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Abstract: The beam diffusing properties of stacked layers of diffuser material were evaluated
experimentally and compared to a Gaussian random phase screen model. The model was found
to give promising accuracy in combination with a Lorentzian auto-correlation model. The tail
behaviour of the angular scattering distribution as a function of number of diffusing layers was
particularly well described by the model, and in the case of an amorphous carbon diffuser, the
model could describe the whole of the scattering distribution convincingly.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction and motivation

A common problem with the use of coherent x-ray synchrotron radiation for microscopy is
speckles induced by defects or dust on optical components such as mirrors, monochromators,
lenses, and x-ray windows. In order to mitigate such speckle effects, so-called diffusers are
employed to smooth out unwanted interference patterns. Another important application of
diffusers is in the deliberate creation of speckles for X-ray Speckle tracking techniques [1–3].
A diffuser typically consists of some short-range ordered material, such as paper, a piece of
wood [4], nano-porous beryllium [5] or carbon [6, 7], and sveral others [8–10].

While the motivation of removing speckles is sufficient to make research into the topic of x-ray
diffusers worthwhile, there is another motivation behind this work, more specific to the topic of
hard x-ray transmission microscopy (HXTM). Recent developments in CRL based microscopy
have demonstrated that there are benefits to using an illumination scheme where the illumination
is focused by a condenser lens into the centre of the objective lens [7], illustrated in Fig. 1. The
benefits of such a scheme is primarily related to mitigation of lateral chromatic aberration, but
there is also good reason to believe that it has a mitigating effect on field curvature induced by
spherical aberration in objective CRLs [7,11]. The working principle of this illumination scheme
was demonstrated by comparing it to a non-condensed parallel beam illumination scheme. This
however, might justifiably be considered an inappropriate comparison, as the so-called critical
illumination scheme is more commonly used in X-ray transmission microscopy (XTM) [12–14].
Critical illumination consists in using a condenser lens to produce a de-magnified image of the
source onto the sample. This has the merit of producing a gain in intensity on the sample. The
quality of the condenser lens does not need to be particularity good [15], but the numerical
aperture of the condenser lens should be approximately the same as that of the objective lens in
order to optimize resolution, commonly referred to as aperture matching.

Compared to critical illumination, the scheme put forth in [7] could be criticized for sacrificing
both intensity gain and aperture matching. The first point about intensity can under normal
circumstances be dismissed by pointing out that for a given field of view, there is a limited
amount of gain possible, which is the gain one would achieve by taking the entirety of the
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incident beam and distributing it over the field of view, which is easily achieved in the new
illumination by selecting an appropriate focal length for the condenser. If a smaller field of
view is required, a longer focal length condenser should be used to allow the beam to condense
more before arriving at the sample position. The second allegation on the other hand is a more
challenging one, and may not be dismissed so easily. The benefits of aperture matching on the
spatial resolution of a microscope can be linked to the coherence length of the illumination.
To achieve optimal resolution in a transmission microscope, the coherence length should be
shorter than the diffraction limited resolution so that there is no visible interference between
adjacent features. Aperture matching, in the critical illumination scheme, produces a coherence
length that is equal to the diffraction limited resolution. Here we propose that the diffuser placed
between the sample and the condenser lens can provide the same effect. This would have the
added benefit of providing field of view and coherence length that can be varied independently,
which makes the microscope more flexible with regards to design constraints. The challenge,
however, is to reliably engineer diffusers with the desired properties. The experiments and theory
presented in this work will take steps towards this end.

Fig. 1. Sketch of microscope setup.

2. Theory

The model presented here is an extension of the Gaussian random phase screen model [16]. The
diffuser is modelled as consisting of n statistically independent diffuser sheets. It is assumed that
the sheets are close enough for propagation to be negligible, i.e. the projection approximation is
used [17]. The phase shift induced by the diffuser is the sum of contributions from individual
layers.

