
June 2006
Svein Johan Knapskog, ITEM
André Årnes, ITEM

Master of Science in Communication Technology
Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Telematics

Worm Detection Using Honeypots

Dag Christoffersen
Bengt Jonny Mauland

Problem Description
The students will study existing work on identification, detection, and isolation of unknown worms,
with particular emphasis on methods involving Honeypot-like technologies. The students will
implement some of the methods in the NTNU Honeypot setup and perform a comparative analysis
of the published algorithms.

Optional work in this context may be:
- to study models for and simulate worm infections;
- to propose novel or modified worm detection techniques

Assignment given: 16. January 2006
Supervisor: Svein Johan Knapskog, ITEM

Abstract

This thesis describes a project that utilizes honeypots to detect worms. A

detailed description of existing worm detection techniques using honeypots

is given, as well as a study of existing worm propagation models. Simulations

using some of these worm propagation models are also conducted. Although

the results of the simulations coincide with the collected data from the actual

outbreak of a network worm, they also conclude that it is difficult to produce

realistic results prior to a worm outbreak.

A worm detection mechanism called HoneyComb is incorporated in the hon-

eypot setup installed at NTNU, and experiments are conducted to evaluate

its effectiveness and reliability. The mechanism generated a large amount of

false positives in these experiments, possibly due to an error discovered in

the implementation of the detection algorithm.

An architecture using honeypots for detection of unknown worms is pro-

posed. This architecture is based on a combination of two recently published

systems with the extension referred to as a Known-Attack (KA) filter. By

using this filter, it is believed that the amount of traffic needed to be pro-

cessed by the honeypot sensors will be considerably reduced.

i

Acknowledgements

This master’s thesis is the result of a twenty weeks long project conducted

during the 10th semester of our master’s program at the Department of

Telematics at the Norwegian University of Science and Technology, NTNU.

We would like to thank our supervisor, PhD student André Årnes, who

despite being based in Santa Barbara, California during most of the project

period was able to provide valuable input, feedback, and assistance.

In addition to our supervisor, we would like to thank the following people:

• Professor Svein Johan Knapskog for valuable input and feedback

• P̊al Sturla Sæther, engineer at the Departement of Telematics at NTNU,

for supplying us with the equipment we needed.

• John Magne Bredal at the ITEA network group for giving us an un-

filtered IP-range on the NTNU network.

• Uninett for letting us use their IP-range.

• Christian Kreibich, PhD student at the University of Cambridge and

developer of HoneyComb, for valuable assistance with the software.

• Professor Marit Aamodt Nielsen for proofreading this report.

• Erling Mauland for helping with the frontpage illustration.

iii

Contents

List of Figures ix

List of Tables xi

Abbreviations xiii

Terminology xv

1 Introduction 1
1.1 Background . 2
1.2 Problem Statement . 2
1.3 Research Method . 3
1.4 Structure of the Report . 3

2 Introduction to Honeypots 5
2.1 Purpose of Deployment . 5
2.2 Level of Interaction . 6
2.3 Value of Honeypots . 7
2.4 Honeynets . 8
2.5 Risks Associated With Honeypots 9

2.5.1 Risks Associated With the Honeypots in this Thesis . 10

3 Introduction to Worms 11
3.1 Worm Characteristics . 12

3.1.1 Target Discovery . 12
3.1.2 Propagation Carrier and Distribution Mechanism . . . 14
3.1.3 Activation . 15
3.1.4 Payload . 16

3.2 Worm Propagation Models 17
3.2.1 Susceptible-Infectious (SI) Model 18
3.2.2 Susceptible-Infectious-Recovered (SIR) Model 19
3.2.3 Two-Factor Worm Model 20
3.2.4 Other Models . 22
3.2.5 Code Red I v2 Simulations 23

v

CONTENTS

3.2.6 Limitations Using Worm Propagation Models 25
3.3 Worm History . 26

3.3.1 Morris Worm . 27
3.3.2 Code Red I . 28
3.3.3 Code Red II . 29
3.3.4 Nimda . 29
3.3.5 SQL Slammer . 31
3.3.6 W32/Blaster Worm 31

3.4 Future Worms . 32
3.4.1 Polymorphic Worm . 32
3.4.2 Warhol Model . 33
3.4.3 Flash Worm . 34
3.4.4 Jumping Executable Worm 34
3.4.5 Curious Yellow . 34

4 Worm Countermeasures 37
4.1 Worm Detection . 37

4.1.1 HoneyComb . 38
4.1.2 HoneyStat . 41
4.1.3 Other Methods . 42

4.2 Worm Protection . 44
4.2.1 Network Defenses . 45
4.2.2 Host-Based Defenses 46

5 Worm Detection Experiments 49
5.1 Software Tools . 49

5.1.1 Experiment Tools . 50
5.1.2 Analysis Tools . 52

5.2 Problems with HoneyComb 53
5.3 Experiment Objectives . 56
5.4 Signature Accuracy Experiment 56

5.4.1 Setup and Implementation 57
5.4.2 Results . 59

5.5 Polymorphic Payload Experiment 60
5.5.1 Setup and Implementation 61
5.5.2 Results . 61

5.6 Live Traffic Experiment . 62
5.6.1 Setup and Implementation 63
5.6.2 Results and Analysis 64

5.7 Data Uncertainties . 76

6 An Architecture for Detection of Unknown Worms 79
6.1 System Properties . 79

6.1.1 Sensor Positioning . 79

vi

CONTENTS

6.1.2 Sensor Type . 81
6.1.3 Detection Strategies 83

6.2 Design . 85
6.2.1 Honeypots . 85
6.2.2 Local Control Unit . 88
6.2.3 Known-Attack Filter 89
6.2.4 Network Intrusion Prevention System 91
6.2.5 Global Control Unit 91
6.2.6 Signature Updates . 91

6.3 Discussion . 92
6.3.1 Security Risks . 92
6.3.2 Fingerprinting . 93
6.3.3 Single Point-of-Failure 93

7 Conclusions 95

8 Further Work 97

References 99

Appendices 107

A Guidelines for use of the Honeypots 107
A.1 Implementation . 107
A.2 Maintenance . 108

A.2.1 Supervision and Alert Mechanisms 108
A.2.2 Reaction Policy . 108
A.2.3 Updates . 109

B Code Red I v2 Simulations 111
B.1 Simulations Using the SI Model 111
B.2 Simulations Using the SIR Model 113
B.3 Simulations Using the Two-factor Model 114

C HoneyComb Configuration 117

D Altered HoneyComb Source Code 121

E Honeypots Hosted by Honeyd 123

F HoneyComb Signatures 125
F.1 Controlled Environment Experiment 125

F.1.1 Code Red II . 125
F.1.2 SQL Slammer . 126

F.2 Live Traffic Experiment . 126

vii

CONTENTS

F.2.1 Cka . 126
F.2.2 Dos . 127
F.2.3 H04 . 128
F.2.4 Lookfreebies . 129
F.2.5 Msreg . 129
F.2.6 Set32 . 129
F.2.7 Tftp . 130
F.2.8 Webdav . 130

G Polymorphic packets 131

H Analysis Data 133
H.1 Number of Unique Signatures 133
H.2 Unique Signatures Categorized by Type 134
H.3 Inbound Alerts and Packets 134

viii

List of Figures

3.1 Valid state transitions in worm propagation models. 18
3.2 Simulations of the Code Red I v2 propagation. 25
3.3 Code Red I v2 outbreak as recorded by CAIDA. 26

4.1 Horizontal pattern detection between traffic flows. 39
4.2 Vertical pattern detection between traffic flows. 39
4.3 The Sweetbait architecture. 41

5.1 Limitation in HoneyComb’s processing of UDP packets. . . . 55
5.2 System setup for the controlled environment experiment. . . . 57
5.3 Creation of a Code Red II trace in Netdude. 59
5.4 The PackETH sequence tool. 60
5.5 System setup for the live traffic experiment. 63
5.6 HoneyComb signatures from the NTNU network. 67
5.7 HoneyComb signatures from the Uninett network. 67
5.8 The most frequently generated signatures on the NTNU net-

work. 68
5.9 The most frequently generated signatures on the Uninett net-

work. 69
5.10 Categorization of unique signature types. 75
5.11 Inbound traffic compared to inbound Snort IDS alerts. 76

6.1 Proposed worm detection system architecture. 86

B.1 Worm spread using the SI model. 112
B.2 Worm spread using the SIR model. 114
B.3 Worm spread using the two-factor model. 116

ix

List of Tables

3.1 Parameters of the SI model. 18
3.2 Additional parameters of the SIR model. 19
3.3 Additional parameters of the two-factor worm model. 21
3.4 Worm history summary. 27

H.1 Number of unique signatures. 133
H.2 Unique signatures categorized by type. 134
H.3 Number of inbound alerts and packets. 134

xi

Abbreviations

AAWP Analytical Active Worm Propagation
AChord Anonymous Chord
ACID Analysis Console for Intrusion Databases
ARP Address Resolution Protocol
AU Analysis Unit
BASE Basic Analysis and Security Engine
BGP Border Gateway Protocol
CAIDA Cooperative Association for Internet Data Analysis
CERT Computer Emergency Response Team
CU Communication Unit
DDoS Distributed Denial of Service
DHT Distributed Hash Tables
DoS Denial of Service
DVD Digital Versatile Disc
GCU Global Control Unit
HTTP HyperText Transfer Protocol
IDS Intrusion Detection System
IIS Internet Information Services
IP Internet Protocol
IPS Intrusion Prevention System
ITEA IT department at NTNU
IWMM Improved Worm Mitigation Model
KA Known-Attack
LCS Longest Common Substring
LCU Local Control Unit
MAC Media Access Control
MTU Maximum Transmission Unit
NID Network Intrusion Detection
NIDS Network Intrusion Detection System
NIP Network Intrusion Prevention
NIPS Network Intrusion Prevention System
NTNU Norwegian University of Science and Technology
NTP Network Time Protocol

xiii

ABBREVIATIONS

PARC Palo Alto Reseach Center
RPC Remote Procedure Call
SI Susceptible-Infectious
SIR Susceptible-Infectious-Removed
SQL Structured Query Language
TCP Transmission Control Protocol
TTL Time-To-Live
UDP User Datagram Protocol

xiv

Terminology

Some terms are used in this thesis without being explicitly explained in the
text. This section describes what is meant by the terms listed below when
they are used in this thesis.

Asset
A component that has value to the owner [1].

Blackhat
A person who tries to execute illegal attacks against computer systems.
A blackhat could either be politically or economically motivated, or the
motivation could be pure curiosity.

Risk
The chance that a given threat will exploit vulnerabilities of an asset or
group of assets and thereby cause harm to the organization [1].

Threat
Something that has the potential to cause an unwanted event that may result
in harm to a system or organization and its assets [1].

Vulnerability
A weakness of an asset or group of assets which can be exploited by a
threat [1].

xv

Chapter 1

Introduction

In recent years, several worm outbreaks on the Internet have caused major

computer troubles worldwide. The Code Red worm infected almost 360.000

computers in less than 14 hours in 2001. The economic impact of Code

Red, and its subsequent versions, has been estimated to over 2.6 billion US

dollars [2]. The Slammer worm, released in 2003, propagated extremely

rapidly and generated so much traffic that many ATM machines failed and

several airline flights were cancelled due to online booking problems [3].

It is likely that new worms, able to propagate even faster than Slammer

and causing larger economical damage than Code Red, will appear on the

Internet in the near future. When they do, there is a need for an automated

mechanism to efficiently detect and stop them, as no human-mediated re-

action will have a chance of detecting and responding to the threat quickly

enough to prevent a global outbreak.

Honeypots, decoy computers and services that are assigned otherwise unused

IP addresses, have proven to be useful tools against blackhats and worms.

Deploying honeypots in a distributed early detection and warning system is

a promising approach in the process of developing a fully automated worm

protection system.

1

Introduction

1.1 Background

In the last couple of years, several students at NTNU have worked on the

subject of honeypots. Mona Elisabeth Østvang studied the use of honeynets

as an information source in a business perspective in her master’s thesis [4],

while Christian Larsen used honeypots to document threats from the black-

hat community in his master’s thesis [5]. Dag Christoffersen and Bengt

Jonny Mauland studied malicious traffic on the Internet using honeypots [6]

in their minor thesis. These projects have all motivated further study on

the use of honeypots.

The honeypot setup was initially installed at NTNU by Larsen, and has

been further developed during the work on this thesis to incorporate a worm

detection mechanism.

1.2 Problem Statement

The main goals of this project were identified as to:

• Document existing work on the topic of worm detection, with an em-

phasis on methods involving the use of honeypots.

• Study existing worm propagation models and conduct simulations us-

ing some of these models to evaluate their accuracy compared to data

collected from a real worm outbreak.

• Incorporate a worm detection system in the honeypot setup installed

at NTNU and conduct experiments with this system to evaluate its

effectiveness and reliability when it comes to detecting worms.

• Propose an architecture for detection of unknown worms utilizing hon-

eypots based on the experiments conducted in this project and the

existing work done on worm detection.

Initially, the objective was to implement several worm detection mechanisms

utilizing honeypots in the NTNU honeypot setup, in order to perform a

2

1.3 Research Method

comparative analysis. However, this turned out to be difficult as many of

the existing worm detection tools were unavailable for testing.

1.3 Research Method

A theoretical survey on the subjects of worms and detection of worms is

conducted. This survey also includes a comparative analysis of some existing

worm propagation models based on simulations. While doing this research,

the experiment tools are installed and tested in order to get familiar with

them before conducting the experimental study.

A worm detection system architecture is proposed based on the experiences

from the experimental study as well as the knowledge gained while conduct-

ing the theoretical survey.

1.4 Structure of the Report

The remainder of this thesis is structured as follows.

Chapter 2 – Introduction to Honeypots

This chapter gives a brief introduction to the concepts of honeypots. Some

of the values of using honeypots are outlined, as well as risks involved when

deploying them on the Internet.

Chapter 3 – Introduction to Worms

This chapter describes some typical worm characteristics and various worm

propagation models as well as simulation of some of these. In addition, a

selection of worms that have appeared on the Internet the recent years and

some possible properties of future worms are presented.

Chapter 4 – Worm Countermeasures

This chapter presents two categories of worm countermeasures; worm detec-

tion and worm protection.

Chapter 5 – Worm Detection Experiments

3

Introduction

This chapter describes worm detection experiments conducted using the

honeypot detection tool HoneyComb.

Chapter 6 – An Architecture for Detection of Unknown Worms

A worm detection architecture is proposed in this chapter.

Chapter 7 – Conclusions

This chapter summarizes and concludes the report.

Chapter 8 – Further Work

In this chapter, some suggestions for further work are given.

4

Chapter 2

Introduction to Honeypots

The concept of honeypots was first documented by Clifford Stoll [7] and

William R. Cheswick [8] in the early 1990’s. However, honeypots have not

become widely used until the last couple of years. The founder of The

Honeynet Project [Honb], Lance Spitzner, suggests that this may be due

to a lack of understanding of what a honeypot is, and what it is capable

of doing [9]. By defining a honeypot as an information system resource

whose value lies in unauthorized or illicit use of that resource [9], he has

helped clarify the value of honeypots – they are used to attract persons and

programs with malicious intent.

As the popularity of honeypots has increased, they have been subject to

extensive research which has lead to several implementations. One example

of a honeypot solution available on the Internet is the honeynet architec-

ture [Honb] developed by The Honeynet Project.

2.1 Purpose of Deployment

When considering the purpose of deployment, honeypots are often divided

into two categories, namely research and production honeypots.

Research honeypots are, as the name suggests, primarily used for research

purposes. They can be used to capture information about the attackers’

5

Introduction to Honeypots

goals and activities, to detect new kinds of attacks or even capture the tools

used by the attacker. In this way, research honeypots can provide useful

and up-to-date information about the blackhat community. By analyzing

the attack tools used by the blackhats and creating new IDS signatures,

research honeypots may also help to improve the defense against future

attacks.

Production honeypots are deployed in production systems with the inten-

tion of diverting attacks away from critical systems, hopefully keeping the

attacker busy for a period of time while the real assets are protected [9].

These kinds of honeypots are not primarily used for gathering information

about attacks, but could potentially be used to gather evidence against ma-

licious hackers. The legal aspect of this approach is, however, not clear, as

the blackhat could argue entrapment. For a discussion concerning the legal

aspects of running honeypots, [9] is a good starting point.

2.2 Level of Interaction

Another way to categorize honeypots is by the level of interaction they

offer to their attacker [9]. The lower the interaction level, the smaller the

chance of learning anything new from the attacker. On the other hand,

as the interaction level increases, the risk of the honeypot being identified

and completely compromised by a sophisticated attacker increases. If the

honeypot supervisor is outsmarted by an attacker, the honeypot may in fact

become a liability, as it could be used as a launching pad for new attacks [9].

A low-interaction honeypot will typically run or emulate a small number

of services on a real or emulated operating system. The services are often

script driven, offering only basic functionality. This can give the impression

to an attacker that a real service is run. One example of a low-interaction

honeypot is Honeyd [10], developed by Niels Provos.

A high-interaction honeypot is often a real computer running a real operating

system and offering the same interaction capabilities as any other computer

connected to the Internet. Due to the high interaction level provided, and

6

2.3 Value of Honeypots

the fact that this type of honeypot is much more difficult to fingerprint1,

the chance of a sophisticated attacker launching an attack is much higher.

2.3 Value of Honeypots

The value of a honeypot is, to a large extent, dependent on its purpose of

deployment. Since research honeypots are used for research purposes, their

value lies in the results from the analysis of the captured data. The most

important value of a production honeypot, on the other hand, is the ability

to divert attackers away from real production systems.

A general property of a honeypot, independent of its purpose of deployment,

is the fact that it does not contain any real information. It is not running

any real services and its address is not broadcasted in any way. Due to this,

no legitimate users should interact with it, and thus, all traffic to and from

the honeypot can be considered suspect [11]. This helps to keep the logs

more comprehensible compared to other network devices that also receive

large amounts of legitimate traffic.

In addition to making the logs more comprehensible, this property will also

help keep the resource consumption at a lower level than with other network

logging devices. These devices are more likely to experience exhaustion if

the networks they are monitoring have high bandwidth, since the volumes

of data they have to inspect can become too large [9].

Using honeypots as a mean of detecting and containing worms have led

to the idea of striking back against worms and patch the infected hosts

automatically. A proof of concept has been made by Laurent Oudot who

successfully created a script for Honeyd that would strike back against the

Blaster worm if it attempted to infect a Honeyd honeypot [12]. The script

used the same exploit as the worm itself to gain access to the remote com-

puter, deleted the msblast.exe file and cleaned the registry of any worm

records. Although this technique is efficient and promising, there are legal

1The term fingerprinting is often used in the case where an attacker is able to reveal
the true identity of a honeypot.

7

Introduction to Honeypots

issues regarding remote patching that need to be addressed before deploying

such a scheme outside the local network.

The use of honeypots as a mean of slowing down the propagation of Internet

worms has also been suggested. The ”sticky” honeypot, or tarpit, called

LaBrea [LaB] is a low-interaction honeypot that answers TCP requests in a

manner that may slow down worms that have to wait for a response before

they continue scanning for other vulnerable hosts.

Although honeypots have desirable properties and have proved to be efficient

when detecting computer attacks, it is important to notice that they are not

meant to replace existing security technologies. On the contrary, honeypots

should be used in conjunction with other detection systems to enhance the

security. One reason for this is the limited view field of the honeypot. The

only traffic examined by the honeypot is the traffic directed towards itself,

thus it is not able to monitor the traffic bound to other resources in the

network, as a network intrusion detection system (NIDS) is able to. Another

reason is that deployment of a honeypot may induce risks to other, non-

honeypot systems in the network, as is further elaborated in 2.5.

2.4 Honeynets

The first generation honeynet architecture was developed by the Honeynet

Project [Honb] in 1999. Since then, several improvements have been made,

and the latest generation (GenIII) was released in 2005.

A honeynet system typically consists of one or several high-interaction hon-

eypots running a set of full-blown applications and services. Each of these

honeypots are connected to the Internet through a Honeywall, which is a

layer 2 gateway2 in charge of data control and data capture. The Honeywall

can operate as a network intrusion prevention system (NIPS) blocking all

known outgoing attacks as well as limiting the number of outgoing connec-

2The gateway must be located on the Data Link Layer to avoid incrementing the Time-
To-Live (TTL) field in the IP header. This is done to minimize the chance of the Honeywall
being detected by an attacker.

8

2.5 Risks Associated With Honeypots

tions to help reduce the risk of the honeypots being used to attack other

systems.

According to Lance Spitzner, one of the future goals of the Honeynet Project

is to develop a centralized data collection system that can correlate infor-

mation from several distributed honeynets. The system should also be able

to correlate and analyze the incoming data in real-time, providing early

warning and protection systems with reports of zero-day attacks [13].

2.5 Risks Associated With Honeypots

Even though honeypots can help to increase the network security, there are

several risks involved with deploying a honeypot system.

First, a honeypot host may be compromised by an advanced blackhat. If

such a compromised host is used as a launching pad for new attacks against

third-party computers, the honeypot owners may themselves be held respon-

sible. To minimize this risk, a NIPS that blocks malicious outgoing traffic

can be deployed in front of the honeypots.

Second, the honeypots may be fingerprinted. That is, based on certain

characteristics or behaviors of a honeypot, a blackhat may be able to reveal

its true identity. This could scare off potential attackers, but it may just

as well attract attention to the network by sparking the blackhats’ sense of

vindictiveness [9].

There is also a chance that research-honeypots are fed with poisoned data,

leading to compromised experiments and false conclusions regarding the

blackhats’ behavior [9]. The risk of this happening increases if the honeypots

have been fingerprinted.

Tools to help blackhats fingerprint honeypots automatically have emerged in

recent years in line with the increasing popularity of honeypots. In addition,

a fake paper [pap] published by Phrack lists possible ways to identify a

honeypot. This is a clear indication that the blackhat community is aware

of the increased usage of honeypots, and that existing honeypot solutions

9

Introduction to Honeypots

are in a constant need of further development in order to make fingerprinting

increasingly difficult.

2.5.1 Risks Associated With the Honeypots in this Thesis

Since the honeypots used in the experiments described in this thesis have

been located on the same subnetworks for over a year, there is a certain

risk that they have been identified by the blackhat community. This risk is,

however, considered to be very low because the majority of attacks directed

towards the honeypots deployed in the subnetworks used in this thesis are

believed to be executed by script-kiddies3. This assumption is based on the

analysis in [6], which reported frequent use of automated attack tools. It

is also believed that advanced blackhats are unlikely to devote their time

trying to attack the honeypots used in this thesis, as they do not contain,

or give the impression of containing, any useful information.

The latter argument is also one of the reasons why the risk of any of the

honeypots being used as a launching pad for new attacks is considered to

be very low. In addition, all the honeypots used in the experiments are low-

interaction, only running a set of emulated services on a minimal operating

system, and they are all patched with the latest security updates.

Even though the results from the experiments conducted in [6] give no in-

dication that the honeypots have been fingerprinted or used to attack other

systems, several precautions are taken to minimize the risks during the ex-

periments in this thesis. A firewall configured with a default drop policy

is used to protect the machine hosting the low-interaction honeypots. The

alerts, system logs and password files are inspected daily to check for irreg-

ularities. In case of any such irregularities, the honeypot system should be

locked down, the project supervisor and the network administrators should

be informed and the system design should be carefully re-evaluated before

redeployment. The guidelines for use of the honeypot setup can be found in

Appendix A.

3An unskilled blackhat utilizing automated attack tools is often referred to as a script-
kiddie.

10

Chapter 3

Introduction to Worms

The term worm in a computer network context was first adopted in John

Brunner’s 1975 science fiction novel Shockwave Rider [14], in which a worm

was used as a weapon to fight and finally shut down a malicious computer

network. The first study of computer worms was conducted by the Xe-

rox Palo Alto Research Center (PARC) in the late 1970’s. As in the mid-

seventies science fiction novel, Xerox PARC also viewed worms as a helpful

tool, the intention being to utilize unused computer resources connected

through a network. The experiments at Xerox PARC did, however, give the

first indications of what has now become an increasingly common part of

computer networks, namely malicious worms, as one of the worms acciden-

tally crashed the hosts on the test network [15].

The first known computer worm to be released on the Internet was the Morris

worm [16], which caused panic among network administrators in late 1988.

Following the Morris worm and a series of other malicious worms over the last

years, the term computer worm has come to be associated with a malicious

piece of software, much like a computer virus. In fact, the two terms are

often interchangeably used. In this master’s thesis, however, worms and

viruses will be distinguished. Weaver et al. [17] defines a computer worm

as a program that self-propagates across a network exploiting security or

policy flaws in widely-used services. A worm able to exploit several different

vulnerabilities is called a multi-vectored worm. Viruses divert from this

11

Introduction to Worms

definition by the fact that they are depending on some sort of user action

in order to propagate, making the propagation slower than most worms. In

addition, viruses attaches themselves to a host program on the victim host

while worms are independent [18].

