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Abstract: The positive effects of dietary fibre on gut barrier function and inflammation have not been
completely elucidated. Mice studies show gut barrier disruption and diet-induced insulin resistance
can be alleviated by cytokine interleukin-22 (IL-22). However, little is known about IL-22 in humans
and its association with gut-beneficial nutrients like fibre. We investigated whether fibre intake was
associated with circulating levels of IL-22 in 48 participants with metabolic syndrome (MetS). Bivariate
analysis was used to explore associations between circulating IL-22, fibre intake, MetS factors, body
composition, and cardiorespiratory fitness (peak oxygen uptake, V̇O2peak). Hierarchical multiple
regression (HMR) was used to test the independent association of fibre intake with circulating
IL-22, adjusting for variables correlated with IL-22. Circulating IL-22 was positively associated
with fibre intake (rs = 0.393, p < 0.006). The HMR-adjusted model explained 40% of circulating
IL-22 variability, and fibre intake significantly improved the prediction model by 8.4% (p < 0.022).
Participants with fibre intake above median intake of 21.5 g/day had a significantly higher circulating
IL-22 than the lower intake group (308.3 ± 454.4 vs. 69.0 ± 106.4 pg/mL, p < 0.019). Fibre intake is
independently associated with increased circulating IL-22 in individuals with MetS. Findings warrant
further investigations to evaluate whether changes in dietary fibre intake alter circulating IL-22, and
its effects on health outcomes.
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1. Introduction

Interleukin-22 (IL-22) is a cytokine of the IL-10 family that is produced by leukocytes and acts
on non-leukocytes, particularly in epithelial tissues and other organs such as the liver and pancreas,
where it is involved in promoting barrier integrity and wound repair [1]. Disrupted epithelial barriers
can lead to systemic inflammation and altered metabolic signalling [2]. Thus, factors promoting gut
barrier integrity may protect against systemic disorders involving inflammation such as metabolic
syndrome (MetS). Like IL-22, dietary fibre has been associated with both promoting gut barrier heath
and ameliorating MetS and type 2 diabetes (T2D) by modulating the intestinal microbiota and its
influence on the epithelium and underlying immunity [1,3]. However, it is not known whether fibre
intake alters mucosal immune cell IL-22 production, nor whether IL-22 production is associated with
the level of fibre in the diet in individuals with MetS.

Dietary fibre is fermented in the gut and their products (including short chain fatty acids, SCFAs)
exert an anti-inflammatory effect on gut epithelial cells and on immunoregulatory cells such as
macrophages, dendritic cells, effector T cells, and innate lymphoid cells, which can in turn produce
IL-22 [4–7]. In mice, a high-fibre diet was shown to stimulate SCFA expression and consequently
release IL-18, which is also involved in epithelial repair. In a study by Macia et al. (2015) using an
induced-colitis model, epithelial damage was inversely proportional to the amount of fibre in the
diet [8]. While this suggests fibre’s protective role on the gut could be mediated by the release of
cytokines such as IL-22, studies on IL-22 and diet are limited to murine models and to the negative
effects of high-fat diet [8,9]. Little is known about the association of IL-22 with potential beneficial
nutrients, like dietary fibre.

Studies in mice have suggested a role for IL-22 in MetS and T2D treatment, as IL-22 administration
resulted in improved glycaemic control, insulin sensitivity, and lipid metabolism, concomitantly with
improved intestinal barrier function and reduced inflammation [1,3,9–11]. However, evidence in
humans is limited and conflicting. Cross-sectional studies reported higher plasma IL-22 concentrations
in individuals with T2D compared to both lean and obese healthy controls [12–14]. Likewise, increased
circulating IL-22 was associated with being male, smoking, lower glomerular filtration rate, T2D, and
cardiovascular disease [15,16]. Human studies have reported on the associations of IL-22 with obesity,
T2D, and cardiovascular disease, but none of these investigated dietary factors or described such
associations in people with MetS.

