
N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y 
of

 In
fo

rm
at

io
n 

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f C

om
pu

te
r 

Sc
ie

nc
e

M
as

te
r’

s 
th

es
is

Joakim Grønstad Lindgren
Thomas Åge Langelo Røyset

A Study of Hybrid Architectures in the
Realm of Media Streaming

Master’s thesis in Master of Science in Informatics
Supervisor: Svein Erik Bratsberg

May 2019





Joakim Grønstad Lindgren
Thomas Åge Langelo Røyset

A Study of Hybrid Architectures in the
Realm of Media Streaming

Master’s thesis in Master of Science in Informatics
Supervisor: Svein Erik Bratsberg
May 2019

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science





Abstract

Hybrid architecture is a distributed software architecture that has been used for me-
dia streaming in the past, but many media streaming services has since stopped using
it. However, with several years worth of technological advancements, and the know-
ledge that media streaming uses a large portion of overall internet traffic, the ques-
tion of hybrid architecture’s viability for media streaming services should be discussed
anew. Therefore, this thesis will take a look at services that use hybrid architecture,
and find advantages and disadvantages, which are analyzed to determine properties that
are prominent in such services. This will be used to determine the viability of hybrid
architecture for media streaming services.

The research is a case study in which hybrid architecture is the environment, with me-
dia streaming services as the instance. Services are selected based on usage, history
and what they provide of content. This is in order to cover a wide area of hybrid ar-
chitecture and media streaming. The selected services serves as a basis for finding
properties. Based on the document analysis of literature on these services, five specific
properties were found to be recurring. When discussing the use of these properties in
media streaming, only three out of five properties were found to be significant. The two
remaining properties were deemed to be too general, albeit still important.

To determine the viability, the properties were analyzed, and selected, non-hybrid media
streaming services were used as comparison. The results showed that although there are
disadvantages to using a hybrid architecture, it is viable in relation to media streaming.
However, there might be better alternatives, and further research is required on both a
theoretical and an experimental level, to increase the utility of hybrid architecture.

i



ii



Sammendrag

Hybridarkitektur er en distribuert programvarearkitektur som tidligere har blitt brukt av
strømmetjenester. Mange av disse tjenestene har siden da sluttet å bruke denne arkitek-
turen. Takket være store teknologiske fremskritt, og kunnskapen om at strømmetjenester
står for en stor del av den globale internettrafikken, burde hybridarkitekturens nyt-
teverdi for strømmetjenester bli diskutert på nytt. Derfor vil denne oppgaven se på
tjenester som bruker hybridarkitektur for å finne fordeler og ulemper. Disse fordelene
og ulempene kan analyseres for å fastslå attributter som er fremtredende i slike tjen-
ester. Disse attributtene vil bli brukt til å bestemme nytteverdien av hybridarkitektur for
strømmetjenester.

Forskningen utført i denne oppgaven er en kasusstudie, hvor hybridarkitektur er ut-
gangspunktet, med strømmetjenester som fokus. Strømmetjenester blir valgt basert på
hvor mye de er brukt, historisk utvikling og hva tjenestene leverer av innhold. Valget
ble gjort for å dekke et bredt område av hybridarkitektur og strømmetjenester. De valgte
tjenestene brukes som et grunnlag for å finne attributter. Basert på dokumentanalysen av
litteratur om disse tjenestene, identifiserte forskningen fem distinkte attributter. Under
diskusjonen om bruken av attributtene i strømmetjenester, var tre attributter framtre-
dende. De to gjenværende attributtene ble ansett for å være for generelle.

For å bestemme nytteverdien av hybridarkitektur, ble attributtene analysert. Utvalgte
strømmetjenester, som ikke bruker hybridarkitektur, ble brukt som sammenlignings-
grunnlag. Sluttresultatet viste at selv om det er ulemper ved bruk av en hybridarkitektur,
har den en nytteverdi sett i sammenheng med strømmetjenester. Derimot kan det være
bedre alternativer, og det kreves videre forskning på både et teoretisk og eksperimentelt
nivå for å gjøre hybridarkitektur mer brukbart.

iii



iv



Preface

This master’s thesis in Informatics was authored by two students, and submitted to the
Department of Computer Science (IDI) at the Norwegian University of Science and
Technology (NTNU).

We would like to extend our thanks and gratitude to our supervisor Svein Erik Bratsberg
for providing sterling guidance in relation to the work on this thesis. We would also like
to thank the people around us, who have provided useful suggestions or lent their ears
during our work.

v



vi



Table of Contents

List of Tables ix

List of Figures xi

1 Introduction 1
1.1 Background & Motivation . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Goals and Research Questions . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Research Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background Theory & Research Approach 7
2.1 Theory & Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Client-Server Architecture . . . . . . . . . . . . . . . . . . . . 8
2.1.2 Peer-to-Peer Architecture . . . . . . . . . . . . . . . . . . . . . 8
2.1.3 Hybrid Architecture . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.4 Content Delivery Network . . . . . . . . . . . . . . . . . . . . 10
2.1.5 Cloud Computing . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.6 Streaming Media . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.7 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Service Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 Distributing Services . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.2 Hybrid Architecture Streaming Services . . . . . . . . . . . . . 14
2.3.3 Live Streaming with Hybrid Architecture . . . . . . . . . . . . 14
2.3.4 Mainstream Media Streaming Services . . . . . . . . . . . . . 14

2.4 Selection of Documents . . . . . . . . . . . . . . . . . . . . . . . . . . 15

vii



3 Services & Properties 17
3.1 Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.1 Skype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1.2 Pando . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1.3 Spotify . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1.4 Xunlei Kankan . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.5 SLIVER.tv . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.1 Cost-Effective . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.2 Scalable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.3 Complex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2.4 Secure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2.5 Credible . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 Discussion 39
4.1 Cost-Effectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.4 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.5 Credibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5 Evaluation 55
5.1 Significant Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2 Viability of Hybrid Architecture in Media Streaming . . . . . . . . . . 56
5.3 Points to Consider When Deciding to Use a Hybrid Architecture . . . . 58

5.3.1 User Base . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.3.2 Resource Usage & Overlap . . . . . . . . . . . . . . . . . . . . 59
5.3.3 Transparency & Voluntary . . . . . . . . . . . . . . . . . . . . 59
5.3.4 Capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.4 Research Critique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6 Conclusion 61
6.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Bibliography 65

Glossary 75

viii



List of Tables

1.1 Bandwidth usage for different resolution standards in video streaming. . 2

2.1 Service categories and their associated services. . . . . . . . . . . . . . 13

ix



x



List of Figures

2.1 A simplified example of a client-server architecture. . . . . . . . . . . . 9
2.2 A simplified example of a peer-to-peer architecture. . . . . . . . . . . . 10

3.1 Proposed design of Skype P2P network. . . . . . . . . . . . . . . . . . 18
3.2 A comparison of network architectures . . . . . . . . . . . . . . . . . . 21
3.3 Theoretical design of Spotify’s hybrid architecture . . . . . . . . . . . . 22
3.4 Illustration of Xunlei Kankans architecture . . . . . . . . . . . . . . . . 25
3.5 The proposed Theta architecture . . . . . . . . . . . . . . . . . . . . . 26
3.6 The actual SLIVER.tv architecture . . . . . . . . . . . . . . . . . . . . 27
3.7 Illustration of how benefits ideally should outweigh costs . . . . . . . . 29
3.8 Illustration of how scalability should increase capacity . . . . . . . . . 30
3.9 Analogy of complexity . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.10 Theoretical example of a peer corrupting content that passes through it . 34
3.11 Theoretical building blocks for credibility . . . . . . . . . . . . . . . . 36

4.1 Visualization of difference between distributing only from server and
distributing while peer assisted . . . . . . . . . . . . . . . . . . . . . . 41

4.2 Visualization of streaming when the file sizes are very different . . . . . 42
4.3 Example of vertical scaling . . . . . . . . . . . . . . . . . . . . . . . . 44
4.4 Illustration of horizontal scaling . . . . . . . . . . . . . . . . . . . . . 45
4.5 Example of how WebRTC enables communications between servers and

peers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

xi



xii



Chapter 1
Introduction

Media streaming has experienced a rise in popularity the last two decades. How media
streaming services are designed has changed over the years to fit with demand, usage
and technological advancements. This again means that the architecture of a media
streaming service has changed to solve problems that have appeared. However, with
the increase in user base, larger file sizes and better access to services, the need to
address potential problems with bottlenecks and cost-efficiency are present. Hybrid
architecture is a type of architecture that has been utilized in media streaming in the
past, but for different reasons services transitioned away from it. Some of the potential
problems found in hybrid architecture could be handled by technological advancements,
thereby making it a possible solution for media streaming services. Therefore, this thesis
will look at media streaming services and hybrid architecture, to determine if hybrid
architecture is a viable option for media streaming services.

1.1 Background & Motivation

Media streaming has exploded in popularity, which can be shown by video streaming
representing approximately three quarters of overall internet traffic in 2017[1]. Services
such as YouTube and Netflix has become popular solutions in order to consume not
only high production value content, but also user-created content. These services have
grown the past few years, and are predicted to keep growing at a steady rate for the
future. YouTube has been growing by, and is predicted to keep growing by, about 100
million users each year[2]. Netflix, on the other hand, has been growing with about 20
million users each year[3].

1



Chapter 1. Introduction

In 2017, YouTube reported that a billion hours of content is watched each day[4]. Us-
ing the information provided on the WhistleOut website on YouTube’s data usage, and
making the naive assumption that the content is in 480p resolution, that amounts to
approximately 240 petabytes of data watched per day, 10 petabytes per hour, or 166.7
terabytes per minute[5]. The fact that the service is able to deliver that quantity of con-
tent, without users experiencing stuttering or the service crashing, is an amazing feat of
human ingenuity. However, this feat is presumably costly in regards to how expensive
it is to maintain server farms for hosting, as well as content delivery.

With technology improving at a fast rate, consumers will get better connections and
devices every year. This can be seen in the report from Speedtest by Ookla, which stated
that the worlds average internet speed increased with over 30% in 2017[6]. Furthermore,
Moore’s law had set expectations for devices to become faster, better and cheaper in the
future[7]. Due to these properties, it is probable that consumers will request content with
a higher definition than before. If the previous statement holds true, it will inevitably
lead to increased file size and bandwidth usage as can be seen in Table 1.1. With new
technologies being developed to enhance content experience, for example virtual reality,
it will probably increase file sizes further[8]. Even with modern compression techniques
and improvements in transcoding, there are still limits to how much one can reduce the
size of content without impacting quality to a noticeable degree.

Table 1.1: Bandwidth usage for different resolution standards in video streaming. Based upon
data from [5, 8]

Standard Video Resolution Bandwidth Requirement (in
Mbps)

480p 854×480 2 to 2.5

720p HD 1280×720 5 to 7.5

1080p HD 1920×1080 8 to 12

4K UHD 3840×2160 32 to 48

As such, there is a need to look at improvements within distributed software archi-
tectures. Two of the most common distributed software architectures are client-server
and peer-to-peer (P2P). These architectures have thus far proven capable of meeting
the increasing challenges that have faced distributed applications and services. Each
architecture has focused on different areas of how to host and deliver a service, with
client-server focusing on how to best utilize servers and data centers, while peer-to-
peer has focused on how to best utilize user resources. Each has its own advantages,

2



1.2 Goals and Research Questions

which decide its usability for different services. However, both architectures also have
its disadvantages and concerns that are ingrained within it.

Security and privacy are something that is a rising concern for users on both architec-
tures. For services with a more centralized architecture, there is a worry about what
kinds of data the service collects about its users. The problem lies in how these services
use or share their data, since it has a possibility to be used with malicious intent by gov-
ernments[9] or external organizations[10]. As for the services with a more distributed
architecture, there is the potential of users accessing data they do not have permission
to access, but are acting as distributors for. Another issue is that users can also inten-
tionally or unintentionally share a modified version of the data, which can be malicious
or corrupted[11].

The challenges for today and the future are complex, with distributed architectures such
as client-server and peer-to-peer being optimized to face these challenges. However,
there is still a limit to how good these architectures can become, and which problems
they are able to solve in a satisfactory way. A solution that has been infrequently util-
ized, or even discussed, is the combination of both architectures into a hybrid architec-
ture. The main idea behind combining these two architectures into one is to solve the
challenges of both, while avoiding the main negative aspects that are associated with
each of them. This solution could hopefully not just meet the challenges for today and
the future, but even improve these services to a new degree.

1.2 Goals and Research Questions

The goal of this thesis is to determine the viability of hybrid architectures for media
streaming services. With the challenges media streaming services face moving forward,
there exists a valid reasoning to why hybrid architecture shall be looked at and con-
sidered. With that said, a proper way to proceed is to focus on hybrid architectures.
This thesis will take into consideration how hybrid architecture is utilized in media
streaming services, with regards to both benefits and issues. By looking at beneficial
and non-beneficial aspects, it is possible to discover significant properties that could be
used to solve the existing and coming challenges. To properly perform this analysis of
hybrid architecture, this thesis aims to answer the following questions.

3



Chapter 1. Introduction

RQ1: What properties can be found in services using a hybrid of peer-to-peer
and client-server architecture?

RQ2: Which of these properties are significant for media streaming services?

RQ3: What is the viability of a media streaming service using a hybrid architec-
ture?

The first research question entails analyzing services with a hybrid of peer-to-peer and
client-server architectures, then identifying and determining properties which are found
in the selected services.

To answer the second research question, the properties found in the first research ques-
tion will be evaluated in relation to media streaming. This requires a thorough exam-
ination of the properties, and determining how significant they are for media streaming
services and their users. The significance of properties are determined by how import-
ant they are for a media streaming service, compared to other services that use the same
architecture. The answers will be beneficial in order to understand media streaming
services and their requirements, as well as the advantages and disadvantages a hybrid
architecture can have for media streaming services.

Finally, in order to answer the third research question, the results from the previous
research questions will be evaluated. Through this, the benefits and issues of hybrid ar-
chitectures in media streaming will be highlighted. This will, in turn, give an indication
of the viability of a hybrid architecture in media streaming services.

1.3 Research Method

This research is a case study into hybrid architecture and the impact it may have in
regards to media streaming services. The aim is to gain a better understanding of the
viability of a hybrid architecture. In order to accurately assess the viability, there need to
be a detailed description of advantages and disadvantages with hybrid architecture. This
prompted the research strategy to become a descriptive case study, with the environment
being hybrid architecture and the instance being media streaming services.

In order to fulfill this case study, there needs to be a varied selection of services that
can be analyzed. Considering the focus on specific properties that represents hybrid
architecture services, there is a need to select services that have had a certain degree of
success with this architecture. It is also useful to find different services that utilize hy-

4



1.4 Thesis Structure

brid architecture, which can be compared in order to properly determine the difference
between aspects.

The selected services will then be analyzed by two different methods. The first method
is to go through documents that contains information about the service and how it works.
The goal is to find which properties that is significant for each service. The second
method is to observe user or third-party feedback, in order to find other potential prop-
erties or validate existing ones. This is done mainly by finding relevant documents
where users of services have shared their feelings about it.

This means that the thesis needs both qualitative and quantitative results. Qualitative
results are needed from the service documentation and the properties that are intro-
duced there. This means that the prevalence of properties is dependent on the source
material. However, when finding qualities about the service, it is important to find as
many different viewpoints as possible. Therefore, a quantitative result from the user
feedback may help give a more nuanced understanding of the service.

1.4 Thesis Structure

Now that the motivation, goals and research method for this thesis have been presen-
ted, the remainder of the thesis will be split up as follows. Chapter 2 will go through
useful and necessary background information, as well as explaining the approach to the
research this thesis is taking. The introduction of the services, as well as the properties
that were found, are done in Chapter 3. These properties will be further discussed in
Chapter 4. Then, Chapter 5 will evaluate the discussion, in order to answer the questions
posed in Section 1.2. After this, the thesis will be concluded in Chapter 6.

5



Chapter 1. Introduction

6



Chapter 2
Background Theory & Research
Approach

This thesis is written on the basis of how well a hybrid architecture functions for stream-
ing media content, and which properties enables it to do so. This means that there has
been a process of selection through determining which aspects should be the focus and
which aspects are not necessary. Some examples of these selections are the architectures
that have been relevant to explore further, the technologies that have been used in rela-
tion to the architecture, which services that have been investigated, and how documents
have been selected and analyzed.

Although these aspects are very different, they all fit under the notion that they are
needed not only to provide a satisfactory answer to the questions made in Section 1.2,
but also to provide boundaries to this thesis.

Relevant architectures, related technologies and important terminologies are presented
in Section 2.1. These explanations and definitions are helpful in understanding the fun-
damental theory behind the thesis, as well as specifying the meaning that these explan-
ations and definitions represents in relation to this thesis.

In Section 2.2, related works to this thesis are presented. These related works are com-
prised of other academic literature that partly covers the topics explored in this thesis,
but does not completely overlap with this thesis.

Section 2.3 covers the selection of services that will be covered in this thesis. It will
also split services into categories for definition purposes, and explain why they were
selected.

7



Chapter 2. Background Theory & Research Approach

Finally, Section 2.4 will cover how to determine what proper documents are in respect to
literature review. This will also explain the difference in scientific articles for qualitative
data and user feedback for quantitative feedback.

2.1 Theory & Definitions

Since the topic is an in-depth analysis of a small part of the distributed architecture
and streaming field, there might be complications with understanding specific architec-
tures, technologies and terminologies. This chapter is meant to create a fundamental
understanding about how these technologies are defined for this specific thesis.

2.1.1 Client-Server Architecture

The client-server architecture is a fairly common and popular distributed architecture.
The architecture is built upon a smaller number of servers, and usually a larger amount
of clients. Servers provide resources or services to one or more clients, while the clients
do not share any of their own resources with the servers or each other. The relation-
ship between them can be visualized as clients send their requests, while the servers
respond to the requests. A reason behind its popularity is due to it being one of the most
straightforward distributed architectures to implement[12]. A simplified example of a
client-server architecture is visualized in Figure 2.1.

2.1.2 Peer-to-Peer Architecture

A peer-to-peer architecture is a set of equal peers that are connected to each other in a
way that does not need a central coordination by a server[13]. Peers in a P2P network
are both suppliers and consumers, in the way that they are sending what they have and
others want, and receiving what others have and they want[14]. A simplified example
of a peer-to-peer architecture is visualized in Figure 2.2.

The common ways that peers in a P2P network organize themselves are unstructured
and structured. In unstructured networks peers form random connections with each
other, and any request for a specific piece of data is propagated throughout the network
until peers with it can be found[15, 16]. While in a structured network, peers organize
themselves and store information about where a specific piece of data can be found, and
can share this information directly with the requesting peer, even if they do not have this
data themselves[14, 17].

8



2.1 Theory & Definitions

Figure 2.1: A simplified example of a client-server architecture.

2.1.3 Hybrid Architecture

A hybrid architecture is an architecture that is a combination of other architectures.
There are multiple ways to define a hybrid architecture, as there can be several possible
combinations of existing architectures. However, due to the thesis focusing on distrib-
uted services and software architecture, the hybrid architecture definition is limited by
these conditions. For this thesis, the focus on hybrid is going to be on the combina-
tion of a P2P architecture and a client-server architecture. Within this type of hybrid
architecture, there could be major differences in how they are implemented or how they
work.

So for this thesis, the definition of hybrid architecture will be any combination of P2P
architecture and client-server architecture. This is because there is not a particular need
to further divide the term hybrid architecture into smaller definitions, even though it is
possible.

9



Chapter 2. Background Theory & Research Approach

Figure 2.2: A simplified example of a peer-to-peer architecture.