An infected host running the worm executables is called a worm node. The

collection of the hosts infected by a specific worm is referred to as the worm

network [15].

3.1 Worm Characteristics

Worms can be categorized by their target discovery technique, propagation

carrier and distribution mechanism, activation and payload [17].

3.1.1 Target Discovery

Target discovery is the first step of the worm propagation, the purpose

being to detect new hosts to infect. There are several possible techniques by

which a vulnerable target can be discovered: by scanning, by use of various

target lists and by passive monitoring [17]. Many of the most effective

worms combine several of these techniques in order to use the best from

each technique.

Scanning

The scanning technique involves probing a set of addresses in order to detect

vulnerable hosts. The simplest forms of scanning are sequential and random

scanning. The former implies probing addresses sequentially from an address

block, while the latter implies trying addresses from an address block in a

pseudo-random fashion. Their simplicity makes them frequently used.

To increase the efficiency of the target discovery mechanism, worm authors

have suggested several optimizations for scanning worms. One optimization

12

3.1 Worm Characteristics

is the preference for local addresses in order to reduce latency. This is com-

monly referred to as island hopping because the worm’s spreading pattern

tends to resemble islands. In addition to reducing latency, island hopping

will also reduce the number of encounters, and thereby possible detections

and failed infection attempts, with firewalls and NATs. At the same time,

it makes the worm more vulnerable in its initial stage, as total containment

is possible if the worm is detected and isolated while still infecting hosts in

the initial local network [15]. Another optimization is a bandwidth-limited

scanner which implies that the scanning process is limited by the bandwidth

of the compromised host, not by the latency of connection requests, as is

often the case [17].

The use of scanning causes highly anomalous behavior as it generates a lot

of traffic that differs from normal traffic. This makes the worms easier to

detect.

Target Lists

Target discovery can also be carried out through the use of target lists.

Worms utilizing such lists are often referred to as hitlist worms and are

characterized by their extremely rapid spreading speed.

One example is the use of pre-generated target lists where a set of hosts

known or suspected to be vulnerable to attack is gathered in advance and is

included in the actual worm payload. A small target list of this kind could

be used to accelerate the spreading of a scanning worm, while a complete

list could create a flash worm which is further elaborated in section 3.4.3.

An externally generated target list is a target list not included in the worm’s

payload, but maintained by a separate server. The list can be downloaded

to infected machines in order to select new victims. An externally generated

target list located at a central server makes it easy to issue updated target

lists, but at the same time, if the central server is compromised the worm

may be prevented from further propagation [15].

Yet another example of a target list is the host-based lists in which the

13

Introduction to Worms

worm utilizes information stored on the infected host to decide which hosts

to attack next. Worms utilizing host-based lists for target discovery are

called topological worms.

Passive Monitoring

Worms using a passive monitoring technique are not actively searching for

new victims. Instead, they are waiting for new targets to contact them or

rely on the user to discover new targets. Although passive worms tend to

have a slow propagation rate, they are often difficult to detect because they

generate modest anomalous reconnaissance traffic.

3.1.2 Propagation Carrier and Distribution Mechanism

There are three possible methods by which a worm can propagate from an

infected host to an uninfected one [17].

Self-Carried

A self-carried worm transmits itself as part of the infection process. This

mechanism is commonly used when the initial attack is directly followed

by the worm payload transmission, as is the case with self-activating and

topological worms.

Second Channel

Some worms require a second communication channel in order to complete

the infection process. One example is to have the victim host request the

transfer of the actual worm code to complete the infection.

Embedded

An embedded worm transmits itself as part of a normal communication

channel by appending itself to, or replacing, an existing payload. This yields

14

3.1 Worm Characteristics

modest anomalous traffic related to propagation and could be combined with

a stealthy target discovery mechanism, like the passive monitoring mecha-

nism described in the previous section, in order to create a stealthy worm.

3.1.3 Activation

The means by which a worm is activated on a newly infected host drastically

affects its propagation speed.

Human Activity-Based Activation

Some worms are activated when the user performs some activity, like reset-

ting the machine, logging onto the system and thereby running the login

scripts or executing a remotely infected file. Evidently, such worms do not

spread very rapidly.

Scheduled Process Activation

A faster spreading speed than the previous activation method is achieved

by worms that rely on some scheduled process for activation. An example

is automatic software updates, which can be used to install and run mali-

cious software (e.g., a worm). Earlier versions of automatic update services

were more susceptible to this kind of attack as they rarely employed any

authentication.

Self Activation

The fastest spreading worms are the ones that are able to activate them-

selves by initiating their own execution as soon as the infection process is

completed. This is done by exploiting vulnerabilities in a service that is

always running and available, or in the libraries that these services use. The

worms activate themselves by attaching themselves to the running service or

by executing commands using the permissions associated with those services.

15

Introduction to Worms

3.1.4 Payload

The worm code not related to propagation is called the worm payload. It

can vary significantly depending on the goals of the worm’s author. Some

examples are presented in this section.

None/Nonfunctional

The most common payload is actually no or a nonfunctional payload. Even

with no payload, the worm can still consume considerable network and com-

puter resources, as well as advertising vulnerable hosts.

Remote Control

Some payloads can open backdoors on victim machines in order to make

remote control of the captured machines possible by bypassing the usual

security access procedures. By introducing a trojan horse to the infected

machine, it is possible to gain access to files that normally require certain

user privileges [18].

Denial of Service (DoS)

A commonly used payload is to issue a Denial of Service attack against one

or several web sites. The effect of a DoS attack increases with the number

of nodes participating in the attack. A large worm network can cause large

damage by issuing a Distributed DoS (DDoS) attack, where all the worm

nodes simultaneously launch attacks against the same web site.

Data Collection

An increasing amount of sensitive information is stored electronically these

days. Worm payload can search for this type of information (e.g., credit card

numbers). Findings could be encrypted and transmitted through various

channels.

16

3.2 Worm Propagation Models

Data Damage

Data damage is likely to become a popular worm payload, like it has been

for some time for computer viruses. It can be used to erase or manipulate

data on the infected host, or even to encrypt data in order to extort the

owner of the information.

3.2 Worm Propagation Models

In order to defend against network worms it is essential to understand their

propagation patterns. As stated earlier in this chapter, many existing worms

can be identified by their distinctive behavior (e.g., rapid propagation).

Long before the introduction of network worms, the medical science have uti-

lized mathematical models to understand and predict the spread of diseases.

The resemblance between network worms and biological diseases has led to

extensive use of similar models when studying worm propagation patterns.

Understanding these patterns can help defend against network worms.

This section describes existing worm propagation models, covering both tra-

ditional epidemic models, as well as models customized to fit the behavior

of contemporary network worms. The results from simulations of the Code

Red I v2 worm using some of these models are also presented along with

some limitations using worm propagation models.

Unless otherwise stated, it is assumed that the worms are spreading from

host to host, are active on all the infected hosts and that infected hosts

actively search for new hosts to infect. Furthermore, it is assumed that the

total population is constant, and that each host in the population can reach

any other host in one hop. Finally, it is assumed that all hosts susceptible

to infection are equally susceptible [15, 19].

Even though worm propagation is a discrete event process, meaning that a

host needs to be completely infected before it can start infecting other hosts,

the models thoroughly described in this chapter are continuous. However,

17

Introduction to Worms

when dealing with large-scale systems, as is the case with global worm prop-

agations, this is an accurate approximation [19].

3.2.1 Susceptible-Infectious (SI) Model

In the SI model, also referred to as the classical simple epidemic model, each

host is either susceptible to infection or already infected. The only valid

transition between states in the SI model is from susceptible to infectious,

as illustrated in Figure 3.1 (a). This means that an infected host is assumed

to remain infected forever. The model defines a set of parameters, as shown

in Table 3.1.

Figure 3.1: Valid state transitions in worm propagation models.

S(t) The number of susceptible hosts at time t
I(t) The number of infected hosts at time t
N The size of the vulnerable population
β Average infection rate1

Table 3.1: Parameters of the SI model.

The model is described by the two differential equations given in (3.1):
dI(t)

dt = βI(t)S(t)
dS(t)

dt = −βI(t)S(t)
(3.1)

Since all hosts in the SI model are either infectious or susceptible, it is easy

to see that the growth of susceptible hosts is inversely proportional to the

infection growth.
1The average infection rate, β, can be expressed as a function of the worm’s average

probe rate, r. A scanning worm probing the entire IPv4 address field at random yields
β = r N

232 [20].

18

3.2 Worm Propagation Models

The model assumes the initial number of susceptible hosts to be far greater

than the starting number of infectious hosts. As a result, the initial infection

growth is exponential. As the number of susceptible and infectious hosts

evens out, the growth decreases, but the infection does not stop until all hosts

in the vulnerable population are infected. This follows from the somewhat

unrealistic assumption that the only valid transition in the SI model is from

susceptible to infectious. The next section presents a more realistic model

that includes the fact that, in most diseases, an infected individual can either

recover or die [19].

3.2.2 Susceptible-Infectious-Recovered (SIR) Model

The SIR model, also referred to as the classical general epidemic model or

the Kermack-McKendrick model after its inventors, adds a removed state

to the susceptible and infectious states in the SI model. The removed state

represents the individuals that have recovered and are immune, the ones that

have been quarantined and are thus out of circulation, and the individuals

that have died from the infection. Hence, there are two valid transitions

in this model: the transition from susceptible to infectious, analogous to

the SI model, and the transition from infectious to removed, as indicated

in Figure 3.1 (b). In addition to the parameters introduced in the previous

section, the SIR model utilizes the parameters shown in Table 3.2 [19].

R(t) The number of removed hosts at time t
γ Average removal rate

Table 3.2: Additional parameters of the SIR model.

The model describes the worm propagation by the following set of differential

equations:
dI(t)

dt = βI(t)S(t)− γI(t)
dS(t)

dt = −βI(t)S(t)
dR(t)

dt = γI(t)

(3.2)

By introducing the relative removal rate, ρ = γ
β , the first equation in (3.2)

19

Introduction to Worms

can be rewritten as follows:

dI(t)
dt

= β[S(t)− ρ]I(t) (3.3)

Because the population is assumed to be finite and each host can be infected

only once, the epidemic will eventually die out. When it does, all hosts in

the population will either still be susceptible to infection or removed.

By examining (3.3), one can observe an interesting property of the SIR

model. Clearly, I(t) ≥ 0 and β ≥ 0. As a result, the sign of the term on the

left side of the equality in (3.3) is the same as the sign of the term inside

the square brackets. Hence,

dI(t)
dt > 0 if and only if S(t) > ρ.

Because S(t) is a monotonically decreasing function (no new susceptibles

are added to the population at any point in time), if S(0) ≤ ρ then S(t) ≤ ρ

for all t > 0, and hence dI(t)
dt ≤ 0 for all positive values of t. This means

that there will not be an epidemic unless the initial number of susceptibles

is greater than some critical value ρ [19].

3.2.3 Two-Factor Worm Model

Although the SIR model presented in the previous section is accurate when

it comes to modeling biological infectious diseases, it has been deemed in-

sufficient when modeling network worms due to two factors2 which affect

worm propagation in the Internet in particular [21]:

• Human countermeasures, such as patching or upgrading susceptible

hosts, cleaning infected hosts, blocking worm traffic in virus detec-

tion systems, firewalls and edge routers or disconnecting hosts from

the network altogether, are taken as the worm propagates and more

and more people become aware of its presence. This may result in a

2The two factors are based on events observed during the propagation of the Code Red
I v2 worm, which will be further elaborated in the next section. However, because many
scanning worms resemble the Code Red I v2 when it comes to propagation pattern, the
two-factor worm model can be used for other worms as well [21].

20

3.2 Worm Propagation Models

quarantine of susceptible hosts in addition to the removal of infectious

hosts, as indicated in the state machine in Figure 3.1 (c).

• The infection rate, β, is not constant during a large-scale worm propa-

gation on the Internet, as assumed in the epidemic models. One reason

for this is that the large amount of generated worm traffic can result in

congested networks and global BGP3 routing instabilities and hence,

decreased infection rate [23].

To represent the susceptible hosts that are patched or updated, the two-

factor worm model introduces a set of quarantined hosts. The parameters

used by the two-factor worm model not already presented in the two epi-

demic models are shown in Table 3.3 (the time-dependent β-value in this

model replaces the constant β in the epidemic models, as argued above).

Q(t) The number of quarantined hosts at time t
β(t) Average infection rate at time t

Table 3.3: Additional parameters of the two-factor worm model.

The model is described by the following set of differential equations:

dI(t)
dt = β(t)S(t)I(t)− dR(t)

dt

dS(t)
dt = −β(t)S(t)I(t)− dQ(t)

dt

dR(t)
dt = γI(t)

dQ(t)
dt = µS(t)[I(t) + R(t)]

(3.4)

By combining the first and the third equation above, the infection growth

can be rewritten as shown in (3.5).

dI(t)
dt

= [β(t)S(t)− γ]I(t) (3.5)

From calculus it is known that the extreme values of a function, i.e., the

minimum and/or maximum values, can be found by setting the derivative

3The Border Gateway Protocol (BGP) is an Internet protocol used by edge routers of
a domain to share routing information with edge routers of other domains [22].

21

Introduction to Worms

equal to zero. It follows that the derivative of I(t) is zero when the term

inside the square brackets in (3.5) is zero. Because both the infection rate

and the number of susceptibles are decreasing functions of time, β(t)S(t)−
γ < 0 for t > tc (i.e., the point is a maximum point), thus the maximum

number of infectious hosts occur at time tc when S(tc) = γ
β(tc)

[21].

3.2.4 Other Models

A number of worm propagation models, other than the ones already pre-

sented, have been proposed over the past couple of years. This section gives

a brief description of some of these.

Improved Worm Mitigation Model (IWMM)

Onwubiko et al. [24] presents an extension of the SIR model, the Improved

Worm Mitigation Model, for modeling the spread of aggressive network

worms. The model considers five states (susceptibles, removed, infected,

quarantined, recovered) and argues that three states, as used by the SIR

model and the two-factor model, cannot accurately include all the counter-

measures available for the spread of a network worm. As stated in 3.2.3,

the two-factor model actually considers four states, not three. Furthermore,

the five states presented in the IWMM can be reduced to the four states

considered in the two-factor model without any significant impact on the

modeling of the worm propagation. The reason is that the two-factor model

views the quarantined state and recovered state in the IWMM as one com-

bined state, namely the removed state4. As there is no transition from the

quarantined state back to the infected state in the IWMM, the separation

of the previously infected hosts into two distinct states has no effect as they

are permanently out of circulation in either state. In addition, the set of dif-

ferential equations that is used to describe the IWMM does not correspond

to the presented state machine. As a result, the IWMM is an improvement

4In the IWMM, the names of the states used to denote the hosts removed from the
set of susceptible hosts and the hosts that are removed from the set of infected hosts are
interchanged with respect to the two-factor model.

22

3.2 Worm Propagation Models

to the SIR model, but it is essentially the same as the existing two-factor

model.

Scanned Model

The scanned model was proposed as part of a study which examined the

effect of the infection time on worm propagation. The SIR model, presented

in 3.2.2, was extended to include a scanned state. This state represents the

hosts that have been targeted by an infected host, but have not yet down-

loaded the worm payload and hence, have not started infecting other hosts.

The study concluded that, due to the continually increasing bandwidth and

trend for smaller worm payloads, the infection time did not seem to have

any significant effect on the worm propagation [25].

Analytical Active Worm Model (AAWM)

Chen et al. [26] present a discrete time worm propagation model for the

spread of random scanning worms. It is argued that a discrete time model

can predict the propagation more accurately than a continuous time model.

This, however, is at the expense of more complicated mathematics. Com-

parison of the simulations of the Code Red I v2 and observed data from

Cooperative Association for Internet Data Analysis (CAIDA) [CAI] of the

actual worm propagation yields good results. The model is also extended to

the Local AAWP which can be used to model, and thereby further under-

stand, worms utilizing an island hopping technique.

3.2.5 Code Red I v2 Simulations

This section presents results from simulating the Code Red I v2 worm using

the three models described in 3.2.1 to 3.2.3 in Matlab [Mat] and compares

the results with the observed data from CAIDA.

As in [21], the decreasing infection rate used in the two-factor model is

23

Introduction to Worms

modeled by the following equation:

β(t) = β0[1−
I(t)
N

]η (3.6)

where β0 is the initial infection rate and η is used to adjust the infection

rate sensitivity to the number of infectious host.

In order to provide numerical solutions of the propagation models, the pa-

rameters and initial values of the differential equations need to be selected.

The parameters N = 500, 000, I(0) = 1, S(0) = N − I(0), R(0) = Q(0) =

0, β = β0 = 2
232 , γ = 0, 00002, as used in [25] and [26] to simulate the Code

Red I v2 worm, are used in the simulations in this report. In addition,

η = 3, µ = 5e11 are used for the two-factor model.

Matlab was used to solve the sets of differential equations representing the

three propagation models, as well as to plot the results. The script used to

simulate Code Red I v2 with the SIR model in [25] was extended to include

the SI model as well as the two-factor model. The Matlab scripts used for

the simulations in this thesis can be found in Appendix B. The results of

the simulations are depicted in Figure 3.2.

Figure 3.3 shows the number of hosts infected by the Code Red I v2 as

collected by CAIDA using a /8 network at the University of California, San

Diego, and two /16 networks at Lawrence Berkeley Laboratory on the day

of the outbreak (19th of July 2001) [2]. In the collected data, a host was

assumed to be infected if it sent TCP SYN packets on port 80 to unused

IP addresses. Based on simulations and analyses, [26] concludes that 224

monitored addresses is sufficient to collect realistic data on a worm outbreak.

Hence, the /8 network should provide accurate data for the propagation of

the Code Red I v2.

As can be seen from the two figures, the simulations show the same trends

as the collected data, especially the simulations using the SIR and the two-

factor model. When studying the two figures in detail, it appears that the

SIR model is the one of the three models that matches the collected data best

when it comes to predicting the maximum number of infected hosts. This

24

3.2 Worm Propagation Models

Figure 3.2: Simulations of the Code Red I v2 propagation.

may appear strange since the two-factor model is presented as an extension

of the SIR model to better model network worms. The reason for this may

be that the parameters used to model the Code Red I v2 are primarily used

to model the epidemical models in [25] and [26] and may therefore have been

chosen to optimize the results of the SIR model compared to the observed

data. It is possible that other parameters would have favored the two-factor

model. The tuning of the parameters used in the worm propagation models

is, however, beyond the scope of this thesis.

3.2.6 Limitations Using Worm Propagation Models

Even though worm propagation models can be a useful tool, it is important

to realize that they have their limitations. One limitation is that the models

cannot be used to predict periods where the worm is not actively spreading.

Another limitation is that in order to match the numerical solutions from

the models with observed propagation patterns, it is necessary to determine

25

Introduction to Worms

Figure 3.3: Code Red I v2 outbreak as recorded by CAIDA [CAI01].

a number of parameters, as stated in the previous section. As of yet, it

is not possible to accurately determine these parameters prior to a worm

outbreak.

3.3 Worm History

”I have but one lamp by which my feet are guided, and that is the

lamp of experience. I know no way of judging of the future but

by the past.”

Edward Gibbon,

18th century English historian.

Although it is not sufficient to look at the past alone in order to detect new

worms, it is not unlikely that worm authors will study existing worms and

incorporate parts that have proven successful in the past when constructing

new worms. This section describes some of the worms that have appeared

26

3.3 Worm History

on the Internet in recent years. A summary of these worms is given in

Table 3.4.

Worm Propagation Protocol Payload Exploit Released
Morris Known hosts TCP None Buffer overflow Nov. 1988

E-mail Trust policy
Backdoor

Code Random TCP DDoS Buffer overflow July 2001
Red I scanning
Code Island-hopping TCP Creates Buffer overflow Aug. 2001
Red II backdoor
Nimda Island-hopping TCP Infects Directory- Sept. 2001

E-mail binaries to traversal
Backdoor create Trojans HTML rendering

SQL Random UDP None Buffer overflow Jan. 2003
Slammer scanning
W32/ Sequential TCP DDoS Buffer overflow Aug. 2003
Blaster scanning

Table 3.4: Worm history summary.

3.3.1 Morris Worm

The Morris Worm [16], named after its author Robert Tappan Morris,

emerged on the Internet in November 1988. It benefited from the fact that

the hosts that constituted the Internet in 1988 were largely homogenous and

tightly connected with respect to trust relationships. The limited number

of hosts (approximately 60.000) that formed the Internet at the time made

scanning for new victims by probing random IP addresses ineffective. In-

stead, the worm searched for new hosts to infect on the already infected

hosts. It exploited multiple vulnerabilities in order to propagate. In that

sense, it was not only the first worm to be observed on the Internet, but also

the first multi-vectored worm.

Upon infection, the source code of the worm was transferred to and com-

piled on the newly infected host. This made it possible to attack different

architectures. The worm’s sole purpose was to further propagate itself to

new hosts, and even though it had no malicious payload, the propagation

process consumed vast processing resources.

The outbreak of the Morris Worm resulted in the formation of the Com-

puter Emergency Response Team (CERT), the purpose being to study and

distribute information about security vulnerabilities and incidents [CER].

27

Introduction to Worms

3.3.2 Code Red I

The Code Red I worm [27] first appeared in mid-July 2001. It exploits a

vulnerability in Microsoft IIS Web servers. Although CERT had described

the vulnerability a month earlier [28], few sites had installed the issued patch

at the time when the worm was first released [15].

The worm starts by attempting to connect to TCP port 80 on a randomly

chosen host. If the target host has IIS enabled, a TCP connection is estab-

lished, and the attacking host sends a HTTP GET request that attempts to

exploit a buffer overflow5 in the Indexing Service on the victim host [27].

Following a successful infection, the worm will start running on the new

host. The earliest variant of the worm changes the default reply to all page

requests received by the infected server to be

"HELLO! Welcome to http://www.worm.com! Hacked by Chinese!"

if the default language is English. Later variants of the worm left the server

content unaltered, as was also the case if the default language was not En-

glish [27].

The worm activity on an infected host is depending on the day of the month.

During the first 19 days of the month, the worm attempts to further prop-

agate by scanning random IP addresses. The next eight days are used to

launch a distributed DoS attack against http://www.whitehouse.gov. The

worm is idle during the remaining days of the month.

The Code Red I worm had two major flaws. A file check was performed to

check if a host was already infected with the worm. By manually creating

this file it was possible to prevent the worm from installing all of its compo-

nents upon infection. Originally, the worm used the same random number

generator seed every time in order to produce a list of IP addresses to scan.

This meant that some networks experienced massive amounts of scanning

while others were not affected. It also made it possible to predict the worm

propagation. A new version of the worm, the Code Red I v2, was quickly

5For more information on buffer overflow, [29] is a good starting point.

28

http://www.whitehouse.gov

3.3 Worm History

released to fix the problem with the random number generator [15].

3.3.3 Code Red II

The Code Red II was released a couple of weeks after the Code Red I worm.

It exploits the same vulnerability as the Code Red I worm, but differs in

behavior.

Code Red II opened several backdoors on the compromised machines. A

copy of the command shell cmd.exe was put in a publicly accessible directory

on the web server, allowing intruders to execute arbitrary commands on

the infected machine with the privileges of the IIS process. A modified

explorer.exe was installed to expose the C: and D: drives through the web

server. This gave an attacker full access to the two hard drives via the web

server [15, 30].

The worm utilizes an island hopping technique, as described in 3.1.1, which

means that it has a preference for local IP addresses when selecting potential

victims. Code Red II uses the following probabilities when selecting IP

addresses [30]:

• There is a one in two chance that a given scan is against an IP address

in the same class A network (similar starting byte as the attacking

host’s address) as the scanning node.

• There is a three in eight chance that a given scan is against an IP

address in the same class B network (the two first bytes of the addresses

are similar) as the scanning node.

• There is a one in eight chance that a given scan will be against a

randomly selected IP address.

3.3.4 Nimda

The Nimda worm, which was released in September 2001, could infect both

user workstations (clients) and web servers running the most common Mi-

29

Introduction to Worms

crosoft operating systems. It uses multiple attack vectors to propagate, as

listed below:

• From client to client through email or through shared network drives.

• From web server to client through browsing of compromised Internet

sites.

• From client to web server by active scanning for directory traversal

vulnerabilities in several IIS versions and for backdoors left by other

worms, such as Code Red II.

The Nimda worm will also infect existing binaries on the infected system by

making Trojan horse versions. When these executables are run, they will

first execute the Nimda code (if executed through a shared network drive

this would infect a new host), and then complete the program’s intended

function [31]. When infecting web servers, the worm will alter all web pages

(e.g., html, php and asp files) on the server to include a small javascript.