φ(x, y) = φ1(x, y) + φ2(x, y) ... φn(x, y). (1)

As the phase shift of each individual layer is statistically identical, and statistically independent
of the others, the root mean square value (rms) of φ(x, y), which is denoted by σφ , is given by

σφ =
√

n · σlayer, (2)

where σlayer is the rms of the phase shift distribution of a single layer. According to the central
limit theorem, the phase distribution Pφ(φ(x, y)) approaches a Gaussian as n increases

pφ(φ) =
e
− φ2

2σ2
φ√

2πσ2
φ

, (3)

regardless of the form of the underlying phase distribution of the individual layers. It can be
shown [16, 18] that if a plane wave was passed through such a diffuser, the resulting mutual
coherence function would be

Γ (∆x,∆y) = 〈eiφ(x,y)e−iφ(x+∆x,y+∆y)〉 = e−σ
2
φ(1−γφ (∆x,∆y)), (4)
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where γφ (∆x,∆y) is the yet unspecified normalized correlation function of φ(x, y). Note that
this result is valid for any value of σφ, and does not rely on small phase approximation. The
power spectral density, G

(
qx, qy

)
can be computed by invoking the Wiener-Khinchin theorem,

which states that G
(
qx, qy

)
is the Fourier transform of Γ (∆x,∆y).

G
(
qx, qy

)
=

∫ ∞

∞
Γ (∆x,∆y) eiqx∆x+iqy∆yd∆xd∆y. (5)

The mutual coherence function and the power spectral density are convenient tools for analysing
the effects the diffuser will have in different situations. Here in particular, the power spectral
density is of interest because it can be directly measured experimentally. Suppose the diffuser is
placed in a coherent and converging x-ray beam, as illustrated in Fig. 2, at a distance z upstream
of the beam focal point, and an imaging detector is placed in the same plane to record the intensity
of the resulting distribution. It is possible to calculate the intensity from the generalized Van
Cittert-Zernike theorem [19], and the result is

I(x ′, y′) ≈ FT{Γ(∆x,∆y)}
(
k

x ′

z
, k

y′

z

)
= G

(
k

x ′

z
, k

y′

z

)
(6)

where x ′ and y′ are the coordinates in the transversal plane where the beam comes to a focus,
and I(x ′, y′) is the intensity distribution in that plane.

Fig. 2. Illustration of experimental setup.

Here it is assumed that the area of the beam at the diffuser is infinitely large, and would in the
absence of a diffuser produce a truly infinitesimally small focal spot, at least within the small
angle approximation. In practice, one will not produce such a beam. A real x-ray beam has finite
area, partial coherence, both of which will result in a blurring of I(x ′, y′). As the number of
layers is increased, σφ behaves according to Eq. (2), whereas γφ (∆x,∆y) remains unchanged.
Following from the central limit theorem, the mutual coherence function should asymptotically
approach a Gaussian when n becomes sufficiently large, i.e.

lim
σφ→∞

Γ (∆x,∆y) = lim
σφ→∞

e−σ
2
φ(1−γφ (∆x,∆y)) = e−

1
2 (∆x2+∆y2)σ2

q , (7)

where the value ofσq scales withσφ in a way that depends on γφ . This model has the advantage of
not making any assumptions about phase-depth or phase gradient distributions, which allows it to
capture an important feature of hard x-ray diffusers, namely the likely existence of a non-scattered
fraction of the beam. This point is best illustrated by a demonstration. For this purpose, we use
an example that will prove relevant for the experimental results, namely the case of a Lorentzian
autocorrelation function,

γφ (∆x,∆y) = 1
1 + (∆x2 + ∆y2)/l2 . (8)
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Here l is the half width at half maximum value of (∆x2+∆y2) and can be thought of as transversal
coherence length. Figure 3 shows some power spectral densities and mutual coherence functions
produced by this model. All the curves were produced using the same γφ, the only difference
between curves is the number of layers, which affects σφ in accordance with Eq. (2).
Figure 3(a) shows the evolution of the MCF. Initially, at n = 0 it is simply 1, as there is no

randomness to destroy any correlation. As the number of layers start to increase, we see that a
peak appears in the center, on top of a constant background. The value of the background, which
is denoted by Γ∞, can be found by taking the limit in Eq. (4) with ∆x going towards infinity.

