
August 2006
Poul Einar Heegaard, ITEM
Tormod Omholt-Jensen, Boost Communications

Master of Science in Communication Technology
Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Telematics

Idol Show in China

Gerard Draper Gil

Problem Description
The use of mobile phones for interactivity is growing rapidly. In Norway, we are increasingly given
the ability to use SMS for voting in TV-shows etc. As the popularity of such interactive events
increases and expands to new markets, there is huge need for highly scalable SMS processing
solutions.
Boost Communications AS is developing and selling
interactive SMS solutions. We are about to expand into new markets and need to find server/
network topologies suitable for high load SMS processing.
Assuming for example that Boost Communications could be chosen as the provider of the SMS
voting system for the Chinese «Idol»-show, we would need an SMS processing system capable of
handling in the order of one billion users.
A scalable SMS processing system will typically consist of a set of processing servers, a set of
database servers, switches and load balancer(s). To receive and send SMS messages, the system
will be connected to one or more operators.
The student should investigate existing highly scalable processing solutions. In addition Boost will
present a couple of proposed network/server topologies. The student should perform scalability
analysis and simulations to detect possible bottlenecks in the proposals. Network traffic and
access to shared resources such as databases, will be possible causes of bottlenecks.
Based on the analysis, simulations and research, the student should propose ways to improve the
scalability and hence the performance, of the system. Improvements can include both topology
changes and change of technology (for instance change of communication protocols used between
processing and database servers).

Assignment given: 20. February 2006
Supervisor: Poul Einar Heegaard, ITEM

Contents

Preface ix

Objectives xi

I Introduction 1

1 Introduction 3
1.1 Televoting . 3
1.2 This Project . 4

1.2.1 General View . 4

2 Previous Work 5
2.1 Computer Based Models . 5
2.2 Scalable Systems . 5

3 SMS Processing Solutions 7
3.1 SMS Services . 7
3.2 Boost Network Architecture 7

3.2.1 Modules . 8
3.2.2 Database . 10
3.2.3 First Analysis . 11

II Analytic Model 13

4 Queueing Theory 15
4.1 Poisson Traffic Model . 15
4.2 M/M/1-PS . 15
4.3 Jackson’s Network Theorem 16

5 Boost Model’s Architecture 19
5.1 Modeling Parameters . 19

5.1.1 Incoming Traffic Model 19

ii CONTENTS

5.1.2 Service Time Distribution 19
5.1.3 System Capacity . 19

5.2 First Approach . 20
5.3 A Simple Model . 20
5.4 Test Results . 23

III Simulation Model 25

6 Simula Language 27

7 Boost’s Simulation Model 29
7.1 Parameters . 29

7.1.1 Incomming Traffic Model 29
7.1.2 Service Time . 29

7.2 Shared Resources . 29
7.2.1 Processor . 30
7.2.2 Hard Drive . 30
7.2.3 Threads . 30

7.3 Simulation workflow . 31
7.4 Simulation Models . 32

7.4.1 Single Multiprocessor Shared Hard Drive 32
7.4.2 Single Multiprocessor Different Hard Drives 32
7.4.3 Double Multiprocessor Different Hard Drives 32

8 Running the Simulation 35
8.1 Interpreting the results . 35

8.1.1 distributions . 36
8.1.2 counts . 36
8.1.3 tallies . 36
8.1.4 resources . 36

8.2 First Simulation . 36
8.2.1 Single Multiprocessor Shared Hard Drive 37
8.2.2 Single Multiprocessor Multiple Hard Drive 37
8.2.3 2 Multiprocessor Multiple Hard Drive 39
8.2.4 First Simulation Conclusion 45

8.3 Increasing Interarrival Time 51
8.3.1 Doubling Incoming Traffic 51
8.3.2 Doubling the threads number 52

IV Conclusions 61

9 Conclusions 63

CONTENTS iii

Furtherwork 67

Appendix 69
.1 Simula Code for Boost Network 69
.2 sample SIMULA Result . 74

Bibliography 77

List of Figures

1.1 Mobile Phone penetration level 3

3.1 Boost SMS Processing Solution 8
3.2 Modules 1 . 9
3.3 Modules 2 . 10

4.1 M/M/1-PS State Probabilities Diagram 16

5.1 First Approach . 20
5.2 Boost Network Analityc Model 21
5.3 Busy Probability vs Delay Probability 22
5.4 Average Time spent in the System 23

7.1 CPU share example . 30
7.2 HD share example . 31
7.3 Simulation Diagram . 33

8.1 Throughput Configuration 1: Single Multiprocessor 1 Hard
Drive . 37

8.2 CPU usage: Single Multiprocessor 1 Hard Drive 38
8.3 Hard Drive Usage: Single Multiprocessor 1 Hard Drive 38
8.4 Throughput Configuration 2: Single Multiprocessor 3 Hard

Drive . 40
8.5 System Time for Configuration 2: Single Multiprocessor 3

Hard Drive . 40
8.6 Zoom System Time Configuration 2: noRAID 41
8.7 Zoom System Time Configuration 2: RAIDx2 41
8.8 Zoom System Time Configuration 2: RAIDx3 42
8.9 Hard Drive Usage Configuration 2: NoRAID 42
8.10 Hard Drive Usage Configuration 2: RAIDx2 43
8.11 Hard Drive Usage Configuration 2: RAIDx3 43
8.12 Threads Usage Configuration 2: noRAID 44
8.13 Threads Usage Configuration 2: RAIDx2 44
8.14 Threads Usage Configuration 2: RAIDx3 45

vi LIST OF FIGURES

8.15 Throughput Configuration 3: Two Multiprocessors 3 Hard
Drive . 46

8.16 System Time for Configuration 3: 2 Multiprocessors 3 Hard
Drive . 46

8.17 Zoom System Time Configuration 3: noRAID 47
8.18 Zoom System Time Configuration 3: RAIDx2 47
8.19 Zoom System Time Configuration 3: RAIDx3 48
8.20 Hard Drive Usage Configuration 3: NoRAID 48
8.21 Hard Drive Usage Configuration 3: RAIDx2 49
8.22 Hard Drive Usage Configuration 3: RAIDx3 49
8.23 Threads Usage Configuration 3: noRAID 50
8.24 Threads Usage Configuration 3: RAIDx2 50
8.25 Threads Usage Configuration 3: RAIDx3 51
8.26 Throughput Configuration 2: Single Multiprocessor 3 Hard

Drive . 52
8.27 Throughput Configuration 3: Two Multiprocessors 3 Hard

Drive . 53
8.28 Hard Drive Usage configuration 2 noRAID: double traffic . . 53
8.29 Hard Drive Usage configuration 2 RAIDx2: double traffic . . 54
8.30 Hard Drive Usage configuration 2 RAIDx3: double traffic . . 54
8.31 Hard Drive Usage configuration 3 noRAID: double traffic . . 55
8.32 Hard Drive Usage configuration 3 RAIDx2: double traffic . . 55
8.33 Hard Drive Usage configuration 3 RAIDx3: double traffic . . 56
8.34 Throughput configuration 2: increasing threads 57
8.35 Throughput configuration 3: increasing threads 57
8.36 Hard Drive Usage configuration 2 noRAID: increasing threads 58
8.37 Hard Drive Usage configuration 2 RAIDx2: increasing threads 58
8.38 Hard Drive Usage configuration 2 RAIDx3: increasing threads 59
8.39 Hard Drive Usage configuration 3 noRAID: increasing threads 59
8.40 Hard Drive Usage configuration 3 RAIDx2: increasing threads 60
8.41 Hard Drive Usage configuration 3 RAIDx3: increasing threads 60

9.1 Architecture modifications: multiple incoming databases . . . 64

Preface

The following project has been developed during my Erasmus in Norway, at
NTNU. The project has been supervised by Poul Heegard, from NTNTU,
and Tormod Omhold-Jensen from Boost Communications. I would like to
thank both of them for the time they have dedicated to this project and to
me, to answer my questions and doubts.

Objectives

Our objective is to test the performance of a real SMS Processing System.
We will work with Boost Communications, a norwegian company that is
developing a SMS Processing System to sell interactive SMS solutions. With
our test, we want to be able to put the system performance into numbers,
and to identify and eliminate possible bottlenecks.