This script will automatically run the Nimda worm on the client machine if

one of the given pages are visited.

Due to a vulnerability in the HTML rendering in earlier versions of Internet

Explorer (5.5 and earlier), the attachment sent by the Nimda worm was

automatically executed if the mail was previewed by a mail client such as

MS Outlook. Once executed, the machine was infected and would send out

new e-mails and scan for vulnerable web servers as listed in the attack vector

list above.

As for Code Red II, the Nimda worm uses an island hopping technique. It

selects its target IP addresses based on the following probabilities:

• There is a one in two chance that a given scan is against an IP address

in the same class B network as the scanning node.

• There is a one in four chance that a given scan is against an IP address

in the same class A network as the scanning node.

• There is a one in four chance that a given scan is against a random IP

address.

30

3.3 Worm History

This preference for local addresses during the scanning routine caused denial-

of-service conditions on local networks where many computers were in-

fected [31].

3.3.5 SQL Slammer

The worm known as SQL Slammer6 managed to infect more than 90 percent

of the vulnerable hosts within ten minutes after the initial attack on the 25th

of January 2003 [3].

The Slammer worm exploited a buffer overflow in Microsoft SQL Server

2000 and managed to spread extremely quickly due to the fact that it was

based on a single UDP packet, and that its payload was as small as 376

bytes [32]. An infected machine would simply send as many UDP packets

containing the worm payload to random IP addresses as possible, thus using

a large amount of bandwidth. Since any vulnerable host receiving one of

these packets would start doing the same thing, an extremely high share

of the Internet traffic on the 25th of January 2003 was generated by this

worm. In fact, the Slammer worm generated so much traffic that five of the

13 root-name servers on the Internet crashed this day [33].

3.3.6 W32/Blaster Worm

The W32/Blaster (also referred to as MsBlast, Lovsan or Lovesan) worm first

appeared on the 11th of August 2003. It exploited a known buffer overflow

vulnerability7 in the Microsoft Remote Procedure Call (RPC) Interface [35].

Once the worm has gained access to a new host, it attempts to download a

copy of the file msblast.exe, which contains the actual worm payload, from

the compromising host. If successful, the file is executed and the newly

infected host will start scanning the Internet address space sequentially for

other vulnerable systems to infect.

6This worm has also been called Slammer, W32.Slammer and Sapphire.
7CERT published an advisory (CA-2003-16) concerning this vulnerability one month

before the Blaster worm was released [34].

31

Introduction to Worms

The main intention of the Blaster worm was to launch a DDoS attack against

http://www.windowsupdate.com. This attack was scheduled to start on the

16th of the month in January to August, or any day in September through

December [36]. However, the damage on the windows update server was

minimal because the worm’s target was http://www.windowsupdate.com,

and not http://windowsupdate.microsoft.com to which the first url was

redirected. By temporarily shutting down the server hosting http://www.

windowsupdate.com on the day of the first attack, Microsoft successfully

avoided to expose the real server to the DDoS attack.

3.4 Future Worms

As new tools for detecting and stopping worms are created, future worms

need to evolve to be able to reach as many vulnerable hosts as possible.

Researchers have outlined several strategies future worms can adopt to evade

detection, and some of these strategies have even been used already. This

section presents some possible properties of future worms.

3.4.1 Polymorphic Worm

Worms that are able to change their packet signature between propagation

attempts, may avoid being detected by signature-based detectors. As these

kinds of detectors are in widespread use today, due to their efficient pro-

tection against known attacks and their ease of deployment, polymorphism

is likely to become a widely used property in the near future [37]. In fact,

there already exist several tools and methods for changing the worm signa-

tures dynamically between attacks. One example is the tool ADMmutate,

developed by a hacker called K2 [15].

Worm polymorphism can be achieved with different techniques. Obfusca-

tion, such as simply changing the order of the instructions in the worm

payload or inserting a NOP sledge8, is one of the most primitive ways of

8NOP or NOOP is an assembly language instruction that stands for no operation. A
series of NOPs is called a NOP sledge.

32

http://www.windowsupdate.com
http://www.windowsupdate.com
http://windowsupdate.microsoft.com
http://www.windowsupdate.com
http://www.windowsupdate.com

3.4 Future Worms

achieving payload variations. A more advanced approach is to use encryp-

tion and encrypt the worm payload with different keys prior to each propa-

gation attempt. Although this technique may create different payloads each

time the worm propagates, it is likely that some parts of the payload, like

the decryption routine, has to remain unaltered in each packet [38].

Anomaly-based detectors, although prone to generate extensive logs, may

detect polymorphic worms. However, advanced polymorphic worms that

gather a normal traffic profile and use this to mutate, can evade detection

by both signature-based and anomaly-based detectors [39].

3.4.2 Warhol Model

Nicholas Weaver proposed a new model for worm propagation shortly after

the release of the Code Red worm in 2001 [15]. His model was called the

Warhol model, and it was argued that a worm following this model could

reach all vulnerable hosts connected to the Internet within no more than 15

minutes9. Three properties are needed for a worm to fit the Warhol model:

Hitlist scanning. The list is split between nodes during infection.

Permutated scanning. A pseudo-random range of addresses is generated,

and each node is given a range in which to scan for new victims. If

a node reaches another host that is already infected, the worm is an-

swered by a signal telling it to stop. The probing worm will then either

stop scanning completely or start scanning the Internet randomly in-

stead.

Coordination between worm nodes. This is done by splitting the hitlists

between worm nodes, and by giving probing worms a signal when they

scan already infected hosts. In addition, a communication network

could be set up between nodes, allowing the worm to act as a single

distributed system.

9The name of the model is inspired by the famous Andy Warhol quote: ”In the future,
everyone will be world-famous for 15 minutes.”

33

Introduction to Worms

3.4.3 Flash Worm

A flash worm is an extension to the Warhol model, where the main difference

is that a flash worm is introduced into the network from several points in

the initial stage as opposed to one point in the Warhol model. In addition,

these first hosts are chosen carefully, because of the high bandwidth needed

to upload the large hitlists in the initial stage of propagation.

Staniford et al. [40] have shown that a flash worm having all the properties

outlined above could spread to 3 million vulnerable hosts in less than 30

seconds.

3.4.4 Jumping Executable Worm

A jumping executable is a simple worm that propagates at a very low rate.

The basic property of a jumping executable is that the worm is only active

on one single node at a time. When the worm manages to compromise a new

node, it simply transfers the executable to the new node and ceases activity

on the parent node. In this way, it can stay below the detection thresholds

of many intrusion detection systems.

Although this kind of worm will not propagate at a very high rate, it can

still cause a lot of damage to important corporate or government networks,

since it could spread to many computers without being detected [15].

3.4.5 Curious Yellow

Inspired by the Warhol model, Brandon Wiley has proposed the first coor-

dinated worm design – the Curious Yellow [41].

To avoid requiring all instances of the worm to be aware of all other instances

(which would lead to a disproportionate use of bandwidth), the coordination

between the worms is based on a distributed hash tables (DHT) design called

AChord (Anonymous Chord). AChord provides several properties for the

worm network:

34

3.4 Future Worms

• Each node in the network is reachable from all other nodes in the

network through no more than O(log N)10 intervening nodes.

• Each node has to keep track of no more than O(log N) other nodes.

• It is very difficult for any node to find out the identities of all the

other nodes in the network, making it hard to disable the network by

discovering the identity of nodes.

This coordinated worm design introduces many advantages compared to

other, non-coordinated worms. First, only one instance of the worm will

scan each potential target. This will both reduce the load on the network

compared to a worm utilizing a normal scanning technique and reduce the

chance of being detected by an IDS. Second, the worm instances may be

updated very quickly with new patches either to exploit newly discovered

vulnerabilities or to change the signature of the worm to evade future de-

tection.

10Where N is the number of worm nodes.

35

Chapter 4

Worm Countermeasures

A worm countermeasure is, for the purpose of this thesis, defined as an action

taken to slow or stop the propagation of a worm. This chapter presents two

groups of worm countermeasures, namely detection and protection.

4.1 Worm Detection

Nearly all the techniques for detecting worms that have been published in

recent years benefit from the fact that the network traffic generated by

worms are somewhat different then the legitimate traffic present. As worms

propagate, they are likely to initiate a lot of outbound connections. In

addition, most worms send out packets with almost identical payload to all

its victims, making it possible to detect it by simply looking for many similar

packets.

This section describes two of the most recently published methods for de-

tecting worms using honeypots; HoneyComb and HoneyStat. In addition,

the worm detection architecture called Sweetbait that utilizes HoneyComb

for worm detection is decribed. The final part of this section summarizes

some of the existing methods that are not using honeypots.

37

Worm Countermeasures

4.1.1 HoneyComb

Kreibich et al. [42] describes an automated signature generation tool known

as HoneyComb. HoneyComb is a plug-in for the open source low-interaction

honeypot Honeyd.

The name of the tool implies that it is combing for patterns in the honeypot

traffic [sli]. By examining traffic inside the Honeyd honeypot at different lev-

els in the protocol hierarchy and using a pattern-matching algorithm known

as the longest common substring (LCS), HoneyComb is able to detect pre-

viously unknown attacks and automatically generate IDS signatures.

The detection algorithm is based on the fact that most worms propagate by

sending an extensive amount of packets to multiple hosts containing iden-

tical or very similar payloads. Every incoming packet on an established

connection is compared to packets of other stored connections1 to the same

destination port. This is done in two different ways: horizontally and verti-

cally.

Horizontal detection between traffic flows is performed by comparing all

messages at the same depth2 in the flow to each other. The messages

are passed as input to the LCS algorithm in pairs, as illustrated in

Figure 4.1.

Vertical detection is carried out by concatenating several messages from

one packet stream into a string and comparing this with a correspond-

ing concatenated string from another traffic flow, as depicted in Fig-

ure 4.2.

Signatures generated by HoneyComb have the following format:

alert protocol ipsrc srcport -> ipdst dstport (msg: "Honeycomb

date and time "; flags: ; flow: ; content: "");

The flags field represents the corresponding enabled flags in the IP header,
1The number of stored connections can be specified in the configuration file. When the

number of connections exceeds this specified limit, old connections are dropped to make
room for new ones.

2Two messages are said to be at the same depth if they are at corresponding positions
in the sequence of packets forming their respective connections.

38

4.1 Worm Detection

Figure 4.1: Horizontal pattern detection between traffic flows.

Figure 4.2: Vertical pattern detection between traffic flows.

while the flow field indicates whether a connection is established or not. The

content field represents the match found by the LCS algorithm.

As HoneyComb is limited to the longest common substring algorithm, a

worm camouflaging its payload could potentially evade detection. Another

drawback with this algorithm is that it is quite resource-demanding. Per-

formance tests conclude that, despite a significant performance overhead,

the system can be run without problems on honeypots not experiencing too

high a traffic load [42].

39

Worm Countermeasures

Sweetbait

Georgios Portokalidis describes a system for worm detection and contain-

ment called Sweetbait that utilizes HoneyComb to create signatures for un-

known worms [43, 44].

As illustrated in Figure 4.3, the system is comprised of several honeypots,

network intrusion detection and prevention (NID and NIP) sensors, several

local and a global control centre. The honeypots’ role in this system is

to detect new worms and create signatures that can be monitored by the

network intrusion detection and prevention sensors. In addition to detecting

and preventing new attacks on the network, these sensors report the activity

level of each signature to the local control centre. The local control centre

will in its turn decide which signatures the sensors should check for in the

traffic. This will prevent the signature pool at each sensor from growing

too large, keeping the throughput at an acceptable level. The local control

centre will also report its stored signatures, and activity level of each of

these to the global control centre. The global control centre correlates all

the information it receives and distributes this information back to the local

control centers, making them able to react to a global worm outbreak even

before the worm reaches the local network.

The actual worm detection mechanism in this architecture is based on the

low-interaction honeypot Honeyd with the plug-in HoneyComb for anomaly

detection and signature creation. Portokalidis also introduces a new plug-in

to Honeyd, called HoneyBounce, that makes it possible to whitelist3 internal

traffic to reduce the number of false positives. In addition, the signatures

generated by HoneyComb are correlated in order to produce more general-

ized signatures.

3The process of filtering out non-malicious traffic that does not need to be processed
by the anomaly detector is often referred to as whitelisting.

40

4.1 Worm Detection

Figure 4.3: The Sweetbait architecture.

4.1.2 HoneyStat

HoneyStat [45] uses another approach to detect worms in local networks.

Unlike HoneyComb, which utilizes a longest common substring algorithm

to search for similarities in packet payloads, the detection technique used

by HoneyStat is based on a typical worm infection cycle. Dagon et al. [45]

identifies three type of events that worms are likely to trigger during an

infection:

Memory events Nearly all worms exploit software vulnerabilities when

41

Worm Countermeasures

infecting new hosts. The most common of these vulnerabilities that

can lead to an exploit is the buffer overflow.

Network events In addition to the network traffic generated when propa-

gating, some worms need to download the actual worm payload after

infecting a new host.

Disk events Many worms write their payload to disk to make sure the

worm is still operative after a computer restart. In addition, some

worms alter existing binaries or other files to make trojan versions of

itself.

The HoneyStat detection system will typically consist of several high-interaction

honeypots emulated with VMware [VMW]. Because of the need to cover a

large address space (the larger the address space the larger the probability

of experiencing worm traffic) the honeypots are also multihomed4.

Unlike HoneyComb, whose main purpose is to generate IDS signatures for

unknown attacks, the honeypots in HoneyStat are configured to capture

relevant data when any of the above mentioned events are triggered. This

data includes the operating system and patch level of the honeypot host, and

specific event data like stack state for memory events and outgoing packets

for network events [45]. In addition, a trace file of network activity prior to

the actual event is logged.

By correlating the captured data between similar events, one can efficiently

detect worm outbreaks in a local network. The HoneyStat approach cannot

only detect zero-day worms, but also provide detailed description about the

worm’s behavior due to the extensive logging capabilities.

4.1.3 Other Methods

A worm detection system developed by IBM, called Billy Goat, also utilizes

honeypot-like technology to detect worms [46]. The primary intention of

this detection system is, however, not to detect unknown worms, but rather

4A host with more than one IP address is said to be multihomed. All mainstream
operating systems support multihoming, e.g., Windows NT allows up to 32 addresses [45].

42

4.1 Worm Detection

to alert, with a zero false positive rate, network administrators of known

worms present in their network.

Singh et al. [47] propose an automated system for detecting new worms and

creating signatures known as the EarlyBird. This system aims at detecting

worms based on three traffic characteristics common to most worms;

• Highly repetitive packet content.

• An increasing population of sources generating infections.

• An increasing number of destinations being targeted.

Akritidis et al. [48] present a worm detection technique that is based on four

properties possessed by most worms:

• Diversity of destination - the worms are spread to as many victims as

possible.

• Spread by clients - the worms are usually spread by clients, i.e., by

computers that initiate connections.

• Payload repetition - the packets belonging to the same worm contain

similar packet payload.

• Small size - worms tend to be small in size in order to spread as fast

as possible.

Wang et al. [49] base their worm detection scheme, PAYL, solely on cor-

relating anomalous incoming and outgoing packet content. The motivation

for this is that most worms infect new hosts with somewhat similar payload

as they used to infect the present host. The system compares incoming and

outgoing packets to a host and will in this way be able to detect and generate

signatures for zero-day worms.

Zou et al. [50] describes an early warning system for Internet worms based on

the assumption that the worms follow an epidemic model. Using a recursive

filtering algorithm known as a Kalman filter, this system is able to detect

the presence of a worm early in its propagation phase by monitoring trend

changes in illegitimate scans to large IP networks. However, this detection

43

Worm Countermeasures

technique is best suited for large data sets and may not be appropriate when

detecting worms in small networks [51].

An architecture known as Shadow Honeypots is introduced by Anagnostakis

et al. [52]. In this architecture, several anomaly detectors are placed in front

of a production network to monitor all incoming traffic. Packets that are

regarded as anomalous by these detectors are forwarded to the ”shadow

honeypots” that are protected replicas of the production system they are

trying to protect. Legitimate traffic is validated by the shadow honeypots

and processed in a normal way by the production servers, while traffic that

is part of a possible attack will be identified and blocked. The fact that this

system is placed in front of a production system, instead of only listening to

unused address space, makes it well suited for detecting hitlist worms5.

Madhusudan et al. [53] introduce a system for real-time worm detection

using hardware. The detection strategy in this system is based on two ideas

presented in the EarlyBird article [47]:

• A worm detection system should look for frequently occurring content.

• The system should also be able to detect worms that use simple poly-

morphic techniques.

This detection system has promise since it is implemented in hardware and is

able to process packet content even on high bandwidth networks. However,

the detection algorithm itself may prove to be too simple, as it is unable

to detect worms using more sophisticated polymorphic techniques such as

instruction reordering or replacement.

4.2 Worm Protection

There are several different ways of protecting a computer against worm

attacks and other kind of malicious traffic. One of the most intuitive ones is

to keep every computer updated with the latest security patches at all times.

However, evaluating patches and upgrading systems is time consuming and

5Assuming that the hitlist worm is targeting the given production system.

44

4.2 Worm Protection

may cause downtime that is unacceptable to some systems [15]. In addition,

many worms utilize unknown vulnerabilities not targeted by the security

updates. The remainder of this section will give a brief overview of some

possible defense strategies against these worms, separated into network and

host-based approaches.

4.2.1 Network Defenses

Network firewalls are devices that enforce a local network security policy

to block unwanted traffic entering and leaving a network [15]. There are

three common types of firewalls: packet filtering routers, application-level

gateways and circuit-level gateways, each of which filters traffic based on

different criteria [18]. A packet-filtering router decides whether or not to

forward or discard an incoming or outgoing packet based on a set of rules

regarding the packet header (e.g., source IP address). An application-level

gateway filters traffic based on the application that is being used. Circuit-

level gateways do not allow end-to-end TCP connections, which mean that

the filtering is based on which connections to allow through the gateway

(typically based on trust of the internal users). Once a connection has

been established, the gateway acts as a traffic relay without examining the

content.

Firewalls can provide worm protection at a certain level, but may turn out to

be inadequate when fighting worms entering the network through legitimate

applications. As once stated by William R. Cheswick: a firewall is ”a sort

of crunchy shell around a soft, chewy center” [54].

Network intrusion detection systems monitor incoming and outgoing net-

work traffic looking for unusual activity that could be part of an attack.

Port scanning activity and incoming packets containing shell code are ex-

amples of events that can trigger alerts from detection systems. The NIDS

can also provide the firewall with new signatures and IP addresses to include

in its blacklist6.
6Traffic from certain IP addresses is blocked entering the network. A list of these IP

addresses is often referred to as a blacklist.

45

Worm Countermeasures

4.2.2 Host-Based Defenses

A host-based intrusion detection system monitors the user activity and the

system’s state. This type of intrusion detection system is able to detect and

respond to irregular behavior by the user, as well as processes that try to

execute commands they are not supposed to.

A host-based firewall can serve as a complement to a network firewall, pro-

viding more fine-grained control of what services and traffic to allow for

each host [15]. While the network firewall has to allow traffic to all appli-

cations used in the network, the host-based firewall can block all traffic to

applications not used on the host.

Virus detection software uses signatures to search for malicious software in

files present on the computer. If a file with malicious code is discovered, the

virus detection software will put it in quarantine or remove it. Anti-virus

software can be configured to search for threats based on different events,

e.g., prior to execution of each binary file, every time a file is sent as an

attachment in an e-mail or simply on a regular basis. With a signature-based

detection system like this, it is vital that the virus and worm definitions are

kept updated at all times.

As stated in the previous chapter, worms utilize security flaws in widely

used services to propagate. By always running network processes with a

minimum set of privileges, a worm infection might be avoided. On UNIX

systems, administrative rights are needed to begin actively listening on the

ports between 1 and 1024 [29]. Due to this, every program that needs to use

one of these ports requires root privileges to bind itself to the port. However,

once the binding is completed, the program does no longer need the escalated

privileges. Making sure that all processes drop the administrative privileges

when they are no longer needed can help protect the computer against worm

infections.

Running applications in a protected environment, often referred to as a

sandbox environment, may also provide the necessary protection to avoid

worm infections. This is typically done by the UNIX system call chroot()

46

4.2 Worm Protection

which only presents a restricted subset of the real file system to the running

process [15]. The number of tools and libraries available in the sandbox are

also minimized to reduce the chance for a worm to elevate privileges.

47

Chapter 5

Worm Detection

Experiments

This chapter describes the experiments conducted in this project. First, the

software tools used for the experiments and the analysis of the captured

data is presented. Second, setup and implementation of the experiments are

presented along with analysis of the collected data.

Prior to running the experiments, two hosts were added to the honeypot

setup installed at NTNU to incorporate a worm detection mechanism. Three

experiments were then conducted to evaluate the effectiveness and reliability

of this worm detection mechanism.

5.1 Software Tools

This section describes the software tools used in the experiments as well

as the ones used for the analysis of the collected data. A configuration

guide for the use of these software tools on the honeypot setup at NTNU

is given in [6]. The configuration of the newly incorporated worm detection

mechanism can be found in Appendix C.

49

Worm Detection Experiments

5.1.1 Experiment Tools

A short description of all the software tools needed to conduct the experi-

ments is given in this section.

Arpd

An Address Resolution Protocol (ARP) daemon is needed to make the ma-

chine running Honeyd able to answer ARP requests beyond the one IP ad-

dress assigned to the physical Media Access Control (MAC) address of the

computer’s network interface card. The ARP daemon replies to any ARP

request for a predefined set of IP addresses (after determining that no other

host in the network is claiming that IP), thus facilitating the deployment of

several low-interaction honeypots on one physical host machine.

Flowreplay

Flowreplay [Flo] is a tool able to emulate a network client by replaying a

traffic trace and at the same time making sure the packets that are sent have

the correct header fields (e.g., the sequence number and acknowledgement

value). According to the developer, this tool is not yet stable and is still an

alpha version.

HoneyComb

HoneyComb is a plug-in for Honeyd that searches for common byte patterns

in packet payload to automatically create detailed signatures for worms. A

detailed description of HoneyComb is already given in 4.1.1.

Honeyd

Honeyd [Hona] is a low-interaction honeypot daemon that can emulate thou-

sands of virtual hosts at the same time. By opening different TCP/UDP

50

5.1 Software Tools

ports and adding scripts to emulate services on the open ports, each of these

virtual hosts can be configured individually.

Iptables

Iptables [Netb] is used for packet filtering on Linux systems, and can thus

be used as a firewall to protect the host from unwanted traffic. In the

experiments, Iptables is set up to accept only a limited set of services for

the host machines, while no filtering is performed on the traffic bound to

the low-interaction honeypots.

Netdude

Netdude [Neta] is a Linux GUI application for inspection, analysis and ma-

nipulation of Tcpdump traffic trace files. The tool allows copying of packets

between traffic traces as well as editing of captured packets.

Network Time Protocol (NTP) time synchronization

Two tools utilizing the Network Time Protocol, Ntpdate and Ntpd, are used

to keep the system clock synchronized at all times on the computers used

in the experiments. Ntpdate is executed when the machine is started to

correct large time differences, while Ntpd is a daemon running continuously

to keep the times synchronized.

Oinkmaster

Oinkmaster [Oin] is a Perl script that updates the Snort rule set with the

latest rules from an online repository. This is especially useful when con-

ducting experiments on several machines, making sure the same detection

rules are used on all of them.

51

Worm Detection Experiments

PackETH

PackETH [Pac] is a Linux application for creating and sending any Ether-

net packet. A sequence tool is also available, making it possible to send a

sequence of predefined packets.

Snort

Snort [Sno] is a signature-driven network intrusion detection and prevention

system. In the experiments conducted in this project, Snort operates as a

NIDS, allowing packets to travel to their destination addresses, but creating

alerts when the packet payload match a signature in the rule set. Snort can

also be run in inline-mode, operating as a NIPS, completely blocking traffic

that matches any of the rules. This operating mode can be used to contain

known computer worms.

Tcpdump

The Tcpdump [Tcp] tool is used to monitor traffic to and from a computer,

utilizing the libpcap library. The packets received can be printed to the

screen or stored in trace files, convenient for later analysis.

5.1.2 Analysis Tools

A brief introduction of the tools used to analyze the results of the experi-

ments is given in this section.

Basic Analysis and Security Engine (BASE)

BASE [BAS], which is based on code from the Analysis Console for Intrusion

Databases (ACID) project [ACI], provides a web front-end to query and

analyze the alerts generated by Snort, which can be useful when, for example,

sorting alerts based on their timestamps.

52

5.2 Problems with HoneyComb

Ethereal

Ethereal [Eth] is a network protocol analyzer that can be used to display the

contents of a Tcpdump traffic trace. Filters can easily be applied in order to

display, for example, packets addressed to a certain IP address or utilizing

a specific protocol.

Tcpslice

Tcpslice can be used to split Tcpdump traffic traces into smaller files based

on time intervals. This is convenient because the viewing of large trace files

in Ethereal is resource-demanding.

