration is described
by the binomial distribution B(n, p) for n independent
but identical cell events (i.e. births/deaths/mutations), and
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probability p (which can be birth-/death- or mutation-
probability). Under the effect of a single drug, the birth-
probabilities, i.e. the odds of a cell of type i dividing
in a particular timestep (analogous to a birth rate in a
continuous setting) are calculated as

si(t) = s(0)i 2−C(t)/IC50 (1)

where C(t) is the time-dependent drug concentration (as
exemplified in Fig. 1), and the IC50 depends on both geno-
type and drug. IC50 values are taken from [11], where
these values are available for all single mutations and
some, but not all compound mutations. This use of IC50
values is discussed further in Additional file 1: Section 4.
In cases where IC50 values for compound mutations are
not available, they are estimated as the maximum IC50 of
the mutation’s constituent SNVs which is a decent approx-
imation in many cases (Additional file 1: Figure S2) when
no other data exists, though it is known that some com-
pound mutations are much more highly resistant than
expected [14]. The starting birth-probabilities s(0)i can be
unified or set separately for each genotype. A method
for deriving these from position specific scoring matrix
(PSSM) data is provided in the Additional file 1: Section
1. However, the rate of evolution in the presence of drug
therapy is in fact almost independent of the background
reproduction rate of drug-free tumour cells, since the
presence of drug therapy alters the evolutionary landscape
to a much greater degree. Differences in the inherent
growth rate are thus insignificant compared to the much
larger reproduction rate differences induced by treatment.
On the contrary, if periods of treatment-free growth were
to be simulated, variations in reproduction rate would
likely be important [30].
Under the assumptions that only cancer stem cells lead

to resistant clones [24] and that these cells are rather resis-
tant to the drugs [9] the effective population size is kept
stable, though fluctuations about the mean are allowed.
To keep the population size average fixed, the death-
probability is rebalanced at the start of every iteration

q(t) =
∑

i Nisi(t)
N

(

1 + κ
N − N̂

N̂

)
N

N + ∑
i Nisi(t)

(2)

N is the total population size, N̂ is the desired mean and
κ is a spring constant describing how strongly N tends
towards N̂ (Table 1).

∑
i Nisi(t) is the expected number

of new cells (since E[B(n, p)]= np). There are three com-
ponents to this equation. The first factor is simply the
average birth rate at that timestep which, in a determin-
istic setting, is what the death rate should equal for the
population to remain constant. The second factor is used

Table 1 Global parameters

Parameter Symbol Value

Population size avg. N̂ 250 000 cells [24]

Population size spring constant κ 1.0

Mutation rate multiplier μ 10−7 mutations/divisiona

Unmodified growth rate s(0) 0.016 divisions/timestepb [30]

aThe number of mutations in a single residue per new cell where only one
transversion can result in the specific amino-acid change. Mutations that result from
transitions or more than one possible SNV have higher mutation rates, see
Additional file 1: Section 5 and Table S1
bCorresponds to approximately 0.3 – 0.4 divisions per day

to increase or decrease the death rate when the popula-
tion size is too high or low respectively. This causes the
population size to drift towards N̂ as shown in Figure S1
in Additional file 1; how quickly it does so depends lin-
early on the difference between N and N̂ . Finally, the last
factor accounts for the drift otherwise induced by the
algorithm (killing cells first and then letting them repro-
duce). The population size oscillates up and down as cells
reproduce and are killed in turn; this factor makes sure
that the population size is N̂ on average at the start of each
timestep.
Whenever a new cell is produced it has a small chance

μi of being a mutant. Only single nucleotide variations
(SNVs) are allowed in a single cell division (though they
may accumulate and form compound mutations over
time). Mutation probabilities are specified at a genome
level and includes altered transition/transversion ratios
(ts/tv=2). Explicitly modelling the genetic code for possi-
ble resistance mutation spots avoids some potential cases
of a residue-residue transition probability matrix. This,
and the multiplier εji are explained in further detail in
Section 5 in Additional file 1. Mutations that result in
a variant with a known drug sensitivity are kept. Syn-
onymous mutations are also kept. All other mutations
are assumed to be deleterious or irrelevant and are not
accepted. Backwards mutations that restore the wildtype
from a mutant are allowed.
Taking only the leading order behaviour of growth-

and death-rates into account, the average the change in
population for a genotype in one iteration is

Ni(t + 1) =
Growth term

︷ ︸︸ ︷
[ 1 + si(1 − μi)] [ 1 − q(t)]Ni(t)

+
∑

j∈nni
sjμεjiNj(t)[ 1 − q(t)]

︸ ︷︷ ︸
Mutation term

(3)

where the sum in the mutation term is over all other geno-
types that could mutate into i (nearest neighbours, nni).
Let P[ . . . ] denote the probability of an event. Since
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εji ≡ P[ jmutates to i]
P[ Single transversion]

= P[ jmutates to i]
μ

(4)

and μ is a constant mutation rate that depends on the
behaviour of the cancer cells (see Table 1), μεji is the
chance of jmutating to i specifically and

μi =
∑

j∈nni
μεij (5)

is the chance of any specific residue mutating. A single
transversion is chosen as the baseline since is the most
unlikely type of SNV. Higher order terms appear in Eq. (3)
if population size fluctuations are taken into account.
When the drug concentrations are stable, the waiting time
between events will effectively have a geometric distri-
bution, which is the discrete analogue of the exponential
waiting times characteristic of Poisson processes. Thus,
the cells have no memory of whether they were recently
changed by a mutation or not.