2.1.4 Content Delivery Network

Content delivery networks (CDNs) are a distributed network of servers, which are used
to serve most of the content on the Internet today. These solutions provide high levels
of availability and performance to services, and thereby clients, by having points of
presence (PoP) around the world. The clients are usually connected to the best available
PoP for them, based on a selection criteria that usually consists of any combination of
lowest ping, highest performance or lowest cost for the CDN. These PoPs usually act as
caching servers, by storing duplicates of the original content to be served to clients in
their respective geographical regions[18].

An early example of a CDN is Akamai, which was publicly released as early as 1999.
Their business model consisted of owning and maintaining servers all over the world,
which would mirror content from their customer. This would enable everyone who
wanted to look at a website, to be connected to a closer server, rather than spending more
time getting the same information from a server on the other side of the world. Not only
did this help services with last-mile delivery, but it could also help with maintaining
availability since it could reroute clients to another server in case of attacks[19, 20,
21].

10



2.1 Theory & Definitions

2.1.5 Cloud Computing

Cloud computing is a relatively modern aspect of computer services, and is based around
providing storage and computational power to services on demand. It works by having
server farms located at various points around the world that are usable for the organ-
izations that subscribe to the cloud service. Although there are clouds that are made
specifically for one single organization, this thesis will focus on public clouds that are
used by multiple organizations.

A cloud platform typically has prebuilt services that may or may not be of use to an
organization. When an organization require a service from a cloud platform, they would
have to subscribe to that platform’s services. Although organizations subscribe to the
cloud, many clouds are working with a “pay as you go” model, enabling organizations
to only pay for what they need and use[22]. Multiple different organizations commonly
host their services in the cloud, sharing the server resources available there. This is
achieved through virtualization technology, where computing resources are abstracted
from the physical servers and combined into virtual nodes, which only reserves the
resources it needs based on the task running on it. A software arbiter controls how
resources are to be divided between virtual nodes, and in turn the organizations hosted
there[23].

2.1.6 Streaming Media

Streaming media is used to describe content that is being presented to the user while
it is still being transmitted by a provider. It is different from file downloading, where
the user has to download the entire file before it can be presented to the user, which
was common in the start of the 2000s and earlier, thanks to services like BitTorrent[24].
Although these services were popular and helped define the P2P architecture, the focal
point of this thesis is on streaming media, thereby rendering these services outside the
scope of the thesis.

Today, streaming media is one of the most common ways to transmit media over the In-
ternet. A few examples of streaming media are Spotify, YouTube and Netflix. Streaming
media can be divided into two categories, which are on demand and live. On demand
is when the entire content is already available to the user, so the user can play, pause,
rewind or fast forward to any part of the content at will. Examples of this is a movie or
a song. Live is when the content is being delivered to users as soon as it is produced, so
the user is not able to fast forward. With examples being a live stream of a concert or a
sports event[24].

11



Chapter 2. Background Theory & Research Approach

2.1.7 Properties

For this thesis, properties are defined as follows. Properties are quality attributes that
are characteristic of a service or architecture. The selection of quality attributes was
decided by determining which attributes were not just noticeable, but also somewhat
defined in the service or architecture. As an extension to the definition of properties, the
thesis also recognizes attributes that are not commonly regarded as quality attributes,
but are considered closely associated and linked to them. Furthermore, while these
attributes could focus on positive qualities, they could also point out negative ones.
Negative attributes are equally important, as they also are noticeable and define a service
or architecture.

2.2 Related Works

An article with partial coverage compared to this thesis is covering cost-effectiveness
in distribution of streaming media content. This article takes into consideration a com-
bination of a CDN and a P2P network, and issues with cost of CDN, peer heterogeneity
and resources available from peers. Although the data is simulated and not put into
practical use, the verdict is that the hybrid architecture could be both cost-effective and
scalable[25]. The main differences between this thesis and the article is that the sys-
tem was developed and tested in a experimental setting. As such, the results might not
be completely accurate in relation to a practical setting. Another difference is that this
thesis focuses on multiple services, while the article focused on a singular system.

Another article that were considered partially coverage focuses on P2P-VoD streaming.
Although the focus of this article is more closely resembling streaming media content
via P2P, there is also included aspects about a combination with CDN. Nonetheless, this
article mentions the challenges posed by using a P2P architecture for video on demand
(VoD) and the issues that come with it, such as asynchronous arrival of peers, peer churn
and lack of scalability. The general verdict was that it is possible to maintain a singular
P2P architecture to keep costs down without losing scalability, but many sources within
it lean towards a hybrid architecture in order to maintain best possible scalability[26].
This article differentiates from the thesis in regards to the focus. The thesis focus on
what properties make hybrid architecture viable, with the article focusing on challenges
facing a pure P2P-VoD system.

12



2.3 Service Selection

2.3 Service Selection

The services that should be the focal point of this thesis are selected based on what
they cover. It is very important that the services are representative in a broad sense
to streaming media or a hybrid architecture. Furthermore, the services need to have
enough documentation, information or feedback from users to warrant further investig-
ation.

Another aspect is to select services that have developed over time, in order to judge
not only their approach to hybrid architecture, but also judge the amount of success they
have had. Based on these factors, it would then be possible to find certain properties that
are linked towards using hybrid architecture for streaming media. Then, these properties
could be put into context with popular streaming services, to determine how hybrid
architecture could impact those services.

With these aspects in mind, the selection of services have been divided into four cat-
egories where each part plays their own role in this thesis. The four categories that are
considered to be important are based on technological advancements and how the ser-
vices are utilized. They are separated by services approach to hybrid architecture, what
kind of challenges the service faced, and what the service delivered with the help of
hybrid architecture. The services introduced in Sections 2.3.1, 2.3.2 and 2.3.3 will be
further looked at in Section 3.1. All categories and their associated services are shown
in Table 2.1 to provide a brief overview.

Table 2.1: Service categories and their associated services.

Category Services

Distributing Services
Skype
Pando

Hybrid Architecture Streaming Services
Spotify

Xunlei Kankan

Live Streaming with Hybrid Architecture SLIVER.tv

Mainstream Media Streaming Services
Netflix

YouTube

13



Chapter 2. Background Theory & Research Approach

2.3.1 Distributing Services

The first category is distributing services. These services are examples of distributors
using hybrid architecture, although they are not focused specifically on streaming media.
What is separating this category from other categories is the way that these services have
implemented their hybrid architecture, as well as being services that are not strictly
related to streaming media.

For this category, the services selected are Skype and Pando. Both of these services
were developed for a specific purpose, and have been using hybrid architecture, in order
to fulfill that purpose.

2.3.2 Hybrid Architecture Streaming Services

Some cases of streaming media content with hybrid architecture are the focal point of
category number two. These services use the same principles as the services in the first
category, but utilize these principles to exclusively stream media content.

Therefore, the selected services landed on Spotify and Xunlei Kankan. These services
represents two different ways of utilizing hybrid architecture to stream media, at ap-
proximately the same period in time.

2.3.3 Live Streaming with Hybrid Architecture

This third category represents a modern take on hybrid architecture for a streaming me-
dia service. The selected service has used the experience and knowledge garnered from
earlier, similar services in order to improve their own service. This service also provide
live streaming, instead of on demand streaming that the earlier services provided.

Due to this definition, the selected service is SLIVER.tv. This is a service that has
worked out how to enable users to become peers in a hybrid architecture to deliver
media content.

2.3.4 Mainstream Media Streaming Services

In order to determine the viability of hybrid architecture for streaming media content,
the benefits need to be compared to existing streaming media services that are not using
a hybrid architecture. These services make up the fourth and final category, the services
that are selected to represent the existing non-hybrid architecture services.

14



2.4 Selection of Documents

The selection of services in this category came from how popular the services are, and
how large these services are. Therefore, the selection is Netflix and YouTube. The
benefit of selecting some of the largest providers of streaming media content is that
there are already existing information and research on it. However, as these services
have never used a hybrid architecture, or have any official plans to do so, they will only
be used for comparisons or as services that could potentially transition to it. Therefore,
they will only be presented briefly here.

Netflix is one of the largest video on demand streaming services on the market. It is
hosted on Amazon Web Services after migrating from physical data centers[27]. A large
reason for the migration being that it was more cost-effective than trying to maintain
their own servers. Another reason was that due to popularity, Netflix could not keep up
with the capacity increase and needed a solution that was more scalable[28].

Similarly, YouTube is also one of the largest streaming platforms on the market, provid-
ing both live and on demand media content. With a billion hours watched every day, the
platform is responsible for 37% of mobile data usage[29]. Due to the sheer amount of
videos available as well as all the space they occupy, the need to have an efficient way
of distributing it is important.

2.4 Selection of Documents

Every service will be explored in the sense that they will have an explanation of the
architecture, and how it is used. Most of this explanation will be from technical docu-
ments about the service. However, some services are closed source, and explanations
might rely on third-party articles and observations to make an educated guess, as to how
their architecture was built and works. This is especially true when looking at Skype,
Pando and Xunlei Kankan. This means that there might be errors in the explanations of
the actual architectures in this thesis, which also leads to errors in the discussion later.
However, this and other issues will be addressed further in Section 5.4.

When it comes to the users experience with the service, the vast majority of these are
gathered by finding appropriate platforms, and reading through their feedback. Al-
though this gives a unique view of the service, it also means that many of the documents
that are gathered about users are fairly subjective. However, the scientific significance
in this regard is the quantitative data that can be gathered from this user feedback. It is
also important to make a note of the different feedback gathered in this fashion, as some
of the documents come from official questions answered by employees of the service,
while other documents are from personal blogs or forums.

15



Chapter 2. Background Theory & Research Approach

16



Chapter 3
Services & Properties

This chapter is going to present the services that have been introduced in Section 2.3.
It will describe how these services developed their architecture, as well as experiences
they have had due to their choice of said architecture. Other relevant and interesting
aspects that have been discovered will also be elaborated here. This presentation of all
the services will lead to a selection of properties that have been found to be relevant to
these types of services. These properties will then be introduced and explained.

Due to the progression of the chapter, it will be divided into two sections. Section 3.1
will focus on the services and their presentation. The properties that are found here will
be presented in Section 3.2.

3.1 Services

This section describes how services have utilized a hybrid architecture, and what chal-
lenges they faced or benefits they reaped from this choice. It also covers other interesting
aspects about the services that are considered relevant for this thesis.

3.1.1 Skype

Skype is a P2P-based messaging service that first was released in 2003. The service
was originally intended as a voice over IP (VoIP) service, but evolved to also include
messaging and file sharing functionalities. The service became known as an important

17



Chapter 3. Services & Properties

tool in the communication sector, and was used by businesses and private households
alike.

Even though the system was considered to be P2P, and that they had mainly P2P func-
tionality, two reasons point towards it being a hybrid architecture. First, it had a central
server that contained the user names and passwords of users, which was used to identify
nodes. Secondly, some nodes in the network could become super nodes, which func-
tioned similarly to servers. Every node in the Skype network were measured by whether
they had a public IP address, and sufficient CPU, memory and bandwidth. The nodes
that fulfilled those criteria could be selected to become super nodes. Super nodes func-
tioned as relay points for other nodes, thereby also knowing their location[30]. There
were also arguments about the requirements to qualify as a super node, mentioning that
bandwidth and public IP address were enough[31]. These two reasons were used to de-
termine that Skype used hybrid architecture. Since the service was closed source when
originally released, the design of the architecture is a proposed design from an article
about the service, which is displayed in Figure 3.1.

Figure 3.1: Proposed design of Skype P2P network. Displays the three types of nodes in the
network[30].

18



3.1 Services

The service was not perfect, and a large issue entailed super nodes and how they were
selected. Due to the seemingly random selection of acceptable nodes, many of the
selected nodes were located in universities, with one source claiming that up to 35% of
nodes were universities[30]. This was not popular though, with universities banning the
use of Skype on campus[32]. Some of the reasons was that Skype could easily be used
by malicious users as a backdoor to corporate networks[32, 33], Skype was virtually
untraceable[33], and also that Skype requiring users to grant it “usage rights” on the
network, which users did not have[32]. Another important aspect was the bandwidth,
with a standard node utilizing very little data, but super nodes using a significant portion
of the bandwidth, considering the time the post came out[32].

Thanks to issues like this, and improvements in technology, there was an interest to
transition away from hybrid architecture. According to the principal architect of Skype,
they started to transition their product away from P2P in 2009[34]. This transition con-
tinued even after being acquired by Microsoft[34, 35]. The main reason this transition
happened was due to a software bug that took out a large portion of the P2P network,
and leaving the remaining nodes to collapse[34, 36]. Due to these bugs happening to
super nodes that were hosted by the users, it became difficult for Skype developers to
remotely maintain them, prompting them to switch to dedicated servers. Another big
reason was due to the large increase in mobile units, that could also work as peers. Not
only did they have to constantly work as nodes, using processor power and draining
battery life, but they would also be using large amounts of cellular data[34, 37].

Shortly after, Microsoft announced that they would further transition Skype into a cloud
service using Azure, and at the same time removing the final P2P pieces from the ser-
vice[34, 38, 39]. The reasoning for this change was to support mobile environment
better, as it was a fast growing user base[34, 38]. Another reason was that with cloud
servers, messages would be put on hold and delivered when the recipient was online.
This was opposed to the previous P2P architecture which needed the recipient to be
online in order to get the message[36]. The decision to move to a cloud service was to
improve the user experience[34].

Although Skype has been a large part of telecommunications since it released in 2003,
there have been cases where Skype was accused of bad behaviour. Not just by the
universities blocking the service, as mentioned earlier, but also the removal of trust
when Skype shared call information with the American government[37, 40]. After the
news went public, several outlets considered this transition suspicious[36, 37], and some
users commenting that this case broke their trust in Skype[36].

19



Chapter 3. Services & Properties

3.1.2 Pando

Pando Networks was one of the earliest companies attempting to create a hybrid of
client-server and P2P. In 2008 they deployed their commercial service with success,
gaining NBC as a customer for video streaming[41]. The following years they also
gained multiple customers from the gaming industry[42], such as Riot Games, the cre-
ators of popular game League of Legends[43]. Pando provided the technology allowing
customers to connect Pandos service with their own CDNs. Which meant that Pando
would handle the client coordination and P2P aspect for the customer. The core prin-
ciple of the service was to dynamically switch users between using CDNs and P2P
for downloading, leveraging users to share what they had already downloaded between
each other. What this meant in practical terms were faster download speeds for the
users, reduced expenses surrounding hosting for the customer, and less complexity for
the customer[41, 44].

While it would seem like Pando was an inherently positive thing, there were also many
users who complained about it as well. For example, some users in Australia had their
internet speed throttled or got large bills due to Pando running in the background. This
problem arose as Australian internet service providers (ISPs) had limits on how much
you could upload each month. Others complained about erratic experience with the
service whenever Pando was active. An important issue was the lack of transparency by
the companies utilizing Pando. Usually Pando was installed in the background during
installation of the service software, without any notifications or request from the user to
accept said third-party installation. Not to mention that there were few, if any, references
to Pando in the terms of service or similar documents during the setup of the service
software. Overall this lead to Pando receiving a somewhat negative reputation from
users[45].

However, the software in itself was, by some, considered trustworthy[46]. Then again,
the lack of transparency made some users vary of using the software[47]. These situ-
ations impacted the credibility of Pando, and may have reduced the overall usage of the
service. Additionally, security concerns were raised about Pando, as antivirus software
noted Pando as potentially suspicious, or even malware, due to how Pando worked. The
service became flagged as malware to such a degree, that firewalls started to block the
application[48, 49, 50], which became an issue since the service needed to be allowed
through the firewall to function[51]. Another security risk was that the service needed
permission to monitor other applications, which did not help their credibility[52].

Although there were multiple references to the negative aspects of Pando, there were
also some positive developments that came from Pando. In 2007, the P4P Working
Group (P4PWG) was created by Pando Networks and Verizon Communications, in
order to improve P2P effectivity and quality[53]. P4P allowed ISPs to integrate an

20



3.1 Services

iTracker into their network architecture. The iTracker would be hosted by the ISP, in
order to provide information about network topology, as well as location information
about peers. This information could then be used by P2P applications to make educated
choices in peers to connect to. Which would prefer peers within the intranet of the ISP,
or peers that were geographically close. This would benefit users of P2P, as well as ISPs
as they could reduce the costs related to poor network routing that plagued P2P[54]. A
visualization of P4P compared to other network architectures is illustrated in Figure
3.2.

Figure 3.2: A comparison of network architectures with pros and cons. P4P can be seen on the
right side. Adapted from [55].

In 2013, Pando Networks was acquired by Microsoft Corporation[56], with speculation
that Pando technology was going to be used in development of the new Xbox[57]. Later
in 2015, Microsoft announced it planned to deliver most of Windows 10 updates through
P2P, which The Verge surmised was a product of the acquisition of Pando[58].

3.1.3 Spotify

A streaming service that started with a hybrid architecture was Spotify[59, 60]. Spotify
is a service that provides music streaming on a global level, although they had more
moderate beginnings. Spotify utilized a peer based sharing system, in order for users to
share music files with each other for the purpose of achieving non-buffered and seamless
streaming[59, 61, 62]. P2P technology also had the added benefit in reducing costs by

21



Chapter 3. Services & Properties

removing the need to maintain a larger quantity of servers, making it ideal for a startup
company like Spotify[59, 61].

When Spotify launched in 2008, they utilized servers as storage for music tracks. The
distribution of the tracks were to a large degree handled by a P2P network. Spotify
separated their servers into two different levels. The first level was the main storage
that kept all tracks in their database, and the second level was distributing servers which
kept a smaller number of tracks, but distributed the ones they had into the P2P network
when requested. The P2P network was used to share the music tracks with each other
to alleviate the second level of servers[60, 63]. This architecture is visualized in Figure
3.3.

Figure 3.3: Theoretical design of Spotify’s hybrid architecture. Displays the three levels of the
architecture[63, 64].

As seen in Figure 3.3, the two levels of the servers were named “Master storage” and
“Production storage”. As previously mentioned, the “Master storage” was the primary
storage of music tracks. It worked with a distributed hash table that could look up the
correct value, in this case a musical track, based on a hashed key. However, this server
only found and distributed these tracks if an end user could not find the track in the
“Production storage”. The “Production storage” was a faster, distributed server that
worked as a cache with enough RAM to quickly find and distribute tracks to the P2P

22



3.1 Services

network. Due to these tracks being distributed, the users would find that there was less
latency when accessing them[63].

Then there was the P2P network, which was made with a custom protocol[63]. The
client requested a song and began by checking the cache of the client’s unit, and played
it from there if it existed. If not, the client asked the P2P network to find the song and
transfer it to the client. While waiting for the chunks each peer transferred, the client
requested up to 15 seconds of the music track from the server, so it would not experience
loss in content while waiting for the rest of the track. The client used all sources in order
to enable seamless streaming. However, if the client knew the next track, it would search
for the song among the peers approximately 30 seconds before the end of the current
track. This is so the next track could be played without issue. If the client selected
a new track from another place, it would simply repeat the first process over again,
thereby always being able to provide non-buffered streaming[60].

In the beginning of Spotify, they had periods where they had to limit registration of new
users for the free tier. This was due to them wanting to control the growth of the service,
and avoid any unexpected problems that could arise from this. These problems could,
for example, be performance or scalability issues that could appear due to a massive
growth past their capabilities[65, 66].

During 2014, news outlets reported that Spotify were switching their architecture away
from P2P architecture[59, 61, 64, 67]. Spotify felt that their growing number of servers
were a good reason to stop utilizing a hybrid architecture, because they could still supply
a seamless experience without needing P2P[59, 61, 64]. One outlet even mentioned that
with a growing number of servers, maintaining a P2P network would be an unnecessary
expense[67]. Spotify also mentioned that switching away from P2P technology made it
easier to enable a “family” mode, where different users could listen to different music
on the same account simultaneously[59]. Another outlet mentioned that this switch
would prevent excessive use of bandwidth[61], although another outlet mentioned that
the bandwidth requirement was not as intensive as with video streaming[67].

