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Abstract— Human fatigue is one of the main causes of
accidents in maritime domain. How to use physiological data
to estimate degree of human fatigue without medical domain
knowledge is significant to the safety of tasks in maritime
operations. In this paper, a decentralized sensor fusion ap-
proach is proposed. Various sensor data used to monitor brain
wave, heart rate, muscle tension, body temperature, visual focus
and head movement, together with subjective measurement
of Karolinska Sleepiness Scale (KSS) values are selected as
the data source for this study. Convolutional neural networks
are adopted in the approach to extract local features of each
individual data channel. The local features are further fused
into a 5-layer fuzzy neural network for classification of the
KSS values. A case study of fatigue monitoring test of ship
maneuvering in simulator has been carried out. Through a
comparative study with a centralized fusion approach, the
proposed method is verified to be able to provide high accuracy
up to 96.08% for fatigue level classification, and in particular,
robust enough to maintain the accuracy to 88.42% in case of
sensor failure.

Index Terms— Human fatigue, Sensor fusion, Maritime op-
eration.

I. I NTRODUCTION

There is an increasing demand to address human factors
in maritime applications [1]. Fatigue as one of the most sur-
veyed human factors, defined by the International Maritime
Organization (IMO) as the reduction in both physical and
mental capacity, has been receiving a lot of attention recently
[2]. The working status for the crews is a significant issue due
the fact that the crews often have an intensive workload and
the tasks to be performed have rigorous instructions. Fatigue
often leads to or might create serious accidents. In [3], fatigue
is considered a causal factor in 82% of the groundings in the
United Kingdom waters. A similar study from [4] detects
that 1/3 of the vessels accidents with personal injuries and
16% of fatal accidents were caused by fatigue. In order to
prevent potential human factor accidents, it is necessary to
establish efficient methods to monitor and evaluate fatigue
during maritime operation.

In the literature, there have been attempts to measure hu-
man fatigue either qualitatively or quantitatively. Qualitative
measures like the Karolinska Sleepiness Scale (KSS) [5],
[6] or the Crew Status Survey (CSS) have been used in
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maritime domain and have obtained satisfactory results [7].
In this type of method, the surveyed subject is questioned,
and the fatigue is measured in a subjective scale. Though this
type of measurement is reliable to detect fatigue, they lack
the ability to monitor fatigue, and thus to prevent it without
compromising the work schedule.

The quantitative methods have not been much explored
in the maritime domain, but they provide a more objec-
tive approach by measuring of physiological and behavioral
mechanism that is related to fatigue. Several efforts have
been made to understand this mechanism and based on them,
many security systems to monitor the human fatigue have
been designed [8]–[11]. Common solutions are sensor fusion
methods based on the measuring of electrical brain waves
(EEG) [8], [9], eyes movements (EOG) [11], electrocardio-
gram (ECG) [12] and accelerometers [13]. Other methods
like psychomotor vigilance test and muscle tension (EMG)
have also been studied, though they often interfere with the
task. All the studies have emphasized that human fatigue
comes from complicated physiological mechanism and many
factors can influence it.

According to the types of measurement, most of the
presented monitoring methods are based on limited sources
of sensor data. In fact, acquiring distinct types of measure-
ments and combining the data together and applying data
fusion technology can achieve better performance compared
to using a single sensor alone [14]. Our project aims to
measure human fatigue quantitatively in a real-time manner,
to support the on-board decision-making system for mar-
itime operations. In this paper, we propose a decentralized
sensor fusion approach to combine EEG, EOG, EMG, body
temperature and head movement data together, and map the
result to the KSS levels. The highlight of the paper is that
the decentralized approach not only provides a quantitative
measurement of human fatigue, but also shows how impor-
tant of the sensor data is in terms of accuracy for monitoring
human fatigue.

The rest of the paper is organized as follows. Section II
describes the decentralized sensor fusion framework using
both convolutional neural network (CNN) and fuzzy neural
network. In Section III, the sensor setup, together with a case
study of navigation operation, is presented in detail. Section
IV introduces the performance comparison with a centralized
sensor fusion method, as well as sensory deprivation analysis
on individual sensor input. Conclusion and future work are
given in Section V.



