
June 2006
Peter Herrmann, ITEM
Frank A. Kramer, ITEM

Master of Science in Communication Technology
Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Telematics

Providing a Birds Eye View on the
Execution of Distributed, Reactive
Systems using Collaborations

Lars Erik Karlsen

Problem Description
Understanding what is happening during the execution of a telecommunication
service can be quite difficult, as there are usually several processes
involved that communicate with signals and change their connection over
time. Looking at a trace of messages sent between the processes is possible,
but for a system of realistic size the number of messages and processes
makes it difficult to get an overall picture of what is going on. To tackle this
problem, we started in a previous project thesis to use a notation similar to
UML 2.0 collaborations for the visualisation of behavior. The realized prototypical
implementation demonstrated the potential of the idea, but made
also evident that additional presentation mechanisms have to be introduced
to keep the visualisation comprehensible. In addition, the prototype had to
be adjusted manually to each application individually, as it did not take the
abstract specification in form of UML 2.0 collaborations into account.
In this work, the idea should be carried further and refined. Mechanisms
to make it possible to keep the overview also in large systems should
be suggested and implemented. In particular, the information stored in the
collaborations of the system specification should be used automatically, so
that a manual adjustment is not necessary anymore. This information can
then be used to filter or to abstract the presentation.

Assignment given: 16. January 2006
Supervisor: Peter Herrmann, ITEM

Preface

This thesis was written at the Norwegain University of Science and Technology
(NTNU) as part of the Master of Technology study. It was carried out at
the Department of Telematics in the 10th semester, spring 2006.

I would like to thank my supervisor Frank A. Kraemer for his valuable
advice and comments during this thesis work, and professor Peter Hermann
for some final input.

Trondheim, June 2006
Lars Erik Karlsen

i

ii

Abstract

This thesis studies the use of collaborations as a mean to visualize behaviour
of an observed distributed reactiv system. The work is inspired by previous
work where an approach using elementary collaborations, that is collabo-
rations with only two participants, visualized a running system. This work
investigates how the previous work can be enhanched by adding the possibil-
ity to visualize systsem behaviour at different abstraction levels and improve
usability, scalabiliy and overview in the visualization.

A monitor for the visulization of distributed reactiv systems will be
implemented. A system model and trace information from the obeserved
system will be used in order to realize the visualization. By adding the
possibility to visualize nested collaborations, a systems behaviour can be
visualized at different levels of abstraction. The necessary constraint on the
model of a system, and an algorithm for the detection of nested collabora-
tion in the observed system, is suggested and implemented. An automatic
approach for the loading of data from a model of the observed system is
added to improve uasbility. Additional filtering and layout mechanisms are
implemented in order to provide better overview in the visualization. A
post-mortem approach to visalization is taken in order to generate a correct
visualzation. The speed of the visualzation can be controlled by the user.
The possibility to reverse the visualization is also implemented.

iii

iv

Contents

Preface . i
Abstract . ii
List of Figures . vii
List of Tables . x
Abbrevations . xi

1 Introduction 1
1.1 Outline of the Thesis . 4

2 Background Study 7
2.1 Previous work . 7

2.1.1 Trace Visualisation for distributed State Machines . . 7
2.1.2 Collaboration-Oriented Visualization of Communicat-

ing State Machines . 9
2.2 Related work . 14

2.2.1 Considerations in software visualization 14
2.2.2 JaVis . 15
2.2.3 What can we learn? 17

2.3 Technologies . 17
2.3.1 Eclipse Frameworks 17
2.3.2 Log4J . 18

2.4 Ramses Tool Suite . 18
2.5 PAX Ramses III . 19

2.5.1 Classes and Packages 20
2.5.2 State Machines . 21
2.5.3 Collaborations . 22

3 Overview and Scalability 25
3.1 Improving Scalability . 25

3.1.1 Nested collaborations 25
3.1.2 Grouping of processes 26

3.2 Improving the Overview . 26
3.2.1 Improved automatic layout of figures 27
3.2.2 Filtering of framwork signals 27

v

CONTENTS

3.2.3 Event based visualization control 28

4 Design and Implementation 31
4.1 System Structure . 31

4.1.1 Collaboration Monitor 32
4.2 Design and Implementation Constraints 34
4.3 Loading and Accessing the Model 35
4.4 Parsing Trace Data . 35
4.5 Notation for visualized Processes and Collaborations 37

4.5.1 Visualizing the system structure 37
4.5.2 Visualizing collaborations 39

4.6 Trace and UML Data Processing 39
4.6.1 Maintaing the system structure 39
4.6.2 Detecting collaborations 41

4.7 Playback control of Visualization 48
4.7.1 Lamport stamp sorting 49
4.7.2 Real-time or Post Mortem Visualization 50
4.7.3 Additional features . 50
4.7.4 Elaborating the Design 50

4.8 Improving the Overview . 51
4.8.1 Layout of Figures . 51
4.8.2 Filtering Information 53

5 Testing 61
5.1 The Sample Application . 61
5.2 Test Run . 61

5.2.1 Test of filtering . 64

6 Discussion 69
6.1 Implemented functionality . 69

6.1.1 Loading of data . 69
6.1.2 Event based control 69
6.1.3 Automatic layout of figures 70
6.1.4 Visualization of nested collaborations 70
6.1.5 Filtering . 70

6.2 Monitor Design . 71
6.2.1 Generality of the monitor 72
6.2.2 Content of the Visualization 72
6.2.3 Invasive approach to tracing 72
6.2.4 Real-time vs. Post-mortem visualization 73
6.2.5 Presentation style . 74
6.2.6 Interacting with the monitor 74
6.2.7 Scalability . 74
6.2.8 Constraints on the model 76

vi

CONTENTS

7 Conclusions 77
7.1 Achievements . 77
7.2 Future works . 78

Bibliography 79

A Specifications 81
A.1 Trace Format . 81

B Source Code 83
B.1 Source Code for Collaboration Monitor 83
B.2 Source Code for Sample Application 83

vii

CONTENTS

viii

List of Figures

1.1 A sequence diagram from [Nes05] p. 64. 2
1.2 Previous implemented prototype visualization of processes

and collaborations. From [Kar05] p. 39 3

2.1 An example of lamport clocks. 8
2.2 The visulization of the system with sequence diagram and

process filtering applied. 10
2.3 Previous implemented prototype visualization of processes

and signals. 12
2.4 A sequence diagram visualized in JaVis, from [Meh02] p. 169 16
2.5 A communication diagram from JaVis, from [Meh02] p. 171 . 16
2.6 Overview of the Ramses tool suite for rapid model drive de-

velopment of distributed reactive systems. 19
2.7 Ramses Core . 20
2.8 Classes . 21
2.9 State Machine . 22
2.10 Elementary Two-way Collaboration. 23
2.11 Composite Collaboration . 24

3.1 A skecth of a nested collaboration. 26
3.2 Illustration of the grouping of processes feature. 27
3.3 Illustration of the problem in the previous prototype. 29

4.1 An overview of the system structure 31
4.2 An overview of the previous collaboration monitor. 32
4.3 An overview of the different models in the system. 34
4.4 An overview of the expanded system structure 36
4.5 The actor address format. 36
4.6 Notation used for processes. 38
4.7 The system structure visualized as a tree in previous prototype. 38
4.8 Illustration of the notation used for elementary collaborations. 39
4.9 Illustration of the notation used for composite collaborations. 40
4.10 An example of when elementary collaborations can not be

detected. 43

ix

LIST OF FIGURES

4.11 A process type playing two roles in the same collaboration. . 43
4.12 Two composite collaborations containg a collaboration use of

the same elementary collaboration. 44
4.13 A elementary collaboration as part of a composite collabora-

tion through a collaboration use and as a elementary collab-
oration use independent of the composite collaboration. . . . 44

4.14 An illegal composite collaboration. 46
4.15 A legal composite collaboration. 47
4.16 A legal composite collaboration if the elementary collabora-

tions are added in the correct order. 47
4.17 Overview of the trace event buffering. 48
4.18 Inserting event into the trace event buffer. 50
4.19 An overview of the extended structure of the collaboration

monitor. 51
4.20 The system and collaboration trees connected by roles. 52
4.21 A fully expanded system structure with collaborations. 54
4.22 The system structure after collapsing process P1.1.1 55
4.23 The system structure after collapsing process P1.1. 56
4.24 A number of processes of the same type at the same level in

the hierarchy. 56
4.25 Grouping of processes. 57
4.26 Illustration of the fully expanded collaboration tree. 57
4.27 Illustration of the collaborations after a collapsing two com-

posite collaborations. 58
4.28 Illustration of the collaborations after a collapsing root com-

posite collaborations. 58

5.1 Loading of data is completed. 62
5.2 Using the stepping function. 63
5.3 An example of the system hierarchy viusalized in the monitor. 64
5.4 Additional information in tooltip figure. 65
5.5 Before grouping. 65
5.6 The systtem strcuture before collapsing. 66
5.7 The system structure after collapsing. 67
5.8 An expanded composite collaboration. 67
5.9 A collapsed composite collaboration. 68
5.10 Use of both process and collaboration filter. 68

6.1 Illustration of the multi-view approach. 75

x

List of Tables

A.1 XML elements in trace object accepted by the Log Server . . 82

xi

LIST OF TABLES

xii

Abbrevations

APSM Association Point State Machines

EMF Eclipse Modeling Framework

GEF Graphical Editing Framework

JDI Java Debugger Interface

MVC Model-View-Controller

NTNU Norwegain University of Science and Technology

OMG Object Management Group

SV Software Visualization

UML Unified Modelling Language

xiii

Chapter 1

Introduction

’A picture is worth a thousand words.’ - Unknown

As with the rest in life, this rule of thumb applies to software engineering
as well. Graphical means in forms of diagrams have been used in software
engineering from the very beginning. Today, the common way of software
engineering is to first do some design in the form of class diagrams, sequence
diagrams, activity diagrams, statecharts or whatever graphical facilities one
prefere. Graphical aids are used because they can represent and convey infor-
mation more effectivly than most textual descriptions. The usual approach
to system development is to use vizualization during the design phase, and
observation of code or log information when testing and debugging. Test-
ing and debugging are perhaps the most important phases in the system
development process. Depending on the tasks a system performs, potential
errors or failures could be fatal. In order to get a high quality software,
it should be continously checked and tested during development. The cost
of correcting errors can be high, especially if discovered at a late time in
the process [Vli00]. The cost of and time spent in testing and debugging
depends on the size, complexity of the structure and behaviour of a sys-
tem. A meaningful graphical representation can communicate information
more effectivly than the inspection of log information or observing code in
debug mode. Utilizing graphical aids in these processes could make them
cheaper and faster. Despite the potenial benefits of a graphical approach,
visualization is not in widespread use in testing and debugging of software.

In telematics, systems may have simple behaviour, but the number of
elements involved can be very large. This make them hard to understand
and complicated the task of testing and debugging. To ease the task of de-
bugging and testing, a tool for tracing and monitoring of a running systems
was developed in [Nes05]. The system observed consisted of state machines
that communicated through asynchronous message passing. Trace informa-
tion from the running system was used in order to visualize the behaviour.
A diagram, similiar to UML sequence diagrams, visualized the behaviour in

1

1. Introduction

Figure 1.1: A sequence diagram from [Nes05] p. 64.

real-time. Compared to the previous approach of log inspection to decide
if the system behaved correctly, the sequence diagram was a great improve-
ment. A problem with the approach, as experienced in similar Software
Visualization (SV) approaches [Meh02], was that the UML based diagrams
did not scale well to the large amount of information. The sequence dia-
grams became too large for any ordinary display. In consequence, the overall
functionality and behaviour of the observed system was lost in the details
of the diagrams. This is illustrated in figure 1.1.

To be able to better visualize the overall behaviour, [Nes05] suggested a
visualization based on UML 2.0 collaborations. A collaboration’s primary
purpose is to explain how a system works. It only includes details relevant to
the explanation. In consequence, diagrams based on collaborations should
limit the amount of information to the user, and show the behaviour of the
system at a higher level of abstraction. [Kar05] studied the collaboration
approach to visualization. A prototype of a collaboration monitor that visu-
alized the system behaviour by using collaborations was implemented. The
monitor was limited to elementary collaborations1. The system structure
was visualized as a tree, and the collaborations were visualized as connec-
tions between nodes in the tree. An example of the visualization from the

1An elemenetary collaboration is a collaboration with only two participants. See sec-
tion 2.5.3 for more information.

2

Figure 1.2: Previous implemented prototype visualization of processes and
collaborations. From [Kar05] p. 39

3

1. Introduction

prototype in [Kar05] can be seen in Fig. 1.2. The visualization relied on
trace data from the running system and information about the parts of the
system, known prior to the visualization, in order to create the graphical
representation. In addition to help in debugging and understanding of sys-
tem behaviour, the tool could be useful in demonstration of systems and for
educational purposes.

The visualization based on elementary collaborations did reduce the
amount of information compared to the diagrams in [Nes05]. The proto-
type also had some fuctionality (filtering, zooming and layout) to improve
the usability and overview. By only showing elementary collaborations, the
prototype showed the behaviour at the lowest level possible with collabo-
rations. [Kar05] suggested the addition of nested collaborations in order to
visualize the system behaviour at a higher level of abstraction, and improved
filtering mehcanisms to deal with problems of scalability.