Spotify announced in 2016 that they would stop running their centralized servers and
start using Google Cloud Platform (GCP)[68, 69, 70]. Although this transition happened
only two years after moving to server farms, officials from Spotify argued that cloud
platforms were not developed enough at the time and the safer choice were in server
farms[70]. Other arguments were the cost and time it took to maintain the server
farms[68, 70] and the benefit of valuable cooperation with Google employees[69, 70].
This also gave Spotify access to Google’s Big Data technology like BigQuery[71],
which became a huge benefit to Spotify employees[72, 73].

Although Spotify has benefited greatly by using P2P technology, it has also led to some
problems. Some users experienced increased bandwidth usage[74, 75] or throttling from

23



Chapter 3. Services & Properties

their ISP[76, 77]. These situations could have been avoided if Spotify adequately dis-
closed their use of P2P distribution[62, 74]. These problems have since been addressed
by Spotify, but the impact of these issues on the reputation of Spotify is uncertain.

3.1.4 Xunlei Kankan

Xunlei Limited, a Chinese corporation, started out by providing P2P assisted accelera-
tion of file transfers. Xunlei has since expanded with a large variety of services for its
users, but a commonality between them is that they all utilize a combination of peer as-
sisted and server assisted downloading, essentially a hybrid architecture[78]. However,
their most interesting and popular service was their VoD service Xunlei Kankan[79],
which launched in 2007[80].

The front end of Xunlei Kankan consisted of a client application that worked as both
a streaming application, as well as a peering application[81]. When a user watched
something in the client application, the content was also stored and cached, in order to
allow further P2P distribution. The content would later be deleted when the user closed
the application[78]. The back end consisted of three parts, which were the Kankan
portal, that contained information about the videos and the location of the content in
the system, the Kankan CDN, which contained the actual video files, and finally, the
Kankan P2P network, which contained the trackers for the P2P service[81]. The overall
design of Xunlei Kankan can be seen in Figure 3.4.

The way the service worked was that the user would look for a video on the portal. Then,
when the user decided on a video, the client application would query the CDNs as well
as the P2P network. To ensure quick initialization for the stream, Kankan utilized a
secondary CDN that only contained the first segments of a video, which it would start
streaming from. Then when the primary CDN and P2P had been configured on the
client, it would start streaming from either the P2P network, the CDN or a combination
of both, depending on the availability of the video. The selection of streaming source is
chosen by the client application based upon quality of P2P and whether or not enough
of the future parts of the video are cached[81].

In 2013, Xunlei employees, who have since been fired, made a program which would
install malware on Android phones connected to the computer. This issue was not Xun-
lei Kankan’s fault, but since they use the same infrastructure, it highlighted a security
flaw in their architecture. Another point that caused problems was that the program was
named Kankan. This meant that even though Xunlei Kankan was not involved, their
credibility was affected simply because the program used their name[82, 83].

A study focused on Kankan found that it only utilized a few hundred CDN servers, com-
pared to the thousands that similar services such as YouTube used[81]. The same study

24



3.1 Services

Figure 3.4: Illustration of Xunlei Kankans architecture. Adapted from [81].

also found that for popular videos, 98% of the content was delivered through the peers.
In 2015, Xunlei sold their Kankan stake to Beijing Nesound International Media Corp.
Ltd. due to wanting to focus on some of the other services they provided[84].

3.1.5 SLIVER.tv

SLIVER.tv was founded in September 2015[85], providing a platform for live stream-
ing video games in virtual reality (VR), in up to 360◦ format, for both streamers and
viewers[86]. At the start of 2018, SLIVER.tv officially announced Theta, a blockchain
based around video streaming[87]. Theta Network, formerly known as Theta Token,
wanted to change how video was delivered over the Internet, by utilizing viewers and
volunteers for content delivery and transcoding of video. THETA would be used as
a cryptocurrency reward for those sharing their network or computer resources. The
goal behind Theta Network was to solve some of the problems around current video
streaming, as well as improve on preexisting solutions[8].

The decentralized architecture of the Theta Network is quite similar to the traditional
ways of handling live streaming. The main difference is that viewers and volunteers
provide their own resources, to act as a CDN or ingest server. Theta Network completes
this by segmenting the users into different node categories. Influencer nodes (streamers)

25



Chapter 3. Services & Properties

stream their content to the ingestion nodes, which will transcode the content to the
different formats. Then the caching nodes fetch the transcoded content and propagates
it further to either other caching nodes, or directly to the viewer nodes[88]. The overall
proposed architecture can be seen in Figure 3.5.

Figure 3.5: The proposed Theta architecture. Adapted from [88].

Users can become either ingest or caching nodes by installing specialized software that
enables this functionality. A user can be a viewer simultaneously while being a caching
node. Due to the live stream nature of the video, video packets will usually be sent in
order, where the urgent high priority packets will be sent first. Furthermore, a caching
node will also cache the entire video stream, in order to be able to serve all viewers and
reduce rebuffering of the video stream. When a viewer or caching node enters the Theta
Network, it will start to locate peering nodes that are physically nearby. The peering
system uses a distributed hash table, where each node has a unique global user identifier
(GUID). The GUID consists of a 64 bit string, which identifies the region the peer is
located, as well as a 32 bit string, which is completely random, in order to differentiate
between peers within the same region. Once a candidate list of peers has been generated,
it will ping each node to measure the actual latency. A node will prefer peers with lower
latencies, as it implies the peer is physically closer and of better quality[88].

Theta Network has a goal to solve the problems with last-mile delivery, due to its highly
distributed nodes. Furthermore, it hopes to reduce the large hosting costs related to
video streaming services, by utilizing the redundant resources of users. These reduced

26



3.1 Services

costs will in turn leave more revenue for the influencers, as well as the users. Due to the
blockchain nature, it also allows advertisers to follow the transactions, and see which
influencers played their ads, or which users have been watching their ads. Additionally,
SLIVER.tv’s web player utilizes Web Real-Time Communication (WebRTC), which
essentially provides a simple application programming interface (API) through JavaS-
cript, that enables audio and video to be delivered through peer-to-peer in web pages.
As it is natively supported by most browsers, this means users do not have to install any
third-party addons to the browser. Which is a great development for services that desire
to use P2P for media streaming[8, 89].

While SLIVER.tv desires to have a fully distributed architecture in the future, it is cur-
rently utilizing a hybrid architecture. As it needs to build up a user base that can support
the fully distributed Theta Network architecture. The main difference is that it utilizes
centralized CDNs and ingest servers, with PoP, to ensure availability and performance
of the system, with peers offloading the centralized servers[88]. The current SLIVER.tv
architecture can be seen in Figure 3.6.

Figure 3.6: The actual SLIVER.tv architecture. Adapted from [88].

A problem that came to light about SLIVER.tv, was some security issues they had with
bots and fraudulent behaviour. These bots and fraudulent users managed to abuse the
virtual currency system, gaining benefits over legitimate users of the service. In an

27



Chapter 3. Services & Properties

attempt to solve these security issues, several users had been flagged and banned by the
system. Some of these users claimed they were legitimate and had been banned by a
mistake, and as such, were rather unhappy with this development[90]. Another problem
was the legitimacy of SLIVER.tv, as some users were concerned with how real money
could be exchanged for virtual currency, but virtual currency could not be exchanged
back for real money[91]. At the same time, other users were concerned with how the
rewards you could buy with virtual currency were based on randomness, which was
more reminiscent of gambling than actually redeeming a reward[92].

3.2 Properties

This section will cover the properties that have been discovered within the services
presented in Section 3.1. The properties will have a short explanation combined with
examples of said property from the different services, where applicable.

3.2.1 Cost-Effective

A property that has been clear throughout Section 3.1, is cost-effectiveness. The prop-
erty can be defined as a service having reduced costs compared to other similar services
not utilizing a hybrid architecture, in combination with fulfilling the requirements and
meeting constraints that are placed upon such an service. Potentially even achieving
better performance and reaping benefits from it. An illustration of the concept can be
seen in Figure 3.7.

The early architecture of Skype was very cost-effective, due to most of the architecture
being focused on P2P. The super nodes in the Skype network provided great perform-
ance, at minor cost for Skype itself. Very little was centralized, and this meant Skype
could actually offer the service for free to all users, with some extra functionality being
available through payment.

Similarly, Pando also have some points that corroborates cost-effectivity. Most services
that utilized Pando confirmed that using it was cheaper than having to host and maintain
a larger delivery network on their end. Not to mention that these services almost unan-
imously agreed that their service had greater performance after the switch to Pando was
made.

Spotify also gained cost-effectivity with the architecture they used during their startup
phase. Thanks to it, they could deliver seamless streaming at all times, while having
less costs thanks to requiring fewer distribution servers. In a similar fashion to Skype,

28



3.2 Properties

Figure 3.7: Illustration of how benefits ideally should outweigh costs. Adapted from [93].

Spotify could also offer the service for free to its users, albeit with some constraints on
functionality and quality.

Taking a look at the section about Xunlei Kankan, there are a few interesting points
around cost-effectivity that can be identified. The most interesting one is the claim
that they managed to provide smooth streaming of a video, where 98% of the data
was transferred over the P2P network. Furthermore Xunlei Kankan apparently only
utilized a few hundred CDN servers in comparison to the thousands that other large
video streaming services did at the time. Which only further provides evidence around
it being cost-effective.

Finally, SLIVER.tv reasoned that using traditional CDN streaming today, was not suf-
ficient to achieve stable, low delay, and cheap enough high-definition 360◦ VR stream-
ing. As the service is quite new compared to the other services that have been explored,
whether or not it is actually cost-effective, is something that will have to be seen for
the future. However, considering the influential people who are either backing or work-
ing with SLIVER.tv, such as several key people from services such as YouTube, it is
unlikely that their shared experience and knowledge does not provide credibility to it
being cost-effective.

To summarize, all of the services that have been explored have had examples of cost-
effectivity as a property. There are some similarities between how they have achieved
cost-effectivity, as well as certain differences between the services as a whole. How

29



Chapter 3. Services & Properties

cost-effectivity could potentially impact these services for better or for worse, will be
discussed in Section 4.1.

3.2.2 Scalable

Another property that was discovered after analyzing the services in Section 3.1, was
scalability. For a service to be scalable, it needs to be able to increase capacity as
resources are being added to it. Essentially, allowing more users to use the service con-
currently, without severely impacting their experience of the service[94]. An example
can be seen in Figure 3.8. Resources in this context can be RAM, CPU and bandwidth.
There are two approaches to scalability, which are vertical and horizontal scaling. Ver-
tical scaling consists of adding or removing resources to a single node, while horizontal
scaling consists of adding or removing nodes from a system[95]. As such, a hybrid
architecture could allow great flexibility in the approach to scalability.

Figure 3.8: Illustration of how scalability should increase capacity of a system. Adapted from
[96].

Skype’s architecture was based upon horizontal scaling due to their dependence on P2P,
as they had a selection criteria for peers to be used as super nodes. As the service
grew, new super nodes would emerge to handle the growth. However, this scalability
was quite fragile. In one case, problems were caused by the resources Skype consumed
from the users, which got it banned at certain locations and institutions. Another case
happened when a large portion of the P2P network was knocked down by a bug at one
point.

For Pando, their customers had issues with scalability due to the nature of the service
the customers provided. When the customer released something new in their service, it
was as though a flood gate opened, and their servers were overloaded by the users. Due
to user activity at most times being low enough for the customer to handle on their own,

30



3.2 Properties

and a lack of funds or desire to upgrade servers, Pando offered the perfect solution for
them. Thanks to adding and handling P2P for their solutions, these services had less
problems meeting the demands of their users during peak user activity.

Looking at Spotify, they managed to scale their service to a great degree. Their three
layers of distribution optimized track retrieval for their users. Thanks to allowing users
to download tracks amongst each other through their P2P network, this helped relieve
their servers during periods of large activity. This allowed horizontal scaling as the ser-
vice grew. At the same time, their centralized servers provided scalability when the load
was lower or when the user requested an unpopular track. The servers could also be up-
graded with more resources which would enable vertical scaling, and new servers could
also be added providing horizontal scaling. The methods and techniques Spotify used
in their solution, such as always streaming the first 15 seconds from servers, benefitted
the scalability of their service.

Xunlei Kankan utilized similar methods and techniques as Spotify, for their solution to
achieve scalability. The main difference being that it was provided for a video stream-
ing service. While Spotify had used both production and master storage to handle initial
streaming, Xunlei created secondary CDNs that only contained the first thirty seconds
of a video. This gave the client ample time to initialize the P2P or primary CDN con-
nection to access the content. The extra layer prevented long initialization times for
streaming, as well as enabling scalability. It was a choice that turned out to be good for
the service, considering video streaming can be more complex and resource taxing than
music streaming.

Since SLIVER.tv are delivering live streaming of video in a 360◦ format, they felt cur-
rent cloud technology would be insufficient or too expensive to scale well enough. As
such, they created client software that would be able to handle all the tasks that com-
monly were only handled by servers, such as transcoding and delivery of content. Due
to the blockchain revolution, there were a larger degree of machines that would be suffi-
cient to complete these tasks on behalf of SLIVER.tv. In combination with this, as well
as the potential lower distance between peers, SLIVER.tv determined the service could
achieve greater potential levels of scaling than a cloud platform.

As can be seen, scalability is a property that was identified in all of the selected services.
While there exist differences and similarities between them, the common aspect of the
services is the hybrid architecture. Scalability as a property of a hybrid architecture will
be discussed in detail in 4.2, where potential issues and other interesting points will be
accentuated.

31



Chapter 3. Services & Properties

3.2.3 Complex

Complexity is a property that became apparent during the analysis of the services in
Section 3.1. The definition of complexity can be thought of as a large number of in-
ternal interactions between entities within piece of software, that could cause severe
difficulties in either maintaining or modifying the software. Complexity can be further
divided into accidental complexity and essential complexity. Accidental complexity per-
tains to problems software engineers create, due to suboptimal choice of technologies
or lack of experience or knowledge, and can in theory be completely removed. While
essential complexity consists of the problem to be solved, and thus can not be reduced,
as it is a requirement to the software[97]. An analogy of complexity can be seen in
Figure 3.9. Due to the combinations of architectures, hybrid architecture has increased
complexity. This combination will lead to development of more entities, as well as more
interactions between them, which again leads to more essential complexity.

Figure 3.9: Analogy of complexity. As the system grows, the complexity of it increases in both
essential and accidental complexity. Adapted from [98].

As much of Skypes architecture was based on the distributed super nodes, this made
it really hard to maintain them in the case of failures. Mostly, this can be considered
to be because of the way they had designed and created their system, which made it
problematic when their a part of their network crashed, leading the entire service to
crash. In essence accidental complexity caused issues for their architecture. While that
helped to support the choice in changing architectures, the main reasons were due to
the development of mobile devices. In order to properly support mobile devices, there
would be several new distinct problems that would need solving, compared to a regular

32



3.2 Properties

PC or laptop. As such, a change to a client-server architecture would help reduce the
overall essential complexity of the problem for them.

Looking at Pando, they were an anomaly of all the services explored, as they actually
helped reduce complexity for their customers. Due to them offering the P2P and client
coordination, their customers would only have to connect their own systems to Pando.
This was less complex than having to develop everything on their own. Pando did,
however, note several issues with its service, some of which were poor optimization of
routing between peers, which is why they created the P4P workgroup, not to mention
users from the customers would complain that it hogged network resources. These
issues were a combination of essential and accidental complexity.

Spotify, with their hybrid architecture, had a lot of essential complexity. In order to
provide a seamless streaming through a combination of peers and servers, they had
several challenges. Their three levels of distribution meant great scalability, but it also
meant more essential complexity. This was due to the three sources of streaming, which
added some complexity of how to do this source selection process in an optimal way.
Although Spotify moved away from hybrid architecture, their choice was also motivated
by other reasons. Albeit they also noted that some features would in turn be easier to
implement in a non-hybrid architecture.

In the case of Xunlei Kankan, they had a larger degree of essential complexity than the
prior service, due to the naturally higher difficulty of video streaming compared to music
streaming. Although their solution was similar to Spotify in how they too have “levels”,
they also have more separation between and inside of these levels. For example, Xunlei
developed secondary CDNs which would specifically handle initial streaming. This
would make sure the user would have a seamless experience when connections to both
networks were established and decided upon.

Of all the services covered in Section 3.1, none has more essential complexity than
SLIVER.tv. Not only are they delivering live streaming in high definition, but they are
also delivering it in 360◦ format. This, in combination with a desire to utilize peers
for more than distribution, leads to more development and complexity than any other
service that has been covered. In addition to this, they are also using blockchain as one
of their core technologies, which will only add to the complexity. It is prudent to note
that SLIVER.tv has developed their service with modern technology. Something that
could potentially reduce accidental complexity to such a degree that it offsets most of
the essential complexity they have or will face in the future.

Through the examples presented above, it is evident that complexity is a property within
these services. It is possible to see a trend in how complexity of a hybrid architecture has
changed, thanks to development of technology through the years. Essential complexity
has increased, due to increased requirements from the services utilizing a hybrid archi-

33



Chapter 3. Services & Properties

tecture. Accidental complexity has been reduced, due to better tools and technologies
to build these services. Complexity will be discussed in Section 4.3.

3.2.4 Secure

A less noticeable property is security. The importance of security is determined by
what users expect when they start utilizing a service, and how much they stand to lose
in the case of a security breach on that service. A security flaw can manifest itself in
different ways within a service. Malicious users, scam artists and credit card fraud are
only one side of security. A theoretical example of a malicious user corrupting content
that pass through it is shown in Figure 3.10. Another aspect can be poor encryption or
inaccessibility of the service, which are more focused on the flaws inadvertently created
by the developers of the service. Although these two sides are different, they both are
based on the same principle: security.

Figure 3.10: Theoretical example of a peer corrupting content that passes through it. A legitim-
ate peer passes along the legitimate content, while a malicious peer corrupts the content before
passing it along.

Skype allowed sharing of user-created content over instant messaging in a hybrid net-
work, which meant that the service opened up possibilities of security risks from both
users and architectural flaws. These problems got a larger focus when these flaws were

34



3.2 Properties

abused. As such, Skype struggled for a long time with problems that came from these
security risks, which again came from how they had implemented a highly distributed
hybrid architecture in their service.

One issue that plagued Skype was the demand from the service to access computers
through firewalls, although they were not the only service that had this issue. Pando
struggled with access through firewalls as well. Although Pando had this issue, they
had a worse reputation of being a security hazard, due to their poor explanation of their
service.

Spotify were more fortunate, as they did not experience the same level of security issues
as Skype. Their architecture was made with a client that controlled what was shared
through P2P, which verified and secured the content that was delivered. Due to the client
securing the content shared, there were less instances of security flaws noticed.

Although sharing user-created content is mentioned as a security issue, it is not always
the cause of security breaches. Xunlei Kankan had a breach in their security, due to
developers in its parent company making a program that could infiltrate Android phones
connected to an infected computer. Although the security breach came from the inside
of the service, it highlighted a backdoor to the architecture, as well as revealing security
concerns from users who had their machines infected.

The most prevalent of security flaws that plagued SLIVER.tv was not necessarily in
their architecture, but rather in their service itself. The system became full of bots and
fraudulent users, which abused the system to their advantage. Although this security
issue is more pressing for the service itself, it also ruined the security of other legitimate
users: they risked getting banned from the service, as it was hard to distinguish the
legitimate from non-legitimate users.