Thus, the aim of this study was to examine the independent association of fibre intake and
circulating IL-22 in participants enrolled in the Exercise in the prevention of Metabolic Syndrome
(EX-MET) study. We hypothesized an independent positive association of fibre intake and circulating
IL-22 in this population.

2. Materials and Methods

Materials and Methods. This is a sub-study of baseline data from participants enrolled in the
Exercise in the prevention of Metabolic Syndrome (EX-MET) study [17]. The EX-MET study included
only participants with metabolic syndrome, as defined by the International Diabetes Federation
criteria [18] and was approved by the Medical Research Ethics Committee, The University of
Queensland, Brisbane, Australia (2012000627). Participants in the EX-MET study were excluded if any
of the following criteria were present: unstable angina, recent myocardial infarction (4 weeks), severe
valvular heart disease, uncompensated heart failure, pulmonary disease, uncontrolled hypertension,
kidney failure, and cardiomyopathy. All participants enrolled in EX-MET study provided oral and
written informed consent. Participants were included in the current sub-study if they consented to
provide blood samples for immunological markers’ analysis and their serum samples were available
(74% of enrolled participants).

As part of this study, demographic information and lifestyle measures were taken including
smoking status and dietary intake. Clinical measures in this study included (1) lipid profile (total
cholesterol, triglycerides, high-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein
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cholesterol (LDL-C)); (2) inflammatory markers (hsCRP, IL-22); (3) glucose metabolism markers (fasting
glucose, insulin, HbA1c; and C-peptide; glucose and insulin concentrations); (4) body composition
(fat and lean body mass percentage, weight, waist and hip circumferences); and (5) cardiorespiratory
fitness (peak oxygen uptake,

.
VO2peak).

Dietary fibre intake was assessed using a 3-day food diary. Participants were instructed to record
any food and drinks consumed in the past 72 h prior to baseline measurements (blood samples and
other metabolic measures as described in Ramos et al [17]). The diary was collected by a research
assistant, who then conducted a short interview with the participant to check the accuracy of the
recall. Data was entered and analysed in FoodWorks (Xyris Software, Spring Hill, Queensland,
Australia). This version uses the AUSNUT 2011-13 and NUTTAB 2010 databases to analyse macro- and
micronutrient compositions. Total dietary fibre intake was calculated and expressed in grams per day.

Following a 12-h overnight fast, blood samples were withdrawn from an ante-cubital vein.
Samples were collected into tubes with and without anticoagulants to acquire plasma and serum
samples, respectively. These were then stored at −80 ◦C and later used to analyse circulating IL-22,
HsCRP, insulin, C-peptide, and intact proinsulin. Circulating IL-22 was measured from serum samples
via ELISA MAXTM Deluxe Set (Biolegend, 434504, San Diego, CA, USA) according to manufacturer’s
instructions. Briefly, the plates were coated with the capture antibody at 4 ◦C for 24 h, and were
subsequently washed with phosphate-based saline (PBS) 0.05% Tween 20 and non-specific binding
was blocked using 1% bovine serum albumin in PBS (pH 7.4) at room temperature for 2 h, shaking at
500 rpm. Serum samples (1:100 dilution) then coated the plates for up to 3 h, before being detected by
detection antibodies (Avidin-HRP and TMB substrates). Within 15 min, absorbance was read at 570 nm
and 450 nm (data presented as Absorbance570 nm–450 nm against the standard curve for hIL-22 provided).
An ELISA kit was also used to measure HsCRP (K-ASSAY High-Sensitive C-Reactive Protein kit
KAI-160, Kamiya Biomedical, Seattle, WA, USA) and intact proinsulin (human intact proinsulin ELISA,
EZHIPI-17K, Merck Millipore, Darmstadt, Germany), according to the manufacturer’s instructions.
C-peptide and insulin concentrations were analysed using electrochemiluminescence immunoassay
(ECLIA) via Cobas e411 immunoassay analyser (Roche Diagnostics, Indianapolis, IN, USA). HbA1c
was also derived from whole blood samples (Rx Daytona Plus, Randox Laboratories, Crumlin, Antrim,
UK). Using the measured C-peptide and insulin values, “proinsulin to insulin” and “proinsulin to
C-peptide” ratios were calculated. Those samples with proinsulin values below detection threshold
(0.5–100 pM) were assigned a value of 0.1 pM for statistical analysis.