In this thesis the idea from [Kar05] will be studied further and refined.
How additional information in the UML model description of an observed
system can be utilized to improve overview and usability of the visualiza-
tion will be explored. The previous prototype will be discussed in order to
find mechanisms to increase usability, scalability and overview. To improve
usability, an automatic approach to loading of data from a systems UML
model will be examined. In the prototype in [Kar05], this had to be done
manually. To provide better overview and system behaviour abstraction, the
additions of nested collaborations in the visualization will be investigated.
With nested collaboration the behaviour of a system can be specialized at
different abstraction levels. The necessary system model constraints and
an algorithm for the detection of collaborations in a running system will
be suggested and implementet in order to visualize nested collaborations.
To provide additional overview, improved layout, filtering mechanism for
collaborations, framework messages and processes will be suggested and im-
plemented. A sample application, in accordance with the system model con-
straints defined in the thesis, will be designed and used for testing. Based on
the result of the testing, the value of the implemented mechanisms will be
discussed, and possible solutions to existing weaknesses that could improve
the monitor will be suggested.

1.1 Outline of the Thesis

The rest of this thesis is structured as follows:

Background Study

Presents the background study for this thesis.

4

1.1 Outline of the Thesis

Overview and Scalability

Analyzes the previous approach to visualization and suggest possible solu-
tions to existing problems.

Design and Implementation

Present the design and implementation of the visualization tool. Necessary
algorithms and constraints are explained.

Testing

Demonstrates the use of the visualization tool with a sample application.

Discussion

Discusses the implemented visualization tool and the solutions chosen during
development.

Conclusions

Presents the main achievements in this thesis and proposes some future
works related to this thesis.

5

1. Introduction

6

Chapter 2

Background Study

This chapter presents the work preceeding this thesis. Some of the contribu-
tions and observations from these works will be used in this thesis. Different
aspects of SV in general together with a look at some UML based SV tools
and the different technologies used in the realization of the collaboration
monitor is presented. Finally, the Ramses tool suite and the specification of
the UML model in Ramses is explained.

2.1 Previous work

This section gives a presentation of the previous work in [Nes05] and [Kar05]. [Kar05]
were based on the part of the contributions in [Nes05]. This thesis will use
some of the contributions in [Nes05] and is based on the observations and
experiences from [Kar05].

2.1.1 Trace Visualisation for distributed State Machines

[Nes05] studied the use of sequence diagrams as a way to monitor and vi-
sualize the execution behaviour of distributed systems. The observed sys-
tem consisted of finite state machines that communicated with each other
through asynchronous message passing. Trace information from the system
was used in order to produce the sequence diagram. This section will cover
the main contributions and conclusions drawn in [Nes05], that inspired and
are important to the work in [Kar05] and this thesis.

Use of Lamport clock to capture the partial order of events in a
distributed system.

In order to monitor a system, trace information from the system has to be
collected. A distributed system add additional complexity to that task be-
cause it has no global clock so the total order of events in the trace data is
unknown. Unreliable communication channels and delay of messages may

7

2. Background Study

also affect the order of events as they appear in the trace data. The mech-
anism used in [Nes05] to capture the order of events is a concept known
as logical clocks. Logical clocks were first introduced by Lesli Lamport in
[Lam78]. Logical clocks can capture the ’happened-before’ relationship (de-
noted as →) defined in [Lam78] as:

• If a and b occure on the same process, a → b if the occurrence of
event a preceded the occurence of event b.

• If event a is the sending of a message and event b is the reception of
the message sent in event a, a → b.

• For three events a, b and c, if a → b and b → c, then a → c.

Events with the same lamport time stamps are treated as adjacent events.

Object1 Object2

Message1(24)

Message2(25)

Object3

Message3(30)

Message4(31)

25

30

2324

26

30

31

31

25

33

24

Figure 2.1: An example of lamport clocks.

In [Nes05] an implementation of Lamport clocks were added to the
runtime system. A Lamport clock is a monotonically incremented software
counter. Every process in a system has its own clock which is incremented
according to the following rules [Lam78]:

1. The counter is incremented before each event is issued at the process.

8

2.1 Previous work

2. When a process sends a message, it piggybacks the value on the mes-
sage.

3. On receiving a message a process computes the counter as the maxi-
mum between its own value and the received value and then applies
rule 1 before timestamping the event as received.

This behaviour is examplified in the sequence diagram in figure 2.1. The cur-
rent value of the Lamport clock is shown in the circles and the piggybacked
clock stamp is contained in the messages. ’Object1’ sends ’Message1 to ’Ob-
ject2’ stamps the signal with the clock value 24, and sends it to ’Object2’.
When ’Object2’ receives Message1 it compares the piggybackes stamp with
it own clock and saves the highest of the two and increments the new value
of the clock by one so the resulting clock value is 25.

Other achievements

A trace monitor, for distributed systems, that visualized trace data as a
sequence diagram was implemented. The visualization was created in real-
time. The implemented Lamport clocks guaranteed the partial order of
the trace events which made it possible to create an accurate sequence di-
agram. A notation, based on a subset of the UML notation for sequence
diagrams, was suggested and implemented in the monitor. The notation is
not explained here because it is not relevant to the work in this thesis. An
example of the sequence diagram with the notation can be seen in Fig. 1.1
and Fig. 2.2.

Conclusions of the work

[Nes05] concluded that using sequence diagrams as a mean to observe dis-
tributed systems may be helpfull to the programmer. The sequence diagrams
can make specific parts of the system behaviour more understandable. A
drawback was that the amount of information in the diagrams was too great
to reason about the overall functionality of the system behaviour. The se-
quence diagram showed the system at a too low level. This is examplified in
Fig. 1.1. [Nes05] suggested that improved filtering and layout capabilities
could improve the monitor and reduce the problem of too much information.
Addding additional diagrams i.e., collaboration diagram was also suggested.

2.1.2 Collaboration-Oriented Visualization of Communicat-
ing State Machines

The work in [Kar05] studied the use of collaborations to visualize the be-
haviour of a monitored system identical to the once in [Nes05]. The goal
of collaborations is to explain how a system works, therefore it only incor-
porates the necessary details. This property should decrease the amount

9

2. Background Study

Figure 2.2: The visulization of the system with sequence diagram and pro-
cess filtering applied.

10

2.1 Previous work

of information, and could make it easier to understand overall functionality
of a system. The goal of the project was to explore the value of such an
approach and to what extend it was feasible. Due to time constraints, the
work was limited to the visualization of elementary collaborations1, that is
collaborations with only two participants. This section will present the main
contributions and findings in [Kar05].

Model constraints and algorithm for the detection of elementary
collaborations.

[Kar05] revealed that additional contraints on the UML model of an observed
system had to be introduced in order to be able to visualize the elementary
collaborations. The defined constraints made it possible do detect elemen-
tary collaborations in the running system from the trace information without
adding additional tracing information. An algorithm for the detection of el-
ementary collaborations and system structure, based on model and trace
information, were suggested and implemented. The defined constraints and
the details of the algorithm will be explained, refined and further developed
in section 4.6.

Design and implementation of visual monitor using elementary
collaborations.

A prototype that used the defined notation and detection mechanisms was
implemented and tested with a small test system. The prototype visualized
the system structure and the elementary collaborations between processes
in the system. The system structure was visualized correctly. The col-
laborations were visualized sufficiently, but with some inaccuracies. The
inaccuracies are discussed in section 3.2.3. Figure 1.2 shows a screenshot of
the monitor visualizing the process hierarchy with the collaborations they
take part in. Figure 2.3 shows the monitor visualizing the process hierarchy
and the signals exchanged between the processes. The screenshots shows
that the amount of information were reduced by using collaborations.

The prototype design reused parts of the system designed and imple-
mented in [Nes05]. The following parts were resued:

• Logging framework - The logging framework used in [Nes05] was
reused in the prototype. The data logged by the framework was suffi-
cient to visualize the different elements, with the added system design
constraints.

• EJBActorFrame - The patched runtime system in [Nes05] was used
as framework for the code generator in order to provide the necessary

1See section 2.5.3 for further details on elementary collaborations.

11

2. Background Study

Figure 2.3: Previous implemented prototype visualization of processes and
signals.

support for ordering of events in the trace data through the Lamport
clock implementation.

• Overall Model-View-Controller (MVC) structure - The overall
MVC2 structure of the plug-in with different model levels was reused.
The information was stored in different models to be able to support
multiple views, and to separate view and system data.

In addition to the visualization, some filtering mechanism and functionality
to increase the usability of the monitor were added.

• Manual layout of figures - The user could organize the figures on
the screen by selecting one or more objects and move them around to
get a better overview.

• Automatic layout of figures - Support for automatic layout of fig-
ures was implemented. The automatic layout was however not very
sophisticated and as a result the user often had to use the manual
layout tool to really get a good overview.

• Filtering of collaborations and processes - A filtering mechanism
for collaborations and processes was partially implemented. The fil-
tering mechanism was realised by making the system hiearachical tree
structure collapse and expandable. By collapsing a part of the system

2See section 4.1.1 for more about MVC in this thesis

12

2.1 Previous work

tree the user could hide the processes and collaborations in certaint
parts of the system and focus on the visible part of the system. Al-
though not fully implemented, the filtering mechanism proved effevtive
as a way to reduce the amount of information.

• Zoom support - The user could use a zoom function in order to get
an overview if the diagram got too large to fit the screen.

Limitations in the prototype

The Ramses II UML model, which the test system was specified in, did not
support the specification of collaborations. As a result, the collaborations
had to be added manually, grouping the signals into meaningful collabora-
tions. This information was then hard coded into a static structure and used
when analyzing the trace information from the logging framework. There
were no defined interfaces for accessing the system information that was
part of the UML model, so data could not be loaded programaticly when
starting the monitor. The same static approach as with the collaboration
specification was used to store the system information. The necessary system
information was hard coded into a model. As a result of the static approach,
the models for collaboration and system information had be manually re-
coded if other systems were to be monitored. Elementary collaboration did
reduce the amount of information compared to using signals (see Fig. 1.2
and 2.3), but they did not reduce the amount of information sufficiently.
The monitor did not scale well to an increasing number of processes. The
collapse/expand filtering approach could not limit the number of elements
at the same level in the hierarchy. Adding support for nested collaborations
to increase the level of abstraction, and additional filtering mechanism (i.e.,
filtering of framework messages, grouping of processes (see chapter 3)) could
improve the monitor.

Conclusions

[Kar05] concluded with that the collaboration based approcah to visuliaza-
tion could be usefull, but in its current form was somewhat limited. The
level of details, which had been the problem with the approach in [Nes05],
were reduced but not sufficently. For the visualization to be useful, the col-
laboration monitor had to be able to support nested collaboration. This
would make it possible to visualize the system at a higher level of abstrac-
tion. The sample application used in testing was also very simple, perhaps
too simple to make a real judgement of the usefullness of the monitor. Most
of the signaling were framework specific and did not really say anything
about the functionality of the application. The sample application did not
have much functionality to visualize. As a result, how well the monitor could
visualize the behavior of a observed system, was somewhat unclear. Larger

13

2. Background Study

systems had to be designed and tested and abstraction and scalability prob-
lems had to be solved in order to see the full usefullness of collaboration
based visualization.

2.2 Related work

The use of collaborations to visualize system behaviour has to the authors
knowledge not yet been done by any other. In consequence, there is no
previous experiences with such an approach we can make use of. In the area
of Software Visualization (SV) however, a lot of work has been done. The
main issues concerning the design of SV systems will be presented together
with an example of a existing UML based visualization tool.

2.2.1 Considerations in software visualization

In [PBS98] a taxonomy for SV is introduced. The taxonomy classifies dif-
ferent SV systems based upon how a system addresses different aspects of
software visualization. The taxonomy can be used as a basis when designing
a software visualization system. It contains the most general areas that need
to be addressed when designing such systems, and provides some possible
solutions. In this thesis the taxonomy will be used as a basis for the evalua-
tion of the final system. The following sections presents the main categories
in the taxonomy.

• Scope - When designing a SV system the scope of the system has to
be considered. Scope of SV system defines the range of programs that
the SV system can take as input for visualization. The scope of a sys-
tem can be further divided into generality and scalability. Generality
concern to what degree the the system can handle a generalized range
of programs or if it displays a fixed set of examples. Scalability means
to what degree the system can handle large examples.

• Content - One of the key issues of a SV systems is what data it
actually visualizes. In most cases, only a subset of the information
about a system is visualized because only certain aspects of a pro-
gram is interesting. How and when this data is gathered must also be
considered.

• Form - The form of the visualization is another key issue in developing
a SV system. A visualization can be designed for different mediums
(i.e., monitor, paper, virtual reality) and the style of presentation and
appearance can vary. A system can use different graphical elements,
colors, sound, multiple dimensions and animation to convey informa-
tion. If a system can visualize fine-grained details, it may be just as
important to be able to filter out fine-details in order to see the bigger

14

2.2 Related work

picture. Temporary hide sections that are not of immediate interest
is another way to limit information. By supporting multiple views, a
system might offer both a coarse-grained and fine-grained visualiza-
tion.

• Method - SV systems can employ different ways of creating the vi-
sualization. It can be coded from scratch (i.e., a user writes a special
program in order to visualize a particular program), or it can be build
from existing libraries. The user ability to customize the visualization,
the intelligence of an automatic approach and how the visualization
is specified is also important. The connection between the actual pro-
gram code and the visualization can affect the useability and generality
of a SV system.

• Interaction - A SV system should provide the user with different
ways of interacting with the visualization. Filtering information, con-
trol temporal aspects, speed and direction of the visulization are all
desirable features in a SV system.

• Effectivness - The effectivness of a SV system must be measured in
the context of it’s purpose. There might be several aspects of effectiv-
ness, but how well the SV system communicate information to the user
is the most important measurment of effectivness. An experimental
evaluation might be necessary to get an accurate estimate.

2.2.2 JaVis

JaVis [Meh02] is an environment for visualizing and debugging concurrent
Java programs. JaVis uses tracing for information gathering and UML for
visualization. Java Debugger Interface (JDI) is used to collect the trace
information. The JDI allows to trace remote and running programs [Mic06].
By using the JDI, no additional modification of the source code is necessary.
The tracing mechanism is non-invasive, and the visualization is generated
post mortem when the tracing is finished. JaVis automatically analyzes the
trace for deadlocks.