Considering the prevalence of security issues that have been found throughout the ser-
vices, security is a notable property of hybrid architecture. It should be noted that
security issues can be very different from each other, and encompass different parts of
a service, which might make it difficult to find. A discussion of security and its use in
hybrid architecture will be conducted in Section 4.4.

3.2.5 Credible

The credibility of a software service is dependent on how they are presented towards
users, and how they operate. A service that fail to maintain trust and respect from
users, would realize that they are struggling to maintain the credibility they had. This
combines with security in the fashion of poor security could result in loss of credibility.

35



Chapter 3. Services & Properties

The use of trust and respect as building blocks for credibility is an explanation with a
theoretical view displayed in Figure 3.11

Figure 3.11: Theoretical building blocks for credibility. Trust and respect are needed to maintain
credibility. Adapted from [99].

With the explanation of security flaws in Skype, they took a hit at their credibility. The
issue of security flaws broke the trust, and privacy issues destroyed the respect users had
in Skype, which lead to their credibility going downhill. Nonetheless, it was praised for
the benefit it provided to telecommunication, and also got a boost to its credibility. This
could also point towards that Skype did not lose all the credibility it had, since it was
still in use.

Another example of loss of credibility is the story of Pando. The service itself did not
suffer in the same way as Skype, since the service never went down due to architectural
problems. However, the service lost respect due to poor communication that lead to
users questioning the need to install Pando together with another service. Combining
this with the fact that Pando used computer resources without telling the user, it broke
down the respect and trust a user might have in the service.

On the other hand, Spotify embraced the need for trust and respect, in order to generate
credibility. Although this was not always the case, as they had a lack of transparency
in the use of P2P technology early on. Some Spotify users were negatively impacted
by the use of P2P technology, and Spotify has since ensured transparency in such cases.

36



3.2 Properties

Due to being a platform that otherwise has functioned well, the trust and respect has
been maintained, which in turn strengthened the credibility of the service.

Xunlei Kankan experienced an accidental loss of credibility that happened outside of
their control. A security breach of the infrastructure from the parent company Xun-
lei, caused a loss of credibility. Due to the malware program being called Kankan,
the same name as the Xunlei Kankan service, it impacted Xunlei Kankan’s reputation.
Although users may not have expressed a distaste towards the service because of this,
the parent company gained credibility through their actions to reduce the spread of this
breach.

The opposite happened with SLIVER.tv, where the service itself was responsible for
the loss of credibility. When the service got rid of bots and fraudulent users, they also
banned legitimate users from the service. Since the service also deals with virtual cur-
rency, which could potentially be transferred to rewards with real value, the ban of
legitimate accounts were fairly unpopular.

Credibility of a service is valuable asset to the service providers and the users. Due
to several cases where credibility have been covered, albeit either briefly or as part of
security, it was selected as a represented property. Some cases will be elaborated and
discussed in Section 4.5, to determine the importance of the property.

37



Chapter 3. Services & Properties

38



Chapter 4
Discussion

In this chapter, all properties that have been found in Section 3.2 will be discussed.
The focus of this chapter will be a detailed discussion about the properties and whether
or not they can be considered associated with a hybrid architecture. This is done by
analyzing the impact a property has, with a focus on why a property is relevant and how
it is relevant.

The first property that will be addressed is cost-effectivity, which is in Section 4.1. It
is followed by scalability in Section 4.2. Complexity will be discussed in Section 4.3.
After this, security is addressed in 4.4. Finally, credibility is covered in 4.5.

4.1 Cost-Effectivity

As seen in Chapter 3, there have been multiple references to how cost-effective a media
streaming service could be when combining a typical client-server architecture and a
P2P architecture. This has been seen in Spotify and Skype, which both utilized this
hybrid architecture to reduce their costs in their startup phase. One of the benefits of this
was that a startup may not have the appropriate funding to maintain servers and storage
for the media. By relieving the storage and distribution with a P2P network, the funds
saved could be utilized in different areas. These areas could include advertisements or
other service-related expenses.

An important aspect on how a hybrid architecture can assist in reducing expenses comes
from the sharing of resources between users that P2P is known for. In a study per-
formed on Xunlei Kankan, it was found that 98% of a particular video had been de-

39



Chapter 4. Discussion

livered through peers. However, there are two points to consider when looking at those
statistics.

The first point is if there are not enough peers, they may not be able to offload the cent-
ralized servers enough. In this case, relying on P2P to handle most of the distribution
could be a problem. As such, it might be necessary to have good centralized servers to
be able to secure proper content delivery. This is seen with SLIVER.tv, in regards to
their choice in having centralized servers.

The second point refers to popularity of the content, with the differences between un-
popular and popular content affecting which distribution method is viable. Popular
content may have a large overlap in consumers that share content as peers, which make
the 98% discussed above viable. On the other hand, unpopular content might need to be
mainly distributed over an expensive centralized server, as there might not be enough
peers.

But why is the centralized server expensive compared to sharing through peers? Take a
hypothetical situation with a speculative ratio of streams between popular content versus
unpopular content. There could be a million streams on the popular one, compared to
every singular stream for the unpopular one. By making an assumption that both the
popular content and the unpopular content are the same size, then the popular one will
use more bandwidth.

To put it into perspective, Netflix requires 3 GB of bandwidth an hour for high definition
streaming[100]. By assuming a continuous set of a million streams that are always
streaming popular content, then it would be approximately 3 million GB worth of data
that are streamed from Netflix per hour. On the other hand, there is a disparity of
bandwidth usage when comparing those numbers to that of unpopular content, where
there might only be a set of one stream that are always streaming. That would end up
being 3 GB worth of data per hour. However, if as much as 98% of popular content
was delivered through peers, the best case scenario for Netflix would be to only have
to transmit 60 000 GB worth of data per hour. The difference of using mostly peers to
stream video content versus server only is visualized in Figure 4.1.

This example looks at purely video streaming, which are quite large files. Looking at
music streaming, streaming from Spotify at high quality uses 72 MB per hour[101].
A million streams of music would only yield approximately 72 000 GB worth of data
in an hour. This means that music streaming which has smaller file sizes barely use
more data with only a server, than video streaming using peers. Therefore, the file sizes
actually matter when looking at a hybrid architecture to determine the cost-effectivity,
as larger files have a greater benefit from utilizing peers. The difference between file
sizes when streaming is visualized in Figure 4.2.

40



4.1 Cost-Effectivity

Figure 4.1: Visualization of difference between distributing only from server and distributing
while peer assisted.

Although there is a benefit in utilizing peers, the question turns into whom it is beneficial
for. In the best case scenario for Netflix that was mentioned earlier, it would only need
to distribute about 60 000 GB worth of data from their servers, with the million peers
having to distribute the rest. If Netflix uses 3 GB an hour for their video streams, and
98% are distributed through peers, then the peers would have to transmit on average 2,94
GB each. Due to the high percentage of peer-distributed data, the average bandwidth
usage for the average peer would almost double with the use of a hybrid architecture.
As such, the bandwidth cost of distributing content is not gone, it is just pushed from
the company over to the consumer.

Despite that, the expenses would go down for video streaming services, due to the
massive difference in data that is shown in Figure 4.1. Although, this architecture might
not be as cost-effective for smaller file sizes. Not only are the total size difference vastly
different, but there is also the need to maintain two different types of architectures. The
savings of small file sizes distributed through a hybrid architecture might not warrant
the extra development and maintenance cost that the combination adds.

It is also not only distributing that peers may be responsible for, but also temporary
storage or computational power. This could turn problematic if the user is not expecting
to share resources. It does not mean that everyone would be negative to the idea of
sharing their resources, but in some cases they could be, especially if they are paying
for the service. Additionally, the user could have a limit on their bandwidth usage, there
could be hardware limits, or there could be battery usage problems.

41



Chapter 4. Discussion

Figure 4.2: Visualization of streaming when the file sizes are very different.

These problems have been highlighted through Pando and Skype. In Pando’s case, they
did not notify users of their activity, and Skype created huge security risks by opening
backdoors to public networks. Overall, the problem here seemed to be about not giving
enough information to users. Thus, it is important that users are notified that they might
be used as a peering node. They should also be offered the opportunity to easily turn it
off, in case they do not have the possibility or desire to function as a peer.

However, if there is an option to turn the P2P functionality off to satisfy the users, it
may become an issue if too many users disable it. This issue will then reduce the cost-
effectivity of the service, due to less sharing between peers. A solution to this problem
could be to provide the users that act as a peering node some form of compensation.
This compensation might be priority on the service, or better quality on the media they
want to stream. Another form of compensation is the one being utilized by SLIVER.tv,
which is in the form of virtual currency. This currency can be used by the user to donate
to a streamer of their choice, or can spend it on virtual items for themselves.

A different approach to the subject that will reduce the resources every user has to
provide, is to utilize a cloud platform. Not only will this mitigate many of the issues
related to dependencies of user’s resources, it will also provide a cheaper alternative to
expensive servers. As many services are hosted within its infrastructure, they can share
the costs related to it. Furthermore, due to the infrastructure already being in place,
startups might save some funds by utilizing cloud platforms, as they do not have to
spend money on buying and setting up servers[22, 68, 102].

42



4.2 Scalability

However, there has been worries of the hidden costs of cloud. For example, inexperience
with developing for the cloud might cause overuse or poor utilization of the functionality
offered by the cloud platform, meaning more expenses. Additionally, if the service does
not know what functionality it needs from the cloud, they might end up paying more for
functionality that is not needed. Still, cloud is comparatively cheaper than the service
hosting the infrastructure itself[102].

To summarize, a hybrid architecture has the potential to be cost-effective. It does, how-
ever, rely on several points. For the service to be cost-effective, some of the costs are
partially pushed over to the users. Following this, users might get irritated by an unex-
pected cost of using that service. It might also require a high amount of resources from
users, which might impact their experience. One option is to have a transparent policy,
in which the users know what is happening, and with a possible opt-out solution in case
they do not want to be a part of it. This is also important as a hybrid architecture is
very cost-effective when the shared file sizes are large, which also puts a heavy strain
on users. Another option is to compensate the users for their shared resources, giving
them a reason to keep using the service. This could be in the form of less advertise-
ments, otherwise free usage of the service, or a payment in the form of virtual currency.
A possible alternative to reduce costs is to utilize a cloud platform, which also would
be beneficial to users. Overall, hybrid architecture has the potential to reduce the load
on the centralized servers to a large degree, thereby saving the cost of more and larger
servers.

4.2 Scalability

The second property that was identified was scalability. This can be seen in services
such as Spotify and Pando, where both used hybrid architecture to handle loads past
their own capacity and to ensure performance. This was successful for these services
due to the spread of users, which impacted how the service operated. These services
experienced that user activity could fluctuate based on geographical spread, day of the
week and time of day. Another influence was the large overlap in what was commonly
consumed. Thus, it was important that these services would be able to handle sudden
spikes in activity at peak hours.

If these services could not handle the load, then the effects could be that all users would
have to experience subpar performance, since the system could not keep up with de-
mand. This was the case for services that delivered media, which enabled Pando to
become a valuable resource in file delivery. Another way to ensure that the perform-
ance was acceptable was to do what Spotify did when they were just starting out, enact

43



Chapter 4. Discussion

a queuing system. This queuing system could control user growth to ensure that the
service would not exceed the capacity of their servers.

While there is a concern of exceeding capacity, a lot of developments have helped in
solving this problem. One such development is cloud platforms. These platforms have
abundant of resources available, which is commonly higher than any requirement the
service might have. Furthermore, virtualization technology used in the cloud will auto-
matically scale to meet the needs for the service. Virtualization technology is an ex-
ample of vertical scaling, which can be seen in Figure 4.3.

Figure 4.3: Example of vertical scaling, where resources are added to a node allowing more
concurrent clients.

However, it is not uncommon that a cloud platform hosts multiple different services
within its own infrastructure. Furthermore, while cloud providers usually plan to have
more resources available than these services regularly use, there might still be unexpec-
ted situations. For example, if all the services hosted on the cloud concurrently had peak
activity, the cloud infrastructure could potentially be unable to handle this load. In the
case of use over or outside of the subscription plan, the cloud provider might limit the
service performance, which would have a severe impact on scalability.

As can be seen, the scalability of dedicated servers and cloud can be somewhat varying,
depending on several factors. However, thanks to a hybrid architecture, P2P can assist
load balancing in such a case. As users join the service, they in turn help hosting the
service by providing their own resources to help distribute content. Thanks to users
becoming nodes, the service will be assisted due to horizontal scaling, as more and
more users join the service. This helps negate the problems around potential resource
and user limits around cloud, as well as potential cost problems that were discussed in
Section 4.1. Furthermore, while servers has limits to how far they can be scaled, P2P
on the other hand could potentially scale indefinitely as peers joined and supplied their
own resources, as can be seen in Figure 4.4.

44



4.2 Scalability

Figure 4.4: Illustration of horizontal scaling, where new nodes are added to the system.

This way of increasing scalability is what Netflix might have needed, as they struggled
with upkeep of the service after their popularity skyrocketed. Since establishing new
server farms for a service is not only costly, but also time consuming, a scalability
solution with hybrid architecture could be very useful. Although this may be only useful
as a short term solution, the benefit could also come in the form of happy customers who
would come back to the service.

However, there are also some issues that can affect scalability with P2P, such as peer
heterogeneity. While there is equality in a P2P network, not all peers have the same
amount of resources or capabilities. In the case that the P2P network gets flooded with
users that can not be considered suitable peers, then other users who connect to these
peers might have a poor experience. This, in turn, can potentially lead to poor scalability
of the service.

Furthermore, peers might not be dependable, and as such they might disappear abruptly
while another peer is connected to them. This could lead to poor scalability for the
remaining user, as it might suddenly have to find new peers, or find servers to stream
from. However, both of these problems can be somewhat mitigated by using prediction,
and having a decent amount of peers available at all times. Not to mention, being able
to fall back on servers in the case that there are not enough peers.

Scalability can also be assured through P2P by predicting and seeding content to users
ahead of time. This, in turn, could lead to the network being able to scale really well if
the content suddenly became popular. An example of such an situation could be when
a new movie or an episode of a popular series are being released. The same technique
could also be used to prepare for maintenance, by making sure peers take a larger role
in the distribution, while the servers are being maintained.

Overall, scaling can be really good in a hybrid architecture. The client-server architec-
ture ensures scalability in lower loads and can provide great vertical scaling, while P2P
provides scalability at higher loads and can provide great horizontal scaling. However,
there are a few aspects which are important to note when talking about scalability of a
hybrid architecture, such as limits and problems on both the server and P2P network.

45



Chapter 4. Discussion

Although, in all likelihood, scalability will be provided due to the positive attributes of
both architectures, as well as both architectures solving problems with the other archi-
tecture.

4.3 Complexity

As a result of the decision of using a hybrid architecture, services such as Spotify and
Skype gained scalability. However, this also meant an increase in complexity. This
might stem from the fact that they were utilizing a combination of architectures, and
therefore had to plan for, develop, maintain and support both architectures in their solu-
tions. As such, complexity is a probable reason behind why the hybrid architecture
has seen less use than traditional architectures. While there are benefits to choosing
a hybrid architecture, there will inevitably also be disadvantages by choosing such an
architecture.

Due to both Skype and Spotify being early adopters of a hybrid architecture, they in all
likelihood had a larger degree of accidental complexity than some of the other services
that had been covered. This could have been due to a lack of available technology and
knowledge surrounding hybrid architectures, as it had not seen much use before this.
As such, the early adopters might not have been able to handle or solve the increasing
complexity of the hybrid architecture in the service they developed.

Some of this complexity could be attributed to P2P technology and its peers. The un-
sure nature of the peers could create several issues around complexity, since in media
streaming, peers would need to have enough resources and be available to be able to
provide seamless streaming. This could lead to a need to develop complex algorithms
to measure the potential usefulness and availability of peers. Furthermore, it could also
lead to development of complex algorithms to handle dynamic switching of peers based
on results of these measurements. In addition to this, the use of mobile devices for P2P
could introduce new problems which would increase complexity.

As technology and knowledge in the field has been improved since that time, it is
possible that the complexity Skype and Spotify faced has been severely reduced. One
example of technology that has been developed is WebRTC. It enables native P2P
support for media streaming in the web browser over multitude of devices, as can be
seen in Figure 4.5. Services such as SLIVER.tv are already utilizing technologies such
as this in their solutions. Thanks to these improvements, as well as further development
through libraries, this could have the potential to further reduce complexity for services
that desire to utilize a hybrid architecture.

46



4.3 Complexity

Figure 4.5: Example of how WebRTC enables communications between servers and peers.
Adapted from [103].

Considering the usefulness of WebRTC on different devices, it could be an excellent
technology for a service like YouTube, which already works on multiple different
devices. Seeing that WebRTC already helps solve several of the complex issues with
utilizing P2P for media streaming, this technology might be considered a critical factor
if they were ever considering transitioning to a hybrid architecture. At the very least, it
would reduce the work that was necessary to make a shift to a hybrid architecture for
YouTube viable.

The emergence of cloud platforms is another development that has happened. As cloud
platforms can solve or help handle several issues that a service would commonly have
to face on its own, this might reduce the complexity of the service. This, in combination
with functionality and tools that cloud platforms also bring to the table, has the potential
to reduce complexity even further. Something that can be corroborated by both Skype
and Spotify decisions, as they moved their own servers to the cloud at a later point.

47



Chapter 4. Discussion

However, while the cloud has the potential to reduce complexity, it might also increase
it. The developer still has to ensure that the service works with the cloud, which requires
configuration and integration of solutions that fit within the cloud platform. This, in turn,
could mean an increase in complexity if the interfaces or development kits are not simple
or intuitive enough. Not to mention that since the cloud platform is sometimes supplied
by a third-party, the developers of the service might not have the access, permission
or utilities to make changes that are necessary for the service. As such, developers of
the service might have to utilize complex workarounds in order to solve problems they
encounter with the cloud platform. Then again, these scenarios seem unlikely due to
so many companies moving to the cloud, as well as cloud platforms often providing
support teams for each service.

In relation to cloud services, Pando was quite similar to them. Although it was more
in the way that they delivered a service, or rather a platform to their customers. By
Pando enabling the use of hybrid architectures for services, the services did not have to
worry too much about delivery or hosting aspects of their architecture. As such, they
reduced the complexity for their customers, similarly to cloud platforms. This is backed
up by how pleased Pando’s customers were with the service. Therefore, it is not unlikely
to think cloud platforms might start to develop their own services, offering something
similar to what Pando did to their own customers in the future. This is corroborated by
Microsoft’s acquisition of Pando.

While it could be argued that some of these suggestions reduce complexity, is it not
more correct to look at it as transferring complexity to other platforms or third-party
developers? The service developers do not have to worry too much about the technical
aspects of certain technologies, thus reducing complexity for themselves. However, the
developers of the cloud platform or other technologies still have to handle the complex-
ity of what they are providing to the service. The complexity does not really disappear,
it is just shifted over to other third-party developers. However, it can be argued that it
is beneficial to have third-party developers or platforms help in creating a better solu-
tion. Because the expertise they provide are skills, experience and knowledge, they can
perhaps make less complex solution than these services could themselves.

To summarize, hybrid architectures increase the complexity of services due to the com-
bination of both client-server and P2P architectures. Although there exists a few ways
to simplify the architecture for the service, this commonly means shifting the complex-
ity over to third-parties. This could create the illusion of reduced complexity, although
that is not guaranteed. With technology and knowledge in the field being expanded,
it might lead to reduced accidental complexity of hybrid architectures. This, in turn,
could lead to developers with more technical expertise and experience. They could then
create solutions based on proven methods and technologies, which would overall be less
complex than the early experimental hybrid architectures.