In order to achieve our objective we will use different techniques. First,
we wil build an analytic model, a simple one, an we will use It to try to
identtify the main weak points on the Architechture. Once built, we will run
a few tests on the Architecture to identify our modeled parameters values.
The second step will be to build a simulation model using the knowledge we
will had achieved while doing the analityc model and the first tests.

At the end, we will have to be able to point the bottlenecks and offer
solutions to them. These solutions can be hardware based, or software based.

With this work, we will try to approach the educational world and the
labor world, that sometimes seem to be so far away one from the other. On
the labor world, due to timing or economic issues, the solution adopted to
fix a problem is not the one we will cal ”optimal” on the educational world.

Part I

Introduction

Chapter 1

Introduction

The mobile phones penetration level is increasing year by year. In some coun-
tries this level has even raised above the 100, as we see in Figure 1.1(Source:
OECD ICT Key Indicators [www.oecd.org/sti/ICTindicators]). As this level in-
creases, the number of services offered by the mobiles are also growing: MMS,
Videoconference, E-mail, Internet, SMS.... In particular, the use of the SMS to
provide a wide different variety of services has increased quickly.

Figure 1.1: Mobile Phone penetration level

1.1 Televoting

One of the most popular SMS services is the ”televoting”. This service cre-
ates an interaction, a feedback, between the mobile phone user and the client
that hire the service (TV-Shows, radio, magazines,. . .). Its most popular ap-
plication, perhaps, It is the use that TV Shows gave to It. Besides the many
ways in that can be applied, the foremost important thing is that all the

4 Introduction

audience became a potencial user of this service. With this huge potencial
market, the ”televoting” has became an important source of incomes.

This service generates bursts of requests, mostly concentrated during de
show duration. So a show like ”American Idol” that can have an audience
of 35.5 million viewers, is potentially able to generate an incoming traffic
of 35.5 million messages in 2 hours!, or about 10.000 messages per second,
during a short period of time.

But ”televoting” is not the only service offered by SMS, there are many
others, some related and some unrelated to the TV-shows. Services like
ringtones downloading, news subscriptions, etc . . . Services that have a lower
incoming traffic needs.

”televoting” systems must process large amount of messages in a short
period, meanwhile other services needs a lower traffic. So we need a flexible
architechture for our SMS services platform.

1.2 This Project

Let us assume that China (population aprox. 1.300 Millions), achieves a
penetration level close to 100%. If a national television plans to run a reality
show, like Idol Show, and they use a SMS ”televoting” System , this System
will have to support a large number of incoming messages. So our System
must be prepared. We have to be able to scale our System to feed the needs
of our customer.

The starting point for this project was the assumption that Boost Com-
munications could be chosen to process the SMS messages generated by a
reality show, like Idol Show, in China. So if we assume that China reach a
penetration level close to 100%, with a population of 1.300 Millions aprox.,we
can expect that our SMS processing system will have to process a huge
amount of messages. In order to be able to satisfy the client needs, Boost
SMS processing System must be able to increase its performance. In this
project we pretend to push the Boost system until we find its limit, and why
its limit happends.

1.2.1 General View

However, this is a problem that affects not only to the SMS applications.
Any on-line service must be ready to increase its performance very fast
because they have a potenciall market of millions of users . Every day new
services appears and every day some of them disappear. The difference
between a succesful or a failure can be the lack of users or the excess of
them, the ”slashdot effect”. If we have too many request and our System
is not able to deal with them, our service can go off-line or delay the users.
This lack of service can make the users to choose another service provider.

Chapter 2

Previous Work

2.1 Computer Based Models

The scalability of a system is not an exclusive problem of Boost Communica-
tions. Predict how our system will respond to a traffic increase or hardware
changes, will help Boost into cover their clients needs. A good way to do It is
through simulations. If we can build a computer based simulation of Boost
Communications Architechture, we will be able to predict its behaviour.
The problem is to find a valid simulation model. The concern about if the
simulatino model is correct or not is resolved through the validation and
verification of the model. The verification concerns to the implementation
of the model. Meanwhile, the validation is concerned to the bulding of the
right model.

• To verificate the model we have to follow the same steps as when we
build a software application.

• Many documents have been written on how to validate a simulation
[Sar99]. It is not an easy work, moreover, we can find papers where
the autor accepts the fact that the simulation may never be 100%,
that It is enough with a certain level fo confidence.

2.2 Scalable Systems

An intuitive definition of what is scalability is given by the Free On-Line
dictionary of Computing [FOL06]: ”How well a solution to some problem
will work when the size of the problem increases”. It is good enough to
understand the concept, but when we want to apply It, we find this defini-
tion too subjective, incomplete. Many authors have tried to give a formal
definition of scalability or define and measure It [Luk94] and Its properties
[Bon00]. In some cases the author even discuss the necessity of a system
being scalable [Hil90].

6 Previous Work

We will asume that the scalability is a desirable and a necessary propertie
of our system, moreover, that in fact our system is scalable. As a scalable
we will mean that we can increase the maximum incoming traffic λ that our
system is able to process, by making hardware (adding processors, HD, . . .)
or software (change or tuning database, number of Threads, . . .) changes
at a reasonable cost.

The problem is that the ”reasonable cost” is a subjective value. From
the academic point of view we can think that our system is scalable (as easy
as duplicate the system!), but from Boost point of view It is possible that
the system seems not scalable.

Chapter 3

SMS Processing Solutions

Like an E-mail Service or a Web Service, a SMS Service has Its own particular-
ities. In this chapter we will try to expose them and explain how they affect to
our System. After this, we will give a description of the solution that Boost has
implemented.

3.1 SMS Services

In a mobile communications system we can distinguish between acces providers
and content providers.The acces providers would be, for example: Orange,
Telenor, Deutsche Telecom, . . . and the content providers would be the ones
that offer services as ringtone downloads, televoting, So every time
you send a SMS you have to pay to the acces and to the content provider
independently. So if your SMS content provider is off-line, by the time you
send the message, this message will be lost, but you will have to pay to the
network acces provider.

This fact has recently caused a polemic in Spain, where the reality show
called ”Operacion Triunfo” experimented technical problems during the las
program of the last season. In that show, the program received about 1.5
million messages in 2 hours. The complain comes from the fact that a lot
of people could not vote for his candidate because of ”network problems”,
but the sms messages were charged.

3.2 Boost Network Architecture

A scheme of the Boost Network Architecture is shown on Figure 3.1. We
will build an analytic model of It, based on this scheme. The Boost Network
Architechture has 5 main modules: Receiver, Dispatcher, Product, Message
Sender and Message Queue.

8 SMS Processing Solutions

Figure 3.1: Boost SMS Processing Solution

3.2.1 Modules

Receiver

The Receiver is the entrance door to the system. It is connected to the ag-
gregator, the link between the mobile operators and the Boost network. The
aggregator sends the request to the Receiver using the http protocol. The in-
coming messages are stored in a database using the JMS JavaMessageService.
The JMS server allow the user to choose how to implement the queue, the
options are using memory, using a file or using a database. Boost has decide
to implement the queue as a database to avoid the losing of received mes-
sages that have not been proceesed yet in case of a system failure. We have
been told that the receiver and the aggregator have some kind of feedback,
but not specified how, to avoid loosing messages. It happends that if the
receiver is not able to process more messages, the aggregator will lower the
incoming traffic level (Figure 3.2).

Dispatcher

The Dispatcher is a Message-Driven Bean. It reads the messages from the
incoming queue and send them to the Product module. It works in two
different ways: as a load balancer and as a distribution module.Once a mes-
sage has been processed, It deletes It. At the scheme shonw on Figure 3.1
we see 3 product modules. This 3 product modules can be the same one so
the dispatcher would work as a load balancer, 3 different ones so the dis-
patcher would work as a distribution system, or a mixture so the dispatcher
would distribute the different messages into the different products and would
balance the incoming traffic between the redundant modules (Figure 3.2).
.

