
June 2007
Van Thanh Do, ITEM
Ivar Jørstad, ITEM

Master of Science in Communication Technology
Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Telematics

Experiences with Linux Mobile

Frode Sivertsen

Problem Description

As open source software, Linux has become a major operating system for personal computers
both stationary and portable. It is hence not surprising to see Linux appearing in the mobile
terminal domain. With the standardisation of hardware of mobile phones, Linux has the potential
to be a de-facto standard operating system for mobile phones that promotes an open architecture
of the mobile phone. The goal of this project is to perform a detailed study of Linux for mobile
phones, and specifically the new opportunities brought along with the introduction of this OS for
mobile phones.

Assignment given: 17. January 2007
Supervisor: Van Thanh Do, ITEM

I

Abstract

Mobile phones are becoming more and more complex in terms of both hardware and

software. Linux Mobile, as a term covering both the kernel and its surrounding components

that together form the operating system, is said to have the potential to become the de-facto

standard operating system for mobile phones and an enabler for advanced future mobile

services. This master thesis evaluates key aspects and central mechanisms of the Linux kernel

and how it supports its surrounding hardware and software components in a flexible manner.

The main work consisted of investigating the necessary kernel subsystems, with focus

on the latest major kernel release for as being able to provide the demanded real-time

responsiveness for mobile phones. Further, the typical hardware architecture for this form

factor is examined and discussed with focus on the important aspects of responsibility, power

management, and memory. The combination of the hardware and the flexibility of Linux is

demonstrated through the booting process. Both major commercial and open source

development platforms are investigated to elaborate on the opportunities of employing Linux

as an enabler for advanced mobile services. The attempt of building a cross platform tool

chain as a basis for a development platform was carried out with only partial success. It is

described with the results achieved and steps planned. Based on the topics discussed and the

results achieved the thesis is concluded with a discussion of whether Linux Mobile has the

potential to become the de-facto standard mobile operating system, and what challenges and

opportunities that are brought along with it.

III

Preface

This is a master thesis of the Master of Science in Communications Technology

program at the Norwegian University of Technology and Science. It has been carried out

during the spring of 2007 at the Department of Telematics and at Telenor Fornebu in

collaboration with Telenor R&I.

 I would like to thank Dr. Ivar Jørstad and Professor Do van Thanh for excellent

guidance for my work. Also I would like to thank Pål Løkstad at Telenor R&I for some useful

tips.

Fornebu, June, 2007.

Frode Sivertsen

V

Contents

Chapter 1
INTRODUCTION ... 1

1.1 Background.. 1
1.2 Motivation.. 2

1.3 Problem Definition... 2
1.4 Methodology.. 3

1.5 Organisation of the Report.. 3
1.6 Limitation of scope... 4

Chapter 2
INTRODUCING LINUX... 5

2.1 The Generic Linux Model .. 6
2.2 The Monolithic Linux Kernel ... 8

2.2.1 User Mode and Kernel Mode... 10
2.2.2 Re-entrancy ... 11

2.2.3 Process Address Space... 12

Chapter 3
LINUX AS A SOFT REAL-TIME OPERATING SYSTEM.. 13

3.1 The Soft Real-Time 2.6 Kernel... 13
3.1.1 The Pre-emptive 2.6 Kernel ... 14
3.1.2 Synchronization... 15

3.2 The Subsystems.. 16
3.3 The Scheduler .. 17

3.3.1 Threads and Processes ... 18
3.3.2 Parent and Child Processes .. 18

3.3.3 Zombie Processes .. 19
3.3.4 Kernel Failure.. 20

3.3.5 The New O(1) Scheduler ... 20
3.3.6 Symmetric Multi-Processing and Symmetric Multi-Threading............................. 21

3.4 Memory Manager... 21
3.4.1 Virtual Memory... 22

3.4.2 System Memory Usage.. 24
3.4.3 Memory Mapping.. 26

3.4.4 Buffer Cache ... 26
3.4.5 Page Cache .. 27

VI

3.4.6 Hardware Cache .. 27

3.4.7 Swap Cache ... 27
3.5 Inter-process Communication... 28

3.5.1 Signals... 29
3.5.2 Pipes.. 30

3.5.3 Shared Memory ... 31
3.5.4 Semaphore... 31

3.5.5 Message Queues .. 31
3.5.6 Sockets .. 32

3.6 The Virtual File System and File System Types.. 32
3.6.1 CRAMFS .. 33

3.6.2 SQASHFS ... 33
3.6.3 RAM Disk ... 34

3.7 I/O Subsystem.. 34
3.7.1 Device Drivers... 34

3.7.2 Device Files in Older Kernels .. 35
3.7.3 The 2.6 Kernel and Udev ... 36

3.7.4 Sysfs vs. Procfs.. 37
3.7.5 Interrupt Driven Driver Architecture.. 37

3.7.6 Direct Memory Access .. 38
3.8 The MTD Subsystem.. 38

3.8.1 The Flash Transition Layer and the NAND Flash Transition Layer User Modules40
3.8.2 The Char Device User Module... 41

3.8.3 The Block Device User Module ... 41
3.8.4 The Journaling Flash File System Version 2 (JFFS2) ... 41

3.9 Libraries ... 42
3.9.1 Static Libraries .. 42

3.9.2 Shared Libraries... 42
3.9.3 Dynamically Loaded (DL) Libraries .. 44

3.9.4 Tools to make libraries: The binutils .. 44
3.9.5 Creating and using static libraries .. 45

3.9.6 Creating and using shared libraries .. 45
3.9.7 Making and using DL Libraries ... 46

3.10 The Graphical System .. 46
3.10.1 The Console... 46

3.10.2 The Graphical System structure ... 47
3.10.3 Display Hardware .. 49

3.10.4 Linux Frame Buffer Driver and Interface ... 49
3.10.5 The X Window System.. 51

3.10.6 Embedded Window Systems and Nano-X.. 51
3.11 Summary.. 53

Chapter 4
THE MOBILE PHONE HARDWARE .. 55

4.1 Hardware Abstraction Layer and Board Support Package ... 56
4.1.1 The ARM Processor .. 57

4.1.2 Onboard Boot Loader .. 58
4.1.3 Memory Map... 58

4.1.4 Timers ... 59
4.2 An ARM System.. 59

VII

4.3 Buses and Interfaces... 63

4.3.1 JTAG... 64
4.3.2 UART ... 64

4.3.3 EMIF... 65
4.3.4 I2C .. 65

4.3.5 GPIO... 65
4.3.6 LPG, PWT, PWL, and HDQ. ... 65

4.3.7 USB OTG.. 66
4.3.8 SPI .. 66

4.4 Power Management .. 66
4.4.1 Power Management Standards ... 67

4.4.2 Power Management on Linux .. 68
4.5 Storage and Memory Requirements.. 69

4.5.1 Storage and Memory Requirements ... 70
4.6 Summary.. 71

Chapter 5
BOOTING LINUX .. 73

5.1 Host/Target Development and Debug Set-up.. 73
5.2 Booting the Board .. 74

5.2.1 Boot Configurations .. 75
5.2.2 Boot Configurations and Das U-boot Boot Loader... 76

5.3 First Boot Stage.. 77
5.4 Second Boot Stage ... 77

5.5 Third Boot Stage .. 78
5.6 Fourth Boot Stage .. 79

5.7 Standard System V init ... 80
5.8 BusyBox init .. 81

5.9 Faster Booting .. 82
5.10 Summary.. 83

Chapter 6
COMMERCIAL AND OPEN SOURCE DEVELOPMENT SOLUTIONS 85

6.1 Trolltech... 85
6.1.1 Qt .. 86

6.1.2 Qtopia Core ... 86
6.1.3 Qtopia Phone Edition... 87

6.1.4 Qtopia Greensuite #1 and Greenphone... 88
6.1.5 Qtopia IPC and Inter-object Communication ... 89

6.2 MontaVista... 91
6.2.1 Mobilinux.. 92

6.3 The OpenMoko strategy ... 93
6.3.1 OpenMoko Development Environment.. 94

6.4 Ubuntu Mobile and Embedded Edition... 96
6.5 Summary.. 96

6.5.1 Reduced Costs, Reduced Time-To-Market, and Reduced Risks 98
6.5.2 To Choose a Pre-Built Distribution or not.. 98

VIII

Chapter 7
CREATING A CROSS PLATFORM TOOL CHAIN .. 99

7.1 What is the Tool Chain? ... 99
7.1.1 Binutils .. 100

7.1.2 The Gnu Compiler Collection .. 100
7.1.3 The C Library .. 100

7.2 Steps for Building a Cross Tool Chain.. 102
7.2.1 Build Process Overview and Workspace Set-up... 103

7.2.2 Package Choices and Additional Tools .. 104
7.3 Kernel Headers Set-up.. 104

7.4 Binutils Set-up.. 105
7.5 Bootstrap Compiler Set-up ... 106

7.5.1 Using Gcc 3.2 and Above .. 107
7.6 C Library Set-up... 109

7.7 Full Compiler Set-up .. 110
7.8 Kernel Set-up ... 110

7.9 Evaluation of the Cross Tool Chain Installation Process ... 110

Chapter 8
EVALUATION ... 113

8.1 Related Work/Future Work .. 115

Chapter 9
CONCLUSION.. 117

Apendix A
OMAP 730... 127

Apendix B
NECESSARY GLIBC COMPONENTS .. 129

Apendix C
PAPER FOR WINSYS 2007.. 131

Apendix D
PAPER FOR ICIN 2007 .. 139

IX

List of Figures

Figure 1: The architecture of a generic Linux system. [7] ... 7
Figure 2: A monolithic kernel (on the left) and a microkernel (on the right). 9

Figure 3: Execution States.. 10
Figure 4: A comparison between the task response time of the 2.4.18 Linux kernel and the 2.6

kernel. [11] .. 15
Figure 5: The concrete decomposition of the Linux kernel. [13] ... 16

Figure 6: Paged virtual memory [10 b] ... 23
Figure 7: Physical and virtual memory maps for the Compaq iPAQ. [7]............................... 25

Figure 8: Device drivers and device files, managed by the Virtual File System. [10a] 36
Figure 9: The generic graphics system architecture [9:chap.9].. 47

Figure 10: A comparison of different graphics layers within different operating systems
[9:chap.9]... 48

Figure 11: Embedded Linux graphics system [9:chap.9]... 49
Figure 12: A generic ARM system design. [38].. 60

Figure 13: A detailed ARM System-On-Chip design. [38] ... 61
Figure 14: The OMAP730 Digital Baseband [34 (b)] ... 62

Figure 15: The solid-state media configuration [7] ... 75
Figure 16: The Qtopia Core Architecture [69] .. 86

Figure 17: Qtopia Phone Edition diagram [72] ... 88
Figure 18: The Qtopia Greensuite #1 Architecture [73] .. 89

Figure 19: The MontaVista Mobilinux 4.1 [84] .. 93
Figure 20: The OpenMoko Platform. [91] .. 95

XI

List of Tables

Table 1: Linux Runlevels ... 80

Table 2: BusyBox init actions [7:195] .. 82
Table 3: Primary cross tools chain package combination.. 104

Table 4: Considered cross tools chain packet combinations known to build correctly 107
Table 5: New selected cross tools chain packet combination .. 108

XIII

Abbreviations

ACPI Advanced Configuration and Power Interface

ADK Applications Development Kit

A-GPS Assisted Global Positioning System

API Application Program Interface

APM Advanced Power Management

ARM Advanced RISC Machine

ASIC_ID Application Specific Integrated Circuit Identity

BDM Board Debug Module

BIOS Basic Input/Output System

CFI Common Flash-memory Interface

CPU Central Processing Unit

CRAMFS Compressed RAM File System

DEC Digital Equipment Corporation

DOC Disk-On-Chip

DLL Dynamic Link Library

DMA Direct Memory Access

DRM Digital Rights Management

DSP Digital Signal Processor

DVFS Dynamic Voltage and Frequency Scaling

EFD Embedded Flash Drive

ELF Executable Linking Format

EPL Eclipse Public License

FLTK Fast Light Toolkit

FLNX Fast Light Toolkit for Nano X

GCC Gnu Compiler Collection

XIV

GID Group Identity

GNU GNU’s Not Unix

GPIO General Purpose Input/Output

GPL GNU General Public License

GPRS General Packet Radio Service

GSM Global System for Mobile Communications

GTK GimpToolkit

I2C Inter-Integrated Circuit

ICE In-Circuit Emulator

IEM Intelligent Energy Manager

InitRAMFS Initial RAM File System

IPC Inter-Process Communication

JTAG Joint Test Action Group

JFFS2 Journaling Flash File System version 2

LGPL GNU Lesser General Public License

LPG Led Pulse Generator

MIT Massachusetts Institute of Technology

MLC Multi-Level Cell

MLI Mobile Linux Initiative

MTD Memory Technology Devices

MMU Memory management unit

NDA Non Disclosure Agreement

NFS Network File System

NXLIB Nano-X/X-Lib Compatibility Library

OpenGL ES Open Graphics Language for Embedded System

OSDL Open Source Development Labs

PCMCIA Personal Computer Memory Card International Association

PDK Platform Development Kit

PIT Programmable Interval Timer

POSIX Portable Operating System Interface for UNIX

POST Power-On Self Test

PROCFS Process File System

PROM Programmable Read-Only Memory

PWL Pulse-Width Light

PWT Pulse-Width Tone

XV

QCOP Qtopia Communications Protocol

RAMFS RAM File System

RISC Reduced Instruction Set Computer

ROM Read-Only Memory

RTC Real-Time Clock

SCSI Small Computer System Interface

SDRAM Synchronous Dynamic RAM

SPI Service Provider Interface

TFTP Trivial File Transfer Protocol

UART Universal Asynchronous Receiver Transmitter

UID User Identity

UMTS Universal Mobile Telecommunications System

USB OTG USB On-The-Go

VFS Virtual File System

WINSYS International Conference on Wireless Information Networks and Systems

XIP Execute In Place

XVII

Definitions

Atomic operation A set of operations that can be combined so that they appear to

the rest of the system to be a single operation with only two

possible outcomes: success or failure.

ASIC A chip that is custom designed for a specific application rather

than a general-purpose chip such as a microprocessor.

Callback Executable code that is passed as an argument to other code. It

allows a lower-level software layer to call a subroutine (or

function) defined in a higher-level layer.

Common File Model Provided by VFS. Capable of representing any conceivable file

system’s general features and behaviour in terms of an inode,

super block, file, and dentry.

Context switch Involves saving a CPU’s register state and load a new state,

cache flushing, and changing the current virtual memory map.

Critical region A piece of code that accesses a shared resource (data structure or

device) that must not be concurrently accessed by more than one

thread of execution. A critical section will usually terminate in

fixed time, and a thread, task, or process will only have to wait a

fixed time to enter it. Some synchronization mechanism is

required at the entry and exit of the critical section to ensure

exclusive use, for example a semaphore.

XVIII

Dirty page Pages that contain data that has been modified but has not yet

been written to disk/permanent storage.

Kernel The kernel is the heart of an operating system. It is the part of

the operating system that controls the hardware and gives

interfaces to the user.

Kernel Control Path The sequence of instructions executed by the kernel to handle a

system call, an exception, or an interrupt.

Pipe A pipe is defined with its output from one process and its input

into another process. It can also be used to link external devices

or files to processes.

POSIX conformance The POSIX.1 standard is followed in its entirety, possibly with

subsets.

POSIX compliance Only partial POSIX support is provided, but conformance is

usually strived for.

Race condition A race condition or race hazard is a flaw in a system or process

whereby the output of the process is unexpectedly and critically

dependent on the sequence or timing of other events.

Starvation A multitasking-related problem, where a process is perpetually

denied necessary resources. Without those resources, the

program can never finish its task. Starvation is similar in effect

to deadlock.

Virtual File System An abstraction layer on top of more concrete file systems. A file

system is the way the operating system organises, manages and

maintains the file hierarchy into mass-storage devices. The

purpose of a VFS is to allow for client applications to access

different types of concrete file systems in a uniform way.

1

Chapter 1

INTRODUCTION

1.1 Background

Embedded systems are all around us: in the house, in the workplace, and in the car.

One of the embedded systems used most frequently, is the mobile phone. The mobile phone

has gone from being owned only by few, to be owned by virtually everyone in the

industrialised world. The functionality has gone from just ringing to taking pictures or videos,

and sending them to another mobile phone with MMS, or with e-mail on the Internet.

Information about attractions is given on site, the phone can work as an electronic wallet and

ticket, and unknown numbers are being looked up as it is ringing. In addition, it is supposed to

work as a “dongle” through high-speed communications protocols and wireless Personal Area

Networks. The mobile phone’s functionality and capacity has grown to become more and

more similar to a personal computer in many ways, yet including its mobile specific services.

Therefore it is not surprising to see many operating system vendors turning to this new market

as well. Whereas many operating system vendors have only been developing for the computer

market up until now, Linux has the advantage that it already has been ported between many

hardware architectures during its lifetime. Some of those architectures are used in embedded

systems, where Linux has become a key player in the market already. Because of this, it is not

strange to see Linux appearing in the mobile phone operating system market. It has been

developed for both personal computers and embedded systems, and should therefore have an

outstanding opportunity to become the de-facto operating system for mobile phones.

2

1.2 Motivation

It is possible to define three main players in the mobile phone world: the users, the

carriers, and the handset makers. All of these have or will invest in the latest technology, and

everyone expects something out of it in return.

There are many reasons why one would want Linux as a de-facto operating system on

mobile phones. An open-source platform as Linux will first of all probably cut the costs of

both deployment and development of the mobile operating system for the handset makers. In

addition it lets this be done on a number of development platforms.

Second, Linux has the ability to become a “can-opener” for value-added service

delivery on a platform that is portable to a wide range of architectures and can promise

performance. An open-source platform opens for a greater number of applications and a faster

development where the users may contribute to form a new multi-billion dollar industry.

More applications and faster networks may increase the revenues for the carriers in form of

increased data traffic.

For the handset manufacturers it matters how the operating systems take advantage of

the hardware. The more possibilities the operating system can support, the more they will be

able to push the technology forward. Thus, Linux Mobile has the potential to add value to all

three players in this market, and perhaps more than its competitors.

1.3 Problem Definition

The main goal of the master thesis is to verify the suitability of Linux as an operating

system for mobile phones and address the benefits that come along with it. There are 7

problems that must be addressed to achieve this goal:

1. How is the generic Linux built?

2. What are the latest enhancements to the kernel that makes it suited as a Mobile

Operating System?

3. What need to be changed or added to make Linux fit a mobile phone?

4. How does the mobile phone hardware typically stand out from a regular computer?

5. What kind of software on top of the kernel is required and what kind of programs

provide the key features that must be supported?

6. What have Linux Mobile Operating System vendors done to address these

3

problems?

7. How do mobile phone development platforms work, and what do they consist of?

1.4 Methodology

The following methodology will be used to achieve the mentioned goals:

1. Study and understand the generic Linux kernel on a conceptual and a concrete

level

2. Elaborate on the Linux 2.6 enhancements

3. Identify the hardware differences between the mobile phone and the PC

4. Point out the extra features the mobile phone requires of its operating system,

exemplified by Linux

5. Demonstrate the flexible booting framework of Linux

6. Study the enhancements done by some vendors

7. Study the vendors’ development platforms

8. Show the steps completed of building of a cross tool chain as the basis for a

development platform

1.5 Organisation of the Report

First, Linux will be introduced on a conceptual, layered basis to see how the kernel

and its surrounding systems are built up to form an operating system. Next, the core

functionalities will be discussed in a more concrete manner, with a focus on the latest kernel

release and the requirements of a mobile phone. The fourth chapter will discuss the hardware

of mobile phones with a focus on how the architecture stands out from that of a regular PC.

Chapter 5 will describe the flexible booting of Linux and how this can be improved, while

chapter 6 discusses more of the software system requirements of a mobile phone. Chapter 7

presents and discusses the implementations of platform development environments provided

by MontaVista, Trolltech, and OpenMoko. At last the failed building process of a cross tool

chain is demonstrated with its findings, before a discussion and a conclusion ends the thesis.

 The appendices are the hardware specification of an OMAP730 digital baseband, core

C libraries, and two papers. The paper in appendix C is accepted as a poster presentation for

the WINSYS 2007 conference in Barcelona, while the paper in appendix D is accepted as a

4

poster presentation for the ICIN 2007 conference in Bordeaux.

The references are given with page numbers or chapter numbers where this is relevant.

To all references it applies that a lot of the information and concepts described here are

interpreted and described in different ways in the books and articles. Therefore a lot of the

concepts are described on the general notion picked up from several of the sources that are

provided all together, but also from mailing lists, Linux glossary definitions on Internet, and

computer related articles that are not necessary provided as references. The literature is up to

date when it comes to ongoing projects, while some of the material regarding unchanged

concepts of the Linux kernel may be a few years old.

1.6 Limitation of scope

 The thesis covers a broad range of topics due to its broad problem definition given in

the text. The whole picture is important, and therefore most of the time has been spent on

elaborating on key aspects from the various topics. More time was wanted spent on testing the

OMAP1610 P2 board at Telenor R&I, Fornebu. However, since most of the thesis was

written in Trondheim and the tried building of the cross tool chain took way more time than

expected, only some short testing of the modem with a SIM card through microcom and

booting with a 2.4 kernel and a simple NFS file system with U-boot was carried out. This

thesis serves as a very good base for understanding such a board and all its components, and it

will explain all the concepts mentioned above. Further, the kernel configuration is not

discussed in detail, as it is case dependent and covered in the kernel documentation. Rather

than repeating already existing documents a thorough understanding of the kernel for as being

able to make the right configuration choices is given in this thesis.

5

Chapter 2

INTRODUCING LINUX

Linux already exists in several commercial distributions targeted for embedded

platforms. Every day, major embedded Linux vendors such as MontaVista and Trolltech are

serving more and more customers with mobile phone operating system solutions and

development environments. These are partially based on proprietary software. During May

2007 one of the most anticipated releases of a Linux driven mobile phone was ready for

shipping; the Neo1973 from First International Computing, FIC. Its name it gets from the first

mobile phone made in 1973. Linux is nothing new as a mobile phone operating system, but

this is the first mobile phone that will be shipped with completely open source software, based

on the OpenMoko platform. [1, 2] Currently, Linux has about 23% of the world market share

on mobile phone operating systems, even though this number provided by The Diffusion

Group can be disputed. [3, 4] With the development of the handheld device hardware, Linux

is of particularly interest. It has been ported to several hardware architectures for years, it has

one of the most stable kernels, and the functionalities of the handheld devices are growing to

be more and more similar to that of a “regular” PC.

Many in the handheld operating system community favours Linux as the de-facto

operating system for handheld devices to become, because of its openness, flexibility, broad

developer base, and its modularity. They predict a new value added feature in the next

generation of mobile phones where the applications may become the ringing tones of today.

[5]

With the major release of the 2.6 kernel version of Linux, it has gone further in

providing real-time services but yet keeping its advanced features compared to regular real-

time operating systems. Linux positions itself with the advantages from both the real-time

operating systems and the microkernel operating systems, thus targeting itself especially for

6

smartphones. Compared to its major competitors, being Symbian and Windows, it has its

already mentioned advantages, but also the performance is just as good as that of the mobile-

targeted operating system of Symbian. [6]

These are just some of the reasons why it is believed that Linux actually has the

potential to become the de-facto mobile operating system of the future phones.

2.1 The Generic Linux Model

To understand the possibilities brought along with Linux as a mobile phone operating

system, it is required to get a broad understanding of its inner functions. As seen on Figure 1,

the kernel sits immediately above the hardware. The kernel is the core component of the

operating system, and is supposed to provide familiar high-level abstractions to user-level

programs through its management of the hardware. Linux drives devices, manage I/O

accesses, manages memory, controls process scheduling, handles the distribution of signals,

and tends to other administrative tasks. These are cores task that will be described in detail

later on. This chapter provides a more conceptual description of Linux.

The components that form the generic architecture of Linux do not change much

whether they run on a server, a workstation, or a mobile phone. This is true at a certain level

of abstraction, represented by the figure below. Basically, the kernel is divided into two main

service layers, which provide the required functionality to the applications above. The first

layer consists of architecture-dependent low-level interfaces that interact with the hardware.

The lower part of this layer typically controls CPU-specific operations, architecture-specific

memory operations, and basic interfaces to devices. Regardless of the hardware they control,

for instance the memory, this layer provides the low-level interfaces that are accessible from

the second layer, the high-level abstractions. Because the APIs provided by the first layer are

common among the different architectures, the high-level abstractions can have a constant

code base. This is true, except for some rare cases. Further the kernel provides hardware-

independent abstractions through the second layer to the higher layers (i.e. to the application

layer and libraries). The high-level components provide the abstractions that are common to

all UNIX systems: the processes, files, sockets, and signals.

7

Figure 1: The architecture of a generic Linux system. [7]

On top of the high-level abstractions one find the libraries that acts as standardized

APIs for the application layer, since the services exported by the kernel often are unfit to be

used directly by the applications. Instead, libraries provide APIs that interact with the kernel

on the behalf of applications. The most used library on Linux systems is the GNU C library,

which the system depends on. The C library is only loaded into memory once and shared

among the different applications.

Between the two main kernel layers described one find interpretation components that

the kernel sometimes needs to be able to understand how to interact with structured data

coming from and going to certain devices. Examples are file systems and the network

protocols. The most used devices for data storage are still disk devices. Throughout the

history of operating systems, a number of file systems have been developed. Because of its

many portings, Linux supports more than its competing operating systems. Hence, the kernel

has a number of built in engines to support the different kinds. They can recognize, retrieve

and add files and directories from and to the different structures. The API provided by these

engines is called the common file model. It is presented to the virtual file system (VFS) layer

of the kernel, and the common file model is the same every time, even though the file systems

have different structures. The purpose of a virtual file system is to allow for client

applications to access different types of concrete file systems in a uniform way across

different systems. It is further described in chapter 3.6. [7]

8

2.2 The Monolithic Linux Kernel

 It is possible to put the different kernel architectures into different camps based on

their characteristics: real-time kernels, micro-kernels, and monolithic kernels. Therefore, to

see how the Linux kernel stands out from other kernels, some of its main characteristics will

be gone through.

Regular real-time operating systems are mainly made for MMU-less (Memory

Management Unit) processors with a flat address space with no memory protection between

the kernel and its running applications. This means that the kernel, the kernel subsystems, and

the applications share the same memory address space and they all must therefore be made

foolproof to avoid crashing the system. This makes adding new software difficult. The system

must also be brought down to do this.

 A microkernel provides a very small operating system footprint. Also, microkernel

operating systems are said to make a better use of the RAM than monolithic ones, since the

parts that are implementing functionality that are not needed at the moment, may be swapped

out or destroyed. Only a few essential functions are implemented in the microkernel: interrupt

handling, message passing, and scheduling. The microkernel implements a modularised

approach with “servers” where the rest of the operating system, such as file systems, device

drivers, and networking stack, run as applications with their own private address space. That

requires that the different layers of the operating system must have very well defined and

clean software interfaces for communication with the operating system and robust message-

passing schemes between processes. That is the only way real-time services and modularity

can be ensured.

 The Linux kernel and most commercial UNIX kernels are so called monolithic

kernels, where the kernel is a large program with many logically different components that

acts as a virtual interface to the hardware. The monolithic kernel is implemented as a single

process, with all the kernel elements sharing the same address space. They use a protection

scheme explained in chapter 2.2.1.

 The coding of the monolithic kernel is difficult to do correctly. Many claims that a

microkernel or a hybrid kernel is a better way, even though those introduce some penalties

regarding performance due to some message passing between the different layers of the

operating system. Most modern monolithic kernels, as well as Linux, use modules to achieve

the theoretical benefits of the microkernel architecture without the penalties of message

passing. A module can typically be a file system or another feature of the kernel's upper layer.

9

The dynamically loadable kernel modules are pieces of kernel code that are not directly

included in the kernel, but can be inserted and removed from the running kernel at almost any

time to save memory. The linking and unlinking can be made transparent to the user, as the

kernel can perform it automatically. It acts as any other part of the kernel that is statically

linked. This, however, do not make it a microkernel-based operating system. The kernel still

interacts with the drivers on the lower layer using direct function calls, and not through

message passing between processes. Message passing between processes can be very resource

consuming and is regarded as one of the major drawbacks of microkernel operating systems.

Message passing is not a POSIX standard inter-process communication technique.

 The modular structure of the monolithic kernel forces the system developers to

program well-defined interfaces to access the data structures handled by the modules. This

makes it easy to develop new modules. Further, the modules are arranged in a hierarchy,

where individual stackable modules can serve as libraries when they are addressed by

modules higher up in the hierarchy and the other way around. This reduces code replication

since drivers for similar hardware can be moved into a single module and the kernel can have

a simple checking whether the needed modules are present or not. Figure 2 represents a

comparison of a monolithic kernel and a microkernel. [8]

Figure 2: A monolithic kernel (on the left) and a microkernel (on the right).

 Any new code intended for the Linux kernel goes through a great deal of testing

regarding design, functionality, and performance before it gets accepted into the mainline

kernel releases. Hence, this trying process has looked after the advantages of “regular” real-

time operating systems and made it to be known one of the most stable pieces of software. It

stability it has inherited from UNIX. At the same time it has kept the advantage of the

memory protection to individual kernel subsystems provided in micro-kernels, but avoided

the resource-consuming message passing. These are some the reasons why Linux have

10

become so popular. [9]

2.2.1 User Mode and Kernel Mode

 The 80x86 microprocessors, as an example, support four different execution states.

These execution states provide a certain execution environment where applications may run.

Figure 3 shows these states in form of “protection rings”, where ring 0 has access to all the

functions of the processor. The rings communicate only with the adjacent rings, where ring 0

has the permission to validate requests from the other rings, have them executed, and return

the desired data. The Linux kernel and all standard UNIX kernels use two execution states:

User Mode and Kernel Mode.
1

Figure 3: Execution States

 The monolithic kernel of Linux has a distinction between Kernel - and User Mode

execution states to secure the memory protection and ensure the stability of the operating

system. Here they are represented in ring 0 and ring 3. When a program is running in User

Mode it is not allowed to access the kernel programs or the kernel data structure directly.

These restrictions do not apply in Kernel Mode. The change from User Mode to Kernel Mode

1 All the messages exchanged in the kernel will not be discussed here, as it is not the intention of this paper to

discuss that part in detail. Besides that, it is expected that the reader do have some knowledge of this topic

from before.

11

is hardware dependent, meaning each CPU model has its own set of instructions for switching

between the two modes. Usually, a program that is running in User Mode issues a system call

and after some time the process switches to Kernel Mode and the system call is serviced.

Linux is POSIX compliant (see definitions), and therefore implements system calls such as

open, read, write, close, wait, exec, fork, exit, and kill among 310 others. System calls issued

to the kernel are UNIX systems and Linux’ way of communicating with hardware devices

from User Mode. The time before a system call is being served depends on the interrupt signal

sent from the process to the CPU and its actions according to the interrupt. Such an interrupt

signal may be a request for attention, a status change, or the completion of an I/O operation.

Since interrupts come at unpredictable times from the different peripheral devices, it is the

interrupt handler that takes care of these messages. Interrupts will be discussed in chapter

3.7.5. The kernel also handles exceptions caused by invalid instructions. In short, the kernel is

not a process itself, but a process manager. How the processes are treated depends on the

scheduler and Memory Management Unit, which will be described in chapter 3.3 and 3.4.

[10a: page 1-34]

2.2.2 Re-entrancy

 The Linux kernel is re-entrant, meaning that several processes may be executing in

Kernel Mode at the same time. Only one process can progress at the time in a uniprocessor

system, but others may be waiting for the completion of some I/O request or the CPU. To

provide re-entrancy, the functions must only modify local variables, not global ones that

might be used by other resources as well.

 The kernel may also include non-re-entrant functions that use locking to ensure that

only one process can execute that function at a time. These processes may then modify global

variables. If an interrupt occurs, the kernel is able to suspend the running process even if it is

in Kernel Mode. This ensures a higher throughput for the device controllers that issue

interrupts. While the kernel handles the interrupt, the device controller may perform other

tasks.

 The re-entrancy influences the organisation of the kernel and its kernel control path,

which denotes the sequence of instructions executed by the kernel, being an interrupt, a

system call, or an exception. Normally the kernel would execute these tasks one by one, from

the first to the last. However, during handling interrupts and exceptions, the kernel can

interleave one process in Kernel Mode to run a process required by the first one or run another

12

process until the first one can be continued due to waiting on an I/O operation. Re-entrancy

requires the implementation of inter-process communication, which will be described shortly.

[10 b: page 1-34]

2.2.3 Process Address Space

 On Linux, each process runs in its private address space. This is referred to as private

memory mapping. When a process is running in User Mode it has its own private stack, data,

and code areas. When operating in Kernel Mode, those are different in terms of a kernel mode

stack per process and an interrupt stack for all interrupts.

 Since the kernel is re-entrant, several different processes may be executed in turn, each

with its own kernel control path. These paths have their own stack. But processes may also

share address space. This is done automatically by the kernel to save memory. For instance,

when two different users use the same editor, the program is only loaded into memory once.

This is called shared memory mapping and is discussed in chapter 3.4. The data are not shared

in this case, so it must not be confused with IPC shared memory, which will be described 3.4

as well. [10 b: page 1-34]

13

Chapter 3

LINUX AS A SOFT REAL-TIME

OPERATING SYSTEM

In this chapter, major interdependent subsystems of Linux will be presented. There are

many subsystems within the Linux kernel, but some are more important in relations to mobile

phones. Chapter 3.1 discusses the most important improvements to the 2.6 kernel and why it

is now said to be a soft real-time kernel. The rest of the chapter deals with the subsystems that

relates to the administration of processes, before chapter 3.10 discusses libraries, and chapter

3.11 discusses the window manager.

3.1 The Soft Real-Time 2.6 Kernel

It is possible to categorize real-time operating systems into two camps: those that

support soft real-time responsiveness and those that support hard real-time responsiveness.

Real-time responsiveness can be defined as “the ability of a system to respond to external or

clock events within a bounded period of time.”[11] The 2.6 kernel of Linux is regarded as a

soft real-time operating system, where determinism is not critical. That is, a fast response is

desirable, but an occasional delay does not cause malfunction. This is the contrary to a hard

real-time operating system, such as a flight control system, where a deadline never may be

missed. Soft real-time responsiveness is a requirement to mobile phones. Even though there

are requirements for multiprocessing, it is still a mobile phone and the phone specific services

such as calls and messages will have to be prioritised with regards to applications and events.

Before the 2.6 kernel release, special patches were necessary to achieve sufficient

responsiveness. The improved responsiveness of the 2.6 kernel is mostly due to three

14

significant improvements: a pre-emptive kernel, enhanced synchronization and a new efficient

scheduler. These improvements have contributed to make Linux an even better suited

operating system for mobile phones. The scheduler will be discussed in chapter 3.3.

3.1.1 The Pre-emptive 2.6 Kernel

Even though most UNIX kernels used to implement non-pre-emptive kernels as a

solution to synchronization problems, the Linux 2.6 kernel implements pre-emption. In earlier

releases of the Linux kernel, and like most general-purpose operating systems, the task

scheduler was prohibited from running when a process was executing in a system call. The

task would control the processor until the return of the system call, no matter how long that

would take. Hence, the kernel in a mobile phone could not interrupt a process to handle a

phone call within an acceptable time limit.

The 2.6 kernel is to some degree pre-emptive, meaning that a kernel task may be pre-

empted with a low interrupt latency to allow the execution of an important user application.