The visualization was made possible through integration with the stan-
dard UML CASE tool Together. The visualization was based on UML se-
quence and communication diagrams3 (see Fig. 2.5 and 2.4) which had been
extended to model thread sychronization and deadlocks. The conclusion
in [Meh02] were that using the JDI to collect trace information was effective.
A problem with the visualization was that the UML diagrams did not scale
well with huge amount of information. However, by focusing on errors the

3Since the creation of JaVis the UML specification has been updated. The diagrams re-
ferred to as collaboration diagrams in [Meh02] are now known as communication diagrams
and are not the same as the collaboration diagram in [Gro04]

15

2. Background Study

Figure 2.4: A sequence diagram visualized in JaVis, from [Meh02] p. 169

Figure 2.5: A communication diagram from JaVis, from [Meh02] p. 171

16

2.3 Technologies

amount of information was reduced. The choice of using a standard tool for
the visualization was found to be inconvenient. By using a standard tool,
the visualization was locked to the framework that the tool provided which
was insufficient and led to compromises. In a future version JaVis would
have its own visualization tool.

2.2.3 What can we learn?

The JaVis framework did not try to solve the exact same problem as the
collaboration approach in [Kar05]. Still, there is a lot of common issues
that both JaVis [Meh02] and the work in this thesis has to deal with. Both
JaVis and the collaboration monitor uses tracing for information gathering.
The prototype monitor relied on logging information from the running sys-
tem which was able to send these because of additional code added to the
observed system, thus the trace mechanisms used in the prototype was in-
vasive. Using the JDI might be an alternative. JaVis experienced the same
problem with sequence diagrams as in [Nes05]. The approach in [Kar05]
and this thesis will based on collaboration that should limit the amount
of information. The monitor also has its own implmeneted notation, so it
should not be limited in the visualization like JaVis that used a standard
tool. If the current notation used in the monitor is limited, it can easily be
expanded.

2.3 Technologies

This section gives a brief introduction to the different technplogies used in
the realization of the collaborations monitor in this thesis.

2.3.1 Eclipse Frameworks

The Collaboration monitor is implemented as an Eclipse plugin. The Eclipse
plugin environment is used to add extensions to the Eclipse workbench.
With the extensions points in Eclispe you can for example add views and
menu items to the workbench [DFK+05].

• Eclipse Plugin Framework - Used to add extensions to the Eclispe
workbench in order to control the functionality of the collaboration
monitor and to add views/editors.

• Eclipse Modeling Framework (EMF) - Is a modeling framework
and code generation facility for building tools and other applications
based on a structured data model, from a model specification described
in XMI [Gro06a]. In this thesis it is used to realise the models that
store the data from the trace and different views.

17

2. Background Study

• Graphical Editing Framework (GEF) - Make it possible to cre-
ate rich graphical editor from an existing application model [Gro06b].
GEF consist of two plug-ins. The org.eclipse.draw2d -plug-in provides
layout an rendering toolkit for displaying graphics. The org.eclispe.gef-
plug-in is an interactive MVC framework built on top of Draw2d.
Through this plug-in, interaction from mouse, keyboard and the work-
bench is handled. It also handles display and drawing of underlying
models by using draw2d figures. It also adds editing support on top
of draw2d and provides tools such as selection. GEF is used to realize
the graphical editor and figures used in the visualization.

2.3.2 Log4J

Log4J is a Java-based logging utility and is used primarily as a debugging
tool. With Log4J it is possible to enable logging at runtime without mod-
ifying the application binary. The Log4J package is designed so that these
statements can remain in shipped code without incurring a heavy perfor-
mance cost. Logging behavior can be controlled by editing a configuration
file, without touching the application binary. Log4J is used to capture the
logging information sent from the running system durring simulation. For
more information on Log4J the reader is refferd to [Fou06].

2.4 Ramses Tool Suite

Ramses is a tool suite for the creation of reactive systems [Kra06]. It is
developed at the department of Telematics at NTNU. The tool suite contains
different parts all implemented as Eclipse plug-ins. At the time of writing
the tool suite consist of the following parts:

• Model editors - The model editors lets you create and edit the func-
tionality of your application. The application is stored as an Unified
Modelling Language (UML) model. The behaviour of the application
are modeled with state machines and composite structures like classes,
ports and connectors describes the structure. Different diagrams also
visualize the system structure and state machine behaviour. It is also
possible to describe system behaviour with collaborations that describe
how the different parts of the system interact with each other. The
UML model is explained in more detail in 2.5.

• Code generators - Code generators can generate code from the UML
model for different plattform. At the time of writing the available
code generator translates the models to EJBActorFrame, a Java based
framework from Ericsson. Both a standard edition for servers and a
compact edition for mobile phones exist.

18

2.5 PAX Ramses III

Figure 2.6: Overview of the Ramses tool suite for rapid model drive devel-
opment of distributed reactive systems.

• Model checks - Durring the development of an application, the model
is continuously checked for errors by checking mechanism. Different
tests are applied to the model to identify error situations.

• Runtime trace support - To make it possible to observe the system
durring simulation, different trace mechanism have been developed.
Currently there exist a working trace monitor that displays the system
in a diagram similiar to sequence diagrams, and a prototype of a trace
monitor using a collaboration approcah to visualization.

The Ramses tool suite is developed continuously and the latest addition
is the collaboration specification mentioned above. Durring the develop-
ment of the first prototype of the collaboration monitor no such support
existed. In consequence the implementation had be simplified and compro-
mises made. The trace support of the tool suite is presented in more detail
in 2.1. How the additional information in the Ramses UML model can be
used to improve the collaboration monitor will be explored in chapter 4.

2.5 PAX Ramses III

The PAX Ramses III specification [Kra06] gives a complete description of
the UML model of a Ramses project. For those unfamiliar with the different
UML concepts of the model, a brief introduction is included as the different
elements are discussed. For further details on UML the reader is reffered
to [Gro04]. The focus will be on the elements loaded from the model at the

19

2. Background Study

start up of the monitor. The remaining elements are not covered in detail
and the reader is reffered to [Kra06] for further details.

2.5.1 Classes and Packages

The top level element (project, see Fig. 2.5.1) in the model contains the
UML resources in the project. The resource contains three packages which
cointains the classes, signals and collaborations. The ’class-package’ contains
all the classes in the system and their components. The ’signal-package’
contains all the signals4 defined durring the design of the system. The
’collaboration-package’ contains the defined colaborations in the project.

Ramses Core
|- project

|- resource
|- package
| |- class
| |- state machine (classifier behavior)
| |- property (variable)
| |- property
| |- port
|- package
| |- signal
|- package

|- collaboration

Figure 2.7: Ramses Core

Classes

A class describes a set of objects that share the same specifications of fea-
tures, contraints and semantics [Gro04]. The behaviour of a class can be
specified using a state machine. In the Ramses model, a class contains an
instance of all collaborations it plays a role in. This instance is a collab-
oration use of an elementary collaboration and it contains a role binding
between the specfic role and a particular port in a class that is the commu-
nication path for the information exhange in the specific collaboration.

4The programer can also use pre-defined signals from the EJBActorFrame package
that is included in all Ramses projects. These signals reside in their own package that det
programmer can import.

20

2.5 PAX Ramses III

- project
|- resource

|- package
|- class

|- state machine (classifier behavior)
|- property (variable)
|- property (part)
|- port
|- connector

|- connector end (1)
|- connector end (2)

|- collaboration use
|- dependency

|- primitive type

Figure 2.8: Classes

2.5.2 State Machines

A state machine can be used to model discrete behaviour through finite
state-transition systems [Gro04]. The UML 2.0 specification contains two
types of state machines, behavioral and protocol state machines. The state
machines in Ramses are all behavioral and describes the behaviour of the
different class instances. The systems designed in Ramses are reactive so
all transitions between states are triggered by signals. The transition can
contain acitvities such as sending signals or calling a procedure [Kra06].
Figure 2.5.2 shows the different parts of a state machine in [Kra06].

Association Point State Machines (APSM)

An APSM is a state machines that describes the behaviour at a certain as-
sociation point of a state machines. All collaborations contains an APSM.
APSMs are modelled as state machines, but the actions and triggers are
limited to send signal action and signal triggers on the transitions. A transi-
tion can only contain one of the two. The APSM represent a certain visible
behaviour or protocol of a state machine seen from the rest of a system.
When declearing signals for the system, the signals them self do not know
anything about the order of how they are used. This information is stored
in the APSMs. The start and ending signals of a collaboration can also be
extracted from this state machine. Start and end signals are defined as:

• Start-signal - A signal that triggers a transistion from the initial
state of the APSM.

21

2. Background Study

|- state machine (classifier behavior)
|- region

|- transition
|- signal trigger
|- activity effect

|- call behavior action
|- transition

|- time trigger
|- activity effect

|- send signal action
|- send signal action

|
|-Activity

|- call operation action
|- send signal action
|- send signal action

|- Signal Trigger

Figure 2.9: State Machine

• End-signal - A signal that triggers a transition to the final state of
the APSM.

Depending on the APSM description, there can be one or more end signals,
but only one start signal. The signals can also be classified as sent or received
from the specific APSM point of view.

2.5.3 Collaborations

A collaboration describes a structure of collaboration elements (roles), where
each element has a special function, that together accomplish a certain func-
tionality [Gro04]. The roles are played by participating instances and com-
munication paths between them are defined by connectors. The collabora-
tion specifies what properties instances must have to be able to participate
in the collaboration. The roles specifies the required features the partici-
pating instances must have. A collaboration’s main purpose is to explain
how a system works and it typically only contains the details necessary to
do so. An object can simultaneously play roles in several different collabo-
rations, but the collaborations would only represent the different aspects of
the object that are relevant to its purpose. A collaboration can be nested
and contain other collaborations. The system behaviour can be described
with collaborations in Ramses. Ramses collaborations can further be di-
vided into different types of collaborations (elementary and composite) that
can be used together to model the behaviour at different abstraction levels.

22

2.5 PAX Ramses III

Elementary Two-Way Collaborations

A two-way collaboration has exactly two participating collaboration roles.
An elementary collaboration does not contain any collaboration uses. A
signal in the signal package can only be assigned to a single elementary
collaboration. The order of the signals are specified in the APSMs. The
collaboration contains one APSM for each of the two contained roles. Only
one elementary collaboration can occupy a certain port of an instance of a
class at any time.

-Project
|- resource
|- package
|- collaboration

|- collaboration role (1)
|- collaboration role (2)
|- state machine (owned behavior) (APSM)
|- state machine (owned behavior) (APSM)

Figure 2.10: Elementary Two-way Collaboration.

Composite Collaborations

A composite collaboration is a collaboration that contains collaboration uses.
A collaboration use is an instance of a collaboration and represents a partic-
ular use of a collabroation. The collaboration use describes a collaboration
in a certain context, and bindes entities to the roles of the collaboration
in that specific context. The entities can be structural features of a clas-
sifier, instance specifications or roles in some containing collaboration. In
the Ramses UML model, the entities will allways be ports that represents
the binding between instances of classes and the roles of the collaboration.
A composite collaboration can contain collaboration uses of elementary col-
laborations. The elementary collaborations are the building blocks for com-
posite collaborations. A composite collaboration can also be nested. It can
contain collaboration uses of other composite collaborations. The composite
collaboration does not have any roles on its own, but rather it contains the
roles of the contained elementary collaborations.

23

2. Background Study

|- package
|- collaboration

|- collaboration role (1)
|- collaboration role (2)
|- ...
|- collaboration role (n)
|- collaboration use

|- dependency

Figure 2.11: Composite Collaboration

24

Chapter 3

Overview and Scalability

From the conclusions in [Kar05] we know that the previous prototype de-
sign and functionality need refinements in order to make the collaboration
approach usefull. This chapter will discuss the problems of scalability and
overview experienced in the previous prototype in more detail and suggest
possible solutions. The design and the implementations details of the pro-
posed solutions will be explained in chapter 4.

3.1 Improving Scalability

The experiences from [Kar05] showed that additional mechanism should be
added in order to improve the overview and deal with the increasing amount
of information that could be visualized when large systems are considered.

3.1.1 Nested collaborations

The prototype in [Kar05] supported elementary collaborations. The elemen-
tary collaborations did reduce the amount of information compared to the
alternativ of visualizing all signals (see Fig. 2.3 and 1.2). The elementary
collaborations showed the system behaviour at the lowest level of abstraction
in the context of functionality. In order to increase the level of abstraction
and improve the presentation of overall functionality, the monitor should
support nested collaborations. With nested collaborations, elementary col-
laborations that in its self represent a very simple functionality, can be part
of a nested collaboration that performs a more complex or higher level func-
tion. By using both elementary and nested collaborations, the behaviour or
functionality of the system could be described and visualized at different ab-
straction levels. There are no restrictions in [Gro04] on how collaborations
can be nested. In theory, the level of abstraction could be infinite. To re-
alise a nested collaboration visually, the existing notation for collaborations
in [Kar05] could be used, and the nested collaborations could be represented

25

3. Overview and Scalability

as tree structures. The root collaboration would represent the high level
function and child nodes (elementary- or other nested-collaborations) would
represent the sub-tasks in the collaboration. With collaborations organized
as trees, a similar approach to the one used for the system hierarchy filtering
(see section 2.1.2) could be applied to collaborations.

Elementary
Collaboration

Composite
Collaboration

Elementary
Collaboration

role role rolerole

Nested
Composite
Collaboration

Figure 3.1: A skecth of a nested collaboration.