Implementation
All simulations were run using the same global parameters
(Table 1); N̂ and μ were selected based on conditions that
are plausible for a newly diagnosed patient. We assume
that CML is driven by a relatively large (2.5 · 10−5 cells)
CSC pool with no clearly defined internal hierarchy. If
CML has a more distinct hierarchic structure, the relevant
CSC pool might be vastly smaller as only the most basal
(stem-cell like) cells can sustain a mutation [25, 27]. In
the case of small population sizes, stochastic effects dom-
inate the evolution [31], and effects from the treatment
prototol, if at all present, will be harder to detect.
By correlating the time until Imatinib resistance would

generally occur in practice [32, 33] and the time it takes
for a rare mutation to grow to a major fraction of the CSC
population [34] with simulations, these parameters were
determined to result in timesteps that are about 1.2 h long
(600 timesteps/month). Simulations were started with
Bcr-Abl cells where 100% of the cells carried Abl1 with
wildtype kinase domain. IC50 values for known resistance
mutations are taken from [11]. It is not known for cer-
tain whether resistant cells exist prior to treatment [35, 36]
but the results starting from a pure wildtype population
are still valid subject to the condition that the resistant
cells are a minor fraction of the population when treat-
ment starts (which is essentially equivalent to removing
the waiting time for mutations to occur). The effects from
drug-rotations on controlling the outgrowth of extant
mutations remains the same.
There are several ways to simulate drug doses explic-

itly. One approach is to refer to the concentration of the
drugs in the plasma which is available from experimen-
tal measurements. This approach, however, is not without
limitations, as the treatment effects of available drugs do
not match the achieved blood plasma concentration very

well [37, 38]. One mechanism for this discrepancy could
be that the drugs bind to a different degree to serum pro-
teins, as observed with other small molecule drugs [39].
For instance, TKI doses based on blood plasma concentra-
tions incorrectly indicate that Nilotinib is superior to any
other available CML drug, as its achievable plasma con-
centration is over 100 times its wildtype IC50, and high
enough that it should be effective against known resis-
tance mutations. In practice, however, there are resistance
mutations that make Nilotinib inactive. Owing to these
limitations, we approximate the drug doses by the percent
inhibition they achieve in vivo. This cannot be directly
correlated to available experimental results, but could
in principle be measured in cell-lines that are harvested
directly from patients.
Drug doses were modelled as constant throughout the

simulations. It might be argued that a wave-form is more
suitable to represent drug doses.While this is true in some
cases (e.g., drugs that are given once per week or less often
and are slowly absorbed, or drugs that are rapidly cleared
from the body), a constant value is used here owing to
the frequent medication (at least once per day) and the
relatively slow clearance of most the drugs. Thus, they
establish a reasonably stable dose over a few weeks and
the cycle times considered here of (1-4 months) are well
above that. The exception is Dasatinib with a short half
life of only 4h [40] but even dasatinib is not completely
eliminated from the body within a week after a single dose
(data taken from the registry of Pharmaceutical Specialists
in Sweden [41]).
Some software implementation details are provided in

Additional file 1: Section 2.

Results
As a general measure of when resistance occurs we define
WT1

2
as the number of iterations before the wildtype

makes up half of the total population.

WT1
2

≡ timesteps before Nwt <
N
2

(6)

Stochastic effects are most significant for low popula-
tion phenotypes, and at WT1

2
it is very likely that the

total population consists mostly of a few highly populated
phenotypes. These grow rather deterministically, which
means that estimated WT1

2
values do not display large

stochastic fluctuations.

TKI dose scaling effects
Figure 2 displays the rate of evolution of tumour cells as
a function of percent inhibition, under different models:
pure fitness effects (Moran model, Fig. 2a), our numeri-
cal model as described below (Fig. 2b), and a theoretical
model, where any resistance mutation is guaranteed to be
fixed (Fig. 2c, model details in Additional file 1: Section 3).
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A

B

C

Fig. 2 The rate of evolution varies with inhibition. The y-axis is in arbitrary units and scale is consistent within rows but not comparable between
rows. a Pure fitness effects, with a constant reproduction rate. Derived from Moran model [42], see Eq. 7. b Our model. The inverse of median WT 1

2

from simulation with the errorbars showing a 95% confidence interval. The slightly jagged appearance comes from random variation in the
stochastic simulations and from having fewer data points than in a or c. c Pure reproduction rate effects, i.e. simulations where any resistance
mutation is guaranteed to be fixed

In our model, simulations were run at doses that corre-
spond to an (initial) growth rate inhibition of 29%–96% for
all drugs where the required IC50 data could be obtained
(Fig. 2b). The results were then used to examine the effects
of TKI doses on the overall rate of evolution R i.e., the rate
at which mutants become dominant in the population. It
is assumed that under these conditions themost dominant
population of cells will eventually become evolutionary
fixed if the tumour grows for enough generations. This
may or may not happen within the patient’s lifetime. For
practical reasons fixation in simulations is therefore esti-
mated using the WT1

2
concept (Eq. 6). Thus, we refer to

populations that have reachedWT1
2
as being fixed, and to

the probability to reach WT1
2
as the fixation probability.

Explicitly, R is calculated as:

R = (near) fixation probability × mutation rate
× reproduction rate

Bosutinib and Rebastinib have a somewhat lower rate
of evolution, due to the smaller number of known, how-
ever weak, resistance mutations. In the case of Rebastinib,
this is likely because its different binding mode means
the usual resistance mutations are less relevant, and as
it is not clinically approved there is almost no clinical
data on resistance. Of note, a similar bias may exist for
other drugs (except Imatinib), as the in-vitro screening of
mutants is based aroundmutations known primarily from

Imatinib-treated patients. Ponatinib is in practice only
vulnerable to compound mutations. In vitro studies reveal
that many mutations confer some resistance to Ponatinib
[14], but the percent inhibition that is achieved in patients
is apparently enough to make the inhibitor useful anyhow.
In effect, this means that a standard Ponatinib treatment
results in very high percent inhibition and thus low rates
of evolution. Interestingly, this does not affect the shape of
the curve(s) in Fig. 2. Note that the maximum rate of evo-
lution occurs slightly above 50% inhibition in our model
(Fig. 2 row b) regardless of the inhibitor. While absolute
rates are highly dependent on the list of mutations pro-
vided, the percent inhibition that leads to maximum of R
appears to be independent of the actual mutations.
Two interacting effects can be seen in Fig. 2.

