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ABSTRACT Themultiple measurement vector (MMV) problem is applicable in a wide range of applications
such as photoplethysmography (PPG), remote PPG measurement, heart rate estimation, and directional
arrival estimation of multiple sources. Measurements in the aforementioned applications exhibit a depen-
dency structure, which is not considered in the general MMV algorithms. Modeling the dependency or the
correlation structure of the solution matrix to MMV problems can increase the recovery performance. The
solution matrix X can be decomposed into a mixing matrix A and a sparse matrix with independent columns
S. The key idea of this model is that the matrix S can be sparser than the mixing matrix A. Previous MMV
algorithms did not consider such a structure for X . This paper proposes two algorithms, which are based on
orthogonal matching pursuit and basis pursuit, and derives the exact recovery guarantee conditions for both
approaches. We compare the simulation results of the proposed algorithms with the conventional algorithms
and show that the proposed algorithms outperform previous algorithms especially in the case of the low
number of measurements.

INDEX TERMS Multiple measurement vectors, independent component analysis, orthogonal matching
pursuit, basis pursuit.

I. INTRODUCTION
Sparse representation has attracted a wide range of applica-
tions among others such as imaging [1], [2], biomedical sig-
nal processing [3]–[5], radar signal processing [6]–[8], and
remote sensing [9]. Sparse representation has been effec-
tive for handling these problems which are related to com-
pressed sensing (CS) - a famous research topic in recent
years [10]–[12]. Compressed sensing or single measurement
vector (SMV) problem suggests the recovery of a sparse vec-
tor with a few number of measurements. The SMV problem
can be written as

y = 8x, (1)

where x ∈ RN×1 and y ∈ RM×1 are the solution vector and
the observation vector, respectively. Thematrix8 ∈ RM×N is
the dictionary matrix, whereM � N . Since8 is a fat matrix,
there will be infinite solutions to (1). Moreover, the sparsest
solution to (1) is the desired solution. The solution minimizes
the following optimization problem

min
x
‖x‖0, s.t. y = 8x, (2)

where ‖x‖0 denoted the `0-norm of x, i.e. the number of
nonzero elements of x. One of the important issues is that
to make sure the solution to the optimization problem (2) is
unique. In order to have a unique solution,8 needs to satisfy
the following inequality

|Supp(x)| <
Spark(8)

2
, (3)

where Supp(x) shows the support of x or the set including the
indexes of the nonzero elements of x and the operator |.| gives
the cardinality of a set. The operator Spark is defined as
Definition 1: The Spark of a matrix 8 is defined as the

smallest number of linearly dependent columns of 8.
There are many applications such as electroencephalo-

gram (EEG) [13] and photoplethysmogram (PPG) [3] signal
estimationwheremultiplemeasurement vectors are available.
Multiple measurement vector (MMV) problem is the gener-
alization of the SMV problem in (1) which can be written as

Y = 8X, (4)

where Y ∈ RM×L is the matrix including observation vectors
and X ∈ RN×L is the solution matrix (L � M ). Here,
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the target is to find the solution with the lowest number of
nonzero rows, i.e.,

min
X

R(X), subject to Y = 8X, (5)

where R(X) denotes the number of nonzero rows of X . The
matrix X with the lowest number of rows can be uniquely
recovered if the following condition is satisfied

R(X) <
Spark(8)+ Rank(Y )− 1

2
. (6)

As it can be seen, the condition in (6) is less restrictive than
the condition in (3) if Rank(Y ) > 1. This motivates to use
multiple measurements.

Most existing MMV algorithms assume that each row of
X is independent and identically distributed (i.i.d). This is
not suitable for many real-world scenarios since, in practice,
rows of X will have certain structures, like temporal struc-
ture [14]. In [14], it was shown that the recovery performance
of exciting algorithms was affected by the temporal structure.
In some applications, signals are block sparse [15]. This
means that the desired signal can be grouped into blocks.
Some of these block are nonzero. Some algorithms have
been proposed to recover sparse signals with the block struc-
ture [16], [17]. Considering block structure in the signals have
been found effective [18], [19].

In [20] and [21], it was shown that if X can be decomposed
into matrix sparse S and mixing matrix A, i.e. X = SA, one
can estimate X through estimating S and A using

min
S,A

L∑
i=1

‖si‖0 , s.t. Y = 8SA,
∥∥∥aj∥∥∥

2
= 1, (7)

where aj is the j’th row ofA and si is the i’th column of S. The
`2-norm of each row A is set to be 1 in order to avoid scale
ambiguity.