3.2 Boost Network Architecture 9

Figure 3.2: Modules 1

Product

The Product module is an EJB. There is one for every different product:
televoting, massive sms sending, news, etc . . . During the chain of events trig-
gered by a message: recepcion −→ distribution −→ process −→ response
It will be the main Service Time consumer in average (from different prod-
ucts). A tipical Product process It is show on figure fig:Diagrama2 . The
”Find Price”, ”Create Account Transaction” and ”Create and Send Re-
sponse” will be the main Service Time consumers within the Product mod-
ule. The two first ones involve many DataBase transacions: checking client
accounts, updating payments, . . . and the third one involves Processor time
to create the message or messages to send, and the writing of It to the
outgoing queue using JMS, as the Receiver module does

Message Sender

The Message Sender acts the same way than the Dispatcher. It reads the
messages from the outgoing queue using JMS, and send them to the proper
Message Queue module. The Queue Module is chosen depending on the cost
fo sending the message. Once the message has been sent It deletes It from
the outgoing queue (Figure 3.2). .

10 SMS Processing Solutions

Message Queue

The Message Queue is the exit door from the System. It is connected to the
aggregator. We have different Message Queue modules, so we can choose
the cheapest way to send a message depending on its destination (we use
different network operators)(Figure 3.3).

Figure 3.3: Modules 2

3.2.2 Database

We have 3 different databases: One to store the incoming messages, one
to store the outgoing databases and another one used by the product mod-
ule, containing all the information about customers and services. This 3
databases can run on one Database or can be separated, since they do not
have any link between them.

Incoming Messages Database

As we explained earlier, the Receiver and the Dispatcher use the JMS to
communicate each other. The JMS use this database to store the incoming

3.2 Boost Network Architecture 11

messages.

Outgoing Messages Database

The product uses the JMS to send the messages to the Message Sender. As
It happends with the incoming queue, the JMS use a database to store the
messages, this is the Outgoing Messages Database.

Product Database

This is the main database. All the information related to customers, prod-
ucts, etc . . . is stored here. The product module use this Database to process
the messages. There are different products. Each one has to perform dif-
ferent actions to process one message. All the information related to this
process, like whatever is stored in this database. It is the largest one

3.2.3 First Analysis

After learning how the Boost System is implemented, we can ask ourselves
few questions and we can give an early report on the main weak points or
possible bottlenecks.

JMS-Database

Is all this writing/deleting messages into database (incoming/outgoing) nec-
essary? If the answer is yes, we can expect that the database acces will be
one bottleneck. If it is no, we will have to find an alternative to It. In
case we find that this system is absolutely necessary we will have to find
the way to improve the performance of this modules. We will have to find a
way to improve the write-delete of a database. This operations will involve
the Hard Drive configuration: single or RAID system, SCSI?,Serial ATA?,
even the brand can make a difference. The Database itself (Boost is using
PosgreSQL) will be also a main issue, It must be configured properly (this
can be very difficult) and different Database software will have different per-
formance.
Finding an alternative to the JMS-Database may not be that easy. First
thought will be eliminate the database as the way to store the messages by
the JMS. This way we will move the bottleneck from a write-delete database
to a write-delete Memory (much faster).
The write-delete from database gives to Boost a very robust system agains
failures, avoiding to loose messages: the messges written in the database
will not be lost if the system is restarted or shut down, meanwhile if we
store them into the RAM memory they will be erased. But we should think
how often does a main failure happens? can we recall messages from the

12 SMS Processing Solutions

aggregator? It also gives to the system a nearly unlimited queue size due to
the Hard Drive size.

CPU consumption

The Product module is expected to be the one that cosumes more CPU time.
We will use this assumption whe we build our analytic model. Despite the
operations that realizes every module we also have the CPU consumed by
the Database, and in some cases It can require a lot of resources.

Dispatcher-Product

The dispatcher threads are binded to the product ones. It is, the dispatcher
reads a message, call the product, and when the product is finished It deletes
It. The reason why It happens this way, as we were told by Boost, is
that sometimes the sms process by the product may fail. In this case, the
dispatcher will send the message to the product again. But, first question:
How often does It happens? This relation provoques that dispatcher thread
is locked doing nothing, consuming resources (memory,. . .)until the product
have finished, very inefficient.

Part II

Analytic Model

Chapter 4

Queueing Theory

In this chapter we will have a brief description of the teorical knowledge necessary
to develop the project. The descriptions will be accompanied by references with
detailed descriptions.

4.1 Poisson Traffic Model

The first thing we have to decide is how to model the incoming traffic.
We have chosen to use the Poisson Traffic Model due to Its analytical and
simplification properties:

a. Process without memory. Interarrival time is an exponential distribu-
tion.

b. the average number of arrivals within T seconds =λ · T

c.
∑N

j=1 Poisson Processes with λi =Poisson Process withλ =
∑N

j=1 λi

d. if we have a Poisson proces with

λ = P1 · λ1 + P2 · λ2 + . . . + PN · λN

will be a Possin process

Also, It has been demostrated that the sequence of times at wich tele-
phone calls are generated in the telephone network is a Poisson process.

4.2 M/M/1-PS

The Processor-Sharing model is a system where the server resources are
shared by all the incoming requests. The incoming requests are served con-
tinuously, and each one get a proportional part of the resources:

16 Queueing Theory

1request→ µ = µ
2request→ µ = µ

2 + µ
2 = µ

...
Nrequest→ µ = N × µ

N = µ

Figure 4.1: M/M/1-PS State Probabilities Diagram

On Figure 4.1 we can see the state probabilities diagram of the M/M/1-
PS model. 

P0 =
(
1− λ

µ

)
Pk = P0

(
λ
µ

)k

λ

µ
=≤ 1

4.3 Jackson’s Network Theorem

In 1957 Jackson J. R. published a paper where he develops a theory known
as Jackson’s Network Theorem [Jac57]. It is a very powerful and easy to
use tool for analyzing networks of queues. It asumes that we have a net-
work of single server queues, where every node comply with the followiong
statements:

a. Each node k has an average service time 1
µk

,with Poisson departure
process.

b. The messages arrives to the network according to a Poisson process
with intensity λk

c. The messages processed at node j, will go to node k with probability
Pjk, or will leave the network with probability:

1−
N∑

k=1

Pjk

4.3 Jackson’s Network Theorem 17

On his paper, J.R. Jackson demostrates that if we have a network of
queues satisfying the previous statements, we can model our network using
the following equations:

a. For each node k, the average arrival intensity ∆k is calculated with
the following equation:

∆k = λk +
N∑

j=1

∆jPjk

b. As the state probability for each node is independent, the state prob-
abilities are given in a product form:

P (i1, i2, ..., ik) =
K∏

k=1

Pk (ik)

Chapter 5

Boost Model’s Architecture

5.1 Modeling Parameters

The first thing we need to do in order to build an analityc model of the Boost
arquitecture is to identify and ”put into numbers” the main variables. To
build an effficient and easy model, we will have to make many assumptions
and simplify some processes. The resultant model may differ from the real
system behaviour, but It will give us an early vision of the system behaviour.

5.1.1 Incoming Traffic Model

Population

Our starting point to develop all this project was the ”televoting” SMS
application. Since this application has a potencial number of users about
milions (see 1.1), we will assume that we have an infinite population.

Distribution Model

We will use a Poisson model as a traffic distribution model (see 4.1).

5.1.2 Service Time Distribution

We will assume that our Outgoing Traffic Model follows also a Poisson dis-
tribution model 4.1.

5.1.3 System Capacity

Since our System will not loose any message (there’s some kind of feedback
between the receiver and the aggregator), and our Queues (Incoming and

20 Boost Model’s Architecture

Outgoing message queues) are limited only by the Hard Drive size. We will
assume that our system has an infinite capacity.

5.2 First Approach

With the description given by the Figure 3.1, our fist attempt to build a
model of the Boost Network can be seen at Figure 5.1. We just made an
analogy between modules and queue-servers.

Figure 5.1: First Approach

This model can be simplified. First thing, we assume that the processing
time from the product module will be much larger than the processing time
from the dispatcher and the sender modules together. We also know that
the dispatcher threads, are ”binded” to the product threads. When the
dispatcher gets a message from the incoming queue, It calls a product thread
(depending on the message type) and waits for the process thread to finish.
Once the product has finished It deletes the message from the queue.

5.3 A Simple Model

With the information given at the end of the previous section, we can make
a simplification on the ”Firts Approach” model to end with what It will be
our model for the Boost System: Figure 5.2.