The pre-emption is triggered by the use of interrupts. This means that a kernel task may be

pre-empted with a low interrupt latency to allow the execution of an important user

application, typically a phone call. The interrupt latency is the time it takes from the device

raises the interrupt to the device driver’s interrupt handling routine is finished. A

microprocessor typically has a limited number of interrupts, but an interrupt controller allows

the multiplexing of interrupts over a single interrupt line. There also exist priorities among the

interrupts. [10b] This means that a process that is executing in Kernel Mode can be suspended

and substituted by another process because it has higher priority. The operating system must

be able to handle multiple applications and processes. For a mobile phone with soft real-time

requirements such functionality is essential, as it must be able to handle important tasks such

as an incoming phone call while the user is filming a video etc. Compared to a PC, the

processing power is reduced, but the requirements to responsiveness are higher. The kernel

code is therefore laced with pre-emption points allowing the scheduler to run and possibly

block a running process so as to schedule a higher priority process. Linux is still not a true

real-time operating system, but it is certainly less jumpy than before and considerable faster

than its predecessors, as seen in Figure 4.

15

Figure 4: A comparison between the task response time of the 2.4.18 Linux kernel and the 2.6 kernel. [11]

3.1.2 Synchronization

By implementing a re-entrant kernel, one also introduces the need for synchronization

among kernel control paths. One must ensure that while acting on a kernel data structure, no

other kernel control path is allowed to act on the same data structure, even if the first one

suspend the data structure. The data structure must be put back into a consistent state.

Given that one have one global variable V representing available items of some

system resource. If a first kernel control path reads V, it sees that it is 1. Another kernel

control path reads the same variable, and decreases it to 0. When A resumes its action, it has

already read V as 1 and decreases it. As a result, the value of V is now -1. The two kernel

control paths are using the same resource, which could result in serious errors.

When the outcome of a computation depends on how the processes are scheduled (i.e.

which goes first), one has a race condition and thus a non-deterministic behaviour. Using

atomic operations ensures safe access to global variables, which refers to combining the

operations from two or more kernel control paths so they appear as one to the rest of the

system. Any section of code that cannot be entered by a process before another one has

finished it is called a critical region.

The 2.6 kernel implements something that is referred to as futex – fast user-space

mutexes. It is a new implementation of the mutex previously implemented as system calls to

check that only one task is using a shared resource at a time. This time-consuming system call

to the kernel to see whether block or allow a thread to continue was often unwarranted and

unnecessary. Futex checks user-space to see whether a blocking is necessary, and only issues

16

the system call when blocking the thread is required. This saves time. The function also uses

the scheduling priority to decide which thread is allowed to execute in case of a conflict.

Later it will be shown how other techniques also influence inter-process

communication. [11, 12]

 3.2 The Subsystems

There are certain subsystems that are required for Linux to work on all systems. Figure

5 shows the interdependent subsystems on a concrete level. Though this is an older kernel, the

relations have not changed for the 2.6 kernel.

Figure 5: The concrete decomposition of the Linux kernel. [13]

Figure number 5 shows that the scheduler (sched) is the heart of the system. Further, it

is interdependent of a memory manager (mm), inter-process communication (ipc), a file

system (fs), and a networking subsystem (net). Some other subsystems are necessary for the

mobile phone as well. The following list includes the subsystems that will be discussed in this

chapter:

• Hardware Abstraction Layer

• Scheduler

• Memory Manager

17

• Inter-process Communication

• IO subsystem

• File System

• Memory Technology Devices (MTD) subsystem

The phone specific hardware will be dealt with in chapter 4.

3.3 The Scheduler

The scheduler is the heart of the Linux operating system. The scheduler provides an

interface to the rest of the kernel and a limited system call interface to user processes. It has

the following responsibilities:

• Determine which tasks will have access to the CPU and effect the transfer

between running tasks (context switch)

• Allow processes to create new copies of themselves (fork() or spawning)

• Send signals to user processes (signalling)

• Manage the timer hardware (calculate time slices)

• Clean up process resources when a process finishes executing (exit())

It also provides for dynamically loaded kernel modules. In short, the scheduler allocates

tasks to the CPU in quantities of time, time slices, to be able to execute multiple programs at

the “same” time. At least the tasks experience it so. The scheduler uses a timer to decide how

long each task can use the CPU. This timer uses the CPU clock to decide the time. The

process data structure uses a field for holding the number of clock ticks that the process can

continue executing without being forced to reschedule. [13]

 The scheduler enforces a policy on when and for how long processes may execute. In

other words it tries to avoid starvation and it enforces fairness, interactivity, and efficiency.

The important thing for a mobile phone is to do this in the most efficient possible way and

thus provide a responsive user experience and meet real-time requirements for prioritised

tasks.

18

3.3.1 Threads and Processes

 A process may have multiple threads of execution that work together to accomplish its

goal. This is called multithreading. Threads are much similar to processes, except that they

often share address spaces and data of its common process. The threads “own” only a stack

and a copy of the processor registers, including the program counter. Processes only share

data through shared memory or similar explicit methods commonly known as inter-process

communication (IPC). It is therefore interdependent of this subsystem. Only one thread within

a process, and one in total on a single processor system, may run in the CPU at a time.

 Another way to put it is that a process in Linux is a group of threads with the same

thread group ID (TGID). Threads are said to be “lighter” than processes, and a context switch

between threads are said to be cheaper than a context switch between processes. Context

switches involves saving a CPU’s register state and load a new state, cache flushing, and

changing the current virtual memory map. It is therefore interdependent of the memory

manager subsystem and obviously the file system to load new data. In embedded systems, the

implementation of dedicated registers for the threads may increase the real-time

responsiveness even further, as will be discussed in chapter 4. Whereas some operating

systems differ between threads and processes and the spawning/forking (explained shortly) of

them, Linux do not. Threading has been, and maybe still is, one of the most difficult and poor

developed part of the Linux kernel. While earlier kernels implemented LinuxThreads, the 2.6

kernel uses the Native POSIX Thread Library (NPTL) to implement multithreading. One of

the already mentioned mechanisms implemented in the 2.6 kernel is futex. The LinuxThread

implementation had several issues with true POSIX compliance to IPC, signal handling and

scheduling.

 From now on a task will be used as a common term on both a thread and a process

unless specified regarding the scheduler. Scheduling tasks requires the avoidance of race

conditions and hence the implementation of synchronization techniques through IPC

mechanisms such as signals and semaphores. These will be discussed in chapter 3.5.

Generally the implementation of pre-emption is regarded as the best implementation of

multithreading. [14]

3.3.2 Parent and Child Processes

 Linux and UNIX operating systems make a difference between the processes and the

19

programs they are executing. A system uses fork() and _exit() respectively to create and end a

process. The point of forking for a process is to split itself into multiple running tasks. To load

a new program, an exec()-like system call is used. The process then continues with the loaded

program in a new address space. A process that invokes a fork-call is the parent of a new

process, called the child. They can easily find each other because the data structure that

describes each process includes a pointer to its immediate parent and pointers to its immediate

children. The naive approach to the forking would be to duplicate the data and code of the

parent process and copy this to the child process' address space. However, Linux implements

a Copy-On-Write approach that defers page duplication until the last moment (i.e. until one of

the processes is required to write into a page.) Paging and the use of the swap cache will be

described in chapter 3.4. Finally, every process is a child of the init process. The init process

will be described in the chapter about the boot process. [7, 9, 10a, 14]

The tasks may go to “sleep” by executing system calls. This is because they are

waiting for an I/O operation or similar, and they then are added to a wait queue. Wait queues

are a part of the inter-process communication subsystem. Tasks have to different sleep states:

TASK_INTERRUPTABLE and TASK_UNINTERRUPTABELE. Generally, sleeping tasks

will not be scheduled before they receive a signal from a try_to_wake_up() function. The

function make the tasks in the wait queue test if the condition the task was waiting for have

been is true. If so, it will then be marked with TASK_RUNNING and will be scheduled as

normal when calling the schedule() function. The waking of tasks usually happens because an

I/O operation is waiting for the process or similar. The TASK_INTERRUPTABLE tasks can

be woken up on other signals as well, such as kill from the user, which issues the SIGTERM

signal to the task. The task can decide how to react on the signal, but the

TASK_UNINTERRUPTABELE task will not even react to this signal. [14]

3.3.3 Zombie Processes

 A parent process may ask the kernel to check whether a child process has terminated

or not, issuing a wait() system call. If the child process is not terminated, the parent process is

put in a wait state until that happens. If the child process already has terminated, that child

process was put in a zombie state, and data is extracted when the wait() system call is

received. It is normal, good practice of a kernel to keep around information from child

processes until the system call is made. But if the parent process terminates without issuing

the wait() call, the child process is occupying valuable memory slots. This may be a problem

20

to resource-constrained devices.

 The solution to this lies in a special process called init, which is created during system

set-up. When a parent process terminates, the kernel changes the process descriptor pointers

of the children. Processes that are still running or are in a zombie state are set to point to the

init process, resulting in that they become children of the init process. This process runs wait()

system calls to get rid of the zombies. This mechanism is therefore especially valuable to

embedded devices with limited memory capacities.

 Processes may also operate in process groups. For instance, may several processes

entered in one command line act as one process, in accordance with the POSIX standard. [10

b]

3.3.4 Kernel Failure

If the kernel experiences some kind of fatal error, it issues a panic() system call. For

instance, if the location of the root file system has been forgotten to be specified to the kernel,

the kernel will panic. The only way to recover from a kernel panic is to reboot.

3.3.5 The New O(1) Scheduler

The Linux 2.6 kernel has a totally new task scheduler that replaces the slow algorithms

of earlier kernels. The pre-emption was mentioned in chapter 3.1.1 and will not be discussed

further, even though it is one of the major improvements. Earlier, the scheduler would have to

look at each ready task and score its relative importance to decide which task to run next. The

new scheduler no longer scans every task every time, but uses two queues. When a task is

ready to run, it will be sorted and placed in a queue, called the current queue. The scheduler

then chooses the most favourable one in this queue to run next, giving each task a specified

time to occupy the processor. Opposite to earlier, this is done in a constant amount of time,

and not relative to the number of tasks. After its time in the processor expires, the task is

placed in the other queue, called the expired queue. The task is then again placed according to

its priority. When all the tasks in the current queue are done, the scheduler once again starts

its simple algorithm of picking tasks from the expired queue, which now is called the current

queue. This new scheduler works substantially faster than the previous scheduler, and it

works just as fast with many tasks as with few. [12]

Another example of improvement from the new scheduler is its policy to increase

responsiveness through dynamic task prioritisation. The 2.6 kernel has 140 priority levels. It

21

prioritises (rewards) tasks that are I/O-bound in contrary to CPU-bound tasks by adding or

subtracting from a task’s static priority. This is done on user tasks, and not on real-time tasks.

 For future kernel task schedulers, a way to choose between different scheduler policies

and algorithms would be ideal. For example, a scheduler that enforces interactive tasks for

embedded and perhaps desktop users, while a strict efficient task scheduler favouring server

usage could be chosen for servers.
2
 This resembles the swappable scheduler of the GNU

HURD kernel. [16]

3.3.6 Symmetric Multi-Processing and Symmetric Multi-Threading

 As it will be come evident in chapter 4, the mobile phones intended for high-level

operating systems usually uses several processors. There is usually one main applications

processor running the operating system and applications. This is connected to a Digital Signal

Processor, which in turn may be a combination of a DSP combined with another processor or

microcontroller unit (MCU) as a modem digital baseband. This will be further discussed in

chapter 4. How Linux deals with multiple processors normally, is either by the

implementation of Symmetric Multi-Processing (SMP) or Symmetric Multi-Threading

(SMT).

 SMP is the technique used to divide the processes on several processors with one

process in each processor. It is the scheduler’s job to delegate the different processes to the

different processors.

 SMT refers to the technique of simulating several processors. However, the boards

that have been studied in this project support the high level operating systems by appearing as

uniprocessor systems.

3.4 Memory Manager

The task of the memory manager is to control memory access to the hardware memory

resources on a fair basis. The memory manager is highly dependent on the MMU. It provides

protection by letting only the correct process read and modify its data, and it prevents

processes from overwriting code and read-only data. While executing processes, the processor

2 There has been developed an anticipatory and a deadline I/O scheduler to reduce queuing time and to ensure that processes get I/O time

when necessary. These, however, are not discussed here since they address problems related to the scheduling of I/O access to disks. The

kernel supports both I/O schedulers and they have been tested to perform way better that the Linux 2.4 scheduler. [15]

22

read instructions from memory and decodes them. The instruction may require fetching or

storing data to memory before moving on to the next instruction in the program. The

processor is therefore always accessing the memory to fetch the next instruction or to fetch or

store data. The instructions and data may also be fetched or stored to by the use of cache. [17]

3.4.1 Virtual Memory

 In Linux the memory manager implements a logical layer for as the Memory Manager

Unit being able to provide virtual memory to drivers, file systems, and networking stack. But

also it provides virtual memory to user applications.

The advantages of virtual memory can be summarized with these points:

• Several processes can be executed concurrently

• It is possible to run applications whose memory need are larger than the available

physical memory. (Up to 4GB with a 32-bit address space)

• Processes can execute a program whose code is only partially loaded in the

memory.

• Each process is allowed to access a subset of the available physical memory.

• Processes can share a single memory image of a library or a program.

• Programs can be relocatable – that is, they can be placed anywhere in physical

memory.

• Programmers can write machine-independent code, since they do not need to be

concerned about physical memory allocation.

All this is solved by the use of a virtual address space, which is representation of

physical locations located by the MMU and the kernel. The virtual address space is also

referred to as a linear address space. The virtual addresses are divided by the kernel into page

frames with a size of 4 or 8 KB, which result in that a request for contiguous virtual address

space can be satisfied by allocating a group of page frames that do not necessarily have

contiguous physical addresses. All the pages are accessible by the kernel, but only some of

them get used by the kernel. The actual data may actually be located in RAM, cache, or on a

non-volatile storage, depending on when it was last used. A paged memory is seen in Figure

6. [10 a]

23

Figure 6: Paged virtual memory [10 b]

The memory blocks are of a fixed size so that if there is any free store it is of the right

size. The program is divided into pages of the same size. It is a paging unit that translates the

linear addresses into physical ones. The files are identified by the VFS inode and an offset.

The inode is explained in chapter 3.6. The virtual address space on UNIX operating system is

further extended by the use of swap areas on the permanent storage (e.g. disk or flash). When

a process refers to a page in the swapping area, the MMU raises an exception, and the

exception handler allocates a new page frame. The old content is then saved on the disk or

flash. Of course, on a disk this is a slow process, as writing to disk still is one of the

bottlenecks in system performance. To reduce the time-consuming operation of writing page

frames and “dirty buffers” on disk, even the earliest UNIX systems implemented a policy

known as least recently used (LRU) to defer writing to disk as long as possible by loading

disk buffers into RAM.

The paging process only involves the applications, which get pulled into main memory

on request. By using virtual addresses a running process will not be able to corrupt neither

another process’ nor the operating system’s memory. This means that any pointer corruptions

within a process are localized to the process itself, and will not bring down the system. This is

important for system reliability. Page allocation and page de-allocation is critical for

efficiency of the virtual memory and thus the responsiveness of the system.

The 2.6 kernel allows the system to be built without a virtual memory system. This is

done to meet real-time requirements. Slow handling of page faults can ruin responsiveness. A

page fault is when a demanded virtual memory page (a mapped page) is not in physical

24

memory and an interrupt has to be raised to get it loaded in. Of course, a no virtual memory

solution removes the advantages previously mentioned, and it becomes the software

designer’s responsibility to ensure there will always be enough real memory available to meet

the applications demands. The issue of whether to use virtual memory or not is left to the

programmer.

Well-known external interfaces to the memory manager include malloc(), free(), and

mmap(). The two first ones allocate or free a region of memory for the processes’ use, while

the latter allows a part of a file or the memory of a device to be mapped into a part of the

process address space. [10 b]

3.4.2 System Memory Usage

 Up and running, Linux and UNIX systems distinguish between two parts of the RAM.

A few megabytes are dedicated to store an image of the kernel. The rest is used to:

• Satisfy kernel requests for buffers, descriptors, and other dynamic kernel data

structures.

• Satisfy processes’ requests for generic memory areas and for memory mapping of

files.

• Get better performance from disks and other buffered devices by means of caches

 Many of the hardware peripherals are accessible within the system’s physical address

space, while they may have restricted or are completely “invisible” in the virtual address

space. [10 a]

 Figure 7 presents the difference between what physical and virtual memory is, and

how a Linux distribution takes use of the memory in an embedded device with system flash

memory. The flash memory will be further discussed in chapter 4. The regions in the figure

are not necessarily proportional to their actual size.

25

Figure 7: Physical and virtual memory maps for the Compaq iPAQ. [7]

 The physical memory map usually follows the technical literature of the hardware and

defines how the system sees the total memory layout. The physical memory map seen on the

left is important, because it provides information on how to configure the kernel and how to

develop custom drivers.

 As seen in this picture, the system flash storage on the bottom is divided in two. The

lower part of the flash contains the boot loader. This part has also the lower range of the

physical address space, and the boot loader required must therefore support bottom booting.

This region is rather small and may by mounted with a separate file system during booting.

The second part consists of the root file system. In this example the Linux distribution is a

Familiar Linux, which uses the JFFS2 file system. The boot loader can read from the JFFS2

file system, and therefore the kernel is stored in the root file systems /root directory in this

case. The kernel image is loaded into the RAM upon start-up by the boot loader, and jumps

into the kernels start routines. After that, the Linux kernel runs the rest of the start-up in

RAM. The start-up will be described in detail chapter 5.

 With the system up and running, the programs use the virtual address space seen on

the right. The virtual memory map is of secondary importance for kernel configuration or

device driver development. According to [7, page 56] it is sufficient regarding device driver

development to know that “some information is located in kernel space and some other

information is located in user space, and that appropriate functions must be used to properly

26

exchange data between the two.”

 In the figure one can see that the kernel occupies the virtual address space from

0xC0000000 and out, known as “kernel space”, while the rest, which is occupied by

application-specific text, data, and library mappings is called “user space”. The memory map

will be further discussed in chapter 4.1.3.

3.4.3 Memory Mapping

Memory mapping is the linking of an image into a process’ virtual address space.

When executing an image, the contents of the executable image and any shared libraries to be

used by the executable image must be brought into the process’ virtual address space. The

executable file itself is not yet brought into physical memory, but rather linked to in the

virtual memory by the running application. When the running application is requiring the

linked image, it is loaded into memory by the use of exceptions.

There are two kinds of memory mapping: private and shared. The first is used when processes

creates the mapping just to read the file, and not to write to it. Changes made to any page of

the memory region will not be reflected in the file on the permanent storage nor will it be

visible to other processes that map the same file. Moreover, a write operation on a private

mapped page will use Copy-on-write if it is written to, which duplicates the page. The

original page no longer belongs to the memory mapping. On the other hand, any write

operation to a shared memory mapping will be reflected in the file on the permanent storage.

It is also visible to all other processes that map the same file. This is therefore dependent on

the IPC subsystem. It is the mmap() system call that creates a memory mapping. [10b]

 3.4.4 Buffer Cache

The memory manager uses several types of cache to speed up the system by the well-

known principle of locality.

The buffer cache is a collection of data buffers in RAM used by block device drivers.

Block devices will be explained in chapter 3.7.1. Each of the fixed size buffers contain data of

a disk block going to and from block devices, typically a hard disk. The block in the cache

therefore refers to physically adjacent bytes on the device. The block devices are always

accessed via the buffer cache and are used to access the disks piecemeal at regular intervals to

have minimal impact on the speed of user processes and on response latency experienced by

the user. The size of the block depends on the file system being used. The buffer cache

27

necessitates the introduction of the Memory Technology Devices subsystem (MTD) on

embedded devices, which will be described later.

3.4.5 Page Cache

The page cache is used to store the logical contents of file pages. Memory mapped

files split into pages are being read one at a time into memory from disk and stored in the

page cache. Therefore, as opposed to the buffer cache, the page frames in this cache do not

necessarily contain data that are physically adjacent on the device. This is done to speed up

access to paged data in I/O operations.

3.4.6 Hardware Cache

There is one typical hardware cache that is used; the processor cache. The processor

uses this to cache Page Table Entries. The page table holds the mapping between a virtual

address of a page and the address of a physical frame in form of a page number and an offset.

Caching this means that the processor will not have to read the mapping directly from the

page table, but may read cached translations for pages. The buffers used for this are called

Translation Look-aside Buffers (TLB). The processor can then use the cache to calculate the

physical address from references to virtual pages instead of calculating them by getting info

from disk.

3.4.7 Swap Cache

 Swapping is the process where some page needs to be removed from physical memory

to make room for another page from virtual memory that is to be used. One way to see it is

that is the opposite of RAM. In this case the kernel uses some space on the non-volatile

storage device as an extension to the RAM, whereas RAM is the extension of the non-volatile

storage device to reduce the number of disk accesses. In earlier kernels, it was a rule of thumb

that the size of the swap space should be set to two times the RAM-size. That was because the

first part of the swap space was a direct mapping of the RAM itself. This no longer applies.

Now it is said that the size depends on the speed of the hard drive. This is a topic for further

study. [18]

More concrete, the swapping works like this: If an old page has been changed, it is

referred to as dirty and must be swapped out to the swapping area to be used later. The

28

memory manager must efficiently deal with the swap space and know when to write pages to

permanent storage and when to retain them in memory because they are soon to be used

again. Only dirty pages are saved in the swap file. If a used page is not altered it will not be

written back to the swap cache. It can be discarded, and this saves many unnecessary disk

operations. The swapping can be turned off if wanted. The implementation of shared memory

mapping and IPC shared memory complicates the swapping.

The swapping is not as beneficial for the overall system performance as it reduces

access speed. The policy of when to swap a page in to RAM and when to swap a page out to

the swap cache is difficult to implement, but generally swapping out pages should be avoided

as long as possible. On the other hand swapping expands the address space that is effectively

usable by a process, and the amount of dynamic RAM to load processes. The dynamic RAM

is the RAM available to load processes. Thus when running multiple applications

simultaneously, swapping is useful. On a mobile phone, swapping may want to be avoided,

since the flash has limited erase and write cycles. Swapping will accelerate the wear on the

device.

The 2.6 kernel implements the use of swap files instead of the earlier swap partitions

that was used to secure non-fragmented swap areas. This does not longer apply since modern

hard-disks can re-map physical partitions and therefore do not guarantee that any partition

will be contiguous anyway, and further, file swapping in the 2.6 kernel woks just as fast as

swapping to a partition. [19]

Additionally, some experimental improvements to the 2.6 Linux kernel swapping have

been made by Con Kolivas through the CK patch-set. The improvements are called Swap

Prefetch, and employ a mechanism of pre-fetching previously swapped pages back to physical

memory even before they are actually needed, as long as the system is relatively idle (not to

impair performance) and there is available physical memory to use. This gives several orders

of magnitude faster access to the affected pages when their owning process needs access to

them, since they are effectively not swapped out by then. [10a, 19, 20]

3.5 Inter-process Communication

 Linux uses IPC techniques such as wait queues, file locks, signals, pipes, shared

memory, semaphores, message queues, and sockets to exchange information between

processes in some synchronized manner. However, these operate only in User Mode and not

with kernel control paths as actors. Inter-process communication in User Mode supports

29

sharing of data without having to access the file system. The only exception to this is network

sockets, which are presented as file descriptors to processes.

 Wait queues are simply linked lists of pointers to task structures of processes that are

waiting for kernel events, such as the completion of an I/O operation. File locks are used to

implement exclusion. The process that holds the lock will be the only one with write-access to

the locked portion of the file, which may be the entire file. Other processes may have read-

only access. This will not be discussed further.

 Shared memory, semaphores, and message queues are commonly known as System V

IPC, and are implemented in many UNIX kernels and are POSIX standard techniques. System

V IPC is dependent on the kernel IPC mechanisms wait queues and signals. Semaphores are

for example implemented with wait queues. [13]

3.5.1 Signals

 Linux use signals to notify processes about system events, either signalled from the

user or because of an error condition. Process scheduling relies on signals. The POSIX.1

standard defines about 20 different “regular” signals, two of which are user definable. Signals

have existed more or less unchanged for about 30 years, and are still being used due to their

simplicity. Here is a list from the 2.6.17.11 kernel, seen by typing kill –l in a shell:

Some of the 31 first signals are not POSIX standard signals, but implemented by

Linux. The last ones are POSIX real-time signals. The main difference from the other signals

is that the real-time signals of the same kind may be queued. The signals have no predefined

meaning - except the three first ones, which are being used in LinuxThreads - so it is up to the

applications to define their purpose. The real-time signals are delivered in a guaranteed order.

Signals of the same type are delivered in the order they were sent, while low-numbered real-

time signals have a higher priority if they are different.

 1) SIGHUP 2) SIGINT 3) SIGQUIT 4) SIGILL
 5) SIGTRAP 6) SIGABRT 7) SIGBUS 8) SIGFPE
 9) SIGKILL 10) SIGUSR1 11) SIGSEGV 12) SIGUSR2
13) SIGPIPE 14) SIGALRM 15) SIGTERM 16) SIGSTKFLT
17) SIGCHLD 18) SIGCONT 19) SIGSTOP 20) SIGTSTP
21) SIGTTIN 22) SIGTTOU 23) SIGURG 24) SIGXCPU
25) SIGXFSZ 26) SIGVTALRM 27) SIGPROF 28) SIGWINCH
29) SIGIO 30) SIGPWR 31) SIGSYS 34) SIGRTMIN
35) SIGRTMIN+1 36) SIGRTMIN+2 37) SIGRTMIN+3 38) SIGRTMIN+4
39) SIGRTMIN+5 40) SIGRTMIN+6 41) SIGRTMIN+7 42) SIGRTMIN+8
43) SIGRTMIN+9 44) SIGRTMIN+10 45) SIGRTMIN+11 46) SIGRTMIN+12
47) SIGRTMIN+13 48) SIGRTMIN+14 49) SIGRTMIN+15 50) SIGRTMAX-14
51) SIGRTMAX-13 52) SIGRTMAX-12 53) SIGRTMAX-11 54) SIGRTMAX-10
55) SIGRTMAX-9 56) SIGRTMAX-8 57) SIGRTMAX-7 58) SIGRTMAX-6
59) SIGRTMAX-5 60) SIGRTMAX-4 61) SIGRTMAX-3 62) SIGRTMAX-2
63) SIGRTMAX-1 64) SIGRTMAX

30

There are two kinds of system events that are being signalled: Asynchronous

notifications and Synchronous errors or exceptions. The former may be represented by an

interrupt signal sent to a foreground process by pressing the interrupt key code, for example

CTRL+C. This results in a SIGINT-signal. The latter may be represented by a signal sent to a

process from the kernel when the process tries to access a memory location at an illegal

address. In this case that will be a SIGSEGV-signal. For a complete definition see [21].

Signals can usually only be sent to processes within the same user-id (uid) and group-id (gid),

which is two attributes of a files inode.

 The processes may respond to a signal in two ways; ignore it or asynchronously

execute a specified procedure. If the process doesn’t specify one of these alternatives, the

kernel performs a default action. The default actions are:

• Terminate the process

• Write the execution context and the contents of the address space in a file (core dump)

and terminate the process

• Ignore the signal

• Suspend the process

• Resume process' execution, if it was stopped

[10a, 21, 22]

3.5.2 Pipes

 Pipes can be considered as a one-way inter-process mechanism between processes.

One process writes data to the pipe, and the kernel routes the pipe to another process that can

read the data. For a user in a command shell, a pipe is created with the | operand or the < and

> operators. An example is $ ls | more. The pipe, or actually the shell program on behalf of

the pipe command, connect the standard output of ls and more by giving the standard output

of the ls command to the more command. The result from the first command is stored in a

temporary file with a common inode for the two commands. The second command uses this

as an input, where the inode addresses the same physical page. This obviously simplifies the

working process, as the machine uses two or more programs with one issued command and

only gives the final result. There exist two kinds of pipes: temporary pipes and named pipes.

The example mentioned here is called temporary pipes, which can be created on the fly by the

31

user in a shell or by a program. The other type is a more permanent form of pipes, often

referred to as a FIFO. They are stored in the file system as an entity and used as files. They

are specially indicated with the ls –l command. Processes can use these as long as they have

the proper rights to do so. [23]

3.5.3 Shared Memory

 IPC shared memory is the fastest way for data sharing and data exchange between

processes, especially when large amounts of data must be shared. Hence, the processes read

from and write to the same data pages. An example can be the amount of money in a bank

account that needs to be accessed by several processes. It is done by sharing memory blocks

to which several processes can write to and read from. The access to the shared memory is

controlled with the use of keys and access right checking, and the use is controlled by for

example System V semaphores. The set-up of shared memory is controlled by the memory

manager and is the fastest way of IPC. The system calls related to shared memory are shmat(),

shmget(), and shmdt(). [20]

3.5.4 Semaphore

 Semaphore is a mechanism for restricting access to critical sections of code to one

process at a time. Semaphores are controlled by "wake up" and "sleep" commands. One

process can be forced to stop at one place, and woken up again when the other process or

processes are finished with the data. This introduces the need for implementing mutual

exclusion, mutex. Linux usually did this by a system call to the kernel, determining whether

to block a thread or allow it to continue. In the 2.6 kernel it can be done in user space by the

use of futex, explained in chapter 3.1.2. The mechanisms are widely described in literature

and will not be treated further here. It is widely accepted that IPC can be implemented

significantly faster in a microkernel environment. [8]

3.5.5 Message Queues

Message queuing is an asynchronous IPC mechanism that uses queues to place

messages on. The different processes may place messages on the queue, but they do not need

to wait for a response. The message will at some point be read by one or more processes,

which receive the message and process the message in some appropriate manner. Qtopia

32

Core, which will be discussed in chapter 5, uses this mechanism for inter-object

communication. [20]

3.5.6 Sockets

A socket is an identifier that the application uses to uniquely identify an end point of

communications. The user associates a protocol address with the socket by associating a

socket address with the socket. Typically this is used on network connections. Sockets operate

very much like pipes, except that they have a separate buffer for each communication

direction. [13]

3.6 The Virtual File System and File System Types

There are many file system types that can run on Linux. Ext2, CRAMFS, ROMFS,

RAMFS, NFS, and JFFS2 are often used on embedded systems through different hardware

solutions. As a general point, the hardware memory/storage technology used on the device

may set limitations to the choice of file systems. The kernel supports them all through a

concept called the Virtual File System (VFS), which has the control over its mounted file

systems. The VFS handles all the system calls related to all the different file systems. The

device drivers must translate their physical organisation into a common file model, which can

represent all the supported logical file systems. Through this, the POSIX system calls like

open(), write(), read(), close(), seek(), and tell() for files, and system call like readdir(),

creat(), unlink(), and chmod() for directories are provided to user processes. In that way, to

interact with the different file systems the kernel (i.e. the VFS) has only one common

interface to relate to. The device driver layer will be described shortly. The flexibility of

choice of physical devices and logical file systems is one of the important factors why Linux

has had such a success. [10a]

In Linux, everything is a file, even the directories and the I/O devices. On a low level,

the file system (i.e. common file model) is represented by three data structures that are

accessible for the other kernel subsystems: a super-block, an inode, and a file. The super-

block contains info about the entire mounted logical file system. For disk-based file systems

this is typically which blocks are in use, what size the blocks are, etc. An inode is an in-

memory data structure that represents the file information needed by the kernel. Each inode

object is associated with an inode number, which uniquely identifies the file within the file

33

system. Accounting, buffering, and memory mapping information is stored in the inode. The

file structure represents files currently opened by processes. The files opened by the processes

are stored in a doubly linked list. [13]

The nature of file systems will not be discussed in great detail. In short they can be

characterized on basis whether they can be written to, if they are persistent, if they can

recover from power failure, if they use compression, and if they live in RAM. On a mobile

phone a combination of the CRAMFS and the JFFS2 file systems is a well-known working

combination for the root file system; CRAMFS for the non-changing parts, and JFFS2 for the

writable persistent file system. [7] In chapter 3.6.3, RAMdisk, another RAM file system used

during booting will be discussed. More about the JFFS2 file system will be discussed in

chapter 3.8.2.

3.6.1 CRAMFS

CRAMFS is a compressed non-writable file system living on non-volatile storage (i.e.

not RAM). However, a couple of directories may be located to RAM and thus be writable, but

still un-storable. Like JFFS2, it keeps it metadata uncompressed. It has a maximum file

system size of 256 MB, a maximum file size of 16 MB, and only supports a 4096-byte page

size. Further, it supports a 16 bits wide uid field, and an 8 bit wide gid field. Hence it has a

maximum gid at 255. It uses the mkcramfs tool to make the file system and cramfsck tool to

verify the content of the file system. It uses the buffer cache to talk to the device in a block

device manner. This has implications for the MTD driver that will be discussed later.

CRAMFS is suitable as a file system for initial RAM disks. This will be discussed in chapter

4. [7]

3.6.2 SQASHFS

SQUASHFS is pretty new a compressed, read-only file system intended for Linux,

with its alpha release in 2004. It is well suited for archival use, but also in embedded systems.

SQUASHFS compresses files, inodes, and directories, and supports block sizes up to 64K for

greater compression. It is generally faster and uses a better compression than CRAMFS.

[24]

34

3.6.3 RAM Disk

 The RAM disk is similar to a block device living in RAM, and it is therefore not

suited as the only root file system for embedded devices that needs permanent, writable

storage. However, the content that does not change (i.e. just needs read access, such as init)

may be stored on the RAM disk, while the rest of the root file system may contain the rest of

the directories that needs both read and write access, using another file system that is mounted

later on. This will further be explained in chapter 5.5.

3.7 I/O Subsystem

For the high-level programmer, the I/O subsystem provides a simple and uniform

interface to onboard devices. The most difficult part of porting Linux to a mobile phone is not

the main configuration of the kernel, but the programming of the low-level interfaces that are

special for this kind of embedded devices. Special or not, on a mobile phone, I/O devices will

typically involve devices such as keypad, camera, Bluetooth, LCD screen, and non-volatile

storage in some form, but also the drivers for the GSM/GPRS Digital Baseband Subsystem

related functions. Those are often provided by the board manufacturers, such as Texas

Instruments, or by the operating system vendors, such as MontaVista. These must be custom

made to the hardware architecture and this is a process that may be troublesome.

The I/O subsystem supports three kinds of devices:

• Character devices for supporting sequential devices.

• Block devices for supporting randomly accessible devices. Block devices are

essential for implementing file systems on disk.

• Network devices that support a variety of link layer devices. [9:chap.2&5]

3.7.1 Device Drivers

 The kernel interacts with the I/O devices by means of device drivers. These consist of

data structures and functions that are included in the kernel. The device drivers interact with

the I/O devices through a common interface and make them respond correctly. The device

drivers can be built in modules that are loaded in and out of the kernel without the necessity to

reboot the system. This is called module-based driver architecture. By dynamically unloading

a module no longer needed, this helps reducing the size of the kernel image stored in RAM.

35

Furthermore, the device drivers can be built without vendors needing to know the kernel

source code. They just need to know the interface specifications. These drivers are invoked by

the kernel to do some requested work on the hardware. All device drivers are dealt with in a

uniform way by the kernel.

 In Linux even the I/O devices are stored as files. This way the system can issue the

same write() command to both a file and an I/O device. Device files are normally found in the

/dev directory on a UNIX system, and they refer to specific drivers in the kernel and represent

a user-visible portion of the device driver interface. The device manager that handles these

files and the user space actions of adding and removing devices is called udev in the 2.6

kernel, which is the successor of devfs. Opposite to earlier, this manager now only provides

the nodes present on the system. Udev also only operates in user space, while devfs operated

in kernel space. Udev runs as a daemon that reacts to uevents from the kernel.

 According to the characteristics of the underlying device driver, device files are

divided into two types: Block or character. Block devices are typically hard disks, DVD

players etc., and can have their data addressed randomly. The time needed to transfer data to

them, are relatively slow and equal from a human point of view. Therefore the fore-mentioned

buffer cache is used to improve their performance speed. Char devices are typically the mice,

sound cards, modems etc. They must be accessed sequentially. [20:chap.8]

The VFS hide differences between regular files and the device files from the

application programs by changing the default file operations when accessing device files. The

memory-based file system that exports information present in the device tree is called sysfs in

Linux. Devices are accessed by polling and interrupts or by Direct Memory Access (DMA),

which will be described shortly.