1. As drug doses increase, the fitness advantage of
resistant mutants grows (Fig. 2a). This increases the
rate of evolution as resistance mutations are more
likely to be fixed (of note, these results are derived
with the Moran model [42], with the additional
assumption that deleterious mutations cannot
become fixed). Because of the large population size
(Table 1) and since in the small set of mutations
considered there are few deleterious mutations, their
contribution is negligible. If we assume a constant
reproduction and mutation rate, the rate of evolution
depends only on the probability of fixation for all the
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relevant SNVs. Mutations are rare enough that
usually no more than one (relevant) SNV is present
in the population at one time. Thus the rate of
evolution for any mutation is approximately
proportional to the sum of each individual SNVs
fixation probability in a population of wildtype cells

R ∝
∑

i∈SNVs
fiH(fi) where fi = 1− 2C/IC(i)

50

2C/IC(wt)
50

(7)

which, given these assumptions, is directly
proportional to the rate of evolution. H(x) is the
Heaviside step function:

H(x) =
{
0 x < 0
1 x ≥ 0

2. As drug doses increase, the overall reproduction rate
slows down. Fewer cell divisions lead to fewer
mutants which leads to a slower rate of evolution
(Fig. 2c).

Unlike the reproduction rate, which can be slowed to an
asymptotic halt, as drug doses go towards infinity fitness
effects can never speed up evolution beyond a certain
limit. With increasing selective advantage the probabil-
ity of fixation of any resistance mutation, however weak,
approaches 1. Thus the rate of evolution becomes entirely
limited by how often resistance mutations occur. This
results in the peaks evident in row b of Fig. 2, where at a
medium degree of inhibition (slightly above 50%) repro-
duction rate is high enough to produce a significant num-
ber of mutants, and mutant fitness is high enough that the
mutations are likely to be fixed once they occur. The rate
of evolution then sharply decreases and a higher degree of
inhibition results in a lower risk of resistance mutations,
consistent with [43], who studied response to the degree
of inhibition. At the lower inhibition end, this lends some
extra credence to the idea of lowering doses for patients
in major molecular response (MMR, a treatment response
criterion based on very low levels of Bcr-Abl1 transcript)
[17]. It seems that benefits might extend beyond lower-
ing side effects into slowing down SNV-based resistance.
It is however relatively well established [44] that higher
doses create a more effective and lasting response. For
initial treatment it is still likely that aiming for the high-
est achievable inhibition is the superior strategy even if it
increases the risk of mutations. Apoptosis induced pro-
liferation [3], where dying cells signal their neighbours to
reproduce faster, can modify such models but is not con-
sidered here. Likewise, whether very low doses compare
favourably to no treatment at all is not addressed by this
model.

TKI-rotation protocols
TKI-rotation protocols with Imatinib-Nilotinib, and
Bosutinib-Ponatinib were selected for examination. Our
hypothesis was that drugs with more significant differ-
ence in their resistance mutation spectrum would be
better candidates for rotation therapy. The treatment pro-
tocols were represented by interlaced square-waves of
the two alternating drugs as shown in Fig. 1. These pro-
tocols were tested at a range of doses and timings as
displayed in Figs. 3 and 4. Consistent with our hypothesis,
there appears to be more potential benefits in Bosutinib-
Ponatinib rotation, in contrast to Imatinib-Nilotinib rota-
tion which appears roughly equivalent to constant pro-
tocols of either drug. The benefits are not universal to
any dose-timing combination, though it appears possible
to achieve a therapeutic benefit under a wide range of
conditions. Introducing low dose (29%) Bosutinib always
reduces the chance for resistance as compared with pure
Ponatinib. However, such a concentration is probably too
low to effectively treat active CML (prior to MMR). To
a lesser degree, introducing a medium-high dose (75%)
of Ponatinib also appears to be superior to pure Bosu-
tinib in terms of resistance, but perhaps not side effects
and toxicity. At 50% inhibition a Bosutinib-Ponatinib rota-
tion slows the emergence of resistance by at best 7.5% or
36% over pure Bosutinib or Ponatinib respectively (Fig. 5).
Thus, compared to switching drug upon resistance, a rota-
tion treatment protocol would remain effective for about
4 months longer than the best constituent monodrug pro-
tocol. To examine the effect of a reduced population size,
the simulations where repeated with N̂ = 400, as was
used tomodel haematopoesis [31, 45]. No benefical effects
were observed in that case (Section 9 and Figure S4 in
Additional file 1). This could be because the increased
randomness in when a mutation occurs obscures any
effect. Another possibility is that cycle length was not
optimal; in contrast to the large population where cycle
length does not seem very important (see below) shorter
fixation times in the small population might necessi-
tate shorter cycles. However, as most estimates of the
CSC populations size are almost three orders of mag-
nitude larger than N̂ = 400 we did not examine this
further.
Our results are consistent with recent clinical studies. A

rotation of Bosutinib and Ponatinib, has been applied suc-
cessfully in a multi-resistant patient [46], whereas a rotat-
ing protocol of Imatinib and Nilotinib was equivalent to
standard therapy in its treatment effect [47]. Note also that
even rotating protocols which do not have any significant
improvement in the treatment effect still have benefits for
side-effect management. The Bosutinib-Ponatinib rota-
tion seems beneficial in tumours that exhibit wt Bcr-Abl
under the right circumstances according to our model.
Inhibition for a multitude of other combinations with
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Fig. 3 Relative change in WT 1
2
for Imatinib-Nilotinib rotation protocols. Each smaller heatmap shows the effects of different rotation timings at a

certain dose of each drug. For instance, the (600 Imatinib, 1200 Nilotinib) box in the (50%, 50%) heatmap shows the effect of a drug rotation with
ta = 600 timesteps of Imatinib treatment (ca. 1 month) followed by tb = 1200 timesteps of Nilotinib treatment (ca. 2 months), see Fig. 1, with both
drug concentrations set such that cell growth was slowed by 50%. In half the simulations the rotation started with Imatinib, and in the other half it
started with Nilotinib. The colours correspond to the change in WT 1