With this last simplification, our model will be like the Figure 5.2. The
model also fits into the load balancing server distribution: All the incoming
requests are sended to a common node. This node will distribute the traffic
between the different servers.

Once we have a description on how our model will look like, we have
to determine its equations. Using the theory from 4.2 and the Jackson’s
Network Theorem 4.3, we can easily have a mathematical description for
our network.

A M/M/1-PS model will fit into our model: We have a markovian input
and output and we will assume that we have a multiprocessor machine. This

5.3 A Simple Model 21

Figure 5.2: Boost Network Analityc Model

model will help us to comply with the Jackson’s theorem statements since
Its ouptut distribution is a Poisson

The Jackson’s theorem Statemens:

a. First: Every node, as a M/M/1-PS model will have an average Service
Time 1

µk
, and the departure process will be Poisson, since the incoming

is Poisson too.

b. Second: The incoming traffic model will be Poisson.

c. Third: The messages will go from node i to node j with a certain
probability, Pij.

Now we are able to write down the equations for the Boost Model:

a. For each node k, the average arrival intensity ∆k is calculated with
the following equation:

∆k = λk +
N∑

j=1

∆jPjk

b. As the state probability for each node is independent, the state prob-
abilities are given in a product form:

P (i1, i2, ..., ik) =
K∏

k=1

Pk (ik)

22 Boost Model’s Architecture

Our final model has 3 nodes. Each one can be represented by this equa-
tions: 

∆k = λk +
∑N

j=1 ∆jPjk

Pk (m) =
(
1− ∆k

µk

) (
∆k
µk

)m
; ∆k

µk
≤ 1

Where ∆k = Average arrival intensity for each node, Pk = Delay probability
for each node and m = number of threads running.

The value ∆k
µk

is also known as ρ = Busy Probability. This value only makes
sense if we have a stable system. That is, if ρ ≤ 1 or λIN = λOUT .
Which is the desired value for this parameter? We would like to have a
system that is 99,99% of the time busy to make our system as profitable as
possible. The problem is that there is a relation between the busy probabil-
ity and the delay probability: the more busy our system is, the worse delay
probability we have, see Figure 5.3.
The number of threads will also influence the delay probability value: as
much threads we have better Delay Probability we have. So, how many
threads will we be running? on a real system our number of threads will
be limited by the CPU power and the system memory. Sometimes adding
a new thread will affect the system performance in a negative way. So, con-
trary to the graph, we will have to choose a maximum number of threads
and this will limit our delay probability.

Figure 5.3: Busy Probability vs Delay Probability

5.4 Test Results 23

We can also calculate the ”Average time spent in the system” or system
time by a message, that is, the time from a message enter the system until
It leaves the system. We will use Little’s Law [Kle57] to do It:

N = λ · T −→ T =
1/µ

1− ρ

Where N = Average number of units in the system and T = Average time
spent in the system

Figure 5.4: Average Time spent in the System

On Figure 5.4 we can see a graphic representing the Average Time
spent in the system. Notice how this value increase exponentially at certain
ρ value. Even when we have a Service Time of 0.5 ms, we can have that our
message can last more than 10ms (20 times more) if our Busy probability is
above 90%.

5.4 Test Results

To identify the parameters from the analytic model we ran a few tests on the
Boost System. We used a single-processor computer with a software RAID
1 (mirroring) to run the modules and another computer to send messages
using a sofware called jmeter.To do the tests we only used the dispatcher
and the receiver modules, Boost was interested into knowing the capacity of
receiving messages.

24 Boost Model’s Architecture

First unexpected results were related to the database. We noticed that the
deletes and the selects took too many time to be executed. The cause was
the lack of indexes in the database: design error. Also, another database
problem was related to the Postgre SQL itself, the command vacuum. This
command must be executed periodically to reset some database statistics
that are used to decrease the seek time within the database. The problem
is that either the command is executed too often or too late, the database
performance decreases.
On the other hand, the behaviour related to the number of threads was
expected. We made tests with different number of threads on the receiver
and the dispatcher, to end with the conclusion that the best performance was
obtained with 1 thread on the receiver and 3 threads on the dispatcher side.
This result contradicts the analytic model, where increasing the number of
threads has allways a positive effect.
On the following table, we have the results obtained during the tests:

RECEIVER DISPATCHER
Threads Proc. Time Std. Var. Threads Proc. Time Std. Var.
1 6,3086 0,045244414 2 6,3074 0,044971086
1 6,0030 0,013067778 3 6,0020 0,013217778
1 6,0170 0,00249 4 6,0160 0,002448889
1 6,1320 0,012217778 5 6,1320 0,012217778
1 6,3990 0,076498889 10 6,3980 0,075551111
1 6,1120 0,014995556 2 6,1120 0,014995556
2 4,0540 0,176182222 1 6,0110 0,02001
3 3,4580 0,001373333 1 6,0740 0,003471111
4 3,0180 0,002884444 1 5,6160 0,007115556
5 3,8300 0,006911111 5 5,2880 0,007817778
4 3,9270 0,005823333 4 5,2880 0,00484
4 4,9000 0,003333333 8 5,2690 0,005121111
4 5,3187 0,020421344 10 5,3196 0,020334933
4 5,5270 0,009912222 15 5,5270 0,009912222

Part III

Simulation Model

Chapter 6

Simula Language

The SIMULA programming language was created at the Norwegian Com-
puter Centre (NCC) by Ole-Johan Dahl and Kristen Nygaard. Its first
version was developed in 1962, called SIMULA I. 5 years later SIMULA
I evolved into SIMULA67, by adding among other things the concept of
inheritance. At the beginning It was created as a language for discrete
events simulation, but turned out in addition to posess interesting prop-
erties as a general programming language. SIMULA is known as the first
Object Oriented Languaje. Among other things SIMULA introduced im-
portant object-oriented programming concepts like classes and objects, in-
heritance, and dynamic binding. It is not the aim of this project to teach
SIMULA. More information about SIMULA: history, links, . . . can be found
here [SIM06a] [SIM06b].
To create our simulation, we will use DEMOS. DEMOS is a SIMULA pack-
age created to help on the development of discrete events simulations. An
introduction to DEMOS can be found at [DEM06b] and [SIM06b] [DEM06a]

Chapter 7

Boost’s Simulation Model

The Simulation model has been built from the assumption that the foremost
critical resources will be the Processor and the Hard Drive. A sample code can
be found at Appendix .1.

7.1 Parameters

7.1.1 Incomming Traffic Model

We will use an exponential function to generate the Incomming traffic in-
terarrival time.

7.1.2 Service Time

For the analytic model we choosed an exponential service time because It
simplified It. But, for the simulation model we have chosen a Normal distri-
bution to represent the service time for every operation, because its sample
values are more ”stable” within a range. On Apenndix .1 we can see the
values we have choosed. For example, the receiver service time for accepting
connections is a normal distribution with µ = 0.1 and σ2 = 0.01. With this
values the probabiliti to have a value between [µ− σ, µ + σ] ≈ = 0.68 and
the maximum value will be µ, meanwhile with an exponential distribution
this probability is ≈0.038. Using the Normal distribution we can also have a
problem if our average value is close to zero, we can have negative samples.
To avoid It, we used the function Abs(), that will return a positive value.

7.2 Shared Resources

The main objective of the simulation is to show how the use of shared
resources affect our performance. The Shared Resources have been modeled
as an array of RES classes. We focused on the processor, the hard drive
and the threads.

30 Boost’s Simulation Model

7.2.1 Processor

To model the CPU-Share behaviour we have divided every module in small
tasks. Before performing any task we will have to ask for the CPU resource.
Once the task is finished we will return the resource. A sample of this is
shown on figure 7.1. We use the commnad hold(0.0)to ”jump” from task
to task. When we execute this command the next entity in queue for the
resource will get It.

Figure 7.1: CPU share example

7.2.2 Hard Drive

The Hard drive will be another important resource in our simulation. It
has a direct relation with the database, because It is where the data will
be stored. We will assume that every action regarding the hard drive is
composed by the accessing time to the hard drive and the time needed for
the operation itself, like writing and deleting. A sample code is shown on
figure 7.2

We will use different Hard Drive configuration in our simulations, from
a single Hard Drive to a multiple Hard Drive using RAID.