3.7.2 Device Files in Older Kernels

There exist two kinds of device files from Linux 2.4: old-style device files and devfs

device files. The first ones are found in the /dev directory and are “real” files. The second ones

are virtual files. The old-style device files address hardware devices through their inodes. The

files have two main attributes: a Major number and a Minor number. The Major number,

ranging from 1 to 254, identifies the device type. The Minor number identifies a specific

device within the devices with the same Major number. The mknod() system call is used to

create old-style device files. A graphical representation of this can be seen in Figure 8.

36

Figure 8: Device drivers and device files, managed by the Virtual File System. [10a]

 Devfs device files were introduced to solve some problems that shortly will be

described, with the old-style files. The old-style files all appear in the /dev directory so

administrators would not need to create them. Since there are quite a few, it makes the process

of searching in them slow. In addition the Major and Minor numbers are only 8-bit long,

making it a limiting factor for several newer hardware devices. Therefore, the devfs device

files let the devices be registered with names instead of numbers. The kernel has a naming

scheme which will make a /dev/had to a /dev/discs/disc0, for instance. However are the device

numbers required by the POSIX standard, so almost all device drivers associate the devfs file

with the same major and minor numbers as the corresponding old-style file. [7]

3.7.3 The 2.6 Kernel and Udev

 As mentioned is udev the device manager in the 2.6 kernel. It supports persistent

naming of devices moving around the system. For example can the first CD-ROM drive

detected one time be the second CD-ROM drive detected next time, which will give those

different names or entries the second time. Another problem with the /dev directory was that

it grew awfully big, and it was “impossible” to keep track of the devices actually present on

the system. The RAM-based file system devfs sought to solve this problem by letting the

kernel itself handle the /dev directory. This solved many problems, but an unsolved problem

was that it had not the ability to create device nodes with persistent names.

 The goals of udev were therefore to run in user space, create a dynamic /dev directory,

provide consistent device naming, and, if wanted, create a user-space API to access

information about the devices currently on the system. The first problem was solved by the

use of the event generated by /etc/hotplug every time a device is added or removed from the

37

system, in combination with sysfs’ ability to show the necessary information about a device.

The second problem was solved by catching the events from /etc/hotplug and create or

remove an entry in the /dev directory with a name assigned by the kernel as the device was

added or removed.

 In the /etc/udev/rules.d udev’s rules for naming devices can be found and edited after

ones own choice, thus solving the last two problems. If a rule is not found, the kernel uses a

default naming-scheme. This rules will not be discussed in details, but they can use any data

extracted from the devices to create naming rules (for example with the use of scripts) and

simplify the /dev directory. This is perhaps not useful for the average PC user, but it shows

the power and flexibility of the system. [25]

3.7.4 Sysfs vs. Procfs

 With the advents of sysfs some of the other old directory layout was altered as well.

The PROCFS or /proc file system, is a special file system as it is a virtual file system that

resides in memory and is created every time the system is rebooted. The /proc directory

reveals important data on the running processes and the state of the system itself. UNIX

systems also implement a current working directory for every process. Examples of system

state info can be CPU speed and power management. IPC mechanisms such as shared

memory, message queues and semaphores are also visible in /proc. Proc acts as an interface to

kernel data structures. Many commands use these structures to see the status of devices. It is

readable by the owner of the processes and the root. This openness and access to devices is

very useful for programming.

In Linux kernel 2.6, much of the non-process related files under /proc are moved to

sysfs, mounted under /sys. Information on the CPU and memory etc. are still kept in the /proc

directory. More information about the meaning of the files in proc is obtained by entering the

command man proc in a terminal window. The file proc.txt discusses the virtual file system

in detail. [25]

3.7.5 Interrupt Driven Driver Architecture

As mentioned in chapter 3.4.1 interrupts need to be raised when the memory manager

discovers that some needed page is not in memory. This applies to all situations when some

data is missing or some data for example arrives from the network to the hardware, such as a

phone call. The kernel must deliver an interrupt from the hardware device to the correct

38

device driver to notify about the occurred situation. This is referred to as en interrupt driven

driver architecture. It requires the different device drivers to register the address of an

interrupt handling routine and their wanted interrupt number with the kernel (IRQ).

How the interrupt is delivered to the CPU itself depends on the architecture of the

system, but as a general point it is wise that the interrupt handling routine of the device driver

should do as little as possible. That way it will not occupy too much resources and the kernel

can dismiss the interrupt and continue its previous work. If a lot work needs to be done

because of an interrupt, the first task can be queued to be handled later on. [20:chap.8]

3.7.6 Direct Memory Access

The use of interrupt-driven device drivers works well as long the amount of

transferred data to and from devices is reasonably low. If the transfer rate is bigger, for

example for a SCSI device, high interrupt latency will impact the overall system. The

interrupt latency is the time it takes from the device raises the interrupt to the device driver’s

interrupt handling routine is finished.
3
 DMA was invented to handle this problem. The DMA

controller allows devices transfer data to memory without the intervention of the CPU. The

DMA only uses some parts of physical memory and knows nothing about the virtual memory.

Usually there are only 7 DMA channels, making it a scarce resource. They cannot be shared,

so device drivers must be able to operate without them. [20:chap.8]

3.8 The MTD Subsystem

The Memory Technology Devices (MTD) subsystem is a module of the Linux kernel.

On Linux, memory technology devices are all kinds of memory devices: RAM, ROM, flash,

and DiskOnChip (DOC) from M-Systems. M-Systems are now acquired by SanDisk. Linux

imposes greater requirements on the storage hardware compared to traditional embedded

software. The MTD subsystem intends to provide a uniform and unified access to memory

devices for the VFS. In that way it avoids having different tools for different technologies.

Normal file systems cannot be used on top of a flash because they, as mentioned, go through

the buffer cache. Also, the flash chips have a larger sector size than the regular disks sector

size, on which the buffer cache is based. In addition to this, flash chips have a limited lifetime

and the memory blocks have to be erased before written to.

3 Interrupt latency can be measured with a tool named intlat. It is made of Andrew Morton and can be

downloaded from ww.zipworld.com

39

The MTD subsystem consists of low-level chip drivers and high-level interfaces called

MTD user modules. The user modules are software modules in the kernel that enables access

to the chip drivers through recognizable interfaces and abstractions. The interfaces and

abstractions are then provided to the higher levels of the kernel (e.g. to the VFS as the

common file model) and in some cases to user space.

The typical operations the MTD subsystem has to carry out is erase, read, write, and

sync. The system works in a manner where the chip drivers register sets of predefines

callbacks, which is executable code, and properties with the MTD subsystem. The callbacks

and properties are defined in an mtd_info structure, which is provided to the

add_mtd_device() function. These chip driver callbacks are then called through the user

modules.
4

The following MTD chip drivers are some of the most important ones available:

• DiscOnChip (DOC) for M-Systems’ DOC-technology

• Common Flash Interface (CFI) onboard NOR flash

• Onboard non-DOC NAND flash

• Uncached RAM

• PCMCIA flash

• RAM, ROM, and absent chips

• Virtual devices for testing and evaluation

The CFI specifications are standardized and developed by Intel, AMD, and other flash

manufacturers. The chips have their configuration directly stored on the chip. The kernel

includes code to detect and support them. The Non-DOC NAND flash driver is for NAND

flash that is not M-Systems DOC devices. The MTD subsystem also provides drivers for

accessing conventional RAM and ROM chips, which are mapped in a system’s physical

address space as MTD devices. Absent chips are chips that can be removed from a socket to

be flashed. The uncached RAM driver is for systems not providing cache.

There is no “standard” physical address location for the MTD devices, and therefore

they need a customized mapping driver. The kernel contains a generic driver for accessing

CFI flash chips on systems without a specific mapping driver. In addition, some systems and

development boards have known MTD device configurations. The kernel therefore contains a

4 See Definitions for a definition on callbacks.

40

number of specific drivers for these systems. The drivers are found in the drivers/mtd/maps/

directory of the kernel sources. If a driver is not found there, it may have to be created with

the existing ones as examples.

The MTD chip drivers can handle multiple instances of the same MTD device.

Identical chips can be arranged to appear as one chip and the MTD subsystem also allows the

division of storage space into partitions with different file systems.

The storage space is, as mentioned, managed by a user module. The user module

enforces a storage format on the device and provides interfaces and abstractions recognized

by higher-level kernel components. This can be the virtual file system directly, or a disk-style

file system. Disk-style file systems may for example be applied on top of the block device

user modules. It is important to notice that some chip drivers and user modules are not

compatible. This was the case for JFFS2 (described below) and NAND flash for instance.

According to [26] however, JFFS2 was included in the official kernel since the 2.4.10 release,

and has a preliminary support for NAND flash available from the MTD CVS tree at [27].

Other sources say it is only included in the 2.6 version. [28a, 28b] At least it is supported with

the current kernel versions in one way or another.

The MTD user modules earlier had to be registered with the /dev directory, but this is

now handled through sysfs. The kernel configuration has a submenu for the configuration of

the MTD driver support, except for the JFFS2, which is located under file systems. Note that

the JFFS2 also requires enabling of the MTD subsystem. The MTD submenu further has four

submenus with configuration options for the drivers. There one also can choose to build them

as modules, but they must be built as a part of the kernel (image) to be able to mount the root

file system. The MTD subsystem includes a toolset - MTDutils - to be installed on the host,

and on the target. This supports things like creating a file system on the devices, and must be

handled with care.

3.8.1 The Flash Transition Layer and the NAND Flash Transition Layer

User Modules

The flash transition layer (FTL) implements a virtual block device on flash chips with

the NOR technology. That way regular block oriented file systems may be applied on top of it

to be read by the VFS. The NFTL does the same for flash devices with the NAND

technology. Both technologies will be discussed in chapter 4.

41

3.8.2 The Char Device User Module

This user module enables a character-like access to the MTD device. A character

device must typically be erased before written to.

3.8.3 The Block Device User Module

The caching block device user module - as its name implies – uses a cache, which is

the RAM in this case. It uses the RAM to cache blocks while the content is modified, its flash

regions are deleted, and then it is re-written to. It has therefore no power failure reliability. A

variant of this is the read-only block device user module. They are both accesses as block

devices, hence through the cache buffer. This one is likely to be used in the initial set-up of an

MTD device. CRAMFS uses this module.

3.8.4 The Journaling Flash File System Version 2 (JFFS2)

Contrary to many other memory device storage schemes, the JFFS2 user module does

not act as a transition layer to traditional file systems, which is an old technique where flash

devices appears as block devices. It operates with a log-structured file system directly on the

MTD device. The file system structure is recreated in RAM at mount time by JFFS2 through

a scan of the MTD device’s log content.

JFFS2 also implements power down reliability and wear levelling. Power down

reliability means that that JFFS2 can recuperate even if the device suddenly looses power. The

only failure that might occur is that data might be lost if a write() operation to overwrite old

data, is in action. Both the new and old data might then be lost. This kind of failure should be

checked during start-up.

Wear levelling is implemented by JFFS2 to avoid that some blocks are written to,

more often than others. Flash devices usually have a limited number of erases per block

guaranteed from the manufacturer. After that limit is reached, the manufacturer do not

guarantee for the block’s operations. Therefore, one must consider the use of swap as well, as

this further reduces the lifetime.

Flash hardware is usually slower to operate than RAM hardware. Because of this,

JFFS2 is constructed to be able to compress data stored on flash devices and decompress it

into RAM before using it. The side effect of this is that it render impossible the use of eXecute

In Place (XIP), which is the ability to execute code directly from ROM – or some other

42

permanent storage – without copying it to RAM. Another side effect of JFFS2 is that it

requires empty space on the device for garbage collection. Hopefully this will be resolved

with JFFS3. The Memory Technology Device Subsystem project website is found at [28a]

and [28b]. It contains documentation regarding the API for implementing MTD user modules

and MTD chip drivers. It must be noted that the JFFS2 user module is configured as a part of

“File systems” submenu in the kernel configuration, as opposed to the others.

3.9 Libraries

 Moving a bit out from the kernel, the first layer one meet is the library layer. “A

''program library'' is simply a file containing compiled code (and data) that is to be

incorporated later into a program; program libraries allow programs to be more modular,

faster to recompile, and easier to update.” [29]

 There are three kinds of libraries: static libraries, shared libraries, and dynamically

loaded (DL) libraries. A static library is installed into a program executable before the

program can be run. These kinds of libraries are quite troublesome to upgrade and are not

recommended for general-purpose. A shared library is loaded into memory at program start-

up and is shared between programs. The DL libraries may be loaded and used at any time

while a program is running. DL libraries are not of another format than the others, they are

just used in another way by programmers. The most used format for libraries is Executable

and Linking Format (ELF), which is used by nearly all Linux distributions today.

 Both static and shared libraries can be used as DL libraries. DL libraries require a little

more work to use than shared libraries, and often their flexibility is not needed.

3.9.1 Static Libraries

 Static libraries are simply ordinary object files. They have .a suffix. They are not used

as often as before, because of the shared libraries and their advantages. The benefit of static

libraries is that they permit users to link programs without having to compile the code of the

library, saving recompilation time. Now, this is not as important as it once was, due to the

computers of today, but it is still a security for programmers not wanting to share their code.

3.9.2 Shared Libraries

 Shared libraries are loaded by programs when they start. All programs that start

43

afterwards also use that library, in other words it is loaded only once. The C library, for

instance, is a shared library. Linux permits updating of libraries and support for programs that

want to use older, non-backwards compatible versions of that library. Linux also supports

overriding libraries and even specific functions inside a library when executing a particular

program. All this may be done while programs are running and using the existing libraries.

 Shared libraries have two kinds of names: a soname (shared object name) and a real

name. The soname has a “lib” prefix and a “.so” phrase followed by a period and the version

number. An example is libexample.so.1. The lowest C libraries however do not start with

“lib”, as an exception. A fully qualified soname includes the directory of the library as a

prefix, so that the soname acts as a symbolic link to the libraries real name.

 The real name file is the file with the actual library code, and adds to the soname a

period, a minor number, another period and the release number, where the last two are

optional. In addition there is a “linker name”, which is the soname without the version

number.

 Programs should internally only list the sonames. When one creates a library, one

creates it with a specific filename and detailed version information. Libraries are installed in

one of a few special directories and afterwards one run the ldconfig tool to examine old files

and to create sonames as symbolic links to the real names. To find out where the libraries

should be installed one should consult The File System Hierarchy Standard on [30] or the

GNU standard, issuing $ info standards#Directory_Variables.

 Starting up an ELF executable automatically causes the program loader to load and

run. This loader is usually named /lib/ld-linux.so.x, where x is the version number, which task

is to find and load all other shared libraries used by the program. Which directories to search

are listed in /etc/ld.so.conf.
5
 One may also override functions in libraries, by using overriding

libraries (.o files). These must be listed in /etc/ld.so.preload, which is normally only used for

emergency patches and is normally not included in distributions. Which libraries to use, is

cached in /etc/ld.so.cache, which is used by the programs. This is done to avoid the need to

run the costly ldconfig command every time. However, this must be done every time the set

of DLL directories changes, whenever a DLL is added or whenever a DLL is removed in the

/etc/ld.so.conf file. Package managers normally run ldconfig when installing a library. During

booting, the loader uses the cache file to load the needed libraries, which naturally reduces

boot-time.

5 A usual fix to do in Red Hat based distributions is to add the /usr/local/lib directory in this file.

44

 When overriding a library, which directories to search, are stored in the

LD_LIBRARY_PATH variable. These directories are then searched before the “normal”

ones. The variable LD_PRELOAD lists shared libraries with functions that override the

standard set. All other variables controlling the loader process also begin with LD_ or

RTLD_, but few are well documented.

3.9.3 Dynamically Loaded (DL) Libraries

 As mentioned, DL libraries are loaded at times other than during start-up. They are

particularly useful for implementing modules and plug-ins that permits loading when they are

actually needed. Other than that, they are of the same format as other libraries. They use an

API for opening and closing libraries, and to handle errors and looking up symbols. In C, the

header file <dlfcn.h> must be included to use the API. To support wide portability it is

possible to use the glibc library with its support for Dynamic Loading of Modules. It uses the

underlying dynamic linking routines of the platform to implement a portable interface to these

functions. It acts as a wrapper that hides the differences between the different platforms, for

example Windows and Linux. To create really small executables one should read the paper

Whirlwind Tutorial on Creating Really Teensy ELF Executables for Linux. [31]

 It should be noted that some people refer to dynamically linked libraries (DLLs) when

they actually are referring to shared libraries, DL libraries, or some other variant. The process

of pulling executable images into process virtual memory space memory resembles the

memory mapping defined earlier, and this is the task of the loader. It makes the code ready to

run. A DL library has the ability to be loaded and unloaded on request during runtime of an

application, but this is not a request to a dynamically linked library; it just does the linking

part dynamically. The linker only records what library routines that are needed, while the

actual data is loaded by the loader. That is; a dynamically linked library refers to a separate

file on disk that is not copied (loaded) into an executable or another library at compile time,

but at runtime (during execution when the function is needed) or load time (when the

application is loaded). The DL library does this on request.

3.9.4 Tools to make libraries: The binutils

 So how does one create libraries for Linux? As seen, the linker is an important part of

the binary utilities, or binutils, which must be installed together with other components known

as a tool chain: a compiler and a C library, together with kernel header files. The compiler is

45

usually the GNU C compiler/GNU Compiler Collection. The linker is used to link the

different files that together make a complete program. The tool chain gets it name because the

components rely on each other, like a chain. Some other important binutils are as, ar, ranlib,

strip, objdump, and strings.

They first four are the assembler, archive creator, library content indexer, and

stripping tools, listed respectively. The objdump tool can be used to display all the

information in an object binary file, while strings list all printable strings in a binary file. Run

on a developer host with a different architecture than the target platform, this tool chain is

referred to a cross tool chain. The process of trying to build a GNU cross tool chain was tried

carried out in this master project, and is explained in chapter 7.

3.9.5 Creating and using static libraries

Static libraries are created by compiling one or more real .c-files. This gives them an

.o ending. These files can be archived by using the ar command. This will create a static

library with the suffix .a. The library needs an index, which will be stored in the library itself.

This is for the linker to find the library’s routines. The ranlib command creates the index.

Further, header files with the .h suffix need to be created so programs can be linked against

the libraries. The library can then be given as an input to the GNU compiler with -L when

compiling the program that wants to use the library. The compiler automatically calls ld when

it is given a library as input, which links them together. The library will then be loaded on

program execution.

3.9.6 Creating and using shared libraries

Shared libraries are created by using gcc with either the -fPIC or the -fpic flag when

compiling them to object files, the former creating more code than the latter because it is

platform independent. They both enable “Position Independent Code” generation, which is a

requirement for shared libraries. They do not use an index. To generate the shared library an

example can be:

$ gcc -shared –Wl,soname,your_soname -o [library_name -c_file(s) \

> -library_file(s)]

46

The –Wl,soname flag in the library generating command passes the soname option

along to the linker, making sure the name is stored inside the library. Other options may be

passed to the linker as well, such as a library directory. Installing the shared library is usually

done by placing it in one of the standard directories, but one may use ldconfig to set up the

necessary symbolic links, in particular from a soname to the real name. This will refresh the

linker system cache:

It could also be done with the ln command.

 Compiling the program, one need to specify which static and shared libraries that are

being used. This is done by using the -l or -L option as usual. It is possible to see which

libraries a program is using by giving the ldd command, for example:

 In almost all cases one will see two dependencies: /lib/ld-linux.so.N, which loads all

other libraries, and libc.so.N, which is the C library.

3.9.7 Making and using DL Libraries

 As mentioned are the DL libraries made as either a statically or shared library. The

usage of DL libraries requires the inclusion and usage of an ldl library that has functions for

loading libraries. These functions are called in the program, typically dlopen(),

dlsym(),dlclose(), and dlerror(). The first call is issued to make the library be loaded, the

second to use the library, and the third to unload it. The dlerror() function returns errors. [29]

3.10 The Graphical System

Besides the kernel core components described so far, there are two more important

utilities included in a basic Linux system that are visible for the user: a console and a Window

manager/system.

3.10.1 The Console

 A command line interpreter in the UNIX world is called a shell. It is a textual user

interface where one can type commands for the shell to execute. The commands typed in here

$ ldd /bin/ls

$ ldconfig -n directory_with_shared_libraries

47

will cause the shell process to create a new process for the corresponding program, passing

along any given parameters. These are given to the main function in the program.

 During start-up, the boot loader, init program, kernel, and system log initiate a console

to display messages. The shell got it s name from hiding the console behind the shells

interface. On UNIX systems, the shell program language is used as an interactive command

language and as the scripting language for the system. Scripts are used for starting the system,

including the graphical user interface. The GUI (i.e. the Window System) is therefore said to

run on top of the console. On Windows, Windows Explorer is the GUI and it has no console

between it and the kernel. Linux implements several virtual consoles, where the Window

System is the last one that is started and usually shown to the user.

3.10.2 The Graphical System structure

The graphical user system on an embedded device is responsible for managing the

display hardware, manage one or more user input interfaces, provide an abstraction layer to

the underlying hardware for applications, and manage different applications at the same time

so they can co-exist and share the use of input devices.

Figure 9: The generic graphics system architecture [9:chap.9]

The layered generic graphics system architecture can be seen in Figure 9. Layer 1 is

the hardware layer, composed of a screen for output and an input device of some sort: touch

screen, keypad, remote control, etc. Layer 2 is the driver layer. Layer 3 is the windowing

48

environment layer, which consists of a drawing engine, and a font engine. The drawing engine

provides geometric drawing services. Those are in charge for graphics rendering and font

rendering and export their services through an API. Layer 4 is the toolkit layer, which

provides APIs for applications to use on top of the windowing environment. It is responsible

for drawing buttons, boxes, lists, and so on, creating a common look and feel across different

applications. Layer 5 is the Graphics Application Layer, which not always needs a toolkit and

a windowing environment. Rather it can communicate with hardware via the drivers interface.

Some applications may also require an accelerated interface to bypass the two mentioned

layers and interface with the driver directly. Direct-X in Windows, as an example, allows this.

Figure 10: A comparison of different graphics layers within different operating systems [9:chap.9]

In Figure 10 a comparison of different graphics layers across the main mobile

operating systems can be seen. All the layers of Linux can be supported by open source

projects as opposed to the others. A thorough comparison is however not the intention of this

thesis.

49

3.10.3 Display Hardware

 The basics of display graphics will not be covered here, as things such as pixels, RGB

or YUV, refresh rates, etc. are expected to be known by the reader. Only a few concepts

necessary for the further reading will be presented. Basically, the screen shows images. In this

context the images consists of horizontal lines, called scan lines. They are displayed one by

one from the right to the left, from the top to the bottom. (Not taking progressive

scan/interlacing into account.) The image is stored in a frame buffer. The frame buffer is

hardware and/or software implementation that has the size of the screen multiplied with the

byte-size per pixel:

It is the content of the frame buffer memory area the video controller displays on the

screen. The 2.6 kernel has a well-developed input device layer that can handle all kinds of

input devices.

3.10.4 Linux Frame Buffer Driver and Interface

Figure 11: Embedded Linux graphics system [9:chap.9]

Figure 11 shows the graphical system as implemented on embedded devices by Linux.

The Linux frame buffer, fbdev, is a graphic hardware-independent abstraction layer to show

graphics on a console without relying on system-specific libraries. It was first implemented in

Frame Buffer-Memory = Display width * Display Height *Bytes-per-pixel

50

the 2.1 kernel. It has an easy-to-use interface, and today it is “more of a video hardware

abstraction layer that provides a generic interface for graphical applications.” Almost every

graphical application on embedded Linux devices makes use of the kernel frame buffer

support. Some of the advantages are:

• Ease of use

• Simple interface

• Depends on the most basic principle of graphics hardware; a Linear Frame Buffer

• Direct User Space access to video memory

• No dependency of legacy display architecture, no network, no client-server model;

simple single-user, direct display applications

• Provides graphics on Linux without consuming too much memory and system

resources

The frame buffer is implemented as a char device, where the corresponding system

calls such as open(), read(), write(), and ioctl() applies. The last command is a command for

setting the video mode, to query chipset information, etc. However, what makes the frame

buffer interface on Linux unique, is the mmap() system call.

If one considers a standard write() call from a user process to a char device, it consists

of passing the data in the user buffer in the user space memory to the driver. The driver needs

to locate a buffer in kernel space and copy the data there. Then the required operation can be

carried out. If the write() call is for the display the content needs to be copied to the actual

frame buffer memory for output. For a graphical application only searching to redraw some

part of the screen, the cursor, or even the whole screen, this is very costly. This is because the

application may have to write over a specified offset in the buffer, and this requires calling

seek() followed by write(). The seek() and write() calls will then be repeated every time for

every change in the picture. The mmap() system call is made to be used in such cases. It

allows the application to obtain a user-space memory-mapped equivalent of the frame buffer

hardware address, possibly with the use of DMA to a dedicated memory. To use the frame

buffer the application simply call open() of dev/fb, one issues ioctl() to set resolution, pixel

width, refresh rate and so on, and then calls mmap(). Any changes made to the applications

version of the frame buffer will then be directly reflected on the screen. [9:chap.9]

51

3.10.5 The X Window System

 Linux supports several window systems and graphical libraries for the graphical user

interface. It is possible to write applications that use the frame buffer directly, but as the GUI

grow complex some form of abstraction is necessary. The window system of a Linux

distribution for desktops is called the X Window System, and is being used on all Linux

desktop distributions. It was originally developed by MIT, DEC, and others in the early

1980's. It is actually a client/server application that allows the desktop of the client to be

displayed on any X based server. The server part is in charge of communicating with the

standardized display and input hardware. Further it provides an API for the clients to use, the

X-lib, which is linked with the client application. The server and client can communicate

through any IPC. X uses the X Protocol, which is based on sockets. It can therefore run over

networks and provide remote graphics. Most often today, both the server and client normally

run on the users desktop. To handle multiple client windows there is a need for a window

manager. The X Window Manager provides the windowing capabilities such as resizing,

moving, minimizing, and maximizing.

 To provide boxes, buttons, and so on X uses the X-toolkit. The GUI toolkits are used

on embedded devices as on desktops to overcome disadvantages of lower libraries. The APIs

exported by the window system itself are often too simple to provide widgets with a common

look and feel. GUI toolkits therefore often provide theme support and also Rapid Application

Development tools. This will be discussed further in chapter 6.

 The client/server functionality together with complex drawing functions makes the X

Window System quite large. It also requires 8 MB of RAM to run.

3.10.6 Embedded Window Systems and Nano-X

 An embedded system does not have the need for all these network-oriented services

provided by the X Window System. It rather needs a quick, close to real-time-response

system with a small toolkit library. Because of this, the Microwindows Project was initiated to

create a window system for embedded devices. It runs in only 50 – 250 KB of memory and

has a 100 KB library. It mainly consists of 3 layers; a device driver layer, a device-

independent graphics engine, and an API layer. The device driver interface layer supports the

different input and output devices, thus making hardware porting simple. The screen driver

part of this layer supports all possible pixel formats. The graphics engine is the core of Nano-

52

X. It has the geometric graphics routines for lines, circles, and polygon drawing. The font

engine-part of this layer has support for both true-type and bitmapped fonts. This architecture

makes it easy to add or remove image or font support almost instantaneously. Nano-X

supports both an X Lib-like API referred to as Nano-X and a Microsoft API. Nano-X, as well

as “standard” X, runs as a client/server model as it is based on the X framework. They can

also be linked together to form a single application, thus speeding up things by removing the

IPC.

 Nano-X, formerly known as Microwindows, and Matchbox are now the most used

open source window systems for handheld devices. In contrast to their “big brother” X11,

they have reduced resource requirements. Starting with Linux version 2.2.0, the kernel

contains code to allow user applications to access graphical display memory as a frame buffer.

As explained earlier, this ends up being a memory-mapped region in a user process space that,

when written to, controls the display appearance. This allows graphics applications to be

written without having to have knowledge of the underlying graphics hardware, or use the X

Window System. This is the way that Microwindows typically runs on embedded systems. It

also supports development on a host without the need for cross compiling. [32] It should be

noted here that the 2.4 kernel frame buffer info structures store pointers to the console driver

data, whereas the 2.6 kernel - and subsequent kernels - avoid this dependency and separates

the console from the graphical interface completely.

 The embedded window systems usually use libraries such as Nano-X, Qt/Embedded,

and GTK+ possibly to provide the windowing environment with the drawing engines. Qt,

pronounced cute, is now known as Qtopia Core. Further, Qt also offers a toolkit through

Qtopia, whereas others are GTK-DFB, and FLNX. The latter is a port for Nano-X from

FLTK(Fast Light Tool Kit). There also exist a NXLIB (Nano-X/X-Lib Compatibility

Library), which lets X11 binaries run unmodified, or with little change on the Nano-X server,

since it supports a subset of X-lib. Trolltech, the makers of Qt, have a rather complex license

model while GTK+ is completely GPL licensed. The window manager is typically loaded by

the init program, which will be described in chapter 5.

Many other window managers intended for embedded devices exist as well. Some are

open source, some are just available in commercial solutions, while some are dual licensed.

Some of the projects/solutions are just graphical library layers, while some are complete

window systems with a stack ranging from hardware interfacing to a full GUI toolkit. As a

summary one can say that the Linux frame buffer provides a good solution for all kinds of

embedded devices. For the mobile phone with its calendar, phone book, and the like, Nano-X

53

with Qtopia Core or FLNX running on top will be a good solution to provide a user-friendly

menu-driven GUI. This will be an open source solution. [9:chap.9, 33] This topic will be

discussed further in chapter 6.

3.11 Summary

This pretty detailed description of the inner workings of Linux is given to show the

ease of access to inner system structures and functions that make it such a powerful operating

system. The layered architecture is also highly flexible. For example, at any particular layer

there can be more than one subsystem, each of which operates in somewhat different way. For

example, in the file system layer there are handlers for the different file systems. These

handlers know nothing about device drivers, and can create and manage a file system on

almost any block device. As it appears to the user and to applications other storage devices

can be accessed as any other disk storage through the MTD subsystem. Through its device

files the Linux kernel provides a common interface to the I/O devices of the system. This

makes it easy to develop applications since device drivers can be built just by knowing the

interface specifications. The device files are easy accessible and acts as easy interfaces to the

underlying kernel and I/O structures. The flexible, layered architecture has the disadvantage,

however, of making it very difficult to build up a mental picture of the entire system.

The real-time responsiveness functionality of the 2.6 kernel is well described and

backed up through descriptions of the interdependent subsystems, with especially emphasis

on the scheduler and the memory manager. A Mobile Linux implementation and all

embedded solutions in general, have especially constraints due to the low amount of memory.

Linux has proven to be very flexible to configure, and supports a wide range of memory

architectures/setups. Further, since it only loads modules when needed this helps to keep the

amount of code running in kernel space to a minimum.

55

Chapter 4

THE MOBILE PHONE HARDWARE

Adapting Linux for mobile phones requires a thorough study of the similarities and

differences between the two hardware platforms, i.e. between the ordinary computer and the

mobile phone. Understandably, the mobile phone is a bit different than the computer on the

inside. Not just in size or form factor, but in components as well. This is naturally the main

reason why it not is possible to “transfer” a regular Linux distribution to a mobile phone. The

inner functions of a regular PC will not be discussed here, as this topic is expected to be

known by the reader.

 The heart of the mobile phone is the microprocessor. The processor in a mobile phone

is of course somewhat slower than the “regular” processor, but it is also less power

consuming. The processor is usually measured in terms of speed, power usage, and the kind

of technology used. The processor technology is measured in nanometres to indicate the

degree of state-of-art.

 There exist several different set-ups for the processor(s) on a board. On a single-

processor board the general-purpose microprocessor is coupled with a Digital Signal

Processor (DSP) modem to some degree. On an ultra-low to entry level telephone the DSP

(Digital Signal Processor) is usually a sub-chip and the general-purpose processor is usually

not the fastest, up-to-date kind, or an MCU. Normally, this type of phones only supports the

GSM standard and polyphonic ringing tones. Other “standard” hardware architectures that

aim to be entry phones usually have the DSP tightly coupled or integrated in a general-

purpose processor, together referred to as the modem digital baseband.

 Smartphones or feature phones, which are most common today, further have a

dedicated applications processor that runs a high-level operating system. High-end,

multimedia-intensive smartphones even provide several processors dedicated to applications,

56

images, etc. Further they provide different hardware accelerators and they can be paired with

wireless chipsets. The processors and DSP can have separated memory or shared in terms of

physical hardware.

 The aforementioned components, together with an applications processor and some

other components that will be discussed in this chapter, form what in the following will be

referred to as the digital baseband, and is to what the operating system will relate. The digital

baseband is connected to an analogue baseband that contains voltage regulators, different

codecs, SIM-card interface, battery charger interface, oscillator, etc., which in many cases are

controlled in hardware on behalf of the digital baseband. The analogue baseband is further

connected to a Radio Frequency Transceiver, which does the actual physical interfacing with

the radio signals. This will not be discussed further here, but these components specifications

must naturally be studied closely in terms of power usage and radio frequency band support.

 Either way, the constraints to the mobile phone and its operating system is mainly

related to the battery capacity and power management, memory capacity, and general

performance and architecture of the applications processor.

 In addition to the processor architecture, chapter 4 will deal with these main

components that will put constraints to the set-up of a system: the typical buses and interfaces,

the power management, choices of storage and memory types, and their general size and

speed requirements. The chapter will show why the operating system architecture presented

up until this point can utilize these ever performance-increasing boards to a better degree than

its competitors. Linux has, as an example, a very flexible bootstrap and power management

architecture due to its embedded legacy. [34a] The booting process will be discussed in

chapter 5.

4.1 Hardware Abstraction Layer and Board Support

Package

A Board Support Package (BSP) is a more concrete name as an example of the

underlying low-level interfaces mentioned in chapter 2 that are supposed to give higher level

languages the ability to communicate with lower level components, such as directly with

hardware. This is often a package that follows each development board. The BSP is also often

referred to as a Hardware Abstraction Layer (HAL) in the UNIX world. While the BSP

concerns the board-specific code, the HAL is also concerned about the processor architecture.

The HAL could be said to be a superset of all the supported BSPs within a processor-specific

57

architecture.

The function of both the HAL and the BSP are to hide differences in hardware from

most of the operating system kernel so that most of the kernel-mode code does not need to be

changed to run on systems with different hardware. In other words it is used to give a simpler

direct access to the hardware for the kernel and the drivers. The software that is used to

initialise the hardware devices on the specific board will have an impact on the functionalities

discussed later on in this chapter. Together the BSP and HAL support these hardware

components:

• Processor, cache, and MMU

• Onboard Boot Loader

• Setting up the memory map

• Exception and interrupt handling support

• DMA

• Timers

• System Console

• Bus Management

• Power Management

Some of these points have been discussed, while some will be discussed in this chapter

and later chapters. [9:chap.3]

4.1.1 The ARM Processor

The most significant difference between a computer and a mobile phone is usually the

processor architecture, where x86 is the most common one on regular PCs, and ARM is the

most common one on mobile phones. The Linux HAL source code for the ARM processor

can be found in the subdirectories arch/arm/kernel and arch/arm/mm. The ARM architecture

is generally better on performance, power, and integration for mobile phones, as will be

shown.

 ARM stands for Advanced RISC Machine, which is a family of processors promoted

by ARM Holding Ltd. They do not produce the processors themselves, but licence their

design to manufacturers such as Intel and MSI. This open architecture allows other processors

to be tightly coupled via a co-processor interface and it has several MMU variations.

58

 The most useful resource regarding this topic on the hardware side will have to be

[34a] where one can find which ARM CPUs, platforms and boards that are supported, in

addition to the ARM instruction set(s) found at

http://www.arm.com/documentation/Instruction_Set/index.html and the www.arm.com sites

in general. Even though there are many producers of the ARM processors, and that they may

need to be set up in different ways, they all share the same simple instruction set. Hence, the

assembly codes and the binary codes are the same for all ARM processors.