2
compared to a constant Imatinib or Nilotinib, whichever is better, with the

same degree of inhibition. A zero duration uptime of one drug implies a constant concentration of the other. Zero-zero uptime boxes are set as 0%,
as they cannot be assessed since drug resistance almost never occurs without selective pressure from drugs

varying degrees of potential benefit was also tested and
the results are shown in Additional file 1: Figures S3a–S3j.
In general, the degree of inhibition and the timing ratios

seem to be the biggest factors in determining the effect
of a Bosutinib-Ponatinib rotation. The former is evident
from Fig. 4. The latter is shown in Fig. 5 which demon-
strates that protocol effects at a fixed degree of inhibition
is mainly a function of the timing ratio. If we define x as
the fraction of time dedicated to one of the drugs in a cycle
(horizontal axis in Fig. 5), and we let

ψi = 1 − 2−(1−x)CA/IC(wt)
50 −xCB/IC(wt)

50

2−(1−x)CA/IC(i)
50−xCB/IC(i)

50

where CA and CB are concentrations of the respective
drugs and the fitting parameters k and m are set such
that the end-points match the WT1

2
of pure Ponatinib or

Bosutinib treatment, and

φi = ψiH(ψi)

where H(x) is the Heaviside step function, then, the
median WT1

2
(Eq. 6) is approximately described by

WT1
2

(x) = k
∑

i∈nnwt εwt,iφi
+ m (8)

Recall that εji describes how likely a particular mutation
is to occur (Eq. 4) and the summation is carried out for
all residues that can be mutated (nearest neighbours, vide
supra). Intuitively, WT1

2
depends on the fixation prob-

ability of each of the possible mutations and how often
they appear, all the while assuming fixation time is so
much slower than drug rotation that the effects of two
drugs can be incorporated. The fitness of any particular
mutation will change with x; if it is resistant towards one
drug but not the other then at some value of x it goes
from being resistant to neutral and its fixation probabil-
ity, φi, goes from a finite positive number to zero. The
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Fig. 4 Relative change in WT 1
2
for Bosutinib-Ponatinib rotation protocols. See figure text of Fig. 3 for a detailed description of the plot layout

Fig. 5 Expansion of the data presented in Figure 4, showing median WT 1
2
at 50% inhibition of both drugs as a function of the relative time each

drug was used. The solid line is a theoretical prediction based on the table of drug sensitivity for each mutation, see Eq. (8)
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full derivation is provided in Additional file 1: Section 6.
Combining these effects from all possible mutations, and
taking into account how often they appear (proportional
to εwt,i), results in Eq. 8 and the predictions shown in Fig. 5
and Figures S3a–S3f in Additional file 1. The irregular
bumps in the curve occur when any particular mutation
goes from being more resistant than the wildtype to being
less resistant or vice versa; the large number of known
mutations means that this happens several times for most
drug combinations. No correlation could be found for
cycle length within the tested intervals but some cor-
relation must exist, since very long cycles approximate
a constant protocol. Equation (8) is not valid for those
cases as it assumes fixation time is much longer than
cycle time.
The benefits of a rotation protocol are due to the pos-

itive (though small) probability that non-polyresistant
mutants are exposed to a drug towards which they are sen-
sitive before they can grow to become a significant part of
the population. At best this eliminates them outright, but
should that fail their growth can be slowed and replace-
ment significantly delayed. Evolutionary studies suggest
that when a new mutation occurs right before a drug
switch, it is likely to be subsequently eliminated when the
fitness landscape changes [48]. Another important effect
of a shifting fitness landscape is a reduced effectiveness of

selection. This is both beneficial and detrimental for this
type of protocol design, for while it reduces the advantage
of resistant clones it also makes it more unlikely for them
to be eliminated.
TKI-rotation protocols also seem to have an effect on

the resulting distribution of observed mutations. Mon-
odrug protocols of Bosutinib and Ponatinib and a drug
rotation were simulated until a mutant had taken over in
each simulation, and the most common mutation at WT1

2
was recorded. The resulting mutant distribution is shown
in Fig. 6. As is evident the rotation protocol can, somewhat
counter-intuitively, cause any type of change in distribu-
tion, and is not limited to an interpolation between the
two constant protocols. It is perhaps possible to exploit
this such that evolution moves towards mutants where
effective inhibitors are available. Whereas the example in
Fig. 6 favours G250E and E255K, both of which are at least
somewhat resistant to all available drugs, does not fall into
this category, it is possible that some combinations would
steer evolution towards more easily treatable mutations.
For instance, if a highly effective drug existed against
G250E and E255K which are made more common by the
rotation in Fig. 6, the combination would effectively steer
evolution towards a treatable set of resistance mutations
with an increased probability. Indeed, if the onset of resis-
tance cannot be effectively prevented or delayed, ensuring

Fig. 6 Distribution of most common mutation at WT 1
2
for three protocols, simulated 50 000 times each. The protocol has a significant effect on

mutant distribution (χ2-test, χ2 = 56929, p < 10−16). The vertical blue line shows the expected frequency assuming all mutations were equally
likely and equally fit. Unobserved mutations and double (or higher) mutants are not shown. For these simulations, doses were set such that
Bosutinib caused 50% inhibition and Ponatinib caused 75% inhibition. The simulation protocol was 3:1 Bosutinib:Ponatinib, i.e., Bosutinib was used
during 1800 timesteps (ca. 3 months), followed by Ponatinib during 600 timesteps (ca. 1 month) etc
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it happens in a less harmful way can still provide some
benefit.