Γ∞ = e−σ
2
φ . (9)

Note that this expression holds for any choice of γφ that tends towards zero at infinity. As the
number of layers increase further, Γ∞ vanishes, and the MCF tends towards a Gaussian shape.
With a Lorentzian γφ , the value of σq is given by

σq =
√

2
σφ

l
. (10)

Figure 3(b) shows a logarithmic plot of the power spectral densities calculated from the MCFs.
In order to discuss the behaviour of these curves, it is convenient to separate them into two terms
that may be thought of as the coherent and the diffuse part.

G
(
qx, qy

)
= G0 + Gdiffuse (11)

G0
(
qx, qy

)
= FT{Γ∞}

(
qx, qy

)
∝ Γ∞δ(qx, qy) (12)

Gdiffuse
(
qx, qy

)
= FT{Γ(∆x,∆y) − Γ∞}

(
qx, qy

)
(13)

One can see from Eq. (12) that the power spectral densities contain a Dirac’s delta function
due to the non-zero background level, Γ∞. In the interest of making the figures more presentable,
however, the shape has been convoluted by a Gaussian, representing a source with angular rms of
4 · 10−6 at 17 keV photon energy. This results in an rms value of 3.46 · 105 in q-space. As the
number of layers increase, initially, one can see that the central peak is attenuated and eventually
disappears as the curve becomes more Gaussian. Figure 3(c) shows a semi logarithmic plot
of how the peak attenuates with increasing number of layers. Initially the descent follows the
exponential decay law of Eq. (12), but flattens out as the peak amplitude of G0 becomes small
enough to be comparable to the peak of Gdiffuse. Another property of interest is the width of
G

(
qx, qy

)
. Here it is worth pointing out that G

(
qx, qy

)
for different number of layers are related

to each other by successive convolutions, i.e.

G
(
qx, qy; n + m

)
= G

(
qx, qy; n

)
∗ G

(
qx, qy; m

)
(14)

This is significant because the second order moments of the result of a convolution is the sum
of the second order moments of the arguments. This implies that the second order moments of
G

(
qx, qy; n

)
, which is denoted as rmsq(n), are given by

rmsq(n) =
√

n · rmsq(1), (15)

which holds, regardless of whether the G0 peak is present or not. Figure 3(d) demonstrates this
fact by showing that the log-log plot of n against rmsq(n) gives a straight line with a slope of 0.5,
indicating a power law relationship with 0.5 as exponent, i.e. a square root relationship.
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(a) (b)

(c) (d)

Fig. 3. (a) Cross-section of MCF(x, y) according to Eq. (4) calculated for different values of
σφ , using Lorentzian γφ with l = 400 nm. (b) cross section of corresponding G

(
qx, qy

)
calculated according to Eq. (5), convoluted by a Gaussian with rms 3.46 · 105 m−1 in both
directions. (c) Peak amplitudes of curves in (b). (d) Numerically evaluated rmsq of power
spectral densities shown in (b).