Fasting glucose and lipid profile (total cholesterol, high-density lipoprotein cholesterol (HDL-C),
low-density lipoprotein cholesterol (LDL-C), and triglycerides) values were also measured after a 12-h
fast via a finger prick sample, which was subsequently analysed using the Cholestech LDX system.
Homeostasis model assessment for insulin resistance (HOMA-IR) and insulin secretion (HOMA-B)
values were calculated via HOMA2 calculator version 2.2 (University of Oxford) [19,20].

Weight, waist circumference and blood pressure (BP) were measured as described in
previously [21]. Those individuals either on hypertensive medication or with systolic BP ≥ 140
and diastolic BP ≥ 90 were classified as hypertensive [22]. Body composition was measured with
dual-energy X-ray absorptiometry (DEXA, Hologic QDR4500A version12.5, Waltham, MA, USA), and
cardiorespiratory fitness was assessed during a graded exercise test, measured via indirect calorimetry
(Metamax II, Cortex, Leipzig, Germany; or Parvo Medica TrueOne 2400 system, ParvoMedics Inc.,
Sandy, UT, USA) on either a treadmill or cycling ergometer depending on the individual’s physical
capability [14]. Briefly, the test protocol started with a familiarisation phase consisting of two 4-min
warm up stages (4 km/h at 0% incline or 50–60 rpm at 0 W, and 4 km/h 4% incline or 50–60 rpm at
25 W). Then, the test started at a higher intensity (6% incline or 50 W) with subsequent increases in
intensity (2% incline and 25 W increases) every minute until exhaustion. Cardiorespiratory fitness
was determined as the peak oxygen consumed (

.
VO2peak) during the graded exercise test and was

expressed as absolute (L/min) and relative to fat-free mass (mL/kgFFM/min) to eliminate adiposity as
a confounding factor.
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Statistical Analysis

Bivariate correlations were used to explore associations between circulating IL-22 and
demographic measures, fibre intake and macro nutrients, MetS factors (waist circumference, BP, glucose
metabolism markers, lipid profile markers), MetS severity (sex-specific z-scores calculated using the
formula described in Malin et al. [23]), inflammatory markers (HsCRP), body composition, and
cardiorespiratory fitness. A Chi-squared test was used to test associations among categorical variables.
Variables were checked for normality and those not normally distributed were log transformed.
For those variables not normally distributed even after log-transformation, Rho-spearman and
Mann–Whitney U test (categorical) were used to explore associations. Both primary outcome measures
(IL-22 and dietary fibre) were not-normally distributed, and IL-22 was still not after log-transformation.
We used hierarchical multiple regression to test the independent association of fibre intake with
circulating IL-22 (dependent variable). The first block (Model 1), included those variables that
significantly correlated with IL-22 (waist-to-hip ratio WHR, HDL-C, smoking, relative

.
VO2peak,

lean body mass), but excluding those variables that presented collinearity with included variables.
This model also included factors that had previously been associated with circulating IL-22 levels
(sex and age) [15]. In the second block of this model we included fibre intake (g/day), to assess
the predictive value of fibre intake, above and beyond other factors associated with IL-22 (Model 2).
An independent t-test was conducted to compare circulating IL-22 levels between high- and low-fibre
intake groups, defined by above and below sample median intake. All analyses were performed in
SPSS version 24 (IBM, New York, NY, USA).

3. Results

3.1. Participants Characteristics

Table 1 shows the characteristics of the individuals included in this study. Participants averaged
56.6 years and the majority were men and obese. About 70% of participants had 4 or more MetS factors,
with more than half having hypertension and approximately 40% T2D. The median fibre intake was
21.5 g/day, which was slightly below the current recommendation of 25–30 g/day in Australia [24].
The average circulating serum IL-22 value was 153.1 pg/mL, with a large variability across participants.
Glucose metabolism and lipid profile markers were slightly above reference values, as expected in
this population.