48



4.4 Security

4.4 Security

With increasingly complex services being developed using a hybrid architecture, there
arose a necessity to discuss how the security of these services could be impacted by it.
Through Chapter 3, concerns had been raised about potentially malicious peers abusing
flaws or corrupting data in a hybrid architecture. This could negatively affect other
peers, or even the service itself, as was the case with Skype.

Most of these security concerns can be attributed to the distributed nature of Skype.
As Skype did not log or control messages being sent, it was considered extremely hard
to discover the origin of an attack or a breach. In an attempt to fix these problems
with Skype, developers released a buggy version of their software, which caused an
accidental crash of their entire P2P network. This put the final nail in the coffin for its
P2P part of the architecture, as they soon redesigned their architecture.

Skype’s change in architecture also meant that they would remove the need to access
computers through the firewall, which also was a security issue. However, Skype was
not the only culprit in requiring access through the firewall, with Pando being another.
These services essentially would open holes in the firewall, without requesting permis-
sion or notifying the users. Although this does not mean these services exploited their
access, it created a security risk, since malicious files could be shared.

This might paint the picture that hybrid architectures are not very secure, however, it is
also important to note that services like Skype were early adopters. As such, services
like Skype might have trusted its own users to be reputable people, not utilizing their
free service to do harm. Furthermore, Skype’s security issues could potentially have
been avoided if they had taken more control of their own P2P network, by creating
security functionality to remotely detect and deal with malicious users.

On the other hand, Spotify was also early in utilizing a hybrid architecture with the
primary function of media streaming. However, there was not much in regards to se-
curity flaws in their solution compared to Skype. A possibility is that Spotify delivered
content they had stored in servers and thus could verify what was distributed between
peers, while Skype did not store any content and could not verify what users distributed
over their service. This then begs the question if hybrid architecture is the culprit for
security issues, or if the addition of user-created content the real culprit.

A media streaming service that could be used to look at the security risk of user-created
content is YouTube. The content on YouTube is mostly user-created, and as such, could
theoretically be a victim of the same security flaws that plagued Skype. In spite of
this, YouTube does not appear to have any issues regarding distribution of user-created
content. This could mean that having a centralized server means more control over what
users are doing on the service, and thus makes it easier to remove or prevent instigators

49



Chapter 4. Discussion

before any problems arise. This could point in the direction that having a centralized
server that can verify content could be a necessity to ensure security.

Through this, it could be argued that a completely centralized service would be more
secure. On one hand, more control could lead to more oversight of interactions and
activity in a service. On the other hand, a vulnerability in a centralized service could give
an attacker more control, and access to a larger part of the system than in a distributed
system. Such vulnerabilities has to some degree been rectified in cloud computing, as
users connect to the service through an client instance in the cloud, and do not directly
communicate with the server that is also hosted in the cloud.

While a centralized solution could be more secure, an issue that has become appar-
ent is how user privacy can be affected by centralized systems. As there have been
cases of user data or activity having been shared with government agencies and other
organizations. For example, it was revealed that after Skype had changed to a cent-
ralized solution, they had been sharing conversations with the American government.
To make matters worse, they had not informed their users of this activity in any way,
which breached their trust with the service. Although privacy concerns are still present
in cloud computing, the argument is that since cloud platforms host a multitude of ser-
vices from a multitude of locations, they need to maintain a neutral stance to accom-
modate their customers. Thus, the responsibility for any privacy breach lies solely on
the service itself, and not on the cloud platform, as the service is the one that authorized
the breach.

An solution to securing a distributed service could be to do what SLIVER.tv did, which
is utilize blockchain technology. Due to the distributed nature of blockchain technology,
a malicious user could potentially be discovered and, with the consent of a quorum of
its peers, stopped. With every peers action being controlled and verified, this could
potentially secure a distributed service from interference or malicious intent. Users that
act maliciously can even be punished for their attempt, and potentially be removed from
the system.

However, such a solution will likely require a large overhead of resources, negatively
affecting performance of a system. Not to mention, if a quorum was controlled by
malicious users, they could in essence manipulate the system at will. Nonetheless, such
a scenario is very unlikely, as the quorum would consist of a random subset of several
hundreds of thousands or even millions of users.

That said, maybe a quorum is the best option in a distributed architecture, since users
can police themselves without oversight from the developers. As there have been cases
where developers have been the ones to exploit security issues. For example, Xunlei
Kankan had a issue where developers created a program which downloaded malware
onto customers phones. SLIVER.tv struggled with rampant use of bots and fraudulent

50



4.5 Credibility

users and banned more users than what they needed to. These two cases show that
security issues is not exclusively related to users, as developers can be a part of security
issues too.

While security is a concern to be noted in a hybrid architecture, it might not be as im-
portant for media streaming solutions, which is reflected in differences between Skype
and Spotify concerning security issues. Concerns in such a case could be corrupted
media files, which could probably be detected by the service or client through integrity
checks. In addition, media streaming services would likely contain data that are less
sensitive in response to privacy or security. In any case, the severity would likely be
of a smaller scale than other types of services, such as services storing very sensitive
data.

4.5 Credibility

In the case that security of a service has been breached, this can have severe con-
sequences for the credibility of the service. For example, Skype got backlash due to
how the backdoor could be used for malicious intent, especially in larger enterprise
networks. Furthermore, the scandal involving Skype sharing conversations with intel-
ligence agencies got them more backlash, as users felt their privacy had been breached
without their consent.

However, these events did not impact user count that much, as it still had a majority
in the market. On the other hand, several corporations moved their businesses away
from Skype due to these issues. Therefore, it mostly impacted the use of Skype from
businesses, with private use still retaining activity.

Although security issues impact credibility, there are also other factors that can affect
it. Such as with Pando, where users were not notified of Pando being installed, as it
was bundled with the service they were installing. With users suddenly experiencing
problems due to Pando being installed, many assumed it was a virus leeching of their
computer resources. While it was using computer resources, it was merely doing so in
order to support the service they originally installed.

As such, it is quite understandable that users questioned the services credibility, when it
was revealed that Pando was installed without notifying the users. While this impacted
their credibility, the entire situation could have been entirely avoided if they had notified
their users of the installation and function of Pando during installation of the service.
Users might not mind sharing their resources, if they had known about Pando before-
hand. Much of the backlash came from users who simply did not have the resources or
capabilities to share with the service.

51



Chapter 4. Discussion

Although credibility is mentioned more often when it is lost instead of gained, there
are ways to rectify situations to regain credibility. One such example was when Xunlei
Kankan had a security breach, which impacted their credibility. Their answer was to
quickly create an uninstaller that would remove all files related to the malicious pro-
gram and inform their users. Such actions will regain credibility due to services ac-
knowledging their mistakes and fixing them.

This is a problem that SLIVER.tv did not address properly. With their problems of
bots and fraudulent users, their system banned many users, some of which were legit-
imate. When these users questioned why they were banned, and subsequently lost their
accumulated virtual currency, SLIVER.tv did not give adequate responses. Since the
developers did not provide proper dialogue or communication with the affected users,
their credibility as a service dropped.

However, the issues with proper dialogue is not only a problem for media streaming
services utilizing a hybrid architecture. For example, YouTube’s artifical intelligence
(AI) system banned several channels that were reporting on, or providing, evidence of
human rights violations in Syria and other locations, due to it flagging many videos as
disturbing or violent. As such, evidence of these atrocities were deleted, and possibly
lost forever. Even when asked to restore the video due to it being used as evidence
in a court case, YouTube denied, as they agreed with the AI’s verdict. This caused a
loss of credibility for YouTube, as they had previously claimed they supported users
who uploaded evidence of human rights violations, and would continue offering tools
to help them promote human rights[104].

Thanks to situations like this, it could be argued that transparency with users is key in a
hybrid architecture. If a service does not communicate properly with its users, then the
users will wonder about the credibility of the service. Equally important is to make sure
that users have been informed, as well as given consent to sharing their computational
resources with the service. This might help boost the trust between the user and the
service, which can actually improve the credibility of the service.

Another issue that can impact credibility is reliability. If a service frequently have issues
with uptime or has performance issues, users might not find the service reliable. For
example, the case of the users in Spotify that could not function as peers, as they had
too poor internet connection to stream and distribute content at the same time. Due to
this case, Spotify lost some credibility. However, in some cases, a service might corner
a market, where reliability and credibility does not impact the service too much. Skype
is a good example of this, as even though they were impacted, they still retained much
of their user base. On the other hand, there are services that have alternatives, like cloud
platforms. If one cloud platform provider does not deliver on promises or functionality,

52



4.5 Credibility

there are alternative cloud platforms. This means that a successful cloud platform has
high credibility.

While credibility is a property that has some significance in regards to a hybrid architec-
ture, it is not one of the most important ones. A main reason is that regardless of service
and architecture, credibility is equally important for everyone and is not significant for
hybrid architecture in particular. In regards to media streaming, as long as users are
informed and give their consent, it is unlikely that it will be important to focus on as
a service. This is due to the less sensitive data collected, as well as the lower impact
security issues could potentially have in a media streaming service.

53



Chapter 4. Discussion

54



Chapter 5
Evaluation

This chapter will evaluate the properties that have been found in this thesis, and based on
the discussion, deem if they are significant for media streaming services. This selection
of significant properties will happen in Section 5.1. Based on knowledge from Chapter
4 and Section 5.1, the viability of hybrid architecture will be evaluated in Section 5.2.
This is supplemented by aspects to consider when using hybrid architecture, which is
presented in Section 5.3. Finally, a critical evaluation of the research will be conducted
in Section 5.4.

5.1 Significant Properties

Several properties were found in the services utilizing a hybrid architecture. Some of
the properties were found to be associated with hybrid architecture to a certain degree,
while others were more separate. Then again, only a few of the properties were found
to be significant in relation to media streaming services. While a short explanation
behind the reasoning will be conducted, Chapter 4 has a more thorough coverage of
each property and reasoning.

One of the most prominent properties discovered was cost-effectivity. Due to the util-
ization of user resources at times of high load in combination with the utilization of
servers at lower loads, a hybrid architecture managed to be quite cost-effective. Con-
sidering that media streaming has varying loads, in combination with commonly large
costs related to the process of hosting and streaming, it is a property that is significant
in relation to media streaming services.

55



Chapter 5. Evaluation

Another property that was found is scalability. Scalability also came from the utiliza-
tion of user resources during higher load, as well as utilization of servers during lower
loads. In relation to media streaming, the property is significant due to the sudden spikes
in user activity that can occur on events such as new releases or regular fluctuations in
user activity. Seeing that these spikes can overburden the server in a regular client-server
architecture, the assistance of peers can be a significant improvement to scalability. Fur-
thermore, as P2P has poor scalability at lower peer counts, servers can be used to ensure
scalability during these periods of low activity by ensuring consistent performance of
media streaming.

The third property that was found to exist within hybrid architectures was complex-
ity. It came from the fact that developers had to face challenges of both architectures,
while combining them into one. Not to mention the point that it still had to meet the
requirements set upon the service. In regards to media streaming, it was significant due
to potential problems this could cause with the performance or availability of the ser-
vice, as complexity could cripple the maintainability. This, in turn, could lead to poor
user experience and the service failing to meet expectations. Not to mention that media
streaming in itself is a complex problem due to the wast amount of potential users.

Security was another property that was discovered in relation to hybrid architectures.
This was due to the distributed nature and user participation that came with hybrid ar-
chitectures. However, it was considered less important in relation to media streaming.
Media streaming work with little sensitive personal data, in addition to the lower im-
pact that a security breach could potentially have within a media streaming solution.
Additionally, in some cases of media streaming services, there are limited possibility to
change files and force a security breach. Although, if a security breach takes down the
service, a large number of users could be affected by it.

The final property that had been discovered was credibility. Due to the potential issues
with security, it became noted as something that might be impacted by a breach, and
the fallout of said breach. While trust between user and service was considered import-
ant in a hybrid architecture, it is not less important in other architectures either. This
means that even though credibility is important, it is not uniquely significant for hybrid
architectures with focus on media streaming.

5.2 Viability of Hybrid Architecture in Media Stream-
ing

Throughout Chapter 3.1, several services have been covered. All of which have imple-
mented a hybrid architecture to different degrees of success. Furthermore, the properties

56



5.2 Viability of Hybrid Architecture in Media Streaming

discovered have been analyzed and discussed in detail in Chapter 4, and summarized in
Section 5.1. Still, none of these have discussed the actual viability of a hybrid architec-
ture for media streaming, which will be covered in this section.

Seeing how most of the services that have been covered in this thesis either have closed
down or transitioned away from a hybrid architecture, one could make the argument that
a hybrid architecture has poor viability. On one hand, this is supported by the problems
these services have had due to their choice of architecture. On the other hand, there
are reasons these services switched away that are not related to the viability of hybrid
architecture.

One such example is Spotify, where they reasoned that they had built up a good enough
consumer base to justify the change to client-server. They also had a few user com-
plaints about bandwidth usage, which Spotify felt was an unnecessary grievance for
their users. This, in combination with the reduced costs of server hardware and band-
width, motivated their change, more than any potential issues they might have faced if
had they not changed. Not to mention, Spotify was a startup when they used the archi-
tecture, as such the cost-effectivity they gained from a hybrid might have helped them
survive to this point.

However, on the other side of the spectrum is Skype. It changed away from the hybrid
architecture due to viability issues. The crash of their network, without their ability to
do remote maintenance was a blow to their service. This issue was grave, considering
it was one of the largest internet telecommunications applications at that time. Another
relevant issue was that nodes that relayed messages could intercept said messages and
replace them, which also became a problem for Skype.

While this weakens the viability case of a hybrid architecture, it is also important to note
that Skype was one of the earliest adopters of a hybrid architecture. Considering the
service was first released in 2003, with much of it being based on complex proprietary
technology and knowledge, it was impressive that the service worked fine for such a long
time. On this basis, it can be argued that Skype managed to create a viable service, even
when the current technology and knowledge would argue it was not viable. Perhaps it
even helped pave the way for future services that utilized a hybrid architecture. Thanks
in part due to pushing technology and knowledge forward, making it more viable.

As such, one of the greatest examples of how technology and knowledge in the field
has moved forward is SLIVER.tv. Their live streaming service utilize modern technolo-
gies such as blockchain and WebRTC, in order to organize workload and distribute the
media content. This has helped solve many different issues that previous services have
faced in their development of a hybrid architecture. Thus it strengthens the argument
that hybrid architectures are viable, and have become more viable for media streaming.
Furthermore, SLIVER.tv stated that the more common client-server architecture did not

57



Chapter 5. Evaluation

meet the requirements they had for their service. Something that can be explained due
to SLIVER.tv’s larger data sizes, in addition to the requirement of lower latencies. This
also provides evidence to the viability of a hybrid architecture in media streaming.

These arguments, in combination with the properties that has been discussed in Chapter
4 and Section 5.1, provides evidence of the viability of a hybrid architecture within the
realm of media streaming. While there are examples of services using and moving away
from it, these services were commonly startups that needed to establish, or gain a share
in the market. As such, it is likely that a hybrid architecture has the highest viability
in a startup within media streaming. Another example of where a hybrid architecture
might be a viable option is in the case of a service needing to reach a minimum required
user base to support a switch to pure P2P architecture. There are some points that
are important to note before deciding to use a hybrid architecture in the realm of media
streaming. These points impact the viability of a hybrid architecture, and will be covered
in Subsection 5.3.

5.3 Points to Consider When Deciding to Use a Hybrid
Architecture

This subsection will cover some of the important points to note before deciding to use
a hybrid architecture. The points can have a severe impact on the viability, depending
on how the service works and what it delivers. It also contains potential solutions to
issues that have been highlighted throughout this paper. It is mainly focused on media
streaming services, but some points might be relevant to note for other services that
desire to utilize a hybrid architecture.

5.3.1 User Base

A suitable user base should be available to make sure a hybrid architecture will be
viable. If the service only has a small potential user base, this could make the entire
P2P network inefficient. As such, it is important to note a minimal viable number of
peers required to be able to utilize the P2P network to a satisfactory degree. The more
resources a service needs, the higher the probability is that more peers will be required.
Not to mention a heavier burden will likely be placed on the peers.

58



5.3 Points to Consider When Deciding to Use a Hybrid Architecture

5.3.2 Resource Usage & Overlap

In order for a hybrid architecture to be viable, there has to be a large enough requirement
for resources. For example, larger data sizes will mean more usage of memory, as
well as bandwidth for transmission. Thus, a service doing video streaming likely will
have larger resource requirements comparatively to a service that only streams music.
Therefore, video streaming might be more viable when using a hybrid architecture.
Furthermore, there has to be enough overlap into what content users consume. If the
users have unique tastes, and little to no overlap in what content they consume, in theory
the P2P network will be almost completely useless.

5.3.3 Transparency & Voluntary

The users should be clearly notified that their resources could be used in a P2P network.
This is due to some users having constraints or rules that, when broken, could negatively
impact their personal lives. For example, corporate networks might have rules in place
that any service utilizing P2P is banned within the network, something that could poten-
tially lead to the user being penalized by their employer. Another example is that some
users have limits to how much resources they have available and can use during a period
of time, which might negatively impact their experience of the service. The resources
could be a cellular data plan or even battery life, and as such, not being informed could
lead to unforeseen expenses or other problems for the user.

In relation to being notified, it is also a good idea to allow the participation in the P2P
network to be entirely voluntary. As such, users with these constraints or rules should
have the possibility to opt out of participation, instead of being unable to use or having
to limit their use of the service. If there is a worry that too many users will opt out,
a solution could be to incentivize users. For example, by prioritizing the users that
participate, or grant them better quality on their service. Other incentives could be
virtual currency or points that can be spent within the service in some way, or even
access to improved functionality or early access to new content.

5.3.4 Capability

Due to the high complexity of creating a service that utilizes a hybrid architecture, it is
important to note the capabilities of both the software engineers and current technology.
While a hybrid architecture has several benefits, these benefits can be squandered in
the case that the developers or technology is not up to par to handle the requirements
of the service. Thus, even if a working service has been developed, it might not be

59



Chapter 5. Evaluation

competitive enough in regards to quality compared to other similar services. This could
mean users would never return after having tried the service. As such, the inherently
higher complexity that comes with hybrid architectures is important to note.

5.4 Research Critique

The first point of critique is the selection process of services. Some of the services
selected were found to be less suited for this type of research than the other services.
As some of the services that were selected are closed source, this meant available docu-
mentation was limited. Furthermore, some of the services are rather old or have not used
the hybrid architecture for many years, and as such, documentation might have disap-
peared or is contradictory due to changes within the service. These elements might have
impacted the accuracy of the descriptions of the services, due to the limited information
available.

This then leads to the second point of critique, the document selection. Since document
analysis was the main data generation method, the thesis is dependent on a multitude of
documents from a myriad of sources. As such, there is likely a great disparity in qual-
ity and objectivity between these documents. Even if the focus was to mainly utilize
technical documents and research papers, in some cases it was necessary to use other
documents, such as blog posts, news articles or user comments, to fill gaps in informa-
tion. This might have impacted the credibility of the results of this thesis, as not all of
these can be considered objective and credible sources.

Furthermore, since the thesis was dependent on documents, another critique is the cred-
ibility of the authors of those documents. As those documents might very well have
been impacted by research bias to some degree, which could have repercussion for this
research. Not to mention if the documents were authored by a third-party, they might
not have had the necessary access or knowledge to provide accurate results. As such,
any inaccuracy or fault might have inadvertently been included in this thesis, potentially
affecting the correctness of the results.

Finally, the last critique is that the focus on media streaming might have impacted the
discovery of properties in a hybrid architecture in general. As such, it is possible that
other important properties in regards to a hybrid architecture have been neglected or has
lost focus. Furthermore, other properties may have gotten more focus than warranted.
While important to consider as critique, it is equally important to note as a limitation for
the thesis.