II. D ECENTRALIZED SENSORFUSION STRUCTURE FOR

HUMAN FATIGUE MONITORING

As mentioned in Section I, our goal of human fatigue
monitoring is to map raw sensor data to KSS levels scaled
from level 1 (very alert) to level 9 (great effort to keep
awake) [6]. In machine learning, the mapping is commonly
considered to be a classification problem. The inputs are
mapped to different classes(“KSS levels” in our case) with
the help of adaptive algorithm like artificial neural network
(ANN), by optimizing its weights to minimize the output
error between expected and actual classes [15]. The problem
of such methods is that the increase of input dimension
causes an exponentially increase of number of parameters to
be tuned. The process of designing this pattern recognition
method is the careful feature selection that can represent the
meaningful data with minimal amount of inputs. Thus, good
solutions often require a domain expertise over the variables
to be recognized.

The following will introduce a CNN-based centralized
sensor fusion structure, together with the proposed counter-
part based on a decentralized structure.

A. Centralized Sensor Fusing using CNN-based Classifica-
tion

Conventional classification methods require the features
to be carefully crafted and extracted from the data [16].
However, for human fatigue detection, it is difficult to
interpret the features of sensor data, even for people who
have the domain knowledge [17].

Deep learning methods, such as the CNN classifier, can
help to classify the desired output without domain knowledge
expertise. The CNN classifier exploits these property by
using convolutional layers. The layer slides a certain amount
of small filters into the inputs represented in a matrix form.
Each filter is made of trainable weights and mathematically
corresponding to apply a discrete convolution to the data
with the filter, as shown in Eq. (1), wherex represents the
input; andg denotes the filter. This convolution is able to
extract features and the size of filters controls how the filter
convolves around the feature map. Apart from convolutional
layers, the pooling layers in CNN are used to merge the
semantically similar features into one, as well as to make the
features less sensitive to the precise locations in the structure
of its original input.

x ∗ g =

N∑

j=−N

M∑

i=−M

x[i, j]g[m− i, n− j] (1)

Fig. 1a illustrates a CNN-based sensor fusion structure. It
is a type of low-level fusion, which uses several sources of
raw data such as the data from EEG, EMG, ECG and eye
tracker, to estimate fatigue level in forms of KSS values.
In principle, it will be more informative and synthetic than
the original inputs. However, from robust viewpoint, the
structure will result in inferior result in case of sensor failure.
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Fig. 1. Sensor fusion structures for human fatigue monitoring.

B. Decentralized Sensor Fusing with Neuro-fuzzy System

In Fig. 1b, we propose a decision level fusion structure
that combines several sub-decisions from different sources of
sensor data, to yield a final decision. The decentralized archi-
tecture is a competitive fusion that achieves high reliability
and accuracy [18]. This structure also separates the problem
of fatigue classification from the fusion. Each classifier is
directly trained for fatigue level classification. The separated
classifiers with fatigue estimation grant the final decisionto
the fusion unit. The fusion of homogeneous type of data is
natural for human and requires less domain expertise, which
can be explored by the fusion model. Hybrid expert system
can fuse the estimation of the classifier by “rules of thumbs”
that are human understandable, and permit the user to learn
and analyze the individual estimation, their accuracy, errors
and relation among them.

The proposed design utilizes a fuzzy neural network
(FuNN) system [19] together with CNNs for the final estima-
tion. The FuNN is built in three main components: the basic
“if-then” logic rules; a function of fuzzy set membership; and
the reasoning which maps from the rules to the respective
outputs [20]. The fuzzy system uses a multilayer perceptron
architecture, allowing both the rules and the membership
functions to be optimized by the backpropagation and train-
ing of the network. Therefore, fuzzy inference system will
be used to further fuse the data together.

Though the individual estimator have limited precision,
the output accuracy can be increased by the decision fusion
of the FuNN. Compared to the centralized structure which
handles all the parameters all together, the separated opti-
mization of the CNNs and the Neuro-Fuzzy system might
find a local minimum solution. Nevertheless, the architecture,
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Fig. 2. Sensor setup for data acquisition in simulator.

once trained, will be able to give insight into the importance
of each individual sensor input, and even provide fatigue
estimation when not all sensors are available.

III. E XPERIMENT FORFATIGUE MONITORING OFSHIP

MANEUVERING

An experiment of fatigue monitoring for ship maneuvering
in simulator was carried out. The following introduces how
the sensors were setup, what data were collected and the
fusion structure setup.

A. Sensor Setup

Fig. 2 depicts all the sensors applied to the experiment.
In order to monitor the changes of physiological effects
from human body, especially potential signal related to
fatigue like heart rate, muscle activity and temperature, a
box containing the corresponding sensors for EMG, ECG and
body temperature has been developed. Measuring the brain
waves is another potential important indicator for getting
knowledge about tiredness of human body. An EEG sensor
was utilized to take measurements of brain waves in 14
channels [21]. In addition, visual focus is considered a valid
clue for fatigue detection. Here we utilized the professional
wearable eye tracking device — Tobii pro glasses 2 with gyro
and accelerometer integrated for head movement analysis
[22] and our developed eye-tracking software to collect the
data [23].