Tcpstat

Tcpstat is a program that reports network interface statistics of real-time

traffic, or of traffic captured in Tcpdump files. It is especially valuable

because of its filtering capabilities. It was used during the analysis to get

statistics of traffic from the Tcpdump files.

5.2 Problems with HoneyComb

Several obstacles were encountered in the process of setting up and con-

ducting experiments with HoneyComb. The first problem was experienced

as the newest version (version 0.6) failed to compile with Honeyd version

1.5a. Christian Kreibich, the developer of HoneyComb, was contacted and

replied by fixing the problem and releasing version 0.7 of HoneyComb. This

version compiled with Honeyd 1.5a without errors, but caused Honeyd to

crash whenever a UDP packet was received to any of the honeypots. To lo-

cate the problem, Honeyd was executed in a controlled environment1 which

provided a backtrace of the problem at the time of the crash. This back

1The GNU Project Debugger [Deb].

53

Worm Detection Experiments

trace was sufficient for Kreibich to locate the error and release a prelimi-

nary2 new version of the library libstree needed by HoneyComb to run

the LCS algorithm [55].

When running small test experiments, HoneyComb provided strange results,

and it did not seem as if HoneyComb interpreted the received traffic cor-

rectly. Adding several debug messages in the source code of HoneyComb

confirmed this assumption. As HoneyComb was developed in 2003, it was

suspected that the newer versions of Honeyd might have introduced this

error in HoneyComb. This turned out to be the most likely explanation, as

the only available version of Honeyd providing HoneyComb with the correct

information was version 0.8b released in 2004. Detailed debug information

about the experienced errors was sent to Kreibich, but as of this writing no

new version of HoneyComb has been released [55].

While thoroughly examining the HoneyComb source code, a limitation in the

implementation was identified. Because HoneyComb deals with UDP and

TCP packets in a similar fashion, an unwanted effect is introduced when

detecting single packet UDP worms.

To understand this limitation, knowledge of the TCP and UDP protocols

are required. TCP connections are normally set up by a three-way hand-

shake before the actual information exchange can start, while UDP traffic is

connectionless. HoneyComb deals with TCP connections correctly and per-

forms no extensive comparison of the first packet in a connection with older

connections. Instead, only packet header comparison is performed. Honey-

Comb deals with UDP packets in a similar fashion, viewing UDP packets

with the same header fields3 as a ”UDP connection”.

The limitation of this approach can be illustrated by an example4, as shown

in Figure 5.1. In this scenario, it is assumed that a UDP worm, that ran-

domly scans the Internet for new hosts to infect, exists. It is further assumed

2The updated libstree version was not released as an official new version due to
Kreibich’s suspicion that a memory leakage may have been introduced.

3The same source address, source port, destination address and destination port.
4This example is a result of a short experiment conducted on the 13th of May to prove

the limitation of HoneyComb when dealing with UDP worms. Complete results from this
experiment can be found on the attached DVD.

54

5.2 Problems with HoneyComb

that the compromised hosts all send one packet to each of the honeypots

containing the actual worm payload, as indicated by the dotted arrows in the

figure. HoneyComb receives all these packets, but since they are all initial

packets of a connection, no payload comparison is performed. An example

of a signature generated by HoneyComb in this case is given below.

alert udp any any -> 129.241.196.0/24 1434 (msg: "Honeycomb Sat

May 13 10h34m14 2006 ";)

To trigger a payload comparison in this scenario, one of the compromised

hosts will need to send a second UDP packet containing the worm payload

to one of the honeypots, as illustrated by the solid red arrow in Figure 5.1.

Figure 5.1: Limitation in HoneyComb’s processing of UDP packets.

To improve this situation, making HoneyComb able to detect UDP worms

after only receiving two instances of the worm (given that the two packets

either have distinct source or destination addresses), the source code was

altered and the program was recompiled. The method in the C source file

that was altered is included in Appendix D. The entire source file, hc udp.c,

can be found on the attached DVD. All the following experiments in this

55

Worm Detection Experiments

master’s thesis are conducted with the altered source code.

During one of the experiments, a significant error regarding the implemen-

tation of LCS used by HoneyComb was discovered. This will be further

elaborated in 5.5 and 5.6.

5.3 Experiment Objectives

The purposes of the experiments conducted during the work on this thesis

are to evaluate the effectiveness and reliability of the HoneyComb approach;

detecting worms using a longest common substring algorithm. The aspects

considered are listed below:

Signature accuracy How accurate are the signatures generated by Hon-

eyComb?

Polymorphic worm resistance Can the algorithm resist simple polymor-

phic techniques used to change the worm payload between propagation

attempts?

Live traffic results What signatures will be generated by HoneyComb on

the NTNU and Uninett network?

False positives Is the amount of false positives at an acceptable level?

To test HoneyComb it was decided to conduct three different experiments.

Two of these were conducted in a controlled environment, while HoneyComb

was fed with live traffic from the NTNU and Uninett network in the third.

5.4 Signature Accuracy Experiment

The main goal of this experiment, which was conducted on the 14th of May

2006, was to test the accuracy of the signatures created by HoneyComb by

sending actual worms to Honeyd in a controlled environment. To test both

TCP and UDP detection functionality in HoneyComb, two worms, each

using one of these protocols, were needed.

56

5.4 Signature Accuracy Experiment

During the experiments conducted in [6], a significant amount of the UDP

Slammer worm traffic was captured. As no TCP worm was captured during

these experiments, the full payload of Code Red II was found and down-

loaded from the Internet [pay].

5.4.1 Setup and Implementation

The experiment setup is depicted in Figure 5.2, where the three computers

described below are connected through a switch.

Figure 5.2: System setup for the controlled environment experiment.

Blade (129.241.205.108) - Running Debian. The centralized machine for

databases, web interface and data storage for the experiments.

• Iptables 1.3.3

• Mysql 4.0.24

• Ntpdate 4.2.0a

• Openntpd 3.7

• Tcpslice 1.2a2

57

Worm Detection Experiments

• Apache 1.3.33

• BASE 1.1.2

Homer (129.241.196.197) - Running Fedora Core 3. Emulating Honeyd hon-

eypots running Windows or Linux. The Windows honeypots were set up

with scripts emulating ftp and web server as well as several backdoors cre-

ated by Mydoom, Kuang2, Sasser, Dabber, Lovgate and Blaster. The Linux

honeypots were configured with scripts emulating ftp, web server, smtp, ssh

and proxy server. A list of the IP addresses of the honeypots as well as the

operating system emulated can be found in Appendix E.

• Iptables 1.2.11

• Ntpdate 4.2.0a

• Ntpd 4.2.0a

• Honeyd 0.8b

• HoneyComb 0.7

• Tcpdump 3.8

Elektra (129.241.209.110) - Running Ubuntu 5.10. Replaying traffic dumps

and sending generated worm packets.

• Iptables 1.3.1

• PackETH 1.3

• Flowreplay 2.3.5

• Netdude 0.4.6

The UDP and TCP worm packets were sent from Elektra to the Honeyd

honeypots run on Homer using the applications PackETH and Flowreplay,

respectively.

To emulate a real TCP worm, a TCP connection had to be set up before the

actual worm payload could be transmitted. Two separate traffic dumps, the

TCP connection establishment and the worm payload transmission, respec-

tively, were combined using Netdude to create a valid Code Red II trace.

58

5.4 Signature Accuracy Experiment

As the Maximum Transmission Unit (MTU) of an Ethernet frame is fixed

to 1500 bytes, the Code Red II payload had to be fragmented into three

IP packets. The creation of the Code Red II trace in Netdude is shown in

Figure 5.3.

Figure 5.3: Creation of a Code Red II trace in Netdude.

To trigger HoneyComb to generate a signature for this worm, two similar

Code Red II traces were sent to two distinct honeypots using Flowreplay.

As indicated in 5.1.1, Flowreplay is not fully developed. Due to problems

trying to send UDP packets and TCP packets in the same trace, the Slammer

packets were sent using the sequence tool in PackETH. Two packets were

sent to two distinct honeypots to generate a signature for the Slammer worm.

The PackETH sequence tool is illustrated in Figure 5.4.

5.4.2 Results

Extracts of the signatures generated by HoneyComb in this experiment is

shown below.

Signature for the Code Red II worm:
alert tcp 129.241.209.110/32 any -> 129.241.196.0/24 80 (msg: "Honey-

comb Sun May 14 13h17m10 2006 "; flags: PA+; flow: established; con-

tent: "GET /default.ida?XXXXXXXX (...) 00|CodeRedII|00 (...) F7 D8";)

59

Worm Detection Experiments

Figure 5.4: The PackETH sequence tool.

Signature for the UDP Slammer worm:

alert udp 129.241.208.0/24 1023 -> 129.241.196.0/24 1434 (msg: "Hon-

eycomb Sun May 14 13h17m15 2006 "; content: "|04 01 (...) D6 EB|";)

A comparison of the signature content and the worm payload sent to the

honeypots shows that HoneyComb generates accurate signatures in a con-

trolled environment.

The complete signatures generated by HoneyComb in this experiment can

be found in Appendix F.1. The traffic traces that were used to generate the

worm traffic, as well as all the log files from the experiment can be found on

the enclosed DVD.

5.5 Polymorphic Payload Experiment

This experiment was conducted on the 12th of June 2006 to test if Honey-

Comb was able to detect simple polymorphic worms.

60

5.5 Polymorphic Payload Experiment

5.5.1 Setup and Implementation

The machines used in this experiment were the same, and had the same set

of tools, as in the signature accuracy experiment described in 5.4.

As no real polymorphic worm was available, it was decided to construct

three different packets using the packet generator tool PackETH. The pay-

load of these packets were different, except one common byte string: 05 04

AB 45 32 69 AC BF. The entire payload of these packets can be found in

Appendix G. The worm behavior imitated using this approach is believed

to be quite similar to that of a simple polymorphic worm. That is, a worm

using instruction reordering, byte padding or encryption (with parts of the

payload, e.g., the decryption routine, unencrypted) to achieve payload vari-

ations between each propagation attempt.

The three packets were sent to three different honeypots on Homer from one

source IP addresses. To avoid the need of a connection setup, the packets

were sent using the UDP protocol.

5.5.2 Results

According to the documentation, HoneyComb identifies worms by running

the longest common substring on the payload of incoming packets sent to the

same port [42]. The expected result of this polymorphic payload experiment

was therefore that two packets having any common content larger than the

minimum pattern length variable5 would trigger HoneyComb to generate a

matching signature containing the longest common substring. The actual

results from this experiment did, however, not coincide with these predic-

tions. Actually, the signature generated after receiving two of the three

polymorphic packets contained the entire payload of the first packet.

After obtaining these results, several debug messages were added in the

source code of HoneyComb to help determine the reason for this behavior.

5This is the minimum pattern length that HoneyComb requires before it generates a
signature. In the experiments described in this thesis, this variable is set to 5 bytes.

61

Worm Detection Experiments

Short test experiments6 with both UDP and TCP traffic were then con-

ducted to check if both protocols were affected. The results showed that

the error was protocol independent. It also became evident that the error

was located somewhere in HoneyComb’s LCS implementation, as none of

the generated signatures were based on the longest common substring of

two packets. Rather, every result from the LCS algorithm was identical to

the longer of the two input strings, even if the two strings did not have

any common content at all. This was not discovered in the signature accu-

racy experiment, as the packets sent to HoneyComb in this experiment had

identical payload.

Since HoneyComb was unable to run appropriately with the older versions

of libstree, it is unclear whether or not this error has been introduced in

the preliminary new version. Due to the limited amount of time available,

and the fact that the LCS implementation consists of 3000 lines of code,

a thorough analysis of the code, with the purpose of removing the error,

is considered to be beyond the scope of this thesis. Detailed debugging

information regarding this error was sent to the developer of HoneyComb,

Christian Kreibich.

5.6 Live Traffic Experiment

The purpose of the experiment was to determine what kind of traffic Hon-

eyComb would generate signatures for in a live traffic environment as well

as to study the amount of false positives among the generated signatures7.

The live traffic experiment was conducted between the 29th of May 2006 and

the 5th of June 2006 in intervals of 24 hours. Because the error described

in 5.5 was not discovered until after the live traffic experiment was ended,

the results from this experiment are affected by HoneyComb’s erroneous

implementation of the LCS algorithm. The effects of this discovery is further

discussed in 5.6.2 and have been taken into consideration during the analysis

6The logs and traffic traces from these experiments can be found on the attached DVD.
7False negatives are not considered in this experiment because it would require a com-

plete overview of the incoming traffic.

62

5.6 Live Traffic Experiment

of the results.

5.6.1 Setup and Implementation

The system setup for this experiment is illustrated in Figure 5.5.

Figure 5.5: System setup for the live traffic experiment.

Blade and Homer used the same set of tools as in the two previous experi-

ments. In addition, Calvin was deployed on the Uninett network.

Calvin (158.38.144.66) - Running Fedora Core 3. Using the same set of tools

as Homer, and emulating the Honeyd honeypots on the Uninett network.

63

Worm Detection Experiments

As NTNU removes some known attacks bound to hosts connected to their

network, honeypots placed in this network would receive a limited amount

of malicious traffic. Because the purpose of this experiment was to generate

signatures based on worm traffic, the filtering on the two subnetworks was

removed by ITEA and Uninett.

A gateway (el-gsw.ntnu.no) placed on the Uninett network multicasted a

specific packet every 30 seconds to all the honeypots deployed on the Uninett

network. These packets triggered the Snort alert BAD-TRAFFIC IP Proto

103 PIM. As reported in [5, 6], the packets do not seem to be malicious, so

it was decided to remove this rule from the Snort rule set.

After running longer test experiments with HoneyComb, it was found that

Honeyd ended up consuming the majority of the host’s memory resources.

This caused the process to crash a couple of days into the experiments. The

reason for this is believed to be the possible memory leakage introduced in

the preliminary version of libstree, as stated in 5.2. As a result, it was

decided to run the live experiments in intervals of 24 hours.

5.6.2 Results and Analysis

The error discovered during the polymorphic payload experiment affects the

results of the live traffic experiment. As stated in 5.5, HoneyComb is not

able to generate a signature based on an actual common substring of two

payloads. Rather, following the establishment of two distinct connections

to the same destination port, HoneyComb seems to generate a signature for

the packet with the largest payload, regardless of any matching substrings

in the two packets. This is also the case for any subsequent comparison

involving that particular destination port. The error causes the following

abnormal behavior:

• HoneyComb will not generate any signatures based on parts of a pay-

load, only on an entire payload of a packet. That is, it will never

generate generalized signatures that can help identify multiple packets

with only partly identical payloads.

64

5.6 Live Traffic Experiment

• The fact that HoneyComb is not able to generate generalized signa-

tures also leads to a potentially large number of generated signatures

based on packets with payload that contains connection-specific infor-

mation (e.g., source or destination IP address). These specific signa-

tures can only be used to identify packets for that particular connec-

tion. It is possible that the LCS algorithm would have helped generate

more general signatures, excluding the connection-specific parts of the

payloads, for these kinds of packets. It is only when two packets with

identical payload are captured on minimum two distinct connections

within a reasonable time interval that HoneyComb would have up-

dated the general signature to include the connection-specific part of

the payload.

• As HoneyComb seems to generate a signature based on the packet with

the longest payload, it is likely that the signatures with large content

are overrepresented compared to the ones with smaller content. In

order to generate a signature for a small packet, a packet of equal or

smaller length needs to arrive at the same destination port.

• Vertical detection, as described in 4.1.1, can result in signatures with

content consisting of multiple instances of a single packet payload.

This can happen when two or more packets with identical payload are

received on the same connection and concatenated in order to perform

vertical detection. As it is unlikely that any subsequent packets sent

to that destination port will contain a payload with multiple instances

of the payload in the packets already received, the signatures gener-

ated as a result of the vertical detection routine in this experiment are

redundant. Technically, this could also happen when using LCS with

HoneyComb, but it will happen much more frequently in this experi-

ment as the two concatenated flows that are compared do not have to

match in order for HoneyComb to produce a signature.

65

Worm Detection Experiments

Error margin caused by the lack of a functional LCS algorithm

Even though the LCS algorithm used by HoneyComb does not seem to have

worked properly during this experiment, the analysis showed that many

of the signatures were actually based on packets with identical payload.

Hence, a large part of the signatures generated in this experiment is likely

to have been generated with the use of LCS as well. This hypothesis is

further strengthened by the fact that HoneyComb was restarted every 24

hours, and thereby lost its memory, but still generated many of the same

signatures every day.

It is very difficult to accurately quantify the error margin caused by the lack

of a functional LCS algorithm for this experiment. To decide what generic

signatures HoneyComb would have generated by using LCS, an extensive

manual inspection of the captured traffic logs would be required. This is not

feasible given the vast amount of collected data and the time aspect of this

project.

The HoneyComb log files from this experiment show that a substantial

amount of the generated signatures contain some sort of connection-specific

information. By inspection of the data collected, it is evident that these

kinds of signatures would have been generated quite frequently with use of

LCS as well. The reason for this is that the packets with identical pay-

load tend to arrive within short time intervals (before the old connection is

dropped to make room for new connections).

Signature trend analysis

The number of unique signatures generated on the NTNU network is de-

picted in Figure 5.6, while the corresponding number for the Uninett net-

work is illustrated in Figure 5.78. A comparison of these figures shows that

the amount of signatures generated on the NTNU network is approximately

one order of magnitude larger than the number of generated signatures on

the Uninett network. The reason for this is the vast amount of distinct sig-

8The data behind these figures is presented in Appendix H.1

66

5.6 Live Traffic Experiment

natures based on UDP packets sent to port 1026 and 1027 received on the

NTNU network. When excluding these signatures, the number of signatures

generated each day is approximately the same on the two subnetworks.

Figure 5.6: HoneyComb signatures from the NTNU network.

Figure 5.7: HoneyComb signatures from the Uninett network.

The peak in Figure 5.6 is caused by the same UDP packets as mentioned

above. In fact, over 27.000 of the almost 32.000 unique signatures reported

67

Worm Detection Experiments

on the NTNU network during the first day of the experiment are generated

based on these kinds of packets.

What signatures will be generated by HoneyComb on the NTNU

and Uninett network?

Figure 5.8 and Figure 5.9 show the top five types of signatures generated

on the NTNU and Uninett network, respectively. The signature types have

been given names based on characteristic parts of their payload. Examples of

the signature types described in this section can be found in Appendix F.2.

Figure 5.8: The most frequently generated signatures on the NTNU network.

The most frequently generated type of signature on the NTNU network is,

by far, the Msreg. This type of signature constitutes almost 90 % of the

total amount of unique signatures generated on this subnetwork during the

live traffic experiment. Although these signatures are also generated on

the Uninett network, they are far less prominent on this subnetwork. The

reason for this is that the NTNU network seems to experience a significantly

larger amount of the traffic causing these signatures compared to the Uninett

network. It is, however, unclear why the NTNU network seems to be more

68

5.6 Live Traffic Experiment

Figure 5.9: The most frequently generated signatures on the Uninett net-
work.

exposed to this kind of traffic. Since the data in this experiment is collected

over a relatively short period of time, longer experiments could be conducted

to find out if the NTNU network actually is more susceptible to this kind of

traffic compared to the Uninett network.

The Msreg signature is based on packets sent to UDP ports 1026 and 1027

on the honeypots running Windows. These ports are used by the Microsoft

Messenger Service9, a service introduced in Windows NT to allow network

users to send each other short pop-up alerts. The protocol has become

widely used by spammers and these kinds of packets are often referred to as

messenger spam [myN02].

The Msreg signatures generated in this experiment are based on packets

causing a pop-up alert on the screen that tells the user that the Windows

registry is corrupted. The user is then referred to a web site, http://www.

msreg.com, with similarities to the official Windows update web site. Here,

9Although similar names, the Microsoft Messenger Service has nothing to do with
Microsoft’s instant messaging services – Windows Messenger and MSN Messenger.

69

http://www.msreg.com
http://www.msreg.com

Worm Detection Experiments

the user is offered a registry repair for free. In reality, it is much more likely

that the software will install spyware or backdoors on the system.

The packets that cause this signature generate no alerts in Snort. One

of the reasons why HoneyComb generates such a large number of unique

signatures of this type is that most of the packets have similar, but not

identical payload. Another reason could be the nonfunctional LCS algorithm

used by HoneyComb. Even though it is likely that many of the specific

signatures would have been generated anyway, the erroneous implementation

of the LCS algorithm may have lead to a significantly increased number of

these signatures.

The vast amount of signatures generated could indicate worm activity. How-

ever, because human interaction is needed for a host to become infected, it

cannot be considered a worm according to the definition used in this thesis.

The signature type referred to as Slammer, represents signatures that have

been generated based on packets containing the payload of the SQL Slammer

worm. These packets are identified by Snort, and trigger the IDS to generate

two distinct alerts, namely MS-SQL Worm propagation attempt and MS-

SQL version overflow attempt. During the entire experiment, a Slammer

packet is received at least once every five minutes. This is the most frequent

attack reported by Snort, and, in fact, 65 % of all the alerts generated during

the experiments are related to this worm.

By studying the alerts, it is clear that the number of Slammer packets is

almost evenly distributed on the two subnetworks and that the worm has

tried to infect every single honeypot on these networks. Although it is

more than three years since the worm’s initial release and security patches

to remove the exploited vulnerability have been available for a long time,

more than 1.000 distinct source addresses have tried to infect the honeypots

during the seven days of the experiment.

The Set32 signature is the third most frequently generated signature type

on the NTNU network. There are no signatures of this type generated by

HoneyComb on the Uninett network. This signature type resembles the

Msreg signature described above. It is based on messenger spam traffic that

70

5.6 Live Traffic Experiment

causes pop-up alerts and warns the user that Windows has found critical

system errors. The user is urged to visit a web site, http://www.set32.com,

to download software and thereby fix these errors. This software is likely to

install spyware or backdoors on the system.

The packets that cause the Set32 signatures generate no alerts in Snort. As

with Msreg, human interaction is needed for the host to be infected and it

is therefore not characterized as a worm in this thesis.

The Cka signature is among the top five most frequently generated signature

types on both subnetworks. It is based on packets received on UDP port 137

utilizing the NetBios NameService protocol. Although these packets do not

trigger any alerts in Snort, there is a strong indication that these packets

are in fact parts of possible attacks. The single packet that generates this

signature has been identified as identical to the first packet in a series of

packets contained in the exploit [myN] used by the Newbiero worm [56].

This worm utilizes the network file sharing mechanism in Windows to infect

new hosts and install a backdoor.

It is, however, impossible to characterize this signature as the Newbiero

worm with 100 % certainty since the rest of the exploit is lacking in the

traffic trace. The reason for this is believed to be the lack of interaction

offered by Honeyd. Getting no response from the first Netbios request would

probably cause the worm to reject the specific host as a potential victim and

continue to search for new hosts. A working Netbios script for Honeyd could

have helped to clarify whether or not these signatures were actually caused

by the Newbiero worm.

HoneyComb has generated a considerable amount of the Webdav signature

on both the NTNU and Uninett network (this is the seventh most frequently

generated signature type on the NTNU network). The reason for the large

amount of these signatures seems to be that the payload of these packets

contains the IP destination address (i.e., the IP addresses of the honeypots).

This causes a large amount of specific signatures being generated by Hon-

eyComb in this experiment. The packets tend to arrive in chunks with only

one packet destined to each attacked honeypot in each chunk. As the time

71

http://www.set32.com

Worm Detection Experiments

between chunks generally is quite long, it is likely that running HoneyComb

with a functional LCS algorithm would have resulted in a smaller set of

general signatures, excluding the connection-specific parts from the content,

instead of the relatively large number of specific signatures generated in this

experiment.

The packets causing the signatures also trigger Snort to generate WEB-IIS

view source via translate header alerts. This indicates an information

gathering attack to get the processing of scripting files (e.g., asp files) on

Microsoft IIS web servers to fail. If successful, the source files rather than

the processed files are returned to the browser [Data]. Most of these kinds of

alerts seem to be generated as a result of some sort of automated attack. The

attacker starts by scanning port 13910 on the entire honeypot range on one

of the subnetworks. This scan is most likely performed to get an overview

of the hosts running Windows. The attack is followed by port scans to

determine if port 80 is open on the honeypots emulating Windows. The

purpose of this is to find out if the host is running a web server. Finally,

these honeypots receive the packets causing the signature in HoneyComb

and alerts in Snort. As these attacks do not seem to make any attempt to

infect the honeypots in any way, it is unlikely that this is worm traffic.

The fifth most frequent type of signature generated on the Uninett network

is the H04. This name was given to the signature due to the repeated byte

pattern 48 04 in the payload11.

Snort generated three different alerts when receiving this signature type:

WEB-MISC WebDAV search access12, OVERSIZE REQUEST-URI DIRECTORY and

BARE BYTE UNICODE ENCODING, depending on the actual packet payload.