7.2.3 Threads

The threads will be another shared resource but instead of acquire and free
them every task, we will acquire them at the begining of a module: receiver,
dispatcher, . . . and we will free them when all the tasks in wich have been
divided the module are done. On Figure 7.3 we can see wich tasks are
needed for every module. This relation tasks-module is not allways that
obvious. If we take a look at the Figure 7.3 It seems that the product is
part of the dispatcher, but they are two different modules. The problem is

7.3 Simulation workflow 31

Figure 7.2: HD share example

that the dispatcher waits for the Product to finish, so we can not release the
dispatcher thread until the product is finished.

7.3 Simulation workflow

The Simulation will follow the life cycle of an incoming request. On Figure
7.3 we can see how the simulation runs. We have 3 entities: the Generator,
the Incoming Message and the Outgoing Message.

• The Generator creates an Incoming Message entity every 1
λ ms or

166,67 messages/second.

• The Incoming Message entity simulates the operations done by the
system from the message reception by the dispatcher to the message
delete from the incoming queue by the dispatcher.

• The Outgoing Message entity simulates the system from the moment
the Producer module generates the response until this response is de-
livered.

It is important to realize that the life cycle of an incoming request will
not be the add of the life cycle of modules operations, but the add of parts of
It. In particular, the message removing from Incoming/Outgoing queues will
not be part of It. So we can say that the only modules that will completely
be part of the life cycle of an incoming request will be the Receiver, the
Product and the Sender. This fact will be important when we will be doing
the analysis of the simulation’s results.

32 Boost’s Simulation Model

Figure 7.3: Simulation Diagram

7.4 Simulation Models 33

7.4 Simulation Models

We will run the simulation ”step by step”. We will use 3 different config-
urations, from a simple to a more developed one. This configurations will
be made after real systems. Despite the fact that we have 3 different con-
figurations, every configuration will be runed with 3 different Hard Drive
processing time. Every Hard Drive operation will require two operations:
seeking + operation. The operation can be write, delete or select. We will
assume that the seeking time is the same for the three of them, but the
operation time will decrease. The operation time will be affected by various
parameters, like the use of a RAID system, The communications protocol:
SCSI, Serial ATA, . . . , or even the Hard Drive brand. We will call to our
reference operation processing time noRAID, then we will have an operation
time equal to reference*0.6 (RAIDx2) and the third one will be reference*0.4
(RAIDx3).

7.4.1 Single Multiprocessor Shared Hard Drive

This will be our first simulation. We will also use this one to initialize our
service time values, according to the results on section ()(This configuration
is the same we used when we tested a real system at Boost.) It will
simulate a single multiprocessor machine, from 1 to 10 CPU. The ”Shared
Hard Drive” means that the 3 databases (incoming, product and outgoing)
will be running on the same Hard Drive.

7.4.2 Single Multiprocessor Different Hard Drives

This configuration will also use a single multiprocessor machine, but in this
case we will split the databases. We will run them in separate Hard Drives.
This will be our first performance improving mesure for the system.

• On Hard Drive 1 will be running the incoming database

• On Hard Drive 2 will be running the product database

• On Hard Drive 3 will be running the outgoing database

7.4.3 Double Multiprocessor Different Hard Drives

This configuration has been made after the Boost specificationsof their sys-
tem. We will have 2 different multiprocessor machines: CPU1 and CPU2.

• On CPU1 we will run the Receiver module and its database.

• On CPU2 we will be running the dispatcher, product, queue sender,
sender and the product/outgoing database. Boost have chosen this

34 Boost’s Simulation Model

configuration to isolate the incoming requests from the rest of the
process, so they can easily control them.

Chapter 8

Running the Simulation

We will start with a model equal to the system we have tested. This is a receiver
connected to the dispatcher, but without any product module. We will adjust
the values close to the ones we get from the tests and that will be our starting
point. From there, we will add the product (a generic one) and we will start
the simulation.

8.1 Interpreting the results

We will analyze the simulation results in two steps:

• First we will check our system throughput. With the throughput we
will be able to know if our system is stable or not stable. λIN =
Throughput means that we have a stable system.

• Second, we will check our latency. To have an idea of the system
latency, we will have to look at the system time, or the average time
since a message enter the system until It leaves It. Since we do not
have any quality values to compare with, we will not be able to qualify
the value as good or bad one.

With this two values we can have an idea of our system quality. For
example: A train loaded with DVD will be a system with a huge througput,
but its latency will be very large. From an Internet user point of view,
the 56k modem will be much faster if he tries to open a web-site, use the
e-mail,. . . On the other hand, a user trying to download a DVD, may find a
better choice to wait one day for the train.

On Appendix .2 we can see a sample simulation result. The result file
has 4 main parts: distributions, counts, tallies and resources.

36 Running the Simulation

8.1.1 distributions

In this part we have a list of all the distributions used during the simulation.
It shows its main values: reset time, number of observations, type, average
value, standar deviation (if we can choose the value) and the seed value. It
is important to notice that if we run 2 simulations using the same seed, the
result will be exactly the same.

8.1.2 counts

We have only one count variable. It is used to count the number of mes-
sages sended. We will use this valu to calculate the system throughput:
Messagessent

Simulationtime = [messages/second]

8.1.3 tallies

We used the tallies to calculate the threads duration, and the system time.
We have timestapms inside the simula code, so que can folow the message
inside the system and calculate how long It takes every module to process
a message.

8.1.4 resources

On this part we have listed our shared resources, with its utilization, stan-
dard deviation,

8.2 First Simulation

We will start our simulation with a time between arrivals 1/lambda=6ms.
That was the best result we had during our tests on the Boost System (see
section ??). We will also configure the number of threads according to the
results from the tests: 1 Receiver, 3 Dispatchers, 3 Products(dispatcher and
product are binded, see section 3.2), 3 Senders, 1 Queue Sender. As we saw
of section 5.3, even having a small processing time, the system time can
be much bigger depending on the value ρ, the probability of busy sytem.
But this time we do not have a poisson distribution output, because our
processing time has been modeled as a normal distribution. So to calculate
the system time we have to use the pollaczek khintchine formula:

T =
λE

{
x2

}
2 (1− ρ)

+ E {x}

Where x is the aleatory variable representing the service time.
We will have 3 different configurations for our simulation:

8.2 First Simulation 37

8.2.1 Single Multiprocessor Shared Hard Drive

On Figure 8.1 we have the throughput for the first simulation. Knowing
that our input ratio is λ = 166 messages/second, we can conclude that
with this configuration our system is unstable, our throughput is lower than
λ. To find the bottleneck we have to look at Figure 8.2 and 8.3. From
1 to 4 CPU our bottleneck is the Processing Power, but at the end, what
is limiting our system is the Hard Drive, its utilisation level is 100%. No
matter how many processors we use, our shared Hard Drive configuration
will not be able to handle all the incomming traffic.

Figure 8.1: Throughput Configuration 1: Single Multiprocessor 1 Hard
Drive

8.2.2 Single Multiprocessor Multiple Hard Drive

On Figure 8.4 we have the throughput for our 2nd simulation. What we
can see is that separating the Databases into different hard drives we are
able to reach the stability point, that is when the throughput is equal to λ,
but depending on the Hard Drive speed we will need 3, 4 or 5 CPU. Once
we know that our system is stable, we can talk about the latency. To do It
we will have to check the system time.
On Figure 8.5 to 8.8 we have the average system time for processing 1
message and its standard deviation. Despite of the Hard Drive configuration
we use, we can see that the system time graphs have the same behaviour.