3.2. Fibre Intake and IL-22 Correlations

Table 2 shows the results of the bivariate correlations, using Spearman’s rho test. Circulating
IL-22 was positively associated with fibre intake (rs = 0.393, p < 0.006), carbohydrate intake (rs = 0.352,
p = 0.013), absolute cardiorespiratory fitness (rs = 0.330, p < 0.022), waist-to-hip ratio (rs = 0.389,
p < 0.006), lean body mass (rs = 0.254, p = 0.030), and smoking status (Chi-squared = 6.137, p = 0.046);
while it was negatively associated with HDL-C (rs = −0.378, p < 0.008). There were no significant
associations between IL-22 and participants’ medication status (Mann–Whitney U test p > 0.05 for
metformin, aspirin, statins, beta-blockers, calcium antagonists, angiotensin II).
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Table 1. Participants demographic, clinical, and lifestyle characteristics.

Variable All 1

Age (years) 56.6 ± 9.5

Male % 62.5

Clinical characteristics

Hypertension % 70.8
Systolic BP (mmHg) 132.2 ± 14.3
Diastolic BP (mmHg) 84.2 ± 9.4

Type 2 diabetes % 41.7

≥4 MetS factors (%) 70.0

Body composition
Body fat % 39.1 ± 6.7
BMI (kg/m2) 31.7 ± 4.8
Waist circumference (cm) 103.7 ± 11.8
Waist-to-hip ratio 0.93 ± 0.1

Inflammatory markers
IL-22 (pg/mL) 153.1 (47.0)
HsCRP (mg/L) 1.8 (2.2)

Glucose metabolism
Fasting glucose (mmol/L) 6.6 (4.1)
Fasting insulin (pmol/L) 117.3 (38.4)
HbA1c (%) 6.3 ± 1.4
HOMA-IR 5.9 ± 4.7
HOMA-B 148.3 (13.7)
Pro-insulin (pmol/L) 4.6 ± 6.8
C-peptide (pmol/L) 1168.6 (704.1)

Lipid profile
Total cholesterol (mmol/L) 4.8 (2.5)
HDL-C (mmol/L) 1.1 (0.6)
LDL-C (mmol/L) 2.9 (0.8)
Triglycerides(mmol/L) 2.0 (0.9)

Lifestyle characteristics

Diet
Total energy intake (kJ/day) 8665.5 (4716.2)
Carbohydrate intake (g/day–%Energy) 194.0 (92.6)–40.2 ± 10.2
Protein intake (g/day–%Energy) 104.1 (52.2)–20.3 ± 4.7
Fat intake (g/day–%Energy) 79.3 (31.3)–34.0 ± 8.7
Fibre intake (g/day) 21.5 (11.5)

Cardiorespiratory fitness (
.

VO2peak)
Absolute (L/min) 2.6 ± 0.7
Relative (mL/kgFFM/min) 26.3 ± 6.9

Smoking (%) 2.1

Alcohol intake (drinks/week) 6.1 ± 8.9
1 Mean ± standard deviation, median (interquartile range) for variables not normally distributed. BP: blood
pressure; BMI: body mass index; MetS: metabolic syndrome; IL-22: interleukin-22; HsCRP: high-sensitivity
c-reactive protein; HbA1c: glycated haemoglobin; HOMA-IR: homeostasis model assessment for insulin resistance;
HOMA-B: homeostasis model assessment for insulin secretion; HDL-C: high-density lipoprotein cholesterol; LDL-C:
low-density lipoprotein cholesterol;

.
VO2peak: peak oxygen uptake; FFM: fat-free mass.
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Table 2. Bivariate correlations between IL-22 and demographic, lifestyle, and clinical measures in
participants diagnosed with metabolic syndrome.