3.1.2 Grouping of processes

Filtering of processes was supported in previous prototype by expanding and
collapsing of the process tree. This filtering mechanism made it possible to
filter out child processes. This mechanism however did not scale well with
a increasing number of process of the same type that would occure at the
same level in the process tree. This problem could be resolved by adding
the possibility to group a certain number or all processes of the same type
into a single object in the visualization. This would limit the number of
visible objects on the screen. The user could focus on the group as a single
object, or group a certain number of processes together and only focus on
the process not part of the group. The functionality is illustarted in Fig. 3.2.
The type and number of elements in the group could be visuliazed together
with the group object.

3.2 Improving the Overview

In order to provide better overview the problems of layout, framework mes-
sages, control and accuracy of the visualization in [Kar05] will be addressed.

26

3.2 Improving the Overview

P1.1

P1.2
Type A

P1.1
Type B

P1.5
Type A

P1.4
Type A

P1.1

Group
Type A
Size 3

P1.1
Type B

Figure 3.2: Illustration of the grouping of processes feature.

3.2.1 Improved automatic layout of figures

The automatic layout of figures was very limited in [Kar05]. The processes
were organized in a tree using a custom layout algorithm implemented by
the author. The layout was not very flexible and was only performed the
first time a process was added to the view. The collaborations were placed
in the view based on the coordinates of the involved processes. The layout
algorithm was not very sophisticated and collaborations were usually clut-
tered together. As a result the user had to do most of the layout by moving
the figures around in order to be able to fully observe the system. When the
number of processes and collaborations increased this was very tedious work
and it impaired and reduced the usefullness of the collaboratin monitor. An
improved automatic layout of figures should improve the overview of the
system by presenting the objects on the screen in a more orderly way. It
should also improve the usability and effectivness of the monitor.

3.2.2 Filtering of framwork signals

With the current code generator in Ramses, the UML model is translated
into Java code for the EJBAactorFrame. A lot of framework specific signal-
ing take place i.e., when new processes in a system is created. The signaling
might not be very interesting to a user because it does not say anything about
the actual behaviour or functionality of the system observed, but is more
framework specific. Filtering out these signals should reduce the amount of
information and a user of the monitor could focus on the actual behaviour
of the system, and completly ignore the framework specific signals.

27

3. Overview and Scalability

3.2.3 Event based visualization control

The prototype in [Kar05] visualized the system in real-time. The trace data
was analyzed as soon as it was received from the logging server, and added to
the visualization. This may work fine for the sequence diagram implemented
in [Nes05]. The sequence diagram shows all events that has occured over
time and no information is ever removed. The collaboration monitor does
not show present and the past like the sequence diagram. It shows the
state of the system observed after a certain number of events have occured.
Processes or collaborations that is no longer an active part of the system will
be removed when they are in-active. The time a part of the system is active
can span from a infinite number of events to a single event. If the system is
visualized in real-time, the latter example will not be observable to the user,
because the object would be added and removed from the visualization to
fast to notice. In the previous prototype, the Lamport stamp of the events
were used to guarantee that objects would be part of the visualization for
a certain number of events. An object in the visualization would remain
visible until a pre-defined number of events had occured. This approach was
unsatisfactory because it assumed that a system would behave the same way
every time. The pre-defined value also had to be tweaked before execution of
the system in order to work somewhat sufficient. The problem is illustrated
in Fig. 3.3. The terminated collaborations in grey, pollutes the visualization
with its presence. When objects are not removed from the view when they
are terminated, the visualization becomes inaccurate. This can result in
misunderstandings about the behaviour of the system.

To deal with this limitation, a buffered approach to visualization is sug-
gested. Instead of adding the data from the logging events in real-time, the
events should be stored in a buffer and added at the request of the user.
The objects terminated as a result of the added event, could now be re-
moved from the visualization when they are terminated. There would be no
need for a approach like the one used in the previous prototype because any
object would allways be visible for at least one ’frame’ in the visualization.
The user could control the visualization down to event level in similar way
that you control a dvd movie at the frame level. Adding an event to the
visualization, would skip the visualization one event forward, subtracting
an event from the visualzation would skip one step backwards. This mecha-
nisms should solve the problem of removing terminated objects, and would
give the user a complete control over the visualization.

28

3.2 Improving the Overview

P1

P1.1 P1.2

P1.1.1

Terminated
Collaboration

Active
Collaboration

P1.2.2

Active
Collaboration Active

Collaboration
Terminated
Collaboration

Terminated
Collaboration

Terminated
Collaboration

Figure 3.3: Illustration of the problem in the previous prototype.

29

3. Overview and Scalability

30

Chapter 4

Design and Implementation

This chapter will explain the design and implementation of the application.
The design of previous prototype will be used as a foundation. It will be
expanded and updatet in order to incorporate the additional requirements.
Certain implmentation details will be omitted but can be found in the in-
cluded source code in appendix B.1.

4.1 System Structure

Logging Server Logging dataRunning System Logging events Collaboration Monitor

System overview

Figure 4.1: An overview of the system structure

Figure 4.1 shows a block diagram of the system structure. The basic
design is the same as in the [Kar05]. The ’running system’ block represent
the observed application specified in Ramses. The details of the sample
application used in this thesis can be found in chapter 5. Through the
logging capability the observed system sends logging events to the logging
server, which forwards them to the collaboration monitor. The collaboration
monitor then processes the data and creates the necessary elements that are
visualized in a view.

31

4. Design and Implementation

4.1.1 Collaboration Monitor

Figure 4.2 shows a block diagram of the monitor as it was designed in the
previous work. The algorithm maintaining the system structure and elemen-
tary collaboration depended on data from the static hard-coded system and
collaboration description, and trace data from the logging server. Based on
the result of the processing, new objects were added or removed from the
different models and visualized in a view. The details of the data processing
will be refined and explained in section 4.6.

Previous Collaboration Monitor Design

Static model
data structure

Data ModelsData processing

Trace data from Log server

System data

Add/remove data Add/remove data View

Figure 4.2: An overview of the previous collaboration monitor.

The design of the monitor follows the model-view-controller (MVC) paradigm [Ree79].
The goal of this paradigm is to separate the data model, user interface and
the controll logic in three distinct components so that modifications to one
component can be made with minimal impact to the others. In MVC design,
the controller is often the only connection between the view and the model.
The controller is responsible for maintaining the view, and for interpreting
UI events and turn them into operations on the model. The different roles
in MVC are represented accordingly:

• Model - The different information models (data and view informa-
tion) realized in EMF.

• View - The visible objects realized as figures using the draw2d part
of GEF.

• Controller - The controllers are represented by editparts which are a
part of GEF. Editparts are the link between the view and the model.
In GEF the editparts display their view in EditPartViewers.

In traditional graphical editors implemented with GEF, the user is the
one responsible for editing the model. The collaboration monitor does not
work that way. The editing on the model is done by adding or removing
trace events from the data model, which in turn affects the view model and

32

4.1 System Structure

visulization. The user will be able to control progress of visualization, but
will only indirectly affect the data model. The user interaction will mainly
consist of reorganizing or filtering the visualized objects, which only affects
objects in the view model and above.

Information Models

The data in the monitor is stored in different models. The data model con-
tains all data about the system observed as it is seen through the processed
logging data. The view model contains all data concerning the visualization.
The controllers and figures in GEF does not know anything about the un-
derlying models. The data and view model is the only thing that is persisted
and stored [Hud03]. Controllers and figures may be garabage collected or
recreated over time. As a result, information such as coordinates, color, line
width for example will be stored in the view model. By separating the infor-
mations in a data model and a view model, it is possible to add additional
views to the monitor without changing any of the existing architecture. An
additional view model would simply be added on ’top of’ the data model.

The data and view model are realized in EMF and the notification mech-
anism of EMF is used to notify objects in the view model of changes in the
data model. The EMF models are created by specifying interfaces which
can be turned into models. From the models, code can be generated with
the EMF code generation tool. EMF adds notification to the model objects
during code creation. The objects that want to listen for changes in other
object must implement the adapter-interface of EMF in order to get the no-
tifications. Objects in the view model listens to changes in the data model
and adapts to these changes. If new objects are added in the data model,
the corrsponding objects will be created in the view model. If objects are
removed or marked as terminated in the data model, the corresponding view
objects will be removed. The view model objects also adapts to changes in
state information. The same way the view model adapts to the data model,
the graphical parts adapts to changes in the view model. The graphical
objects represents the controllers for the view model objects and adapts to
changes in the view model. If state information is changed in a view model
object the graphical part updates its figures. I.e., if state information of a
process is changed, the correct data is set in the figure. Another example is
setting figures invisible or visible due to filtering mechanisms. As illustrated
in Fig. 4.3, the different models are dependent on the model ’below’ them
in hierarchy. They rely on notifications and adapts to chagenges in that
model. There is not necessarily a one-to-one relationship between the dif-
ferent models. For example an object in the data model can be represented
by one or more objects in the view model. This complicates the task of
mainting consistency between the different models.

Though the overall structure of the different models is more or less iden-

33

4. Design and Implementation

Data model

View Model

N
ot

ifi
ca

tio
ns

N
ot

ifi
ca

tio
ns

D
ep

en
de

nc
y

D
ep

en
de

nc
y

Graphical EditParts

G
E

F
E

M
F

Tr
ac

e
ev

en
ts

D
ra

w
2D

Figures

R
ef

re
sh

Figure 4.3: An overview of the different models in the system.

tical to the one in [Kar05], the code behind models has been more or less
completly rewritten. The previous implementation was incomplete. The
consistency between the different models was not properly implemented.
This problem had not been detected in the previous work due to the inac-
curacies in the processes of removing terminated objects (see section 3.2.3).
A re-implementation was necessary in order to incorporate the additions
suggested in chapter 3. Especially the notification mechanism, creation and
removing of objects between the different models has been improved and
should work correctly.

4.2 Design and Implementation Constraints

The existing frameworks (EJBActorFrame, Ramses and the logging frame-
work from [Nes05]) will not be changed in order to realize the monitor. They
will be used ’as is’. All solutions, designed and implemented, will not change
any of the code of the existing works used in this thesis.

34

4.3 Loading and Accessing the Model

4.3 Loading and Accessing the Model

The prototype in [Kar05] had no support for dynamically loading of data
from the UML model of the system observed. As a result, a static approach
(see 2.1.2) was taken, which meant that part of the code of the monitor had
to be rewritten everytime a new system was to be observed. In this thesis
we will solve this obvious weakness by automate the process of collecting
the data needed directly from the UML model description of a system. The
data will be loaded from the UML model at start-up automaticly, and there
will be no need for continues manual adjustments in the code.

The monitor access the UML model through interfaces defined in the
Ramses core. At start up the user initates the necessary UML data needed
from the UML model of a Ramses project by clicking a button in the menu.
In addition to the interface for project access, an UMLHelper package pro-
vides some additional helper methods for getting specific information and
accesing different part of the UML model.

The loading sequence loads the different packages of the projects and
the data contained. From the Ramses UML model specification (see 2.5)
we know that the project consist of three main packages. Signals, collab-
orations and the parts of the system all reside in their own packages. All
data from the UML model is stored in hashmaps for fast and easy access
durring the processing of trace data. From the signal package all signals
are loaded in a hashmap keyed on their name. The signal information in
the trace data, only contain the name of a signal as string, so in order to
get the right UML signal, the signals are keyed on their string names. Also
the signals in EJBActorFrame package is loaded. From the collaboration
package all collaboration and the elements they contain is loaded. For ele-
mentary collaboration, all signals they contain (described by the APSM) is
registered with the specific collaboration. The end signals (defined in 2.5.2)
are also registered in a own map. The APSM and role information is also
loaded. Composite collaboration are registered with all the collaboration
uses of elementary and composite collaborations they may contain. The dif-
ferent components of the system is loaded from the main system package.
All classes are registered with their components such as ports and collabo-
ration uses. A overview of the system structure with the addition of loading
of UML data included is illustrated in 4.4.

4.4 Parsing Trace Data

For every transistion in any of the processes1 of the system observed, a
logging event is sent to the logging server. The same same logging framework
as in [Nes05] is used and the format of the logging events is the same. The

1By process we mean state machine and vice versa.

35

4. Design and Implementation

Logging Server Logging dataRunning System Logging events

System UML
Model Model data

Collaboration Monitor

System overview

Figure 4.4: An overview of the expanded system structure

complete description of the format can be found in appendix A.1. The
following information in the logging events are used by the monitor:

• ActorID - Contains the actor address of the class instance of the
state machine reporting this transition. Actor address is the unique id
of a class instance in EJBActorFrame [MH05]. It is used to indentify
processes and the system structure as described in section 4.6.1. The
format of the actor address is shown in Fig. 4.5. The actor address
consist of three parts:

ID︷ ︸︸ ︷
/.../grandparentName/parentName/processName :

Port︷︸︸︷
port @

Type︷ ︸︸ ︷
actortype

Figure 4.5: The actor address format.

– The id consist of the name of the process and the name of all
process this process is a child of in top to bottom order.

– The port field can contain the name of the port a signal is sent
or received through. In its current version Ramses and EJBAc-
torFrame does no support the use of port properly so it can not
be assumed that the port information in the address is correct.

– The type of the process. This name corresponds to the class and
the name of it’s state machine in the model.

• Current State - Contains the state of the state machine before the
transition took place.

36

4.5 Notation for visualized Processes and Collaborations

• New State - Contains the state of the state machine will enter at the
end of this transistion.

• Received event - Contains the message(s) received durring the tran-
sistion. A message in the receive event also contains the type of the
message, and the actor address of the sender and the receiver.

• Destroy event - Contains the actor id of a process that has been
terminated.

From the trace data we are only conserned with received events. The
received event will allways contain the largest lamport stamp because of the
happened-before relation. It is allways is the last incremented stamp at the
current time in the system. The only information lost by not using the send
signal event is signals lost durring transfer. We will however assume reliable
transfer of signals and that no signals are lost.

The details on how the information is used can be found in 4.6. The
information in the logging events, not listed above, is saved but is not used
by the collaboration monitor. At the time of writing it is not included as
part of the collaboration monitor, but if found usefull it could easily be
added.