B. Experiment Description and Data Collection

A navigation operation test in simulator was selected as the
case study for verification. Four participants took part in the
experiment. The operator was asked to wear on the sensors
and navigate a vessel in a narrow canal area at a speed
of 22 knots, as shown in Fig. 2. There were marine traffic
nearby during the maneuvering. Despite this, the task is quite
simple. The test was lasted more than one hour to increase
the possibility of fatigue occurrence. KSS questionnaire was
used before and after the test respectively to label the fatigue
level for the supervised learning method. Three different
fatigue levels were recorded according to the participants’
answers.

Outside

ECDIS

Control panel

Fig. 3. AOI definition for the fatigue monitoring experiment during ship
maneuvering.

TABLE I

SIMPLIFIED DATASET FOR THE EXPERIMENT

Data source
Number of

channel
Measurement

AOI hit 3
Hit number for AOIs of outside,
ECDIS, and control panel

Body sensors 3 ECG, EMG and thermometer

Accelerometer 3 Acceleration in axis X,Y and Z

Gyro 3
Angular velocity in axis X,Y, and
Z

Gaze 4
Left Z, right Y, right Z, and dura-
tion

Pupil 6
Diameter left and right, position
left and right in Y and Z directions

Eye movement 2
Mapped eye movement in axis X
and Y

There were over60 channels of data collected from the
experiment. The EEG data contained too much noise and was
not used for analysis. In addition, to decrease computational
complexity, a countermeasure was adopted to remove the
highly correlated channels with correlation over90%. The
resulted dataset was reduced to 24 channels, as listed in
Table I. In total, there are 21 channels in the dataset from
the eye tracker. Note that the hit in area of interests (AOIs),
as defined in Fig. 3, was also considered an indicator for the
evaluation.

C. Sensor Fusion Setup

For the centralized architecture, a cooperative and com-
plementary fusion was realized via a CNN classifier. It
receives a segment of data every second, i.e., approximately
a 300×24 array, and produces an estimation of KSS value.
The classifier consists of two convolutional layers with5×5
and3×3 kernels respectively. Max-pooling was selected so
to down-sample by a factor of 2.

For the decentralized architecture, the separated classifica-
tions were designed based on the group of measures listed in
Table I. The classifiers have the same CNN structure as the
one in the centralized architecture, but with different size of
kernel. The classifiers for data source containing 3 channels
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Fig. 4. Training and validation test of CNN for raw data fusion.

were designed to have a2×2 kernel for convolution and a
2×1 kernel for the pooling layer. The classifiers for the data
sources from “gaze” and “eye movement” have a2×1 pool
in both max-pooling layers, whereas the one from “pupil”
has a2×2 pool size. After the individual classifiers were
tuned, a 5-layer FuNN with two Gaussian functions as the
membership function was constructed for decision fusion.

IV. RESULTS

A. Performance Comparison

The training of CNN for raw data fusion was performed
with 10 epochs and the progression of the accuracy and loss
of the model is shown in Fig. 4. The maximum accuracy
can reach 98.68% with a corresponding loss of 0.04 for
the validation data. The classifier has a better grasp of
the overall information, thus making better adjustment of
parameters of the network to optimize the loss function.
Fig. 5 evaluates the network using confusion matrix. Note the
three recorded KSS values are labeled as KSS-A, KSS-B and
KSS-C, respectively. The result shows the architecture is able
to classify the labels in high precision, which is consistent
with expected result of the centralized structure due to the
completeness of sensor information.
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Fig. 5. Confusion matrix of raw data fusion.

TABLE II

10-FOLD CROSS-VALIDATION TEST

Data source
(classifier)

Accuracy mean± standard deviation
(%)

AOI hit 55.32± 0.56

Body sensors 77.40± 1.79

Accelerometer 67.85± 1.25

Gyro 63.89± 0.83

Gaze 63.21± 1.69

Pupil 80.98± 1.18

Eye movement 78.91± 4.41

The training of CNNs for decision fusion was similar
to the training of CNN for raw data fusion. Moreover, the
classifiers were further evaluated by k-fold cross-validation
test, i.e., dividing data intok equal parts, and utilizingk−1
parts for training and the last part for validation. Table IIlists
the result fork=10. It is noted that the classifier for “AOI
hit” only has 55% mean accuracy, which means “AOI hit”
cannot provides valid information for fatigue monitoring.In
contrast, the classifiers for “pupil”, “body sensor” and “eye
movement” have much higher mean precision, playing key
roles in fatigue level estimation. Nevertheless, the classifier
for “eye movement” has a relative high standard deviation,
which indicates the classifier is sensitive to the quality ofthe
data provided for training.