Variable Correlation Coefficient p-Value

Age (years) −0.252 0.084
Sex 1 3.200 1 0.074
BMI (kg/m2) 0.018 0.901
Waist circumference (cm) 0.253 0.082
Waist-to-hip ratio 0.389 0.006
Body fat % −0.244 0.095
Lean Body Mass (g) 0.254 0.030
Number of metabolic syndrome
factors 0.111 0.453

Metabolic syndrome z-score −0.253 0.082
Lifestyle factors

Total energy intake (kJ/day) −0.045 0.761
Carbohydrate intake (g/day) 0.352 0.013
Protein intake (g/day) −0.177 0.225
Fat intake (g/day) −0.157 0.283
Fibre intake (g/day) 0.393 0.006

Cardiorespiratory fitness
Relative

.
VO2peak(mL/kgFFM/min) 0.294 0.042

Absolute
.

VO2peak(mL/min) 0.346 0.018
Smoking status 2 6.137 1 0.046
Alcohol intake (drinks/week) −0.226 0.056
Inflammatory marker

HsCRP (mg/L) −0.054 0.714
Glucose metabolism

Fasting flucose (mmol/L) −0.035 0.813
Fasting insulin (pmol/L) 0.079 0.594
HbA1c (%) −0.074 0.670
HOMA-IR −0.001 0.994
HOMA-B 0.113 0.444
pro-insulin (pM) 0.142 0.342
C-peptide (pmol/L) 0.043 0.771

Lipid profile
Total cholesterol (mmol/L) 0.001 0.993
HDL-C (mmol/L) −0.378 0.008
LDL-C (mmol/L) 0.114 0.452
Triglycerides (mmol/L) −0.196 0.183

1 For categorical variables, Mann–Whitney test results are reported. 2 Smoking status: never smoker, ex-smoker, or
current smoker. BMI: body mass index; MetS: metabolic syndrome; IL-22: interleukin-22; HsCRP: high-sensitivity
c-reactive protein; HbA1c: glycated haemoglobin; HOMA-IR: homeostasis model assessment for insulin resistance;
HOMA-B: homeostasis model assessment for insulin secretion; HDL-C: high-density lipoprotein cholesterol; LDL-C:
low-density lipoprotein cholesterol;

.
VO2peak: peak oxygen uptake; FFM: fat-free mass.

The results of the hierarchical multiple regression are shown in Table 3. Models 1 and 2 explained
about 34% and 42% of circulating IL-22 variability, respectively. In Model 2, fibre intake significantly
improved the prediction by 8.4% (p < 0.022). The regression coefficient analysis showed that fibre intake
remained a significant predictor of circulating IL-22 levels, even after accounting for confounding
factors (Model 2 β = 0.361, p = 0.022). When comparing participants based on their fibre intake (above
and below a median intake of 21.5 g/day), those in the high-intake group showed higher serum
circulating IL-22 (see Figure 1). There was no significant difference between groups for MetS severity
and other metabolic markers (see Supplement Table S1).
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Table 3. Hierarchical multiple regression coefficients for the variables included in each model
(circulating IL-22 levels as the dependent variable).

Model Variable
Model 1 Model 2

Standardised β p-Value Standardised β p-Value

WHR 0.544 (1.127–18.557) 0.028 0.607 (2.667–19.270) 0.011

HDL-C (mmol/L) −0.025
(−3.045–−2.676) 0.897 −0.105

(−3.542–1.969) 0.558

Smoking −0.315
(−1.694–−0.109) 0.027 −0.239

(−1.457–0.42) 0.081

Lean body mass (g) 0.388
(−1.547–7.132) 0.201 0.529

(−0.389–8.005) 0.074

.
VO2peak(mL/kgFFM/min) 0.201(−0.026–0.120) 0.201 0.084

(−0.053–0.092) 0.467

Age (years) −0.026
(−0.051–0.042) 0.856 −0.013

(−0.046–0.042) 0.924

Sex −0.620
(−4.025–0.063) 0.057 −0.895

(−4.932–−0.786) 0.008

Fibre (g/day) – – 0.361(0.223–2.689) 0.022

Model summary Model 1 Model 2

R2 0.339 0.423
R2 change – 0.084

p-value 0.014 0.022

BMI: body mass index; MetS: metabolic syndrome; IL-22: interleukin-22; WHR: waist-to-hip ratio; HDL-C:
high-density lipoprotein cholesterol;

.
VO2peak: peak oxygen uptake; FFM: fat-free mass.