60



Chapter 6
Conclusion

This chapter will conclude the thesis and provide a short, concrete answer to the research
questions. In addition, this chapter will also include the contributions of this thesis,
which is in Section 6.1. Finally, future work will be discussed in Section 6.2.

Regarding the question of what properties can be found in services using a hybrid ar-
chitecture, a few properties have been identified. These properties are cost-effectivity,
scalability, complexity, security and credibility. These properties were identified be-
cause of their prevalency in documents about the selected services. Due to related
works, some properties were expected, such as cost-effectivity and scalability.

Concerning which of these properties are significant in relation to media streaming, the
five identified properties are reduced to only three properties that can be considered
significant. The properties that are significant are cost-effectivity, scalability and com-
plexity. Since the related works also pointed towards cost-effectivity and scalability, the
significance of those two properties are considered valid.

Finally, regarding the question of viability of a hybrid architecture in a media streaming
service: a hybrid architecture can be viable in a media streaming service, but several
factors need to be considered. The cost-effectivity provided by a hybrid architecture is
significant, but the costs may be pushed on to the users. The scalable nature of hybrid
architecture can be helpful for alleviating the server in peak periods, but it may be hard
to fix if a node in the system becomes corrupt or malicious. A service can utilize the
best of both architectures, but it can become a quite complex service, with the need to
maintain and control a vastly complicated system.

So the viability of hybrid architecture is present, with the option of utilizing it for both
existing and new media streaming services. There have been examples of hybrid archi-

61



Chapter 6. Conclusion

tecture failing, and there have been examples of hybrid architecture succeeding. How-
ever, a majority of the services covered here is not currently using hybrid architecture,
having instead switched to using cloud computing.

There are definitely negative aspects to using cloud computing, but there are also great
benefits. An aspect that has not been considered in this thesis is whether or not a cer-
tain number of users would make using cloud computing more viable, or if below that
threshold, other options are better. With such arguments to consider, it is possible to con-
sider hybrid architecture over cloud computing. Then again, cloud computing provides
benefits in such a scale that it might be hard to consider other architectures and solu-
tions.

To conclude, hybrid architecture is viable for media streaming services, although it
might not always be the best alternative.

6.1 Contributions

The main contribution of this thesis is to illuminate potential advantages and disad-
vantages with hybrid architectures, in order to assist decision-making in the choice of
a system architecture. This is achieved by providing a new perspective on preexisting
theories and results, as well as new results to the field. The significance of the con-
tributions is how they are based on several real-life services, instead of theoretical or
simulated systems.

6.2 Future Work

One thing that became apparent during the research is that almost all of the services that
were explored, either moved away from, or are planning to move away from, a hybrid
architecture in the future. Thus, it would be interesting to do a more in-depth invest-
igation as to why services do not seem to persist in their use of a hybrid architecture.
This could help in determining whether or not a hybrid architecture has viability as a
prolonged solution.

Furthermore, while this thesis found some properties that were significant for hybrid
architectures within media streaming, there could be other significant properties that
this thesis did not discover. For example, this thesis noted properties such as availability
and maintainability shortly, as aspects of the other properties. This happened due to a
lack of information from the documents to justify including it as a separate property in
this thesis. There might even be other services or documentation available, that was not

62



6.2 Future Work

found in relation to this study, that could provide new and interesting information. As
such, a further study into other properties might be useful to gain further insights.

In relation to this, it might also be interesting to conduct an experiment with a simulated
media streaming service, utilizing a hybrid architecture. An example of a test case could
be streaming a media file, where the number of peers are a changeable parameter. This
could then be expanded further, by changing the type of media from sound to video,
or even change the size and quality of the media file, to test out how different content
impact distribution from server and peers. Through this, insights into the properties
of a hybrid architecture in media streaming could be gained, and the actual impact of
a hybrid architecture in media streaming could be tested. The data collected could be
used to figure out how cost-effective a hybrid architecture could be compared to a client-
server architecture, or even provide a measure of minimal number of viable peers for
different types of content.

Another thing that was discovered and deemed interesting in regards to this thesis, is
the possibility of cloud platforms offering P2P as a service. Since many of the covered
services in this thesis transitioned to the cloud, it could be an interesting solution to
allow cloud platforms to handle P2P on their behalf, in the same way that cloud is
currently handling the servers. This could have major significance in relation to the
viability of hybrid architectures, as well as possibilities for cloud computing.

Although cloud computing has been mentioned throughout this thesis, it is not the only
technology that needs to be considered. SLIVER.tv used blockchain to increase the
capabilities of hybrid architecture for streaming media content. Since SLIVER.tv is a
fairly recent service, it might be useful to research improvements to the technologies it
uses, especially with the focus on viability. It might also be interesting to have a further
look into how blockchain technology can be used in relation to a hybrid architecture.
This could in turn lead towards a better version of hybrid architecture, using modern
technological aspects.

Finally, while not mentioned widely in this thesis, the impact hybrid architectures have
on society and the environment might be interesting to study. The partially distributed
nature could potentially support user privacy and freedom, as it would be harder for
governments or organizations to monitor network traffic or activity. At the same time,
the distributed architecture might utilize devices that are less optimized for server related
tasks, like smartphones, and as such, may use more power than data centers that are
optimized for such tasks.

63



Chapter 6. Conclusion

64



Bibliography

[1] Internet consumer data traffic worldwide by segment 2016-2021. June 2017.
URL: https : / / www . statista . com / statistics / 454951 /
mobile - data - traffic - worldwide - by - application -
category (Accessed 8. Nov. 2018).

[2] Global number of YouTube viewers 2016-2021. Feb. 2018. URL: https://
www.statista.com/statistics/805656/number-youtube-
viewers-worldwide (Accessed 31. Oct. 2018).

[3] Felix Richter. Infographic: Netflix Continues to Grow Internationally. Oct.
2018. URL: https://www.statista.com/chart/10311/netflix-
subscriptions-usa-international (Accessed 31. Oct. 2018).

[4] ‘You know what’s cool? A billion hours’. In: Official YouTube Blog (Feb. 2017).
URL: https://youtube.googleblog.com/2017/02/you-know-
whats-cool-billion-hours.html (Accessed 30. Oct. 2018).

[5] Christine Gallup. ‘How Much Data Does YouTube Use?’ In: WhistleOut (Nov.
2017). URL: https://www.whistleout.com.au/MobilePhones/
Guides/How-Much-Data-Does-YouTube-Use (Accessed 30. Oct.
2018).

[6] Isla McKetta. ‘The World’s Internet Speeds Increased More than 30% in 2017.
Are You Keeping Up?’ In: Speedtest Stories & Analysis: Data-driven articles
on internet speeds (Dec. 2017). URL: http://www.speedtest.net/
insights/blog/global-speed-2017 (Accessed 13. Nov. 2018).

[7] Robert R. Schaller. ‘Moore’s law: past, present and future’. In: IEEE Spectrum
34.6 (June 1997), pp. 52–59. ISSN: 0018-9235. DOI: 10.1109/6.591665.

[8] ‘Decentralized video streaming, powered by users and an innovative new block-
chain version 2.0’. In: Theta Network (Nov. 2018). URL: https://s3.us-
east- 2.amazonaws.com/assets.thetatoken.org/Theta-

65

https://www.statista.com/statistics/454951/mobile-data-traffic-worldwide-by-application-category
https://www.statista.com/statistics/454951/mobile-data-traffic-worldwide-by-application-category
https://www.statista.com/statistics/454951/mobile-data-traffic-worldwide-by-application-category
https://www.statista.com/statistics/805656/number-youtube-viewers-worldwide
https://www.statista.com/statistics/805656/number-youtube-viewers-worldwide
https://www.statista.com/statistics/805656/number-youtube-viewers-worldwide
https://www.statista.com/chart/10311/netflix-subscriptions-usa-international
https://www.statista.com/chart/10311/netflix-subscriptions-usa-international
https://youtube.googleblog.com/2017/02/you-know-whats-cool-billion-hours.html
https://youtube.googleblog.com/2017/02/you-know-whats-cool-billion-hours.html
https://www.whistleout.com.au/MobilePhones/Guides/How-Much-Data-Does-YouTube-Use
https://www.whistleout.com.au/MobilePhones/Guides/How-Much-Data-Does-YouTube-Use
http://www.speedtest.net/insights/blog/global-speed-2017
http://www.speedtest.net/insights/blog/global-speed-2017
https://doi.org/10.1109/6.591665
https://s3.us-east-2.amazonaws.com/assets.thetatoken.org/Theta-white-paper-latest.pdf?v=1547722765.743
https://s3.us-east-2.amazonaws.com/assets.thetatoken.org/Theta-white-paper-latest.pdf?v=1547722765.743
https://s3.us-east-2.amazonaws.com/assets.thetatoken.org/Theta-white-paper-latest.pdf?v=1547722765.743


BIBLIOGRAPHY

white-paper-latest.pdf?v=1547722765.743 (Accessed 13. Nov.
2018).

[9] Ira S. Rubinstein, Gregory T. Nojeim and Ronald D. Lee. ‘Systematic govern-
ment access to personal data: a comparative analysis†’. In: International Data
Privacy Law 4.2 (May 2014), pp. 96–119. DOI: 10.1093/idpl/ipu004.
URL: http://dx.doi.org/10.1093/idpl/ipu004.

[10] Asunción Esteve. ‘The business of personal data: Google, Facebook, and pri-
vacy issues in the EU and the USA’. In: International Data Privacy Law 7.1
(Mar. 2017), pp. 36–47. DOI: 10.1093/idpl/ipw026. URL: http://
dx.doi.org/10.1093/idpl/ipw026.

[11] Anirban Mondal and Masaru Kitsuregawa. ‘Privacy, Security and Trust in P2P
environments: A Perspective’. In: 17th International Workshop on Database
and Expert Systems Applications (DEXA’06). Sept. 2006, pp. 682–686. DOI:
10.1109/DEXA.2006.116.

[12] George Reese. Database Programming with JDBC and Java, Second Edition.
Ed. by Andy Oram. 2nd. Sebastopol, CA, USA: O’Reilly & Associates, Inc.,
2000, pp. 126–136. ISBN: 1565926161.

[13] R. Schollmeier. ‘A definition of peer-to-peer networking for the classification of
peer-to-peer architectures and applications’. In: Proceedings First International
Conference on Peer-to-Peer Computing. Sept. 2001, pp. 101–102. DOI: 10.
1109/P2P.2001.990434.

[14] HMN Dilum Bandara and Anura P Jayasumana. ‘Collaborative applications
over peer-to-peer systems–challenges and solutions’. In: Peer-to-Peer Network-
ing and Applications 6.3 (2013), pp. 257–276.

[15] Marco Danelutto, Paraskevi Fragopoulou and Vladimir Getov. Making Grids
Work: Proceedings of the CoreGRID Workshop on Programming Models Grid
and P2P System Architecture Grid Systems, Tools and Environments 12-13 June
2007, Heraklion, Crete, Greece. Vol. 7. Springer Science & Business Media,
2008.

[16] Qin Lv, Sylvia Ratnasamy and Scott Shenker. ‘Can heterogeneity make gnutella
scalable?’ In: International Workshop on Peer-to-Peer Systems. Springer. 2002,
pp. 94–103.

[17] M. Kelaskar et al. ‘A Study of Discovery Mechanisms for Peer-to-Peer Applica-
tions’. In: 2nd IEEE/ACM International Symposium on Cluster Computing and
the Grid (CCGRID’02). May 2002, pp. 444–444. DOI: 10.1109/CCGRID.
2002.1017187.

[18] How Content Delivery Networks Work. Apr. 2015. URL: https://www.
cdnetworks . com / en / news / how - content - delivery -
networks-work/4258 (Accessed 3. Dec. 2018).

66

https://s3.us-east-2.amazonaws.com/assets.thetatoken.org/Theta-white-paper-latest.pdf?v=1547722765.743
https://s3.us-east-2.amazonaws.com/assets.thetatoken.org/Theta-white-paper-latest.pdf?v=1547722765.743
https://doi.org/10.1093/idpl/ipu004
http://dx.doi.org/10.1093/idpl/ipu004
https://doi.org/10.1093/idpl/ipw026
http://dx.doi.org/10.1093/idpl/ipw026
http://dx.doi.org/10.1093/idpl/ipw026
https://doi.org/10.1109/DEXA.2006.116
https://doi.org/10.1109/P2P.2001.990434
https://doi.org/10.1109/P2P.2001.990434
https://doi.org/10.1109/CCGRID.2002.1017187
https://doi.org/10.1109/CCGRID.2002.1017187
https://www.cdnetworks.com/en/news/how-content-delivery-networks-work/4258
https://www.cdnetworks.com/en/news/how-content-delivery-networks-work/4258
https://www.cdnetworks.com/en/news/how-content-delivery-networks-work/4258


BIBLIOGRAPHY

[19] Company History | Akamai. Apr. 2019. URL: https://www.akamai.com/
uk/en/about/company-history.jsp (Accessed 29. Apr. 2019).

[20] Nicholas C. Zakas. How content delivery networks (CDNs) work. Nov. 2011.
URL: https://humanwhocodes.com/blog/2011/11/29/how-
content-delivery-networks-cdns-work (Accessed 29. Apr. 2019).

[21] VideoCoin. ‘Three Ways CDNs Have Changed Since Akamai’s First Content
Delivery Network’. In: Medium (Apr. 2018). URL: https : / / medium .
com/videocoin/three-ways-cdns-have-changed-since-
akamais-first-content-delivery-network-7c50c1dfb05c
(Accessed 29. Apr. 2019).

[22] Eric Knorr. ‘What is cloud computing? Everything you need to know now’.
In: InfoWorld (Oct. 2018). URL: https : / / www . infoworld . com /
article/2683784/what-is-cloud-computing.html (Accessed
6. Mar. 2019).

[23] Yuping Xing and Yongzhao Zhan. ‘Virtualization and Cloud Computing’. In:
Future Wireless Networks and Information Systems. Ed. by Ying Zhang. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2012, pp. 305–312. ISBN: 978-3-642-
27323-0.

[24] Liu Murong. ‘Overview and Appliance of Some Streaming Media Software
Solutions’. In: (2009). URL: http : / / www . theseus . fi / handle /
10024/57742.

[25] Dongyan Xu et al. ‘Analysis of a CDN-P2P hybrid architecture for cost-
effective streaming media distribution’. In: Multimedia Systems 11.4 (Apr.
2006), pp. 383–399. ISSN: 1432-1882. DOI: 10 . 1007 / s00530 - 006 -
0015-3.

[26] Debjani Ghosh, Payas Rajan and Mayank Pandey. ‘P2P-VoD Streaming’. In:
Advanced Computing, Networking and Informatics-Volume 2. Springer, 2014,
pp. 169–180.

[27] Tom Macaulay. 10 Years On: How Netflix completed a historic cloud migra-
tion with AWS. Sept. 2018. URL: https://www.computerworlduk.
com/cloud-computing/how-netflix-moved-cloud-become-
global-internet-tv-network-3683479 (Accessed 3. Apr. 2019).

[28] Richard Thelwell. Why did Netflix migrate to the AWS Cloud? Mar. 2016. URL:
https://www.matillion.com/blog/redshift/why- did-
netflix-migrate-to-the-aws-cloud (Accessed 24. Apr. 2019).

[29] Cam Cullen. Sandvine releases 2019 Mobile Internet Phenomena Report. Feb.
2019. URL: https : / / www . sandvine . com / press - releases /
sandvine - releases - 2019 - mobile - internet - phenomena -
report (Accessed 24. Apr. 2019).

67

https://www.akamai.com/uk/en/about/company-history.jsp
https://www.akamai.com/uk/en/about/company-history.jsp
https://humanwhocodes.com/blog/2011/11/29/how-content-delivery-networks-cdns-work
https://humanwhocodes.com/blog/2011/11/29/how-content-delivery-networks-cdns-work
https://medium.com/videocoin/three-ways-cdns-have-changed-since-akamais-first-content-delivery-network-7c50c1dfb05c
https://medium.com/videocoin/three-ways-cdns-have-changed-since-akamais-first-content-delivery-network-7c50c1dfb05c
https://medium.com/videocoin/three-ways-cdns-have-changed-since-akamais-first-content-delivery-network-7c50c1dfb05c
https://www.infoworld.com/article/2683784/what-is-cloud-computing.html
https://www.infoworld.com/article/2683784/what-is-cloud-computing.html
http://www.theseus.fi/handle/10024/57742
http://www.theseus.fi/handle/10024/57742
https://doi.org/10.1007/s00530-006-0015-3
https://doi.org/10.1007/s00530-006-0015-3
https://www.computerworlduk.com/cloud-computing/how-netflix-moved-cloud-become-global-internet-tv-network-3683479
https://www.computerworlduk.com/cloud-computing/how-netflix-moved-cloud-become-global-internet-tv-network-3683479
https://www.computerworlduk.com/cloud-computing/how-netflix-moved-cloud-become-global-internet-tv-network-3683479
https://www.matillion.com/blog/redshift/why-did-netflix-migrate-to-the-aws-cloud
https://www.matillion.com/blog/redshift/why-did-netflix-migrate-to-the-aws-cloud
https://www.sandvine.com/press-releases/sandvine-releases-2019-mobile-internet-phenomena-report
https://www.sandvine.com/press-releases/sandvine-releases-2019-mobile-internet-phenomena-report
https://www.sandvine.com/press-releases/sandvine-releases-2019-mobile-internet-phenomena-report


BIBLIOGRAPHY

[30] Salman A. Baset and Henning G. Schulzrinne. ‘An Analysis of the Skype Peer-
to-Peer Internet Telephony Protocol’. In: Columbia University, Department of
Computer Science, 2005. DOI: IEEEINFOCOM . 10 . 1109 / INFOCOM .
2006.312.

[31] Saikat Guha and Neil Daswani. An experimental study of the skype peer-to-peer
voip system. Tech. rep. Cornell University, 2005.

[32] Ryan Paul. More universities banning Skype. Sept. 2006. URL: https://
arstechnica.com/uncategorized/2006/09/7814 (Accessed 19.
Nov. 2018).

[33] Ban Skype. Nov. 2005. URL: http://blog.tmcnet.com/blog/rich-
tehrani/voip/ban-skype.html (Accessed 19. Nov. 2018).

[34] Zack Whittaker. ‘Skype ditched peer-to-peer supernodes for scalability, not sur-
veillance’. In: ZDNet (Dec. 2015). URL: https://www.zdnet.com/
article/skype-ditched-peer-to-peer-supernodes-for-
scalability-not-surveillance (Accessed 4. Dec. 2018).

[35] Microsoft Investor Relations - Acquisitions History. URL: https://www.
microsoft.com/en- us/Investor/acquisition- history.
aspx?CollectionId=null&year=2011 (Accessed 4. Dec. 2018).

[36] Peter Bright. Skype finalizes its move to the cloud, ignores the elephant in the
room. July 2016. URL: https://arstechnica.com/information-
technology/2016/07/skype-finalizes-its-move-to-the-
cloud-ignores-the-elephant-in-the-room (Accessed 4. Dec.
2018).

[37] Nadeem Unuth. ‘Skype Changes From P2P to Client-Server Model’. In:
Lifewire (Nov. 2018). URL: https://www.lifewire.com/skype-
changes-from-p2p-3426522 (Accessed 4. Dec. 2018).

[38] Dawn Kawamoto. Microsoft Moving Skype To Azure, Ditching P2P - Inform-
ationWeek. July 2016. URL: https://www.informationweek.com/
cloud/infrastructure-as-a-service/microsoft-moving-
skype-to-azure-ditching-p2p--/d/d-id/1326345 (Accessed
4. Dec. 2018).