The 32 bit long instructions of the ARM processor are simple load and store

instructions that load a value from memory, perform an operation, and store the result back

into memory. Every instruction to the processor is conditional. That means that the value of a

register can be tested in hardware on behalf of the instruction itself, before executing the

operation defined by the instruction. In addition most instructions can be executed in a single

cycle. This make the ARM architecture very well suited for mobile phones, and it is reported

that ARM’s market share of the embedded RISC microprocessor market is approximately 75

%. [35, 36, 9:chap.13]

There exists no special kernel debugger for the architecture, since most developers use the

JTAG debugger. This debugger will be explained in chapter 4.3.1. Thanks to the work of the

JTAG project, the Linux kernel is now portable to the ARM architecture, in contrary to the

kernel at the time of the project start-up in 1994. The history of the project, which can be

found on the web page, is quite interesting. [37a] Also the config (configuration) details for

the different CPUs can be found on this site. The layout of the hardware on a mobile phone

board will be further discussed throughout this chapter.

4.1.2 Onboard Boot Loader

The boot loader that follows the BSP is usually used to load an intermediate boot

loader or the kernel itself directly. The latter solution is sometimes used in real-time operating

systems, but it complicates the entire development process. This onboard boot loader is often

stored in a Programmable ROM, PROM, of some form. The booting process and intermediate

boot loaders will be discussed in chapter 4.5.

4.1.3 Memory Map

The memory map was introduced in chapter 3.4.2. It is highly dependent on the

specific board and its available memory. It first of all defines the layout of the CPU’s

59

addressable space, in terms of how to handle User Mode and Kernel Mode, caching, and so

on. The processor’s address space will be divided into different areas where some is used to

cache, some to the kernel and I/O peripherals that need to bypass the cache, some to user

programs, and some to the kernel functions that need translation in the TLBs. With the

processor’s address spaces set, the rest of the various onboard devices can have their address

spaces set. This requires an understanding of addresses and how the devices and buses use

them. At last this will decide where to put the boot loader and the kernel image.

The memory map freezes the address space allocated for RAM, flash, and memory-

mapped I/O peripherals. In other words, this defines how the CPU, the memory devices, and

the I/O peripherals can communicate. The physical addresses often resemble the addresses

used on the busses, but this is not always true. [9:chap.3, 20:chap.3]

4.1.4 Timers

 On Linux there is one timer that is mandatory; the Programmable Interval Timer

(PIT). The timer provides the system with the system pulse. These ticks determine when an

interrupt is to be sent to interrupt a task in the CPU. As a rule of thumb it should be set to an

as long period as possible, given that the system still has a good response time. Otherwise too

much of the CPU cycles would be used to task switching.

 There is also often a Real-Time Clock (RTC) on the system. This is often an external

chip that offers time of day services, even with the main power switched off. Understandably

it runs on an external power source. [9:chap.3, 10a]

4.2 An ARM System

Figure 12 shows a generic ARM based design. It has an ARM core together with a

number of system dependant peripherals. It further has an interrupt controller, which receives

interrupts from peripheral devices. The controller raises IRQ or FRQ (fast interrupt) inputs to

the ARM as appropriate. This interrupt controller may also provide hardware assistance for

prioritising interrupts. Next, there are some form of off-chip ROM - or flash - to boot the

system from, using the aforementioned boot loader, and at last 16-bit wide RAM to store

runtime data. On the chip there will be 32-bit memory for interrupt handlers and stacks. [38]

60

Figure 12: A generic ARM system design. [38]

Figure 13 represents a more concrete diagram of an ARM chipset with its

interconnected subsystems and bus structure. ARM develops technologies to assist with their

licensed processor architecture; boards, debug hardware, application software, and bus

architectures. The on-chip bus on mobile phones, and other embedded devices, is typically the

AMBA (Advanced Microcontroller Bus Architecture) High-Speed Bus. It is developed for

ARM architectures and is the de-facto standard for 32-bit embedded platforms. It introduces

four busses/interfaces:

• Advanced eXtensible Interface (AXI)

• Advanced High-performance Bus (AHB)

• Advanced System Bus (ASB)

• Advanced Peripheral Bus (APB)

In addition, the PrimeCell peripherals are a set of AMBA-compliant peripherals that are

available for licensing from ARM. They include a UART, a real-time clock, a keyboard &

mouse interface, a GPIO, and a generic IR interface. The ARM926 architecture in Figure 14

uses the AHB with a 32-bit address and data bus width. [39]

16 bit RAM

8 bit ROM

32 bit RAM

ARM
Core

I/O

Peripherals

Interrupt

Controller

nFIQnIRQ

61

Figure 13: A detailed ARM System-On-Chip design. [38]

 An often-used applications processor in mobile phones is an ARM926. Figure 14

represents the digital baseband and applications processor board, OMAP730, from Texas

Instruments.
6
 As a part of the TCS2600 Wireless Chipset it is intended for multimedia

smartphones running high-level operating systems such as Linux. [37b] In addition to the

components shown in Figure 14, the TCS Chipset will in its full consist of a Radio Frequency

(RF) subsystem which is the circuit for GSM/GPRS communication, and a power

management subsystem (the analogue baseband) as mentioned earlier. [40] Some of the key

characteristics are:

Low-Power, High-Performance CMOS Technology

• Low-voltage 130 nm technology

o - 1.5V cores, 1.8 - 2.75V IO

• Extremely low power consumption: less than 10 µA in standby mode

• Split power supplies for application processing, digital baseband and real-time clock

enable precise control over power consumption

• Optimized clocking and power management: Only two clocks required at 13 MHz and

32 kHz

ARM926TEJ Core Subsystem

• ARM926EJ-S V5 architecture up to 200 MHz (maximum frequency)

• 16 kB I-cache; 8 kB D-cache

6 For an unofficial list of Nokia mobile phones running the OMAP chipset, please refer to

http://pantosh.com/?p=26. For all machines supported by Linux ARM, please refer to [37a].

Bridge

Timer

On-chip

RAM

ARM

Interrupt

Controller

Remap/

Pause

TIC

Arbiter

Bus Interface
External

ROM

External

RAM

Reset

System Bus Peripheral Bus

AHB or ASB APB

External

Bus

Interface

Decoder

62

• Java acceleration in hardware

• Multimedia instruction set architecture (ISA) extension

 The rest of the specifications can be seen in Appendix A.

Figure 14: The OMAP730 Digital Baseband [34 (b)]

The most important aspects here are that ARM9E processor family uses a Thumb

instruction set named V5TE, which features a subset of the most commonly used instructions.

These are compressed into 16-bit wide codes to provide better code density, as opposed to 32-

bit. The codes are decompressed on execution without performance loss. However, more

instructions might be need to perform the same operation. This is solved with the Thumb2

technology on more advanced boards. This means that it may be possible to dynamically

clock the processor at a lower rate and hence use less power without performance loss. [41]

This processor family is enhanced for co-processing with digital basebands with tightly

coupled memory (TCM), thus making them especially suited for applications requiring a mix

of DSP and microcontroller performance. There is one TCM for instructions, and one for data,

63

referred to as the Harvard architecture. [42] Here, the microcontroller unit is an ARM7, and

the DSP is a TMS320 developed by Texas Instruments. This communication here is done

through DSP extensions to the instruction set. According to Flynn’s Taxonomy from 1966

this is referred to as Single Instruction, Multiple Data (SIMD). [43] The SIMD instruction set

is as an extension to the regular instruction set, but this is on most boards superseded by the

NEON technology – both proprietary –, which deals with the shared instruction set. It is

intended to “accelerate the performance of multimedia and signal processing applications

including video encode/decode, 3D graphics, speech processing, compressed audio decoding,

image processing, telephony and sound synthesis.” [44] ARM has also developed an own

compiler to let programs make better use of this instruction set. There are four broad

categories of instructions: data processing instructions, load and store instructions, branch

instructions, and co-processor instructions which take care of giving the coprocessors their

proper data and instructions.

 All this is handled “automatically” and need not to be worried about for the Linux

implementation, which can contain a single-processor software structure. However, a Co-

processor Shared Memory Interface, CSMI, is implemented as a driver for Linux on the

OMAP boards to provide communication between the ARM7 and the ARM 9 cores. This is

intended for communication with the phone-specific and/or network specific parts, and Linux

communicates with the interface through an abstraction layer as a TTY device or through the

TCP/IP stack.

Further, the board has hardware Java acceleration through the Jazelle technology,

which allows execution of Java byte-codes in hardware. At last, this processor family

supports Embedded ICE-RT logic, which is enhanced JTAG-based software debug facilities

that better meet the needs of real-time system development.

 A contradiction in the specifications from TI here is that they claim first that it has an

ARM926TEJ core subsystem, which implies that it has a Thumb® instruction set. They do

however not mention this feature in the text and the referred architecture in the list is the

ARM926EJ. This is because it is the ARMv5TEJ instruction set that is used which include the

16-bit fixed point DSP instructions. [45]

4.3 Buses and Interfaces

Linux supports a number of buses and interfaces. Some of the interfaces in Figure 14

are used of the ARM processor, some of the DSP, and some of both. The AMBA bus

64

architecture has already been mentioned, but as seen in the figure there also are many more.

Here is a brief introduction to some of them. Some of the names are self-explanatory or not of

great importance and will not be discussed further.

4.3.1 JTAG

When porting Linux to a new board or when debugging the kernel itself, this is not

possible to do on the device. Some kind of debugging interface that provides direct hardware

control over the software is needed. The solutions to this are usually quite expensive. [7]

suggests a BDM (Board Debug Module) or a JTAG (Joint Test Action group, an IEEE

standard) interface that rely on special BDM or JTAG functionality embedded in the CPU's

silicon. The debugger is connected to special pins of the processor, which allows complete

control over the CPU. The PCI bus connector has pins for JTAG, and there also exist open

source JTAG software. JTAG is the name commonly used, while the real standard name is

Standard Test Access Port and Boundary-Scan Architecture. JTAG and BDM are much less

expensive and much less complicated than In-Circuit Emulators (ICE), but ICEs do require

the purchase of special hardware and software. Since CPU manufacturers do not like to give

away their secrets, this equipment is also expensive. Some BDM and JTAG debuggers require

specially modified version of the gdb debugger. Either way, the debugger should be able to

deal with the standard GNU development tool chain and the binaries generated using it

transparently.

4.3.2 UART

UART is a Universal asynchronous receiver/transmitter, which can translate between

parallel and serial interfaces. For that it uses a shift register. UART is often used for

communication with embedded systems through RS-232, which is the standard computer

serial port. It may be used as the system console to display boot messages or as a standard

TTY device. It may also be used as a kernel debugger interface.

On the example board here it is an Embedded ICE-RT solution that is chosen on the

main board to better meet the real-time requirements. ICEs also use JTAG as the transport

mechanism. The debug board is connected through UART. In general the solution chosen

depends on what is offered by the board vendors.

65

4.3.3 EMIF

The External Memory Interface, EMIF is an interface found on TMS Digital Signal

Processor (DSP) devices or applications processor, such as the one in Figure 14. Normally,

the EMIF connects the processor to different types of memory devices such as SRAM, flash

memory, DDR-RAM, etc. The data bus is typically 64 bits, 32 bits, or 16 bits wide. The

OMAP 730 supports to kinds of EMIF: EMIF Fast (EMIFF) and EMIF Slow (EMIFS), which

both are 16 bits. EMIFF supports SDRAM as an SDRAM controller. It can support one 16-bit

device or two 8-bit devices, but the external interface data bus is always 16 bits. A number of

devices can be connected with the EMIFS interface, for instance NOR flash, 8-bit NAND

flash and 16-bit NAND flash. The NOR flash is controlled by EMIFS directly, where as the

NAND flash is controlled by a software controller. [46, 47]

4.3.4 I2C

I2C, Inter-integrated circuit, is used to attach low-speed peripherals to a mobile phone.

It is typically used to turning on and turning off the power supply of system components,

changing contrast, hue, and colour balance settings in monitors, changing sound volume in

intelligent speakers, and controlling LED displays. This will be activated through the drivers

to support different operation modes, further discussed in chapter 4.4.

4.3.5 GPIO

GPIO is an acronym for General Purpose Input/Output. GPIO devices provide a set of

IO ports that can be configured for either input or output. GPIO chips may support the

common bus protocols like I²C, SPI and EMIF.

4.3.6 LPG, PWT, PWL, and HDQ.

Further there are four basic interfaces: The Led Pulse Generator (LPG) explains itself.

The Pulse-Width Tone (PWT) generates a modulated frequency signal and is for driving an

external buzzer. The Pulse-Width Light (PWL) can be used to save battery through switching

of the backlight to the LCD display, while HDQ is a battery communication protocol. [48]

66

4.3.7 USB OTG

USB OTG is an acronym for USB On-the-go. It is an extension to the USB 2.0

standard. It introduces two new protocols: the host negotiation protocol and the session

request protocol. It allows transfer between USB devices, where one part acts as a host and

the other as a client.

4.3.8 SPI

Service Provider Interface (SPI) is a software mechanism to support replaceable

components.

4.4 Power Management

The power requirements of embedded devices depend on their usage. For the mobile

phone it is about keeping the power consumption as low as possible to extend the battery life.

The most power consuming components of the mobile phone is the LCD display, processor,

and the different types of memory – in that order. Many of these components have different

operation modes to satisfy the power requirements. The device drivers for these devices

therefore need to take that into account. For the LCD screen unit, as an example, the solution

will be to turn off the backlight to various extents for standby mode, operation mode, idle

mode etc. For the processor it usually applies that the power consumed is directly

proportional to the clock frequency, and further the power consumed by the processor is

directly proportional to the square of the voltage. Embedded processors take this into account

by offering dynamic frequency scaling and dynamic voltage scaling.

On a laptop distribution the frequency is typically controlled by the operating system,

which measures the system load. As an example is this thesis written on an Intel Pentium M

processor 1, 70 GHz PC with a Kubuntu 6.10 Edgy Eft distribution with the 2.6.17.11 kernel,

offering dynamic frequency scaling with the levels 1700000, 1400000, 1200000, 1000000,

800000, 600000 Hz. This is found with the following command:

Often, a sleep mode is also supported by the boards, where the power to the processor

and most peripherals is turned off. This is the lowest power consuming mode, and requires

$ cat /sys/devices/system/cpu/cpu0/cpufreq/scaling_available_frequencies

67

some precautions to make it work properly:

• The state of the system (CPU, peripherals) must be saved in memory to be able

to restore the state of the system on wake-up.

• The wake-up latency must so short that real-time requirements are met.

• Some clock (usually external hardware clock) must run during sleep mode to

keep track of time.

• The wake up procedure must be appropriately incorporated into software (i.e.

the operating system). For example, if it exist any dependencies, the devices

must wake up in the correct order.

The operating system provides the mechanisms for enabling dynamic scaling of

frequency and voltage. It decides when various modes can be entered and how to support

wake-up. This is done through a power management framework where applications can use

different custom fitted policies to the embedded device, rather than policies implemented in

the operating system itself. In other words, it is controlled in User Space rather than in Kernel

Space. This is important since the various embedded devices have different requirements.

Also, the different device drivers must be able to exploit the power-saving modes of the

peripherals.

4.4.1 Power Management Standards

Linux mainly supports two different power management standards on laptops: ACPI

and APM, both these with roots in the x86 architecture. Some sources say ACPI lets the

operating system have more control as opposed to APM where the BIOS have more control.

Other sources say it is the other way around. The choice of which standard to support in the

kernel is done during configuration, and corresponding applications must be chosen as well.

The disadvantages by letting the BIOS control the power management can be

summarized in three points:

• The BIOS may for example look at the I/O devices to measure the activity,

thus it might set the system into a too low power mode when there are

complicated tasks running on the system not involving the I/O devices.

• It only detects activity on devices directly connected to the motherboard, and

not on the USB bus as an example.

68

• The standard is dependent on the BIOS, which can have different limitations,

interfaces, and bugs across the different systems.

ARM has developed a technology called IEM, ARM Intelligent Energy Manager

Technology. The technology uses a technique called Dynamic Voltage and Frequency Scaling

(DVFS) and an Adaptive Power Controller.

MontaVista uses something called Dynamic Power Management on OMAP boards. It

responds to system changes in the CPU core and on buses, and this open core project aims to

further develop the things achieved with ACPI. It is also partially compatible with IEM. How

Linux supports these drivers – as ARM show that Linux does – and how this comply with the

aforementioned standards is a subject for further research. Most probably they register with

the frequency scalar core as explained below. [49, 50]

4.4.2 Power Management on Linux

Linux offers a frequency scaling mechanism, which - as many other subsystems -

consists of two layers. The frequency scalar core in the file linux/kernel/cpufreqd.c is the

generic code that implements the platform independent framework. The platform specific

code to make the hardware do frequency transitions is implemented through frequency

drivers. All device drivers that need to be informed of frequency changes, as they also depend

on it, may register to the core. Included in the power management, the drivers must use a core

interface called pmaccess before operating on the hardware. This is to avoid operations being

done on a device that is not in the running state. The interface pm_dev_idle is used to put

devices to sleep. There exist various applications to control the frequency in user space.

Cpufreqd is a daemon that monitors battery level, AC state, and running programs, and

adjusts the frequency governor according to the specified requirements in the configuration

file. The ACPI daemon acpid listens to the file /proc/acpi/event for events to occur, and then

executes programs configured through configuration files to handle the events. [9:chap.3, 51]

The power management is some of the most crucial points on a mobile phone for

keeping a soft real-time responsiveness. It must by all means respond fast enough when

exiting from sleep mode or some other power saving mode that has switched off some

devices. Further, it must be able to deal with a task switch when the user is using a demanding

application and a real-time demanding task occurs, such as a phone call. The prioritised

interrupts in the 2.6 kernel are well suited to deal with this.

69

4.5 Storage and Memory Requirements

There are different kinds of memory and storage in multiple “levels” on a telephone,

as seen in board figures and as discussed earlier in the chapter. High-end feature phones,

smartphones, or music-centric phones as seen in the market today have various memory

requirements, both in terms of the amount of memory/storage space they need and the type

best suited to meet their usage schemes. First of all, the phones usually have a removable

storage, which can be used to store images, music, videos, applications, and so on. This is

referred to as the Memory-Stick. This can typically be 1Gigabyte and up to 4 Gigabytes.

Second, they have a semi-removable memory offered in the SIM card, which now offer up to

1 Gigabyte of storage. [52] This is typically used to store contacts etc., but the range of use is

expanding. This also requires the implementation of some security measures, but it is not the

scope of this thesis to discuss this.

The embedded memory and storage, however, cannot be removed. Nor can it be

replaced or upgraded after the handset has left the factory. This memory is often referred to as

external memory, as it is external to the ARM chip. It is the flash that mainly will be used as

the non-volatile storage. 16 to 32 MB is a typical size for that matter, which is enough for the

operating system and some other file storage for all the different phone categories mentioned

above. For example is the bzImage, vmlinuz, that contains a partially (big) compressed kernel

image on a laptop only 1.8 MB, but this depends on the compressing used. It could be as

small as around 512 KB. On a mobile phone it will probably be around 1 MB.

Before 2001, the flash type used in embedded systems was usually NOR flash. NAND

flash is known to be more error prone and use a different and more complicated processor

interface than NOR flash. This had made it “unusable” in mobile handsets. However, these

shortcomings have been overcome, and NAND flash is becoming more and more dominant.

The NAND technology is often called Multi-Level Cell (MLC) NAND, because two bits,

instead of one, can be stored in each cell. It is smaller, therefore more cost-effective than

NOR technology. In addition the prices on raw materials are dropping. The NOR technology

is said to have its upper limit as a competitive media at 32MB.

When NAND flash first was adopted, it was used in addition to NOR flash. This was

because NAND could not support eXecute In Place because of the MLC technology, and

hence it was only used as storage for user media. This was however overcome with the use of

DiscOnChip, which includes a small XIP boot block. From there the RAM can be initialised

and the kernel image can be copied and decompressed into SDRAM. This required SDRAM

70

of course. Either way, this task can be solved in Linux by the use of JFFS2 and initframs in

the 2.6 kernel’s MTD subsystem. Hence, it supports NAND memory as the only non-volatile

memory. Still, boards often support the use of NOR-NAND combinations to be able to

provide XIP, which JFFS2 does not.

In the years to come, built-in, high-density embedded flash drives (EFDs) will

probably be the state of art to handle the problems with the NAND flash, as it offers the flash

media and flash controller on the same chip, and sometimes even on the same die. The

technology of EFDs is evolving fast, and it is hard to keep up for the software world. The

paper where this last info is taken from is written on behalf of M-Systems, so the statement

must been viewed in the light of this. [52, 53, 54, 55, 56]

4.5.1 Storage and Memory Requirements

The memory requirements on a mobile phone are obviously highly dependent on the

type of phone one wants to build: storage capacity, different requirements to peripherals, the

operating system configuration, etc. On the example board presented here, an internal SRAM

is 384 KB, where 192 KB are dedicated to an internal frame buffer. This is used by the digital

baseband subsystem.

There further is 16 KB internal secure RAM where a part of it – usually 13-15 KB –

may be used by the secondary boot loader image during booting. One must take care not to

supersede that size. Most probably it will be a U-boot image on this board, so it is usually not

a problem. The other part is used by the primary manufacturer boot loader, loaded in from

ROM. This is a concept known as shadowed ROM; the content from the relatively slow ROM

is loaded in to a faster internal RAM and masks itself as the ROM with the initial start-up

code. The secure part of the RAM and ROM, as specified in appendix A, is that the secondary

boot loader image must be digitally signed so the primary boot loader can verify it. This RAM

space will be reclaimed by the operating system when it boots.

Up and running the external RAM required by a full Linux will lie in the range of 16-

32 MB. It is the applications that will require most RAM, so again this is case dependent.

Viewing the different alternatives on the market however, the OMAP730 is a very good

example board with representative memory sizes that will be used these days.

The OMAP 730 board has support for 128 MB of mobile SDRAM (SDR or DDR),

and 256 MB Flash which may be both NOR and NAND. When it comes to the Linux image

the compressed image has already been discussed, and does not need more than 2Mb of flash

71

storage, but this will also be copied and extracted to the external RAM. The image may be

loaded in from various locations in various ways during development and debugging. Jumper

settings on the boards can “remove” memory and thus change the physical memory map.

In addition which file systems - such as JFFS2 and CRAMFS - that are being used also

influences the use of storage and memory. The secondary boot loader is instructed

accordingly as will be discussed. In addition space is required for the compressed root file

system image, memory map, boot loader image, and other booting parameters.

The board is also equipped with dedicated cache for the different processing units. The

memory architecture for the applications subsystem follows the Harvard architecture for the

cache and internal memory, as opposed to the von Neumann architecture for the external

memory. In the Harvard architecture there are physically different paths and storages for

instructions and data to the applications processor. The Instruction cache – I-cache – is 16

KB, and the data cache – D-cache – is 8 KB on this board. The addresses to the data and

instructions in these caches are the ones that are located in the data – and instruction TLBs.

The von Neumann architecture makes no difference of data and instruction and the board does

not have a tightly coupled memory to the external memory. [57]

4.6 Summary

One of the main differences between the mobile phone hardware and the PC hardware

is typically the memory, the power, the interfaces and buses, the telephone part, and the size.

This may seem like pretty much everything. But besides the fact that considerations regarding

the composition of memory types and amount, power managing standard, etc. must be taken

up front, the configuration of the kernel is pretty easy. Because Linux is used so much on both

embedded systems in general and mobile phones in particular, it has a well-developed support

for the buses and interfaces discussed in this chapter. These work very well with the system

layout discussed in chapter 3.

Further, the display technology for embedded devices is evolving quickly to support 3-

D, and the need for integrated 3-D graphic engines will soon appear among applications as

well. An example can be the MALI technology developed at NTNU, which today is acquired

by ARM. This will further increase the need for memory and a fast operating system. Video

conversations are already a feature that is in use, so to be able to establish it as a de-facto

operating system for mobile phones, Linux will have to be on top of the emerging technology.

Linux has an advantage through its virtual frame buffer here. As mentioned has the 2.6 kernel

72

shown in tests to be closer to a real-time operating system than the 2.4 kernel.

Externally there are many of the devices that are getting the same interfaces as those

that already are on the computer: the USB, Ir, Bluetooth, and WiFi. In many ways the phone

is getting more and more like an ordinary mini computer combined with a “dongle”. Linux

has an advantage as a mobile phone operating system in that manner since the different

drivers are already well developed for those interfaces. The exception lies within the fact that

it still is a mobile phone, so that it has to connect with the GSM/UMTS network. The DSP

and the RF interfaces etc. will still remain present for the conventional conversations, though

with added features and increased speed. But one must remember the mobile phone is unique,

and will never be a clean merge of a computer and a phone. It will rather develop to a

powerful device that opens up completely new areas of usage. [58] By focusing on getting

reliable, well defined, and portable modules for the basic functions that are likely not to

disappear, Linux can be able to get a head start on other operating systems. The modules

should then be independent of certain hardware on the higher-level abstractions, so that the

services provided by the kernel stays the same without, or with very little, modifications.

Very much like the MTD subsystem and the VFS does today. This will further increase the

portability among applications.

73

Chapter 5

BOOTING LINUX

Linux has proven to have a very flexible booting process. This is much due to the

secondary boot loaders that are being used, and because Linux was designed to boot in

environments with multiple operating systems or kernels. This has given it a well-suited boot-

design for mobile phones as well, especially during development. In this chapter the

development- and debug set-ups will be discussed, before the boot process is discussed

together with some key elements. Finally it will be discussed how the boot process can be

improved.

5.1 Host/Target Development and Debug Set-up

 Before transferring anything to the target hardware in a development project, the

host/target development environment and thereafter a debugging environment must be set up.

There are mainly three host/target development architectures. The first is a linked set-up

where the host and the target are permanently linked together. This link is typically a serial

cable or/and an Ethernet crossover cable. In this set-up, the host contains the cross-platform

development environment. The target contains a boot loader, booting parameters, a functional

kernel, and a minimal file system. A cross development tool chain to be used for development

will be discussed in chapter 7. The target components may also be reachable through remote

components, for instance via the Trivial File Transfer Protocol (TFTP). Further, a Network

File System (NFS) using the mount command in the target is preferred during development as

the root file system. That way it is not necessary to transfer files between the host and the

target after every change. Then the target can access the files as if they were stored locally by

running the nfsd daemon on the host, and making the appropriate files available for the target.

74

This is the most common development set-up. The NFS requires a booted kernel to operate. A

possibility during development is to use NFS, and then copy the final root file system image

to the target from the NFS.

 It is also possible to use a removable storage set-up where the storage device is written

to by the host and then transferred into the target to boot the device. Then the target only

needs to contain a boot loader. Another variant of this is where the target does not contain any

boot loader, but where the host could write to a flash chip, which has a socket in the target. It

could then be written to by the host and afterwards inserted into the target. This is a popular

set-up during the initial set-up of an embedded system. Later, one can switch to a linked set-

up.

 The third variant is a standalone set-up where the development is carried out on the

device itself. This is mainly done on larger PC-based embedded systems and will not be

considered here.

 For the host/target debug set-up there exist three different kinds as well: A serial line,

a networking interface, and special debugging hardware. The serial line is the simplest, but it

has limited speed. The use of a networking interface solves this problem and provides the use

of many network connections over the same physical network link. Of course, this requires

the presence of a network stack, such as TCP/IP. Since the networking stack is found in the

kernel, it cannot be used to debug the kernel itself. This must then be carried out over a serial

link. The two first methods mentioned above do require a minimum of software to control the

primitive I/O hardware. When porting Linux to a new board, or when debugging the kernel

itself, the third and preferred method is by the use of UART and a debug board.

 The software used in the early stages to communicate with the board is known as

terminal emulators. The most common one used is the Minicom, which uses the serial port.

The only precaution to take is that the rights to the port are correct, and installing the program

if it not already is. It is started with the command minicom. [59]

5.2 Booting the Board

 With the basic operating system functionality and the basic hardware architecture

discussed, the process of booting up the Linux system can finally be described. The booting

process of all operating systems depends on a boot loader which task is to load software for

the operating system being able to start, where the last software loaded is the kernel or

operating system itself. The kernel then conducts initialisation of its own before it set up a

75

proper environment for the C code to run. The hardware cannot do this by itself. As the

loading of a program needs an operating system, a boot loader resembles an operating system

to the extent that it can load programs into memory. Thus the system “pulls itself up by the

bootstraps”. The boot loader is highly dependent on the target’s hardware, as it is the first

software to run. The boot process can be divided into stages, which will be described in the

following.

During the system start-up there are usually four main components in use: a primary

boot loader (bootstrap loader), a secondary boot loader, the kernel, and the init process.

5.2.1 Boot Configurations

 On an embedded device there are three configurations used to bootstrap the system

during development: the solid storage media configuration, the disk configuration, and the

network configuration.

Figure 15: The solid-state media configuration [7]

 In the solid-state media configuration, as seen in Figure 15, there are 4 separated parts.

The boot loader is often contained in a protected area of the media. However, whether this

area has the lowest address range or the highest address range is dependent on the device.

Because of this, many flash devices are provided in both top boot and bottom boot

configurations. The kernel may also be located in the root file system as long as the boot

loader can read from it. The kernel and root file system can also be packaged as a single

image that is uncompressed in RAM before being used. Everything is dependent on the

configuration of the boot loader, which is dependent on the hardware, but usually all the

configurations can be categorized using the following criteria: flash memory use, RAM use,

ease of upgrading, and boot-up time. Initially, the boot storage is programmed using a device

programmer or through the CPUs built in debugging capabilities such as JTAG or ICE.

Commercial boards usually come with appropriate pins for these debuggers, and this can also

be seen in the OMAP730. Once that a boot loader is programmed the system can be

reprogrammed/upgraded at a later time. This will be done either be by the use of the boot

loader, or through Linux’ MTD subsystem.

76

 A disk configuration is mainly attractive for the development phase of an embedded

system. If a device mimicking a hard disk is being used in the target, such as Compact Flash,

this configuration is probably the best choice. Also if customisation of a mainstream

distribution to fit the target device is wanted, the disk configuration is helpful.

 The network configuration is, as mentioned, especially a good choice in the early

stages of the development. It gives the developer the ability to exchange data and software

between the workstation and the target rapidly, without having to reprogram the target. This is

done either by having both the kernel and root file system or just the root file system on a

solid-state storage device, which is loaded via a network link. If the kernel is stored on a

network media, the kernel is downloaded using TFTP. In either case, the root file system is

mounted via NFS. To locate the TFTP server the boot loader may use BOOTP/DHCP. In that

way it avoids the need of a preset IP or to find either the TFTP server or the NFS server. The

“problem” of this configuration is the need of a server. In the Linux world, such a server is

normally not a problem. [7]

5.2.2 Boot Configurations and Das U-boot Boot Loader

 The type of boot configuration influences the choice of the boot loader. It is needed to

identify the boot configurations that are likely to be used during the development of the

system and in the final product. Then, the boot loaders that will satisfy the chosen boot

configurations must be selected. For example, not all boot loaders can boot kernels from a

disk device. There are many boot loaders available, but there are one particular alternative

that works with most embedded ARM systems and stands out as a “standard” ARM boot

loader: U-Boot.

U-Boot is a universal loader based on earlier PPCBoot and ARMBoot. It also includes

a monitor, which is a command line interface used for debugging, reading/writing memory,

flash reprogramming, configuring etc. It is the richest, most flexible, and actively developed

open source boot loader available. It supports booting of the kernel through TFTP, from an

IDE or SCSI disk, and from a DOC. U-Boot supports JFFS2 reading as well. [7]

Many hardware manufacturers provide their products with their own boot loader. It is

later possible to replace this with a custom-built boot loader, i.e. the boot loader binary, of

own choice. Whether the boot loader binary will be transferred to the phone with a custom

built boot loader, or by the use of JTAG, will not be covered here. This process consists of

replacing whatever is in the boot section of the memory. [60]

77

5.3 First Boot Stage

For an embedded device there are 4 main stages in the booting process. In the first

stage the ROM stored code does some initialisation on low-level hardware by polling the

connected ports. It does this by sending its ASIC_ID (see definition) symbols through the

UART and USB interfaces in this case. This is to see if any external device is connected –

typically a developer host – which then is signalling constantly. The code (i.e. the primary

boot loader) stored in the designated boot address on a device is board specific. All CPUs

fetch their first instruction from an address pre-assigned by their manufacturer. This address

refers to a solid-state storage device where this primary, fabric-included bootstrap loader is

located. The storage devices used here was discussed in chapter 4.7. On the x86 architecture

this stage is when the BIOS runs the Power-On Self Test (POST). This storage is not

necessarily the same location as where the secondary boot loader is stored. During

development the secondary boot loader can be fetched from a number of places, as described

above. The software in this location is responsible for bootstrapping Linux, usually from

RAM. RAM is usually remapped to the physical address 0x00000000 at this point, as the

ROM will not be used until next boot. From here the secondary boot loader can run.

5.4 Second Boot Stage

During the second stage the boot loader invoked in stage one verifies the system

components, uses the memory map and locates the different kernel images. The boot loader

then sets up its own user interface. On a regular pc with several operating systems, this is

when one can choose which operating system – or kernel version – to run. On Linux it is all

about telling the boot loader where to go next, since it was designed to coexist with other

operating systems.

The boot loader then loads the chosen kernel image and possibly the root file system

image into RAM. This is because RAM is quicker than the permanent storage. The kernel

image may be stored in various places. It may for instance be located on the root file system

itself if the boot loader supports reading from it, such as with U-boot. U-boot can read from

JFFS2 by using an fsload command. In that case the kernel image will usually be located on

the under /boot. Further, the kernel image is in a compressed file system, and must be

extracted to RAM. The kernel image is still compressed, as the zImage (max 512 KB) or

bzImage (more than 512 KB) contain certain hard coded parts that are un-compressed

78

assembly code that will be used before the entire image is uncompressed.7

5.5 Third Boot Stage

 In the third stage the kernel is called, possibly with special booting parameters such as

where to find its root file system. It is necessary for every Linux system to have a root file

system for the kernel to mount, as this will contain the init program to be used in the last

stage. If a RAMdisk is used as the root file system, that image is loaded in the previous stage

at the “same” time as the kernel. The kernel has code to detect this. In that case the kernel

image will not be stored on the file system. The two images may be stored as a single boot

image for the boot loader to use, though the most usual solution is to store them in separate

images. This is a concept called initrd, which can make better use of a RAM disk on an

embedded system like a mobile phone. An initial RAM disk image, initrd.img, can be used

for a root file system for example based on EXT2 or CRAMFS, and possibly SQUASHFS.

The kernel will find this with the “root=” boot parameter passed in the third stage, and later

mount it. Thus, in that case the boot loader will have loaded the RAMdisk image in the

previous stage.

In the 2.6 kernel some of this changes, and the following scheme is most efficient to

use: The root file system image that will be extracted into RAM may be a file system only to

be used only during booting, and can be used to mount a definitive root file system using the

pivot_root() system call once initialisation is done. This is an initial RAM disk file system,

intitramfs.

The 2.6 kernel can have the content built in the kernel by placing the content in the

place directed to by CONFIG_INITRAMFS_SOURCE during the kernel configuration.

Usually the content will be the code discussed in the following, such as init. The content can

very well be custom-fitted (not general purpose) to be used with a mobile phone that usually

requires a lot of security measures taken. This makes Linux suitable with any kind of

encrypting schemes used during booting. To build it in the kernel there are three ways. The

content is either way pointed to by a CONFIG_INITRAMFS_SOURCE config option to the

kernel. The content can be a cpio.gz file, which the kernel will link to, a directory that the

kernel build will create a cpio.gz file from, or it can be a configuration file that tells the kernel

what to do. The latter is most flexible.

7 It was widely discussed in various mailing lists and on the MTD web pages whether JFFS2 supports XIP.

This is however rather pointless since it will operate really slowly due to the relatively slow flash.

79

The content can also be supplied in an external file that is not built in the kernel. To

avoid any GPLv2 violations, this content can be stored in a cpio.gz file, which the kernel will

auto detect if it has initrd enabled and extract into the initramfs to be run. It will overwrite any

built in equal code, which by default is run first.