Consider now the case of a projective imaging system, where a parallel beam passes straight
through a sample and the beam is recorded some distance downstream. A diffuser would affects
an image from such an imaging system in two important ways. The first by smoothing out
unevenness in the illumination, and the second by the blurring of image details. The former
depends on how far upstream of the sample the diffuser is placed, while the latter primarily
depends on the distance from the sample to the detector. A thorough theoretical description of
this topic will be presented by Paganin et al [20] and is not discussed in detail here.
For imaging systems with objective lenses (stigmatic imaging systems), such as a full field

microscope, the situation is different. With an objective lens, all rays emerging from a point
on the sample plane are focused on a particular point in the image plane, provided the ray
passes through the objective lens’ aperture. The distance from sample to detector is therefore
not directly relevant. What matters instead is the influence of the diffuser on the transmission
cross-coefficients (TCC) [21, 22]. The image intensity is given by

I (r) =
∫

TCC(q′, q′′)ψ̃ (q′) ψ̃∗ (q′′) e−i(q′−q′′)rd2q′d2q′′, (16)

where r is a two dimensional coordinate vector in the image plane, ψ̃ is the Fourier transform
of the wave front perturbation imparted by the sample, and q′ and q′′ are two-dimensional
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reciprocal coordinate vectors. TCCs is given by

TCC(q′, q′′) =
∫

G (q) P (q′ + q) P∗ (q′′ + q) d2q, (17)

where P is the pupil function of the imaging system. Unfortunately, computation of I (r) for
arbitrary G and P is computationally heavy, as the TCC must be computed over a four-dimensional
grid. The problem can be computationally simplified by singular value decomposing TCC(q′, q′′),
known as the sum over coherent systems method [23,24], but this was not done here. Here we
have made due with solving a simplified problem, where the sample is constant along the y-axis.
In this case, it follows from the Fourier slice theorem that ψ̃ is non-zero only when qy = 0. One
then only has to compute TCC in the two-dimensional sub-space where q′y and q′′y is zero in
order to evaluate I(r) from (16). Figure 4 gives a demonstration of how image resolution is
affected by G. Figure 4(a) show the image resolution for a fixed value of l, with varying σφ , and
Fig. 4(b) show a similar case, but with a varying l and constant σφ . This demonstrates that with
Lorentzian γφ (∆x,∆t), both l and σφ has an impact on resolution.

(a) (b)

Fig. 4. 1-dimensional simulations of CRL microscopy. The sample were four gratings of
size pitch 590 nm, 460 nm, 350 nm and 270 nm. Each horizontal row of pixels represents an
individual 1D simulation using the corresponding parameter value on the vertical axis. x is
the spatial coordinate. (a) Constant l. (b) Constant σφ . The aperture in both cases was a
Gaussian window with an angular rms of 6.6 × 10−5, and the photon energy was 17.2 keV,
which results in a diffraction limited resolution of 250 nm.

3. Experimental setup

The experiment was performed at ID06 at ESRF with a setup similar to the one illustrated in Fig.
2. A synchrotron x-ray undulator source was monochromatised to 17 keV by a Si111 double
crystal monochromator. A CRL was placed about 50 meters downstream of the source. The CRL
consisted of 4 Beryllium lenslets with 50 µm radius of curvature. This casts a focal spot onto a
high resolution indirect x-ray imaging detector, about 5.9 m downstream of the CRL. The detector
was composed of a scintillator screen (10 µm LuAG:Eu on a 170µm YAG substrate) [25], optical
microscope with Olympus UIS2 UPlanSApo 10 × /0.40 objective and Olympus U-TLU-1-2 tube
lens. The optical microscope is operated without an eye piece, projecting the intermediate image
directly onto an ESRF FreLoN camera [26] with 2000 × 2000 pixels. This combination yields
and effective pixel size of 1.4 × 1.4 µm2 and a field of view of 2.8 × 2.8 mm2. The thickness
of the scintillator screen is a compromise between quantum efficiency (x-ray absorption) and
resolution (due to the limited depth of field of the objective). The beam size incident on the
CRL was limited by a 200 × 200 µm pair of slits located 1.2 m upstream of the CRL. Due to
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geometrical constraints, the camera was positioned only 5.5 m from the CRL. With a numerical
aperture of 16.8µ rad, this theoretically results in 15 µm blurring of the source image. The
diffuser position was in between the CRL and detector, 4.7 m from the detector. The diffuser
consisted of polishing papers made of Al2O3 particles on 3 mm thick layers of polyester. The
number of diffuser layers, n, was varied systematically. The diffuser was spun with an angular
velocity that was fast enough to not give any intensity variations from image to image. Small
angle scattering patterns were recorded with different number of layers. In addition, a single
disc of amorphous carbon was investigated. This carbon diffuser disc have been used in several
CRL-Microscopy experiments in the past [6, 7].