4.5 Notation for visualized Processes and Collab-
orations

The notation used in the monitor is in part based on the notation used
in [Kar05], which was in part based on UML. Som additional information
will be added to the figures and notation for composite collaborations is
added.

4.5.1 Visualizing the system structure

As in previous work [Kar05] the system structure will be visualized as a
tree. Using graphs for software visualization is one of the most common
and practical forms and it is used in many commercial programming envi-
ronments [Nor98]. In addition graphs are perhaps the most intuitiv way of
visualizing a hierarchy and therefor should be easy to understand for both
experts and novice users of the monitor. The notation used for processes are
shown in Fig. 4.6. The child-parent relationship is visualized as a connector.
The parent end of the connector has a diamond decoration, similiar to the
UML containment notation (see Fig. 14-122, p. 324 in [RJB04]), symboliz-
ing the containment. Figure 4.7 shows an example of the process hierarchy
visualized in the previous prototype.

37

4. Design and Implementation

Process_1
Type
State

Process_1.1
Type
State

Child-parent reference

Containment

Figure 4.6: Notation used for processes.

Figure 4.7: The system structure visualized as a tree in previous prototype.

38

4.6 Trace and UML Data Processing

4.5.2 Visualizing collaborations

Elementary collaborations are visualized using the notation in [Kar05]. In
addition, role information is included in the figures. The collaboration is
represented by a dashed ellipse, The roles are represent by dashed connectors
between the elementary collaboration and the participants. The role name
is represented by a label on the connector. At the end of the connectors,
a circle represent the port that is used in the elementary collaboration (see
Fig. 4.8). The notation is similar to the one used in [Gro04] (see Fig. 9.12
p. 166).

ProcessProcess Elementary
Collaborationrole role

Figure 4.8: Illustration of the notation used for elementary collaborations.

In addition to the elementary collaboration, composite collaborations are
visualized. For the same reasons as for system structure (see section 4.5.1)
a composite collaboration is visualized as a tree. The root of the tree rep-
resent the composite collaboration that contains the other composite and
elementary collaborations. The containment relationship is visualized the
same way as the parent-child relationship for processes. A dashed connector
between a composite collaboration (parent) and the contained composite
and elementary collaboration (children) represent the relationship. At the
parent end of the connector, a figure similar to the UML containment symbol
is visualized.

4.6 Trace and UML Data Processing

The visualization relies on information from the UML model of the observed
system and trace data. The information combined will make the discov-
ery of system structure, active collaborations and the visualization possible.
Maintaining the system structure is relativly simple. To maintain active
collaborations however additaional constraints on the UML model must be
defined.

4.6.1 Maintaing the system structure

In the specifications of the trace format in [Nes05], all trace events received
by the logging framework contains the actor address of the state machine
that experienced the transition. By comparing this actor address with the

39

4. Design and Implementation

ProcessProcess

Process Col_a1

Col_A

Col_a2 Processrole

role

role

role

Figure 4.9: Illustration of the notation used for composite collaborations.

actor addresses in the set of existing processes, it is possible to trace the
transistion to a process in the data model. If the data model does not
contain a process with the address in the transition, it is assumed that this
is a new process that just had its first transistion. From the actor address
the type of the state machine can be extracted (see Fig. 4.5). When we
know the type of the state machine, a new process can be added to the data
model and initalized with the default values and ports it has as described
in the UML model of the system. The format of the actor addresses (in
Fig. 4.5) is hiearchical. By checking the address of the new process against
the address of the existing processes, the parent process, if such a process
exist, can be found and the new process can be added as a sub-process of
its parent. An example of parent-child address relationship is shown below.

Finding parent example:

state machine: \a\b\c\d is child of state machine: \a\b\c

state machine: \a\b\c\d is NOT child of state machine: \a\b\d

If a process with the actor address in the transition in the logging event
already exist in the data model, the process is updatet with the state in-
formation cointained in the transition. If a processes is terminated durring
run-time, the transition in the logging event contains a terminated event.
When a terminate event is received, the terminated state machine and all
children, if any, are marked as terminated in the data model, and removed
from the visualization. This way state and system structure is maintained
during observation.

40

4.6 Trace and UML Data Processing

4.6.2 Detecting collaborations

The trace events received from the logging framework gives information
about what is currently happening in the observed system. As seen in sec-
tion 4.6.1, the system structure can be maintained by using trace data and
UML data combined. This was possible because there was a relationship
between the UML model and the trace information (actortype field in actor
address), and a relationship between trace events and the process instances
in the data model (actor address). In order to be able to visualize the
collaborations that are taking place in the observed system, the same rela-
tionships between trace events and collaborations in the UML model, and
trace events and collaboration use instances in the data model must exist.
As with processes, we first have to locate the right type in order to create
it, and later relocate it in the data model in order to update or remove it.
With elementary collaborations this is in most cases trivial. With compos-
ite collaborations however, the task gets more complicated and additional
constraints on the UML model must be defined.

Active collaborations

In the following sections collaborations will be described as active or in-
active. Active and in-active collaborations are defined as followed:

• An elementary collaboration use in a class is considered active if a
signal that is part of the collaboration the collaboration use represent
is received by a process. It is considered in-active when the end-signal
of the collaboration has been received.

• A composite collaboration/collaboration use is considered active as
long as any of the contained elementary collaboration uses are active.
When no elementary collaboration uses is active, the composite col-
laboration/collaboration use is considered in-active.

Elementary collaborations

(Må rydde opp i terminologien her, collaboration, collaboration use, col-
laboration use instance, process, state machine class..) The UML model
specifices the following constraints on the UML model of as system [Kra06]:

• System design constraint 1 - A signal can only be part of a single
elmentary collabortion.

• System design constraint 2 - At any given time only one collabo-
ration can occupy a port.

41

4. Design and Implementation

These necessary constraints were added in [Kar05]. This means that
there is a one-to-one relationship between signals and elementary collab-
orations defined in the UML model. Logging events provides the signals
received durring transitions. Because of the one-to-one relationship in the
UML model, finding the elementary collaboration the signal is part of is
easy. A simple lookup in the data loaded from the UML model will suffice.
Next the collaboration use representing this particular use of the collabo-
ration in the UML model must be located. Processes are uniqly identified
by their actor addresses. Collaboration uses have no such unique id. This
means that the particular collaboration use that the received signal is part
of has to be identified some other way. [Kra06] states that a collaboration
is bound to a port of a process through a role-binding. The port represent
the communication channel that all signals sent or received by the process
will go through. In addition, [Kra06] specifies that only one collaboration
use can occupy a port at any given time. This means that the collaboration
use has to be terminated before another collaboration use can use the port.
Together with the actor name, the port name in the actor address could be
used to identify a unique assocation point at the process, which only one
collaboration use could occupy at any moment in time. The information
about ports in the trace data however, can not be used (see section 4.4) to
identify the collaboration use. The ports only serve as a binding between
a collaboration use in a class, and a APSM in a particular collaboration in
the UML model.

The correct collaboration use in the UML model must be found by com-
paring all collaboration uses in the two participating classes with the col-
laboration that the signal is part of. Every class contains a collaboration
use for each collaboration it plays a role. The particpants can be found by
matching the actor address of the sender and receiver in a message with
processes in the data model. When the correct collaboration use for both
involved classes is found, the role the process plays and what port is to be
used for communication can also be found. A class can, according to the
UML model, contain several collaboration uses of a elementary collaboration
(illustrated in Fig. 4.10). This causes problem for the detection of elemen-
tary collaboration uses. Since the port information in the logging data can
not be used, there is no way of knowing which one of the collaboration uses
of a certain collaboration that has been activated. As a result we have to
add an additional constraint to the system description in order be able to
visualize it.

• System design constraint 3 - Any system that want its collabora-
tions to be visualized has to limit the number of collaboration uses of
a certain type, that a process takes part in, to a single one.

With this additional constraint we can now find the correct port and role
a process will play in all elementary collaborations.

42

4.6 Trace and UML Data Processing

|- class
|- collaborationUse_1:Collaboration_1

|- role_1 --> port_1
|- role_2 -->

|- collaborationUse_2:Collaboration_1
|- role_1 --> port_2
|- role_2 -->

Figure 4.10: An example of when elementary collaborations can not be
detected.

There might be cases where two process of the same class play different
roles in the same elementary collaboration (illustrated in Fig. 4.11). In
these cases we have to chech the APSM that are part of the role binding
in order to find the correct role for each of the participating processes. By
comparing the received signal with the APSMs, the APSM that received the
signal can be identified, and from the role binding the correct role for the
different processes. According to the specification, there can only be one
collaboration going on at the time at a specific port of process. If the ports

|- class
|- collaborationUse_1:Collaboration_1

|- role_1 --> port_1
|- role_2 --> port_1

Figure 4.11: A process type playing two roles in the same collaboration.

that are bound to the roles are currently taking part in a collaboration, this
collaboration is by definition the same type that the new signal is part of
and the new signal received can be added to the current active collaboration
on the ports. If there is no active collaboration on the ports, we add a new
collaboration to the data model that uses the ports and has the correct roles.

A collaboration is terminated whenever a signal that is an end-signal for
the specific collaboration is received. This signal or signals that terminates
the collaboration can be extracted from the APSM that are part of the
collaboration description. If such a signal is received, the collaboration is
marked as terminated and removed from the visuliazation. The port are
now free to take part in a new collaboration.

Composite collaborations

The UML model does not limit the collaboration uses of a certain elementary
collaborations to be part of only one composite collaboration. Collaboration

43

4. Design and Implementation

uses of a elementary collaboration can be reused in many different compos-
ite collaborations. As a result the signals in a composite collaboration is
not necessarily unique to that specific composite collaboration. Figure 4.12
illustrates the problem. The composite collaborations, collaboration A and
collaboration B both, contain a collaboration use of the elementary collab-
oration Collaboration 1.

|- package
|- collaboration_A

|- collaboration use: Collaboration_1
|- collaboration_B

|- collaboration use: Collaboration_1

Figure 4.12: Two composite collaborations containg a collaboration use of
the same elementary collaboration.

In addition an elementary collaboration can exist as a collaboration use
of a elementary collaboration in a class, performing a function on its own,
and as a collaboration use in a composite collaboration, performing a task
as part of a greater more complex task. Figure 4.13 illustrates the prob-
lem. Two classes ’A’ and ’B’ contains a collaboration use of the elementary
collaboration ’X’. This collaboration is also part of the composite collab-
oration ’Y’. ’A’ could be using the elementary collaboration ’X’ as ’stand
alone’, while ’B’ could be using the elementary collaboration and be part of
the composite collaboration ’Y’. If this is allowed in the model, there would
be impossible to decide which of the two cases that are currently active,
elementary collaboration ’X’ alone, or ’X’ as part of ’Y’.

|- package
|- Class_A

|- collaboration use: Collaboration_X
|- Class_B

|- collaboration use: Collaboration_X

|- package
|- Collaboration_X
|- Collaboration_Y

|- collaboration use: Collaboration_X

Figure 4.13: A elementary collaboration as part of a composite collabo-
ration through a collaboration use and as a elementary collaboration use
independent of the composite collaboration.

The same relationships as described above (elementary collaborations

44

4.6 Trace and UML Data Processing

to composite collaboration) can be possible for composite-to-composite col-
laborations. A composite collaboration can occur as a use in several other
comsposite collaboration uses. As with elementary collaboration, it is the
signals that identify a composite collaboration. The composite collaboration
contains all the signals of the collaboration it contains. With no restrictions
on the UML model assuring that signals are unique for both composite and
elementary collaborations detecting composite collaborations would be im-
possible. In order to make it possible to detect the composite collaboration
we have to define some additional system design constraints.

• System design constraint 4 - Only one composite collaboration
can contain a collaboration use of a certain elementary collaboration.

• System design constraint 5 - Only one composite collaboration
can contain a collaboration use of a certain composite collaboration.

With this additional design constraints, the relationship between a signal
and any type of collaboration should be a one-to-one relationship. It will be
possible to decide what elementary and/or composite collaboration that is
currently active based on a signal. The signal would decide the elementary
collaboration and the elementary collaboration would decide the composite
collaboration. All composite collaborations would be organized as trees with
unique nodes.

When an elementary collaboration is detected and the collaboration
use intance is created and addded to the data model, as described in sec-
tion 4.6.2, we have to check if it is part of a composite collaboration in the
UML model. If it is, the elementary collaboration use has to be added as
a sub-collaboration of the composite collaboration it is a part of. In the
same way as we add signals to existing elementary collaboration uses in the
data model, we must add elementary collaborations to the right composite
collaborations in the data model. This means that we somehow need to be
able to identify this composite collaboration in order to check if it exist in
order to retrieve it, or to decide if we must add a new one to the data model.

An instance of a elementary collaboration use in the data model could be
indentified by looking up the sender or receiver of a signal and checking the
ports that was associated with the specific collaboration use. The objects
in the data model was identified by the actor address of the participants.
Composite collaborations also has to be identified by their participants. If
participants are allowed to join and leave composite collaborations of the
same type, it might be impossible to decide which composite collaboration
the elementary collaboration use the participant is a part of, belongs to. To
avoid this problem another constraint on the UML model will be added.

• System design constraint 6 - A process that takes part in a ele-
mentary collaboration use that is part of composite collaboration can

45

4. Design and Implementation

not be part of any other composite collaborations of the same type
while the composite collaboration is active.