It must be emphasized that this is not the same file system such as CRAMFS or ext2 in

RAMdisk, as that imitates a disk and is used for root file systems living in RAM. Initramfs is

an instance of what is referred to as tempfs, which originally was intended for the cache to be

mounted in RAM and flushed on reboot. The initramfs file system cannot be moved or

unmounted when running, as Linux do not allow its root file system to be unmounted. It is a

fully functional RAM file system. [61, 62]

 Back on track, the loaded kernel runs the setup() function and reinitialises the

hardware devices, as Linux do not rely on the BIOS initialisation. This also enhances

robustness and portability. The kernel then jumps to a first startup_32() function, which

decompresses the kernel, and shows the well-known “Uncompressing Linux ...”-message

during start-up. A second startup_32() function initialises high-level kernel functionality and

mounts the root file system through Process 0. This will then be a mounted uncompressed

RAMdisk or an initramfs, or possibly another file system.

 Finally the start_kernel() function is run, which in turn does a lot of initialisation and

shows the “Linux version 2.6.xx . . .” –message on the screen. It is start_kernel() that

initialises the earlier discussed subsystems such as the paging (page_init()), memory manager

(mem_init()), interrupts (init_irq()), cache(kmem_cache_init()), system time and

date(time_init()), and threading(kernel_thread()). After a cpu_idle() call, the scheduler takes

control and the kernel thread then creates the init process, which runs as long the system is

running.

5.6 Fourth Boot Stage

 The init process takes care of the rest of the start-up in User Mode. It calls the init()

function, which issues the execve() system call. This runs the executable init program, which

is controlled by the inttab file. The program is then referred to as Process 1, and is the first

regular C application to run. The task of this program is to start various applications and some

key software components through rc.sysinit and other rc-scripts related to different runlevels.

Process 1 can mount the real root file system if initramfs was used.

 The kernel has no requirement to the init program, so it is possible to set any program

80

desired as init. This is done with an init=PATH_TO_THE_INIT boot parameter. This is not

recommended in most cases however, since it might result in a kernel panic and perhaps a

useless system. [9:chap.4, 10a, 63]

5.7 Standard System V init

There is an init program that follows most Linux distributions that is named Standard

System V Init.8 It resembles the init found in UNIX and gives a great flexibility to configure

the start-up of a system. The package includes the following commands: halt, init, killall5,

last, mesg, runlevel, shutdown, sulogin, utmpdump, and wall. The package cross-compiles

easily and is available at ftp://ftp.cistron.nl/oub/people/miquels/sysvinit/.

System V init introduces runlevels in /etc/inittab, and /etc/rc.d defines which services

that will run on each level. When going from one runlevel to the next, the services started in

the first shuts down, and the ones in the next runlevel are started.

 The different runlevels are represented in Table 1.

Table 1: Linux Runlevels

On workstations the runlevel is usually 5 at system start-up. If no access control is

necessary, it can be set to 1 on embedded devices.9 The runlevel can be changed later on using

either init or telinit, which is a symbolic link to init. This will communicate with the original

init through a /dev/intitctl FIFO. However, in a mobile phone, which seldom is run as a multi-

user system, such flexibility is overkill. Therefore BusyBox init is more usual on embedded

systems. [7:chap.6]

8 System V is a name used because of the UNIX legacy, as it was one oft the more important UNIX releases.

Many programs on a UNIX system run on Linux, and the other way around.

9 Setting the runlevel to 1 is an easy trick for being able to change the root password if it has been forgotten.

0 System is halted

1 Only one user on system, no need for login

2 Multi-user mode without NFS, command-line login

3 Full multi-user mode, command-line login

4 Unused

5 X11, graphical user interface login

6 Reboot the system

81

5.8 BusyBox init

 BusyBox provides most of the init functionality an embedded systems need. It also

saves the developer from keeping track on an additional package, since it is included in the

BusyBox package.10 However, it does not include runlevel support.

 /sbin/init is a symbolic link to /bin/busybox, and therefore BusyBox is the first

application to run on the system. The init routine of BusyBox does the following:

1. Sets up signal handlers for init.

2. Initialises the console(s).

3. Parses the inittab file, /etc/inittab.

4. Runs the system initialisation script. /etc/init.d/rcS is the default for BusyBox.

5. Runs all the inittab commands that block (action type: wait).

6. Runs all the inittab commands that run only once (action type: once).

7. Once it has done this, the init routine loops forever carrying out the following tasks:

8. Runs all the inittab commands that have to be respawned (action type: respawn).

9. Runs all the inittab commands that have to be asked for first (action type: askfirst).

 At point number 2, BusyBox determines whether the system was configured to run the

console on a serial port, for instance by passing console=ttyS0 as a kernel boot parameter.

If no /etc/inittab file exists, BusyBox uses a default inittab configuration. This means

that it sets up default actions for system reboot, system halt, and init restart. In addition it will

start shells on the first four virtual consoles /dev/tty1 through /dev/tty4. If the /etc/inittab

exists, BusyBox will parse it and store the commands inside internal structures so that they

can be carried out at appropriate times. There is an example inittab file in the documentation

that follows BusyBox. Each line of the file follows this format:

 This is actually the same format as in System V init, but here the runlevel field is

ignored and can be left blank. In addition the id field has a different meaning. Here it refers to

which TTY is responsible for starting the process. This field can be left blank if the process is

not to be started in an interactive shell, but for the sh shell it must be specified. The process

10 The BusyBox package contains a reduced set of file, shell, and text manipulation utilities that are found on

every Linux host.

id:runlevel:action:process

82

field specifies the path of the program to run and its command-line options. Table 2 specifies

the eight actions to be applied to the processes. [7:chap.6, 64]

Table 2: BusyBox init actions [7:195]

5.9 Faster Booting

For a mobile phone it is important to get the hardware responsive to user input as fast

as possible. This requires that the window manager and everything related to user interfaces

are up and running. As opposed to a router, for example, the networking stack need not be

running at this point, and may be initialised at a later point. There are mainly three booting

stages that may be considered when one look at the booting time:

• Boot loader: POST, locating kernel image, copy (and uncompress) kernel image into

RAM.

• Kernel turn-on: Driver initialisation, set up subsystems, file system mounting, transfer

control to user space

• User-Space turn-on: Sequentially starting of services, loading of kernel modules

The copying and uncompressing of the kernel is dependent on the kernel image size, if

one ignores the technological issues. Naturally, it is more time consuming copying and

uncompressing a large kernel image than a small one. This could also be avoided by

implementing XIP. As described earlier it means that instead of copying the kernel image to

RAM, it is run directly from flash memory. However, the downside by this is that this slows

the execution of the kernel as flash operates slower than RAM. One also needs more

expensive flash storage space, as the image cannot be compressed. Further, changes to the

Action Effect

sysinit Provide init with the path to the initialisation script.

respawn Restart the process every time it terminates.

Askfirst Similar to respawn, but is mainly useful for reducing the number of terminal
applications running on the system. It prompts init to display "Please press
Enter to activate this console." at the console and wait for the user to press
Enter before restarting the process.

Wait Tell init that it has to wait for the process to complete before continuing.

once Run process only once without waiting for them.

ctrlaltdel Run process when the Ctrl-Alt-Delete key combination is pressed.

shutdown Run process when the system is shutting down.

restart Run process when init restarts. Usually, the process to be run here is init itself.

83

flash drivers must be made, as they cannot operate from flash. They may run out of RAM.

However, this can be avoided with the use of CRAMFS and a XIPed solution. This will then

save some RAM space. If a XIP solution is not chosen, copying-time can be reduced by using

DMA to transfer the image from flash to memory.

In the second stage a simple trick is to use the quiet mode, which disables kernel prints

during booting. This is done with a –quiet to the command line. The messages can either way

be viewed later using the dmesg command. Another trick is to hard-code known system

values in the kernel, such as loops_per_jiffies, where jiffy is a time period that depends on the

processor clock frequency. The system uses this to calculate how long tasks take to complete.

Other known values can be hard-coded in the drivers. Finally, a proper root file system must

be used. For example, it is known that JFFS2 is slow to boot whereas CRAMFS and ROMFS

are faster. JFFS2 also requires 4 MB of RAM for indexing for a 128 MB flash.

In the third stage it is possible to making kernel modules into a single module since it

takes shorter time to load one than many. Here concerns must be taken to the performance of

the running system. All modules might not need to be loaded at this point. Finally, the RC

scripts that start system services sequentially may be tuned to run in parallel, further reducing

the booting time. This may result in a significant reduction, but care must be taken regarding

possible dependencies between services. [9:Appendix A]

There exist several methods to measure the system boot-up time, easily found on the

Internet.

5.10 Summary

This chapter has shown the details of the flexible Linux boot process both regarding

development and debugging hardware, and how Linux cooperates with the hardware. Special

emphasis was put on the improvements of the 2.6 kernel. This flexibility especially eases the

development phase of a Linux driven mobile phone, but also the choices of solutions for file

system and memory combinations as shipped from the fabric.

85

Chapter 6

COMMERCIAL AND OPEN SOURCE

DEVELOPMENT SOLUTIONS

In this chapter two more or less commercial solutions in addition to two open source

solutions will be investigated in terms of development environment and other libraries on a

theoretical level. This will show the potential of Linux on both a commercial and an open

source level as a mobile operating system. Trolltech will be discussed primarily on an

application level and MontaVista on kernel enhancements. An insight into the broad IPC

mechanisms provided by Trolltech is also provided. OpenMoko will be discussed with a focus

on drivers and libraries, whereas the information on Ubuntu Open and Embedded is still

scarce due to the recent start-up, so there is not much information to be found.

6.1 Trolltech

Trolltech is a Norwegian company with two product lines: Qt and Qtopia. They were

one of the first companies in the world to use a dual licensing model. The business model

allows software companies to provide their products for two distinct uses - both commercial

and open source software development. This type of licensing is based on Quid Pro Quo –

something for something. Either the customers of Trolltech may release their software under

the GNU Public License, GPL, or they may purchase the appropriate number of commercial

licenses from Trolltech and release the software under a license of choice. Trolltech claim that

this strategy will make them able to provide the best cross-platform development tools in the

world. The commercial license makes the money, and the open source licenses ensure quality

and stability of the products delivered by Trolltech. Further, they claim their open source and

86

commercial developer ecosystem has as many as 150,000 developers worldwide. [65, 66, 67]

6.1.1 Qt

Qt is a cross-platform C++ application development platform. Qt includes the Qt Class

Libraries, which is a collection of over 400 C++ classes. Further it includes Qt Designer for

rapid GUI and forms development, and other tools as well. “The Qt class libraries aim to

provide a near-complete set of cross-platform application infrastructure classes for all types of

C++ applications.” [68]

6.1.2 Qtopia Core

Qtopia Core is a version of Qt that is a C++ application development framework

intended for single-application devices powered by embedded Linux. It provides the same

API and tools as other versions of Qt, but it also includes classes and tools to control an

embedded environment that will be discussed in the subsequent parts.

Qtopia Core, as with Nanowindows does not need the X Window System opposite to

Qt/X11, as it also may provide an entire window system of its own. This is one of its primary

strengths. It can use the Linux virtual frame buffer or it can use graphical interfaces to the

devices directly. It also support accelerated graphics. The Qtopia Core library replaces the X

Window Server, X-lib, and Qt/X11 as seen in Figure 16. This window system also uses a

server, where the clients communicate with the server using shared memory (i.e. both parties

read and write to it). It supports raster and vector graphics, and 3D graphics through the

OpenGL ES API. Qtopia Core does further provide non-graphical components such as

networking and database interaction. Unwanted or unused features of Qtopia Core can be

excluded to further reduce the footprint. [69]

Figure 16: The Qtopia Core Architecture [69]

87

6.1.3 Qtopia Phone Edition

Qtopia Phone Edition is the phone intended version of Qtopia Core and Qtopia

Platform. The Core provides the windowing system, core widgets, and operating system

abstraction, while the Platform includes the telephony library and the PIM-library (Personal

Information Manager). A part of Qtopia Platform is the application manager system Qtopia

Server/Launcher. It controls the multi-application environment, which handles the telephone

related tasks in addition to other applications and is always running. The device must always

be able to receive a call, and this is also supported further down, in the kernel, as discussed in

earlier chapters. It controls IPC and application life-cycle management including multi-

tasking. Qtopia Core IPC will be explained in chapter 6.1.5.

The Qtopia Phone Edition is in other words an application platform and user interface

for Linux-based mobile phones that in addition to the Qtopia Core and Qtopia Platform

functionality comes equipped with pre-integrated applications such as a PIM, calendar,

messaging for SMS, MMS and mail, games, clock, camera, and SIP based VoIP. It further

includes a HELIX DNA multimedia framework for support of playback and streaming of

MP3 and other audio and video formats such as AAC, WAV, H263, and MPEG4, all with and

without DRM. For the audio it uses the Advanced Linux Sound Architecture, ALSA. It

implements a safe execution environment (SXE) for the device and network when

downloading and running native applications, such as Java. SXE gives user applications

limited access to the system resources, and typically access is only given to the display,

network, and keyboard. Further, Qtopia Phone Edition supports most wireless standards, and

it has support for non-western writing system, predictive keypad-based typing, customisable

full-screen handwriting recognition, and on-screen keyboard input. The user interface is

customized and personalized through a theming engine.

Trolltech claims that Qtopia Phone Edition is the de-facto standard application

development platform and user interface for Linux-based mobile phones. The main

advantages are that it is platform and device independent with a straightforward development

environment. It has the source code available and open for customisation, of course depending

on the kind of licensing chosen from their product line. Up and running it requires between 24

and 32 MB RAM on a Linux platform. [70, 71, 72]

88

Figure 17: Qtopia Phone Edition diagram [72]

The hardware requirements of Qtopia Phone edition are listed below.

Development environment:

Linux kernel 2.4 or higher

GCC version 3.3.5 or higher

Footprint:

Standard build targets 32MB Flash ROM, 32MB RAM (including Linux)

Hardware platform:

All processors supported by Linux with a C++ compiler and frame buffer driver.

Verified on x86® and ARM® 9 & 11 chipsets, e.g. Marvell®, Freescale®, NXPTM and

NEC®.

6.1.4 Qtopia Greensuite #1 and Greenphone

The Greensuite #1 solution of Trolltech is a solution built on top of Qtopia Phone

Edition that includes software such as web browsers, media players, messaging client, and

video telephony from third parties. The Qtopia platform architecture provides a plug-in

framework with dynamic linked libraries that can also be used of second and third parties.

The Document API will not be discussed here. The product launch for Greensuite #1 will be

first half of 2007. [73]

89

Figure 18: The Qtopia Greensuite #1 Architecture [73]

Also, Trolltech have developed a dual licensed hardware component of the

Greenphone SDK. This SDK provides a complete environment for developing and modifying

application software for Qtopia Phone Edition on the Greenphone.

6.1.5 Qtopia IPC and Inter-object Communication

The Qtopia IPC is based on channels and messages in a modern Service-Oriented

Architecture manner. Objects or applications offer services that are published or can be

looked up and used by other objects or applications using loose couplings with the QCOP as

the base messaging protocol. “QCOP is a many-to-many communication protocol for

transferring messages on various channels. A channel is identified by a name, and anyone

who wants to can listen to it as well as send messages to it. The QCOP protocol allows clients

to communicate both within the same address space and between different processes.” [74]

Applications can send messages to and listen for messages by connecting to the receive()

signal on a QCopChannel. As it will be shown, it is a flexible protocol.

Within a mobile phone, Qtopia’s signals and slots (described shortly) are used for

sending simple messages between applications with QCOP as the communications protocol,

for example from Qtopia Platform services to user applications. This resembles the message

90

and queue mechanism discussed under the IPC section of chapter 3, and is called Qtopia

Services. Qtopia Services let all applications access generic services supplied by other

applications, such as the PIM, and may be used by an application to invoke a requested

service in the remote application. The application that shall provide a service can be chosen

by the system integrator or the end-user. “Each new service must be carefully specified as it

provides a system- wide API that can be invoked by other applications and the user. A service

should only be added if it:

• Provides new functionality not already provided by a pre-defined service.

• Is useful to other applications.

• Is well defined within the scope of the application type, e.g. openURL(QString

<url>) for a web browser.

• Avoids adding unnecessary functionality which could complicate the user

interface.”

[75]

Further, the IPC system consists of three major classes; The QtopiaIpcAdaptor,

QtopiaChannel, and QtopiaIpcEnvelope. The QtopiaIpcAdaptor is the preferred way to

interface with the system, while the QtopiaChannel and QtopiaIpcEnvelope classes are

provided to ease the transition between the Qtopia QCopChannel based systems. [76]

The signal and slot API first of all supports inter-object communication within an

application or program. An object uses a connect() call to relate a signal issued by another

object to a slot that treats the signal in some appropriate manner. An example can be where a

Quit-widget which signal clicked() is connected to an application’s quit()-slot. The

programmer can choose what to do with the signal, which here most naturally is to quit the

application:

Connections can also be made between different threads, since Qtopia Services also

uses the signal and slot mechanism as a basis for communication. Then it is used on different

applications, and hence it can be used on different mobile phones as well, for example in a

game where one can play against each other. Summarized, the QCop protocol supports the

signal and slot mechanism for inter-object communication between applications, within an

application, and between handsets.

Qtopia Data Sharing (QDS), is a form of remote procedure call implemented on top of

Connect(button, SIGNAL(clicked()), qApp, SLOT(quit()));

91

Qtopia IPC, which as its name implies provides data sharing. As an example, an application

can search for a (advanced) Qtopia Data Sharing service converting a jpeg image to bitmap

using the following code:

It uses SQL as the standard database for data sharing and increased performance,

though any other database engine may be used. The result given from the remote service will

give a key, which locates the data stored in the database. [77]

Another way of sharing data is Qtopia Data Linking (QDL), which link data across

applications with the use of globally unique references to objects. Links in an event calendar,

as an example, will when activated send a message to the Contacts application that displays

the contact data. The QDL requires no knowledge of the Contacts application, which may be

chosen by the end-user. Qtopia Data Sharing is more efficient than Qtopia Data Linking. [70,

78]

Another implemented IPC mechanism abstraction is pipes, found in the subclasses of

QIODeivce. The QIODevice class is the base interface class of all I/O devices in Qt. It can

handle data inputs and outputs as explained in chapter 3 and reads data from cache, files, and

sockets. All the IPC mechanisms are also accessible through command line commands and

hence scripts. [78, 79]

Qtopia Core also support something referred to as implicit sharing, using a form of

copy-on-write, which without the programmers notice shares classes used by multiple

processes to save memory. [70]

6.2 MontaVista

MontaVista offers an optimised Linux operating system and development environment

through their MontaVista Linux Consumer Electronics Edition. It is made for wireless

handsets and mobile phones with requirements for power management, hard real-time

performance, fast start-up, and small footprint, and is called Mobilinux. MontaVista a similar

solution to that of Trolltech, except that they also offer their own kernel. Therefore they also

are in close collaboration with board vendors, and offer solutions shipped with a board and all

the software. They collaborate with Texas Instruments for commercial Linux offerings on the

QDSServices service("image/jpeg", "image/bmp")

if (service.count() == 0)

 qWarning() << "No jpeg to bitmap image conversion service

available";

92

OMAP platform and have other projects related to low-level issues such as Dynamic Power

Management focusing on improved power management for consumer devices such as mobile

phones. They also have a project on Variable Scheduling Timeouts that focuses on extending

the stand-by time of battery powered devices, and they have designed the Protected RAM File

System (PRAMFS).

For the Open Source Community they have contributed with much work where now

some of it has been incorporated in the official kernel release. An example is their work with

the Open Source Real-Time Project which goal was to reduce interrupt latency and task pre-

emption latency. Both the O(1) scheduler and the pre-emptive patch are now implemented in

the 2.6 kernel, as discussed in earlier chapters. Though they claim maybe too much of the

credit for these kernel additions, there is no doubt that they participated. MontaVista claims

to be the leading provider of commercial grade Linux for intelligent devices. [80, 81, 82]

6.2.1 Mobilinux

The current version of Mobilinux, version 4.1, is based on the Linux 2.6.10 kernel.

MontaVista has developed it with enhanced core capabilities, reduced footprint, rich

networking capabilities, advanced real-time support, and MontaVista’s own dynamic power

management. Their goal is, as expected, to reduce RAM and ROM requirements and

maximize battery and size performance. The core capabilities are enhanced with an event

broker, faster booting, and improved stability and reliability. Mobilinux has improved real-

time support and implements a fully pre-emptive kernel. It uses the reduced C library uClibc,

DirectFB on top of the Linux frame buffer, and supports SQASHFS as the compressed read-

only file system to be able to provide a reduced footprint. Other supported file systems are

PRAMFS, and JFFS2 and YAFFS with support for both NOR and NAND flash. It has ARM

Thumb support and implements application XIP. Mobilinux comes as a complete

development platform with a platform development kit (PDK) and an application

development kit (ADK). The platform development kit consists of Eclipse-based analysis

tools, CPU architecture cross tool chains, a Linux (board) support package with pre-built and

tested drivers, and target application packages. [83]

The ADK includes DevRocket, which is integrated development environment

delivered as standard Eclipse plug-ins, and contains much of the same analysis tools as in the

PDK. In addition to the features delivered by the PDK, the ADK has a virtual target

environment. The debug set-up is further made easy by automating the edit/compile/debug

93

cycle in one click.

Figure 19: The MontaVista Mobilinux 4.1 [84]

All in all, it offers a complete mobile phone software environment together with

Openwaves’ Phone Suite Version 7, as seen in Figure 19. [84]

6.3 The OpenMoko strategy

The OpenMoko camp, with its NEO1973 mobile phone, has taken on another business

strategy than Trolltech and MontaVista. They favour a complete open strategy, as any regular

PC intended open source Linux distribution.

The software of the mobile phone is based on the 2.6.20 kernel. It runs on a Samsung

board with 64 MB NAND flash and 128 MB RAM. At the moment it has GSM/GPRS, USB,

and Bluetooth support. It is equipped with a touch screen, and only two buttons for power and

for auxiliary devices. It uses U-boot as boot loader.

The only two components that not are free software are the GSM/GPRS Modem and

the AGPS (Assisted GPS). The AGPS chip gets it assistance via GPRS from an Assistance

Server which helps cut down the time used to determine the position of the mobile phone.

This is useful for emergency calls dispatchers, and in near future it might be required by law

to be able to access the mobile phone’s position in relation to emergency calls. [85] The

Hammerhead AGPS used in the Neo 1973 connects to the UART-1 and the UART-2 bus on

94

the board and uses a gspd daemon as plug-in driver. [86] It can also be used with I2C and SPI.

[87] The following information is available to the high-level software:

• Position data

• Library status

• Time-out and Packet Available

The high level software sends the following messages to the plug-in:

• Assistance data

• Positioning Commands

• Configuration Command

The AGPS driver has to be closed source by U.S. law, and thus the phone is only

delivered that way. If it is not, it is regarded as munitions (weapon or related to weapon). [88]

The GPS/GPRS Modem is Texas Instruments Calypso based, but not much info on it is

provided due to Non Disclosure Agreements (NDAs). It uses the UART interface however,

with standardized protocols. The software of the GSM/GPRS Modem and the A-GPS are

delivered as binaries. [89, 90]

6.3.1 OpenMoko Development Environment

This open source project also provides a development environment, namely the Open

Mobile Communications Platform (OpenMoko). The project intends to provide a completely

open standard framework for developing mobile phone applications, much like Trolltech's

solution. The phone comes shipped with a package manager to be able to take full advantage

of the all ready large Linux application community. “The Development Environment consists

of the Build Environment, the Development Tools, Development Server, Build Server, and

Development Workstations.” [91] The build environment to build the OpenMoko distribution

is made by using OpenEmbedded, which is a popular open source build system. [92] The

development tools are open source tools like Git (tree), Bugzilla (bug tracking), etc. All

components of the build server and development workstations are also based on open source

projects.

The key of OpenMoko’s business strategy is to trigger the open source community

first. With them they will be able to ensure increased revenues for both carriers and handset

developers. The idea is to let the users control their own environment of applications. The

handset manufacturers can get a reduced time to market and the carriers will experience a

large increase in data traffic. Applications may form the next generation of multi billion

95

industry similar to that of ringing tones. It’s a win-win situation for all three parts: users,

carriers, and handset manufacturers. [4]

The OpenMoko Platform is based mostly on libraries from existing open source

projects, such as GTK+. In addition to the closed source drivers, OpenMoko have added four

components to form the application framework: libmokocore, libmokonet, libmokopim, and

libmokoui. Figure 20 shows the complete OpenMoko platform, with the licensing on the left.

Figure 20: The OpenMoko Platform. [91]

Libmokocore aims to provide messaging between applications, switching on and off

devices, controlling light, volume, etc. through the dbus, which is a high-level interface to

IPC. The core also uses Gconf, which stores application preferences. [93] Libmokonet

provides high-level connection functionality, such as for the GSM and GPS, but also

Bluetooth etc. Libmokopim provides a high-level API to query the Personal Information

Manager. Finally, libmokoui provides API for providing UI events, such as playing an alarm

tone with the ALSA driver, but also GTK+ derived high-level widgets. [94]

96

6.4 Ubuntu Mobile and Embedded Edition

May the 5th, 2007, Matt Zimmerman, the CTO of Ubuntu announced on the Ubuntu

development mailing list, that there has been started an Ubuntu Mobile and Embedded

project. It is to be developed together with Intel due to their “new low-power processor and

chipset architecture.” [95] This is a tiny, low-energy chip designed for embedded devices such

as the mobile phone. It has the codename Silverthorne. It is a chip that will be one-seventh the

size of conventional processors and consume just 10% of the power, according to Intel. [96]

Further, according to [95], “the first release of this edition will be in October with Ubuntu

7.10.”

6.5 Summary

 The solution offered by MontaVista as presented in this chapter resembles the

solution offered by Trolltech to a certain degree. However, it is very common to use the

Qtopia solution on top of the MontaVista kernel, as it is better for application development.

Trolltech do not touch the kernel, and by combining the two solutions, one combines the best

commercial developed solutions in the market. There is, however, not so much info to be

found on the details of the MontaVista solution. It proves that their “open source” is not as

open source as they claim it to be. One can easily find out what their solutions do, but not

necessarily how they do it. Their solutions such as DevRocket are delivered as pre-installed

plug-ins in the open source Eclipse, which is delivered under the Eclipse Public Licence

(EPL). Such plug-ins may either be derivative work or not. If it is not derivative, that is if it

just uses the interfaces or interact with the existing Eclipse, the “new” code can be licenced

under whatever licence chosen, as long as the existing code still is under EPL. This means

that the new source code do not have to be open source. This gives MontaVista the possibility

to charge money for their solutions. Further, EPL and GPL do not allow one to distribute a

combination of EPL and GPL licensed code (derived work), since EPL does not allow another

license to be applied to it, and GPL does require that all the derived work have to be released

under GPL. This means that if the plug-ins are considered to be derivative work, they cannot

be GPL’ed at all, neither the plug-ins nor the combination. [97, 98]

There could be written tons of books on the legal issues to these licensing issues, and

this will not be treated in detail here. However a few points are worth mentioning: There are

97

usually two main licenses used in open source project: GPL and LGPL. The Linux kernel is,

as known, distributed under GPL. So, one would expect the MontaVista kernel modules also

to be licensed under GPL, as it is a derived work of the kernel. However, common practice is

that the linking of binary modules is allowed, even though they are incorporated to the kernel

upon linking. This is a legal grey area, but this practice is allowed as long the modules can be

shown only to use standard services exported to modules by the kernel. That is, it must be

shown that the functionality implemented is not Linux specific. Therefore, MontaVista and

others can deliver non-GPL’ed binary modules.

The LGPL allows one to use an unmodified LGPL licensed program with any other

code, without having to distribute that combined program under LGPL. Thus linking

something proprietary with the C library, which is LGPL licensed, is perfectly acceptable.

The kernel is however not where MontaVista receive their major return-of-investment

(ROI). They make their money on services: the development framework solutions and their

customer support. Many of their improvements are shared with the open source community.

Further, Trolltech allows their customers to either use the open source version if they whish to

deliver their self-made solutions under GPL as well. Otherwise, Trolltech can sell a

commercial version, which is where they earn their money. If their open source version were

LGPL’ed, then they would have no source of income.

OpenMoko also offers much of the same, but then as completely open except a couple

of drivers. The advantages that the other vendors offer also apply for OpenMoko, but in

addition they take into account that there should be nothing hidden from the open source

community in accordance with trying to make their solution become a de-facto development

platform. This will be done through GPL’ing their development platform. Now, it must be

taken into account that the NEO1973 and OpenMoko are hyped by the community, and that

the project is already 5 months late. They have not completely revealed their planned business

strategy, and might have something hidden up their sleeve since they do exactly the opposite

of what Trolltech use as the key to their existence; they do not use a double license. Further, it

will certainly be interesting to see what the Ubuntu Mobile and Embedded project comes up

with.

Either way, these solutions provide pretty much the same advantages for the

developer: Reduced cost, reduced time-to-market, and reduced risks.

98

6.5.1 Reduced Costs, Reduced Time-To-Market, and Reduced Risks

As it will be shown in chapter 7, the start out of a self-made Linux embedded

operating system, may be more time consuming then one might think. Therefore, the

statements of the discussed vendors about their products leading to reduced costs do stick.

First of all, the use of Linux cuts the Bill of Material (BOM) due to a smaller footprint, less

use of memory, etc. Software projects costs, however, do not stop there: there are huge costs

related to development, maintenance, and testing as well.

For GPL and LGPL licensed code the runtime or distribution fees adds up to 0 dollars.

However, the time spent on collecting matching packages, making sure they interact correctly,

and then building applications usually take weeks and months, and naturally this cost a lot. As

will be concluded later, the money should be spent on developing applications. In addition the

components are depending on the board used, and the work might have to be done all over

again when a new component or completely new board is required. Further, as opposed to

competing operating systems, the commercial Linux vendors can take part in the open source

community and share and develop solutions there. Either they can develop, test and deliver

community-started initiatives, or they can start them themselves and trust the further

development and testing with the community. Either way it is beneficial for all parts.

All the time saved on a pre-built distribution can be used on developing applications.

Further, these vendors often collaborate with board producers, thus one can further reduce

time-to-market by not having to use so much time on choosing the correct board. This again

results in reduced risk. The product is pre-tested, the support can help one solve technical

issues quickly, and also legal issues in many cases.

6.5.2 To Choose a Pre-Built Distribution or not

Of course there are downsides by choosing a pre-built distribution. It costs some

money, it does not give a complete control of all the packages, it gives a dependency relation

ship to some degree, etc. In addition one needs to watch ones back to not to fall in a lock-in. If

one does need a very high degree of control over the contents of the system, a roll-out-you-

own solution might be advisable. Besides that, there is no straight answer to whether one

should choose a pre-built distribution or not. If one is chosen, there are many considerations

to take, and again they are case specific.

99

Chapter 7

CREATING A CROSS PLATFORM

TOOL CHAIN

One of the goals of this master project was to gain some experience with Linux

Mobile. There are two ways to do that; either one use something pre-built, or one roll out ones

own operating system. Having no experience at all with this in the beginning, it was therefore

chosen to experiment a little with both methods for as to being able to have an opinion on the

implications of them. As mentioned earlier is the tool chain creation vital for the system

development, as it used to compile all the programs and libraries intended for the target. There

exist pre-built tool chains as well, and in case one of those is to be chosen for a project, the

versions and possible patches applied must be evaluated in advance, as with all the

components of the system.

This chapter shows the work of trying to build a cross tool chain for an ARM target

architecture on a Linux Kubuntu 6.10 Edgy distribution with a 1.70GHz Intel Pentium M

processor. The intention was to complete that, and use it for a Linux 2.6 kernel with Qtopia

Core on top on an emulator. This proved to be an extremely difficult task, as warned by many

sources.

7.1 What is the Tool Chain?

The building blocks of a cross tool chain traditionally consist of three main elements:

binutils, a gcc version, and a C library version, usually GNU’s glibc. Other C libraries may be

used as well. Either way, they are all developed and released independently of each other,

which sometimes sadly introduces a lot of problems when it comes to building a cross tool

100

chain. A cross tool chain is built on one specific architecture, while the content built by it is to

be used on another architecture. The cross compiler can also be used to cross compile gcc

itself if one wish to build natively on the target. That may be required for some packages that

do not cross compile easily, for example made easier in combination with a NFS set-up. In

addition are the make command - or actually program, the GNU debugger, gdb, and a text

editor to write the code to be used in the process as well. The make program is in short a

script program that tells the compiler which source code files to process. Gcc is dependent on

make.

7.1.1 Binutils

As explained are binutils related to the process of linking compiled files, binary object

code, together. The small programs share a common library called the Binary File Descriptor

Library, libbfd, as they often passes arguments between them. [99]

7.1.2 The Gnu Compiler Collection

The Gnu Compiler Collection is not just a C and C++ compiler as it was in its first

releases, but a set of compilers. It can also handle Fortran, Pascal, Objective-C, Java, and Ada

through added front ends. The front end is the language specific part of the compiler, and they

are maintained in separate projects. Each language shares a common back end for each of the

processor architectures, which generate the machine code. Gcc is the official compiler for

Linux, but it is also used a number of other systems as well. [100]

 7.1.3 The C Library

The C library is basically a standardized collection of header files and library routines

for implementing standard operations such as input/output and string handling. These

operations are used by the C programming language, which the Linux kernel is written in. The

header files characterize the functions implemented in the library files. The two C libraries

most probable to be used on a Linux mobile phone is glibc or uclibc.

The glibc package is a collection of many libraries, where one of them is the actual C

library. The package contains four different file types: actual shared libraries, major revision

version symbolic links, version-independent symbolic links to the major revision version

symbolic links, and static library archives. The ones needed for the embedded system are

usually just the actual shared libraries and the major revision version symbolic links.

101

The uClibc package consists of the same four file types as the glibc package and is

supposed to be a replacement of the glibc package. However, it does not contain all the

libraries that the glibc package does, and may therefore be better suited for a mobile phone

with strict storage limitations. uClibc implements only ld, libc, libcrypt, libdl, libm,

libpthread, liresolv, and libutil. The components needed can be identified and copied in the

same manner as for glibc. [101]

 The table in Appendix B provides an overview of which glibc components that are

mainly required for the target system. In addition to the ones in the table, specific programs

may need other components, dependent on their linking.

The actual shared library file names have the format libLIBRARY_NAME-

GLIBC_VERSION.so, where LIBRARY_NAME is the name of the library and

GLIBC_VERSION is the version of the used glibc package. For example, the name of the

math library for glibc 2.4 is libm-2.4.so.

The names of the major revision version symbolic links are formatted as

libLIBRARAY_NAME.so.MAJOR_REVISION_VERISION. Even though the actual shared C

library of the glibc may be 2.4, the major revision may be 6. The math library will then have

the symbolic link libm.so.6. A program uses this link to refer to a library, once it has been

linked. During start-up, the loader will therefore look for this file before loading the program.

In addition to these files, the dynamic linker and its symbolic link will need to be

copied to the target file system. The linker usually follows glibc standard naming convention

with a name ld-GLIBC_VERSION.so. The symbolic link to the dynamic linker however, is

dependent on the architecture for some reason. The name of the symbolic link for ARM

architecture is usually ld-linux.so.MAJOR_REVISION_VERSION.

By the use of binutils, there are two ways one can find out which libraries that an

application depends on in a cross-platform development environment. Either one can use

readelf or the ldd-like command installed by uClibc. To show the dependencies of BusyBox,

the following can be retrieved using readelf:

With uClibc, the command will be the following:

Having determined this, the library components with their symbolic links can be

$ arm-uclibc-ldd ${PRJROOT}/rootfs/bin/busybox
 Libc.so.6 => ${PRJROOT} /tools/uclibc/lib/libc.so.6
/lib/ld-uClibc.so.6 => /lib/ld-uClibc.so.6

$ arm-linux-readelf –a ${PRJROOT}/rootfs/bin/busybox | grep “Shared library”

0x00000001 (NEEDED) Shared Library: [Libc.so.6]

102

copied into the /lib directory of the targets root file system. Some of the libraries are large,

but can be reduced using the strip utility. Here it is important to strip the libraries in the

/rootfs directory that are to be used on the target, and not the original ones. The directory size

may be reduced with as much as 75% with this command:

7.2 Steps for Building a Cross Tool Chain

 To build a cross tool chain, one first and foremost is dependent on a functional native

tool chain and make program. This should be no problem on a Linux host, since it is included

in all Linux distributions. This whole process is sort of a chicken and the egg-problem, which

complicates the building process. First, the C library is dependent on some target-specific

kernel header files from the target kernel it will be built for. Further is the cross compiler

dependent on binutils that are built for the target architecture. The gcc compiler is written in

C, which it is supposed compile programs for, and will depend on the headers from that

library. Luckily is gcc able to be built as a bootstrap loader for cross compiling for itself,

which solves the whole problem. In addition to the components already mentioned, other

packages proved to be necessary as well.