While the theoretical effects of partial coherence on microscopy images are well understood, it
is of interest to observe the real impact with actual diffusers in actual microscopes. In order to do
so, a full field microscope was set up in the same beamline. A sketch of the Microscope can be
seen in Fig. 1. The objective lens consisted of 89 Be lenslets with 50µm radius of curvature with
an average spacing along the optical axis of T=1.7 mm, resulting in a focal length of 190 mm
measured from the entrance of the lens stack. The condenser lens consisted of 32 Be lenslets of
the same type, with a T =2 mm spacing along the optical axis, yielding a focal length of about
640 mm. The distance between sample and objective lens entrance was p = 210 mm, the length
of the objective lens was L = 148 mm, and the distance between objective lens exit and detector
was q = 4000 mm, yielding an x-ray magnification of 14. The detector was the same FReLoN
camera used in the small angle scattering experiment. The effective pixel size, taking x-ray
magnification into account, was measured to be 88 nm. The diffuser was placed approximately
170 mm from the sample.

4. Results

Figure 5 shows a semi-logarithmic plot of the collected scattering data. It is evident that curve
broadens as the number of layers increase. It also appears that the tails of curves make straight
lines in the logarithmic plot, which implies that the tails decay exponentially. We note that this
phenomena appears to be present even at n = 1, where the phase-depth presumably was small.
This is significant because at shallow phase-depth,

Γ (∆x,∆y) ≈
(
1 − σ2

φ

)
+ σ2

φγ (∆x,∆y) . (18)

The curves, according to Eq. (6), are measurements of the Fourier transform of Γ (∆x,∆y).
As the constant term in Eq. (18) does not contribute to the tails of the Fourier transform, the
exponential tails stem from γφ , i.e. the Fourier transform of γφ have exponential tails. A simple
function that behaves in this way is the Lorentzian function. This can be seen in Fig. 3(b),
particularly in the curve for n = 1. The Fourier transform of a Lorentzian is a symmetrical,
two-sided sided, exponential function (Laplacian distribution). We therefore attempted to model
the data using a Lorentzian phase-correlation function.
Simulated curves were produced by first choosing a value of l and phase depth for a single

layer, σlayer. Then, for every n, σφ was set to σlayer
√

n. From this, Γ (∆x,∆y) could be determined
according to Eq. (4), allowing G

(
qx, qy

)
to be calculated from Eq. (5). To simulate scattering

patterns, an image of the focal spot, recorded without any layers, was convoluted by G
(
qx, qy

)
.

The displayed curves are cross-sections of the resulting scattering patterns. The results can be
seen in the dashed lines in Fig. 5. The tail behaviour seem to scale appropriately with n. Note
that only two parameters, namely l = 2.3µm and the phase depth for a single layer, taken to
be 0.65 , was used to produce all of the curves. Near the origin, however, there are notable
discrepancies suggesting that γφ was not truly a Lorentzian. We speculate that scattering from
the 3 mm thick polyester film which the Al2O3 particles were attached to might play a role in
this. Figure 6 shows the result of applying the same procedure to the scattering data from the
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carbon diffuser disc. The model here produced a convincing match to the experimental data. The
Lorentzian model appears to be an excellent fit for this diffuser.

Fig. 5. Semi-logarithmic plot of recorded small angle scattering pattern. The intensity was
rescaled so as to be equal to 1 at the origin. Note the tendency for constant slope away from
the origin, suggesting that the tails decay exponentially. The modelling parametres used
were l = 2.3µm, and σφ = 0.65

√
n.