Another problem occures if we have several active instances of a com-
posite collaborations of the same type in the data model and want to add
another elementary collaboration use as part of one of them. There has to
exist a relationship between the elementary collaboration we should add,
and one of the existing composite collaborations. The only relationship we
can use are the actor addresses of the participants. In order for such a re-
lationship to exist, one of the participants of the elementary collaboration
we want to add, must allready be part of the composite collaboration. Fig-
ure 4.14 shows a composite collaboration were such a realtionship does not
exist. If the elementary collaboration ’A’ has been created first, comspoite
collaboration ’Y’ is also created and ’A’ is added as a sub-collboration. If
several instances of ’Y’ exist, and a signal triggers elementary collaboration
’B’, there is no way to decide which one of the instances of ’Y’ we should add
’B’ to. A composite collaboration were the necessary realtionship exist is

Composite collaboration
Y

Elementary
Collaboration

A
Participant

P

Elementary
Collaboration

B

Participant
S

Participant
R

Role_b1

Role_b2

Role_a2
Role_a1

Participant
Q

Figure 4.14: An illegal composite collaboration.

illustrated in Fig. 4.15. No matter which one of the collaboration are added
first, one of the participants in the next elementary collaboration that should
be added will already be a part of the composite collaboration. The order
of the activation of the elementary collaboration can not be random. This is
illustrated in Fig. 4.16. Legal orders of activation in Fig. 4.16 is (’A’,’C’,’B’),
(’C’,’A’,’B’), (’C’,’B’,’A’) and (’B’,’C’,’A’). If another order would occure,
none of the particpants of the elmentary collaboration we want to add to
the composite collaboration ’Y’ would be a participant of ’Y’, and we would
not know were to add the elementary collaboration. To avoid cases like the
one in 4.14 two additional constraint are added to the UML model.

46

4.6 Trace and UML Data Processing

Composite collaboration
Z

Elementary
Collaboration

A

Participant
P Participant

R

Role_a2Role_a1

Participant
Q

Elementary
Collaboration

C

Role_c1

Role_c2

Figure 4.15: A legal composite collaboration.

Composite collaboration
Y

Elementary
Collaboration

A

Participant
P

Elementary
Collaboration

B

Participant
S

Participant
R

Role_b1
Role_b2

Role_a2Role_a1

Participant
Q

Elementary
Collaboration

C

Role_c1

Role_c2

Figure 4.16: A legal composite collaboration if the elementary collaborations
are added in the correct order.

47

4. Design and Implementation

• System design constraint 7 - All participants in a composite collab-
oration must be connected directly or indirectly through elementary
collaboration uses.

• System design constraint 8 - The elementary collaborations coin-
tained in a composite collaboration must be activeted in a order that
guarantees that one of the participant is already a participant of the
composite collaboration. An exception to this constraint is the ac-
tiviation of the very first elementary collaboration in the composite
collaboration.

With these constraints added to the UML model, we should be able to detect
and visualize all active collaborations in the running system observed and
remove them when they are in-active.

4.7 Playback control of Visualization

The buffered approach suggested in section 3.2.3 will buffer all trace infor-
mation and add them at the user request. Figure 4.17 shows an overview of
the design.

Trace Data Buffering

Trace Event BufferTrace data from
Logserver

Trace Data
Parsing

Update
modelAdd Event Data Model Notifications

Processed Trace
Events

Data processingAdd Event

A
dd E

vent/N
ew

O

bjects

Figure 4.17: Overview of the trace event buffering.

The data received from the logging server is parsed by the monitor. The
necessary information is extracted and stored in event objects. The event
objects are placed in the trace event buffer. By clicking on the button
for adding events, the trace event with the lowest Lamport stamp is taken
out of the buffer and processed by the monitor. The resulting updates
and new objects are added to the data model that notifies the rest of the
system. In addition the trace event added to the monitor is stored in another
buffer along with the resulting new data model objects. By clicking the step

48

4.7 Playback control of Visualization

backward button, the changes of the most recent added trace event can be
reverted. The trace event subtracted is put back into the trace event buffer
and can be added again.

4.7.1 Lamport stamp sorting

The Lamport logical clock in EJBActorFrame guarantees causal ordering
of the logging events from the system obeserved. The EJBAactorFrame
framework piggybacks the Lamport stamp on the event data received by
the logging framework. The event data however is not received in the same
order as the Lamport stamps. In previous work [Nes05] the Lamport stamps
were used as reference point for drawing the the different elements of the
sequence diagram. When event data are added to the diagram in a potensial
wrong order, the diagram might be incorrect at a certain moment in time.
When all event data are processed, the diagram would however be correct.
When visualizing the system with collaborations, out of order event data can
corrupt the visualization. Because the elementary collaborations are started
and terminated based on the signals they consist of, the signals must be
added to the visualization in the correct order to guarantee the correctness
of the visualization. If i.e., a signal that is an ending signal for the col-
laboration would be received prior to the other signals of the collaboration,
the resulting visulization would be incorrect. The collaboration would be
created and removed at the same time, and the user would not be able to
observe it. When the remaining signals of the collaboration is received by
the trace editor, they would trigger the creation of a new collaboration. This
collaboration would then not be properly removed because the ending signal
has already been processed. To avoid this problem the trace events in the
trace event buffer has to be sorted according to the lamport stamps. When
a trace event is added to the buffer, it has to be inserted at the correct
index. This should guarantee that the trace events are added to the visual-
ization in the correct order and visualize the system observed correct. This
is illustrated in Fig. 4.18.

Adjacent events

Adjacent events are events with same Lamport stamp. The order within
these events are unknown, and it does not matter to the visualization. The
visualization will not be corrupted by adding these events in a random or-
der. The Lamport stamp guarantees that adjacent events will not effect
each other because they can not occure between to processes that are com-
municating with each other.

49

4. Design and Implementation

Adding events

Trace Event Buffer
Event

Stamp: 87

Event
Stamp: 93

Event
Stamp: 96

Event
Stamp: 102

Event
Stamp: 105

Insert

Most recent event

Least recent event

Event
Stamp: 101

Figure 4.18: Inserting event into the trace event buffer.

4.7.2 Real-time or Post Mortem Visualization

When we add trace events to the buffer instead of adding them directly to
the visualization, the visualization will not be real-time. The visualization
is semi-post mortem. The user dont have to wait until the entire system
run has finished. A trace event can be added as soon as it is placed in the
buffer. Due to the problem of out of-order-events described in section 4.7.1,
it is probably safest to let a certain number of events be added to the buffer,
in order to resolve any out-of-order issues, before adding them to the visu-
alization. Errors can however occure, if events are added when the system
is highly active. The only way to guarantee that the system is visualized
correctly is to do real post-mortem visualization.

4.7.3 Additional features

With the event-control mechanism you can skip back and forth in the vi-
sualization. When observing a very activ system, the number of events in
the data buffer can be very large. Adding single events to the visualization
N times might be time consuming and tedious. In order to improve the
mechanism further, the ability to fast forward the visualization and to skip
to ’interesting events’ has been added. The user can add all events currently
in the buffer or select a part of the system (a process), and skip to the next
event that the process is a part of.

4.7.4 Elaborating the Design

An overview of the new design with the additions presented in section 4.3
through 4.7 is illustrated in Fig. 4.19. The additions of the UML loading
and trace event buffering is included.

50

4.8 Improving the Overview

Collaboration Monitor

UML System
data

Trace Data
buffer

Data Models

Data from
UML model

Trace data
from

Logserver

Data processing

Trace data

System data

Add/remove
data

Add/remove
data View

Figure 4.19: An overview of the extended structure of the collaboration
monitor.

4.8 Improving the Overview

We previously stated the need and importance of improved overview in the
monitor. The design and implementation of the different mechanism sug-
gested in 3 and the existing mechanism that was not fully working in the
previous prototype are explained.

4.8.1 Layout of Figures

From the UML model of a system (see section 2.5) it is clear that both the
parts of the system and the collaborations they take part in, are organized
in a hierarchy. Processes can contain processes and composite collaboration
can contain other composite collaborations or elementary collaborations.
Elementary collaborations contains signals. This means that we have a
single system structure tree, possibly several collaborations trees of different
size and in addition any signals not part of collaborations (i.e., framework
signals if we choose to visualize them). This is illustrated in Fig. 4.20.
The composite collaboration ’Col A’ contains the elementary collaborations
’Col a1’ and ’Col a2’ and represent the a collaboration tree. The proces
hierarchy and the collaboration trees are interconnceted through roles. As a
result the structure is no longer a single tree but a graph. This means that
there are a number of possible ways to order the layout. There is no single
optimal layout of such a graph. The optimal layout would be depended on
what underlaying patterns the user want to focus on.

The draw2d package in GEF has algorithms for layout of directed graphs
that layout graphs from top to bottom. This is currently the only supported
layout algorithm in GEF and it is the one we will use. Implementing an-
other layout algorithm from scratch would take a lot of time and is out
of the scope of this thesis. The main system structure tree will be priori-

51

4. Design and Implementation

P1

P1.1 P1.2

P1.1.1 P1.2.1

Col_a1

Col_A

Col_a2

P1.2.2

role role
role

role

Figure 4.20: The system and collaboration trees connected by roles.

52

4.8 Improving the Overview

tized in the layout. Collaborations and signals positions will be calculated
based on the position of the processess playing a role in the collaboration
or sendind/receiving a signal. Collaborations and signals will be placed
somewhere on the line between the involved processes. The layout will be
performed the first time objects are added to the view and it can be trig-
gered by a button in the menubar. In addition, the possibility to manually
move objects in the view is still available.

4.8.2 Filtering Information

In order to improve the overview, mechanism to filter information is im-
plemented. The filtering mechanisms will limit framework messages and
provide functionality and system abstraction. Each of the mechanisms will
separately filter and limit some part of the visualization.

Filtering Framework Messages

The trace format in [Nes05] specifies that all messages sent or received is
tagged with a boolean value. True if a message is a framework message, false
if not. This value could be used to filter out framework messages. At the
time of writing, this information has not been extracted from the trace data.
It is suspected that the trace information might not contain this information
due to a bug. An alternativ way to remove the framework messages from
the visualization is to ignore the signals in the EJBAactorFrame package
when importing the UML model data. The monitor will ignore all signals
received in the trace events that are not registered. Another way to filter
the signals is to ignore all signals that are not part of any collaboration in
the UML model. The latter approach will be used in this implementation.

System Structure Filtering

The main filtering mechanism for the system structure is based on the ideas
from the previous prototype where it was partially implemented. The system
structure can be filtered by collapsing or expanding parts of the system
structure tree. This mechanism will remove all processes that are part of a
collapsed process and it will reorganize the collaborations that the collapsed
part of the system was participating in. If a process is particpating in
a collaboration, the filtering mechansism considers any parent process of
the involved processes, as long as it is not a common root for any of the
particpants, indirectly involved in the collaboration. The ’common root’ is
the first process the both of the participating processes are a sub-processes
of. This will be reflected in the filtering as illustrated in Fig. 4.22, 4.23
and 4.21.

Figure 4.21 illustrates a system with active collaborations. The system
structure is fully expanded. If process ’P1.1.1’ is collapsed, the children

53

4. Design and Implementation

P1.1.1.1

P1.1

P1.1.1.2

P1.2.1

P1

P1.1.1

P1.2

Role_b1

Col_B

Col_A

Role_b2

Role_a1 Role_a2

Role_c2 Col_C
Role_c1

Figure 4.21: A fully expanded system structure with collaborations.

54

4.8 Improving the Overview

(’P1.1.1.1’ and ’P1.1.1.2’) will be hidden. The collaboration ’Col A’ will
also be removed from the view because non of the participants are visible.
P1.1.1 is also the ’common root’ for the two child processes, so no roles will
be relocated. Figure 4.23 shows how roles can be relocated.

P1.1

P1.2.1

P1

P1.2
Role_b1

Col_B
Role_b2

Role_c2
Col_C

Role_c1

Figure 4.22: The system structure after collapsing process P1.1.1

In Fig. 4.23 the process P1.1 is collapsed. Some of collaboration ’Col B’
and ’Col C’ roles will be relocated. Role b1 and Role c2 will be attached
to P1.1 to indicate that P1.1 indirectly is part of the collaborations through
one or more of its inner parts (P1.1.1).

The collapse/expand filtering mechanism lets the user control the ab-
straction level of the system structure. Filtering processes at the same level
in the hierarchy is however not possible with the mechanism. The grouping
mechanism provides this function. Grouping lets the user group together
processes of the same type. Processes of the same type will often reside at
the same level in the system structure, illustrated in Fig. 4.24. With the
collapse/expand approach you can only choose between observing everyone
or none. With the grouping function it is possible to represent a group of
processes as a single object, illustrated in Fig. 4.25. As a result you can
filter processes at a specific level in the system structure.

Filtering Collaborations

The approach for collaboration filtering is based on the tree structure of the
collaborations. The top level composite collaboration in the tree describes
the top level functionality, while the contained collaborations describes the
subtasks. By collapsing or expanding the collaboration or function tree,

55

4. Design and Implementation

P1.1

P1.2.1

P1

P1.1.1

P1.2

Role_b1

Col_B

Role_b2

Role_c2 Col_C Role_c1

Figure 4.23: The system structure after collapsing process P1.1.

P1.1

P1.2
Type A

P1.1
Type A

P1.3
Type A

P1.5
Type A

P1.4
Type A

Figure 4.24: A number of processes of the same type at the same level in
the hierarchy.

56

4.8 Improving the Overview

Group
Type A

P1.1

P1.5
Type A

P1.4
Type A

Figure 4.25: Grouping of processes.

the function could be obeserved at different levels. The behaviour of the
mechanism is illustrated in Fig. 4.26, 4.27 and 4.28.

1.2.1

Composite
1.2

Elementary
1.2.2

role role
rolerole

ProcessProcess

Elementary
1.1.1

Composite
1.1

Elementary
1.1.2

role

role

role

role

ProcessProcess

Composite
1

ProcessProcess ProcessProcess

Figure 4.26: Illustration of the fully expanded collaboration tree.