[39] Sergey Tkachenko. Microsoft Removes P2P Support From Skype. Feb. 2017.
URL: https://winaero.com/blog/microsoft-removes-p2p-
support-skype (Accessed 4. Dec. 2018).

[40] Glenn Greenwald et al. ‘Microsoft handed the NSA access to encrypted mes-
sages’. In: the Guardian (July 2013). URL: https://www.theguardian.
com/world/2013/jul/11/microsoft-nsa-collaboration-
user-data (Accessed 4. Dec. 2018).

68

https://doi.org/IEEE INFOCOM. 10.1109/INFOCOM.2006.312
https://doi.org/IEEE INFOCOM. 10.1109/INFOCOM.2006.312
https://arstechnica.com/uncategorized/2006/09/7814
https://arstechnica.com/uncategorized/2006/09/7814
http://blog.tmcnet.com/blog/rich-tehrani/voip/ban-skype.html
http://blog.tmcnet.com/blog/rich-tehrani/voip/ban-skype.html
https://www.zdnet.com/article/skype-ditched-peer-to-peer-supernodes-for-scalability-not-surveillance
https://www.zdnet.com/article/skype-ditched-peer-to-peer-supernodes-for-scalability-not-surveillance
https://www.zdnet.com/article/skype-ditched-peer-to-peer-supernodes-for-scalability-not-surveillance
https://www.microsoft.com/en-us/Investor/acquisition-history.aspx?CollectionId=null&year=2011
https://www.microsoft.com/en-us/Investor/acquisition-history.aspx?CollectionId=null&year=2011
https://www.microsoft.com/en-us/Investor/acquisition-history.aspx?CollectionId=null&year=2011
https://arstechnica.com/information-technology/2016/07/skype-finalizes-its-move-to-the-cloud-ignores-the-elephant-in-the-room
https://arstechnica.com/information-technology/2016/07/skype-finalizes-its-move-to-the-cloud-ignores-the-elephant-in-the-room
https://arstechnica.com/information-technology/2016/07/skype-finalizes-its-move-to-the-cloud-ignores-the-elephant-in-the-room
https://www.lifewire.com/skype-changes-from-p2p-3426522
https://www.lifewire.com/skype-changes-from-p2p-3426522
https://www.informationweek.com/cloud/infrastructure-as-a-service/microsoft-moving-skype-to-azure-ditching-p2p--/d/d-id/1326345
https://www.informationweek.com/cloud/infrastructure-as-a-service/microsoft-moving-skype-to-azure-ditching-p2p--/d/d-id/1326345
https://www.informationweek.com/cloud/infrastructure-as-a-service/microsoft-moving-skype-to-azure-ditching-p2p--/d/d-id/1326345
https://winaero.com/blog/microsoft-removes-p2p-support-skype
https://winaero.com/blog/microsoft-removes-p2p-support-skype
https://www.theguardian.com/world/2013/jul/11/microsoft-nsa-collaboration-user-data
https://www.theguardian.com/world/2013/jul/11/microsoft-nsa-collaboration-user-data
https://www.theguardian.com/world/2013/jul/11/microsoft-nsa-collaboration-user-data


BIBLIOGRAPHY

[41] Paul Glazowski. ‘NBC Direct To Get a Reboot With Help From Pando’. In:
Mashable (Feb. 2008). URL: https://mashable.com/2008/02/27/
nbc-direct-pando/#QYVS1_EAQgqx (Accessed 21. Nov. 2018).

[42] More Game Companies Select Pando Networks to Optimize Game Downloads.
Sept. 2009. URL: https://www.tmcnet.com/usubmit/2009/09/
16/4373266.htm (Accessed 21. Nov. 2018).

[43] Pando Networks/Riot Games deal. Feb. 2011. URL: https : / / www .
gamesindustry . biz / articles / pando - networks - riot -
games - deal - game - delivery - services - selected - to -
bolster-download-performance-of-league-of-legends (Ac-
cessed 21. Nov. 2018).

[44] Reuven Cohen. Content Delivery Cloud (CDC). Oct. 2008. URL: http://
www.elasticvapor.com/2008/10/cloud-content-delivery-
cd.html (Accessed 21. Nov. 2018).

[45] “Not a Cobra”. Pando Media Booster; Uncool. Feb. 2011. URL: http://
forums.na.leagueoflegends.com/board/showthread.php?
t=521081 (Accessed 30. Nov. 2018).

[46] PMB.exe - how to fix PMB.exe errors. 2012. URL: http://www.process-
information.net/us/pmb-exe.htm (Accessed 23. May 2019).

[47] Pando Software. June 2012. URL: https://forums.malwarebytes.
com/topic/111098-pando-software (Accessed 23. May 2019).

[48] Infected with Trojan horse Generic, BackDoor - Page 2 - Virus, Trojan, Spy-
ware, and Malware Removal Help. Mar. 2013. URL: https : / / www .
bleepingcomputer.com/forums/t/490012/infected-with-
trojan- horse- generic- backdoor/page- 2 (Accessed 23. May
2019).

[49] Should I remove Pando Media Booster by Pando Networks? URL: https:
//www.shouldiremoveit.com/Pando-Media-Booster-6090-
program.aspx (Accessed 23. May 2019).

[50] Jay Geater. What is PMB.exe and How to Fix It? Virus or Safe? Aug. 2018.
URL: https://www.solvusoft.com/en/files/error-virus-
removal/exe/windows/pando-networks-inc/pando-media-
booster/pmb-exe (Accessed 23. May 2019).

[51] “Cimitiere”. Cannot install LoL due to PMB? - League of Legends Community.
Nov. 2011. URL: http://forums.euw.leagueoflegends.com/
board/showthread.php?t=474810 (Accessed 23. May 2019).

[52] PMB.exe Windows process - What is it? URL: https://www.file.net/
process/pmb.exe.html (Accessed 23. May 2019).

69

https://mashable.com/2008/02/27/nbc-direct-pando/#QYVS1_EAQgqx
https://mashable.com/2008/02/27/nbc-direct-pando/#QYVS1_EAQgqx
https://www.tmcnet.com/usubmit/2009/09/16/4373266.htm
https://www.tmcnet.com/usubmit/2009/09/16/4373266.htm
https://www.gamesindustry.biz/articles/pando-networks-riot-games-deal-game-delivery-services-selected-to-bolster-download-performance-of-league-of-legends
https://www.gamesindustry.biz/articles/pando-networks-riot-games-deal-game-delivery-services-selected-to-bolster-download-performance-of-league-of-legends
https://www.gamesindustry.biz/articles/pando-networks-riot-games-deal-game-delivery-services-selected-to-bolster-download-performance-of-league-of-legends
https://www.gamesindustry.biz/articles/pando-networks-riot-games-deal-game-delivery-services-selected-to-bolster-download-performance-of-league-of-legends
http://www.elasticvapor.com/2008/10/cloud-content-delivery-cd.html
http://www.elasticvapor.com/2008/10/cloud-content-delivery-cd.html
http://www.elasticvapor.com/2008/10/cloud-content-delivery-cd.html
http://forums.na.leagueoflegends.com/board/showthread.php?t=521081
http://forums.na.leagueoflegends.com/board/showthread.php?t=521081
http://forums.na.leagueoflegends.com/board/showthread.php?t=521081
http://www.process-information.net/us/pmb-exe.htm
http://www.process-information.net/us/pmb-exe.htm
https://forums.malwarebytes.com/topic/111098-pando-software
https://forums.malwarebytes.com/topic/111098-pando-software
https://www.bleepingcomputer.com/forums/t/490012/infected-with-trojan-horse-generic-backdoor/page-2
https://www.bleepingcomputer.com/forums/t/490012/infected-with-trojan-horse-generic-backdoor/page-2
https://www.bleepingcomputer.com/forums/t/490012/infected-with-trojan-horse-generic-backdoor/page-2
https://www.shouldiremoveit.com/Pando-Media-Booster-6090-program.aspx
https://www.shouldiremoveit.com/Pando-Media-Booster-6090-program.aspx
https://www.shouldiremoveit.com/Pando-Media-Booster-6090-program.aspx
https://www.solvusoft.com/en/files/error-virus-removal/exe/windows/pando-networks-inc/pando-media-booster/pmb-exe
https://www.solvusoft.com/en/files/error-virus-removal/exe/windows/pando-networks-inc/pando-media-booster/pmb-exe
https://www.solvusoft.com/en/files/error-virus-removal/exe/windows/pando-networks-inc/pando-media-booster/pmb-exe
http://forums.euw.leagueoflegends.com/board/showthread.php?t=474810
http://forums.euw.leagueoflegends.com/board/showthread.php?t=474810
https://www.file.net/process/pmb.exe.html
https://www.file.net/process/pmb.exe.html


BIBLIOGRAPHY

[53] P4P Working Group (P4PWG) Membership. Nov. 2014. URL: http://www.
dcia.info/activities/p4pwg/membership.html (Accessed 21.
Nov. 2018).

[54] Haiyong Xie et al. ‘P4P: Provider Portal for Applications’. In: SIGCOMM Com-
put. Commun. Rev. 38.4 (Aug. 2008), pp. 351–362. ISSN: 0146-4833. DOI: 10.
1145/1402946.1402999. URL: http://doi.acm.org/10.1145/
1402946.1402999.

[55] Nil Sanyas. ‘P4P : le TGV du P2P ou simple chimère?’ In: Next INpact (Mar.
2008). URL: https://www.nextinpact.com/archive/42536-
P4P-TGV-P2P-simple-chimere.htm (Accessed 27. Nov. 2018).

[56] Microsoft Investor Relations - Acquisitions History. URL: https://www.
microsoft.com/en- us/Investor/acquisition- history.
aspx?CollectionId=null&year=2013 (Accessed 26. Nov. 2018).

[57] Peter Chapman. Microsoft Acquires Pando - Next Xbox Uses Rumoured. Mar.
2013. URL: https://www.thesixthaxis.com/2013/03/14/
microsoft-acquires-pando-next-xbox-uses-rumoured (Ac-
cessed 26. Nov. 2018).

[58] Tom Warren. ‘Microsoft to deliver Windows 10 updates using peer-to-peer tech-
nology’. In: Verge (Mar. 2015). URL: https://www.theverge.com/
2015/3/15/8218215/microsoft-windows-10-updates-p2p
(Accessed 26. Nov. 2018).

[59] Saroj Kar. Spotify abandoning P2P in favor of a more traditional dedicated
architecture - SiliconANGLE. Apr. 2014. URL: https://siliconangle.
com/2014/04/22/spotify-abandoning-p2p-in-favor-of-a-
more-traditional-dedicated-architecture (Accessed 21. Nov.
2018).

[60] Gunnar Kreitz and Fredrik Niemela. ‘Spotify–large scale, low latency, P2P
music-on-demand streaming’. In: Peer-to-Peer Computing (P2P), 2010 IEEE
Tenth International Conference on. IEEE. 2010, pp. 1–10.

[61] Christian Brazil Bautista. ‘Spotify to shut down its old P2P network to pre-
vent music from eating your bandwidth’. In: Digital Trends (Apr. 2014). URL:
https://www.digitaltrends.com/music/spotify-shuts-
p2p-network-prevent-music-eating-bandwidth (Accessed 5.
Nov. 2018).

[62] Unadvertised P2P feature. May 2013. URL: https : / / community .
spotify . com / t5 / Desktop - Windows / Unadvertised - P2P -
feature/td-p/398612 (Accessed 21. Nov. 2018).

[63] Ricardo Vice Santos. Spotify: P2P music streaming. May 2011. URL: https:
//www.slideshare.net/ricardovice/spotify-p2p-music-
streaming (Accessed 27. Nov. 2018).

70

http://www.dcia.info/activities/p4pwg/membership.html
http://www.dcia.info/activities/p4pwg/membership.html
https://doi.org/10.1145/1402946.1402999
https://doi.org/10.1145/1402946.1402999
http://doi.acm.org/10.1145/1402946.1402999
http://doi.acm.org/10.1145/1402946.1402999
https://www.nextinpact.com/archive/42536-P4P-TGV-P2P-simple-chimere.htm
https://www.nextinpact.com/archive/42536-P4P-TGV-P2P-simple-chimere.htm
https://www.microsoft.com/en-us/Investor/acquisition-history.aspx?CollectionId=null&year=2013
https://www.microsoft.com/en-us/Investor/acquisition-history.aspx?CollectionId=null&year=2013
https://www.microsoft.com/en-us/Investor/acquisition-history.aspx?CollectionId=null&year=2013
https://www.thesixthaxis.com/2013/03/14/microsoft-acquires-pando-next-xbox-uses-rumoured
https://www.thesixthaxis.com/2013/03/14/microsoft-acquires-pando-next-xbox-uses-rumoured
https://www.theverge.com/2015/3/15/8218215/microsoft-windows-10-updates-p2p
https://www.theverge.com/2015/3/15/8218215/microsoft-windows-10-updates-p2p
https://siliconangle.com/2014/04/22/spotify-abandoning-p2p-in-favor-of-a-more-traditional-dedicated-architecture
https://siliconangle.com/2014/04/22/spotify-abandoning-p2p-in-favor-of-a-more-traditional-dedicated-architecture
https://siliconangle.com/2014/04/22/spotify-abandoning-p2p-in-favor-of-a-more-traditional-dedicated-architecture
https://www.digitaltrends.com/music/spotify-shuts-p2p-network-prevent-music-eating-bandwidth
https://www.digitaltrends.com/music/spotify-shuts-p2p-network-prevent-music-eating-bandwidth
https://community.spotify.com/t5/Desktop-Windows/Unadvertised-P2P-feature/td-p/398612
https://community.spotify.com/t5/Desktop-Windows/Unadvertised-P2P-feature/td-p/398612
https://community.spotify.com/t5/Desktop-Windows/Unadvertised-P2P-feature/td-p/398612
https://www.slideshare.net/ricardovice/spotify-p2p-music-streaming
https://www.slideshare.net/ricardovice/spotify-p2p-music-streaming
https://www.slideshare.net/ricardovice/spotify-p2p-music-streaming


BIBLIOGRAPHY

[64] Ernesto. Spotify Starts Shutting Down Its Massive P2P Network. Apr. 2014.
URL: https : / / torrentfreak . com / spotify - starts -
shutting-down-its-massive-p2p-network-140416 (Accessed
27. Nov. 2018).

[65] Spotify now available to everyone in the UK. Feb. 2009. URL: https://web.
archive.org/web/20161108195306/https://news.spotify.
com/no/2009/02/10/spotify-now-available-to-everyone-
in-the-uk (Accessed 12. Mar. 2019).

[66] Back to invites for a while in the UK. Sept. 2009. URL: https://web.
archive.org/web/20161108195232/https://news.spotify.
com/no/2009/09/10/back-to-invites-for-a-while-in-
the-uk (Accessed 12. Mar. 2019).

[67] Romain Dillet. ‘Spotify Removes Peer-To-Peer Technology From Its Desktop
Client’. In: TechCrunch (Apr. 2014). URL: https://techcrunch.com/
2014/04/17/spotify-removes-peer-to-peer-technology-
from-its-desktop-client/?guccounter=1 (Accessed 27. Nov.
2018).

[68] Scott Carey. How Spotify migrated everything from on-premise to Google Cloud
Platform. July 2018. URL: https://www.computerworlduk.com/
cloud - computing / how - spotify - migrated - everything -
from-on-premise-google-cloud-platform-3681529 (Accessed
28. Nov. 2018).

[69] Jordan Novet. ‘Spotify said it’s relying more on Google’s cloud even as the com-
panies compete in music streaming’. In: CNBC (Feb. 2018). URL: https://
www.cnbc.com/2018/02/28/spotify-is-relying-googles-
cloud-according-to-ipo-filing.html (Accessed 28. Nov. 2018).

[70] Matt Weinberger. ‘Spotify is making a big switch, and it’s a huge win
for Google’. In: Business Insider (Feb. 2016). URL: https : / / www .
businessinsider . com / spotify - switches - to - google -
cloud-platform-2016-2?r=US&IR=T&IR=T (Accessed 28. Nov.
2018).

[71] BigQuery - Analytics Data Warehouse | BigQuery. URL: https://cloud.
google.com/bigquery (Accessed 28. Nov. 2018).

[72] Paul Lamere on Twitter. Feb. 2016. URL: https : / / twitter . com /
plamere/status/702168809445134336 (Accessed 28. Nov. 2018).

[73] MPJ on Twitter. Feb. 2018. URL: https : / / twitter . com / mpjme /
status/702167231623516160 (Accessed 28. Nov. 2018).

[74] “sactori”. Spotify makes my games lag. Sept. 2014. URL: https : / /
community.spotify.com/t5/Desktop- Windows/Spotify-
makes-my-games-lag/td-p/699856 (Accessed 21. Nov. 2018).

71

https://torrentfreak.com/spotify-starts-shutting-down-its-massive-p2p-network-140416
https://torrentfreak.com/spotify-starts-shutting-down-its-massive-p2p-network-140416
https://web.archive.org/web/20161108195306/https://news.spotify.com/no/2009/02/10/spotify-now-available-to-everyone-in-the-uk
https://web.archive.org/web/20161108195306/https://news.spotify.com/no/2009/02/10/spotify-now-available-to-everyone-in-the-uk
https://web.archive.org/web/20161108195306/https://news.spotify.com/no/2009/02/10/spotify-now-available-to-everyone-in-the-uk
https://web.archive.org/web/20161108195306/https://news.spotify.com/no/2009/02/10/spotify-now-available-to-everyone-in-the-uk
https://web.archive.org/web/20161108195232/https://news.spotify.com/no/2009/09/10/back-to-invites-for-a-while-in-the-uk
https://web.archive.org/web/20161108195232/https://news.spotify.com/no/2009/09/10/back-to-invites-for-a-while-in-the-uk
https://web.archive.org/web/20161108195232/https://news.spotify.com/no/2009/09/10/back-to-invites-for-a-while-in-the-uk
https://web.archive.org/web/20161108195232/https://news.spotify.com/no/2009/09/10/back-to-invites-for-a-while-in-the-uk
https://techcrunch.com/2014/04/17/spotify-removes-peer-to-peer-technology-from-its-desktop-client/?guccounter=1
https://techcrunch.com/2014/04/17/spotify-removes-peer-to-peer-technology-from-its-desktop-client/?guccounter=1
https://techcrunch.com/2014/04/17/spotify-removes-peer-to-peer-technology-from-its-desktop-client/?guccounter=1
https://www.computerworlduk.com/cloud-computing/how-spotify-migrated-everything-from-on-premise-google-cloud-platform-3681529
https://www.computerworlduk.com/cloud-computing/how-spotify-migrated-everything-from-on-premise-google-cloud-platform-3681529
https://www.computerworlduk.com/cloud-computing/how-spotify-migrated-everything-from-on-premise-google-cloud-platform-3681529
https://www.cnbc.com/2018/02/28/spotify-is-relying-googles-cloud-according-to-ipo-filing.html
https://www.cnbc.com/2018/02/28/spotify-is-relying-googles-cloud-according-to-ipo-filing.html
https://www.cnbc.com/2018/02/28/spotify-is-relying-googles-cloud-according-to-ipo-filing.html
https://www.businessinsider.com/spotify-switches-to-google-cloud-platform-2016-2?r=US&IR=T&IR=T
https://www.businessinsider.com/spotify-switches-to-google-cloud-platform-2016-2?r=US&IR=T&IR=T
https://www.businessinsider.com/spotify-switches-to-google-cloud-platform-2016-2?r=US&IR=T&IR=T
https://cloud.google.com/bigquery
https://cloud.google.com/bigquery
https://twitter.com/plamere/status/702168809445134336
https://twitter.com/plamere/status/702168809445134336
https://twitter.com/mpjme/status/702167231623516160
https://twitter.com/mpjme/status/702167231623516160
https://community.spotify.com/t5/Desktop-Windows/Spotify-makes-my-games-lag/td-p/699856
https://community.spotify.com/t5/Desktop-Windows/Spotify-makes-my-games-lag/td-p/699856
https://community.spotify.com/t5/Desktop-Windows/Spotify-makes-my-games-lag/td-p/699856


BIBLIOGRAPHY

[75] “JRRR”. Limiting bandwidth. Apr. 2013. URL: https : / / community .
spotify . com / t5 / Accounts / Limiting - bandwidth / td - p /
376676 (Accessed 21. Nov. 2018).