It is unlikely that these signatures are generated based on worm activity as

all the above mentioned alerts are generated by no more than two distinct

source IP addresses. In addition, the WEB-MISC WebDAV search access

alert is generated when an attacker tries to get a complete directory listing

of a web server, a kind of reconnaissance attack [Datb]. This reconnaissance

10Port 139 is a port used by NetBIOS in Windows to enable file and printer sharing.
11The byte 48 is a hex representation of the letter H.
12This alert is not related to the Webdav signature presented above.

72

5.6 Live Traffic Experiment

could be a prelude to a more serious attack, but it is improbable that a worm

would do any preliminary work like this before actually trying to infect a

new host.

The Lookfreebies signature is the fifth most frequent signature type gen-

erated on the NTNU network. The packets causing this signature type

generate no alert in Snort as their payload instruction is seemingly harm-

less. The packets are probably meant for proxy servers, since the pay-

load instructs the recipient of the packet to fetch the php file located at

http://lookfreebies.com/prx1.php. This php file will upon retrieval gen-

erate a report of certain properties of the machine getting the packet, possi-

bly information that spammers can use to find out if the proxy can be used

for spam forwarding.

In addition to the most frequently generated signature types on the two

subnetworks, two other signature types that have been generated during the

experiment are worth mentioning.

HoneyComb has generated 18 unique Dos signatures on the Uninett network

on day 4. This signature is based on 8 uploaded binary files using a backdoor

created by the Mydoom worm that is emulated by the honeypots. As the

files were copied to another machine for analysis, anti-virus software (Nor-

ton AntiVirus 2005 version 11.0.11.4) identified the files as the Doomjuice

worm [Sym04b]. Like some of the Mydoom versions, Doomjuice will also

perform a DoS attack against http://www.microsoft.com.

While analyzing these signatures, it was discovered that another worm prop-

agating through backdoors created by Mydoom, the Gobot.A [Sym04a], had

also been uploaded to one of the honeypots this day. However, because only

one instance of the worm was uploaded to the honeypots, HoneyComb cre-

ated no signature for this worm.

The Tftp signature type is generated after several attempts to download

what seems to be the payload of the Dabber worm – packet.exe. The

Dabber worm is characteristic in the way that it propagates by utilizing a

vulnerability in the Sasser worm implementation, not a backdoor left by the

Sasser worm itself [Gro04]. An examination of the traffic dumps shows that

73

http://lookfreebies.com/prx1.php
http://www.microsoft.com

Worm Detection Experiments

packets destined to port 5554 are sent to the honeypots prior to the actual

instruction to download the packet.exe file. This coincides with Dabber’s

reported behavior, as it searches for Sasser infected hosts on port 555413

before actually launching its own attack. Only 15 signatures of this kind

were generated during the entire experiment, indicating that the worm is

not particularly active. The worm has also been reported to propagate at a

very low rate since it is depending on the new victim to already be infected

by the Sasser worm.

Is the amount of false positives at an acceptable level?

The signature types generated by HoneyComb on the two subnetworks were

combined and categorized according to the function of the corresponding

packets. This categorization is depicted in Figure 5.1014. As shown in the

figure, only 10 % of the generated signatures are confirmed to be caused by

actual worms. Thus, there is a significant amount of false positives generated

by HoneyComb during this experiment. The messenger spam signatures,

Msreg and Set32, are the main reason for this, comprising approximately

82 % of the total amount of signatures.

Several factors are believed to have contributed to this high portion of false

positives. The first, and maybe the most important, is the non-functional

LCS algorithm used by HoneyComb. Since no payload pattern match is

required to generate a new signature, a large amount of signatures that

never would have been created with a working LCS implementation have

been generated. Second, when using a pattern-matching technique to detect

worms, an assumption that worms send multiple similar packets to many

destination addresses is made. Although this is often the case, it is also

the case for other applications and other types of attacks. Thus, a certain

number of false positives will always be generated by a pattern-matching

detection system that aims at detecting unknown worms. It is possible to

adjust the minimum pattern length that is required for the tool to generate

a new signature to make the number of false positives decrease. By doing so,
13Sasser creates a backdoor on port 5554 on each infected machine.
14The data behind this figure is presented in Appendix H.2

74

5.6 Live Traffic Experiment

however, the number of false negatives can increase, as worms with invariants

smaller than the minimum pattern length will manage to evade detection.

Third, the alteration of the HoneyComb source code, as described in 5.2,

may also have increased the number of false positives as signatures can be

generated based on the first packet in a ”UDP connection”.

Figure 5.10: Categorization of unique signature types.

Ratio of incoming alerts and packets

Figure 5.1115 shows a comparison of the total number of incoming packets

and the total number of alerts generated by these packets.

Assuming that the relation between packets and alerts is injective16, about

14 % of all the incoming packets are classified as a potential attack by Snort.

This is, however, a rather crude estimate due to Snort’s behavior:

15The data behind this figure is presented in Appendix H.3
16A relation is said to be injective if there is a one-to-one mapping between the enti-

ties [57]. The relation between packets and alerts is injective if all alerts are based on only
one packet, and all incoming packets can generate only one single alert.

75

Worm Detection Experiments

Figure 5.11: Inbound traffic compared to inbound Snort IDS alerts.

• One incoming packet can make Snort generate several alerts (e.g., the

Slammer worm generates two distinct alerts).

• Snort can generate one alert based on several incoming packets (e.g.,

port scan attacks).

5.7 Data Uncertainties

In addition to the erroneous implementation of the LCS algorithm in Hon-

eyComb, other conditions that affect the quality of the dataset may exist.

The data uncertainties in the experiments described in this thesis are listed

below:

• Unreported errors or weaknesses in some of the software tools used in

the experiments may have affected the data being collected.

• Undiscovered errors made in the configuration of the software tools

may have had an influence on the captured data.

• The live traffic experiment is conducted over a fairly short period of

76

5.7 Data Uncertainties

time. Longer experiments could be conducted to confirm or modify

the results presented in this thesis.

• HoneyComb lost all its knowledge of previously received connections

periodically since it had to be restarted every 24 hours to avoid crash-

ing. If one instance of a certain type of malicious packet was received

by the honeypots just before one of the restarts, and the next instance

was received just after, the malicious traffic could have evaded detec-

tion as HoneyComb must receive two packets destined to the same

destination port before it generates a new signature.

• All traffic to the Uninett network had to be forwarded to the NTNU

network to reach the honeypots. Since this is visible for an attacker

using traceroute, it may have led to suspicion and possibly finger-

printing of the honeypots.

• If the honeypots have been fingerprinted they may have been subjected

to data poisoning by the blackhat community.

77

Chapter 6

An Architecture for

Detection of Unknown

Worms

In this chapter, a worm detection system architecture aimed at detecting

unknown worms is proposed. The system design is based on ideas from

Sweetbait [43, 44] and HoneyStat [45], as well as experiences from the ex-

periments conducted in this project. Contributions in this chapter are the

Known-Attack (KA) filter, described in 6.2.3, and the signature categoriza-

tion scheme outlined in 6.2.6.

6.1 System Properties

Prior to the presentation of the detailed system design, it is necessary to

clarify some key properties of the worm detection system.

6.1.1 Sensor Positioning

One of the first aspects to consider is where to place the sensors. Should

they be placed in the backbone network to monitor all traffic or should they

79

An Architecture for Detection of Unknown Worms

be distributed in the local networks?

A sensor placed in the backbone network would have to be a packet snif-

fer, as its task is to monitor all packets being transmitted, regardless of

the destination IP address. This sensor positioning has several potential

advantages:

• The delay between a worm outbreak and detection in such a system

is minimal, as every packet from one network to another has to go

through these network elements.

• The detection mechanism is transparent to any local network, provid-

ing scalability and ease of deployment.

Although this approach is promising, the high traffic load of the backbone

network makes it difficult to analyze packet payload in real-time. Wagner et

al. [58] have proposed an entropy-based worm and anomaly detection scheme

that can be used in large bandwidth IP networks. This system is, however,

only able to provide early warnings of worm outbreaks based on changes

in the network activity, and must therefore rely on other mechanisms to

actually detect and identify worms.

When the detection sensors are placed in the local networks, the traffic load

experienced is minimal compared to the backbone approach. Thus, payload

examination and worm detection in local networks is feasible and is used

in the architecture proposed in this chapter. The detection sensors used

in such a system can be either network elements, honeypots, or host-based

sensors, as will be further discussed in 6.1.2.

In a local network, an inter-domain signature distribution mechanism is

needed as part of the detection system. By globally distributing newly gen-

erated worm signatures through, e.g., a global signature repository, networks

in other domains can be warned about global worm outbreaks and thereby be

able to block a worm even before it has reached the domain. To accomplish

immunization against rapidly spreading worms, this signature distribution

mechanism has to be a fully automated process. To avoid false alarms in

such a scheme, several precautions must be taken. First, every sensor has

80

6.1 System Properties

to be authenticated before uploading new signatures to the global reposi-

tory and the communication channels must be secure. Second, a signature

should be received by a certain number of distinct sensors before it can be

considered a valid signature. Without precautions like these, people with

malicious intent may create false signatures to block certain network ser-

vices (i.e., denial-of-service), and signatures based on false positives in one

network may spread globally.

6.1.2 Sensor Type

Following the decision to place the sensors in the local network, the next

question is what type of sensor to use in the local network. Three types of

sensors are presented here.

Network filtering elements

One possibility is to use ingress and egress filtering in the local network.

These filters are located on gateways or border routers of the local net-

work, monitoring all the traffic arriving at and leaving the network, respec-

tively [50]. These filters have the advantage that they can inspect all traffic

entering or exiting the local network in which they are deployed. Hence, it

is possible to detect hitlist worms directed towards any of the hosts inside

the local network, but as the filtering technique is signature-based, it may

be difficult to detect polymorphic worms.

There is also a trade-off between the filtering granularity and the resource

usage. Extensive payload inspection may lead to resource exhaustion as it

is likely that the filters will observe a significant amount of traffic. As a

result, most current network filter elements does not inspect the payload of

the observed traffic, but is rather based on packet header analysis [49].

81

An Architecture for Detection of Unknown Worms

Host-based sensors

Another type of sensors is the host-based detection sensors. Examples of this

type are PAYL, which was briefly presented in 4.1.3, and StackGuard1 [59].

One advantage with host-based sensors is the fact that they can be used

to protect the production network directly. Hence, it is possible to detect

hitlist worms directed towards a particular host or set of hosts. Evidently,

the sensors would have to be installed and configured on several hosts which

could be impractical. Another potential obstacle is the need for additional

use of resources on a host that may already be heavily burdened.

Honeypots

A third sensor type is honeypots. As already stated in 2.3, the use of hon-

eypots can result in a more comprehensible data set as they should receive

no legitimate traffic. This also yields lower resource demands compared to

the other sensor types.

A potential drawback with the use of honeypots is their narrow view, as they

can only observe traffic bound for themselves. In general, this introduces a

delay regarding the detection time of worm outbreaks. This problem can, to

a certain degree, be compensated by deploying a large set of distributed hon-

eypots to increase the collective view of the honeypot network. A centralized

processing unit can be used to correlate the data collected by these honey-

pots. As outlined in 2.4, this is one of the goals of the Honeynet Project.

However, traffic sent to other, non-honeypot hosts cannot be observed with

the use of honeypots. Honeypots are therefore not suited to detect hitlist

worms2.

One particular worm characteristic favors the honeypot technique when it

comes to detecting worms. As described in 3.1.1, many worms utilize a

random scanning technique in order to find new victims. By deploying hon-

1StackGuard is a program that monitors the computer stack to detect and prevent
buffer overflow attacks, a type of attack often utilized by worms.

2A system incorporating so-called ”shadow honeypots”, as decribed in 4.1.3, may be
able to detect hitlist worms.

82

6.1 System Properties

eypots, scans that are directed towards unused IP addresses can be detected.

This may provide an early warning alert, and the worm payload can even

be downloaded for further investigation.

As outlined in 2.2, there is a trade-off between the level of interaction of-

fered by the honeypot to the attacker and the amount of information that

can be collected from the attack. It may be argued that there is no need

for a high level of interaction because most worms are not particularly intel-

ligent. When it comes to detecting unknown worms, though, script-driven

low-interaction honeypots may be inadequate. In order to detect an un-

known worm, the vulnerability that the worm tries to exploit has to be

available on the target machine (i.e., the honeypot). For a low-interaction

honeypot, this means that a script emulating that particular vulnerability

is needed. Even though some worms exploit known vulnerabilities, it seems

likely that a script emulating a certain vulnerability is written as a result

of a global worm outbreak, not in advance. In addition, some worms may

exploit unknown vulnerabilities which make the availability of a suitable

script, and thereby possible detection even more unlikely. Hence, it is neces-

sary to provide a set of full-blown services (i.e., high-interaction honeypots)

for the worms to interact with. To minimize the possibility that the high-

interaction honeypots are compromised and used to attack other systems, a

controlled environment should be used.

6.1.3 Detection Strategies

The honeypot detection systems studied in this thesis uses one of two dif-

ferent detection techniques. The first is to search for patterns in the packet

stream, comparing each incoming packet with already received ones. This

is the technique used by HoneyComb, as described in 4.1.1. The second ap-

proach is to define various events (e.g., memory or disk events) and detect

worms based on correlation of the events triggered by traffic from differ-

ent sources. HoneyStat, which was described in 4.1.2, utilizes this tech-

nique. Although these systems detect worms in two different ways, the

actual signature generation mechanism in both approaches is similar. While

83

An Architecture for Detection of Unknown Worms

the pattern-matching technique searches for the longest common substring

in incoming packets, the event-based technique only compares the packets

that have generated the same sequence of alerts.

The pattern-matching technique is based on the fact that most worms scan

the Internet at random for vulnerable hosts, generating a large amount of

similar packets to many distinct destinations. Although this is true for most

worms seen so far, it may not be the case with future worms such as stealthy

worms that propagate at a very low rate or polymorphic worms that modify

their payload at each propagation attempt. An event-based approach may

be better suited to detect these kinds of worms3. As opposed to pattern-

matching, this technique detects worms based on the behavior of the worm,

not the byte pattern in the payload.

When using pattern-matching techniques it is possible to reduce the po-

tential amount of false positives by adjusting the minimal pattern length

required to achieve matches between packets. However, there is a trade-off

between generating few false positives and detecting worms with small in-

variants. Event-based techniques should not generate false positives based

on similar packet payloads. Although false positives can be generated due

to normal network traffic being misidentified as the source of the reported

events, most false positives generated when using such a technique are caused

by several attackers utilizing the same automated attack tool. Generating

alerts and signatures for these attacks may, however, be justified as these

attacks can be just as damaging as any worm [45].

It is important to notice that neither of the two techniques is able to provide

undeniable proof of unknown worm activity. They are, however, by their

respective modes of operation, able to identify packets that are likely to be

part of a worm outbreak.

Considering all the aspects discussed in this section, the best approach for

worm detection using honeypots seems to be the event-based detection tech-

nique. By using this technique, there is a much better chance of detecting

3Although able to detect polymorphic worms, the signatures generated for these worms
may not be sufficient to stop the propagation as the worm may alter its payload prior to
each propagation attempt.

84

6.2 Design

stealthy and polymorphic worms and at the same time minimizing the num-

ber of false positives.

6.2 Design

The proposed system architecture, which is illustrated in Figure 6.1, consists

of a centrally located control unit as well as several deployments of the local

components distributed in various local networks, similar to the Sweetbait

architecture [43, 44], to reduce the time delay associated with detecting

an outbreak of a new worm. The remainder of this section describes the

function of the components in Figure 6.1. In addition, due to its significant

role in the architecture, the signature update mechanism will be presented

in detail in 6.2.6.

6.2.1 Honeypots

The detection sensors in this system are, as argued in 6.1, event-based high-

interaction honeypots. To be able to detect as many worm propagation

attempts as possible, these honeypots must cover a large IP address space.

Several actions are taken to achieve this. First, the honeypots are multi-

homed, which means that they are all assigned several distinct IP addresses.

Second, all the honeypots are run as virtual machines in VMWare. This

decreases the need for physical computers significantly, as a large number4

of virtual honeypots can be hosted by one single physical machine. Running

the honeypots as virtual machines will also provide ease of deployment, as

the honeypot installation process need only be performed once5, as well as

increased security since VMWare provides a controlled environment. To re-

duce the risk that the machines hosting VMWare are compromised, these

machines should not run any remotely accessible services beyond the hon-

eypots.

4The number of virtual honeypots that can be run on one host is depending on the
specifications of the host (e.g., memory, processing unit and disk space available).

5The virtual honeypot machine can be stored in a file and transferred to other hosts
for deployment.

85

An Architecture for Detection of Unknown Worms

Figure 6.1: Proposed worm detection system architecture.

86

6.2 Design

The event-based worm detection approach is based on the method used

by [45]. This method relies on a typical worm infection process, which is

comprised of memory events, disk events and network events. A buffer over-

flow protection mechanism, like StackGuard [59], should be used to monitor

the memory and create events in case of overflow attempts. A disk moni-

toring mechanism, like Kqueue [60], that checks for disk writings to specific

parts of the hard drive, such as the registry or the windows/system32 folder,

should be used to create disk events. Outgoing traffic initiated by the honey-

pot themselves (such as UDP traffic or TCP packets with the SYN flag set)

indicates that they are being used to initiate outgoing attacks, and should

thus generate network events.

During each event the following data is recorded:

• The type of event – along with all relevant, captured data such as stack

state for memory events, outgoing packet payload for network events

and information about file changes for disk events.

• The operating system used on the honeypot, as well as the patch level.

• A trace file of network activity prior to the event.

Since the main focus of this system is to detect and create signatures for

unknown worms, the need for further interaction with the infecting host is

unnecessary when sufficient information about the attack has been recorded.

While it is believed that a memory event, such as a buffer overflow, often

is followed by other interesting events, an outgoing packet from the infected

host (network event) indicates that the honeypot is either downloading the

actual worm payload or have started scanning for new hosts to infect. At

this point, it is therefore assumed that enough data has been recorded to

enable a successful signature generation, and the virtual honeypot is imme-

diately reset6 [45]. Before the honeypot is reset, all events that have been

generated on the honeypot are transferred to the Local Control Unit (LCU)

for processing and signature generation. To ensure that no attacker can

forge messages to the LCU to create invalid signatures, authentication and

message encryption are required.
6This is also done to protect the system from unintentionally attacking other systems.

87

An Architecture for Detection of Unknown Worms

A final property of the honeypots is their ability to restart to support a

different set of services and even a different operating system. This is done

upon requests by the LCU to increase the chance of a given worm infecting

the honeypots.

6.2.2 Local Control Unit

Some network administrators may not be willing to add the entire detection

architecture in their network (e.g., due to lack of resources), but are still

interested in protecting their production network against unknown worms.

Due to this, it should be possible to incorporate a simplified version of the

LCU that is only able to receive signature updates from the Global Control

Unit (GCU) and use these in a NIPS to protect the production network.

Evidently, these networks do not need the analysis part of LCU, nor the KA

filter or the set of honeypots.

The remainder of this section presents the LCU as it should be used in a

local network employing the entire worm detection mechanism.

Analysis Unit

The Analysis Unit’s (AU) main task is to correlate the incoming honeypot

events and create signatures for possible worms. When receiving new events

from a honeypot, the following procedure is executed:

Step 1 The incoming events are stored in the log database and correlated

with older events. If a similar chain of events has been received a

certain number of times before, it is assumed that the events are caused

by a worm and step 2 is carried out. If not, the events are simply stored

and the AU returns to idle state.

Step 2 The network packets causing the same chain of events are compared.

If a common substring (larger than a given threshold) is found between

these traffic traces, a signature is created.

Step 3 Before storing the newly generated signature in the database, it is

88

6.2 Design

compared with the already existing ones. It can then either be stored

directly in the database as a new entry or help to improve one of

the older ones. The signature is also categorized, as will be further

elaborated in 6.2.6.

Communication Unit

The Communication Unit’s (CU) main purpose is to exchange signatures

with the GCU as well as issuing signature updates to the KA filter and

NIPS. Updates are pushed from the CU to the local KA filter and NIPS

every time a new signature is generated or improved. The KA filter and

NIPS will in turn report the activity levels of each signature on a regular

basis.

As in [43, 44], signatures are exchanged periodically between the local and

global units. CU will receive signature updates from the GCU, and will also

send signatures that have been frequently reported in the local network to

the GCU, as further explained in 6.2.6. All communication to and from the

CU must be authenticated and encrypted to ensure that only authorized

signature updates are accepted.

Databases

The signature database is used to store locally generated as well as received

signatures. The log database is used to store the logged events along with

relevant data.

6.2.3 Known-Attack Filter

The main purpose of the KA filter is to look for known attacks (based

on the signatures received from the LCU) in the traffic directed towards

the honeypots. Inbound filtering is used to minimize the amount of data

needed to be processed by the honeypots. The reasons for this are the

significant processing overhead reported in some worm detection systems

89

An Architecture for Detection of Unknown Worms

(e.g., HoneyComb) and the desire to deploy as many virtual honeypots as

possible with the available resources (e.g., HoneyStat). Because the goal of

the system is to detect unknown worms, there is no reason why the honeypots

should have to process any traffic where the outcome is already known.

This functionality has, to the knowledge of the authors, never before been

incorporated in a worm detection system.

The live traffic experiment conducted in this project showed that approxi-

mately 14 % of the incoming packets triggered alerts in Snort. Although this

may not seem like a significant part, it is likely that the packets triggering

alerts are quite resource demanding – especially for an event-based detection

system, as used in the proposed architecture. In addition, the percentage

share of packets being removed by the KA filter is likely to increase as the

filter is updated with newly generated signatures.

Even though the honeypots are restarted following a network event, there is

a risk that an advanced blackhat is able to escape the controlled environment

in VMWare and thereby gain control of one of the machines hosting virtual

honeypots. To minimize the effect in such a case, the KA filter should also

be able to perform outbound filtering by blocking known attacks and deny

any outbound connection establishment attempts, similar to the Honeywall7

in the Honeynet Project’s honeynet architecture [61, 62]. One might think

that by denying the honeypots to establish any outbound connections, the

possibility to download the worm payload for further analysis for worms

utilizing a second channel as a propagation carrier, as discussed in 3.1.2,

is lost. However, for the newly infected host to be able to know where to

download the payload, it has to receive information regarding the location

of the payload during the infection. That is, at the time when the infected

honeypot attempts to establish a connection to download the worm payload,

the information collected is already sufficient to download the payload at a

later stage, either automatically by the LCU or manually by a forensics team.

Thus, the blocking of the outbound connection attempt is appropriate.

7The KA filter is placed on the Data Link Layer, similar to the Honeywall, to avoid
decrementing the TTL field in the IP header, and thereby reducing the chance of being
fingerprinted.

90

6.2 Design

In addition to the filtering mechanism, the KA filter receives signature up-

dates from the LCU and is capable of reporting the activity level of these

signatures to the LCU.

6.2.4 Network Intrusion Prevention System

The NIPS is placed in the system to protect the production network. It

can filter traffic that is unwanted based on certain ports as specified by the

network administrator, as well as traffic that have been declared malicious

as a result of signature updates from the LCU. Similar to the KA filter, it

is also possible for the NIPS to report back to the LCU on the activity level

of the received signatures.

6.2.5 Global Control Unit

The GCU serves as a central signature storage and distribution unit. It

receives signature updates from the distributed LCUs and is able to corre-

late received data from different locations to compose improved signatures.

Based on the received data, it issues periodic updates to the LCUs. As

the GCU is a potential single point-of-failure and the effects can be catas-

trophic if it is compromised, the requirements regarding security are strict.

All communication between the GCU and LCUs should be authenticated

and encrypted in order to avoid forged signature updates.

6.2.6 Signature Updates

To avoid flooding the GCU with new signatures each time a signature is

generated in the local network, a signature categorization, as depicted below,

is introduced.

Category 1 Received from the GCU

Category 2 Several instances reported locally

Category 3 A few instances (up to a certain threshold) reported locally

91

An Architecture for Detection of Unknown Worms

Category 4 No longer active (on a global basis)

Newly generated signatures are tagged as Category 3 by the AU, as they

have not been seen more than once in the local network. Signatures that

are improved upon the reception of new events are marked as Category 2.

This is also the case for Category 3 signatures that are reported frequently

by the KA filter and NIPS in the local network. These signatures will be

reported to the GCU when the next signature update is sent.

The signatures received by the GCU are labeled Category 1. The fact that

these signatures have been reported by the GCU indicates that the worms

they identify have been frequently detected by several LCUs. The local

activity levels of these Category 1 signatures are reported back to the GCU

in each signature update. If one of these signatures is rarely reported as

active, the GCU will mark it as Category 4 in the next signature update.