Figure 4.26 shows a collaboration tree fully expanded. If coposite col-
laboration ’1.1’ and ’1.2’ were collapsed the result would be as shown in
Fig. 4.27. The roles would now be moved from the elementary collabora-
tions to ’1.1’ and ’1.2’ to indicate that the processes take part in a elementary
collaboration that are contained in ’1.1’ and ’1.2’.

By further collapsing composite collaboration ’1’, the function tree would
be at the highest level of abstraction (see Fig. 4.28). Now all roles would
point to composite collaboration ’1’ to indicate that the processes take part
in an elementary collaboration contained in composite collaboration ’1’.

It it not necessary to visualize the entire collaboration tree if it is fully
or semi expanded. The parent collaborations in the tree, if not collapsed,

57

4. Design and Implementation

Composite
1.2

role

role
role

role

ProcessProcess

Composite
1.1

role

role

role

role

ProcessProcess

Composite
1

ProcessProcess ProcessProcess

Figure 4.27: Illustration of the collaborations after a collapsing two compos-
ite collaborations.

role role

role

role

ProcessProcess

role

role role

role

ProcessProcess

Composite
1

Process

Process

Process

Process

Figure 4.28: Illustration of the collaborations after a collapsing root com-
posite collaborations.

58

4.8 Improving the Overview

could be omitted from the view. This way only the lowest level visible
collaborations would be visualized in the view. This approach will be used
in the implementation to further limit the information in the view.

59

4. Design and Implementation

60

Chapter 5

Testing

A test of the implemented functionality will be performed. A small sample
application, that have been designed according to the constraint defined in
chapter 4, will be used for testing.

5.1 The Sample Application

The test application consist of a small chat system. Clients can join or
create chat rooms by contacting the a chatroom manager. When a client
sends a message to the chat room, a composite collaboration will occure.
The composite collaboration consist of two elementary collaborations. The
composite collaboration is described below.

Composite collaboration: GroupChat
|- elementary collaboration: ChatRoomChat
|- elementary collaborations: BroadCastMsg

’ChatRoomChat’ will exist between the ’ChatRoomSession’ process and
the ’ChatRoomSessionAgent’ process in the ’ChatRoom’ process. This col-
laboration will be used to demonstrate the collapsing of collaboration and
how the process filtering and the collaboration filtering can be used together.
For more details on the sample application, the reader is refferd to B.2.

5.2 Test Run

When the collaboration monitor is started, the first we must do is to load
the data from the model of the observed system. A screenshot of the loaded
data is shown in Fig. 5.1.

The next step is to start the sample application. The trace buffer will
now receive data from the logging server and we can start adding trace
events. Adding event is done by pushing the SFW button in the menu.

61

5. Testing

Figure 5.1: Loading of data is completed.

62

5.2 Test Run

Figure 5.2: Using the stepping function.

63

5. Testing

After adding a couple of events the system looks like Fig. 5.3. As seen
from the screenshot, the processes are layed out nicely. The implemented
automatic layout works as intended. The figures also has their own tooltip.

Figure 5.3: An example of the system hierarchy viusalized in the monitor.

These can contain additioal information about the figure, in addition to the
information visible in the figure. The tooltip is helpfull if the view is zoomed
out, and the information in the figures is hard to read.

5.2.1 Test of filtering

In this section the different implemented filtering mechanisms will be applied
to the visualization.

Grouping

Figure 5.5 shows the process hierarchy before the grouping function is ap-
plied. The grouping mechanism will be applied to the user agents in the
visualization.

After the grouping mechanism is applied, the user agent processes are
represented by a single object in the view. This can be seen in Fig. ??. The
objects are viewed as one, and this is reflected in the collaborations they
take part in.

64

5.2 Test Run

Figure 5.4: Additional information in tooltip figure.

Figure 5.5: Before grouping.

65

5. Testing

Process filtering

With the process filtering a user can hide part of the system. In Fig. 5.6
the server process is collapsed. The result in shown in Fig. 5.7. The sub
processes is hidden as well as the collaboration between the server and the
user agent.

Figure 5.6: The systtem strcuture before collapsing.

Collaboration filtering

Fig. 5.8 shows a expanded composite collaboration. As explained in sec-
tion 4.8.2, we do not show the composite collaboration if it is expanded,
but only the collaborations it contains. When the composite collaboration
that the two elementary collaboratios are a part of is collapsed, the visual-
ization will look like Fig. 5.9. The role connections are now pointing to the
composite collaboration, symbolizing that they take part in the contained
elementary collaborations. The final screenshot in Fig. 5.10 shows both pro-
cess and collaborations filtering applied to the system. If the ’ChatRoom’
process in Fig. 5.9 is collapsed, the resulting visualization will look like the
screen shot in Fig. 5.10.

66

5.2 Test Run

Figure 5.7: The system structure after collapsing.

Figure 5.8: An expanded composite collaboration.

67

5. Testing

Figure 5.9: A collapsed composite collaboration.

Figure 5.10: Use of both process and collaboration filter.

68

Chapter 6

Discussion

This chapter will offer a critical view on the work in this thesis. The dis-
cussion is divided in two parts. The first part will discuss and evaluate the
mechanisms suggested in chapter 3 and implemented in chapter 4. The re-
sults of the test run in chapter 5 will be used as a basis for the evaluation.
The next section will discuss the other solutions used in the realization of
the monitor. Comparisons with alternative solutions will be performed and
improvements will be suggested if needed.

6.1 Implemented functionality

The purpose of the mechanisms suggested in chapter 3 were to provide a
visualiaztion that had a better scalability, overview and overall usability. To
what extend these efforts have been successful will be presented.

6.1.1 Loading of data

As seen in Fig. 5.1, the loading of data worked as intended. The fully
automatic approach was a good improvement compared to the manual ad-
justment needed in [Kar05]. It has increased the usability of the monitor
considerably, as it is now possible to quickly change from the observation of
one system to another, by simply loading another system model. The proto-
typical hard coded model specification in [Kar05] is not necessary anymore.

6.1.2 Event based control

The mechanism for the control of the visualization works as intended. It is
possible to add a single event or several events in the buffer to the visual-
ization. By stepping backwards you can reverse the changes of the recent
added event. In this way, an execution can be studied in detail and repeat-
edly, while in [Kar05], the system could only be observed in the same speed
as the actual execution of the program, which often was too fast. Moreover,

69

6. Discussion

this approach prevents the inaccuracies indentified in 4.7.1, as the events
are added to the visualization in the correct order. The sorting of events by
Lamport stamps guarantees this.

6.1.3 Automatic layout of figures

The automatic layout of figures have been improved by using the directed
graph layout algorithms provided by the draw2d package in GEF. The
process tree is layed out in an orderly fashion, and the collaborations are
positioned between the involved processes. However, objects in the screen
might still be put on top of each other, i.e., a collaboration can be placed on
top of a process. With the selection tool, a user can easily correct this. The
number of necessary manual adjustments of the layout of figures has been
reduced so the automatic layout has been improved. The layout algorithm
in GEF has features like ranking of nodes and width and length calculation
of sub-trees based on the containing nodes. This has not been used in
the implemented prototype. Using these features could further improve the
layout. Treating the system tree as several individual sub-trees, that can be
indiviually organized may also provide better overview. The layout of figures
is based on the structure of the process tree. There might be cases where
one is less concerned with the structure of the system, and more concerned
with the behaviour represented by the collaborations. In this case, a layout
based on collaborations rather than the process tree might be usefull. By
providing both collaboration focused layout, and process focused layout, a
user could choose what should be the focus in the layout of the visualization.
This additional layout option could improve the usability of the monitor.

6.1.4 Visualization of nested collaborations

From Fig. 5.8 and Fig. 5.9 it is clear, that nested collaborations are visualized
correctly. With the algorithm and constraints defined in section 4.6.2, the
visualization is possible. The nested collaborations can show the behaviour
at different abstraction levels and can reduce the information visible to the
user.

6.1.5 Filtering

Through the filtering mechanisms the visualization can be abstracted and
customized so that the system behaviour is presented more clearly and is
easier to understand.

System structure filtering

From the the test run (see Fig. 5.7) it can be seen that by collapsing and
expanding the system structure we can effectivly reduce the amount of infor-

70

6.2 Monitor Design

mation in the display. By collapsing nodes in the system tree, the observed
system can be shown at different abstraction level by hiding internal pro-
cesses. With the grouping mechanism (see Fig. ??), it is possible to group
processes of the same type at the same level in the system strcuture tree
together, and observe them as a single object. Both mechanisms contribute
to the reduction of information in the view and the scalability of the visual-
ization.

Filtering of behaviour

The filtering of behaviour (see Fig. 5.9) makes it possible to observe the
behaviour of the system at different levels of abstraction. By collapsing a
nested collaboration the contained sub-structure are hidden. By expanding
a nested collaboration the sub-structure can be viewed. The collapsing of
nested collaborations reduce the information in the view and increases the
scalability of the visualization.

Improving filtering

All the filtering mechanism in the monitor are in different ways locked to
the structure of the system or the structure of the collaborations. For the
system structure this is a weakness. It is not possible to observe a sub-system
of the oberved system without also have to see every processes higher up
in the hierarchy. An approach like the one used in the implementation of
collaboration filtering, where only the lowest level visible node were visible,
could be added. In addition, filtering mechanism that are independent of
system structure should be considered. With the size of the figures used, the
monitor can visualize, depending of the structure of the system, about 20
processes in a single display. If we reduced the size of the figures, it would
be room for more figures, but the information contained in the figures would
be barely readable. There are also limits to how many objects a user can
observe in a display before the visualization become too big and complex.
The implemented filtering mechanisms do provide improved scalability, but
when large systems are observed they might not be able to reduce the amount
of information sufficiently . The resulting visualization could be too big for
an ordinary computer display. Alternative solutions must be considered in
order to provide the necessary overview. This is discussed in section 6.2.7.

6.2 Monitor Design

This section will discuss the remaining parts of the monitor design and
implementation not covered in section 6.1. The implemented solutions and
the use of the existing frameworks will be discussed and alternatives or
improvements suggested where needed.

71

6. Discussion

6.2.1 Generality of the monitor

The different parts of the system architecture and the sample application
used for testing is all written i Java. Since Java is a plattform independent
language, the monitor should be able to run on most plattforms. The mon-
itor is not limited to only visualize applications written in Java. I.e., if a
program is created in Ramses, a different code generation tool for a different
programming language or plattform could be used. A program has to meet
the following requirements in order to be visualized:

• Trace event reporting - The system must be able to report trace
events to the logging server in the trace format defined in [Nes05] (see
appendix A.1). Lamport stamping of events must be supported in
order to preserve the causal ordering of the events.

• System description - The system must offer a description of the
system in a model in aggrement with the PAX Ramses III UML model.
The model restrictions defined in section 4.6 must be followed.

6.2.2 Content of the Visualization

The visualization shows the processes and the collaborations in the observed
system. Since collaborations consist of signals, only the behaviour of the
system that is directly a part of the messaging between the different parts of
a system. Internal processing in a part (i.e., algorithms and updating local
variables) is not visualized. Some instructions in the program code and data
structures are omitted in the visualization. Control and data flow should be
visible in the visualization because they tend to follow the messages in the
system, which we can visualize.

6.2.3 Invasive approach to tracing

The trace support mechanism used in the monitor is invasive. It requires
modification of the program source code in order to be able to collect trace
information. In a concurrent system, the additional code required in the
observed program to support tracing, may affect the execution rates of pro-
cesses which could produce a different result [PBS98]. There are alternatives
to the invasive approach, but most systems that handles concurrency are in-
vasive [PBS98]. It is also the usual approach to adding trace support in
distributed systems [TSS95]. In [FC90] a bus monitor was used to avoid
any invasive approach to tracing. In [Meh02] the JDI was used to avoid
an invasive approach of tracing. Both the existing Ramses tool suite, the
sample application and the monitor code is written in Java. In consequence,
the monitor could have been using the JDI for trace collection. Both of the
alternatives would however make the monitor plattform dependent. The

72

6.2 Monitor Design

Ramses tool suite that the monitor is a part of, is suppose to be able gen-
erate code for for different plattforms. If the JDI had been used for trace
collection, only program in Java code could have been visualized. By us-
ing the existing trace mechanism implemented in [Nes05], the monitor will
remained platform independent.

To what degree the invasive approach affects the execution of the ob-
served program is uncertain. The observations of out-of-order events re-
ceived by the monitor from the logging server (see section 4.7.1) might sug-
gests that the tracing could have an affect. The observation may also be
caused by the behaviour of the the logging server. As this was not the main
focus of this thesis, this should be studiet further elsewhere.

6.2.4 Real-time vs. Post-mortem visualization

The time of visualization affects how the user can interact with the visu-
alization. Both real-time and post-mortem approaches has it’s advantages
and disadavantages. A post-mortem approach has the advantage of rich
information. The information known pre-run-time combined with the infor-
mation gathered durring run-rime gives a complete picture of the system.
With all information known in advance of the visualization, it is easier to
present the information in an optimal way. A real-time approach has the
advantage that a user can interact with the visualization based on program
output, thus have an immediate effect on the visualzation [PBS98]. In a
post-mortem approach, this is not possible. A real-time approach provides
an up to the moment view of the computation’s progress and can reduce the
overhead of of data storage [Kra98]. The approach taken in this thesis is
described as semi-post-mortem (see section 4.7.2). The user is not restricted
to wait to the very end of execution, but can add events as they happen.
The risk of adding out-of-order events (see section 4.7.1) is possible, but
has not been experienced durring testing. The test application was however
controlled by the user, and events were added when the observed system was
idle. In larger real-life applications where behaviour is less controllable, and
the activity is high, the risk of adding out-of-order events is much higher.
In consequence, if the system can not be controlled, the events should be
added post-mortem. As a result, the user can not affect the visualization the
same way as in a real-time approach. A post-mortem approach provides the
opportunity for a more detailed display that can proceed at a user-specified
pace, and will ususally interfear less with a program than a real-time ap-
proach [Kra98]. A real-time visualization can not be too detailed, as the
viewer would fine it difficult to comprehend a rapidly updating, highly de-
tailed display [Kra98]. Performance is also an issue if a real-time approach is
taken [BS98]. The computational cost of layout and filtering of information
in real-time might be to high if a large system is observed. In consequence,
the visualization would not show the behaviour in real-time. This is avoided

73

6. Discussion

by using post-mortem visualization. A disadvantage of the post-mortem
approach is the amount of information that need to be maintained. In post-
mortem all data all data must be saved which lead to a lot of overhead
when observing larger system [Kra98]. How this may affect the monitor is
discussed in section 6.2.7.