Fig. 6 illustrates the training result after fusing the clas-
sifiers into the FuNN. As expected, the FuNN can obtain
a higher accuracy compared to individual classifiers up to
96.08% with a loss of 0.13. The confusion matrix for the
decision fusion is shown in Fig. 7. There are false probability
of 0.03, 0.04 and 0.06 for “KSS-A”, “KSS-B” and “KSS-C”,
respectively. The result shows decision fusion has an little
inferior performance compared to that of raw data fusion
shown in Fig. 5. However, the decentralized architecture will
provide more robust estimation. We will demonstrate it in
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Fig. 6. Training and validation test for decision fusion.

Section IV-B.

B. Sensory Deprivation Analysis

Beside the overall accuracy, it is also important to study
the robustness of the fusion results to sensory deprivation.
Here we focus on investigate how the loss of certain of
measures, e.g., loss of acceleration data, affects system
accuracy.

Table III shows the accuracy loss caused by failure of each
individual classifier used in the two fusion architectures.The
centralized architecture depends on most of the measures
from the eye tracker device and its embedded sensors in-
cluding accelerometer and gyro. In particular, the lack of
data source from either “gaze” or “eye movement” drops the
accuracy to less than 70%. The accuracy reduction shows
that the centralized architecture is sensitive to lack of data
source. This is because the network itself needs all inputs to
modify its weight during training, to achieve high accuracy
at an expense of adaptability.

In contrast, the decision fusion has much better per-
formance when sensor failure happens. Even though the
individual classifiers for “body sensors”, “pupil” and “eye
movement” have high accuracy for fatigue level estimation
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Fig. 7. Confusion matrix of decision fusion.

TABLE III

ACCURACY LOSS BY FAILURE OF DATA SOURCE

Data source
failure

Accuracy loss (%)
Centralized
architecture

Decentralized
architecture

AOI hit 1.40 1.87

Body sensors 0.44 5.72

Accelerometer 4.45 0.53

Gyro 8.60 0.66

Gaze 30.37 0.39

Pupil 2.73 0.52

Eye movement 34.65 7.66

(as shown in Table II), the loss of one of them only results
in accuracy loss to 5.72% , 0.52% and 7.66%, respectively.
In other words, the network, even in the worst case of data
source failure, can still reach a precision of 88.42%. This
is because the use of fuzzy logic in the network allows for
better addressing uncertainty. Here the uncertainty of lack
of data can be represented by the two membership function
for each label in the FuNN, corresponding to the probability
of likely and unlikely of data source failure for each of the
classifiers.

C. Discussion

The case study has shown that both architectures are valid
options to classify the fatigue level, with high accuracy over
96%. The raw data fusion as a complementary type of fusion
allows the network to have better performance (about 2%) in
the classification problem than the performance of decision
fusion architecture. However, the decision fusion architecture
using a competitive type of fusion offers superior robustness
when sensor failure happens.

For most tasks in maritime operations like navigation,
deck operation and crane lifting, the sensors we used for
fatigue monitoring may be intrusive and interfere with the
task. Furthermore, due to the movement of the stuff crew



during the task, the acquisition of sensor data may be
paused or even get interrupted completely. From the case
study results, the decision fusion architecture is preferred in
maritime operations, taking advantage of the adaptabilityof
the structure.

V. CONCLUSION

This paper presents a decentralized approach to realize
human fatigue monitoring system in maritime operations.
The aim is to establish a mapping relationship between the
objective data from sensors including ECG, EMG, EEG,
thermometer and eye tracker, and the subjective measurement
of KSS values. Highly correlated data channels are removed
and the rest are grouped via CNNs for feature extraction
and preliminary fatigue classification. A 5-layer FuNN is
used to fuse individual CNN output to further improve
the classification accuracy. To investigate the performance
of the approach, it is compared with a centralized fusion
approach in an experiment of fatigue monitoring during ship
maneuvering in simulator. The result shows both method can
achieve a classification accuracy over 96% and the proposed
method can even maintain an accuracy of 88.42% in case
of sensor failure. This implies the decentralized approachis
more applicable to fatigue monitoring in maritime operations.

For future work, we will focus on (1) a thorough analysis
of individual measurement on how important it is in the
classification problem, and (2) a new fatigue monitoring
experiment of ship maneuvering with more KSS values
recorded for classification.
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