This informs the LCUs that the worm identified by this signature is no

longer active on a global basis. However, if this worm is active in the local

network, the LCU is still able to issue the signature to the NIPS to protect

the local production systems.

6.3 Discussion

As already argued in the previous sections, the proposed worm detection

system architecture has several advantageous properties. It is, however,

equally important to identify potential limitations of this architecture.

6.3.1 Security Risks

The fact that the detection sensors used in this architecture are high-interaction

honeypots makes it possible for a blackhat to assume total control of one

or several of them. Further, it may be possible for an advanced blackhat to

escape the virtual machine hosted by VMWare, and thereby gain control of

the honeypot host. Although the outbound filtering performed by the KA

filter should block known, malicious packets and stop any attempts to set up

92

6.3 Discussion

connections, the worm detection system can be disabled if all the honeypot

hosts have been compromised. Thus, there may be a need for regular human

supervision to ensure that this has not happened.

6.3.2 Fingerprinting

As described in 6.2.1, the honeypots are reset upon each generated network

event, the purpose being to minimize the risk of outgoing attacks. This

behavior is characteristic for the system, and may increase the chance that

the architecture is fingerprinted by blackhats. It may also be possible to

fingerprint the architecture based on the behavior of VMWare, as discussed

in [45].

The introduction of the KA filter may increase the risk of the system being

fingerprinted. A blackhat may become suspicious when experiencing that

unreported exploits may only work a couple of times before being blocked.

The outbound filtering may also increase the chance of the system being

fingerprinted. However, since the filter does not decrement the TTL field in

the IP header, it is difficult for a blackhat to determine if attacks are dropped

by a KA filter or by other network filtering elements in the transmission path.

It may be argued that fingerprinting have no affect on the system’s ability to

detect worms since most worms scan for vulnerable hosts at random. How-

ever, future worms may incorporate a non-hitlist that explicitly instructs

the worm which hosts not to infect.

It is possible to decrease the risk of being fingerprinted at the expense of

increasing the blackhats’ possibilities to do damage. This would result in a

need for an even more extensive supervision of the honeypot system.

6.3.3 Single Point-of-Failure

As in all centrally connected architectures, there is a potential single point-

of-failure. If the GCU is exposed to some kind of attack, the consequences

could be severe. In case of a DoS attack against the GCU, it would be

93

An Architecture for Detection of Unknown Worms

impossible for the LCUs to exchange signatures with each other. However,

the local networks incorporating the entire worm detection functionality8

are still able to protect their production networks as soon as the signature

has been generated locally. It is possible to reduce the consequences of a

GCU being attacked by keeping GCU replicas distributed in the network.

If the GCU is compromised, the attacker could spread false signatures and

even mark legitimate signatures as Category 4 (no longer active). To mini-

mize the chance of this, the GCU should be placed in a highly secure location

and should accept no traffic except the authenticated and encrypted sessions

with the LCUs.

8As argued in 6.2.2, it should be possible to receive the signature updates from the GCU
without incorporating the worm detection mechanism in the local network. These local
networks will not be able to protect their production network against unknown worms in
case of a DoS attack directed towards the GCU.

94

Chapter 7

Conclusions

One goal of this project was to study existing worm propagation models and

conduct simulations using these to model the spreading of computer worms.

The Code Red I v2 worm was simulated using three existing models, and

the results were compared to data collected from the actual worm outbreak.

The results showed that the propagation of a worm can be quite accurately

described by such worm propagation models. However, the simulations also

concluded that the results are not only based on the propagation model

used, but also rely heavily on the values of the model parameters. As of yet,

the process of accurately determining these parameters cannot be carried

out prior to a worm outbreak.

The honeypot setup installed at NTNU was extended to incorporate the

pattern-matching worm detection mechanism HoneyComb. The existing

source code was altered to compensate a limitation discovered in the way

HoneyComb treats UDP packets, and two short as well as one longer exper-

iment were conducted. The overall goal of the experiments was to evaluate

the effectiveness and reliability of this worm detection mechanism.

The nonfunctional LCS algorithm discovered in the polymorphic payload

experiment has affected HoneyComb’s ability to generate correct signatures.

The consequences are thoroughly described and considered during the data

analysis. It is, however, difficult to accurately quantify the actual influence

95

Conclusions

of the non-functional LCS algorithm on the experimental results.

The experiments showed that honeypots can be used to detect network

worms. During the experiment on the two unfiltered subnetworks, Honey-

Comb generated signatures for the Slammer, Doomjuice, and Dabber worm.

At the same time, there seemed to be a large amount of false positives among

the generated signatures. Only 10 % of the unique signatures generated are

based on traffic identified as worm traffic. It is likely that the troubles with

HoneyComb may have been a contributing factor to the large number of

false positives.

Based on the study of existing worm detection systems and the experiences

from the experiments conducted in this project, a system architecture for

detection of unknown worms is proposed. The architecture is based on a

combination of the existing worm detection architectures Sweetbait [43, 44]

and HoneyStat [45].

The proposed architecture introduces the use of a Known-Attack (KA) fil-

ter. The main purpose of this filter is to remove known attacks from the

traffic directed towards the honeypots in order to reduce the amount of traf-

fic needed to be processed by the honeypot sensors. The data from the

live traffic experiment conducted in this project showed that 14 % of the

inbound traffic triggered alerts in Snort. It is, however, likely that the KA

filter is able to remove a considerably larger amount of the traffic as it re-

ceives continuous updates from the Local Control Unit (LCU) with newly

generated signatures. In addition, the KA filter is able to perform outbound

filtering to reduce the chance that the honeypots are being used to attack

other systems, as well as to report the activity level of the signatures to the

LCU.

96

Chapter 8

Further Work

In this chapter, some suggestions to further work regarding worm detection

using honeypots are given.

• The experiments in this thesis should be conducted with an improved

version of HoneyComb. The results of these experiments could be

compared to the results presented in this thesis. Following a more

stable version of Flowreplay, it is even possible to replay the traffic

dumps captured during the experiments of this project.

• Longer experiments could be conducted with an improved version of

Honeycomb in order to provide a better statistical foundation to base

the conclusions upon.

• Further studies on the proposed worm detection architecture could be

carried out. Possible objectives of such a project could be to create a

proof-of-concept followed by experiments and a possible implementa-

tion of the entire architecture.

• A project aimed at further development of existing worm propagation

models could be carried out. An objective could be to accurately

determine the parameters used in these models in order to achieve

more realistic simulations.

• A project devoted to detecting weaknesses in widely used honeypots

97

Further Work

systems, e.g., by attempting to fingerprint existing honeypot solutions,

could be carried out. This may help reveal weaknesses and the need

for improvements of the honeypot technology.

98

References

[1] ISO/IEC. ISO/IEC 13335 - Information Technology - Guidelines for
management of IT Security. 2001.

[2] David Moore, Colleen Shannon, and Jeffery Brown. Code-Red: a case
study on the spread and victims of an Internet worm. 2002. http://
www.caida.org/publications/papers/2002/codered/codered.pdf.

[3] David Moore, Vern Paxson, Stefan Savage, Colleen Shannon, Stuart
Staniford, and Nicholas Weaver. Inside the Slammer Worm. IEEE
Security and Privacy, 1(4):33–39, 2003. http://www-cse.ucsd.edu/
~savage/papers/IEEESP03.pdf.

[4] Mona Elisabeth Østvang. Using honeynet as an information source in
a business perspective: What are the benefits and what are the risks?
Master’s thesis, Department of Telematics, Norwegian University of
Science and Technology, 2004.

[5] Christian Larsen. Using honeypots to document the threats from the
blackhat-community. Master’s thesis, Department of Telematics, Nor-
wegian University of Science and Technology, 2005.

[6] Dag Christoffersen and Jonny Mauland. Honeypots: Studying Mali-
cious Traffic on the Internet. Minor Thesis, Department of Telematics,
Norwegian University of Science and Technology, 2005.

[7] Clifford Stoll. The Cuckoo’s Egg. New York: Pocket Books Nonfiction,
1990.

[8] William R. Cheswick. An Evening with Berferd in Which a Cracker
is Lured, Endured, and Studied. 1991. http://www.clusit.it/
whitepapers/berferd.pdf.

[9] Lance Spitzner. The Honeypot Project: Tracking Hackers. Addison-
Wesley, 2003.

[10] Niels Provos. A Virtual Honeypot Framework. 2003. http://www.
citi.umich.edu/techreports/reports/citi-tr-03-1.pdf.

99

http://www.caida.org/publications/papers/2002/codered/codered.pdf
http://www.caida.org/publications/papers/2002/codered/codered.pdf
http://www-cse.ucsd.edu/~savage/papers/IEEESP03.pdf
http://www-cse.ucsd.edu/~savage/papers/IEEESP03.pdf
http://www.clusit.it/whitepapers/berferd.pdf
http://www.clusit.it/whitepapers/berferd.pdf
http://www.citi.umich.edu/techreports/reports/citi-tr-03-1.pdf
http://www.citi.umich.edu/techreports/reports/citi-tr-03-1.pdf

REFERENCES

[11] Reto Baumann and Christian Plattner. Honeypots. 2002. http://www.
inf.ethz.ch/personal/plattner/pdf/whitepaper.pdf.

[12] Laurent Oudot. Fighting Internet Worms With Honeypots. 2003. http:
//www.securityfocus.com/infocus/1740.

[13] Lance Spitzner. The honeynet project: Trapping the hack-
ers. IEEE Security & Privacy, vol. 1, no. 2:15–23, 2003.
http://web.cs.swarthmore.edu/~kuperman/cs97/papers/
spitzner2003honeynet.pdf.

[14] John Brunner. Shockwave Rider. Del Rey, 1975.

[15] Jose Nazario. Defense and Detection Strategies against Internet Worms.
Artech House, 2004.

[16] Mark Eichin and Jon Rochlis. With Microscopes and Tweezers: An
Analysis of the Internet Virus of November 1988. 1989. http://www.
deter.com/unix/papers/internet_worm.pdf.

[17] Nicholas Weaver, Vern Paxson, Stuart Staniford, and Robert
Cunningham. A Taxonomy of Computer Worms. 2003.
http://www.cs.unc.edu/~jeffay/courses/nidsS05/attacks/
paxson-worm-taxonomy03.pdf.

[18] William Stallings. Network Security Essentials. Pearson Education,
2003.

[19] James C. Frauenthal. Mathematical Modeling in Epidemiology.
Springer-Verlag, 1980.

[20] David Moore, Colleen Shannon, Geoffrey M. Voekler, and Stefan
Savage. Internet Quarantine: Requirements for Containing Self-
Propagating Code. 2003. http://www.lens.cs.fsu.edu/seminars/
fall05/moore-internet-quarantine.pdf.

[21] Cliff Changchun Zou, Weibo Gong, and Don Towsley. Code Red
Worm Propagation Modeling and Analysis. 2002. http://tennis.
ecs.umass.edu/~czou/research/codered.pdf.

[22] Andrew S. Tanenbaum. Computer Networks. Pearson Education, 4th
edition, 2003.

[23] James Cowie, Andy I. Ogielski, BJ Premore, and Yougu Yuan. Internet
worms and global routing instabilities. 2002. http://www.renesys.
com/tech/presentations/pdf/renesys-spie2002.pdf.

[24] C. Onwubiko, A.P. Lenaghan, and L. Hebbes. An Improved Worm
Mitigation Model for Evaluating the Spread of Aggressive Network
Worms. 2005. http://cism.kingston.ac.uk/ncg/research/

100

http://www.inf.ethz.ch/personal/plattner/pdf/whitepaper.pdf
http://www.inf.ethz.ch/personal/plattner/pdf/whitepaper.pdf
http://www.securityfocus.com/infocus/1740
http://www.securityfocus.com/infocus/1740
http://web.cs.swarthmore.edu/~kuperman/cs97/papers/spitzner2003honeynet.pdf
http://web.cs.swarthmore.edu/~kuperman/cs97/papers/spitzner2003honeynet.pdf
http://www.deter.com/unix/papers/internet_worm.pdf
http://www.deter.com/unix/papers/internet_worm.pdf
http://www.cs.unc.edu/~jeffay/courses/nidsS05/attacks/paxson-worm-taxonomy03.pdf
http://www.cs.unc.edu/~jeffay/courses/nidsS05/attacks/paxson-worm-taxonomy03.pdf
http://www.lens.cs.fsu.edu/seminars/fall05/moore-internet-quarantine.pdf
http://www.lens.cs.fsu.edu/seminars/fall05/moore-internet-quarantine.pdf
http://tennis.ecs.umass.edu/~czou/research/codered.pdf
http://tennis.ecs.umass.edu/~czou/research/codered.pdf
http://www.renesys.com/tech/presentations/pdf/renesys-spie2002.pdf
http://www.renesys.com/tech/presentations/pdf/renesys-spie2002.pdf
http://cism.kingston.ac.uk/ncg/research/publications/2005/Eurocon2005/Worm/Worm_Modelling_Eurocon_Cyril%20Onwubiko_Submission.pdf
http://cism.kingston.ac.uk/ncg/research/publications/2005/Eurocon2005/Worm/Worm_Modelling_Eurocon_Cyril%20Onwubiko_Submission.pdf

REFERENCES

publications/2005/Eurocon2005/Worm/Worm_Modelling_Eurocon_
Cyril%20Onwubiko_Submission.pdf.

[25] Erika Rice. The Effect of Infection Time on Internet Worm Propa-
gation. 2004. http://www.cs.washington.edu/homes/erice/worm/
worm-paper.pdf.

[26] Zesheng Chen, Lixin Gao, and Kevin Kwiat. Modeling the Spread of
Active Worms. IEEE Infocom 2003, 2003. http://www.ieee-infocom.
org/2003/papers/46_03.PDF.

[27] CERT Coordination Center. Code Red Worm Exploiting Buffer Over-
flow in IIS Indexing Service. CERT Advisory CA-2001-19, 2001.
http://www.cert.org/advisories/CA-2001-19.html.

[28] CERT Coordination Center. Buffer Overflow In IIS Indexing Service
DLL. CERT Advisory CA-2001-13, 2001. http://www.cert.org/
advisories/CA-2001-13.html.

[29] John Viega and Gary McGraw. Building Secure Software. Addison-
Wesley, 2002.

[30] CERT Coordination Center. Code Red II: Another Worm Exploting
Buffer Overflow In IIS Indexing Service DLL. CERT Incident Note IN-
2001-09, 2001. http://www.cert.org/incident_notes/IN-2001-09.
html.

[31] CERT Coordination Center. Nimda Worm. CERT Advisory CA-2001-
26, 2001. http://www.cert.org/advisories/CA-2001-26.html.

[32] CERT Coordination Center. MS-SQL Server Worm. CERT Advisory
CA-2003-04, 2003. http://www.cert.org/advisories/CA-2003-04.
html.

[33] Paul Boutin. Slammed! An inside view of the worm that crashed the In-
ternet in 15 minutes. 2003. http://www.wired.com/wired/archive/
11.07/slammer_pr.html.

[34] CERT Coordination Center. Buffer Overflow in Microsoft RPC. CERT
Advisory CA-2003-16, 2003. http://www.cert.org/advisories/
CA-2003-16.html.

[35] CERT Coordination Center. W32/Blaster worm. CERT Advisory
CA-2003-20, 2003. http://www.cert.org/advisories/CA-2003-20.
html.

[36] Drew Copley, Riley Hassell, Barnaby Jack, Karl Lynn, Ryan Per-
meh, and Derek Soeder. ANALYSIS: Blaster Worm. eEye Digital
Security, 2003. http://www.eeye.com/html/research/advisories/
AL20030811.html.

101

http://cism.kingston.ac.uk/ncg/research/publications/2005/Eurocon2005/Worm/Worm_Modelling_Eurocon_Cyril%20Onwubiko_Submission.pdf
http://cism.kingston.ac.uk/ncg/research/publications/2005/Eurocon2005/Worm/Worm_Modelling_Eurocon_Cyril%20Onwubiko_Submission.pdf
http://cism.kingston.ac.uk/ncg/research/publications/2005/Eurocon2005/Worm/Worm_Modelling_Eurocon_Cyril%20Onwubiko_Submission.pdf
http://www.cs.washington.edu/homes/erice/worm/worm-paper.pdf
http://www.cs.washington.edu/homes/erice/worm/worm-paper.pdf
http://www.ieee-infocom.org/2003/papers/46_03.PDF
http://www.ieee-infocom.org/2003/papers/46_03.PDF
http://www.cert.org/advisories/CA-2001-19.html
http://www.cert.org/advisories/CA-2001-13.html
http://www.cert.org/advisories/CA-2001-13.html
http://www.cert.org/incident_notes/IN-2001-09.html
http://www.cert.org/incident_notes/IN-2001-09.html
http://www.cert.org/advisories/CA-2001-26.html
http://www.cert.org/advisories/CA-2003-04.html
http://www.cert.org/advisories/CA-2003-04.html
http://www.wired.com/wired/archive/11.07/slammer_pr.html
http://www.wired.com/wired/archive/11.07/slammer_pr.html
http://www.cert.org/advisories/CA-2003-16.html
http://www.cert.org/advisories/CA-2003-16.html
http://www.cert.org/advisories/CA-2003-20.html
http://www.cert.org/advisories/CA-2003-20.html
http://www.eeye.com/html/research/advisories/AL20030811.html
http://www.eeye.com/html/research/advisories/AL20030811.html

REFERENCES

[37] Edward Skoudis. The Worm Turns. Information Security Mag-
azine, 2002. http://infosecuritymag.techtarget.com/2002/jul/
wormturns.shtml.

[38] Christopher Kruegel, Engin Kirda, Darren Mutz, William Robertson,
and Giovanni Vigna. Polymorphic Worm Detection Using Structural
Information of Executables. In 8th International Symposium on Recent
Advances in Intrusion Detection (RAID), 2005. http://www.infosys.
tuwien.ac.at/staff/ek/papers/raid05_polyworm.pdf.

[39] Oleg Kolesnikov and Wenke Lee. Advanced Polymorphic Worms: Evad-
ing IDS by Blending in with Normal Traffic. 2004. http://www.cc.
gatech.edu/~ok/w/ok_pw.pdf.

[40] Stuart Staniford, Gary Grim, and Roelof Jonkman. Flash
Worms: Thirty Seconds to Infect the Internet. 2001. http:
//richie.idc.ul.ie/eoin/SILICON%20DEFENSE%20-%20Flash%
20Worm%20Analysis.htm.

[41] Brandon Wiley. Curious Yellow: The First Coordinated Worm Design.
2002. http://blanu.net/curious_yellow.html.

[42] Christian Kreibich and Jon Crowcroft. Honeycomb - Creating Intrusion
Detection Signatures Using Honeypots. In Proceedings of the Second
Workshop on Hot Topics in Networks (Hotnets II), 2003. http://www.
cl.cam.ac.uk/~cpk25/publications/honeycomb-hotnetsII.pdf.

[43] Georgios Portokalidis. Zero Hour Worm Detection and Containment
Using Honeypots. Master’s thesis, Leiden University, 2004. http://
www.few.vu.nl/~porto/msc_thesis.pdf.

[44] Georgios Portokalidis and Herbert Bos. SweetBait: Zero-Hour Worm
Detection and Containment Using Honeypots. 2005. http://www.cs.
vu.nl/~herbertb/papers/sweetbait-ir-cs-015.pdf.

[45] David Dagon, Xinzhou Qin, Guofei Gu, Wenke Lee, Julian Grizzard,
John Levine, and Henry Owen. HoneyStat: Local Worm Detection Us-
ing Honeypots. 2004. http://www.cc.gatech.edu/~wenke/papers/
honeystat.pdf.

[46] James Riordan, Diego Zamboni, and Yann Duponchel.
Billy Goat, an Accurate Worm-Detection System (Re-
vised Version). 2005. http://domino.watson.ibm.com/
library/CyberDig.nsf/398c93678b87a12d8525656200797aca/
d7c39a9a2e73d870852570060051dfed?OpenDocument.

[47] Sumeet Singh, Cristian Estan, George Varghese, and Stefan Sav-
age. The EarlyBird System for Real-time Detection of Unknown

102

http://infosecuritymag.techtarget.com/2002/jul/wormturns.shtml
http://infosecuritymag.techtarget.com/2002/jul/wormturns.shtml
http://www.infosys.tuwien.ac.at/staff/ek/papers/raid05_polyworm.pdf
http://www.infosys.tuwien.ac.at/staff/ek/papers/raid05_polyworm.pdf
http://www.cc.gatech.edu/~ok/w/ok_pw.pdf
http://www.cc.gatech.edu/~ok/w/ok_pw.pdf
http://richie.idc.ul.ie/eoin/SILICON%20DEFENSE%20-%20Flash%20Worm%20Analysis.htm
http://richie.idc.ul.ie/eoin/SILICON%20DEFENSE%20-%20Flash%20Worm%20Analysis.htm
http://richie.idc.ul.ie/eoin/SILICON%20DEFENSE%20-%20Flash%20Worm%20Analysis.htm
http://blanu.net/curious_yellow.html
http://www.cl.cam.ac.uk/~cpk25/publications/honeycomb-hotnetsII.pdf
http://www.cl.cam.ac.uk/~cpk25/publications/honeycomb-hotnetsII.pdf
http://www.few.vu.nl/~porto/msc_thesis.pdf
http://www.few.vu.nl/~porto/msc_thesis.pdf
http://www.cs.vu.nl/~herbertb/papers/sweetbait-ir-cs-015.pdf
http://www.cs.vu.nl/~herbertb/papers/sweetbait-ir-cs-015.pdf
http://www.cc.gatech.edu/~wenke/papers/honeystat.pdf
http://www.cc.gatech.edu/~wenke/papers/honeystat.pdf
http://domino.watson.ibm.com/library/CyberDig.nsf/398c93678b87a12d8525656200797aca/d7c39a9a2e73d870852570060051dfed?OpenDocument
http://domino.watson.ibm.com/library/CyberDig.nsf/398c93678b87a12d8525656200797aca/d7c39a9a2e73d870852570060051dfed?OpenDocument
http://domino.watson.ibm.com/library/CyberDig.nsf/398c93678b87a12d8525656200797aca/d7c39a9a2e73d870852570060051dfed?OpenDocument

REFERENCES

Worms. 2003. http://www.cs.unc.edu/~jeffay/courses/nidsS05/
signatures/savage-earlybird03.pdf.

[48] P. Akritidis, K. Anagnostakis, and E. P. Markatos. Efficient Content-
Based Detection of Zero-Day Worms. In Proceedings of the Inter-
national Conference on Communications (ICC 2005), 2005. http:
//dcs.ics.forth.gr/Activities/papers/icc2005.pdf.

[49] Ke Wang, Gabriela Cretu, and Salvatore J. Stolfo. Anomalous Payload-
based Worm Detection and Signature Generation. 2005. http:
//worminator.cs.columbia.edu/papers/2005/raid-cut4.pdf.

[50] Cliff Changchun Zou, Lixin Gao, Weibo Gong, and Don Towsley.
Monitoring and Early Warning for Internet Worms. In Proceedings
of 10th ACM Conference on Computer and Communications Security
(CCS’03), 2003. http://tennis.ecs.umass.edu/~czou/research/
monitoringEarlyWarning.pdf.

[51] Xinzhou Qin, David Dagon, Guofei Gu, Wenke Lee, Mike Warfield, and
Pete Allor. Worm Detection Using Local Networks. Technical report,
College of Computing, Georgia Tech, 2004. http://www-static.cc.
gatech.edu/people/home/xinzhou/TR_CoC_04.pdf.

[52] K. G. Anagnostakis, S. Sidiroglou, P. Akritidis, K. Xinidis, E. Markatos,
and A. D. Keromytis. Detecting Targeted Attacks Using Shadow Hon-
eypots. 2005. http://www1.i2r.a-star.edu.sg/~kostas/papers/
sec05-replay.pdf.

[53] Bharath Madhusudan and John Lockwood. Design of a System for
Real-Time Worm Detection. 2004. http://www.hoti.org/hoti12/
program/papers/2004/paper4.2.pdf.

[54] William R. Cheswick. The Design of a Secure Internet Gateway. In
Proceedings of the Usenix Summer 90 Conference, 1990. http://www.
cheswick.com/ches/papers/gateway.ps.

[55] Christian Kreibich. Personal correspondence, March-May 2006.

[56] CERT Coordination Center. Exploitation of unprotected windows net-
working shares. CERT Incident Note IN-2000-02. http://www.cert.
org/incident_notes/IN-2000-02.html.

[57] Kenneth H. Rosen. Discrete Mathematics and its Applications.
McGraw-Hill, 1999.

[58] Arno Wagner and Bernhard Plattner. Entropy Based Worm and
Anomaly Detection in Fast IP Networks. 2005. http://www.tik.ee.
ethz.ch/~ddosvax/publications/papers/wetice05_entropy.pdf.