Discussion
We have developed, implemented and tested a model
for simulating treatment protocols based on available
IC50 data. Using CML as an example we have shown that
drug rotation therapy with available Bcr-Abl TKIs could
potentially decrease the risk of resistance. These are some
suggested guidelines as to when it may be better that
standard therapy:

• The drugs have different resistance profiles.
• There is a sub-optimal drug response from a

molecular point of view, i.e. the amount of inhibition
achieved places the patient in the zone where
resistance happens the fastest (ca. 50% inhibition,
Fig. 2).

The first condition is fulfilled by different combinations of
Abl1 inhibitors, e.g., Nilotinib + Dasatinib and Bosutinib
+ Ponatinib. As for the second condition, it is clear that all
drugs reduce the number of tumour cells efficiently, but
some persistent cells seem to survive (at least with Ima-
tinib, which is the most common inhibitor). In addition,
a rotation protocol may be useful if an inhibitor is work-
ing fine but leads to difficult side effects. Furthermore,
the timing ratio appears to be more important than exact
cycle length, so cycle length could be optimised for side
effect reduction or other factors.
In developing the model, we chose to use a stable pop-

ulation size. This choice is based on the assumption that
cancer stem cells, that drive the evolution within the
tumour, are never eliminated by TKIs though their pro-
liferation may be hindered. It should be noted, however
that the results could be influenced by this assumption.
Another necessary limitation of the model is that IC50 val-
ues are not always consistent. Measured IC50 values vary
significantly between studies [49]. On the other hand,
there is evidence that they have clinical relevance for drug
selection [50]. Compound mutations are included in the
model. IC50 values are available for those that are most
clinically relevant, whereas in the other cases we made the
assumption that the double mutant is as resistant as the
most resistant single mutation. Yet another limitation is
ignoring the effect of pharmacokinetics and treating drug
doses as constant. Patients do not experience a truly con-
stant drug dose in practice, and it is known to have an
effect under other circumstances [51, 52]. Investigating
the effects of this is a potential direction for future studies.

Conclusions
The potential delay in the onset of resistance has to be
weighed against the risk of more severe side-effects. The

greatest gains predicted by ourmodel occur with rotations
involving Ponatinib. Whereas a drug applied intermit-
tently in a drug rotation is likely more well tolerated than
if taken continuously, it seems unlikely that benefits would
outweigh the risk for rotations involving Ponatinib. How-
ever, having shown that the potential could exist we rec-
ommend considering drug rotations if more well tolerated
options are developed.
While no other malignancy fits this model quite as well

as CML, there are similar resistance mutation phenom-
ena in Gastrointestinal stromal tumour (GIST), Ph+ acute
lymphoblastic leukaemia (ALL), EGFR-mutant non small
cell lung cancer (NSCLC), ALK-rearranged NSCLC, and
other cancers. Ph+-ALL has the same molecular driver
and develops resistance in a rather similar way [53]. In
GIST, which is also treated with Imatinib, 50%-70% of late
progression cases were suggested to be caused by muta-
tions which affect drug binding interactions [54]. Both
variants of NSCLC are also affected to some extent by
kinase domain mutation induced resistance, though it
accounts for a smaller fraction of observed cases [55, 56].
For the last three, the spatial structure of solid tumours
might also limit the applicability of this model, which does
not include local competition effects, and/or differential
exposure to drugs. We note though that these two are
having the opposite influence, i.e., cells that out-compete
others for development because they have better expo-
sure to nutrients are also more accessible to the drugs,
and hence the conclusions may be valid even for solid
tumours.

Additional file

Additional file 1: Derivations of formulae, implementation details,
justification of assumptions and figures too large for the main text. (PDF
277 kb)

Abbreviations
ABL1: Abelson tyrosine kinase 1; ALK: Anaplastic lymphoma kinase; ALL: Acute
lymphoblastic leukaemia; BCR: Breakpoint cluster region; CML: Chronic
myeloid leukaemia; CSC: Cancer stem cell; EGFR: Epidermal growth factor
receptor; GIST: Gastrointestinal stromal tumour; MMR: Major molecular
response; NSCLC: Non small cell lung cancer; Ph+ : Philadelphia chromosome
positive; PSSM: Position specific scoring matrix; SNV: Single nucleotide
variation; TKI: Tyrosine kinase inhibitor

Acknowledgements
Not applicable

Funding
This work was supported by The Swedish Cancer Society (Cancerfonden) [CAN
2015/387 to RF]. The funding body had no role in the design and execution of
the study or in writing the manuscript.

Availability of data andmaterials
The simulation software, written in C++11 and python3 is platform
independent and open source (zlib license) available at https://github.com/
Sandalmoth/wollsey-public. All usage in this article is compatible with release
v1.00. Specific dependencies and build instructions are included with the
source code.

https://doi.org/10.1186/s12885-019-5690-5
https://github.com/Sandalmoth/wollsey-public
https://github.com/Sandalmoth/wollsey-public


Lindström et al. BMC Cancer          (2019) 19:508 Page 12 of 13

The datasets used and/or analysed during the current study are available from
the corresponding author on reasonable request.

Authors’ contributions
The study was directed by RF. HJGL wrote software and performed research.
ASdW did model design and analysis. HJGL wrote the manuscript with
asstistance from RF and ASdW. All authors read and approved the final
manuscript.

Ethics approval and consent to participate
Not applicable

Consent for publication
Not applicable

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Department of Chemistry and Biomedical Sciences, Linnæus University, 391
82 Kalmar, Sweden. 2Department of Mechanical and Industrial Engineering,
Norwegian University of Science and Technology, 7491 Trondheim, Norway.

Received: 27 August 2018 Accepted: 8 May 2019

References
1. Ahronian LG, Corcoran RB. Strategies for monitoring and combating

resistance to combination kinase inhibitors for cancer therapy. Genome
Med. 2017;9(1):37. https://doi.org/10.1186/s13073-017-0431-3.

2. Fojo T. Commentary: Novel therapies for cancer: Why dirty might be
better. The Oncologist. 2008;13(3):277–83. https://doi.org/10.1634/
theoncologist.2007-0090.