Nutrients 2019, 11, x FOR PEER REVIEW 7 of 10 

 

 
Figure 1. Circulating IL-22 concentration by fibre intake groups. The high-fibre intake group (above 
median intake of 21.5 g/day) had a significantly higher circulating IL-22 than the low-fibre intake 
group (mean 308.3 ± 454.4 vs. 69.0 ± 106.4 pg/mL, respectively p < 0.019). 

Table 3. Hierarchical multiple regression coefficients for the variables included in each model 
(circulating IL-22 levels as the dependent variable). 

Model Variable Model 1 Model 2 
Standardised β p-Value Standardised β p-Value 

WHR  0.544 (1.127–18.557) 0.028 0.607 (2.667–19.270) 0.011 
HDL-C (mmol/L) −0.025 (−3.045–−2.676) 0.897 −0.105 (−3.542–1.969) 0.558 

Smoking −0.315 (−1.694–−0.109) 0.027 −0.239 (−1.457–0.42) 0.081 
Lean body mass (g) 0.388 (−1.547–7.132) 0.201 0.529 (−0.389–8.005) 0.074 

V̇O2peak(mL/kgFFM/min) 0.201(−0.026–0.120) 0.201 0.084 (−0.053–0.092) 0.467 
Age (years) −0.026 (−0.051–0.042) 0.856 −0.013 (−0.046–0.042) 0.924 

Sex −0.620 (−4.025–0.063) 0.057 −0.895 (−4.932–−0.786) 0.008 
Fibre (g/day) -- -- 0.361(0.223–2.689) 0.022 

Model summary Model 1 Model 2 
R2 0.339 0.423 

R2 change -- 0.084 
p-value 0.014 0.022 

BMI: body mass index; MetS: metabolic syndrome; IL-22: interleukin-22; WHR: waist-to-hip ratio; 
HDL-C: high-density lipoprotein cholesterol; V̇O2peak: peak oxygen uptake; FFM: fat-free mass 

4. Discussion 

To our knowledge, this is the first study to report on associations between circulating IL-22 and 
dietary fibre intake in humans with MetS. We found fibre intake was an independent predictor of 
circulating IL-22 even after accounting for multiple confounders, including anthropometric and 
metabolic markers, and lifestyle factors. Higher fibre intake was associated with higher circulating 
IL-22 levels, which could be considered an additional reason to promote fibre intake in MetS patients. 

Animal studies showed that reduced IL-22 expression is associated with negative health 
outcomes, and that diet can impact gut environment and consequent expression of IL-22 [25]. Wang 
et al. [25] showed that mice fed with high-fat diet had reduced IL-22 expression, which was in turn 
associated with disrupted gut epithelial integrity. In a similar model, colonic epithelial cell stress was 
reversed by administering IL-22 [9]. These results suggest the potential positive effect of increased 
circulating IL-22 on health outcomes. The association between dietary fibre intake and circulating IL-
22 shown in our study are consistent with a study in mice fed a high fat diet with or without 
fermentable fibre, which showed that fibre induced IL-22 production in the intestinal mucosa 

Figure 1. Circulating IL-22 concentration by fibre intake groups. The high-fibre intake group (above
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group (mean 308.3 ± 454.4 vs. 69.0 ± 106.4 pg/mL, respectively p < 0.019).

4. Discussion

To our knowledge, this is the first study to report on associations between circulating IL-22
and dietary fibre intake in humans with MetS. We found fibre intake was an independent predictor
of circulating IL-22 even after accounting for multiple confounders, including anthropometric and
metabolic markers, and lifestyle factors. Higher fibre intake was associated with higher circulating
IL-22 levels, which could be considered an additional reason to promote fibre intake in MetS patients.