103

http://www.cs.unc.edu/~jeffay/courses/nidsS05/signatures/savage-earlybird03.pdf
http://www.cs.unc.edu/~jeffay/courses/nidsS05/signatures/savage-earlybird03.pdf
http://dcs.ics.forth.gr/Activities/papers/icc2005.pdf
http://dcs.ics.forth.gr/Activities/papers/icc2005.pdf
http://worminator.cs.columbia.edu/papers/2005/raid-cut4.pdf
http://worminator.cs.columbia.edu/papers/2005/raid-cut4.pdf
http://tennis.ecs.umass.edu/~czou/research/monitoringEarlyWarning.pdf
http://tennis.ecs.umass.edu/~czou/research/monitoringEarlyWarning.pdf
http://www-static.cc.gatech.edu/people/home/xinzhou/TR_CoC_04.pdf
http://www-static.cc.gatech.edu/people/home/xinzhou/TR_CoC_04.pdf
http://www1.i2r.a-star.edu.sg/~kostas/papers/sec05-replay.pdf
http://www1.i2r.a-star.edu.sg/~kostas/papers/sec05-replay.pdf
http://www.hoti.org/hoti12/program/papers/2004/paper4.2.pdf
http://www.hoti.org/hoti12/program/papers/2004/paper4.2.pdf
http://www.cheswick.com/ches/papers/gateway.ps
http://www.cheswick.com/ches/papers/gateway.ps
http://www.cert.org/incident_notes/IN-2000-02.html
http://www.cert.org/incident_notes/IN-2000-02.html
http://www.tik.ee.ethz.ch/~ddosvax/publications/papers/wetice05_entropy.pdf
http://www.tik.ee.ethz.ch/~ddosvax/publications/papers/wetice05_entropy.pdf

REFERENCES

[59] Crispin Cowan, Calton Pu, Dave Maier, Heather Hinton, Jonathan
Walpole, Peat Bakke, Steve Beattie, Aaron Grier, Perry Wa-
gle, and Qian Zhang. StackGuard: Automatic Adaptive De-
tection and Prevention of Buffer-Overflow Attacks. 1998.
http://www.usenix.net/publications/library/proceedings/
sec98/full_papers/cowan/cowan.pdf.

[60] Jonathan Lemon. Kqueue: A Generic and Scalable Event Notifica-
tion Facility. 2001. http://people.freebsd.org/~jlemon/papers/
kqueue.pdf.

[61] The Honeynet Project. Know Your Enemy: Honeynets. 2002. http:
//www.honeynet.org/papers/honeynet/.

[62] The Honeynet Project. Know Your Enemy: GenII Honeynets. http:
//www.honeynet.org/papers/gen2/.

104

http://www.usenix.net/publications/library/proceedings/sec98/full_papers/cowan/cowan.pdf
http://www.usenix.net/publications/library/proceedings/sec98/full_papers/cowan/cowan.pdf
http://people.freebsd.org/~jlemon/papers/kqueue.pdf
http://people.freebsd.org/~jlemon/papers/kqueue.pdf
http://www.honeynet.org/papers/honeynet/
http://www.honeynet.org/papers/honeynet/
http://www.honeynet.org/papers/gen2/
http://www.honeynet.org/papers/gen2/

Web References

[ACI] ACID. http://acidlab.sourceforge.net/ (Last visited
21.06.2006).

[BAS] BASE. http://secureideas.sourceforge.net (Last visited
21.06.2006).

[CAI] CAIDA. http://www.caida.org (Last visited 21.06.2006).

[CAI01] CAIDA. The code red v2 propagation, 2001. http://www.caida.
org/analysis/security/code-red/gifs/cumulative-ts.gif
(Last visited 21.06.2006).

[CER] CERT. http://www.cert.org (Last visited 21.06.2006).

[Data] Snort Signature Database. Web-iis view source via translate
header. http://www.snort.org/pub-bin/sigs.cgi?sid=1042
(Last visited 21.06.2006).

[Datb] Snort Signature Database. Web-misc webdav search access. http:
//www.snort.org/pub-bin/sigs.cgi?sid=1070 (Last visited
21.06.2006).

[Deb] GDB: The GNU Project Debugger. http://www.gnu.org/
software/gdb/ (Last visited 21.06.2006).

[Eth] Ethereal. http://www.ethereal.com (Last visited 21.06.2006).

[Flo] Flowreplay. http://tcpreplay.synfin.net/trac/wiki/
flowreplay (Last visited 21.06.2006).

[Gro04] LURHQ Threat Intelligence Group. Dabber worm analysis, 2004.
http://www.lurhq.com/dabber.html (Last visited 21.06.2006).

[Hona] Honeyd. http://www.honeyd.org (Last visited 21.06.2006).

[Honb] Honeynet. http://www.honeynet.org (Last visited 21.06.2006).

[LaB] LaBrea. http://labrea.sourceforge.net (Last visited
21.06.2006).

105

http://acidlab.sourceforge.net/
http://secureideas.sourceforge.net
http://www.caida.org
http://www.caida.org/analysis/security/code-red/gifs/cumulative-ts.gif
http://www.caida.org/analysis/security/code-red/gifs/cumulative-ts.gif
http://www.cert.org
http://www.snort.org/pub-bin/sigs.cgi?sid=1042
http://www.snort.org/pub-bin/sigs.cgi?sid=1070
http://www.snort.org/pub-bin/sigs.cgi?sid=1070
http://www.gnu.org/software/gdb/
http://www.gnu.org/software/gdb/
http://www.ethereal.com
http://tcpreplay.synfin.net/trac/wiki/flowreplay
http://tcpreplay.synfin.net/trac/wiki/flowreplay
http://www.lurhq.com/dabber.html
http://www.honeyd.org
http://www.honeynet.org
http://labrea.sourceforge.net

WEB REFERENCES

[Mat] Matlab. http://www.mathworks.com/products/matlab/ (Last
visited 21.06.2006).

[myN] myNetWatchman. Newbiero infection attempt via open
file share. http://www.mynetwatchman.com/kb/security/
research/newbieroshare.htm (Last visited 21.06.2006).

[myN02] myNetWatchman. Windows popup spam, 2002. http://www.
mynetwatchman.com/kb/security/articles/popupspam/ (Last
visited 21.06.2006).

[Neta] Netdude. http://netdude.sourceforge.net (Last visited
21.06.2006).

[Netb] Netfilter. http://www.netfilter.org (Last visited 21.06.2006).

[Oin] Oinkmaster. http://oinkmaster.sourceforge.net (Last vis-
ited 21.06.2006).

[Pac] PackETH. http://packeth.sourceforge.net (Last visited
21.06.2006).

[pap] Phrack paper. http://www.phrack.org/fakes/p62/p62-0x07.
txt (Last visited 21.06.2006).

[pay] Code Red II payload. http://www.linklogger.com/coderedii.
htm (Last visited 21.06.2006).

[sli] HoneyComb slides. http://www.cl.cam.ac.uk/~cpk25/
honeycomb/honeycomb-slides.pdf (Last visited 21.06.2006).

[Sno] Snort. http://www.snort.org (Last visited 21.06.2006).

[Sym04a] Symantec. W32.gobot.a, 2004. http://securityresponse.
symantec.com/avcenter/venc/data/w32.gobot.a.html (Last
visited 21.06.2006).

[Sym04b] Symantec. W32.hllw.doomjuice, 2004. http://
securityresponse.symantec.com/avcenter/venc/data/
w32.hllw.doomjuice.html (Last visited 21.06.2006).

[Tcp] Tcpdump. http://www.tcpdump.org (Last visited 21.06.2006).

[VMW] VMWare. http://www.vmware.com (Last visited 21.06.2006).

106

http://www.mathworks.com/products/matlab/
http://www.mynetwatchman.com/kb/security/research/newbieroshare.htm
http://www.mynetwatchman.com/kb/security/research/newbieroshare.htm
http://www.mynetwatchman.com/kb/security/articles/popupspam/
http://www.mynetwatchman.com/kb/security/articles/popupspam/
http://netdude.sourceforge.net
http://www.netfilter.org
http://oinkmaster.sourceforge.net
http://packeth.sourceforge.net
http://www.phrack.org/fakes/p62/p62-0x07.txt
http://www.phrack.org/fakes/p62/p62-0x07.txt
http://www.linklogger.com/coderedii.htm
http://www.linklogger.com/coderedii.htm
http://www.cl.cam.ac.uk/~cpk25/honeycomb/honeycomb-slides.pdf
http://www.cl.cam.ac.uk/~cpk25/honeycomb/honeycomb-slides.pdf
http://www.snort.org
http://securityresponse.symantec.com/avcenter/venc/data/w32.gobot.a.html
http://securityresponse.symantec.com/avcenter/venc/data/w32.gobot.a.html
http://securityresponse.symantec.com/avcenter/venc/data/w32.hllw.doomjuice.html
http://securityresponse.symantec.com/avcenter/venc/data/w32.hllw.doomjuice.html
http://securityresponse.symantec.com/avcenter/venc/data/w32.hllw.doomjuice.html
http://www.tcpdump.org
http://www.vmware.com

Appendix A

Guidelines for use of the
Honeypots

Before deploying a honeypot, it is important to thoroughly consider the
design of the honeypot system. If the system is implemented and configured
incorrectly, it could potentially be used to severely damage other systems.

In addition to evaluating the honeypot design prior to deployment, maintain-
ing the honeypot is equally important in order to achieve its full potential.
Honeypot maintenance includes the use of alert mechanisms and response
policies. In addition, keeping the honeypot updated is essential [9].

The guidelines developed here will be used as a reference throughout this
project in order to minimize the risk that the honeypots are exploited by
a blackhat. These guidelines are extensions of the guidelines originally de-
veloped by Christian Larsen in his master’s thesis [5] and further developed
in [6].

A.1 Implementation

After deciding the purpose of the honeypot, it is essential to choose an ap-
propriate interaction level. The larger the level of interaction, the greater
the possibility to capture useful information from an attack. However, the
increased level of interaction leads to increased complexity, and thereby in-
creased risk. Hence, the lowest interaction level that satisfies the purpose of
the honeypot should be chosen.

To help minimize complexity, a marginal kernel and set of services should
be installed and run on the honeypot system.

107

Guidelines for use of the Honeypots

For research honeypots, which are used in this project, it is vital that the
system is not used to attack other non-honeypot systems. A low-interaction
honeypot cannot be captured and used by a blackhat to launch attacks
against other systems. This is ensured by the use of a firewall with a default
drop policy.

Another essential area of a research honeypot is the data capture. The
honeypot should generally be configured to capture as much information as
possible. Even though information may not seem useful at the time, it may
be of importance later when the analysis is to be performed. Redundancy
should be used in data capturing in case one or several of the mechanisms
are unable to capture the information. Traffic dumps, various alerts and
service logs are examples of captured information [9].

A.2 Maintenance

A.2.1 Supervision and Alert Mechanisms

An important part of the supervision is the use of alert mechanisms. An
alert is reported when traffic that is believed to be malicious is observed by
the alert mechanisms. However, because alert mechanisms cannot be trusted
to detect all possible attacks, there may be a need for human supervision.

The level of supervision required in addition to alert mechanisms is largely
determined by the interaction level of the honeypot. All the honeypots used
in this project are low-interaction.

A low-interaction system can run unsupervised, but the alerts and host
system logs should be inspected at least every day to check for attempted
attacks against the hosts or sensors, or data poisoning.

A.2.2 Reaction Policy

According to Spitzner, it is important to define the reaction policy in advance
of an attack to be able to react quickly and properly [9].

The honeypots used in this project are research honeypots. The objective
with these honeypots is to passively monitor the attack in order to learn as
much as possible about the attacker’s behavior. To minimize the risk that a
honeypot is used by a blackhat to attack other non-honeypot systems, the
following responses should be carried out by the honeypot supervisor:

• If the honeypot supervisor looses track of what the blackhat, who has
obtained control of the system, is doing (e.g., he suspects that he may

108

A.2 Maintenance

deal with a sophisticated blackhat with skills that possibly exceed
those of his own) he should shut down the honeypot by physically
disconnecting the network cable.

• If a honeypot is successfully used to attack a non-honeypot system,
the honeypot should be locked down, and the design should be care-
fully re-evaluated and the project supervisor as well as the network
administrators should be informed before redeploying the honeypot.

A.2.3 Updates

The project members should assure that the honeypots are kept updated
with respect to relevant security patches during the project.

109

Appendix B

Code Red I v2 Simulations

B.1 Simulations Using the SI Model

% [t,y] = si(S, I, t_max, eta, time)

%

% Uses the simple epidemiological model to model

% the spread of a worm on a network.

%

% S: Initial number of vulnerable machines

% I: Initial number of infected machines

% t_max: Time (in seconds) that the simulation should go to

% eta: Scans per second per infected computer

% time: When 0, the time axis on the plot is in seconds, when

% 1 it is in minutes, and when 2 it is in hours

function y = si(S, I, t_max, eta, time)

t_div = 20; % Number of slices a second will be divided into

beta = eta/2^32; % Chance a scan is effective (IPv4)

beta_ = beta/t_div; % Scans per time division

tspan = [1/t_div t_max*t_div]; % Basic time unit is 1/t_div

% seconds

ic = [I S];

options = [];

[t,y] = ode23s(@ODEFUN, tspan, ic, options, beta_);

% Plot the results

figure;

if time == 0

t2 = t/t_div;

elseif time == 1

t2 = t/t_div/60;

elseif time == 2

t2 = t/t_div/3600;

end

l = ones(length(t), 1)*0.98*(S+I);

plot(t2, l, ’:k’, t2, y(:,1), ’-k’, t2, y(:,2), ’-.k’);

%title(’Worm Spread Under the Simple Epidemic Model’);

if time == 0

111

Code Red I v2 Simulations

xlabel(’time (seconds)’);

elseif time == 1

xlabel(’time (minutes)’);

elseif time == 2

xlabel(’time (hours)’);

end

ylabel(’Population size’);

legend(’98% of total population’, ’Infected’, ’Susceptible’);

% Fty = ODEFUN(t, y, beta)

%

% Calculates the derivatives for the KM model.

function Fty = ODEFUN(t, y, beta)

% Shorthands for variable names

I = y(1);

%R = y(2);

S = y(2);

% Results vector

Fty = zeros(2, 1);

% dI/dt

Fty(1) = beta*I*S;

% dS/dt

Fty(2) = -beta*I*S;

Figure B.1: Worm spread using the SI model.

112

B.2 Simulations Using the SIR Model

B.2 Simulations Using the SIR Model

% [t,y] = km(S, I, t_max, rate, gamma, time)

%

% Uses the Kermack-Mckendric (SIR) epidemiological model to

% model the spread of a worm on a network.

%

% S: Initial number of susceptible machines

% I: Initial number of infected machines

% t_max: Time (in seconds) that the simulation should go to

% eta: Scans per second per infected computer

% 1/gamma: Average time a worm can propagate on a host before

% being removed

% time: When 0, the time axis on the plot is in seconds, when

% 1 it is in minutes, and when 2 it is in hours

function y = km(S, I, t_max, rate, gamma, time)

t_div = 20; % Number of slices a second will be divided into

beta = rate/2^32; % Chance a scan is effective (IPv4)

beta_ = beta/t_div; % Scans per time division

gamma_ = gamma/t_div; % gamma adjusted for step size

R = 0; % There are initially 0 removed hosts

tspan = [1/t_div t_max*t_div]; % Basic time unit is 1/t_div

% seconds

ic = [I R S];

options = [];

[t,y] = ode23s(@ODEFUN, tspan, ic, options, beta_, gamma_);

% Plot the results

figure;

if time == 0

t2 = t/t_div;

elseif time == 1

t2 = t/t_div/60;

elseif time == 2

t2 = t/t_div/3600;

end

l = ones(length(t), 1)*0.98*(S+I);

plot(t2, l, ’:k’, t2, y(:,1), ’-k’, t2, y(:,2), ’-.k’, ...

t2, y(:,3), ’--k’);

if time == 0

xlabel(’time (seconds)’);

elseif time == 1

xlabel(’time (minutes)’);

elseif time == 2

xlabel(’time (hours)’);

end

ylabel(’Population size’);

legend(’98% of total population’, ’Infected’, ’Removed’, ...

’Susceptible’);

% Fty = ODEFUN(t, y, beta, gamma)

%

% Calculates the derivatives for the SIR model.

function Fty = ODEFUN(t, y, beta, gamma)

% Shorthands for variable names

113

Code Red I v2 Simulations

I = y(1);

R = y(2);

S = y(3);

% Results vector

Fty = zeros(3, 1);

% dI/dt

Fty(1) = beta*I*S - gamma*I;

% dR/dt

Fty(2) = gamma*I;

% dS/ht

Fty(3) = -beta*I*S;

Figure B.2: Worm spread using the SIR model.

B.3 Simulations Using the Two-factor Model

% [t,y] = twofactor(S, I, t_max, rate, gamma, eta, my, time)

%

% Uses the two-factor epidemiological model to model

% the spread of a worm on a network.

%

% S: Initial number of susceptible machines

% I: Initial number of infected machines

114

B.3 Simulations Using the Two-factor Model

% t_max: Time (in seconds) that the simulation should go to

% eta: Scans per second per infected computer

% 1/gamma: Average time a worm can propagate on a host before

% being removed

% time: When 0, the time axis on the plot is in seconds, when

% 1 it is in minutes, and when 2 it is in hours

function y = twofactor(S, I, t_max, rate, gamma, eta, my, time)

t_div = 20; % Number of slices a second will be divided into

b0 = rate/2^32; % Initial chance a scan is effective (IPv4)

b0_ = b0/t_div; % Scans per time division

gamma_ = gamma/t_div; % gamma adjusted for step size

eta_ = eta/t_div; %eta adjusted for step size

my_ = my/t_div; %my adjusted for step size

R = 0; % There are initially 0 removed hosts

Q = 0;% There are initially 0 quarantined hosts

B = b0_;

tspan = [1/t_div t_max*t_div]; % Basic time unit is 1/t_div

% seconds

ic = [I R S Q B];

options = [];

[t,y] = ode23s(@ODEFUN, tspan, ic, options, b0_, gamma_, ...

eta_, my_);

% Plot the results

figure;

if time == 0

t2 = t/t_div;

elseif time == 1

t2 = t/t_div/60;

elseif time == 2

t2 = t/t_div/3600;

end

l = ones(length(t), 1)*0.98*(S+I);

plot(t2, l, ’:k’, t2, y(:,1), ’-k’, t2, y(:,2), ’-.k’, ...

t2, y(:,3), ’--k’, t2, y(:,4), ’-xk’);

if time == 0

xlabel(’time (seconds)’);

elseif time == 1

xlabel(’time (minutes)’);

elseif time == 2

xlabel(’time (hours)’);

end

ylabel(’Population size’);

legend(’98% of total population’, ’Infected’, ’Removed’, ...

’Susceptible’, ’Quarantined’);

% Fty = ODEFUN(t, y, b0_, gamma, eta, my)

%

% Calculates the derivatives for the two-factor model.

function Fty = ODEFUN(t, y, b0, gamma, eta, my)

% Shorthands for variable names

I = y(1);

R = y(2);

S = y(3);

Q = y(4);

B = y(5);

115

Code Red I v2 Simulations

% Results vector

Fty = zeros(5, 1);

% dI/dt

Fty(1) = B*S*I - gamma*I;

% dR/dt

Fty(2) = gamma*I;

% dS/dt

Fty(3) = -B*I*S - my*S*(I+R);

% dQ/dt

Fty(4) = my*S*(I+R);

% beta derivert

Fty(5) = b0*eta*(1-(I/(I+S+Q+R)))^(eta-1)*((-B*S*I ...

+ gamma*I)/(I+S+R+Q));

Figure B.3: Worm spread using the two-factor model.

116

Appendix C

HoneyComb Configuration

The altered HoneyComb source files can be found on the attached DVD.
Follow the following procedure to install the software:

• Make sure Honeyd is installed.

• Make sure the library libstree is installed.

• Install HoneyComb by running configure, make and make install.

• Enter the Honeyd directory, run make clean and then re-install Hon-
eyd using make and make install.

The following HoneyComb configuration was used during the experiments
described in this thesis. Copy this text into the honeyd.conf file located in
the Honeyd directory prior to running Honeyd.

Honeycomb plugin configuration

#

Add this to your honeyd configuration file and tweak as you see fit!

Whether to run the plugin (1) or not (0)

option honeycomb enable 1

What Snort alert category we use for our signatures

option honeycomb snort_alert_class alert

The name of the output log file to which we log generated signatures

option honeycomb sig_output_file

/home/dagjonny/honeycomb_logs/honeycomb.log

How many IP packets we keep in mind and search

for matching data.

option honeycomb ip_backlog 100

How many attempted UDP connections we maintain state for at any one time

option honeycomb udp_conns_max 1000

117

HoneyComb Configuration

How many answered UDP connections we maintain state for at any

one time. Once a connection is answered, it is moved to a different

hashtable. We therefore keep state for udp_conns_max attempted

connections PLUS udp_dataconns_max answered ones.

option honeycomb udp_dataconns_max 1000

The maximum number of bytes flowing in a single direction without

any payload coming the other way during the UDP dialog that we

store. More data going in one direction without any real data

going the other way is not stored, as we’re currently not looking

for data there.

#

This is also the maximum string size the longest common substring

algorithm in libstree needs to deal with, so we don’t make this

too high to avoid performance hits.

option honeycomb udp_max_msg_size 5000

We stop hunting for patterns at some point into a UDP exchange.

The following defines the number of total bytes inbound before

we stop caring.

option honeycomb udp_max_bytes 10000

The minimum pattern length we require before we consider

a string match in UDP payload meaningful:

option honeycomb udp_pattern_minlen 5

How many initiated TCP connections we maintain state for at any one time.

option honeycomb tcp_conns_max 65000

How many established TCP connections we maintain state for at any

one time. Once a connection is established, it is moved to a different

hashtable. We therefore keep state for tcp_conns_max unestablished

connections PLUS tcp_dataconns_max established ones.

option honeycomb tcp_dataconns_max 1000

The maximum number of bytes flowing in a single direction without

any payload coming the other way during the TCP dialog that we

store. More data going in one direction without any real data

going the other way is not stored, as we’re currently not looking

for data there.

#

This is also the maximum string size the longest common substring

algorithm in libstree needs to deal with, so we don’t make this

too high to avoid performance hits.

option honeycomb tcp_max_msg_size 5000

We stop hunting for patterns at some point into a TCP dialogue.

The following defines the number of total bytes inbound before

we stop caring.

option honeycomb tcp_max_bytes 10000

For TCP, we also buffer the incoming payloads in one single buffer

directly. This defines the size of that buffer.

118

option honeycomb tcp_max_buffering_in 1000

The minimum pattern length we require before we consider

a string match in TCP payload meaningful:

option honeycomb tcp_pattern_minlen 5

The number of slots in the hashtables:

option honeycomb conns_hash_slots 199

The connection hashtables are periodically checked for dead connections

we’re no longer interested in (this doesn’t automatically mean terminated

connections, as we need to keep connections around in order to be able to

have something to compare new ones against!). This setting defines

the interval in seconds between cleanups.

option honeycomb conns_hash_cleanup_interval 10

How many generated signatures we keep around before we

start to forget some.

option honeycomb sighist_max_size 200

Detected signatures are kept in a history structure and reported

periodically. This settings defines how long to wait between those

reports. During the waiting period, existing signatures can be

improved upon through new traffic flows.

option honeycomb sighist_interval 10

119

Appendix D

Altered HoneyComb Source
Code

1 /* This method has been changed to address the limitation of

2 * HoneyComb ’s UDP packet inspection identified in the

3 * thesis

4 */

5
6 static void

7 udp_hook(u_char *packet_data , u_int packet_len ,

8 void *user_data)

9 {

10 HC_Conn *conn;

11 struct ip_hdr *iphdr;

12 struct udp_hdr *udphdr;

13 HC_UDP_CBData cb_data;

14
15 /* Added time in the debug output */

16
17 time_t timer;

18 timer=time(&timer);

19
20 printf("\nUDP -packet: %s\n",asctime(localtime (&timer)));

21 D(("UDP packet inspection --------------------- \n"));

22
23 iphdr = (struct ip_hdr *) packet_data;

24 udphdr = (struct udp_hdr *) (packet_data +

25 (iphdr ->ip_hl << 2));

26
27 memset (&cb_data , 0, sizeof(HC_UDP_CBData));

28 cb_data.iphdr = iphdr;

29 cb_data.conn = NULL;

30
31 /* Altered the if-statement below such that the full payload

32 * check will be conducted on new UDP "connections" as well.

33 */

121

Altered HoneyComb Source Code

34
35 if (! (conn = hc_udp_conn_find(iphdr ->ip_src ,

36 udphdr ->uh_sport , iphdr ->ip_dst ,

37 udphdr ->uh_dport))) {

38
39 if (user_data == (void*) HD_OUTGOING)

40 return;

41
42 /* We have a new connection. For the first packet in

43 * a connection we do our header field analysis

44 * consisting of sanity checks and matchings with the

45 * first packets of the other connections we

46 * currently keep state for.