Fig. 6. Small angle scattering pattern produced by carbon disc diffuser and corresponding
model fit. The modelling parametres used were l = 1.1 µm, σφ = 2.27, and n = 1.

Next we wished to investigate the validity of Eq. (15). Figure 7 shows a log-log plot of the
measured rmsq against n. The slope of the curve appears to be approximately correct, however,
it should be mentioned that the resulting rms values are highly sensitive to the treatment of
background noise.
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Fig. 7. Root mean square of intensity distribution of scattering patterns produced by layers
of sandpaper. The measured slope is highly dependent on the treatment of background noise.

In order to investigate the effects of diffuser on actual CRL microscopy images, a grating with
0.3 µm pitch was placed in the object plane of the microscopy setup and recorded with different
number of diffuser layers. The result can be seen in Fig. 8. The first thing that can be observed is
that there is the smoothing of the illumination. The large intensity oscillations that are present in
most of the field of view in Fig. 8(a) are almost completely removed, even with only 6 diffuser
sheets, as seen in Fig. 8(b).

Regarding effects on resolution, the numerical aperture of the objective lens is 3 × 10−4. The
angular distribution of the scattering patterns produced by the diffusers ranged up to approximately
2 × 10−5 rad. Theoretically, based on Eq. (16) and Eq. (17), this angle is much too small to
produce an appreciable effect on the resolution. Nevertheless, it is clear that the diffusers are
having a significant impact, as can be seen in Fig. 9. It is evident that adding more sheets the
shoulder fringes near the absorbing line are attenuated, but so is the depth of the lowest point on
the graphs. The observed behaviour is not consistent with the simulation based on Eq. (16) and
Eq. (17) as there should not be any shoulder fringes under ideal condition. Conditions are of
course not ideal, however, and while it is difficult to identify the cause with high certainty, it
seems plausible that the observed effect is a result of interaction between aberration, defocus and
partially coherent illumination. We note that significant aberration is known to be present in
the type of lenses that were used, but good progress have been made towards corrective optics,
which have already been applied in nanofocusing [27]. It is clear that the diffusers have an effect,
but it is not obvious which diffuser configuration is better. Assuming lens aberration is in fact the
culprit, it is reasonable to expect significant quality improvements with corrective optics, but so
far, experiments on full field imaging with corrective optics have not been reported.
It should be noted that in order to bring the angular spread from the diffuser layers to a level

closer to the N.A. of the lens, we may extrapolate from Fig. 7 that about 2000 to 3000 layers
would be required, suggesting that this particular diffuser material would not be suitable for the
purpose of filling the aperture of this objective lens at 17 keV.
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(a) (b)

(c) (d)

Fig. 8. Microscopy images of 0.3 µm pitch grating, using (a) no diffuser, (b) 6 layers, (c) 12
layers, and (d) 24 layers of sandpaper as diffuser.
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(a) (b)

Fig. 9. (a) Microscopy image of 0.3 µm pitch grating. (b) Vertically averaged intensity
profiles sampled from the region indicated by the black rectangle in (a), using varying
numbers of diffuser layers.

5. Conclusions

The Gaussian random phase screen model has been identified as a useful theoretical frame
work for the design of x-ray diffusers, and can likely be used to evaluate the suitability of a
diffuser material quantitatively. The relevant parameters of the model are the phase depth per
layer and the auto-correlation function for a single layer. The parameters of the auto-correlation
model is independent of number of layers. The model can therefore prescribe how many layers
are necessary to achieve the desired quality of illumination. It was shown that a Lorentzian
auto-correlation model correctly predicts tail profiles and their behaviour in response to changing
number of layers, and in the case of the carbon disc diffuser, it accurately models the full scattering
pattern, including the central peak.
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