6.2.5 Presentation style

The graphical elements used to represent processes, collaborations and con-
nections are very simple. They should be easy to understand for all types
of users of the monitor. By using our own defined figures, we can easily
change or add additional graphical representations. The existing figures can
be expanded, new figures can be designed or pictures can be used in stead.
The figures convey information through their position in the visualization
(i.e., a process is visualized as a child) and through the textual information
they contain (i.e., state information). Colour is used to indicate wheter or
not an object in the screen in collapsed, and it separates the different el-
ements from each other together with the shape of the elements. Colour
could probably have been utilized better in the visualization. For instance,
the monitor could indicate activity in a process or collaboration with a flash
of a certain colour. The use of sound could also be considered.

The monitor shows the visualization frame by frame. There is no con-
tinous animation when objects in the view are changed or moved. Such
animations have proven effective in other SV tools [Sta98] and there are
existing frameworks that demonstrates how this can be done [Sta88]. Such
a feature could be added without doing any re-design of the current monitor,
because if should only affect the figures in the visualization.

6.2.6 Interacting with the monitor

The user can interact with the visualization through menu buttons, click-
ing on objects in the view (processes and collaborations) and by using the
selection tool with the mouse. The different ways of interacting with the
monitor should not be affected by larger programs. They should scale well
to any type of observed program.

6.2.7 Scalability

Monolithic view approach

The monitor design uses the monolithic view approach. The advantage of
such a view is that it compacts all information into a single view, and the
user only has to focus on that view. The experience of using a single view
in this thesis (see section 6.1.5) and in other SV tools [BH98], indicates that
presenting all information in a single view is good for smaller programs,

74

6.2 Monitor Design

but can be difficult for larger programs. Additional filtering mechanism
could be added to improve the visualization, but adding additional filter-
ing mechanisms is not trivial, as the mechanism has to be intergrated with
the existing filters. If a single view is used, all filters work on the same
view-model representing the view. The additional filters would probably
need to add additional state information to the view-model. Adding filters
is an increasingly complex task. The value of these filters would probably
be limited in the context of scalability. A new approach to solving the issue
of scalability should be taken. Instead of restricting the visualization to a
single view, additional views should be added. This alternative should be
better and easier to implement than adding additional filters. For example,
a sub-system view and collaboration view could be added. The sub-system
view would only contain a selected sub-system in the system structure. The
collaboration view could show a collaboration and the participants. This
approach is illustrated in Fig. 6.1. The existing view could show the entire
system. If visualization in the main view becomes too big for the display,
the user could use the other views to inspect certain parts of the system.
With the structure of the information models in the monitor, this could be
achieved by adding new view models on top of the data model (see sec-
tion 4.1.1). The figures and probably the editparts could be used as is.

P1

P1.1

P1.2

P1.1.1
P1.2.1

C1

C2

P1.2.2

P.1.1.1
.1

P1.2.1
P1.2.1

P1.1.1

P1.1.1

P1.
1.1

P.1
.1.
1.1

P1.
1.1

P1.
2.1

C2

P1.
2.2

P1.
2.1

Figure 6.1: Illustration of the multi-view approach.

Performance Issues

With the sample application we can test the functionality of the prototype
and fairly confidently say whether or not they add value. The sample appli-

75

6. Discussion

cation however, is not suited for an performance evaluation of the prototype.
For this purpose it is too small in size and too simple in behaviour. The
behaviour of the test system is also highly controllable, does not have any
random behaviour and the activity level is low compared to real-world ex-
amples. Despite the lack of large test systems, some of the current solutions
would probably not scale a very large active systems.

Buffering of trace events In it’s current form the there are no enforced
limit on the number of events that will be buffered in the monitor. The
monitor will stop when the Java virtual machine runs out of memory. In
order to support the event stepping function during the entire system run, all
events must be buffered. Observing large systems with a high level of activity
would generate a lot of overhead in the form of trace events. Maintaining all
events in the memory during observation might not be possible. In order to
support larger and more activ systems, the buffering mechanism may have
to be re-designed. Two approaches can be used. The trace events can be
written to disk, and the system could be observed post-mortem by loading
the trace data from a log. An alterative solutions is to limit the number of
event that can be buffered, forcing them to be added to the visualization, and
not provide unlimited support in stepping backwards in the visualization.

Number of graphical objects The monitor creates and maintains all
elements in the viusalization that is not terminated. If certain elements are
filtered out of the visualization through one of the provided mechanisms,
they still occupy memory. They are not removed from the visualization,
they are simply not visible. This might cause problems if very large systems
are observed.

6.2.8 Constraints on the model

The constraints defined in section 4.6.2 might be too strict. Not allowing
to reuse signals in different elementary collaborations or the reuse of el-
ementary collaborations in different composite collaborations violates the
the UML specification in [Gro04]. The core of the problem is to identify col-
laborations uses from the available trace data. Alternative solutions might
be possible if the trace data could contain more information that could help
identfy a collaboration. Manipulation of the existing plattform was not an
option (see section 4.2), so this approach was not studied. This alternative
apprioach should be studied further elsewhere, in an attempt to ease up on
the restrictions defined in this thesis.

76

Chapter 7

Conclusions

This chapter summarizes the achievements in this thesis. Future works
regarding the monitor for visualization of collaborations are proposed.

7.1 Achievements

In the context of visualizing distributed, reaktive systems, several achieve-
ments have been made. The main achievements are listed below.

• Automatic loading of model data - An automatic approach to
loading necessary data from the model of an observed system has been
implemented. The implemented solution worked as intended, and re-
moved the need for manual adjustment of data.

• Post mortem visualization - A buffered approach to visualization
was taken in order to control the speed of the visualization and to
correct inaccurracies in the visualization. Trace event were buffered
and sorted by Lamport stamp in order to produce a correct visualiza-
tion. The mechanism gave the user complete control of the speed of
the visualization, and the possibility to reverse the visualization.

• Visualization of system behaviour at different level of abstrac-
tion - Necessary constrains on the model of a system were defined and
an algorithm for the detection of nested collaborations in a running
system was suggested and implemented. Testing with an example ap-
plication showed that the collaborations were visualized correct. The
visualization could show the behaviour of the observed system at dif-
ferent level of abstraction through the visualized nested collaborations.

• Improved scalability - Mechanisms to improve the scalability of the
visualization were suggested and implemented. Through testing they
showed that they added addtional scalability to the visualization tool.

77

7. Conclusions

We argued that in order to further improve scalability, more views
should be added.

7.2 Future works

From the discussion of the work it is evident that some areas require further
work in order to improve the visualization tool. The following is proposed:

• Alternative solutions for collaboration detetction - The solu-
tions proposed in this thesis to the detection of collaborations in a
running program forces strict contraints on the design of the system.
An investigation of alternative ways with less strict design constraints
i.e., adding additional trace information in order to detect collabora-
tions, could be investigated.

• Additional views - The posibility of adding additional views to the
monitor, as suggested in section 6.2.7, in order to improve scalability
and overview in the visualization could be investigated.

• Performance evaluation - The monitor needs to be tested with
larger real-life applications in order to get an accurate estimation on
how well the implemented solutions scale to observation of larger sys-
tems.

• Empirical Evaluation - To get a better understaning of how well the
monitor explains observed system behaviour, an empirical evaluation
needs to be performed. The evalutaion should use real-life application
in order to be accurate.

78

Bibliography

[BH98] Marc H. Brown and John Hershberger. Fundamental Techniques
for Algorithm Animation Displays, chapter 7. The MIT Press,
1998.

[BS98] Marc H. Brown and Robert Sedgewick. User Interface Issues For
Algorithm Animation, chapter 11. The MIT Press, 1998.

[DFK+05] Jim D´Anjou, Scott Fairbrother, Dan Kehn, John Kellerman,
and Pat McCarthy. The Java Developer’s Guide to Eclipse, chap-
ter 7. Addison-Wesley, 2005.

[FC90] S. Flinn and W. Cowan. Visualizing the execution of multi-
processor real-time programs. In Proceedings on Graphics inter-
face ’90, pages 293–300, Toronto, Ont., Canada, Canada, 1990.
Canadian Information Processing Society.

[Fou06] Apache Software Foundation. Logging services.
http://logging.apache.org/, 2006.

[Gro04] Object Management Group. Unified Modeling Language: Super-
structure, version 2.0. OMG, 2004.

[Gro06a] EMF Group. Eclispe modeling framework.
http://www.eclipse.org/emf/, 2006.

[Gro06b] GEF Group. Graphical editing framework.
http://www.eclipse.org/gef/, 2006.

[Hud03] Randy Hudson. How to get started with gef. http://www-
128.ibm.com/developerworks/opensource/library/os-gef/, 2003.

[Kar05] Lars Erik Karlsen. Collaboration-Oriented Visualization of Com-
municating State Machines. Project Thesis, 2005.

[Kra98] Eileen Kraemer. Visualizing Concurrent Programs, chapter 17.
The MIT Press, 1998.

79

BIBLIOGRAPHY

[Kra06] Frank Alexander Kraemer. Pax Ramses – Constraints on UML
2.0 Models for the Use with Ramses (Internal Note). Department
of Telematics, NTNU, Trondheim, Norway, March 2006.

[Lam78] Leslie Lamport. Time, clocks and the ordering of events in a
distributed system. Communications of the ACM, 21(7):558–565,
July 1978.

[Meh02] Katharina Mehner. JaVis: A UML-Based Visualization and De-
bugging Environment for Concurrent Java programs. Software
Visualization, 2002.

[MH05] Geir Melby and Knut Eilif Husa. ActorFrame Developers Guide.
Ericsson NorARC, Asker, Norway, September 2005.

[Mic06] Sun Microsystems. Java Platform Debugger Architecture
(JPDA). http://java.sun.com/products/jpda/, 2006.

[Nes05] Ronnie Nessa. Trace Visualisation for distributed State Ma-
chines. Master’s thesis, NTNU, 2005.

[Nor98] Stephen North. Visualizing Graph Models of Software, chapter 5.
The MIT Press, 1998.

[PBS98] Blaine Price, Ronald Baecker, and Ian Small. An Introduction
to Software Visualization, chapter 1. The MIT Press, 1998.

[Ree79] Trygve Reenskaug. Thing-model-view-editor an example from
planningsystem. 1979.

[RJB04] James Rumbaugh, Ivar Jacobsen, and Grady Booch. The Unified
Modeling Language Reference Manual Second Edition. Addison-
Wesley, 2004.

[Sta88] John Stasko. The TANGO Algorithm Animation System. Tech-
nical report, Providence, RI, USA, 1988.

[Sta98] John Stasko. Smooth, Continuous Animation for Portraying Al-
gorithms and Processes, chapter 8. The MIT Press, 1998.

[TSS95] B. Topol, J. T. Stasko, and V. Sunderam. Integrating visualiza-
tion support into distributed computing systems. In ICDCS ’95:
Proceedings of the 15th International Conference on Distributed
Computing Systems, page 19, Washington, DC, USA, 1995. IEEE
Computer Society.

[Vli00] Hans Van Vliet. Software Engineering - Principles and Practice.
Wiley, 2 edition, 2000.

80

Appendix A

Specifications

A.1 Trace Format

This table shows the trace format of the events received by the monitor from
the logging server. This table is taken from [Nes05], pages 57 to 59.

Tag name Part of Occur
ence

Legal
values

fields Description

<transition> - 1 The main tag that
describes a transi-
tion

<actorid> <transition> 1 text The id of the
actor which exe-
cuted the transi-
tion

<currentstate> <transition> 1 text The state of the
process before
it executed the
transition

<nextstate> <transition> 1 text The state the pro-
cess entered af-
ter executing the
transition

<receive> <transition> 0..1 lamport-
Stamp

Indicates that a
receive event has
occurred

<send> <transition> 0..* lamport-
Stamp

Indicates that a
send event has oc-
curred

81

A. Specifications

<startTimer> <transition> 0..1 lamport-
Stamp

Indicates that a
start timer event
has occurred

<stopTimer> <transition> 0..1 lamport-
Stamp

Indicates that a
stop timer event
has occurred

<timerExpired> <transition> 0..1 lamport-
Stamp

Indicates that
a timer expired
event has oc-
curred

<warning> <transition> 0..* text Warning gener-
ated during the
transition

<message> <send> or
<receive>

1 The message be-
ing sent or re-
ceived

<sender> <message> 1 text The sender ad-
dress contained in
the message.

<receiver> <message> 1 text The receiver ad-
dress contained in
the message.

<frameworkMsg> <message> 1 true |
false

Wether or not
the message is a
framework mes-
sage. Not used at
the moment

<content> <message> 1 text The content of
the message

<create> <transition> 0..1 Indicates that a
new process has
been created by
this process.

<created> <create> 1 text The name of the
process that was
created.

<terminate> <transition> 0.1 This process has
terminated.

Table A.1: XML elements in trace object accepted by the
Log Server

82

Appendix B

Source Code

B.1 Source Code for Collaboration Monitor

The source code for the collaboration monitor can be obtained by accessing
the Ramses CVS server.

B.2 Source Code for Sample Application

The source code for the collaboration monitor can be obtained by accessing
the Ramses CVS server.

83