47 */

48
49 hc_udp_conn_foreach ((HC_ConnCB) udp_conn_headercheck_cb ,

50 &cb_data);

51
52 if ((conn = hc_udp_conn_add(iphdr , udphdr)))

53 hc_udp_conn_update_state(conn , iphdr);

54 } else {

55
56 hc_udp_conn_update_state(conn , iphdr);

57 }

58
59 if (user_data == (void*) HD_OUTGOING)

60 return;

61
62 if (conn ->bytes_seen == 0 &&

63 conn ->bytes_seen_reversed == 0) {

64
65 hc_udp_conn_foreach ((HC_ConnCB) udp_conn_headercheck_cb ,

66 &cb_data);

67
68 } else if (ntohs(udphdr ->uh_ulen) - UDP_HDR_LEN > 0) {

69
70 /* For each current UDP connections , try to find the

71 * corresponding message and analyze:

72 */

73
74 cb_data.conn = conn;

75 cb_data.iphdr = iphdr;

76 hc_udp_conn_foreach ((HC_ConnCB) udp_conn_fullcheck_cb ,

77 &cb_data);

78 }

79 }

122

Appendix E

Honeypots Hosted by
Honeyd

NTNU IP Uninett IP Operating System
129.241.196.200 158.38.144.70 win
129.241.196.201 158.38.144.71 win
129.241.196.202 158.38.144.72 linux
129.241.196.203 158.38.144.73 win
129.241.196.204 158.38.144.74 win
129.241.196.205 158.38.144.75 linux
129.241.196.206 158.38.144.76 win
129.241.196.207 158.38.144.77 linux
129.241.196.208 158.38.144.78 linux
129.241.196.209 158.38.144.79 win
129.241.196.210 158.38.144.80 linux
129.241.196.211 158.38.144.81 win
129.241.196.212 158.38.144.82 win
129.241.196.213 158.38.144.83 linux
129.241.196.214 158.38.144.84 win
129.241.196.215 158.38.144.85 win
129.241.196.216 158.38.144.86 linux
129.241.196.217 158.38.144.87 linux
129.241.196.218 158.38.144.88 linux
129.241.196.219 158.38.144.89 linux
129.241.196.220 158.38.144.90 win
129.241.196.221 158.38.144.91 win
129.241.196.222 158.38.144.92 win

123

Honeypots Hosted by Honeyd

NTNU IP Uninett IP Operating System
129.241.196.223 158.38.144.93 linux
129.241.196.224 158.38.144.94 win
129.241.196.225 158.38.144.95 linux
129.241.196.226 158.38.144.96 linux
129.241.196.227 158.38.144.97 win
129.241.196.228 158.38.144.98 linux
129.241.196.229 158.38.144.99 linux
129.241.196.230 158.38.144.100 win
129.241.196.231 158.38.144.101 linux
129.241.196.232 158.38.144.102 linux
129.241.196.233 158.38.144.103 win
129.241.196.234 158.38.144.104 win
129.241.196.235 158.38.144.105 win
129.241.196.236 158.38.144.106 linux
129.241.196.237 158.38.144.107 win
129.241.196.238 158.38.144.108 linux
129.241.196.239 158.38.144.109 linux
129.241.196.240 158.38.144.110 win
129.241.196.241 158.38.144.111 linux
129.241.196.242 158.38.144.112 linux
129.241.196.243 158.38.144.113 win
129.241.196.244 158.38.144.114 win
129.241.196.245 158.38.144.115 linux
129.241.196.246 158.38.144.116 win
129.241.196.247 158.38.144.117 linux
129.241.196.248 158.38.144.118 linux
129.241.196.249 158.38.144.119 win
129.241.196.250 158.38.144.120 win
129.241.196.251 158.38.144.121 linux
129.241.196.252 158.38.144.122 win
129.241.196.253 158.38.144.123 linux

124

Appendix F

HoneyComb Signatures

F.1 Controlled Environment Experiment

F.1.1 Code Red II

alert tcp 129.241.209.110/32 any -> 129.241.196.0/24 80 (msg: "Honeycomb Sun

May 14 13h17m10 2006 "; flags: PA+; flow: established; content: "GET /defaul

t.ida?XX

XX

XX

XX%u9090%u6858%ucbd3%u7801%u9090%u6858%ucbd3%u7801%u9090%u6858%ucbd3%u7801%u

9090%u9090%u8190%u00c3%u0003%u8b00%u531b%u53ff%u0078%u0000%u00=a HTTP/1.0|0

D 0A|Content-type: text/xml|0A|Content-length: 3379 |0D 0A 0D 0A C8 C8 01 00

|‘|E8 03 00 00 00 CC EB FE|dg|FF|6|00 00|dg|89|&|00 00 E8 DF 02 00 00|h|04 0

1 00 00 8D 85|\|FE FF FF|P|FF|U|9C 8D 85|\|FE FF FF|P|FF|U|98 8B|@|10 8B 08

89 8D|X|FE FF FF FF|U|E4|=|04 04 00 00 0F 94 C1|=|04 08 00 00 0F 94 C5 0A CD

0F B6 C9 89 8D|T|FE FF FF 8B|u|08 81|~0|9A 02 00 00 0F 84 C4 00 00 00 C7|F0|

9A 02 00 00 E8 0A 00 00 00|CodeRedII|00 8B 1C|$|FF|U|D8|f|0B C0 0F 95 85|8|F

E FF FF C7 85|P|FE FF FF 01 00 00 00|j|00 8D 85|P|FE FF FF|P|8D 85|8|FE FF F

F|P|8B|E|08 FF|p|08 FF 90 84 00 00 00 80 BD|8|FE FF FF 01|thS|FF|U|D4 FF|U|E

C 01|E|84|i|BD|T|FE FF FF|,|01 00 00 81 C7|,|01 00 00 E8 D2 04 00 00 F7 D0 0

F AF C7 89|F4|8D|E|88|Pj|00 FF|u|08 E8 05 00 00 00 E9 01 FF FF FF|j|00|j|00

FF|U|F0|P|FF|U|D0|Ou|D2 E8|;|05 00 00|i|BD|T|FE FF FF 00|\&|05 81 C7 00|\&|0

5|W|FF|U|E8|j|00|j|16 FF|U|8C|j|FF FF|U|E8 EB F9 8B|F4)E|84|jd|FF|U|E8 8D 85

|<|FE FF FF|P|FF|U|C0 0F B7 85|<|FE FF FF|=|D2 07 00 00|s|CF 0F B7 85|>|FE F

F FF 83 F8 0A|s|C3|f|C7 85|p|FF FF FF 02 00|f|C7 85|r|FF FF FF 00|P|E8|d|04

00 00 89 9D|t|FF FF FF|j|00|j|01|j|02 FF|U|B8 83 F8 FF|t|F2 89|E|80|j|01|Th~

f|04 80 FF|u|80 FF|U|A4|Yj|10 8D 85|p|FF FF FF|P|FF|u|80 FF|U|B0 BB 01 00 00

00 0B C0|tK3|DB FF|U|94|=3’|00 00|u?|C7 85|h|FF FF FF 0A 00 00 00 C7 85|l|FF

FF FF 00 00 00 00 C7 85|‘|FF FF FF 01 00 00 00 8B|E|80 89 85|d|FF FF FF 8D 8

5|h|FF FF FF|Pj|00 8D 85|‘|FF FF FF|Pj|00|j|01 FF|U|A0 93|j|00|Th~f|04 80 FF

|u|80 FF|U|A4|Y|83 FB 01|u1|E8 00 00 00 00|X-|D3 03 00 00|j|00|h|EA 0E 00 00

|P|FF|u|80 FF|U|AC|=|EA 0E 00 00|u|11|j|00|j|01 8D 85|\|FE FF FF|P|FF|u|80 F

F|U|A8 FF|u|80 FF|U|B4 E9 E7 FE FF FF BB 00 00 DF|w|81 C3 00 00 01 00 81 FB

00 00 00|xu|05 BB 00 00 F0 BF|‘|E8 0E 00 00 00 8B|d$|08|dg|8F 06 00 00|Xa|EB

125

HoneyComb Signatures

D9|dg|FF|6|00 00|dg|89|&|00 00|f|81|;MZu|E3 8B|K<|81|<|0B|PE|00 00|u|D7 8B|T

|0B|x|03 D3 8B|B|0C 81|<|03|KERNu|C5 81|||03 04|EL32u|BB|3|C9|I|8B|r |03 F3

FC|A|AD 81|<|03|GetPu|F5 81|||03 04|rocAu|EB 03|J|10|I|D1 E1 03|J$|0F B7 0C

0B C1 E1 02 03|J|1C 8B 04 0B 03 C3 89|D$$dg|8F 06 00 00|Xa|C3 E8|Q|FF FF FF

89|]|FC 89|E|F8 E8 0D 00 00 00|LoadLibraryA|00 FF|u|FC FF|U|F8 89|E|F4 E8 0D

00 00 00|CreateThread|00 FF|u|FC FF|U|F8 89|E|F0 E8 0D 00 00 00|GetTickCount

|00 FF|u|FC FF|U|F8 89|E|EC E8 06 00 00 00|Sleep|00 FF|u|FC FF|U|F8 89|E|E8

E8 17 00 00 00|GetSystemDefaultLangID|00 FF|u|FC FF|U|F8 89|E|E4 E8 14 00 00

00|GetSystemDirectoryA|00 FF|u|FC FF|U|F8 89|E|E0 E8 0A 00 00 00|CopyFileA|0

0 FF|u|FC FF|U|F8 89|E|DC E8 10 00 00 00|GlobalFindAtomA|00 FF|u|FC FF|U|F8

89|E|D8 E8 0F 00 00 00|GlobalAddAtomA|00 FF|u|FC FF|U|F8 89|E|D4 E8 0C 00 00

00|CloseHandle|00 FF|u|FC FF|U|F8 89|E|D0 E8 08 00 00 00|_lcreat|00 FF|u|FC

FF|U|F8 89|E|CC E8 08 00 00 00|_lwrite|00 FF|u|FC FF|U|F8 89|E|C8 E8 08 00 0

0 00|_lclose|00 FF|u|FC FF|U|F8 89|E|C4 E8 0E 00 00 00|GetSystemTime|00 FF|u

|FC FF|U|F8 89|E|C0 E8 0B 00 00 00|WS2_32.DLL|00 FF|U|F4 89|E|BC E8 07 00 00

00|socket|00 FF|u|BC FF|U|F8 89|E|B8 E8 0C 00 00 00|closesocket|00 FF|u|BC F

F|U|F8 89|E|B4 E8 0C 00 00 00|ioctlsocket|00 FF|u|BC FF|U|F8 89|E|A4 E8 08 0

0 00 00|connect|00 FF|u|BC FF|U|F8 89|E|B0 E8 07 00 00 00|select|00 FF|u|BC

FF|U|F8 89|E|A0 E8 05 00 00 00|send|00 FF|u|BC FF|U|F8 89|E|AC E8 05 00 00 0

0|recv|00 FF|u|BC FF|U|F8 89|E|A8 E8 0C 00 00 00|gethostname|00 FF|u|BC FF|U

|F8 89|E|9C E8 0E 00 00 00|gethostbyname|00 FF|u|BC FF|U|F8 89|E|98 E8 10 00

00 00|WSAGetLastError|00 FF|u|BC FF|U|F8 89|E|94 E8 0B 00 00 00|USER32.DLL|0

0 FF|U|F4 89|E|90 E8 0E 00 00 00|ExitWindowsEx|00 FF|u|90 FF|U|F8 89|E|8C C3

8B|E|84|i|C0 05 84 08 08|@|89|E|84 8D 84 04|xV4|12 F7 D8";)

F.1.2 SQL Slammer

alert udp 129.241.208.0/24 1023 -> 129.241.196.0/24 1434 (msg: "Honeycomb Su

n May 14 13h17m15 2006 "; content: "|04 01 01 01 01 01 01 01 01 01 01 01 01

01 0

1 01

01 0

1 01 01 01 01 01 01 01 DC C9 B0|B|EB 0E 01 01 01 01 01 01 01|p|AE|B|01|p|AE|

B|90 90 90 90 90 90 90 90|h|DC C9 B0|B|B8 01 01 01 01|1|C9 B1 18|P|E2 FD|5|0

1 01 01 05|P|89 E5|Qh.dllhel32hkernQhounthickChGetTf|B9|llQh32.dhws2_f|B9|et

Qhsockf|B9|toQhsend|BE 18 10 AE|B|8D|E|D4|P|FF 16|P|8D|E|E0|P|8D|E|F0|P|FF 1

6|P|BE 10 10 AE|B|8B 1E 8B 03|=U|8B EC|Qt|05 BE 1C 10 AE|B|FF 16 FF D0|1|C9|

QQP|81 F1 03 01 04 9B 81 F1 01 01 01 01|Q|8D|E|CC|P|8B|E|C0|P|FF 16|j|11|j|0

2|j|02 FF D0|P|8D|E|C4|P|8B|E|C0|P|FF 16 89 C6 09 DB 81 F3|<a|D9 FF 8B|E|B4

8D 0C|@|8D 14 88 C1 E2 04 01 C2 C1 E2 08|)|C2 8D 04 90 01 D8 89|E|B4|j|10 8D

|E|B0|P1|C9|Qf|81 F1|x|01|Q|8D|E|03|P|8B|E|AC|P|FF D6 EB|";)

F.2 Live Traffic Experiment

F.2.1 Cka

alert udp 157.100.79.1/32 137 -> 129.241.196.0/24 137 (msg: "Honeycomb Wed M

ay 31 16h41m58 2006 "; content: "|BA|5|00 10 00 01 00 00 00 00 00 00| CKAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAA|00 00|!|00 01 BA|d|00 10 00 01 00 00 00 00 00 00|

CKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA|00 00|!|00 01 BA A0 00 10 00 01 00 00 00 00

126

F.2 Live Traffic Experiment

00 00| CKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA|00 00|!|00|";)

F.2.2 Dos

alert tcp 24.253.57.97/32 any -> 158.38.144.0/24 3127 (msg: "Honeycomb Fri J

un 2 02h48m41 2006 "; flags: A+; flow: established; content: "|85 13|<|9E A

2|MZ|90 00 03 00 00 00 04 00 00 00 FF FF 00 00 B8 00 00 00 00 00 00 00|@|00

00 0

0 00 00 00 00 00 00 00 00 D0 00 00 00 0E 1F BA 0E 00 B4 09 CD|!|B8 01|L|CD|!

This program cannot be run in DOS mode.|0D 0D 0A|$|00 00 00 00 00 00 00 B5|.

$o|F1|OJ<|F1|OJ<|F1|OJ<|0B|k|0A|<|F3|OJ<|0B|lS<|F8|OJ<|F1|OK<|DE|OJ<|0B|kV<|

F0|OJ<|0B|kw<|F0|OJ<Rich|F1|OJ<|00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00|PE|00 00|L|01 03 00 12|J|16|@|00 00 00 00 00 00 00 00 E0 00 0F 01 0B 01 0

7 00 00 90 00 00 00 10 00 00 00|P|00 00 00 E7 00 00 00|‘|00 00 00 F0 00 00 0

0 00|@|00 00 10 00 00 00 02 00 00 04 00 00 00 00 00 00 00 04 00 00 00 00 00

00 00 00 00 01 00 00 10 00 00 00 00 00 00 02 00 00 00 00 00 10 00 00 10 00 0

0 00 00 10 00 00 10 00 00 00 00 00 00 10 00 00 00 00 00 00 00 00 00 00 00 00

F0 00 00 04 01 00 0

0 00

00 0

0 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00|UPX0|00 00 00 00 00|P|00

00 00 10 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00 00 00 00 00 00 00 00 8

0 00 00 E0|UPX1|00 00 00 00 00 90 00 00 00|‘|00 00 00 8A 00 00 00 04 00 00 0

0 00 00 00 00 00 00 00 00 00 00 00|@|00 00 E0|UPX2|00 00 00 00 00 10 00 00 0

0 F0 00 00 00 02 00 00 00 8E 00 00 00 00 00 00 00 00 00 00 00 00 00 00|@|00

00 C0 0

0 00

00 0

0 00

00 0

0 00

00 0

0 00

00 0

0 00

00 0

0 00

00 0

0 00

00 0

0 00

00 00 00 00 00|1.24|00|UPX!|0C 09 02 09 F9 DE A8|n|B5|\|BA 83 98 C3 00 00 FA

86 00 00 00 A8 00 00|&|05 00|6|FF 1F 0A 92 00|BZh91AY&SY|A0 14|/|03 F2 FF DC

|j|00 C5|?|FF EF FF FE C3 14 FF C0 00 08|@|FF F2 FF BB|@~|C0 00|@|88 E0 8E B

E FB DB EB AC 00 0E 80 1B 0D 0A 01|m|A8 02 FF FF FF FF 94 AD 0F|p|EF|7|86 F7

BD|V^|EC F5 06 1E E8 E7|X|EF|W|A3 DE FB BE F3 BC BE D8 D1 9B 03|;|FF FF FF F

F BE E7 A7 B3 B7|>|DE E3|}|DE B7|^WJ\|D9|{k|E7 DE|<|A3 CB|}|E0 FB|,|FB EB DD

F7|v|FF FF FF FF BB|-|CC|}u|D5|U|F6 D1 99 F6 1C AE 0C|P|15|@|DF|=|1F|>N|FB 8

E B0 C9 AA 92 BE DB DE B1 BF FC FF FF E4 0A|ws7e|B5|7|8F|{.|CC C1 E9 CD 96 D

4|u|8D|5|ED 85 83|a|16 A8 0F FF FF FF FF|l:|D3|&|1E|{|EF 91|E|DE F4 C9|6mM|B

3|j|1B|f|9A EE C2 ED|||19 BB|l}|9A A1 09|t|DF FE FF FF D3|lm|DB|r}||DE E9 ED

C1 EB|=|E2 A2 B9 A6|Fn|F4 CF|o:|93 1C|v|D7|||FF FF FF ED 8C|y}|97 FA|w|B6 FB

127

HoneyComb Signatures

EA F1|wC+|DF|6|FA F5|j|ED F7|q|,}|DF|w|BD 0A FF FF FF FF DB|t|A9|9i|D0 EE CB

BD|3|95 E4 A3 9F|{|DA CF|,|B6 C3 AE|kG|AE|{|DE F2 DA BD EE EC|6|FF FF FF DB

EB|w|90 D5 EA D6 CE B7 B6 8F|(|A1|&|8D 90 F5 E9 C5 14 AF|n|B5|%Y|95 DB|uW|FF

BF FD FF B6|5|EE A4 CD C7 B0 AF|M|F0|iw|B2 8D BB CD DB|!|F2 EF|b|F3 EE|_[|B5

A3 D2 FF FF FF FF A8 F7|1|DB|g|D6|;/3v|9D B2|.M";)

F.2.3 H04

alert tcp 66.0.0.0/8 any -> 129.241.196.0/24 80 (msg: "Honeycomb Tue May 30

06h29m45 2006 "; flags: A; flow: established; content: "SEARCH /|90 04|H|04

|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04

|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04

|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04

|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04

|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04

|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04

|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04

|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04

|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04

|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04

|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04

|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04

|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04

|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04

|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04

|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04

|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04

|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04

|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04

|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04

|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04

|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04

|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04

|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04

|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04

|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04

|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04

|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04

|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04

|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04

|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04

|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04

|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04

|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04

|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04

|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04

|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04

|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04

|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04

|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04

|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04

|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04

|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04

128

F.2 Live Traffic Experiment

|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04

|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04

|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04

|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04

|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04

|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04

|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04

|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04

|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04

|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|04|H|0";)

F.2.4 Lookfreebies

alert tcp 61.0.0.0/8 any -> 129.241.196.0/24 80 (msg: "Honeycomb Fri Jun 2

11h44m00 2006 "; flags: PA+; flow: established; content: "GET http://lookfr

eebies.com/prx1.php HTTP/1.0|0D 0A|Accept: */*|0D 0A|Accept-Language: en-us

|0D 0A|User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.0)|0D 0A

|Host: lookfreebies.com|0D 0A|Connection: Keep-Alive|0D 0A 0D|";)

F.2.5 Msreg

alert udp any any -> 158.38.144.90/32 1026 (msg: "Honeycomb Tue May 30 11h48

m23 2006 "; content: "|04 00|(|00 10 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 F8 91|{Z|00 FF D0 11 A9 B2 00 C0|O|B6 E6 FC DD 0C|K|D2 91|

z|FE B1|d|A2|/|E4 A3 BD|@|1C 00 00 00 00 01 00 00 00 00 00 00 00 00 00 FF FF

FF FF 18 01 00 00 00 00 10 00 00 00 00 00 00 00 10 00 00 00|SYSTEM|00 00 00

00 00 00 00 00 00 00 10 00 00 00 00 00 00 00 10 00 00 00|ALERT|00 00 00 00 0

0 00 00 00 00 00 00 D4 00 00 00 00 00 00 00 D4 00 00 00|Microsoft Windows ha

s encounted an Internal Error|0A|Your windows registry is corrupted.|0A|Micr

osoft recommends a complete system scan.|0A 0A|Microsoft recommends|0A 0A|ht

tp://www.msreg.com|0A 0A|To repair now for a free download|0A 0A|";)

F.2.6 Set32

alert udp 100.0.0.0/8 any -> 129.241.196.0/24 1026 (msg: "Honeycomb Thu Jun

1 01h59m15 2006 "; content: "|04 00|x|00 10 00 00 00 00 00 00 00 00 00 00 0

0 00 00 00 00 00 00 00 00 F8 91|{Z|00 FF D0 11 A9 B2 00 C0|O|B6 E6 FC 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 01 00 00 00 00 00 00

00 00 00 FF FF FF FF 8B 01 00 00 00 00 0A 00 00 00 00 00 00 00 0A 00 00 00|

SYSTEM|00 00 00 00 00 00|#|00 00 00 00 00 00 00|#|00 00 00|ALERT|00 00 00 0

0 0

0 00 00|5|01 00 00 00 00 00 00|5|01 00 00|STOP! WINDOWS REQUIRES IMMEDIATE

ATTENTION.|0A 0A|Windows has found CRITICAL SYSTEM ERRORS.|0A 0A|To fix the

errors please do the following:|0A|1. Download Doctor Cleaner from: www.set

32.com|0A|2. Install Doctor Cleaner|0A|3. Run Doctor Cleaner|0A|4. Reboot y

our computer|0A|FAILURE TO ACT NOW MAY LEAD TO DATA LOSS AND CORRUPTION!|0A

0A 00 00 00 00 00|";)

129

HoneyComb Signatures

F.2.7 Tftp

alert tcp any any -> any 1926,8967 (msg: "Honeycomb Wed May 31 06h27m44 2006

"; flags: A+; flow: established; content: "tftp -i 192.168.116.2 GET h3110.4

11 package.exe & package.exe & exit|0A|";)

F.2.8 Webdav

alert tcp 210.166.8.29/32 any -> 158.38.144.0/24 80 (msg: "Honeycomb Fri Jun

2 01h52m23 2006 "; flags: PA; flow: established; content: "OPTIONS / HTTP/1.

1|0D 0A|translate: f|0D 0A|User-Agent: Microsoft-WebDAV-MiniRedir/5.1.2600|0

D 0A|Host: 158.38.144.71|0D 0A|Content-Length: 0|0D 0A|Connection: Keep-Aliv

e|0D 0A|Pragma: no-cache|0D 0A 0D|";)

130

Appendix G

Polymorphic packets

Packet 1
CA 64 09 00 12 05 04 AB 45 32 69 AC BF 89 99 21 44 85 23 55 71 53 10

Packet 2
CA 64 12 00 09 05 04 AB 45 32 69 AC BF 99 44 99 21 12 BA 22 41 00 01

Packet 3
05 04 AB 45 32 69 AC BF 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00

131

Appendix H

Analysis Data

H.1 Number of Unique Signatures

Day NTNU Uninett
Day1 31826 2986
Day2 23440 2316
Day3 25914 3608
Day4 21392 3197
Day5 19243 2543
Day6 21724 2607
Day7 17909 2564

Table H.1: Number of unique signatures.

133

Analysis Data

H.2 Unique Signatures Categorized by Type

Signature categories Unique signatures
Worm activity 18273
Worm related activity 193
Misc attack 6095
Web server attacks 6740
Messenger spam 147193
SSH attacks 360
Reconnaissance activity 2278
FTP attacks 137

Table H.2: Unique signatures categorized by type.

H.3 Inbound Alerts and Packets

Day Inbound alerts Inbound packets
Day1 2416 23237
Day2 2406 15955
Day3 2298 18033
Day4 2604 22305
Day5 2299 14068
Day6 2548 17987
Day7 3187 18500

Table H.3: Number of inbound alerts and packets.

134