3. Friedman R. Drug resistance in cancer : Molecular evolution and
compensatory proliferation. Oncotarget. 2016;7(11):11746–55. https://
doi.org/10.18632/oncotarget.7459.

4. Khorashad JS, Kelley TW, Szankasi P, Mason CC, Soverini S, Adrian LT,
Eide CA, Zabriskie M, Lange T, Estrada J, Pomicter AD, Eiring A, Kraft IL,
Anderson DJ, Gu Z, Alikian M, Reid AG, Foroni L, Marin D, Druker BJ,
O’Hare T, Deininger M. BCR-ABL1 compound mutations in tyrosine kinase
inhibitor–resistant CML: Frequency and clonal relationships. Blood.
2013;121(3):489–98. https://doi.org/10.1182/blood-2012-05-431379.

5. Buetti-Dinh A, Pivkin IV, Friedman R. S100A4 and its role in metastasis -
simulations of knockout and amplification of epithelial growth factor
receptor and matrix metalloproteinases. Mol BioSyst. 2015;11:2247–54.
https://doi.org/10.1039/C5MB00302D.

6. Friedman R, Boye K, Flatmark K. Molecular modelling and simulations in
cancer research. BBA Rev Cancer. 2013;1836(1):1–14. https://doi.org/10.
1016/j.bbcan.2013.02.001.

7. Cook LM, Araujo A, Pow-Sang JM, Budzevich MM, Basanta D, Lynch CC.
Predictive computational modeling to define effective treatment
strategies for bone metastatic prostate cancer. Sci Rep. 2016;6:29384.

8. Deininger MWN, Goldman JM, Melo JV. The molecular biology of chronic
myeloid leukemia. Blood. 2000;96(10):3343–56.

9. O’Hare T, Zabriskie M, Eiring A, W Deininger M. Pushing the limits of
targeted therapy in chronic myeloid leukaemia. Nat Rev Cancer. 2012;12:
513–26.

10. O’Brien S, Guilhot F, Larson RA, Gathmann I, Baccarani M, Cervantes F,
Cornelissen JJ, Fischer T, Hochhaus A, Hughes T, Lechner K, Nielsen JL,
Rousselot P, Reiffers J, Saglio G, Shepherd J, Simonsson B, Gratwohl A,
Goldman JM, Kantarjian H, Taylor K, Verhoef G, Bolton AE, Capdeville R,
Druker BJ. Imatinib compared with interferon and low-dose cytarabine
for newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J
Med. 2003;348(11):994–1004. https://doi.org/10.1056/NEJMoa022457.

11. Redaelli S, Mologni L, Rostagno R, Piazza R, Magistroni V, Ceccon M,
Viltadi M, Flynn D, Gambacorti-Passerini C. Three novel patient-derived
BCR/ABL mutants show different sensitivity to second and third

generation tyrosine kinase inhibitors. Am J Hematol. 2012;87(11):125–128.
https://doi.org/10.1002/ajh.23338.

12. Hoy SM. Ponatinib: A review of its use in adults with chronic myeloid
leukaemia or Philadelphia chromosome-positive acute lymphoblastic
leukaemia. Drugs. 2014;74(7):793–806. https://doi.org/10.1007/s40265-
014-0216-6.

13. Lipton JH, Chuah C, Guerci-Bresler A, Rosti G, Simpson D, Assouline S,
Etienne G, Nicolini FE, Le Coutre P, Clark R, Stenke L, Andorsky D,
Oehler V, Lustgarten S, Rivera VM, Clackson T, Haluska FG, Baccarani M,
Cortes J, Guilhot F, Hochhaus A, Hughes T, Kantarjian H, Shah N, Talpaz
M, Deininger M. Epic: A phase 3 trial of ponatinib compared with
imatinib in patients with newly diagnosed chronic myeloid leukemia in
chronic phase (CP-CML). Blood. 2014;124(21):519–519.

14. Zabriskie M, Eide CA, Tantravahi SK, Vellore NA, Estrada J, Nicolini FE,
Khoury HJ, Larson RA, Konopleva M, Cortes J, Kantarjian H, Jabbour E,
Kornblau SM, Lipton JH, Rea D, Stenke L, Barbany G, Lange T,
Hernández-Boluda J-C, Ossenkoppele GJ, Press RD, Chuah C, Goldberg
SL, Wetzler M, Mahon F-X, Etienne G, Baccarani M, Soverini S, Rosti G,
Rousselot P, Friedman R, Deininger M, Reynolds KR, Heaton WL, Eiring
A, Pomicter AD, Khorashad JS, Kelley TW, Baron R, Druker BJ, Deininger
M, O’Hare T. BCR-ABL1 compound mutations combining key kinase
domain positions confer clinical resistance to ponatinib in Ph
chromosome-positive leukemia. Cancer Cell. 2014;26(3):428–42. https://
doi.org/10.1016/j.ccr.2014.07.006.

15. O’Hare T, K Walters D, Stoffregen E, Jia T, W Manley P, Mestan J,
Cowan-Jacob S, Lee F, Heinrich M, W N Deininger M, J Druker B. In vitro
activity of bcr-abl inhibitors AMN107 and BMS-354825 against clinically
relevant imatinib-resistant abl kinase domain mutants. Cancer Res.
2005;65:4500–5.

16. Weisberg E, W Manley P, Breitenstein W, Brüggen J, Cowan-Jacob S,
Ray A, Huntly B, Fabbro D, Fendrich G, Hall-Meyers E, L Kung A, Mestan
J, Q Daley G, Callahan L, Catley L, Cavazza C, Azam M, Mohammed A,
Neuberg D, Griffin J. Characterization of AMN107, a selective inhibitor of
native and mutant bcr-abl. Cancer Cell. 2005;7:129–41.

17. Cervantes F, Correa J-G, Pérez I., García-Gutiérrez V, Redondo S, Colomer
D, Jiménez-Velasco A, Steegmann J-L, Sánchez-Guijo F, Ferrer-Marín F,
Pereira A, Osorio S. Imatinib dose reduction in patients with chronic
myeloid leukemia in sustained deep molecular response. Ann Hematol.
2017;96(1):81–5. https://doi.org/10.1007/s00277-016-2839-z.