[76] “blaszergling”. Music won’t play smoothly at some hours. Sept. 2013. URL:
https://community.spotify.com/t5/Desktop- Windows/
Music-won-t-play-smoothly-at-some-hours/td-p/543452
(Accessed 21. Nov. 2018).

[77] “effzed”. Spotify keeps stopping - streaming issues - i’m off!! May 2012. URL:
https://community.spotify.com/t5/Desktop- Windows/
Spotify-keeps-stopping-streaming-issues-i-m-off/td-
p/63517 (Accessed 21. Nov. 2018).

[78] Prithula Dhungel et al. ‘Measurement Study of Xunlei: Extended Version’. In:
(2011).

[79] Prithula Dhungel et al. ‘Xunlei: Peer-Assisted Download Acceleration on a
Massive Scale’. In: Mar. 2012. DOI: 10.1007/978-3-642-28537-0_23.

[80] “IPOdesktop”. ‘IPO Preview: Xunlei Ltd.’ In: Seeking Alpha (July 2011). URL:
https://seekingalpha.com/article/280026-ipo-preview-
xunlei-ltd (Accessed 26. Nov. 2018).

[81] Ge Zhang et al. ‘Unreeling Xunlei Kankan: Understanding Hybrid CDN-
P2P Video-on-Demand Streaming’. In: IEEE Transactions on Multimedia 17.2
(Feb. 2015), pp. 229–242. ISSN: 1520-9210. DOI: 10.1109/TMM.2014.
2383617.

[82] Joan Calvet. Win32/KanKan – Chinese drama. Oct. 2013. URL: https :
/ / www . welivesecurity . com / 2013 / 10 / 11 / win32kankan -
chinese-drama (Accessed 24. May 2019).

[83] “LoneStar”. Kankan. URL: https : / / www . enigmasoftware . com /
kankan-removal (Accessed 24. May 2019).

[84] Xunlei Announces Completion of Strategic Divestment of Xunlei Kankan. July
2015. URL: https : / / globenewswire . com / news - release /
2015 / 07 / 15 / 752205 / 10141783 / en / Xunlei - Announces -
Completion-of-Strategic-Divestment-of-Xunlei-Kankan.
html (Accessed 7. Dec. 2018).

[85] Sliver.tv. Jan. 2019. URL: https : / / www . crunchbase . com /
organization/sliver-tv#section-overview (Accessed 17. Jan.
2019).

[86] Lucas Matney. ‘Sliver.tv is a VR Twitch for your favorite eSports titles’. In:
TechCrunch (Aug. 2016). URL: https://techcrunch.com/2016/
08/24/sliver-tv-is-a-vr-twitch-for-your-favorite-
esports-titles (Accessed 17. Jan. 2019).

72

https://community.spotify.com/t5/Accounts/Limiting-bandwidth/td-p/376676
https://community.spotify.com/t5/Accounts/Limiting-bandwidth/td-p/376676
https://community.spotify.com/t5/Accounts/Limiting-bandwidth/td-p/376676
https://community.spotify.com/t5/Desktop-Windows/Music-won-t-play-smoothly-at-some-hours/td-p/543452
https://community.spotify.com/t5/Desktop-Windows/Music-won-t-play-smoothly-at-some-hours/td-p/543452
https://community.spotify.com/t5/Desktop-Windows/Spotify-keeps-stopping-streaming-issues-i-m-off/td-p/63517
https://community.spotify.com/t5/Desktop-Windows/Spotify-keeps-stopping-streaming-issues-i-m-off/td-p/63517
https://community.spotify.com/t5/Desktop-Windows/Spotify-keeps-stopping-streaming-issues-i-m-off/td-p/63517
https://doi.org/10.1007/978-3-642-28537-0_23
https://seekingalpha.com/article/280026-ipo-preview-xunlei-ltd
https://seekingalpha.com/article/280026-ipo-preview-xunlei-ltd
https://doi.org/10.1109/TMM.2014.2383617
https://doi.org/10.1109/TMM.2014.2383617
https://www.welivesecurity.com/2013/10/11/win32kankan-chinese-drama
https://www.welivesecurity.com/2013/10/11/win32kankan-chinese-drama
https://www.welivesecurity.com/2013/10/11/win32kankan-chinese-drama
https://www.enigmasoftware.com/kankan-removal
https://www.enigmasoftware.com/kankan-removal
https://globenewswire.com/news-release/2015/07/15/752205/10141783/en/Xunlei-Announces-Completion-of-Strategic-Divestment-of-Xunlei-Kankan.html
https://globenewswire.com/news-release/2015/07/15/752205/10141783/en/Xunlei-Announces-Completion-of-Strategic-Divestment-of-Xunlei-Kankan.html
https://globenewswire.com/news-release/2015/07/15/752205/10141783/en/Xunlei-Announces-Completion-of-Strategic-Divestment-of-Xunlei-Kankan.html
https://globenewswire.com/news-release/2015/07/15/752205/10141783/en/Xunlei-Announces-Completion-of-Strategic-Divestment-of-Xunlei-Kankan.html
https://www.crunchbase.com/organization/sliver-tv#section-overview
https://www.crunchbase.com/organization/sliver-tv#section-overview
https://techcrunch.com/2016/08/24/sliver-tv-is-a-vr-twitch-for-your-favorite-esports-titles
https://techcrunch.com/2016/08/24/sliver-tv-is-a-vr-twitch-for-your-favorite-esports-titles
https://techcrunch.com/2016/08/24/sliver-tv-is-a-vr-twitch-for-your-favorite-esports-titles


BIBLIOGRAPHY

[87] Theta Labs. ‘Blockchain meets esports: over 1 Million Theta tokens earned on
SLIVER.tv in 30 days’. In: Medium (Feb. 2018). URL: https://medium.
com/theta-network/blockchain-meets-esports-over-1-
million-theta-tokens-earned-on-sliver-tv-in-30-days-
1ab5f6d7af05 (Accessed 17. Jan. 2019).

[88] ‘Decentralized video streaming, powered by users and an innovative new
blockchain version 1.7’. In: Theta Network (May 2018). URL: https://
whitepaper.io/document/72/theta-token-whitepaper (Ac-
cessed 21. Jan. 2019).

[89] How WebRTC Is Revolutionizing Telephony. Feb. 2014. URL: http : / /
blogs.trilogy-lte.com/post/77427158750/how-webrtc-
is-revolutionizing-telephony (Accessed 21. Jan. 2019).

[90] SLIVER.tv on Twitter. Aug. 2018. URL: https : / / twitter . com /
slivertv360/status/1029444223748075521 (Accessed 24. May
2019).

[91] Tfuel should be allowed to be withdrawn from sliver.tv following new addi-
tion to site. Apr. 2019. URL: https://www.reddit.com/r/theta_
network/comments/ba3o7m/tfuel_should_be_allowed_to_
be_withdrawn_from (Accessed 24. May 2019).

[92] How legit is sliver.tv? Feb. 2018. URL: https://www.reddit.com/
r / GlobalOffensive / comments / 80kxvx / how _ legit _ is _
slivertv (Accessed 24. May 2019).

[93] Cyber-The-Vote-Cost-Benefit-Analysis-1. Jan. 2016. URL: https : / /
openparachute.wordpress.com/2016/01/28/new- study-
finds - community - water - fluoridation - still - cost -
effective/cyber-the-vote-cost-benefit-analysis-1 (Ac-
cessed 18. Apr. 2019).

[94] André B. Bondi. ‘Characteristics of Scalability and Their Impact on Perform-
ance’. In: Proceedings of the 2Nd International Workshop on Software and Per-
formance. WOSP ’00. Ottawa, Ontario, Canada: ACM, 2000, pp. 195–203.
ISBN: 1-58113-195-X. DOI: 10.1145/350391.350432. URL: http:
//doi.acm.org/10.1145/350391.350432.

[95] R. Anandhi and K. Chitra. ‘A Challenge in Improving the Consistency of Trans-
actions in Cloud Databases - Scalability’. In: International Journal of Computer
Applications 52 (Aug. 2012), pp. 12–14. DOI: 10.5120/8172-1485.

[96] Alejandro Reyes. ‘Bitcoin Scalability Solutions’. In: Medium (Jan. 2018). URL:
https://medium.com/@reyesale/bitcoin- scalability-
solutions-f5686ffd2ba4 (Accessed 18. Apr. 2019).

73

https://medium.com/theta-network/blockchain-meets-esports-over-1-million-theta-tokens-earned-on-sliver-tv-in-30-days-1ab5f6d7af05
https://medium.com/theta-network/blockchain-meets-esports-over-1-million-theta-tokens-earned-on-sliver-tv-in-30-days-1ab5f6d7af05
https://medium.com/theta-network/blockchain-meets-esports-over-1-million-theta-tokens-earned-on-sliver-tv-in-30-days-1ab5f6d7af05
https://medium.com/theta-network/blockchain-meets-esports-over-1-million-theta-tokens-earned-on-sliver-tv-in-30-days-1ab5f6d7af05
https://whitepaper.io/document/72/theta-token-whitepaper
https://whitepaper.io/document/72/theta-token-whitepaper
http://blogs.trilogy-lte.com/post/77427158750/how-webrtc-is-revolutionizing-telephony
http://blogs.trilogy-lte.com/post/77427158750/how-webrtc-is-revolutionizing-telephony
http://blogs.trilogy-lte.com/post/77427158750/how-webrtc-is-revolutionizing-telephony
https://twitter.com/slivertv360/status/1029444223748075521
https://twitter.com/slivertv360/status/1029444223748075521
https://www.reddit.com/r/theta_network/comments/ba3o7m/tfuel_should_be_allowed_to_be_withdrawn_from
https://www.reddit.com/r/theta_network/comments/ba3o7m/tfuel_should_be_allowed_to_be_withdrawn_from
https://www.reddit.com/r/theta_network/comments/ba3o7m/tfuel_should_be_allowed_to_be_withdrawn_from
https://www.reddit.com/r/GlobalOffensive/comments/80kxvx/how_legit_is_slivertv
https://www.reddit.com/r/GlobalOffensive/comments/80kxvx/how_legit_is_slivertv
https://www.reddit.com/r/GlobalOffensive/comments/80kxvx/how_legit_is_slivertv
https://openparachute.wordpress.com/2016/01/28/new-study-finds-community-water-fluoridation-still-cost-effective/cyber-the-vote-cost-benefit-analysis-1
https://openparachute.wordpress.com/2016/01/28/new-study-finds-community-water-fluoridation-still-cost-effective/cyber-the-vote-cost-benefit-analysis-1
https://openparachute.wordpress.com/2016/01/28/new-study-finds-community-water-fluoridation-still-cost-effective/cyber-the-vote-cost-benefit-analysis-1
https://openparachute.wordpress.com/2016/01/28/new-study-finds-community-water-fluoridation-still-cost-effective/cyber-the-vote-cost-benefit-analysis-1
https://doi.org/10.1145/350391.350432
http://doi.acm.org/10.1145/350391.350432
http://doi.acm.org/10.1145/350391.350432
https://doi.org/10.5120/8172-1485
https://medium.com/@reyesale/bitcoin-scalability-solutions-f5686ffd2ba4
https://medium.com/@reyesale/bitcoin-scalability-solutions-f5686ffd2ba4


BIBLIOGRAPHY

[97] Frederick P. Jr. Brooks. ‘No Silver Bullet Essence and Accidents of Software
Engineering’. In: Computer 20.4 (Apr. 1987), pp. 10–19. ISSN: 0018-9162. DOI:
10.1109/MC.1987.1663532.

[98] Axel Grewe et al. ‘Automotive Software Product Line Architecture Evolution:
Extracting, Designing and Managing Architectural Concepts’. In: Jan. 2017,
pp. 203–222.

[99] Lynda Bourne. Credibility. Apr. 2013. URL: https : / /
stakeholdermanagement.wordpress.com/2013/04/27/733
(Accessed 6. May 2019).

[100] How can I control how much data Netflix uses? Feb. 2019. URL: https://
help.netflix.com/en/node/87 (Accessed 12. Feb. 2019).

[101] Mitja Rutnik. How much data does Spotify use? — probably less than you think.
Oct. 2018. URL: https://www.androidauthority.com/spotify-
data-usage-918265 (Accessed 13. Feb. 2019).

[102] Jared Wray. ‘Where’s The Rub: Cloud Computing’s Hidden Costs’. In: For-
bes (Feb. 2014). URL: https : / / www . forbes . com / sites /
centurylink / 2014 / 02 / 27 / wheres - the - rub - cloud -
computings- hidden- costs/#1b7fcb155f00 (Accessed 26. Mar.
2019).

[103] Brent Kelly. Preparing for Disruption with WebRTC. May 2013. URL: https:
//www.nojitter.com/preparing- disruption- webrtc (Ac-
cessed 23. Apr. 2019).

[104] Avi Asher-Schapiro. ‘YouTube and Facebook Are Removing Evidence of At-
rocities, Jeopardizing Cases Against War Criminals’. In: Intercept (Nov. 2017).
URL: https://theintercept.com/2017/11/02/war-crimes-
youtube-facebook-syria-rohingya (Accessed 21. May 2019).

74

https://doi.org/10.1109/MC.1987.1663532
https://stakeholdermanagement.wordpress.com/2013/04/27/733
https://stakeholdermanagement.wordpress.com/2013/04/27/733
https://help.netflix.com/en/node/87
https://help.netflix.com/en/node/87
https://www.androidauthority.com/spotify-data-usage-918265
https://www.androidauthority.com/spotify-data-usage-918265
https://www.forbes.com/sites/centurylink/2014/02/27/wheres-the-rub-cloud-computings-hidden-costs/#1b7fcb155f00
https://www.forbes.com/sites/centurylink/2014/02/27/wheres-the-rub-cloud-computings-hidden-costs/#1b7fcb155f00
https://www.forbes.com/sites/centurylink/2014/02/27/wheres-the-rub-cloud-computings-hidden-costs/#1b7fcb155f00
https://www.nojitter.com/preparing-disruption-webrtc
https://www.nojitter.com/preparing-disruption-webrtc
https://theintercept.com/2017/11/02/war-crimes-youtube-facebook-syria-rohingya
https://theintercept.com/2017/11/02/war-crimes-youtube-facebook-syria-rohingya


Glossary

Content Delivery Network (CDN) A network of distributed servers that are optimized
for content delivery.

Internet service provider (ISP) A provider of services for accessing or participating
in the Internet.

Peer-to-peer (P2P) A distributed architecture involving the coordination and coopera-
tion of peers.

Point of Presence (PoP) A server or node that is located geographically close to users.

Video on Demand (VoD) Video content that is delivered on demand.

Virtual reality (VR) A technology presenting a three-dimensional virtual world that
can be interacted with, as well as simulating as many senses as possible.

Voice over IP (VoIP) A group of technologies that enable voice communications over
the Internet.

Web Real-Time Communication Technology that enables audio and video delivery
through P2P in web browsers.

Availability The measure for how much a system is operable at any given time.

BitTorrent An P2P protocol and application used for file sharing.

Blockchain A technology that is used to store distributed data, requiring peers to verify
each change or transaction that happens to the data.

Bot Automated programs that perform simple and repetitive tasks.

Caching The act of storing data that is often used in faster storage.

75



Glossary

Caching Server/Node A caching server/node that duplicates content it receives, in or-
der to distribute it further.

Client A user of a service. Sometimes used as hardware or software used to connect to
a service or solution.

Client-server A distributed architecture consisting of clients connecting to centralized
server and requesting its resources.

Cloud computing A service or platform that offers computational resources.

Compression The act of reducing sizes of data, by either elimination redundant data or
unnecessary or less important information.

Content Information, data or entertainment that is delivered to a user.

Content delivery The act of transmitting content to users.

Cost-effective Effective or productive in relation to its cost.

Data usage How much data is transmitted from a device, often a cellular device.

Distributing service A service that distributes content.

High production value Used to signify that a project have much funding, a large crew
and a lot of work and thought put into it.

Hybrid Architecture A software architecture that consists of a combination of two or
more distributed architectures. In this case, a combination of client-server and
peer-to-peer architectures.

Last-mile The last stretch of Internet infrastructure before connection to user devices.

Live Content that is being delivered while it is still being produced.

Maintainability The ease with which a product can be maintained.

Media A type of content that consists of video, images, sound or any combination
thereof.

Media streaming The act of streaming media such as sound or video over the internet.

Mirror Content The act of duplicating content.

On demand Content that is available in its entirety to be streamed by the user at their
own leisure.

76



Glossary

Peer A user in a P2P network, which provides its own resources in exchange for utiliz-
ing other peers resources.

Peer heterogeneity The disparity between peers in relation to devices, hardware re-
sources and bandwidth speed.

Reliability A measure of how well a user can trust a service to work as it should.

Resolution Denotes the quality of media content.

Server farm A large group of networked computers gathered together, acting as servers
for services.

Service A software application that is offered to users or businesses. Commonly
offered over the Internet.

Software Architecture The fundamental structures of a software system.

Streaming media A way to transmit media content over the internet, where the content
is presented to the receiver while it is still being transmitted.

Stutter An anomaly in streaming media causing noticeable disruptions in quality or
presentation of content.

User base The people who use a certain product or service.

User-created content Content that is created by users and distributed by a service.

Virtual currency Describes digital money that is issued and commonly controlled by
its developers.

Virtualization A technology that abstracts hardware machines and resources and forms
them into virtual nodes that can be used for tasks.

77



Glossary

78



N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y 
of

 In
fo

rm
at

io
n 

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f C

om
pu

te
r 

Sc
ie

nc
e

M
as

te
r’

s 
th

es
is

Joakim Grønstad Lindgren
Thomas Åge Langelo Røyset

A Study of Hybrid Architectures in the
Realm of Media Streaming

Master’s thesis in Master of Science in Informatics
Supervisor: Svein Erik Bratsberg

May 2019


	List of Tables
	List of Figures
	Introduction
	Background & Motivation
	Goals and Research Questions
	Research Method
	Thesis Structure

	Background Theory & Research Approach
	Theory & Definitions
	Client-Server Architecture
	Peer-to-Peer Architecture
	Hybrid Architecture
	Content Delivery Network
	Cloud Computing
	Streaming Media
	Properties

	Related Works
	Service Selection
	Distributing Services
	Hybrid Architecture Streaming Services
	Live Streaming with Hybrid Architecture
	Mainstream Media Streaming Services

	Selection of Documents

	Services & Properties
	Services
	Skype
	Pando
	Spotify
	Xunlei Kankan
	SLIVER.tv

	Properties
	Cost-Effective
	Scalable
	Complex
	Secure
	Credible


	Discussion
	Cost-Effectivity
	Scalability
	Complexity
	Security
	Credibility

	Evaluation
	Significant Properties
	Viability of Hybrid Architecture in Media Streaming
	Points to Consider When Deciding to Use a Hybrid Architecture
	User Base
	Resource Usage & Overlap
	Transparency & Voluntary
	Capability

	Research Critique

	Conclusion
	Contributions
	Future Work

	Bibliography
	Glossary