38 Running the Simulation

Figure 8.2: CPU usage: Single Multiprocessor 1 Hard Drive

Figure 8.3: Hard Drive Usage: Single Multiprocessor 1 Hard Drive

8.2 First Simulation 39

The system time decreases very fast until It reaches the equilibrium point,
then it decreases very slowly for two steps more (2 CPU more) and It remains
stable for the rest of the simulation. Yet its final value is much better as
faster the Hard Drive is, what means that we have a better (lower) latency.
The fact that the graph lines reach a stable value means that at this point
our busy probaility ρ has reached a low value, tipically 60 or 70$, or one of
the shared resources is limiting It. We can discard the CPU as a limiting
resource, because we increase its number up to 10. On the other hand we
have the Hard Drive resource, which is not increased. On Figure 8.9 to 8.11
we have the Hard Drive usage. We can see that the Hard Drives for the
incoming and the product database reach a level of usage above 80%, for
the noRAID configuration. Meanwhile on the other configurations its level
is close or below 60%. That explains why the system time is much bigger
for the noRAID configuration.To find the cause of this bottleneck, we have
to look at Figure 8.12 where we can see that the dispatcher usage is allways
above 90%, meanwhile the other two hard drive configurations 8.13 and
8.14 the usage about 70-80%.
If we take our worse value for the Total Time (figure 8.6):Average =
77ms, σ = 61ms, and asuming that we need an average processing time =
1/λ = 6ms. This means that our latency time is more than 10 times oour
processing time. On the other hand, our best system time is about 20 ms
Average with σ = 10ms. The big difference between this two results is due
to the usage of the system resources.

8.2.3 2 Multiprocessor Multiple Hard Drive

On the 2 Multiprocessor graphs we can see that we have many lines, look
like a mess. To know how many CPU are we using, we have to look at
the x axis where we find the number of CPU2, and the number of CPU1 is
represented by the multiple lines of the same color.

On Figure 8.15 we have the througput for the third configuration. First
thing we notice is that It does not help to achieve the stability point the
fact that we can add CPU to the receiver, with 1 CPU It is enough, ex-
cept for the noRAID configuration, when we need 2. This means that the
Receiver and the incoming messages database CPU consumtion is equal or
less than one. On the other hand, we have the number of CPU2 needed to
reach the stability point, that is 3, no matter how many CPU1 we have or
wich HD configuration we are using. On Figure 8.16 to 8.19 we have the
average system time for processing 1 message and its standard deviation.
On the previous section we saw that the system time graphs had the same
behaviour, the only differenece despite the value was that the graph was
”delayed” one step (CPU), because the stability point was reached in differ-
ent moments depending on the CPU configuration. In this case the stability
point is reached at the same time 3-CPU2 for every configuration. This re-

40 Running the Simulation

Figure 8.4: Throughput Configuration 2: Single Multiprocessor 3 Hard
Drive

Figure 8.5: System Time for Configuration 2: Single Multiprocessor 3 Hard
Drive

8.2 First Simulation 41

Figure 8.6: Zoom System Time Configuration 2: noRAID

Figure 8.7: Zoom System Time Configuration 2: RAIDx2

42 Running the Simulation

Figure 8.8: Zoom System Time Configuration 2: RAIDx3

Figure 8.9: Hard Drive Usage Configuration 2: NoRAID

8.2 First Simulation 43

Figure 8.10: Hard Drive Usage Configuration 2: RAIDx2

Figure 8.11: Hard Drive Usage Configuration 2: RAIDx3

44 Running the Simulation

Figure 8.12: Threads Usage Configuration 2: noRAID

Figure 8.13: Threads Usage Configuration 2: RAIDx2

8.2 First Simulation 45

Figure 8.14: Threads Usage Configuration 2: RAIDx3

sult is translated into the evolution of the graphics: The time decreases very
fast until the equilibrium point, It decreases slowly to the next step and It
remains stable. The influence of the CPU1 can be seen through the fact that
we have 2 different values related to the number of CPU1, one for 1CPU1
and another one for 2 to 10 CPU1. The Hard Drive speed will have influence
in the system latency, as faster the hard drive is, less latency we will have.
If we have a look at Figures 8.20 to 8.22 we will see that we are in the same
situation than the previous configuration, with one multirpocessor machine.
For the noRAID configuration we have a HD utilisation above 80% for the
product and the incoming database. It is an expected result, since we found
out that the resource that was limiting our system was the Hard Drive not
the CPU. Again, if we have a look at the threads utilisation Figure 8.23,
we find that the dispatcher is above 90% for the noRAID configuration, and
.Figure 8.24 and Figure 8.25 the maximum usage is about 70-80%.

8.2.4 First Simulation Conclusion

With this first simulation we have seen that an obligated choice if we want
to be able to handle an icoming traffic ratio λ ≥ 166 messages/second is
to separate the databases into different hard drives. We have also seen
that the Hard drive speed will have a big influence in the quality of the
system, we will need less CPUs and we have a better latency. Based on

46 Running the Simulation

Figure 8.15: Throughput Configuration 3: Two Multiprocessors 3 Hard
Drive

Figure 8.16: System Time for Configuration 3: 2 Multiprocessors 3 Hard
Drive

8.2 First Simulation 47

Figure 8.17: Zoom System Time Configuration 3: noRAID

Figure 8.18: Zoom System Time Configuration 3: RAIDx2

48 Running the Simulation

Figure 8.19: Zoom System Time Configuration 3: RAIDx3

Figure 8.20: Hard Drive Usage Configuration 3: NoRAID

8.2 First Simulation 49

Figure 8.21: Hard Drive Usage Configuration 3: RAIDx2

Figure 8.22: Hard Drive Usage Configuration 3: RAIDx3

50 Running the Simulation

Figure 8.23: Threads Usage Configuration 3: noRAID

Figure 8.24: Threads Usage Configuration 3: RAIDx2

8.3 Increasing Interarrival Time 51

Figure 8.25: Threads Usage Configuration 3: RAIDx3

perfromance criterium the 2 multiprocessors configuration is not needed.
We can obtain the same results using only one multiprocessor machine. But
using criteriums of security or system availability It is a matter that can be
discused.

8.3 Increasing Interarrival Time

On the previous section we tested our simulation with a λ = 166messages/second,
and we saw that only the 2nd and 3rd configuration were able to handle that
traffic.
In this section we are going to push our system harder, we are going to
double the traffic λ = 333messages/second and see how our configurations
handle It.

8.3.1 Doubling Incoming Traffic

On Figure 8.26 and 8.26 we have the throughput for our 2nd and 3rd
configuration with λ = 333. We can see that we are not able to reach the
equilibrium point in any case. For our single multiprocessor configuration,
we also see that our CPU needs have increased from the previous simula-
tion, at least up to 5, when our throughput remains stable. Meanwhile, on
the double multiprocessor configuration we see that the CPU needs have in-

52 Running the Simulation

creased only on the CPU1, the receiver, while the CPU2 needs have slightly
increased by one.

If we check the Hard Drive utilisation, Figures 8.28 to 8.33, we will find
out that in both cases, the Hard Drive utilisation for the noRAID configu-
ration reach levels beyond the 90% of usage, what means that the system is
limited by this resource. But, on the other 2 Hard Drive configurations, and
in both cases, the utilisation is close to 80%. This means that we are not
using all our system resources. So the RAIDx2 and RAIDx3 throughput is
limited not by the sytem resources, is limited by the use we make of them:
we can add more threads.

Figure 8.26: Throughput Configuration 2: Single Multiprocessor 3 Hard
Drive

8.3.2 Doubling the threads number

On the previous section we found that we can increase our throughput by
increasing the number os threads, because our resources utilisation were
below 100%. On Figure 8.34 and 8.35 we have the throughput for a
simulation with twice number of threads, that is: 2 receiver, 6 dispatcher,
6 product, 6 sender, 2 queue sender. Again, we find that we can not reach
the throughput objective: 333 messages / second. To find the limitation
resource we have to look to Figure from 8.36 to 8.41 where we have the

8.3 Increasing Interarrival Time 53

Figure 8.27: Throughput Configuration 3: Two Multiprocessors 3 Hard
Drive

Figure 8.28: Hard Drive Usage configuration 2 noRAID: double traffic

54 Running the Simulation

Figure 8.29: Hard Drive Usage configuration 2 RAIDx2: double traffic

Figure 8.30: Hard Drive Usage configuration 2 RAIDx3: double traffic

8.3 Increasing Interarrival Time 55

Figure 8.31: Hard Drive Usage configuration 3 noRAID: double traffic

Figure 8.32: Hard Drive Usage configuration 3 RAIDx2: double traffic

56 Running the Simulation

Figure 8.33: Hard Drive Usage configuration 3 RAIDx3: double traffic

hard drive configuration for both configurations. We can see that, again,
our limitation resource is the Hard Drive.