 Before choosing the tool chain packages to build, the kernel version should be chosen.

To decide on what kernel to choose it is important to thoroughly go through the required

components of the target system, both regarding hardware and the proper software to support

the hardware. In the case presented here, the hardware is more or less set, and hence limits the

task of finding the software components that fits this scheme. When choosing a kernel, it is

advised to get the latest stable version of the kernel. One should also update the kernel to the

latest stable version throughout the project up until the beta release. By keeping up to date on

the latest kernel developments, one can decide whether or not an upgrade is necessary. This

will avoid the situation of trying to fix bugs in the kernel that is already fixed in a more recent

stable version. However, the configuration of the kernel should be kept constant throughout

the development of the target system. Then there is no risk to break completed parts of the

system. The task of choosing a kernel involves studying the configuration of the kernel

closely, and to make sure that all developers in a project are aware of the choices that are

made.

 When it comes to choosing the tool chain packages, this is an extremely delicate

process since they all have dependencies between them. A very useful site for this is the build

$ arm-linux-strip ${PRJROOT}/rootfs/lib/*.so

103

matrix at http://kegel.com/crosstool/crosstool-0.43/buildlogs/. This site was used as a source

for choosing the packages for this project, as no official sources on what packages that fit

together for cross platforms exist. This site only presents glibc as the C library, and this was

therefore used. To demonstrate the difficulty of this process, this site lists the combinations of

“gcc, glibc, binutils, and Linux kernel headers, lightly patched, that can build a cross-

toolchain and compile a kernel for the given CPUs. (It doesn't say anything about whether the

resulting toolchain works!)” [102] The crosstool-script, which this project is developing, is

supposed to provide a successfully built cross tool chain. Even that proved to be difficult.

7.2.1 Build Process Overview and Workspace Set-up

 The build process has five main steps, each of them with the usual four iterations.

Tool chain build overview:

1. Kernel headers set-up (May be done just before the C library set-up)

2. Binary utilities set-up

3. Bootstrap compiler set-up

4. C library set-up (glibc, uClibc, or some other variant)

5. Full compiler set-up

Individual package iteration:

 1. Unpack the package (tar)

 2. Configure the package for cross-platform development (config)

 3. Build the package (make)

 4. Install the package (make install)

 The working directory was set as the following: The PRJROOT variable was set as the

project root workspace directory. Further were the bootldr, build-tools, debug, images, kernel,

project, rootfs, sysapps, tmp, and a tools directories created as subdirectories to

${PRJROOT}. To set the environment variables that would be used as inputs to the

configuration of the different packages and to set the PATH variable for the host being able to

find the correct binaries the following shell script was used:

104

7.2.2 Package Choices and Additional Tools

 In accordance with the matrix presented on the Crosstool pages, the following

packages were chosen and matched against signature files:

Kernel: linux-2.6.19.2

Binutils: binutils-2.17,

GCC: gcc-4.1.1

Glibc: glibc-2.5

Table 3: Primary cross tools chain package combination

The matrix lists all these components, but some also uses other kernel headers and/or

other native gcc. This combination was chosen as it was fairly new, was reported to work on

many platforms, and used only four packages.

7.3 Kernel Headers Set-up

The kernel was extracted to its subdirectory under the kernel directory in the

workspace. The configuration of a kernel will result in a .config file, which in turn will be

used to generate a number of file headers and symbolic links to be used during the rest of the

building process. For the configuration of an ARM kernel, patches to the kernel from the

http://arm.linux.org.uk/delveoper/ site are often necessary. The stable version of the kernel

downloaded from kernel.org must then be patched with the patches. Any errors during the

patching will be found in files with a .rej extension in the usr/src/linux directory. The kernel

was chosen not to be patched at this point.

 There are four different configuration methods for the kernel: make config, make

oldconfig, make menuconfig, and make xconfig. The first provides a command-line interface

where each configuration option is chosen one by one. It uses a .config file to set defaults.

export PROJECT=frodux

export PRJROOT=/home/frodux/os_devel/${PROJECT}

export TARGET=arm-linux

export PREFIX=${PRJROOT}/tools

export TARGET_PREFIX=${PREFIX}/${TARGET}

export PATH=${PREFIX}/bin:${PATH}

cd $PRJROOT

105

The second method will only configure those options previous not configured in a .config file.

The third method is a cursor-based terminal that works as the make config method. The final

method is an X Windows menu that works in a similar manner as the first and third method.

They may all be used to configure the kernel, and they all result in a .config file stored in the

root directory of the kernel sources. The make menuconfig, however, is the preferred method

of developers. To view the kernel configuration menu the command may for instance be:

The configuration itself is not important at this point. The only variables that must be

set are the processor and architecture, since only the header files are to be used. It is not the

scope of this thesis to cover the configuration in detail.

The graphical configuration of the kernel showed, after searching lots of forums, that

it was depending on a package named ncurses-devel installed on the host. According to the

packet manager “This package contains the header files, static libraries and symbolic links

that developers using ncurses will need. It also includes the libraries' man pages and other

documentation.” It was found as libncurses5-dev using $ apt-get install ncursees-devel.

 The configuration was tried again, and seemed to work. According to [7:119] a check

to see everything went fine is to verify that the /include/linux/version.h file exists. It did not.

After searching lots of forums again the, make include/linux/version.h command and make

prepare command were tried. [103, 104] The first resulted ok, but to be certain the last one

was also tried. It resulted in some errors but they did not seem to matter too much at the

moment as version.h finally appeared during the first. It was chosen to continue and copy the

header files as planned with the following commands:

7.4 Binutils Set-up

The set-up of binutils is pretty straightforward. The package was extracted under the

build-tools directory and the following command was issued from the build-binutils directory:

$ make ARCH=arm CROSS-COMPILE-arm-linux- menuconfig

sudo cp -r include/asm-arm/ ${TARGET_PREFIX}/include/asm

sudo cp -r include/asm-generic/ ${TARGET_PREFIX}/include

sudo cp -r include/linux/ ${TARGET_PREFIX}/include

$../binutils-2.17/configure --target=arm-linux --prefix=${PREFIX}

106

After days of trouble because an error in the shell script sat a variable wrong, the

configuration, make, and make install worked fine. During this and the following step it

proved that certain tools on the host were needed: Bison, Gm4, Flex, Info, Gawk, Gmp.h,

MPFR, automake, gperf, dejagnu, expect, tcl, autotext etc., are packages who’s presence are

checked during configuration. After weeks of trying and failing, searching forums, and talking

to people with similar problems it was learned, as a rule of thumb, that if the answer to any of

the questions asking for a component are “no”, they should be installed to cause less trouble

in the next steps. They are checking for resources on the host and should not cause much

trouble by not existing, but this project proved the opposite. Details on these tools can be

found on the documentation in the gcc package in the INSTALL directory.

The success of the building of binutils was verified by checking the tools directory

with the following command and results:

7.5 Bootstrap Compiler Set-up

The compiler set-up is done in two steps. First, an initial bootstrap cross compiler is

built by the native compiler. It supports only the C language and it is based on no target

system header files, since they are built in the next major step. The compiler used to build gcc

for cross compilation has to be gcc itself, since parts of it can only be built by gcc. The

compilation of a native non-cross compiling gcc can be any compiler following the ISO C90

standard. This scheme may seem pretty easy, but as warned and as this project proved; it is

the most difficult and erroneous step.

The command for configuring the bootstrap gcc was the following to begin with:

The target and prefix options are already set. The --with-newlib option tells the

compiler not to use the native glibc because the new libraries intended for the target

architecture will be provided in the full compiler build. The result presented below proved

$ ls ${PREFIX}/bin

arm-linux-addr2line arm-linux-gcc arm-linux-nm arm-linux-size

arm-linux-ar arm-linux-gcc-3.4.5 arm-linux-objcopy arm-linux-strings

arm-linux-as arm-linux-gccbug arm-linux-objdump arm-linux-strip

arm-linux-c++filt arm-linux-gcov arm-linux-ranlib arm-linux-cpp

arm-linux-ld arm-linux-readelf

frodux@frodux-laptop:~/os_devel/frodux/build-tools/build-boot-gcc$../gcc-4.1.1\

> /configure --target=$TARGET --prefix=${PREFIX} -without-headers --with- \

> newlib --enable-languages=c

107

that gcc seemed to request a lot of headers, which led to the discovery of needing to install

glibc headers for all gcc versions above 3.2. The --without-headers option is broken and not

yet fixed.

7.5.1 Using Gcc 3.2 and Above

 Discovering that new headers were needed, further errors lead to new packet

combinations were chosen on the basis that it - according to the Crosstools’ matrix - worked

on many platforms, thus seeming quite stable. This new step leads to additional

complications: The native gcc version needed for building an older gcc bootstrap compiler

should be old as well, as they “go better along”. This is the core gcc, referred to as cgcc in

Table 4. Further, the kernel headers needed to build the C library had to be provided in a

package since the combinations listed in the matrix used headers from other kernel versions.11

They would be used when installing only the glibc headers. At this point Crosstools was tried

out in a bit of desperation, but this proved to be just as much to understand as the whole

process since none of the examples even worked. As all recommendations say that one have

to keep trying changing packet-combinations, the process was started over (and over) again.

For the new packet combination was the following choices were tried:

Table 4: Considered cross tools chain packet combinations known to build correctly

11 Some of the kernel headers used here was found on http://ep09.pld-linux.org/~mmazur/linux-libc-headers/ to

save downloading time.

gcc-3.3.6 cgcc-3.3.6
glibc-2.3.2 binutils-2.15
linux-2.6.9 hdrs-2.6.12.0
tls

gcc-4.1.1 cgcc-3.3.6
glibc-2.3.2 binutils-2.16.1
linux-2.6.15.4
hdrs-2.6.12.

gcc-4.1.1 cgcc-2.95.3
glibc-2.2.2 binutils-2.16.1
linux-2.6.15.4
hdrs-2.6.12.0

(…)
In file included from ./gthr-default.h:1,
 from ../../gcc-4.1.1/gcc/gthr.h:114,
 from ../../gcc-4.1.1/gcc/unwind-dw2.c:42:
../../gcc-4.1.1/gcc/gthr-posix.h:43:21: error: pthread.h: No such file or
directory
../../gcc-4.1.1/gcc/gthr-posix.h:44:20: error: unistd.h: No such file or
directory
In file included from ./gthr-default.h:1,
 from ../../gcc-4.1.1/gcc/gthr.h:114,
 from ../../gcc-4.1.1/gcc/unwind-dw2.c:42:

108

They all failed, and the following combination was tried:

Kernel: linux-2.6.9

Kernel headers: hdrs-2.6.12.0

Binutils: binutils-2.15

GCC: gcc-3.4.5

Glibc: glibc-2.3.6

Table 5: New selected cross tools chain packet combination

The kernel headers were as usual copied to the ${TARGET_PREFIX}\include

directory. In addition a packet that may be needed by glibc may be added: linuxthreads. It is

not strictly necessary, but it is recommended for the 2.4 kernel. As NPTL did not seem to

work, linuxthreads was used. The package is extracted to the same directory as the glibc

directory. The commands for this additional step should be:

The --enable-add-ons is used to enable linuxthreads, and possible other additions. It

was therefore later changed to --enable-add-ons=linuxthreads, as it was the only one

working. Cross-compiling=yes is set in the next command to avoid building the headers

natively. This should install the proper glibc headers.

After this, the stubs.h file must be touched to avoid that it appears missing, as it will be

built correctly later:

Then the following commands should install gcc:

--disable shared was set to avoid scripts for creating shared libraries, as the build

$../gcc-3.4.5/configure --target=$TARGET --prefix=${PREFIX} --disable-shared \

> --with-headers=${TARGET_PREFIX}/include --with-newlib --enable-languages=c

$ make all-gcc

$ make install-gcc

$ mkdir –p ${TARGET_PREFIX}/include/gnu

$ touch ${TARGET_PREFIX}/include/gnu/stubs.h

$ mkdir build-glibc-headers

$ cd build-glibc-headers

$../glibc-2.3.6/configure --host=$TARGET --prefix="/usr" --enable-add-ons \

> --with-headers=${TARGET_PREFIX}/include/

$ sudo make cross-compiling=yes install_root=${TARGET_PREFIX} prefix="" \

> install-headers

109

would fail on that according to [7:124] The new step did not work, however. Therefore some

hacks were tried. If a similar message to the one below appears, the inhibit-libc hack may

solve the problem. The hack may be implemented in two ways: by setting an option or editing

the config file.

The option is set by adding –with-inhibit-libc to the configure command for the glibc.

If this does not seem to work, it can be done manually by editing the config file the following

way: The lines -Dinhibit_libc and -D__gthr_ posix_h must be added to

TARGET_LIBGCC2_CFLAGS. That is, the line TARGET_LIBGCC2_CFLAGS = -fomit-

frame-pointer–fPIC must be changed to TARGET_LIBGCC2_CFLAGS = -fomit-frame-

pointer -fPIC -Dinhibit_libc -D__gthr_posix_h. Then configure must be rerun. [9:54]

Further, the --disable-threads could be used when configuring gcc to specify that the

system should be configured without support for threading. This was also tried without luck.

Though not seen reported in any mail archives or on the net, an stdio_lim.h file was touched

in a similar manner as stubs.h, as it appeared missing. This finally solved the problems of

building the bootstrap gcc, and it was installed.

7.6 C Library Set-up

With the binutils and gcc in place, the full C library can be built. The following

command was used:

At this point a crt1.o file that is needed appeared missing. It is a C runtime file that is

used when typing just the program name to run a program, and it is necessary for the system.

Few people report this bug and no workarounds were found. The following commands are the

next ones:

The install-root is set to specify the directory where the library should be installed.

This is set to the ${TARGET_PREFIX}\lib directory, instead of ${TARGET_PREFIX}\usr\lib.

$ make

$ make install_root=${TARGET_PREFIX} prefix=”” install

./libgcc2.c:41: stdlib.h: No such file or directory

./libgcc2.c:42: unistd.h: No such file or directory

make[3]: *** [libgcc2.a] Error 1

$ CC=arm-linux-gcc ../glibc-2.3.6/configure --host=$TARGET --prefix=/"usr" \

> --enable-add-ons=linuxthreads --with-headers=${TARGET_PREFIX}/include

110

After this, the libc.so configure script must be modified accordingly, since the library is not

installed in a default path. The linker will then use these files instead of the native library

files.

7.7 Full Compiler Set-up

As the process stopped at the C library installation, some mail archives suggest that

the binutils or bootstrap gcc installation was not good, though neither explained why. Either

way, the commands for installing the full compiler are:

This will provide support for C and C++ in this case, but other languages are

supported as well, as mentioned earlier.

7.8 Kernel Set-up

 The final kernel set-up is the first real test for the cross tool chain. If it successfully

compiles a functional kernel, other programs should work as well. Though it will not be tested

on real before it is downloaded to the target, but a successful build is a good indicator that it

will work. The following commands will build the kernel image and the kernel modules:

It should be noted that the 2.6 kernel is not dependent on the make dep command as

with earlier kernels to create dependencies for the build process. The files that should be

copied to the images directory in the workspace to be used on the target are the zImage

(vmlinuz), vmlinux, System.map, and .config. They are the compressed kernel image,

uncompressed kernel image, kernel symbol map, and configuration file, respectively.

7.9 Evaluation of the Cross Tool Chain Installation Process

 Even though all packages downloaded were checked for bit errors by the use of their

$ make ARCH=arm CROSS_COMPILE=arm-linux- zimage

$ cd ${PRJROOT}/build-tools/build-gcc

$../gcc-3.4.5/configure --target=$TARGET --prefix=${PREFIX} --enable- \

> languages=c,c++

$ make all

$ make install

111

hash keys, the process was surprisingly difficult as opposed to the expectations. As

mentioned, this is regarded as an extremely difficult process to get right. At every point it was

difficult to know whether it was a minor bug or a bigger bug that stopped the process, thus not

knowing if it was better to keep searching for a bug or changing one packet, the entire packet

combination, or even the host’s operating system. A huge amount of project mail threads were

read, many leading to very narrow areas of the cross tool chain building “science”, and thus

not finding many people knowing anything about the topic. Many of them lead to the same

conclusion: “use Crosstools”. This would sort of be a defeat, and not knowing if the bugfix

was around the next corner, Crosstools was only looked at in a moment of desperation and

interest. It seems like a good option since so many are referring to it, but it requires another

project to try it out.

 As with many open source projects in the Linux world, the building of a cross tool

chain also seems to suffer from a lack of a standard and/or centralized documentation library.

The Linux Documentation Project is too young for it to provide any useful sources that are

detailed enough. Further, the site http://cs.uml.edu/~cgould/ has a lot of useful resources on

Linux and Windows, but mostly this is related to kernel issues. Several consortiums aim to

build standard for Linux Mobile. The Open Source Development Lab (OSDL) has merged

with The Linux Foundation in 2007. [105] The former started the Mobile Linux Initiative

(MLI) which together with members such as ARM, Intel, MontaVista, Wind River Systems,

and many others will try to accelerate the adoption of Linux on next generation handsets.

Further, the Limo foundation aims to build an open mobile communication device software

platform. [106] Hopefully, these and similar projects will contribute to fill the gaps in the

Linux platform with some concrete solutions, such as for the cross tool chain.

113

Chapter 8

EVALUATION

As mentioned in the introduction there are 3 important players in this market: the end

user, the handset manufacturer, and the carrier. They can all benefit from Linux as the de-

facto standard mobile phone operating system, where the aforementioned advantages of a

flexible, open, stable operating system, are preferable. It is flexible in a manner of freedom of

choice in components. It is open in a manner of user space accessibility to kernel functions.

Last, it is stable, because of the open source community’s contributions. New drivers can be

supported fast, and bugs are fixed even faster. However, the most obvious benefit is the cost

reduction due to the open source code. There are no restraints to the use of the Linux source

code as long as it follows the agreements of GPL and LGPL. Further, the flexibility of choice

of physical devices and logical file systems is one of the important factors why Linux has had

such a success on different devices in the past. [10a] Linux has been used and suited to both

embedded devices and regular PCs for years, and the kernel is well known for being very

stable with lower resource requirements than its competitors.

Together with the necessary additions from third parties in form of the GSM driver, or

whatever standard the phone is using (CDMA2000, UMTS, etc.), and possible other closed

source drivers, it is possible to build a full scale mobile phone operating system based on

open source code. With the latest enhancements included in the 2.6 kernel presented here,

Linux has the possibility to become the de-facto standard mobile operating system that

corresponds with the responsiveness requirements of such a device. This applies especially to

smartphones and similar phones where the crossing of a PC and mobile phone is most

evident.

In this thesis it has been shown how the core functionalities of the Linux kernel with a

focus on the basics and the very latest improvements in the 2.6 kernel can take advantage of

114

the continuous improving mobile phone boards. The boards are getting smaller and smaller,

and faster and faster. In addition they are improved with increased power management in

terms of better-suited power modes and reduced current by shutting down certain devices in

active mode. Further they have increased memory functionality in terms of configurability,

speed, size, and usability. There is also seen a lot of integration of different devices and

communication standards on the boards, making them highly flexible to be used whatever

services the operating system (i.e. developer) allows them to. Linux can take advantage of this

by combining a better resource utilization, for example in terms of memory because of a

smaller footprint than its competitors and flexible booting architecture, and it has shown to

perform as well as, and even better than other soft real-time mobile phone operating systems.

 The consumers will want a mobile phone that can perform a variety of functions

including, voice, multimedia messaging. They will want to take photos or video and email the

photos and messages. The phone should also synchronize with a PC, perform mobile

commerce, and of course, play games. However, to get consumers to use any of these services

they have to be easy, quick, and simple to use. For example, if it takes ten steps to take a

photo and email it to someone, it will not be adopted easily or broadly. Applications must be

developed to do this in two or three steps. There, Linux has its core advantage in addition to

the obvious that comes along with the GPL and other licensing standards such as LGPL.

Linux itself offers standardized APIs to be used by programmers. It is already well known

that the Unix/Linux community has one of the largest service/application developer bases.

This is where the key to Linux’ success will lie; With an open kernel, already used for years

on both PCs and embedded devices, with developers knowing it inside out, they have the

potential to extract the money from this industry’s future main income: up-to-date services

and applications built for mobile phones that are running high-level operating systems.

Windows became the de-facto standard operating system for regular PCs because they

gave them a common look and feel. The graphical user interface with the same look and feel

made it accessible and easy to use for everyone and the PC industry became the industry it is

today. Commercial vendors such as Trolltech and MontaVista recognize this, and try to do the

same thing on mobile phones as Windows did on regular computers. In addition they partially

want it to be open source as opposed to Symbian and also Windows Mobile. By providing

handset vendors with a development environment, they can significantly reduce time to

market for handset vendors. Earlier these vendors might have had to make their own

development platforms, maybe based on Linux and other open source projects. However, then

there was used effort on developing that platform, instead of what the end-user ends up

115

seeing: the GUI and the applications.

There is no doubt that in the mobile phone world the kernel is regarded as less

important to the user. It is the services and applications that the user sees that give him, or her,

the true value. In the PC market, the operating systems services in terms of running multiple

applications, file management, etc., are just as important as the user interface. This does not

apply to the mobile phone market. Thus operating system vendors will not gain much, at least

not their major share, of money from their investments in developing the “invisible” kernel

and/or development platform, even though this has to be done to support the always evolving

technology. Here the open source consortiums may play their role by combining the best of

the different actors in the market, thus creating a standard for Linux Mobile.

The handset vendors will have to shift their offerings to become value added suppliers

to the Linux ecosystem. As in any high-tech market, the crucial point is time-to-market. By

making Linux the easy choice, MontaVista, Trolltech, completely opens source solutions

from OpenMoko, Ubuntu, and the likes, can contribute to make Linux the de-facto standard

mobile phone operating system.

Many are reserved to the idea of Linux taking over the mobile phone world, while

those with a solid experience of using Linux show that these perceived pitfalls often are

constructed on the basis of fear, uncertainty, and doubt. Often this is true. There is however

no point not to be critical to the Linux solution as well, since there as demonstrated may be

many pitfalls along the way. There still seems to be a lack of a common ground for the mobile

Linux forces in terms of open source projects that provide different drivers and modules for

the kernel to use. This is both an advantage and a disadvantage. The advantage is that it gives

the developers and users flexibility in the choice of components for the whole system, not just

the kernel. The disadvantage is incompatibility and dependencies, as seen with the cross

platform tool chain. The kernel supports it, but the components become the obstacle. In the

end, such dependencies become the users problem and thus removes his or hers advantages to

some degree.

8.1 Related Work/Future Work

This master project started out with virtually no experience with Linux and mobile

hardware. However, such thorough knowledge of the operating system and the hardware is

required to be able to choose between different hardware and software components – in terms

of Linux configurations, third party additions, and development environments – for a

116

development process. Future work should involve a process of exploring Linux as the base

platform with different development environments, with this thesis as background knowledge.

Further, a comparison of Linux and its major mobile operating system competitors, Windows

Mobile and Symbian, in terms of real-time responsiveness, memory requirements, power

management, and perhaps usability, should be carried out. Therefore the knowledge of

hardware on a level as presented here is required. A last, it will be exiting to see the true

effects on the market of OpenMoko, Ubuntu Mobile and Embedded, but also the GPLv3

license and new technologies in relations to this. It has been very interesting to see the FAQ at

OpenMoko’s website, [90], evolving from virtually nothing to a very up to date insight in

many of the things discussed in this thesis. Sadly, most of it was added too late to be

discussed in this thesis. It can be a source for a future project.

Further, there was no discussion on testing Linux Mobile on an emulator even though

the Qtopia Greenphone demonstration running on VMware was briefly looked at. It is known

that this is a very useful method for testing both kernel configuration and applications.

117

Chapter 9

CONCLUSION

What have been presented in this thesis are the fundamental mechanisms of Linux

targeted for a mobile phone, with a focus on the latest kernel release. The most important,

main components that must be included in an embedded environment are discussed, and the

thesis clearly describes how a standard Linux kernel can be adapted to fit the mobile device.

Further, some of the important differences between the hardware platform of the

computer and the hardware platform of a typical mobile phone are shown.

At last, the thesis has elaborated the challenges and opportunities of employing Linux

as an enabler for advanced mobile services through a flexible booting process and various

development environments. This was also demonstrated through the process of attempting to

build a cross platform tool chain as the basis for an effective development environment.

Linux has a flexible, modular structure with independent functions in interdependent

subsystems. It has, with the latest major kernel release, a soft real-time responsiveness suited

for mobile phones. The changes needed to make it fit a mobile phone mostly regard the

memory, power, and the low-level drivers. The hardware has a different architecture than the

regular PC with enhancements for embedded devices that Linux can use through already

existing interfaces. There is a rich flora of window systems to be used on the flexible, yet

stable, base that Linux provides. Further, there exist vendor solutions, or one can roll out

one’s own development environment with different advantages and disadvantages.

It is safe to say that Linux has the potential to become the de-facto standard mobile

phone operating system. However, the kernel’s surrounding systems that completes the kernel

to form a mobile operating system would benefit from joint forces through opens standards,

which is the cause of Linux kernel’s undisputable success.

119

References

[1] Cheap, hackable Linux smartphone due soon, 2006, November 7.

http://www.linuxdevices.com/news/NS2986976174.html

[2] OpenMoko: The World’s First Integrated Open Source Mobile Communications

Platform, (n.d.). Retrieved 2007, March 28, from: www.openmoko.org

[3] The Diffusion Group, 2006, February 7. Windows & Linux to Displace Symbian as
Dominant Force in Advanced Mobile Operating Systems.
http://www.tdgresearch.com/press066.htm

[4] Blandford, R., 2006, February 8. TDG claim Symbian will be behind Linux and
Microsoft by 2010. Retrieved 2007, March 28, from All About Symbian web site:

http://www.allaboutsymbian.com/news/item/TDG_claim_Symbian_will_be_behind_L

inux_and_Microsoft_by_2010.php

[5] Purdy, J. G., 2007, January. Mobile Linux: Why it will become the dominant mobile
OS. http://www.fiercewireless.com/story/feature-mobile-linux-why-it-will-become-

the-dominant-mobile-os/2007-01-03

[6] Benchmark clocks OMAP2420 graphics on Linux, Symbian, 2006, February 2.

http://linuxdevices.com/news/NS6023095418.html

[7] Yaghmour, K., 2003, Building Embedded Linux Systems, Sebastopol, CA: O’Reilley

[8] Stallings, W., 2000, Operating Systems: internals and design principles, 4
th
 edition,

Upper Saddle River, N.J: Prentice Hall

[9] Raghavan P., Lad A. and Neelakandan S., 2006. Embedded Linux system design and
development, Boca Raton, FL: Auerbach Publications

[10 a] Bowet, D P. and Cesati, M., 2001, Understanding the Linux Kernel, 1
st
 edition,

Bejing: O’Reilly.

[10 b] Bowet, D P. and Cesati, M., 2003, Understanding the Linux Kernel, 2
nd

 edition,

Bejing: O’Reilly.

[11] Singh, I. M., 2004, Embedded Linux: The 2.6 kernel is ideal for specialized devices of
all sizes. http://www.lynuxworks.com/corporate/news/2004/linux-kernel-2.6.php

120

[12] Deshpande A. R., 2004, March 4, Linux Kernel 2.6: the Future of Embedded
Computing, Part I. Retrieved 2007, March 28, from the Linux Journal Web site:

http://www.linuxjournal.com/article/7477

[13] Bowman, I., Siddiqi, S., Tanuan, M. C., 1998, February 12, Concrete Architecture of
the Linux Kernel. http://plg.uwaterloo.ca/~itbowman/CS746G/a2/

[14] Aas, J., 2005, February 17, Understanding the Linux 2.6.8.1 CPU Scheduler.
http://josh.trancesoftware.com/linux/linux_cpu_scheduler.pdf

[15] Love, R., 2004, February 2, Kernel Korner - I/O Schedulers. Retrieved 2007, May 23,

from the Linux Journal web site: http://www.linuxjournal.com/article/6931

[16] The GNU HURD. http://www.gnu.org/software/hurd/

[17] Bowman I., 1998, January, Conceptual Architecture of the Linux Kernel.
http://plg.uwaterloo.ca/~itbowman/CS746G/a1/

[18] Ck kernel wiki – FAQ. Retrieved 2007, June 3, from: http://ck.wikia.com/wiki/Faq

[19] Juhl, J, 2006, May 29. Subject Re: How to send a break? - dump from frozen 64bit
linux. Retrieved 2007, May 23, from The Linux Kernel Mailing List Archive:

http://lkml.org/lkml/2006/5/29/3

[20] Rusling, D. A., 1999, The Linux Kernel. http://en.tldp.org/LDP/tlk/tlk.html

[21] Linux Programmer's Manual SIGNAL(7). Retrieved 2007, May 23, from
http://unixhelp.ed.ac.uk/CGI/man-cgi?signal+7

[22] Linux man pages. http://www.die.net/doc/linux/man/

[23] fifo(7) - Linux man page. http://www.die.net/doc/linux/man/man7/fifo.7.html

[24] SQUASHFS - A squashed read-only filesystem for Linux.
 http://squashfs.sourceforge.net/

[25] Kroah-Hartman, G., 2004, June 1, Kernel Korner - udev—Persistent Device Naming
in User Space. Retrieved 2007, March 28, from the Linux Journal web site:

http://www.linuxjournal.com/node/7316/

[26] JFFS2: The Journalling Flash File System, version 2. http://sourceware.org/jffs2/

[27] MTD git site. http://git.infradead.org

[28a] MTD Subsystem for Linux website:

http://www.linux-mtd.infradead.org/source.html#kernelversions

[28b] MTD Subsystem for Linux website:

http://www.linux-mtd.infradead.org/archive/index.html

121

[29] Wheeler, D. A., 2000, Program Library HOWTO.
http://www.dwheeler.com/program-library/Program-Library-HOWTO.pdf

[30] Filesystem Hierarchy Standard. Announced 2004, January 29. Retrieved 2007, March,

from: www.pathname.com/fhs

[31] Raiter, B., (n.d.), Whirlwind Tutorial on Creating Really Teensy ELF Executables for
Linux. http://www.muppetlabs.com/~breadbox/software/tiny/teensy.html

[32] The Nano-X Window system. www.microwindows.org

[33] Embedded Linux Graphics Quick Reference Guide, (n.d.).

http://linuxdevices.com/news/NS6023095418.html

[34a] TI Wireless solutions for all Mobile Market Segments. Retrieved 2007, March 28, from

the Texas Instruments website:

 http://focus.ti.com/general/docs/wtbu/wtbugencontent.tsp?templateId=6123&

navigationId=11956&contentId=4644

[34b] OMAP 730. Retrieved 2007, March 28, from the Texas Instruments website:

http://focus.ti.com/general/docs/wtbu/wtbuproductcontent.tsp?templateId=6123&navi

gationId=12003&contentId=4676

[35] ARM Product Backgrounder, 2005, January. http://www.arm.com/miscPDFs/3823.pdf

[36] Weiss, R., 2001, February 5, Hardware Directory. Retrieved 2007, March 28, from

the Linux Journal Web site:

http://www.elecdesign.com/Articles/Index.cfm?AD=1&ArticleID=4238

[37a] The ARM Linux Project, 2006. http://www.arm.linux.org.uk/developer/machines/

[37b] The ARM Linux Project, 2006. http://www.arm.linux.org.uk

[37c] The ARM Linux Project, 2006. http://www.arm.linux.org.uk/developer/memory.txt

[38] The ARM architecture, 2004, September 9.

 ftp://download.intel.com/education/highered/Embedded/02_ARM_Architecture.ppt.

[39] AMBA Overview – AMBA System Architecture, 2006.

http://www.arm.com/products/solutions/AMBAHomePage.html

[40] Poole, I., 2006, What exactly is inside… your mobile phone? From Communications

Engineer, April/may, Volume 4, Issue 2, pages: 44 – 45.

 http://ieeexplore.ieee.org/iel5/8515/34346/01638226.pdf?isnumber=34346&arnumber

 =1638226

[41] Phelan, R., 2003, June, Improving ARM Code Density and Performance, New Thumb
Extensions to the ARM Architecture.
http://www.arm.com/products/CPUs/architecture.html

122

[42] Harvard architecture. http://en.wikipedia.org/wiki/Harvard_architecture

[43] Hord, R. M., 1993, Parallel Supercomputing in MIMD Architectures, CRC Press.

[44] The ARM Instruction Set Architecture. Retrieved 2007, May 2, from:

http://www.arm.com/products/CPUs/architecture.html

[45] ARM9E Family - ARM926EJ-S, 2006.

 http://www.arm.com/products/CPUs/ARM926EJ-S.html

[46] Texas Instruments, 2004, OMAP5912 Multimedia Processor Memory Interfaces
Reference Guide.
http://focus.ti.com/lit/ug/spru756c/spru756c.pdf

[47] Interfacing Xilinx FPGAs to TI DSP Platforms Using the EMIF. From the Xilinx.com

website, 2005. http://www.xilinx.com/bvdocs/appnotes/xapp753.pdf

[48] Texas Instruments, 2003. OMAP5910 Dual-Core Processor PWL, PWT, and LED
Reference Guide.

http://focus.ti.com/lit/ug/spru689/spru689.pdf

[49] ARM Intelligent Energy Manager (IEM) Technology.

http://www.arm.com/products/esd/iem_home.html

[50] Weinberg, B., 2006, July 1, Mobile Phones: the Embedded Linux Challenge. Retrieved

2007, May 23, from the Linux Journal web site:

http://www.linuxjournal.com/node/8762

[51] acpid - the ACPI event daemon. http://acpid.sourceforge.net/

[52] M-Systems, 2005, December, Flash Memory in Mobile Handsets: Balancing the
Equation. http://www.m-systems.com/NR/rdonlyres/692BE1C4-FF8E-48A3-97A3-

B39B45AE4CCC/0/FlashMemory_in_Mobile_Handsets_Balancing_Equation_Rev11

_SD.pdf

[53] Chen, P., 2006, November 11, The case for a standard mobile memory interface for
flash/DRAM.
http://www.mobilehandsetdesignline.com/howto/storagearchitecture/193700728

[54] Semiconductor Insights, 2006, Q2/2006 Flash Memory Component Executive
Summary Report. Available through:

http://www.semiconductor.com/products_and_services/subscription/flash/

[55] Kaplan, F., 2005, May, Standardizing NAND Flash for Use in Mobile Handsets.

http://www.m-systems.com/NR/rdonlyres/BE31E55A-BEE2-407C-A8E5-

0FFD3662B4FD/0/EFDs_Standardizing_NAND_Flash_for_Use_in_Mobile_Handsets

.pdf

[56] M-Systems, 2005, Meeting Multimedia Requirements for Memory in Mobile
Handset.