Animal studies showed that reduced IL-22 expression is associated with negative health outcomes,
and that diet can impact gut environment and consequent expression of IL-22 [25]. Wang et al. [25]
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showed that mice fed with high-fat diet had reduced IL-22 expression, which was in turn associated
with disrupted gut epithelial integrity. In a similar model, colonic epithelial cell stress was reversed
by administering IL-22 [9]. These results suggest the potential positive effect of increased circulating
IL-22 on health outcomes. The association between dietary fibre intake and circulating IL-22 shown
in our study are consistent with a study in mice fed a high fat diet with or without fermentable fibre,
which showed that fibre induced IL-22 production in the intestinal mucosa prevented the development
of MetS [11]. These findings warrant further investigation of IL-22 modulation through diet and
associated health outcomes in humans.

A recent comprehensive review concluded that IL-22 might have a dual effect being both pro-
or anti-inflammatory depending on the context, tissue, and presence of other similar cytokines [26].
For example, increased serum IL-22 is found in asthma patients, where it seems to negatively regulate
established allergic inflammation [27]. In a recent cross-sectional study, serum IL-22 concentrations
were associated with cardiometabolic markers but also with inflammatory cytokines (IL-1 receptor
antagonist, IL-18) [15]. Similar to the findings of Herder et al. [15], we observed a negative association
between IL-22 and HDL-C levels, but found an opposite association with smoking and age, and no
association with MetS severity (see Supplement Table S1 and Figure S1). The divergent findings might
be explained by differences in sample characteristics, since our participants had a higher BMI and
prevalence of T2D, but lower mean age and smoking prevalence.

Altogether, studies suggest that increased expression of IL-22 might limit the collateral damage of
the immune system activation and response [28]. Given that MetS origin is characterised by low-grade
inflammation, higher IL-22 could be seen as a positive response to down-regulate such established
inflammation. Murine studies showed that exogenously administering IL-22 reversed the obesity and
high-fat diet induced endoplasmic reticulum (ER) stress and pancreatic stress [9,10]. This indicates that
higher levels of IL-22 could alleviate obesity-induced insulin-resistance, an important stepping stone
in the development of MetS [9]. However, as circulating IL-22 might be the result of multiple tissues
expression, it is important that future studies measure local concentrations in addition to circulating
IL-22. This would facilitate the identification of specific IL-22 expression patterns associated with
dietary and metabolic markers. Future studies are needed to further investigate whether changes in
fibre intake would be able to increase circulating (and local) IL-22, and whether such changes result in
specific metabolic outcomes in both healthy and clinical populations.

This is the first study to our knowledge that reported on the associations between circulating
IL-22 and dietary fibre intake in humans. We also showed IL-22 was associated with body composition
(lean body mass, WHR), and cardiorespiratory fitness. Participants were assessed comprehensively,
including a large number of clinical measures such as body composition, inflammatory markers,
glucose and lipid metabolism markers, and lifestyle factors. Investigating associations between these
measures and circulating IL-22 contributed to the limited evidence of human studies in this area.
Although the study and estimator accuracy would have benefited from a larger sample size, we were
able to detect a small effect size resulting from adding fibre intake to the regression model (F2 = 0.15).
Further, having controlled for this large number of confounding factors ensured robustness of our
analysis and results. The use of 3-day dietary assessment tool provided a good estimate of usual dietary
intake. Future studies should consider a combination of this tool and food-frequency questionnaires
(for long term intake assessment). Our results are limited by the cross-sectional design, inclusion
criteria, lack of healthy controls, and inability to measure potential mediators of fibre/IL-22 relationship,
such as short chain fatty acids and gut microbiome [8]. Future studies should incorporate these to
better describe the mechanism behind the fibre/IL-22 association in the context of health outcomes.

5. Conclusions

Fibre intake is independently associated with increased circulating IL-22 in individuals with
MetS. These results provide further evidence on the importance of high dietary fibre intake. Further
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investigations using well-controlled trials should investigate whether changes in dietary fibre intake
alter circulating IL-22, and the effects this may have on health outcomes.
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