8.3 Increasing Interarrival Time 57

Figure 8.34: Throughput configuration 2: increasing threads

Figure 8.35: Throughput configuration 3: increasing threads

58 Running the Simulation

Figure 8.36: Hard Drive Usage configuration 2 noRAID: increasing threads

Figure 8.37: Hard Drive Usage configuration 2 RAIDx2: increasing threads

8.3 Increasing Interarrival Time 59

Figure 8.38: Hard Drive Usage configuration 2 RAIDx3: increasing threads

Figure 8.39: Hard Drive Usage configuration 3 noRAID: increasing threads

60 Running the Simulation

Figure 8.40: Hard Drive Usage configuration 3 RAIDx2: increasing threads

Figure 8.41: Hard Drive Usage configuration 3 RAIDx3: increasing threads

Part IV

Conclusions

Chapter 9

Conclusions

After the analityc and the simulation model we are in a position to point to
the weak points of this architechture and give a few possible solutions. We
found out that our main bottleneck was the use that this architechture make
of the database. We do have 3 databases.The product one is necessary, the
other 2: the incoming an outgoing database are open to discussion, from
our point of view. To solve this problem, we offer many possible options:

• Break the write/deletes sequence: With the hard drive sizes that
we have, we do not need to delete the messages after process them. We
can delete all the messages at night, for example, as a mainteinance
work. This solution has a problem: A table with 100.000 rows will
have a select time much bigger than one with 1000 (as more rows,
more time will take the operations). So the solution could be rename
the table every 1000 messages, for example, and create a new one with
the same name.

• Use multiple incoming databases: The incoming database do not
have a direct relation with the other databases. So, we can have N
incoming databases, every one in a different hard drive. To do this
we will also need to have different dispatchers, related to the different
databases.
The dispatcher is a message-driven bean, It is binded to a JMS queue.
When this queue register an entry, the JMS service will call the message-
driven bean binded to this queue.
We can use the same solution on the outgoing database.
This modifications will need software modifications: the receiver needs
to include an algorith to decide in wich queue (database) send the mes-
sage, and configuration modifications: we need one Mesasge-Driven
bean for every queue, at least. See Figure 9.1 for details.

• Eliminate the incoming database This is a more extreme solution.

64 Conclusions

This solution has more impact than just improving the performance.
It also affects security and availability issues. We can change the JMS
configuration to base the incoming queue in RAM memory instead of
in a database. The I/O operations with RAM memory are much faster
than the I/O operations with the hard/drive. Adopting this solution,
will make the amount of RAM memory a critycall resource.

Besides all this changes, we also have to think on the database perfor-
mance. Perhaps PostgreSQL is not the best one, so we recommend to test
the architechture with different databases: MySQL, Oracle, SQL Server,
. . .We can neither forget the database configuration [POS06]. Find the
proper database configuration can be a very difficult work.

Figure 9.1: Architecture modifications: multiple incoming databases

But the problem do not ends here. If we succeed on eliminating the
incoming database bottleneck, we will find ourselves with another one. This
time It will be the product database. This problem is far more complicated,
since this database is needed for the system to operate, we can not eliminate
It. The solution here will be using a clustering or a multiple database
solution.

• The clustering solution can be more difficult to implement, from the
database point of view, but It will not add extra functions to our
system.

• The multiple database solution will add extra funtions to our system.
The objective of this functions will be maintain the data integrity and
maintain It updated. If we have a user with a pre-paid credit, we need
to be able to acces to its current balance from any of the databases.

To be able to choose a solution at this point we need to study the
database design, and the use of the system.

• Do the clients have multiple accounts, one for each product? in this
case we could try to split the database in different databases, one for
each product.

65

• Is there a client with special needs? If a client is generating the most
traffic, we can think in use a database for him.

• In this project we have not thought in the mobile operators perfor-
mance, can we have this traffic level in one location? or we do have
to have many servers distributed in different geographical locations?.
This will finally influence in our choice between clustering or multiple
databases.

Another possible improvement will be ”unbinding” the dispatcher from
the product. This way, we will need less dispatcher threads, what means
less system resources. The problem with the wrong processed messages can
be solved if the product itself, once the process have failed, sends the mes-
sage to the incoming database again, as if It were new. The reason why the
dispatcher and product modules are binded can be the way that they are
implemented: the dispatcher is a Message-Driven Bean and the product is a
EJB. A possible solution could be create a listener where the dipatcher will
send the messages. This way, the dispatcher will not need to wait until the
product finishes. The listener will call the proper EJB-product depending
on the message type.

Furtherwork

In this project we have looked into Boost Communications architechture. We
have build and tested an analytic and simulation model looking for possible
bottlenecks or weak points. Finally we have presented possible solutions to
the problems.
A future work following this line, should be focused on the possible solutions.
Test the availability of the solutions, and its impact on the performance
through simulations, and if It is possible making tests on a real environment.

Appendix

.1 Simula Code for Boost Network

begin
EXTERNAL CLASS demos=”d:/cim/demos/demos.atr”;
demos
begin

integer M = 1;
integer N = 1;
integer K = 1;
integer J = 5;

ref(res) array cpu(1:M);
ref(res) array HD(1:N);
ref(res) array Threads(1:J);

ref(rdist) lambda,receiverT,dispatcherT,selectT,HDaccesT;
ref(rdist) HDwriteT,HDdeleteT,senderT,queueT,getConnectionT,productT;
ref(bdist) cache;
ref(tally) incoming,dispatch,sender,total,product,average,Qsender;
ref(count) quant;

integer i;
integer semilla,cpus;

entity class Generator;
begin
loop:
hold(lambda.sample);
NEW IncomingMessage(”IP”,time).schedule(0.0);
repeat;
end;

entity class IncomingMessage(creationTime);

70 Appendix

real creationTime;
begin
real receiverTime;
real dispProdTime;
real productTime;

Threads(1).acquire(1);
receiverTime := time;
receiver:
cpu(1).acquire(1);
hold(Abs(receiverT.sample));
cpu(1).release(1);
hold(0.0);
getConnection1:
cpu(1).acquire(1);
hold(Abs(getConnectionT.sample));
cpu(1).release(1);
hold(0.0);
write:
cpu(1).acquire(1);
HD(1).acquire(1);
hold(Abs(HDaccesT.sample)+Abs(HDwriteT.sample));
HD(1).release(1);
cpu(1).release(1);
Threads(1).release(1);
incoming.update(time-receiverTime);
hold(0.0);

Threads(2).acquire(1);
dispProdTime := time;
dispatcher:
cpu(1).acquire(1);
hold(Abs(dispatcherT.sample));
cpu(1).release(1);
hold(0.0);
getConnection2:
cpu(1).acquire(1);
hold(Abs(getConnectionT.sample));
cpu(1).release(1);
hold(0.0);
select:
cpu(1).acquire(1);
if cache.sample then
begin

.1 Simula Code for Boost Network 71

HD(1).acquire(1);
hold(Abs(selectT.sample+HDaccesT.sample));
HD(1).release(1);
end
else
hold(Abs(selectT.sample));
cpu(1).release(1);
hold(0.0);

Threads(3).acquire(1);
productTime:=time;
productProcessor:
cpu(1).acquire(1);
hold(Abs(productT.sample));
cpu(1).release(1);
hold(0.0);

productDataBase:
cpu(1).acquire(1);
HD(1).acquire(1);
hold(Abs(HDaccesT.sample)+Abs(selectT.sample)+Abs(HDwriteT.sample));
HD(1).release(1);
cpu(1).release(1);
hold(0.0);
cpu(1).acquire(1);
HD(1).acquire(1);
hold(Abs(HDaccesT.sample)+Abs(HDwriteT.sample));
HD(1).release(1);
cpu(1).release(1);
Threads(3).release(1);
product.update(time-productTime);
hold(0.0);

NEW OutgoingMessage(”OUT”,time,creationTime).schedule(0.0);

delete:
cpu(1).acquire(1);
HD(1).acquire(1);
hold(Abs(HDaccesT.sample)+Abs(HDdeleteT.sample));
HD(1).release(1);
cpu(1).release(1);
Threads(2).release(1);
dispatch.update(time-dispProdTime);
hold(0.0);