18. Laneuville P. When to stop tyrosine kinase inhibitors for the treatment of
chronic myeloid leukemia. Curr Treat Options Oncol. 2018;19:. https://doi.
org/10.1007/s11864-018-0532-2.

19. Bozic I, Reiter JG, Allen B, Antal T, Chatterjee K, Shah P, Moon YS,
Yaqubie A, Kelly N, Le DT, Lipson EJ, Chapman PB, Diaz J, Luis A,
Vogelstein B, Nowak MA. Evolutionary dynamics of cancer in response to
targeted combination therapy. eLife. 2013;2:00747. https://doi.org/10.
7554/eLife.00747.

20. Kimmel M, Axelrod DE. Branching Processes in Biology. Ecological
Studies. New York: Springer; 2002. https://books.google.se/books?id=
B2udCdIB-oIC.

21. Danesh K, Durrett R, Havrilesky LJ, Myers E. A branching process model
of ovarian cancer. J Theor Biol. 2012;314(Supplement C):10–5. https://doi.
org/10.1016/j.jtbi.2012.08.025.

22. Altrock PM, Liu L, Michor F. The mathematics of cancer: Integrating
quantitative models. Nat Rev Cancer. 2015;15:730–45.

23. Li C, Wang J. Quantifying the landscape for development and cancer
from a core cancer stem cell circuit. Cancer Res. 2015;75(13):2607–18.
https://doi.org/10.1158/0008-5472.CAN-15-0079.

24. Michor F, Hughes TP, Iwasa Y, Branford S, Shah NP, Sawyers CL, Nowak
MA. Dynamics of chronic myeloid leukaemia. Nature. 2005;435:1267–70.
https://doi.org/10.1038/nature03669.

25. Dingli D, M Pacheco J, Traulsen A. Multiple mutant clones in blood rarely
coexist. Phys Rev E Stat Nonlinear Soft Matter Phys. 2008;77:021915.
https://doi.org/10.1103/PhysRevE.77.021915.

26. Abraham S, Hopcroft L, Carrick E, Drotar M, Dunn K, Williamson A, Korfi
K, Baquero P, E. Park L, Scott M, Pellicano F, Pierce A, Copland M,
Nourse C, Grimmond S, Vetrie D, Whetton A, Holyoake T. Dual targeting
of p53 and c-MYC selectively eliminates leukaemic stem cells. Nature.
2016;534:341–6.

27. Dingli D, Traulsen A, Pacheco JM. Chronic myeloid leukemia: Origin,
development, response to therapy, and relapse. Clin Leuk. 2008;2(2):
133–9. https://doi.org/10.3816/CLK.2008.n.017.

https://doi.org/10.1186/s13073-017-0431-3
https://doi.org/10.1634/theoncologist.2007-0090
https://doi.org/10.1634/theoncologist.2007-0090
https://doi.org/10.18632/oncotarget.7459
https://doi.org/10.18632/oncotarget.7459
https://doi.org/10.1182/blood-2012-05-431379
https://doi.org/10.1039/C5MB00302D
https://doi.org/10.1016/j.bbcan.2013.02.001
https://doi.org/10.1016/j.bbcan.2013.02.001
https://doi.org/10.1056/NEJMoa022457
https://doi.org/10.1002/ajh.23338
https://doi.org/10.1007/s40265-014-0216-6
https://doi.org/10.1007/s40265-014-0216-6
https://doi.org/10.1016/j.ccr.2014.07.006
https://doi.org/10.1016/j.ccr.2014.07.006
https://doi.org/10.1007/s00277-016-2839-z
https://doi.org/10.1007/s11864-018-0532-2
https://doi.org/10.1007/s11864-018-0532-2
https://doi.org/10.7554/eLife.00747
https://doi.org/10.7554/eLife.00747
https://books.google.se/books?id=B2udCdIB-oIC
https://books.google.se/books?id=B2udCdIB-oIC
https://doi.org/10.1016/j.jtbi.2012.08.025
https://doi.org/10.1016/j.jtbi.2012.08.025
https://doi.org/10.1158/0008-5472.CAN-15-0079
https://doi.org/10.1038/nature03669
https://doi.org/10.1103/PhysRevE.77.021915
https://doi.org/10.3816/CLK.2008.n.017


Lindström et al. BMC Cancer          (2019) 19:508 Page 13 of 13

28. Jørgensen HG, Allan E, Jordanides NE, Mountford JC, Holyoake TL.
Nilotinib exerts equipotent antiproliferative effects to imatinib and does
not induce apoptosis in CD34+ CML cells. Blood. 2007;109(9):4016–9.
https://doi.org/10.1182/blood-2006-11-057521.

29. Graham SM, Jørgensen HG, Allan E, Pearson C, Alcorn MJ, Richmond L,
Holyoake TL. Primitive, quiescent, Philadelphia-positive stem cells from
patients with chronic myeloid leukemia are insensitive to STI571 in vitro.
Blood. 2002;99(1):319–25. https://doi.org/10.1182/blood.V99.1.319.

30. Leder K, Foo J, Skaggs B, Gorre M, Sawyers CL, Michor F. Fitness
conferred by BCR-ABL kinase domain mutations determines the risk of
pre-existing resistance in chronic myeloid leukemia. PLoS ONE.
2011;6(11):1–11. https://doi.org/10.1371/journal.pone.0027682.

31. Dingli D, Traulsen A, M Pacheco J. Report stochastic dynamics of
hematopoietic tumor stem cells. Cell Cycle (Georgetown, Tex). 2007;6:
461–6. https://doi.org/10.4161/cc.6.4.3853.