123

http://www.m-systems.com/NR/rdonlyres/ECE1D4BA-84E3-4638-8AD7-3EE9BD

754685/0/Meeting_Multimedia_Requirements_with_Flash_Memory_SD.pdf

[57] Francis, H., 2001, May, ARM DSP-Enhanced Extensions.

http://www.arm.com/pdfs/ARM-DSP.pdf

[58] Barton J. J., Zhai, S., Cousins, S. B., 2005, Mobile Phones Will Become The Primary
Personal Computing Devices.
http://domino.watson.ibm.com/library/CyberDig.nsf/7d11afdf5c7cda94852566de006b

4127/b7c1a5efdf560a708525709f006f00cb?OpenDocument

[59] Minicom project website. http://freshmeat.net/projects/minicom/

[60] U-Boot project website. http://sourceforge.net/projects/u-boot

[61] Landley, R., 2005, March, Introducing initramfs, a new model for initial RAM disks.
http://linuxdevices.com/articles/AT4017834659.html,

[62] http://www.timesys.com/timesource/initramfs.htm

[63] Boone, K., (n.d.) The K-Zone: Understanding the Linux boot process.

http://www.kevinboone.com/PF_boot.html

[64] BusyBox Project website. http://www.busybox.net/

[65] Brenna, A., 2007, March 29, Trolltechs toppsjef Haavard Nord: Trolltech mener de er
et åpent Microsoft. (Norwegian) http://www.digi.no/php/art.php?id=375117

[66] Brenna, A., 2006, Feruary 16, Ikke bare tilleggstjenester: Slik kan penger tjenes på
åpen kildekode. (Norwegian) http://www.digi.no/php/art.php?id=375117

[67] Brenna, A., 2006, May 30, Trolltech Åpen kildekode, men tar betalt: Trolltech
forklarer sin rare forretningsmodell. (Norwegian)

http://www.digi.no/php/art.php?id=375117

[68] Qt - Cross-Platform C++ Development.
http://www.trolltech.com/products/qt/features/index

[69] Trolltech, 2006, November, Qtopia® Core 4.2 Whitepaper.
http://www.trolltech.com/pdf/Qtopia-Core-42-Whitepaper-A4-web.pdf

[70] Trolltech, 2006, November, Qtopia® Platform 4.2 Whitepaper.
http://www.trolltech.com/pdf/qtopia-wp-platform42.pdf

[71] Trolltech, 2006, November, Qtopia® Phone Edition 4.2 Whitepaper.
http://www.trolltech.com/pdf/qtopia-wp-phone42.pdf

[72] Trolltech, 2006, Qtopia® Phone Edition.
http://www.trolltech.com/pdf/Qtopia_Phone_Edition_4_ds_web_A4.pdf

124

[73] Trolltech, 2006, Qtopia® Greensuite #1Fact Sheet.
http://www.trolltech.com/pdf/Greensuite_FactSheet.pdf

[74] Qt 4.2: QCopChannel Class Reference. Retrieved 2007, May, from:

http://doc.trolltech.com/qtopia4.2/qcopchannel.html

[75] Services. Retrieved 2007, May, from: http://doc.trolltech.com/qtopia4.2/services.html

[76] Qtopia IPC Layer. Retrieved 2007, May, from:
http://doc.trolltech.com/qtopia4.2/qtopiaipc.html

[77] QDSServices Class Reference. Retrieved 2007, May, from:

http://doc.trolltech.com/qtopia4.2/qdsservices.html

[78] QDataStream Class Reference. Retrieved 2007, May, from:
 http://doc.trolltech.com/qtopia4.2/qdatastream.html#public-functions

[79] QIODevice Class Reference. Retrieved 2007, May, from:
http://doc.trolltech.com/qtopia4.2/qiodevice.html

[80] MontaVista Software – Platform to innovate, (n.d.). http://www.mvista.com

[81] MontaVista® Software: Corporate Overview, 2004, September 20.
http://www.mvista.com/downloads/ds_company.pdf

[82] Commitment & Leadership in the Open Source Community, (n.d.).
http://www.mvista.com/opensource.php

[83] MontaVista Mobilinux 4.1, (n.d.). http://www.mvista.com/product_detail_mob.php

[84] Building Advanced Mobile Phones With Linux - MontaVista Linux Consumer
Electronics Edition And Openwave Phone Suite Version 7, 2004, December 14.
http://www.mvista.com/downloads/sb_mobile.pdf

[85] Everything you want to know about E911 and E112, (n.d.). Retrieved 2007, May,

from:

http://www.globalocate.com/RESOURCES/RESOURCES_MAIN_Frameset.htm

[86] gpsd — a GPS service daemon, (n.d.). Retrieved 2007, May, from:

http://gpsd.berlios.de/

[87] Global Locate / Hammerhead™ Single Chip A-GPS Solution, (n.d.). Retrieved

2007, May, from:

http://www.globalocate.com/SEMICONDUCTORS/SEMI_HAMMER_Frameset.htm

[88] International Traffic In Arms Regulations - PART 121-THE UNITED STATES
MUNITIONS LIST, (n.d.). Retrieved 2007, May, from:
http://www.fas.org/spp/starwars/offdocs/itar/p121.htm

[89] Category:Neo1973 Hardware, (n.d.). Retrieved 2007, May, from:

125

 http://wiki.openmoko.org/wiki/Category:Neo1973_Hardware

[90] FAQ – OpenMoko, (n.d.). Retrieved 2007, May, from:

http://wiki.openmoko.org/wiki/FAQ

[91] OpenMoko, (n.d.). Retrieved 2007, April, from:

http://wiki.openmoko.org/wiki/OpenMoko

[92] OpenEmbedded | Metadata for building Distributions - preferably Embedded target
platforms, (n.d.). Retrieved 2007, May, from: http://www.openembedded.org/node

[93] GConf configuration system, (n.d.). Retrieved 2007, May, from:

http://www.gnome.org/projects/gconf/

[94] OpenMokoFramework, (n.d.). Retrieved 2007, May, from:

http://wiki.openmoko.org/wiki/OpenMokoFramework

[95] Zimmerman, M., 2007, May 5, Ubuntu Mobile and Embedded Edition.
https://lists.ubuntu.com/archives/ubuntu-devel-announce/2007-May/000289.html

[96] BBC News, 2007, May 5, Linux evolves for mobile devices.

http://news.bbc.co.uk/1/hi/technology/6634195.stm

[97] Eclipse Public License (EPL) Frequently Asked Questions, (n.d.).

http://www.eclipse.org/legal/eplfaq.php

[98] The Open Source Definition (Annotated), 2006, June 24.

http://www.opensource.org/docs/definition.php

[99] GNU Binary Utilities, (n.d.). Retrieved 2007, May, from:
http://en.wikipedia.org/wiki/Binutils

[100] GCC, the GNU Compiler Collection. Retrieved 2007, January, from:
http://gcc.gnu.org/

[101] The Embedded Linux/Microcontroller Project website.

http://uclinux.org/

[102] Crosstool build results, (n.d.). http://kegel.com/crosstool/crosstool-0.43/buildlogs/

[103] Klein, K, 2003, February 6, no version.h in linux2.4.19.tar.bz2.
http://linuxfromscratch.org/pipermail/lfs-support/2003-February/014847.html

[104] Holmes, S., 2004, December 30, version.h.
http://braille.uwo.ca/pipermail/speakup/2004-December/031727.html

[105] Mobile Linux Initiative, (n.d.).

http://old.linux-foundation.org/lab_activities/mobile_linux

[106] Limo Foundation, (n.d.).http://www.limofoundation.org

127

Appendix A

OMAP 730

Low-Power, High-Performance CMOS Technology

Low-voltage 130 nm technology

1.1 - 1.5V cores, 1.8 - 2.75V IO

Extremely low power consumption: less than 10 µA in standby mode

Split power supplies for application processing, digital baseband and real-time clock enable

precise control over power consumption

Optimized clocking and power management: Only two clocks required at 13 MHz and 32 kHz

ARM926TEJ Core Subsystem

ARM926EJ-S V5 architecture up to 200 MHz (maximum frequency)

16 kB I-cache; 8 kB D-cache

Java acceleration in hardware

Multimedia instruction set architecture (ISA) extension

GSM/GPRS Digital Baseband Subsystem

Class 12 GPRS ROM-based DBB

E-GPRS interface for EDGE co-processor

384 K-bytes internal SRAM

E-OTD and TTY support

Quad vocoder with EFR, FR, HR, AMR

GSM ultra-low power device (ULPD)

SIM interface

Application Subsystem

Supports all leading operating systems

DMA with 4 physical and 17 logical channels and a dedicated 2D graphics engine

Programmable GPIO keyboard interface

54-Mbps WLAN interface

Security acceleration in hardware:

- Secure bootloader

- 48 kB of secure ROM

- 16 kB of secure RAM

- Hardware acceleration for security standards and random number generator

- Unique die ID cell

128

- Third-party Security software library

Enhanced audio controller (EAC)

Comprehensive memory controller for interfaces to:

- 128 MB of mobile SDRAM

- 256 MB Flash

- NAND Flash controllers

- 1.6 Mb ISRAM

SD/MMC/SDIO interface

Enhanced Trace Module for debug

LCD controller

uWire

SPI

1-wire and HDQ interface

Bluetooth data/audio interface

USB On-the-Go

Two high-speed 3.68 MHz UARTs

Fast IrDA (FIR)

Two 32-bit timers

Parallel camera port

Programmable three-color LED pulse generation

I²C master/slave controller

SmartCard interface

289-ball, 12 mm x 12 mm MicroStar BGA™ Package

Appendix B

NECESSARY GLIBC COMPONENTS

Library component Content Inclusion guidelines

ld Dynamic linker.[1] Compulsory.

libBrokenLocale

Fix up routines to get applications with broken

locale features to run. Overrides application

defaults through preloading. (Need to use

LD_PRELOAD).

Rarely used.

libSegFault Routines for catching segmentation faults and

doing backtraces.

Rarely used.

libanl Asynchronous name lookup routines. Rarely used.

libc Main C library routines. Compulsory.

libcrypt

Cryptography routines. Required for most

applications involved in

authentication.

libdl Routines for loading shared objects dynamically. Required for applications

that use functions such

as dlopen().

libm Math routines. Required for math

functions.

libmemusage Routines for heap and stack memory profiling. Rarely used.

libnsl NIS network services library routines. Rarely used.

Libnss_compat

Name Switch Service (NSS) compatibility

routines for NIS.

Loaded automatically by

the glibc NSS.[2]

libnss_dns NSS routines for DNS. Loaded automatically by

the glibc NSS.

libnss_files

NSS routines for file lookups. Loaded automatically by

the glibc NSS.

libnss_hesiod NSS routines for Hesiod name service. Loaded automatically by

the glibc NSS.

130

Libnss_nis

NSS routines for NIS. Loaded automatically by

the glibc NSS.

libnss_nisplus

NSS routines for NIS plus. Loaded automatically by

the glibc NSS.

libpcprofile Program counter profiling routines. Rarely used.

libpthread

POSIX 1003.1c threads routines for Linux. Required for threads

programming.

libresolv

Name resolve routines. Required for name

resolution.

librt Asynchronous I/O routines. Rarely used.

libthread_db Thread debugging routines. Loaded

automatically by gdb when debugging threaded

applications.

Never actually linked to

by any application.

libutil Login routines, part of user accounting database. Required for terminal

connection management
[1] This library component is actually not a library itself. Instead, ld.so is an executable invoked by the ELF

binary format loader to load the dynamically linked libraries into an application's memory space.

[2] See Chapter 4 in “Building Embedded Linux Systems” for details.

131

Appendix C

PAPER FOR WINSYS 2007

Keywords: Linux Mobile, Embedded Systems, Soft Real-Time kernel, Application Development Platforms

Abstract: Linux has for some time been the operating system of choice for many types of embedded devices (e.g.

network devices like routers, as well as multimedia devices like set-top-boxes). Currently, Linux is also

gaining momentum as an operating system for mobile phones. This paper studies what it takes to make Linux

"go mobile", i.e., what adaptations are necessary to make the Linux kernel fit as a mobile operating system,

what is the architecture of such a platform, and what are the major benefits.

1 INTRODUCTION

Linux already exists in several commercial
distributions targeted for embedded platforms and
currently has about 23% of the world market share on
mobile phones, even though this number provided by
The Diffusion Group can be disputed. (The Diffusion
Group, 2006) (Blandford, 2006) With the

development of the handheld device hardware, Linux
is of particularly interest. It has been ported to
several hardware architectures for years, it has one of
the most stable kernels, and the functionalities of the
handheld devices are growing to be more and more
similar to that of a “regular” PC. Major embedded
Linux vendors such as MontaVista, and Trolltech are
serving more and more customers with development

LINUX MOBILE
A Platform for Advanced Future Mobile Services

Frode Sivertsen
Dept. of Telematics, Norwegian University of Science and Technology, O.S. Bragstads Plass 2E, N-7491 Trondheim,

Norway

fsivertsen@gmail.com

Ivar Jørstad
Ubisafe, Bjølsengata 15, N-0468 Oslo, Norway

ivar@ubisafe.no

Do van Thanh
Telenor R&D, Snarøyveien 30, N-1331 Fornebu, Norway

thanh-van.do@telenor.com

132

environments partially based on proprietary software
every day.

During the first half of 2007 one of the most
anticipated releases of a Linux driven mobile phone
will be ready for shipping, the Neo1973 from First
International Computing, FIC. Linux is nothing new
as a mobile phone operating system, but this is the
first mobile phone which will be shipped with
completely open source software based on the
OpenMoko platform. (Cheap, hackable Linux
smartphone due soon, 2006) (OpenMoko: The
World’s First Integrated Open Source Mobile
Communications Platform (n.d.).)

Many in the handheld operating system
community favours Linux as the de-facto operating
system for handheld devices to be, because of its
openness, flexibility, broad developer base, and its
modularity. They predict a new value added feature
in the next generation of mobile phones where the
applications may become the ringing tones of today.
(Purdy, 2007)

With the release of the 2.6 kernel of Linux, it has
gone further in providing real-time services but yet
keeping the advances features compared to regular
real-time operating systems. Linux positions itself
with the advantages from both the real-time operating
systems and the microkernel operating systems.
Compared to its major competitors, being Symbian
and Windows, it has its already mentioned
advantages, but the performance is just as good as
that of the mobile targeted operating system of
Symbian. (Benchmark clocks OMAP2420 graphics
on Linux, Symbian, 2006)

These are just some of the reasons why it is
believed that Linux actually has the potential to
become the de-facto mobile operating system of the
future phones.

2 INTRODUCING LINUX

The components that form Linux do not change
much whether they run on a server, a workstation, or
a mobile phone. The Linux kernel is what is referred
to as a monolithic kernel. Basically it consists of an
architecture-dependent low-level interface that
interacts with the hardware. However, it provides a
hardware-independent API to the higher layers (i.e
application layer and libraries) through high-level
abstractions which can have a constant code base.
The high-level abstractions are processes, files,
sockets, signals etc.

Figure 1: The architecture of a generic Linux system.
(Yaghmour, 2003)

The interpretation components such as file
systems and network protocols are used to
understand how to interact with the devices present
on the platform. Many standards have been
developed throughout the years, and because of its
many portings, Linux supports more than its
competing operating systems.

On top of the high-level abstractions one find the
libraries that acts as standardized API’s for the
application layer, since the services exported by the
kernel are often unfit to be used directly by the
applications. (Yaghmour, 2003) This is, as already
mentioned, one of the areas where Linux has its
strength. C, C++, Perl, Java etc. are languages easily
supported by the Linux kernel through various
libraries. This can be custom fit, regulating the size
of the operating system footprint.

For the graphical user interface Linux supports
several window managers and graphical libraries.
The X Window System, X11, which usually runs on
most desktop distributions is quite large, requires 8
MB of RAM and was originally made as a
client/server application. The most used open source
window managers for handheld devices are
Nanowindows, formerly known as Microwindows,
and Matchbox. In contrast to their “big brother” X11,
they have reduced resource requirements. Other
window managers intended for embedded devices
exist as well. (Embedded Linux Graphics Quick
Reference Guide, (n.d.).)

The window managers usually use graphical
libraries such as Nano-X, Qt/Embedded, and GTK+
possibly with GTK-DFB and GTK-X, to provide the
GUI. Trolltech, the makers of Qt, have a rather
complex license model while GTK+ is completely
GPL licensed.

133

3 LINUX AS A SOFT REAL-TIME

OPERATING SYSTEM

Regular real-time operating systems are mainly
made for MMU-less processors with a flat address
space with no memory protection between the kernel
and its running applications. This means that the
kernel, the kernel subsystems, and the applications
share the same address space and must therefore be
made foolproof to avoid crashing the system. This
makes adding new software difficult. The system
must also be brought down to do this.

A microkernel provides a very small operating
system footprint which offers only the most basic
services such as scheduling, interrupt handling, and
message passing. The rest of the operating system,
such as file systems, device drivers, and networking
stack, runs as applications with their own private
address space. The microkernel is dependent on well
defined APIs for communication with the operating
system and robust message-passing schemes between
processes. Only that way might real-time services
and modularity be ensured.

Linux is built up by several subsystems that can
be dynamically loaded into the kernel, such as the
file systems. This, however, do not make it a
microkernel-based operating system. The kernel still
interacts with the drivers using direct system calls,
and not through message passing between processes.
Message passing between processes can be very
resource consuming and is regarded as one of the
major drawbacks of microkernel operating systems.
The dynamically loadable kernel module are pieces
of kernel code that are not directly included or linked
in the kernel, but can be inserted and removed from
the running kernel at almost any time.

Any new code intended for the Linux kernel goes
through a great deal of testing regarding design,
functionality, and performance before it gets
accepted into the mainline kernel releases. Hence,
this trying process has looked after the advantages of
“regular” real-time operating systems and made it
one of the most stable pieces of software. At the
same time it has kept the advantage of the memory
protection to individual kernel subsystems provided
in microkernels, but avoided the resource consuming
message passing. These are some the reasons why
Linux have become so popular. (Raghavan, Lad and
Neelakandan, 2005)

3.1 User mode and Kernel mode

The monolithic kernel of Linux has a distinction
between kernel and user mode execution states to
secure the memory protection. A process in User
mode can not enter kernel programs or kernel data
structures directly. The User mode programs issue
system calls to enter Kernel mode. The time before a
system call is being served depend on the interrupt
signal sent from the process to the CPU and its
actions according to the interrupt. (Bowet and Cesati
2001:1-34)

3.2 Re-entrancy

The Linux kernel is re-entrant, meaning that
several processes may be executing in Kernel Mode
at the same time. Only one process can progress at
the time in a uniprocessor system, but others may be
waiting for the completion of some I/O request or the
CPU. To provide re-entrancy, the functions must
only modify local variables, not global ones.

The kernel may also include non-re-entrant
functions that use locking to ensure that only one
process can execute that function at a time. These
processes may then modify global variables. If an
interrupt occurs, the kernel is able to suspend the
running process even if it is in Kernel Mode. This
ensures a higher throughput for the device controllers
that issue interrupts. While the kernel handles the
interrupt, the device controller may perform other
tasks.

The re-entrancy influences the organization of the
kernel and its kernel control path which denotes the
sequence of instructions executed by the kernel,
being an interruption, a system call or an exception.
Normally the kernel would execute these tasks one
by one, from the first to the last. However, during
handling interrupts and exceptions, the kernel can
interleave one process in Kernel Mode to run a
process required by the first one or run another
process until the first one can be continued due to
waiting on an I/O operation. Re-entrancy requires the
implementation of interprocess communication,
which will be described shortly. (Bowet, D P. and
Cesati, M., 2001:1-34)

3.3 Process Address Space

Each process runs in its private address space.
When a process is running in User Mode it has its
own private stack, data, and code areas. When
operating in Kernel Mode, those are different.

Since the kernel is re-entrant, several different
processes may be executed in turn, each with its own
kernel control path. These paths have their own
stack. But processes may also share address space.
This is done automatically by the kernel to save
memory. For instance, when two different users use
the same editor, the program is only loaded into
memory once. The data are not shared in this case, so
it must not be confused with shared memory, which
will be described later. (Bowet and Cesati 2001:1-34)

3.4 The Soft Real-Time 2.6 Kernel

It is possible to categorize Real-Time operating
systems into two camps; those which support Soft
Real-Time responsiveness and those which support
Hard Real-Time responsiveness. Real-Time
responsiveness can be defined as “the ability of a
system to respond to external or clock events within a
bounded period of time.”(Singh, 2004) The 2.6
kernel of Linux is regarded as a Soft Real-Time
operating system, where determinism is not critical.
That is, a fast response is desirable, but an occasional

134

delay does not cause malfunction. This is the
contrary to a Hard Real-Time operating system, such
as a flight control system, where a deadline never
may be missed.

Soft Real-Time responsiveness is a requirement
to mobile phones. Even though there are
requirements to multiprocessing, it is still a mobile
phone and the phone specific services such as calls
and messages will have to be prioritized before other
applications and events. Before the 2.6 kernel
release, special patches were necessary to achieve
sufficient responsiveness. The improved
responsiveness of the 2.6 kernel is mostly due to
three significant improvements: a preemptible kernel,
a new efficient scheduler, and enhanced
synchronization. These improvements have
contributed to make Linux an even better suited
operating system for mobile phones.

3.4.1 The Pre-emptive 2.6 Kernel

Even though most UNIX kernels used to
implement non-pre-emptive kernels as a solution to
synchronization problems, the Linux 2.6 kernel
implements pre-emption. In earlier releases of the
Linux kernel, and like most general-purpose
operating systems, the task scheduler was prohibited
from running when a process were executing in a
system call. The task would control the processor
until the return of the system call, no matter how long
that would take. Hence, the kernel could not interrupt
a process to handle a phone call within an acceptable
time limit. The 2.6 kernel is to some degree
preemptive, meaning that a kernel task may be
preempted with a low interruption latency to allow
the execution of an important user application. The
preemtion is triggered by the use of interruptions. A
microprocessor typically has a limited number of
interrupts, but an interrupt controller allows the
multiplexing of interruptions over a single interrupt
line. There also exist priorities among the interrupts.
(Bowet, and Cesati, 2001)

This means that a process that is executing in
Kernel Mode can be suspended and substituted by
another process because it has higher priority. The
operating system must be able to handle multiple
applications and processes. For a mobile phone with
soft Real-Time requirements such functionality is
essential, as it must be able to handle important tasks
such as an incoming phone call while the user is
filming a video etc.

Figure 2: A comparison between the task response time of
the 2.4.18 Linux kernel and the 2.6 kernel. (Singh, 2004)

Compared to a PC, the processing power is
reduced, but the requirements to responsiveness are
higher. The kernel code is laced with preemption
points allowing the scheduler to run and possibly
block a running process so as to schedule a higher
priority process. Linux is still not a true Real-Time
operating system, but it is certainly less jumpy than
before and considerable faster than its predecessors,
as seen in figure 2.

3.4.2 The new O(1) scheduler

The 2.6 kernel has a totally new process
scheduler that replaces the slow algorithms of earlier
kernels. Earlier, the scheduler would have to look at
each ready task and score its relative importance to
decide which task to run next. The new scheduler no
longer scans every task every time, but uses two
queues. When a task is ready to run, it will be sorted
and placed in a queue, called the current queue. The
scheduler then chooses the most favourable one in
this queue to run next, giving each process a
specified time to occupy the processor. Opposite to
earlier, this is done in a constant amount of time, and
not relative to the number of processes. After its time
in the processor expires, the process is placed in the
other queue, called the expired queue. The process is
then again placed according to its priority. When all
the tasks in the current queue are done, the scheduler
once again starts its simple algorithm of picking tasks
from the expired queue, which now is called the
current queue. This new scheduler works
substantially faster than the previous scheduler, and it
works just as fast with many tasks as with few.
(Deshpande, 2004)

3.4.3 Synchronization

By implementing a re-entrant kernel, one also
introduces the need for synchronization among
kernel control paths. One must ensure that while
acting on a kernel data structure, no other kernel
control path is allowed to act on the same data
structure, even if the first one suspend the data
structure. The data structure must be put back into a
consistent state.

Let’s say that we have one global variable V
representing available items of some system

135

resource. If a first kernel control path reads V, it sees
that it is 1. Another kernel control path reads the
same variable, and decreases it to 0. When A resumes
its action, it has already read V and decreases it. As a
result, the value of V is now -1. The two kernel
control paths are using the same resource, which
could result in serious errors.

When the outcome of a computation depends on
how the processes are scheduled, the code will be
incorrect and we have a race condition. Safe access
to global variables is ensured by using atomic
operations, which refers to combining the operations
from two or more kernel control paths so they appear
as one to the rest of the system. Any section of code
that can not be entered by a process before another
one has finished it is called a critical region.

The 2.6 kernel implements something that is
referred to as futex – fast user-space mutexes. It is a
new implementation of the mutex previously
implemented as system calls to check that only one
task is using a shared resource at a time. This time-
consuming system call to the kernel to see whether
block or allow a thread to continue was often
unwarranted and unnecessary. Futex checks user-
space to see whether a blocking is necessary, and
only issues the system call when blocking the thread
is required. This saves time. The function also uses
the scheduling priority to decide which thread is
allowed to execute in case of a conflict. (Singh,
2004)(Deshpande, 2004)

4 COMPUTER VERSUS MOBILE

PHONE

Adapting Linux for mobile phones first requires a
thorough study of the similarities and differences
between the two hardware platforms, i.e. between the
ordinary computer and the mobile phone. The most
significant difference is usually the processor
architecture, where x86 is the most common on
regular PCs and ARM is the most common on mobile
phones. The ARM architecture is generally better on
performance, power, and integration for mobile
phones. But the choice of a non-x86 architecture,
which Linux was originally built for, first of all
results in necessary porting of some low-level
drivers.

4.1 Necessary subsystems

There are certain subsystems that are required for
Linux to work on all systems. Generally the kernel
can be split into these following subsystems:

• Hardware Abstraction Layer
• Memory Manager
• Scheduler
• File System
• IO subsystem
• Networking subsystem

The scheduler has already been discussed, but the
Hardware Abstraction Layer, Memory Manager, File
Systems, and IO subsystem will be described briefly.

4.1.1 Hardware Abstraction Layer

A Hardware Abstraction Layer (HAL) is a more
concrete name of the underlying low-level interfaces
that are supposed to give higher level languages the
ability to communicate with lower level components,
such as directly with hardware.

Its function is to hide differences in hardware
from most of the operating system kernel, so that
most of the kernel-mode code does not need to be
changed to run on systems with different hardware.
The HAL supports these hardware components,
which are usual on both platforms:

• Processor, cache, and MMU
• Setting up the memory map
• Exception and interrupt handling support
• DMA
• Timers
• System Console
• Bus Management
• Power Management

4.1.2 Memory Manager

The task of the memory manager is to control
memory access to the hardware memory resources.
In Linux the memory manager implements a logical
layer for as the Memory Manager Unit being able to
provide virtual memory to kernel subsystems such as
drivers, file systems, and networking stack. But also
it provides virtual memory to user applications. The
advantages of virtual memory can be summarized
with these points:

• Several processes can be executed

concurrently
• It is possible to run applications whose

memory need are larger than the available
physical memory.

• Processes can execute a program whose
code is only partially loaded in the memory.

• Each process is allowed to access a subset of
the available physical memory.

• Processes can share a single memory image
of a library or a program.

• Programs can be relocatable – that is, they
can be placed anywhere in physical memory.

• Programmers can write machine-
independent code, since they do not need to
be concerned about physical memory
allocation.

All this is solved by the use of a virtual address

space, which is representation of physical locations
located by the MMU and the kernel. The virtual
address space is also referred to as a linear address
space. The virtual addresses are divided by the kernel
into page frames with a size of 4 or 8 KB, which

136

result in that a request for contiguous virtual address
space can be satisfied by allocating a group of page
frames that do not necessarily have contiguous
physical addresses. All the pages are accessible by
the kernel, but only some of them get used by the
kernel. The paging process only involves the
applications, which get pulled into main memory on
request. By using virtual addresses a running process
will not be able to corrupt neither another process’s
nor the operating system’s memory. This means that
any pointer corruptions within a process are localized
to the process itself, and will not bring down the
system. This is important for system reliability.

On the other hand, the 2.6 kernel allows the
system to be built without a virtual memory system.
This is often to meet real-time requirements. Slow
handling of page faults can ruin responsiveness. A
page fault is when a demanded page is not in
physical memory and an interruption has to be raised.
Of course, a no virtual memory solution removes the
advantages previously mentioned, and it becomes the
software designer’s responsibility to ensure there will
always be enough real memory available to meet the
applications demands. The issue of whether to use
virtual memory or not is left to the programmer.

4.1.3 File Systems

There are many file systems that can run on
Linux. Ext2, CRAMFS, ROMFS, RAMFS, NFS,
DEVFS, and JFFS2 are often used on embedded
systems. As a general point, the hardware
memory/storage technology used on the device may
set limitations to the choice of file systems. The
kernel supports them all through a concept called the
Virtual File System (VFS). VFS handles all the
system calls related to the file systems. The file
systems must translate their physical organization
into a common file model which can represent all the
supported file systems. In that way, to interact with
the different file systems the kernel (i.e. the VFS) has
only one interface to relate to.

It is necessary for every Linux system to have a
root file system. This is the master file system which
gets mounted during start-up. In Linux, everything is
a file, even the directories and the I/O devices. UNIX
systems also implement a current working directory
for every process.

The PROCFS or /proc file system, is a special file
system as it is a pseudo file system that resides in
memory and is created every time the system is
rebooted. The /proc directory reveals important data
on the running processes and the state of the system
itself. It is readable by the owner of the processes and
the root. This openness and access to devices is very
useful for programming.

4.1.4 I/O subsystem

The most difficult part of porting Linux to a
mobile phone is not the main configuration of the
kernel, but the programming of the low-level

interfaces which are special for this kind of
embedded devices. For the programmer, the IO
subsystem provides a simple and uniform interface to
onboard devices. Special or not, on a mobile phone
I/O devices will typically involve devices such as
keypad, camera, Bluetooth, LCD screen, and non-
volatile storage in some form, but also the drivers for
the GSM/GPRS Digital Baseband Subsystem related
functions. Those are often provided by the board
manufacturers, such as Texas Instruments, or by the
operating system vendors, such as MontaVista. These
must be custom made to the hardware architecture
and this is a process that may be troublesome.
(Raghavan, Lad and Neelakandan, 2005)

The I/O subsystem supports three kinds of

devices:
• Character devices for supporting

sequential devices
• Block devices for supporting randomly

accessible devices. Block devices are
essential for implementing file systems.

• Network devices that support a variety
of link layer devices.

4.2 The MTD subsystem

In Linux, memory technology devices are all
kinds of memory devices: RAM, ROM, and Flash in
different technological solutions. The Memory
Technology Devices (MTD) subsystem is a module
of the Linux kernel. The MTD subsystem intends to
provide a uniform and unified access to memory
devices for the VFS. In that way it avoids having
different tools for different technologies. The MTD
subsystem consists of low-level chip drivers and
high-level interfaces called MTD user modules. The
user modules are software modules in the kernel that
enables access to the chip drivers through
recognizable interfaces and abstractions, which in
turn are provided to the higher levels of the kernel
and in some cases to user space.

The typical operations the MTD subsystem has to
carry out is erase, read, write, and sync. The system
works in a manner where the chip drivers register
sets of predefines call-backs and properties with the
MTD subsystem. The call-backs and properties are
defined in an mtd_info structure, which is provided
to the add_mtd_device() function. These call-backs
are then called through this function.

There is no “standard” physical address location
for the MTD devices, and therefore they need a
customized mapping driver. In addition, some
systems and development boards have known MTD
device configurations. The kernel therefore contains
a number of specific drivers for these systems. The
drivers are found in the drivers/mtd/maps/ directory
of the kernel sources.

On a mobile phone a combination of the
CRAMFS and the JFFS2 file systems is a well
known working combination. CRAMFS for the non
changing boot image which is extended into RAM on

137

start-up and JFFS2 for the writable persistent file
system. (Yaghmour, 2003)

5 SERVICE DEVELOPMENT FOR

LINUX MOBILE

5.1 Trolltech

Trolltech is a Norwegian company with two
product lines; Qt (pronounced cute) and Qtopia. They
were one of the first companies in the world to use a
dual licensing model. The business model allows
software companies to provide their products for two
distinct uses - both commercial and open source
software development. This type of licensing is based
on Quid Pro Quo – Something for something. Either
the customers of Trolltech may release their software
under the GNU Public License, GPL, or they may
purchase the appropriate number of commercial
licenses from Trolltech and release the software
under a license of choice.

Trolltech means that this strategy will make them
able to provide the best cross-platform development
tools in the world. The commercial license makes the
money, and the open source licenses ensure quality
and stability of the products delivered by Trolltech.

5.1.1 Qtopia Core

Qt is a cross-platform application development
platform. Qt includes the Qt Class Libraries, which is
a collection of over 400 C++ classes. Further it
includes Qt Designer for rapid GUI and forms
development, and other tools as well. “The Qt class
libraries aim to provide a near-complete set of cross-
platform application infrastructure classes for all
types of C++ applications.” Qtopia Core is the
application framework for single-application devices
powered by embedded Linux. It provides the same
API and tools as other versions of Qt, but it also
includes classes and tools to control an embedded
environment

5.1.2 Qtopia Phone Edition and Greenphone

Qtopia Phone Edition is the phone intended
version of Qtopia Core. It is an application platform
and user interface for Linux-based mobile phones.
Trolltech claims that Qtopia Phone Edition is the de-
facto standard application development platform and
user interface for Linux-based mobile phones.

Also, Trolltech have developed a dual licensed
hardware component of the Greenphone SDK. This
SDK provides a complete environment for
developing and modifying application software for
Qtopia Phone Edition on the Greenphone. (Trolltech:
Code less – Create More (n.d.).)

Figure 3: Qtopia Phone Edition diagram (Trolltech: Code

less – Create More (n.d.).)

5.2 MontaVista

MontaVista offers an optimized Linux operating
system and development environment for both
wireless handsets and mobile phones with
requirements for power management, hard real time
performance, fast start-up, and small footprint, called
Mobilinux.

5.2.1 Mobilinux

The current version of Mobilinux is based on the
Linux 2.6 kernel. It uses the reduced C library
uClibc, DirectFB on top of the Linux Framebuffer
Device, and SquashFS as the compressed read-only
file system to be able to provide a reduced footprint.
The Linux framebuffer, fbdev, is a graphic hardware-
independent abstraction layer to show graphics on a
console without relying on system-specific libraries.
Further, Mobilinux has improved Real-Time support
and implements a fully preemptible kernel through
MontaVista’s enhancements. (Montavista Software –
Platform to innovate (n.d.).)

5.3 The OpenMoko strategy

The OpenMoko camp, with its NEO1973, has
taken on another business strategy than Trolltech and
MontaVista. They favour a complete open strategy,
as any regular PC intended open source Linux
distribution.

The software of the mobile phone is based on the
2.6.20 kernel. It runs on a Samsung board with 64
MB NAND flash and 128 MB RAM. At the moment
it has GSM/GPRS, USB, and Bluetooth support. It is
equipped with a touch screen, and only two buttons
for power and for auxiliary devices. It uses U-boot as
boot loader.

Further this open source project provides a
development framework, namely the Open Mobile
Communications Platform (OpenMoko). The project
intends to provide a completely open standard
framework for developing mobile phone
applications, much like Trolltech. The phone comes
shipped with a package manager to be able to take
full advantage of the all ready large Linux
application community.

138

The key of OpenMoko’s business strategy is to
trigger the open source community first. With them
they will be able to ensure increased revenues for
both carriers and handset developers. The idea is to
let the users control their own environment of
applications. The handset manufacturers can get a
reduced time to market and the carriers will
experience a large increase in data traffic.
Applications may form the next generation of multi
billion industry similar to that of ringing tones. It’s a
win-win situation for all three parts; users, carriers,
and handset manufacturers. (OpenMoko: The
World’s First Integrated Open Source Mobile
Communications Platform (n.d.).)

6. CONCLUSION

What have been presented in this paper are the
fundamental mechanisms of Linux, with a focus on
the latest major kernel release. The most important,
main components that must be included in an
embedded environment are discussed, and the paper
clearly describes how a standard Linux kernel may
be adapted to fit the mobile device.

Further, some of the important differences
between the hardware platform of the computer and
the hardware platform of a typical mobile phone are
shown.

In addition, the paper has elaborated the
challenges and opportunities of employing Linux as
an enabler for advanced services on mobile phones.