72 Appendix

end;

entity class OutgoingMessage(creationTime,totalTime);
real creationTime,totalTime;
begin
real senderTime,queueTime;

Threads(4).acquire(1);
senderTime:=time;
QueueSender:
cpu(1).acquire(1);
hold(Abs(queueT.sample));
cpu(1).release(1);
hold(0.0);
getConnection:
cpu(1).acquire(1);
hold(Abs(getConnectionT.sample));
cpu(1).release(1);
hold(0.0);
select:
cpu(1).acquire(1);
if cache.sample then
begin
HD(1).acquire(1);
hold(Abs(selectT.sample+HDaccesT.sample));
HD(1).release(1);
end
else
hold(Abs(selectT.sample));
cpu(1).release(1);
hold(0.0);

Threads(5).acquire(1);
queueTime:=time;
send:
cpu(1).acquire(1);
hold(Abs(senderT.sample));
cpu(1).release(1);
total.update(time-totalTime);
Threads(5).release(1);
quant.update(1);
sender.update(time-queueTime);
hold(0.0);

.1 Simula Code for Boost Network 73

delete:
cpu(1).acquire(1);
HD(1).acquire(1);
hold(Abs(HDaccesT.sample)+Abs(HDdeleteT.sample));
HD(1).release(1);
cpu(1).release(1);
Threads(4).release(1);
Qsender.update(time-senderTime);
hold(0.0);
end;

cpu(1) :- New res(”CPU1”,1);

for i:= 1 step 1 until N do
HD(i) :- New res(edit(”HD”,i),1);

Threads(1) :- New res(”Thread1”,1);
Threads(2) :- New res(”Thread2”,3);
Threads(3) :- New res(”Thread3”,3);
Threads(4) :- New res(”Thread4”,3);
Threads(5) :- New res(”Thread5”,1);

incoming :- New tally(”ReceiverT”);
dispatch :- New tally(”DispatcherT”);
product :- New tally(”ProductT”);
Qsender :- New tally(”QSendT”);
total :- New tally(”TotalT”);
sender :- New tally(”SenderT”);
average :- New tally(”AverageT”);

quant :- New count(”quant”);

semilla:=sysin.inint;
setseed(semilla);

lambda :- NEW NegExp(”lambda”,1/6);
receiverT :- NEW normal(”receiver”,0.1,0.01);
dispatcherT :- NEW normal(”dispatcher”,0.2,0.02);
productT :- NEW normal(”product”,7.5,0.75);
queueT :- NEW normal(”queueSender”,0.2,0.02);
senderT :- NEW normal(”Sender”,0.1,0.01);
getConnectionT :- NEW normal(”getConnection”,0.1,0.05);
selectT :- NEW normal(”select”,0.5,0.25);
HDaccesT :- NEW normal(”acces”,0.75,0.1);

74 Appendix

HDwriteT :- NEW normal(”write”,1.25,0.5);
HDdeleteT :- NEW normal(”delete”,1.75,0.75);

cache :- NEW draw(”cache”,0.3);

NEW Generator(”GenIP”).schedule(0.0);

hold(5000);
reset;
i:= time;
hold(200000);
average.update((time-i)/quant.obs);

end demos;
end;

.2 sample SIMULA Result

CLOCK TIME = 2.050\&+005
**
* *
* R E P O R T *
* *
**

D I S T R I B U T I O N S

TITLE / (RE)SET/ OBS/TYPE / A/ B/ SEED
lambda 5000.000 33373 NEGEXP 0.167 36855
receiver 5000.000 9357 NORMAL 0.1001.000&-002 16300085
dispatcher 5000.000 9357 NORMAL 0.2002.000&-002 64487931
product 5000.000 9357 NORMAL 7.500 0.750 36742265
queueSender 5000.000 9357 NORMAL 0.2002.000&-002 218568
Sender 5000.000 9357 NORMAL 0.1001.000&-002 3378000
getConnectio 5000.000 28071 NORMAL 0.1005.000&-002 26530315
select 5000.000 28073 NORMAL 0.500 0.250 160441
acces 5000.000 52450 NORMAL 0.750 0.100 8292919
write 5000.000 28072 NORMAL 1.250 0.500 64192707

.2 sample SIMULA Result 75

delete 5000.000 18714 NORMAL 1.750 0.750 26388359
cache 5000.000 18716 DRAW 0.300 2136727

C O U N T S

TITLE / (RE)SET/ OBS
quant 5000.000 9357

T A L L I E S

TITLE / (RE)SET/ OBS/ AVERAGE/EST.ST.DV/ STD.ERR./ MINIMUM/ MAXIMUM
ReceiverT 5000.000 9358 21.374 1.6751.731&-002 15.446 27.742
DispatcherT 5000.000 9357 56.520 2.7292.821&-002 47.709 66.917
ProductT 5000.000 9358 23.377 1.7471.805&-002 17.372 29.963
QSendT 5000.000 9357 38.010 2.2202.295&-002 29.034 45.980
TotalT 5000.000 9357 75017.958 41530.736 429.340 3606.7211.473&+005
SenderT 5000.000 9357 10.606 1.0591.095&-002 6.371 14.602
AverageT 5000.000 1 21.374-------------------- 21.374 21.374

R E S O U R C E S

TITLE / (RE)SET/ OBS/ LIM/ MIN/ NOW/ \% USAGE/ AV. WAIT/QMAX
CPU1 5000.000 140358 1 0 0 100.000 6.302 5
HD 1 5000.000 52451 1 0 1 57.379 0.000 1
Thread1 5000.000 9358 1 0 0 100.000 74987.56324591
Thread2 5000.000 9357 3 0 0 88.145 0.000 1
Thread3 5000.000 9358 3 1 2 36.457 0.000 1
Thread4 5000.000 9357 3 1 1 59.278 0.000 1
Thread5 5000.000 9357 1 0 1 49.618 0.000 1

Bibliography

[Bon00] Andre; B. Bondi, Characteristics of scalability and their impact
on performance, WOSP ’00: Proceedings of the 2nd international
workshop on Software and performance (New York, NY, USA),
ACM Press, 2000, pp. 195–203.

[DEM06a] Demos reference manual, http://www.iro.umontreal.ca/

~vaucher/DEMOS/Demos.html, July 2006.

[DEM06b] Introduction to demos and discrete events simulation, http://
www.dcs.shef.ac.uk/~graham/research/, July 2006.

[FOL06] Free on-line dictionary of computing, http://www.foldoc.org,
July 2006.

[Hil90] Mark D. Hill, What is scalability?, ACM SIGARCH Computer
Architecture News 18 (1990), no. 4, 18–21.

[Jac57] J.R. Jackson, Networks of waiting lines, Operations Research
(1957), no. 5, 518–521.

[Kle57] Leonard Kleinrock, Queueing systems, volume i: Theory, Wiley-
Interscience, 1957.

[Luk94] E. Luke, Defining and measuring scalability, 1994.

[POS06] Postgre tuning configuration, http://www.varlena.com/
GeneralBits/Tidbits/perf.html#basic, July 2006.

[Sar99] Robert G. Sargent, Validation and verification of simulation
models, WSC ’99: Proceedings of the 31st conference on Winter
simulation (New York, NY, USA), ACM Press, 1999, pp. 39–48.

[SIM06a] Compiling simula, http://www.ifi.uio.no/~cim/sim_
history.html, July 2006.

[SIM06b] Montreal simula site, http://www.iro.umontreal.ca/

~simula/, July 2006.

http://www.iro.umontreal.ca/~vaucher/DEMOS/Demos.html
http://www.iro.umontreal.ca/~vaucher/DEMOS/Demos.html
http://www.dcs.shef.ac.uk/~graham/research/
http://www.dcs.shef.ac.uk/~graham/research/
http://www.foldoc.org
http://www.varlena.com/GeneralBits/Tidbits/perf.html#basic
http://www.varlena.com/GeneralBits/Tidbits/perf.html#basic
http://www.ifi.uio.no/~cim/sim_history.html
http://www.ifi.uio.no/~cim/sim_history.html
http://www.iro.umontreal.ca/~simula/
http://www.iro.umontreal.ca/~simula/