32. Kantarjian H, Pasquini R, Hamerschlak N, Rousselot P, Holowiecki J,
Jootar S, Robak T, Khoroshko N, Masszi T, Skotnicki A, Hellmann A,
Zaritsky A, Golenkov A, Radich J, Hughes T, Countouriotis A, Shah N.
Dasatinib or high-dose imatinib for chronic-phase chronic myeloid
leukemia after failure of first-line imatinib: A randomized phase 2 trial.
Blood. 2007;109(12):5143–50. https://doi.org/10.1182/blood-2006-11-
056028.

33. Shah N, Kantarjian H, Kim D-W, Réa D, Dorlhiac-Llacer PE, Milone JH,
Vela-Ojeda J, Silver RT, Khoury HJ, Charbonnier A, Khoroshko N,
Paquette RL, Deininger M, Collins RH, Otero I, Hughes T, Bleickardt E,
Strauss L, Francis S, Hochhaus A. Intermittent target inhibition with
dasatinib 100 mg once daily preserves efficacy and improves tolerability
in imatinib-resistant and -intolerant chronic-phase chronic myeloid
leukemia. J Clin Oncol. 2008;26(19):3204–12. https://doi.org/10.1200/JCO.
2007.14.9260.

34. Soverini S, Benedittis C, Papayannidis C, Machova Polakova K, Venturi C,
Russo D, Bresciani P, Iurlo A, Mancini M, Vitale A, Chiaretti S, Foà R,
Abruzzese E, Sora F, Kohlmann A, Haferlach T, Baccarani M, Cavo M,
Giovanni M. Clinical impact of low burden BCR-ABL1 mutations
detectable by amplicon deep sequencing in Philadelphia-positive acute
lymphoblastic leukemia patients. Leukemia. 2016;30:. https://doi.org/10.
1038/leu.2016.17.

35. Marusyk A, Almendro V, Polyak K. Intra-tumour heterogeneity: A looking
glass for cancer? Nat Rev Cancer. 2012;12:323–34.

36. O’Hare T, Eide CA, Deininger MWN. Bcr-abl kinase domain mutations,
drug resistance, and the road to a cure for chronic myeloid leukemia.
Blood. 2007;110(7):2242–9. https://doi.org/10.1182/blood-2007-03-
066936.

37. Gambacorti-Passerini C, Rossi F, Verga M, Ruchatz H, Gunby R, Frapolli
R, Zucchetti M, Scapozza L, Bungaro S, Tornaghi L, Rossi F, Pioltelli P,
Pogliani E, D’Incalci M, Corneo G. Differences between in vivo and in
vitro sensitivity to imatinib of Bcr/Abl+ cells obtained from leukemic
patients. Blood Cells Mol Dis. 2002;28(3):361–72. https://doi.org/10.1006/
bcmd.2002.0526.

38. Gambacorti-Passerini CB, Gunby RH, Piazza R, Galietta A, Rostagno R,
Scapozza L. Molecular mechanisms of resistance to imatinib in
Philadelphia-chromosome-positive leukaemias. Lancet Oncol. 2003;4(2):
75–85. https://doi.org/10.1016/S1470-2045(03)00979-3.

39. Liu C, Liu Z, Wang J. Uncovering the molecular and physiological
processes of anticancer leads binding human serum albumin: A physical
insight into drug efficacy. PLoS ONE. 2017;12(4):1–22. https://doi.org/10.
1371/journal.pone.0176208.

40. Demetri G, Lo Russo P, Macpherson I, Wang D, A Morgan J, Brunton V,
Phd P, Agrawal S, Voi M, Evans J. Phase i dose-escalation and
pharmacokinetic study of dasatinib in patients with advanced solid
tumors. Clin Cancer Res. 2009;15:6232–40. https://doi.org/10.1158/1078-
0432.CCR-09-0224.

41. Pharmaceutical Specialists in Sweden. http://fass.se. Accessed 20 Jan
2019.

42. Moran PAP. Random processes in genetics. Math Proc Cambridge Philos
Soc. 1958;54(1):60–71. https://doi.org/10.1017/S0305004100033193.

43. White D, Saunders V, Grigg A, Arthur C, Filshie R, Leahy MF, Lynch K,
To LB, Hughes T. Measurement of in vivo BCR-ABL kinase inhibition to
monitor imatinib-induced target blockade and predict response in
chronic myeloid leukemia. J Clin Oncol. 2007;25(28):4445–51. https://doi.
org/10.1200/JCO.2006.09.9499.

44. Hanfstein B, Müller M, Hehlmann R, Erben P, Lauseker M, Fabarius A,
Schnittger S, Haferlach C, Göhring G, Proetel U, Kolb H-J, W Krause S,
Hofmann W-K, Schubert J, Einsele H, Dengler J, Hänel M, Falge C, Kanz
L, Hochhaus A. Early molecular and cytogenetic response is predictive for
long-term progression-free and overall survival in chronic myeloid
leukemia (CML). Leukemia. 2012;26:2096–102.

45. Dingli D, Traulsen A, Pacheco JM. Compartmental architecture and
dynamics of hematopoiesis. PLoS ONE. 2007;2(4):1–4. https://doi.org/10.
1371/journal.pone.0000345.

46. Valent P, Herndlhofer S, Schneeweiß M, Boidol B, Ringler A, Kubicek S,
V. Gleixner K, Hoermann G, Hadzijusufovic E, Müllauer L, R. Sperr W,
Superti-Furga G, Mannhalter C. TKI rotation-induced persistent deep
molecular response in multi-resistant blast crisis of ph+ CML. Oncotarget.
2017;8:23061–72.

47. Gugliotta G, Castagnetti F, Breccia M, Gozzini A, Usala E, Carella A,
Rege-Cambrin G, Martino B, Abruzzese E, Albano F, Stagno F, Luciano L,
D’Adda M, Bocchia M, Cavazzini F, Tiribelli M, Lunghi M, Pia Falcone A,
Musolino C, Baccarani M. Rotation of nilotinib and imatinib for first-line
treatment of chronic phase chronic myeloid leukemia. Am J Hematol.
2016;91:617–22.
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