REFERENCES

The Diffusion Group, 2006, February 7. Windows & Linux
to Displace Symbian as Dominant Force in Advanced
Mobile Operating Systems.
http://www.tdgresearch.com/press066.htm

Blandford, R., 2006, February 8. TDG claim Symbian will
be behind Linux and Microsoft by 2010. Retrieved
March 28, 2007, from All About Symbian Web site:

http://www.allaboutsymbian.com/news/item/TDG_clai
m_Symbian_will_be_behind_Linux_and_Microsoft_by
_2010.php

 Cheap, hackable Linux smartphone due soon, 2006,
November 7.
http://www.linuxdevices.com/news/NS2986976174.ht
ml

OpenMoko: The World’s First Integrated Open Source

Mobile Communications Platform, (n.d.). Retrieved
March 28, 2007, from www.openmoko.org

Purdy, J. G., January, 2007. Mobile Linux: Why it will
become the dominant mobile OS.
http://www.fiercewireless.com/story/feature-mobile-
linux-why-it-will-become-the-dominant-mobile-
os/2007-01-03

Benchmark clocks OMAP2420 graphics on Linux,

Symbian. February 2, 2006.
http://linuxdevices.com/news/NS6023095418.html

Yaghmour, K., 2003. Building Embedded Linux Systems,
Sebastopol, CA: O’Reilley

Embedded Linux Graphics Quick Reference Guide, (n.d.).

http://linuxdevices.com/news/NS6023095418.html
Raghavan P., Lad A. and Neelakandan S., 2005. Embedded

Linux system design and development, Boca Raton, FL:
Auerbach Publications

Bowet, D P. and Cesati, M., 2001, Understanding the
Linux Kernel, 1st edition, Bejing: O’Reilly.

Singh, I. M., 2004, Embedded Linux: The 2.6 kernel is
ideal for specialized devices of all sizes,

http://www.lynuxworks.com/corporate/news/2004/linu
x-kernel-2.6.php

Deshpande A. R., 2004, March 4, Linux Kernel 2.6: the
Future of Embedded Computing, Part I. Retrieved
March 28, 2007, from the Linux Journal Web site:
http://www.linuxjournal.com/article/7477

The OMAP 730 Digital Baseband (n.d.). Retrieved March
28, 2007, from
http://focus.ti.com/general/docs/wtbu/wtbuproductcont

ent.tsp?templateId=6123&navigationId=12003&conten
tId=4676

Trolltech: Code less – Create More. (n.d.). Retrieved April
3, 2007, from www.trolltech.com

Montavista Software – Platform to innovate. (n.d.).
Retrieved April 3, 2007, from www.mvista.com

139

Appendix D

PAPER FOR ICIN 2007

Linux for Advanced Future Mobile Phones
1Frode Sivertsen, fsivertsen@gmail.com, 2Ivar Jørstad, ivar@ubisafe.no, 1,3Do van Thanh, thanh-

van.do@telenor.com

1Norwegian University of Science and Technology, Dept. of Telematics, O.S. Bragstads Plass 2E, N-7491

Trondheim, Norway, 2Ubisafe, Bjølsengata 15, NO-0468 Oslo, Norway, 3 Telenor R&D, Snarøyveien 30, N-

1331 Fornebu, Norway

Abstract
Linux has for some time been the operating

system of choice for many types of embedded

devices (e.g. network devices like routers, as well as

multimedia devices like set-top-boxes). Currently,

Linux is also gaining momentum as operating

system for mobile phones. This paper examines

whether Linux is suitable for mobile phones, and

what it takes to make Linux "go mobile", i.e., what

adaptations are necessary to make the Linux kernel

fit as a mobile operating system, what is the

architecture of such a platform and what are the

major benefits. The paper summarises the major
differences between desktop platforms and mobile

devices, which has to be taken into account when

introducing Linux on mobile phones.

TOPIC: Network Infrastructure and Device

Technology

1 Introduction
Linux already exists in several commercial

distributions targeted for embedded platforms and

currently has about 23% of the world market share

on mobile phones, even though this number

provided from The Diffusion Group can be disputed.

With the development of the handheld device

hardware, Linux is of particularly interest since it
has been ported to several hardware architectures for

years, has one of the most stable kernels, and

because the functionalities of the handheld devices

are growing to be more and more similar to that of a

“regular” PC. Major embedded Linux vendors such

as MontaVista and Trolltech are serving more and

more customers with complete mobile phone

operating system solutions and development

environments partially based on proprietary software

every day. During May 2007 one of the most

anticipated releases of a Linux driven mobile phone
will be ready for shipping, the Neo1973 from First

International Computing, FIC. Linux is nothing new

as a mobile phone operating system, but this is the

first mobile phone that will be shipped with

completely open source software based on the

OpenMoko platform. [1, 2, 3, 4]

Further, May the 5th, 2007, Matt Zimmerman,

the CTO of Ubuntu announced on the Ubuntu

development mailing list that there has been started

a Ubuntu Mobile and Embedded project. It is to be

developed together with Intel for their “new low-

power processor and chipset architecture.” [5] This
is a tiny, low-energy chip designed for embedded

devices such as the mobile phone. It has the

codename Silverthorne. It is a chip that will be one-

seventh the size of conventional processors and

consume just 10% of the power, according to Intel.

[6] Further, according to Zimmerman [5], “the first

release of this edition will be in October with

Ubuntu 7.10.”

Many in the handheld operating system

community favours Linux as the de-facto operating

140

system for handheld devices to become, because of

its openness, flexibility, the broad developer base,

and its modularity. They predict a new value added

feature in the next generation of mobile phones

where the applications may become the ringing

tones of today. [7]

With the release of the 2.6 kernel of Linux, it

has gone further in providing real-time services but

yet keeping the advanced features compared to

regular Real-Time operating systems. Linux

positions itself with the advantages from both the
real-time operating systems and the microkernel

operating systems. Compared to its major

competitors, namely Symbian and Windows, it has

its already mentioned advantages, but also the

performance is just as good as that of the mobile

phone targeted operating system of Symbian. [8]

These are just some of the reasons why it is

believed that Linux actually has the potential to

become the de-facto mobile operating system of the

future phones.

2 Adapting Linux to
mobile phones

2.1 Computer versus Mobile
Phone

The most difficult part of porting Linux to a
mobile phone is not the main configuration of the

kernel, but the programming of the low-level

interfaces, which are special for this kind of

embedded devices. On a mobile phone these will

typically involve the I/O devices such as keypad,

camera, Bluetooth, LCD screen, and non-volatile

storage in some form, but also the drivers for the

phone specific, GSM/GPRS Digital Baseband

Subsystem related functions. Those are often

provided by the board manufacturers, such as Texas

Instruments, or by the operating system vendors,

such as MontaVista. On the NEO 1973, the
GSM/GPRS driver (due to Non Disclosure

Agreements) and the GPS driver (due to legal

restrictions) are the only components that are closed

source code. These must be custom made to the

hardware architecture and this process may be

troublesome. [9]

Adapting Linux for mobile phones first requires

a thorough study of the differences between the two

hardware platforms, i.e. between the ordinary

computer and the mobile phone. There are three

main differences that will be described in detail:
Real-Time requirements, multiprocessing

requirements, and memory requirements.

2.2 The Soft Real-Time 2.6
Kernel

It is possible to categorize Real-Time operating

systems into two camps; there are those that support

Soft Real-Time responsiveness and those that

support Hard Real-Time responsiveness. Real-Time

responsiveness can be defined as “the ability of a

system to respond to external or clock events within

a bounded period of time.”[10] The 2.6 kernel of
Linux is regarded as a Soft Real-Time operating

system, where determinism is not critical. That is, a

fast response is desirable, but an occasional delay

does not cause malfunction. This is the contrary to a

Hard Real-Time operating system, such as a flight

control system, where a deadline never may be

missed.

Soft Real-Time responsiveness is a requirement

to mobile phones. Even though there are

requirements for multiprocessing, it is still a mobile

phone and the phone specific services such as calls
and messages will have to be prioritized with

regards to other applications and events. Before the

2.6 kernel release, special patches were necessary to

achieve sufficient responsiveness. The improved

responsiveness of the 2.6 kernel is mostly due to

three significant improvements: a pre-emptive

kernel, enhanced synchronization, and a new

efficient scheduler. These improvements have

contributed to make Linux an even better suited

operating system for mobile phones.

2.2.1 The Pre-emptive Kernel
In earlier releases of the Linux kernel, and like

most general-purpose operating systems, the task

scheduler was prohibited from running when a

process was executing in a system call. The task

would control the processor until the return of the

system call, no matter how long that would take.

Hence, the kernel could not interrupt a process to

handle a phone call within an acceptable time limit.

The 2.6 kernel is to some degree pre-emptive. The

pre-emption is triggered by the use of interruptions.

This means that a kernel task may be pre-empted
with a low interruption latency to allow the

execution of an important user application, typically

a phone call. The interrupt latency is the time it takes

from the device raises the interrupt to the device

driver’s interrupt handling routine is finished.

A microprocessor typically has a limited

number of interrupts, but an interrupt controller

allows the multiplexing of interruptions over a single

interrupt line. There also exist priorities among the

interrupts.

Interruptions need to be raised whenever the
memory manager discovers that data is missing, or

some data for example arrives from the network to

the hardware, such as the phone call. The kernel

must deliver an interrupt from the hardware device

to the correct device driver to notify about the

141

occurred situation. This is referred to as en interrupt
driven driver architecture. It requires the different

device drivers to register the address of an interrupt

handling routine and their wanted interrupt number

with the kernel (IRQ).

How the interrupt is delivered to the CPU itself

depends on the architecture of the system, but as a

general point it is wise that the interrupt handling

routine of the device driver should do as little as

possible. That way it will not occupy too much

resources and the kernel can dismiss the interrupt
and continue its previous work.

 The Linux 2.6 kernel code is laced with pre-

emption points allowing the scheduler to run and

possibly block a running process so as to schedule a

higher priority process. Linux is still not a true Real-

Time operating system, but it is certainly less jumpy

than before and considerable faster than its

predecessors, as seen in figure 1.

Figure 1: Comparison between the 2.4.18 and 2.6

kernels on a 1GHz Pentium III under heavy interrupt loads.

[10]

2.3 Multiprocessing
The operating system must be able to handle

multiple applications and processes. Compared to a

PC, the processing power is reduced, but the

requirements to responsiveness are higher.

2.3.1 Re-entrancy

The Linux kernel is re-entrant, meaning that

several processes may be executing in Kernel Mode

at the same time. Only one process can progress at

the time in a uniprocessor system, but others may be
waiting for the completion of some I/O request or

the CPU. To provide re-entrancy, the functions must

only modify local variables, not global ones that

might be used by other resources as well.

The kernel may also include non-re-entrant

functions that use locking to ensure that only one

process can execute that function at a time. These

processes may then modify global variables. If an

interrupt occurs, the kernel is able to suspend the

running process even if it is in Kernel Mode. This

ensures a higher throughput for the device
controllers that issue interrupts. While the kernel

handles the interrupt, the device controller may

perform other tasks.

The re-entrancy influences the organization of

the kernel and its kernel control path, which denotes
the sequence of instructions, executed by the kernel,

being an interruption, a system call, or an exception.

Normally the kernel would execute these tasks one

by one, from the first to the last. However, during

handling interrupts and exceptions, the kernel can

interleave one process in Kernel Mode to run a

process required by the first one or run another
process until the first one can be continued due to

waiting on an I/O operation. [11b:1-34]

2.3.2 Synchronisation and
Inter-process Communication

By implementing a re-entrant kernel, one

introduces the need for synchronization among

kernel control paths. One must ensure that while

acting on a kernel data structure, no other kernel

control path is allowed to act on the same data

structure, even if the first one suspends the data

structure. The data structure must be put back into a

consistent state.

When the outcome of a computation depends

on how the processes are scheduled (i.e. which goes
first), one has a race condition and a

nondeterministic behaviour. Safe access to global

variables is ensured by the use of atomic operations,

which refers to combining the operations from two

or more kernel control paths so they appear as one to

the rest of the system. Any section of code that

cannot be entered by a process before another one

has finished it is called a critical region.

The 2.6 kernel implements something that is

referred to as futex – fast user-space mutexes. It is a

new implementation of the mutex previously

implemented as system calls to check that only one
task is using a shared resource at a time. This time-

consuming system call to the kernel to see whether

block or allow a thread to continue was often

unwarranted and unnecessary. Futex checks user-

space to see whether a blocking is necessary, and

only issues the system call when blocking the thread

is required. This saves time. The function also uses

the scheduling priority to decide which thread is

allowed to execute in case of a conflict. [10, 12]

Linux uses IPC techniques such as signals,

pipes, shared memory, semaphores, message queues,
and sockets to exchange data between processes in a

synchronized manner. However, these operate only

in User Mode and not with kernel control paths as

actors. Inter-process communication in User Mode

supports sharing of data without having to access the

file system. Semaphores, message queues and shared

memory are commonly known as System V IPC,

and are implemented in many UNIX kernels.

142

2.3.3 The Scheduler

The 2.6 kernel has a totally new process

scheduler that replaces the slow algorithms of earlier

kernels. In short, the scheduler allocates tasks to the

CPU in quantities of time, time slices, to be able to

execute multiple programs at the “same” time. At

least the tasks experience it so. Earlier, the scheduler

would have to look at each ready task and score its

relative importance to decide which task to run next.

The new scheduler no longer scans every task every
time, but uses two queues. When a task is ready to

run, it will be sorted and placed in a queue, called

the current queue. The scheduler then chooses the

most favourable one in this queue to run next, giving

each process a specified time to occupy the

processor. Opposite to earlier, this is done in a

constant amount of time, and not relative to the

number of processes. After its time in the processor

expires, the process is placed in the other queue,

called the expired queue. The process is then again

placed according to its priority. When all the tasks in
the current queue are done, the scheduler once again

starts its simple algorithm of picking tasks from the

expired queue, which now is called the current

queue. This new scheduler works substantially faster

than the previous scheduler, and it works just as fast

with many tasks as with few.

Another example of improvement from the new

scheduler is its policy to increase responsiveness

through dynamic task prioritization. The 2.6 kernel

has 140 priority levels. It prioritizes (rewards) tasks

that are I/O-bound in contrary to CPU-bound tasks
by adding or subtracting from a task’s static priority.

This is done on user tasks, and not on real-time

tasks. The scheduler enforces a policy on when and

for how long processes may execute. In other words

it tries to avoid starvation and it enforces fairness,

interactivity, and efficiency. The important thing for

a mobile phone is to do this in the most efficient

possible way and thus provide a responsive user

experience and meet real-time requirements for

prioritized tasks.

For future kernel task schedulers in Linux, a

way to choose between different scheduler policies
and algorithms would be ideal for the different

devices it runs on. For example, a scheduler that

enforces interactive tasks for embedded and perhaps

desktop users, while a strict efficient task scheduler

favouring server usage could be chosen for servers.

This resembles the swappable scheduler of the GNU

HURD kernel. [13, 14]

2.4 Memory requirements

2.4.1 Memory Hardware Issues

High-end feature phones, smartphones, or

music-centric phones as seen in the market today

have various memory requirements, both in terms of
the amount of memory space they need and the

memory type best suited to meet their usage

schemes. First of all, the phones usually have a

removable memory, which can be used to store

images, music, videos, applications, and so on. This

is referred to as the Memory-Stick. This can

typically be 1Gigabyte and up to 4 Gigabytes.

Second, they have a semi-removable memory

offered in the SIM card, which now offer up to 1

Gigabyte of storage. [15] This is typically used to

store contacts etc., but the range of use is expanding.

The embedded memory, however, cannot be
removed. Nor can it be replaced or upgraded after

the handset has left the factory. This is the memory

that is mainly used by the operating system and its

internal processes. 32 MB is a typical size, which is

enough for the operating system in all phone

categories mentioned above, leaving some space to

user applications as well. Before 2001, the flash type

used in embedded systems was usually NOR flash.

NAND flash is known to be more error prone and

use a different and more complicated processor

interface than NOR flash. This had made it
“unusable” in mobile handsets. However, these

shortcomings have been overcome, and NAND flash

is becoming more and more dominant. It is smaller,

therefore more cost-effective than NOR technology.

In addition the prices on raw materials are dropping.

The NOR technology is said to have its upper limit

as a competitive media at 32MB. The NAND

technology is often called Multi-Level Cell (MLC)

NAND, because two bits, instead of one, can be

stored in each cell.

When NAND flash first was adopted, it was

used in addition to NOR flash. This was because
NAND could not support eXecute In Place due to

the compression of stored data, and hence it was

only used as storage for user media. This was

however overcome with the use of DiscOnChip,

which includes a small XIP boot block. From there

the RAM can be initialized and the kernel image can

be copied into SDRAM. This required SDRAM of

course.

This task can easily be solved in Linux by the

use of JFFS2 (Journaling Flash File System Version

2) and the 2.6 kernel’s MTD subsystem (explained
shortly), and hence it supports NAND memory as

the only non-volatile memory. But it can also use the

NOR-NAND combination.

In the years to come, built-in-high-density

embedded flash drives (EFDs) will probably be the

state of art to handle the problems with the NAND

flash, as it offers the flash media and flash controller

on the same chip, and sometimes even on the same

die. The technology of EFDs is evolving fast, and it

is hard to keep up for the software world. [15, 16,

17, 18, 19]

2.4.2 Memory Manager
It is the memory manager which task is to

control memory access to the hardware memory

143

resources on a fair basis. The memory manager is

highly dependent on the hardware Memory

Management Unit, MMU. It provides protection by

letting only the correct process read and modify its

data, and it prevents processes from overwriting

code and read-only data. While executing processes

the processor read instructions from memory and

decodes them. The instruction may require fetching

or storing data to memory before moving on to the

next instruction in the program. The processor is

therefore always accessing the memory to fetch the
next instruction or to fetch or store data. The

instructions and data may also be fetched or stored

to by the use of cache. [20]

2.4.3 MTD

On Linux, memory technology devices are all

kinds of memory devices: RAM, ROM, flash, and

DiskOnChip (DOC) from M-Systems. For the

record, M-Systems are now acquired by SanDisk.

The Memory Technology Devices (MTD)

subsystem is a module of the Linux kernel. Linux
imposes greater requirements to the storage

hardware compared to traditional embedded

software, and the MTD subsystem intends to provide

a uniform and unified access to memory devices for

the Virtual File System, VFS. In that way it avoids

having different tools for different technologies.

The VFS handles all the system calls related to

all the different file systems. The device drivers

must translate their physical organization into a

common file model that can represent all the

supported logical file systems. In that way, to
interact with the different file systems the kernel (i.e.

the VFS) has only one common interface to relate to.

The buffer cache is data buffers used by block

device drivers. The fixed size buffers contain data

going to and from block devices, typically a hard

disk. Block devices are always accessed via the

buffer cache.

 Flash devices need other policies of use due to

their physical properties. As an example, flash chips

have a larger sector size than the regular disks sector

size, on which the buffer cache is based. In addition

to this do flash chips have a limited lifetime and the
memory blocks have to be erased before written to.

 This means that “normal” file system drivers,

based on block devices, cannot be used on top of

flash devices because they go through the buffer

cache. This necessitates the introduction of the

Memory Technology Devices subsystem (MTD) on

embedded devices.

The MTD subsystem consists of low-level chip

drivers and high-level interfaces called MTD user
modules. The chip drivers are of course technology

dependent. The user modules are software modules
in the kernel that enables access to the chip drivers

and thus the storage space through recognizable

interfaces and abstractions. The interfaces and

abstractions are then provided to the higher levels of

the kernel (e.g. the VFS as the common file model)

and in some cases to user space. [21]

2.4.4 Virtual Memory

 In Linux the Memory Manager implements

a logical layer for as the Memory Manager Unit

being able to provide virtual memory to drivers, file

systems, and networking stack. But also it provides

virtual memory to user applications. The virtual

address space is also referred to as a linear address

space. The virtual addresses are divided by the
kernel into page frames with a size of 4 or 8 KB,

which result in that a request for contiguous virtual

address space can be satisfied by allocating a group

of page frames that do not necessarily have

contiguous physical addresses. The actual data may

actually be located in RAM, cache, or on a non-

volatile storage, depending on when it was last used.

 Many of the hardware peripherals are

accessible within the system’s physical address

space, while they may have restricted or are

completely “invisible” in the virtual address space.
[11 a]

The 2.6 kernel may be built without virtual

memory. Virtual memory may reduce system

responsiveness because of demand paging and the

following slow handling of page fault. A page fault

is when the system is trying to access a memory-
mapped page that is not in physical memory and

therefore must be loaded in. This may be of use on a

mobile phone to ensure a faster operating system,

but the lack of virtual memory requires that the

software programmer ensure that there is enough
real physical memory present on the platform to

meet application demands.

2.4.5 Physical Memory
Addressing

The memory map (i.e. how the system sees the

total memory layout) is highly dependent on the

specific board and its available memory. It first of

all defines the layout of the CPU’s addressable

space, in terms of how to handle User Mode and

Kernel Mode, caching, and so on.

On a generic ARM1 based design, a mobile

phone usually has an ARM core together with a

number of system dependent peripherals. It further

has an interrupt controller that receives interrupts

from peripheral devices. The controller raises inputs
to the processor as appropriate. This interrupt

controller may also provide hardware assistance for

prioritizing interrupts. Next, there are some form of

off-chip ROM or flash to boot the system from, and

1 ARM is by far the most used processor

design used on mobile phone. Latest reports

show that ARM’s market share of the

embedded RISC microprocessor market is

approximately 75 percent. [26]

144

a 16-bit wide RAM to store runtime data. On the

chip there will be 32-bit memory for interrupt

handlers and stacks. [22]

The memory map freezes the physical address

space allocated for RAM, flash, and memory-

mapped I/O peripherals. In other words, this defines

how the CPU, the memory devices, and the I/O

peripherals can communicate. The physical

addresses often resemble the addresses used on the

busses, but this is not always true. During system

configuration, the processor’s address space will be
divided into different areas where some is used to

cache, some to the kernel and I/O peripherals that

need to bypass the cache, some to user programs,

and some to the kernel functions that need

translation in the Translation Look-aside Buffers.

With the processor’s address spaces set, the rest of

the various onboard devices (RAM, I/O devices,

etc.) can have their address spaces set. This requires

an understanding of addresses and how the devices

and buses use them. At last this will decide where to

put the boot loader and the kernel image, which is
necessary to get the system booted.

Up and running, Linux and UNIX systems

distinguish between two parts of the RAM. A few

megabytes are dedicated to store an image of the

kernel. The rest is used to:

• Satisfy kernel requests for buffers,

descriptors, and other dynamic kernel

data structures.

• Satisfy process requests for generic

memory areas and for memory

mapping of files. (User Space)

• Get better performance from disks and

other buffered devices by means of

caches

The system flash storage is also divided in two

or more parts. Usually the lower part of the memory

contains the boot loader and maybe some boot

parameters. This may also be stored in ROM. This

part usually has the lower range of the physical

address space, and the boot loader required must

therefore support bottom booting. This region is
rather small and may by mounted with a separate file

system during booting. The second part of the

system flash consists of the root file system. The

kernel image can either be stored in an own section

of the flash, or in the root file system, if the boot

loader supports reading from it. [9:chap.3,

23:chap.3]

2.4.6 DMA

The use of interrupt-driven device drivers

works well as long the transferred data to and from
devices is reasonably low. If the transfer rate is

bigger, for example as for a SCSI device, high

interrupt latency will impact the overall system. The

interrupt latency is, as mentioned, the time it takes

from the device raises the interrupt to the device

driver’s interrupt handling routine is finished. DMA

was invented to handle this problem. The DMA

controller allows devices transfer data to memory

without the intervention of the CPU. The DMA only

uses some parts of physical memory and knows

nothing about the virtual memory. Usually there are

only 7 DMA channels, making it a scarce resource.

They cannot be shared, so device drivers must be

able to operate without them. [9:chap.8]

2.5 The General Mobile
Linux Platform

The generic architecture of a Linux mobile

phone platform is a monolithic, layered architecture.

It consists of low-level interfaces that provide

uniform interfaces to high-level abstractions. The

low-level interfaces are architecture-dependent,

where their lower part communicates with the

hardware through device drivers. The upper parts of

the low-level interfaces provide APIs, which are
common across the different hardware architectures

to the high-level abstractions. These high-level

abstractions can then have a constant code-base in

most cases. The high-level abstractions visible to

User Space are well-known abstractions such as

processes, files, sockets, and signals. Because the

services exported by the kernel are not always fit to

be used directly by applications, libraries often

provide such an API and communicate with the

high-level abstractions on behalf of the user

applications.

2.5.1 Frame Buffer
The Linux frame buffer, fbdev, is a graphic

hardware-independent abstraction layer to show

graphics on a console without relying on system-

specific libraries. The frame buffer is a memory area

that has the size of the screen multiplied with the

byte-size per pixel and usually it has a fixed memory

address range of the internal memory that uses

DMA. Linux uses the virtual frame buffer solution

for portability, which then is an interface that is easy

for programmers to access.
 On a mobile phone the display procedure

will often include a 2D accelerator, and 3D

accelerators are also on its way. The graphics library

issues commands to the accelerator, which write the

results to the frame buffer, thus speeding up things

even more.

2.5.2 Application Layer & UI

Linux supports several window systems and

graphical libraries for the graphical user interface. It

is possible to write applications that use the frame
buffer directly, but as the GUI grows complex some

form of abstraction is necessary. The graphical

system on an embedded device is responsible for

145

managing the display hardware, manage one or more

user input interfaces, provide an abstraction layer to

the underlying hardware for applications, and

manage different applications at the same time so

they can co-exist and share the use of input devices.

 The X Window System, X11, which

usually runs on most desktop distributions, is quite

large. An embedded system does not have the need

for all these network-oriented services provided by

the X Window System. It rather needs a quick, close

to real-time-response system with a small toolkit
library. The most used open source window

managers for handheld devices are Nano-X,

formerly known as Microwindows, and Matchbox.

In contrast to their “big brother” X11, they have

reduced resource requirements. Other window

managers intended for embedded devices exist as

well. [24]

 The embedded window systems usually use

libraries such as Nano-X, Qt/Embedded (Qt

pronounced cute, now known as Qtopia Core), and

GTK+ possibly with GTK-DFB (GTK on Direct
Frame Buffer) to provide the windowing

environment with the drawing engines. Further, Qt

also offers a toolkit through Qtopia, whereas others

are GTK-DFB, and FLNX. The latter is a port for

Nano-X from FLNK (Fast Light Tool Kit). There

also exist a NXLIB (Nano-X/X-Lib Compatibility

Library) that lets X11 binaries run unmodified or

with little change on the Nano-X server, since it

supports a subset of X-lib. Trolltech, the makers of

Qt, have a rather complex license model while

GTK+ is completely GPL licensed. The window

manager is loaded by the init program.
Many other window managers intended for

embedded devices exist as well. Some are open

source, some are just available in commercial

solutions, while some are dual licensed. Some of the

projects/solutions are just graphical library layers,

while some are complete window systems with a

stack ranging from hardware interfacing to a full

GUI toolkit. As a summary one can say that the

Linux frame buffer provides a good solution for all

kinds of embedded devices. For the mobile phone

with its calendar, phone book, and the like Nano-X
with Qtopia Core or FLNX running on top will be a

good solution to provide a user-friendly menu-

driven GUI. This will be an open source solution.

[9:chap.9, 24]

3 The Benefits of Mobile
Linux

Chapter 2.2, 2.3, and 2.4 explained the main

differences from the regular PC in terms of Real-

Time requirements, multiprocessing requirements,

and memory requirements. In the light of the Linux

2.6 kernel it was shown how Linux deals with these

challenges regarding mobile phone systems. In

chapter 2.5 a general mobile Linux platform was

discussed on a more architectural level.

 So what are the benefits of Linux as

opposed to other mobile phone operating systems?

The most obvious benefit is the cost reduction due to

the open source code. There are no restraints to the

use of the Linux source code as long as it follows the

agreements of GPL and LGPL. The flexibility of

choice of physical devices and logical file systems is

one of the important factors why Linux has had such

a success on different devices in the past. [11a]
Further Linux has been used and suited to both

embedded devices and regular PCs for years, and the

kernel is well known for being very stable with

lower resource requirements than its competitors.

 Together with the necessary additions in form

of the GSM driver, or whatever standard the phone

is using (CDMA2000, UMTS), and possible other

closed source drivers, it is possible to build a full

scale mobile phone operating system based on open

source code. With the latest enhancements included

in the 2.6 kernel presented here, Linux has the
possibility to become the de-facto standard mobile

operating system.

In the previous it was shown how the core

functionalities of the Linux kernel with a focus on

the basics, and the very latest improvements in the

2.6 kernel, can take advantage of the continuous

improving mobile phone boards. The boards are

getting smaller and smaller, and faster and faster. In

addition they are improved with increased power

management in terms of better-suited power modes

and reduced current by shutting down certain

devices in active mode, and increased memory
functionality in terms of configurability, speed, size

and usability. There is also seen a lot of integration

of different devices and communication standards on

the boards, making them highly flexible to be used

whatever services the operating system (i.e.

developer) allows them to.

 The consumers will want a mobile phone

that can perform a variety of functions including,

voice, multimedia messaging, and take photos or

video and email the photos and messages. The phone

should also synchronize with a PC, perform mobile
commerce, and of course, play games. However, to

get consumers to use any of these services they have

to be easy, quick and simple to use. For example, if

it takes ten steps to take a photo and email it to

someone, it won't be adopted easily or broadly.

Applications must be developed to do this in two or

three steps. There, Linux has its core advantage in

addition to the obvious that comes along with the

GPL and other licensing standards such as LGPL.

[25]

Linux itself offers standardized APIs to be used

by programmers. It is already well known that the
Unix/Linux community has one of the largest

service/application developer bases. This is where

the key to Linux’ success will lie; With an open

146

kernel, already used for years, with developers

knowing it inside out, they have the potential to

extract the money from this industry’s future main

income: services and applications.

Windows became the de-facto standard

operating system for regular PCs because they gave

them a common look and feel. The graphical user

interface with the same look and feel made it

accessible to everyone and the PC industry became

the industry it is today. Vendors such as Trolltech

and Montavista recognize this, and try to do the
same thing on mobile phones as Windows did on

regular computers. There is no doubt that in the

mobile phone world the kernel is regarded as less

important to the user. It is the services and

applications that the user sees that give him, or her,

the true value. In the PC market, the operating

systems services in terms of running multiple

applications, file management, etc. just as important

as the user interface. This does not apply to the

mobile phone market. Thus operating system

vendors will not gain much, at least not their major
share, of money from their investments in

developing the “invisible” kernel, even though this

has to be done to some degree. They will have to

shift their offerings to become value added suppliers

to the Linux ecosystem.

4 Conclusion and Future
Work

This paper has studied the challenges and

opportunities brought with Linux as an enabler for

advanced services on mobile phones. The paper

clearly describes how a standard Linux kernel may

be adapted to fit the mobile device, and shows the
important differences between the hardware

platform of the computer and the hardware platform

of a typical mobile phone. The emerging

architecture of the future mobile phone is discussed,

and the benefits of employing Linux on mobile

phones are elaborated.

5 References
[1] The Diffusion Group, February 08, 2007. The

Windows & Linux to Displace Symbian as Dominant

Force in Advanced Mobile Operating Systems

 http://www.tdgresearch.com/press066.htm

[2] Blandford, R., February 08, 2007. TDG claim Symbian

will be behind Linux and Microsoft by 2010.

http://www.allaboutsymbian.com/news/item/TDG_clai

m_Symbian_will_be_behind_Linux_and_Microsoft_b

y_2010.php

[3] Cheap, hackable Linux smartphone due soon.

November 07, 2006.

 http://www.linuxdevices.com/news/NS2986976174.ht

ml

[4] OpenMoko: The World’s First Integrated Open Source

Mobile Communications Platform, (n.d.)

 www.openmoko.org

[5] Zimmerman, M., May 5, 2007. Ubuntu Mobile and

Embedded Edition.

 https://lists.ubuntu.com/archives/ubuntu-devel-

announce/2007-May/000289.html

[6] BBC News, May 5, 2007. Linux evolves for mobile

devices.

http://news.bbc.co.uk/1/hi/technology/6634195.stm

 [7] Purdy, Ph.D. J. G., January 03, 2007. Mobile Linux:

Why it will become the dominant mobile OS.,

 http://www.fiercewireless.com/story/feature-mobile-

linux-why-it-will-become-the-dominant-mobile-

os/2007-01-03

[8] Benchmark clocks OMAP2420 graphics on Linux,

Symbian. February 02, 2006.

 http://linuxdevices.com/news/NS6023095418.html

[9] Raghavan, P., Lad, A., and Neelakandan, S., 2006.

Embedded Linux system design and development, Boca

Raton, FL: Auerbach Publications

[10] Dr. Inder M. Singh, September, 2004. Embedded

Linux: The 2.6 kernel is ideal for specialized devices of

all sizes.

 http://www.lynuxworks.com/corporate/news/2004/linu

x-kernel-2.6.php

[11a] Bowet, D P. and Cesati, M., 2001. Understanding the

Linux Kernel, 1st edition, Bejing: O’Reilly.

[11b] Bowet, D P. and Cesati, M., 2003. Understanding the

Linux Kernel, 2nd edition, Beijing: O’Reilly.

[12] Aseem R. Deshpande, March 26, 2004. Linux Kernel

2.6: the Future of Embedded Computing, Part I.

 http://www.linuxjournal.com/article/7477

[13] Aas, J., February 17, 2005. Understanding the Linux

2.6.8.1 CPU Scheduler.

 http://josh.trancesoftware.com/linux/linux_cpu_schedu

ler.pdf

[14] The GNU HURD. http://www.gnu.org/software/hurd/

[15] M-Systems, December, 2005. Flash Memory in Mobile

Handsets: Balancing the Equation. http://www.m-

systems.com/NR/rdonlyres/692BE1C4-FF8E-48A3-

97A3-

B39B45AE4CCC/0/FlashMemory_in_Mobile_Handse

ts_Balancing_Equation_Rev11_SD.pdf

[16] Chen, P., November 11, 2006. The case for a standard

mobile memory interface for flash/DRAM.

 http://www.mobilehandsetdesignline.com/howto/stora

gearchitecture/193700728

[17] Semiconductor Insights, 2006. Q2/2006 Flash Memory

Component Executive Summary Report. Available

through:

 http://www.semiconductor.com/products_and_services

/subscription/flash/

[18] Kaplan, F., 2005, May, Standardizing NAND Flash for

Use in Mobile Handsets.

 http://www.m-systems.com/NR/rdonlyres/BE31E55A-

BEE2-407C-A8E5-

0FFD3662B4FD/0/EFDs_Standardizing_NAND_Flas

h_for_Use_in_Mobile_Handsets.pdf

[19] M-Systems, 2005. Meeting Multimedia Requirements

for Memory in Mobile Handset.

147

 http://www.m-

systems.com/NR/rdonlyres/ECE1D4BA- 84E3-

4638-8AD7-3EE9BD

 754685/0/Meeting_Multimedia_Requirements_with_F

lash_Memory_SD.pdf

[20] Bowman I., January, 1998. Conceptual Architecture of

the Linux Kernel.

 http://plg.uwaterloo.ca/~itbowman/CS746G/a1/

[21] Yaghmour, K., 2003. Building Embedded Linux

Systems, Sebastopol, CA: O’Reilley

[22] The ARM architecture. September 9, 2004.

ftp://download.intel.com/education/highered/Embedde

d/02_ARM_Architecture.ppt.

[23] Rusling, D. A., 1999. The Linux Kernel.

http://en.tldp.org/LDP/tlk/tlk.html

[24] Embedded Linux Graphics Quick Reference Guide

 http://www.linuxdevices.com/articles/AT9202043619.

html

[25] Five New OMAP Processors from TI Increase

Wireless Application Performance as Much as 8x and

Extend Battery Life of Handsets. February 24, 2003.

http://archive.chipcenter.com/wireless/parch.html

[26] The ARM Architecture. January, 2005.

 http://www.arm.com/miscPDFs/3823.pdf