In [20], it is proved that the recoveredX using (7) is unique
if the following inequity holds

max
i
{ri} +

L∑
j=1

rj < Spark(8), (8)

where ri is the number of nonzero elements of si.
The problems (2), (5) and (7) are generally difficult to solve

because combinatorial search for solving NP-hard problem
often consumes intractable time [22], [23]. To overcome
this problem, one way is to convexifying the `0-norm using
`1-norm. This approach is called basis pursuit (BP) which
converges to the sparsest solution under some specific con-
ditions [24]. Another approach is to find the best columns
in the dictionary 8 using greedy search. This approach also
leads to the sparsest representation under some specific con-
ditions [24].

A. BASIS PURSUIT APPROACH
The principal of BP is to obtain the solution to (1) whose `1-
norm is minimal [25],

min
x
‖x‖1, s.t. y = 8x. (9)

The above problem (9) can be seen as convexified prob-
lem (2). In [24] and [26]–[29], it has been proved that under
certain condition the solutions to (2) and (9) can be equiva-
lent. The exact recovery condition for (9) can be described
using null-space property [28]: A r-sparse solution x of the
linear system y = 8x is exactly recovered by solving the
`1-optimization in (9) if and only if8 satisfies the null-space
property of r, i.e. NSP(r), where the null-space property is
defined as [29],
Definition 2: An M × N matrix, 8, satisfies the null-

space property of order r, NSP(r), if for any subset B ⊂
{1, · · · ,N } and |B| = r; and for any nonzero vector v in
the null-space of 8, v ∈ Ker(8), the following inequality
holds ∥∥v∣∣B∥∥1 < ∥∥v∣∣Bc∥∥1 , (10)

where Bc is the complement of the set B and v
∣∣
B is the vector

v restricted on the set B.
Several sparse representation algorithms with the `1-norm

minimization have been proposed to solve (9) [30]–[34]. One
way is to use constrained optimization strategy to find the
solution with the least `1-norm. The algorithms that address
the non-differentiable unconstrained problem are given by
reformulating it as a smooth differentiable constrained opti-
mization problem [29]. In [31], an algorithm was proposed
to obtain the sparse representation solution along with the
gradient descent direction. In [30], an algorithm called the
truncated Newton based interior-point method (TNIPM) was
proposed to solve the `1-regularized problem.

B. GREEDY APPROACH
The key idea of the greedy approach is to determine the
support of x based on the relationship between the columns
of 8 and probe sample. The amplitude value is obtained by
using the support of x and solving a least square problem [35],
[36]. The matching pursuit (MP) algorithm is the earliest in
the greedy approach for the sparse approximation [37]. The
orthogonal matching pursuit (OMP) algorithm is an improved
version of the MP algorithm [38], [39]. In each iteration,
the OMP exploits the process of orthogonalization to project
in the orthogonal direction. Greedy algorithms have been
proposed based on the MP and OMP algorithms like the
efficient OMP algorithm [40]. A regularized version of OMP
(ROMP) algorithm recovered all r-sparse signals based on
the restricted isometry property (RIP) of random frequency
measurements [41].

A sufficient condition for exact sparse recovery for OMP
was presented in [24]

max
j
‖8+B φj‖1 < 1, j /∈ Supp(x), (11)

where B is equal to Supp(x),8+B is a matrix with the columns
whose indexes are in the support of x. φj denotes the j’th
column of 8.
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C. CONTRIBUTION
In this paper, the solution matrix X is decomposed into a
sparse matrix S and a mixing matrix A, i.e., X = SA. The
benefit of the mixing model is that S is sparser than X in
some applications. This led us to develop two algorithms
to estimate S and A unlike traditional MMV algorithms
which estimate X . One of the proposed algorithm is based
on minimizing the sum of the `1-norm of the columns of S.
We call the algorithm independent component analysis basis
pursuit (ICABP). We will derive the exact recovery guarantee
conditions for both known and unknown A cases. We show
that estimating S andA instead ofX can improve the recovery
performance. This structure fits to the applications like rPPG,
PPG signal extraction, image separation or directional arrival
estimation of multiple sources [42]–[46]. We also propose
an algorithm based on OMP, called independent component
analysis orthogonal matching pursuit (ICAOMP). Moreover,
we derive the condition which guarantees the exact recovery
of the ICAOMP algorithm.

This paper is organized as follows. In section II, the prob-
lem formulation and the solution structure are discussed.
The proposed algorithms are presented in Section III. The
conditions of recovery guarantee for the proposed algorithms
are derived in Section IV. Experimental results are provided
for evaluating the proposed algorithms in Section V.

Notations:
• ‖s‖p, ‖A‖F denote the `p-norm of the vector s, and the
Frobenius norm of the matrix A, respectively.

• R(X) denotes the number of nonzero rows in the matrix
X .

• diag{a1, · · · , aL} denotes a diagonal matrix with diago-
nal elements being a1, · · · , aL .

• For a matrix A and a vector s, A(i,j), and s(i) denote the
element that lies in the ith row and the jth column of A
and ith element of s, respectively.

• A ⊗ B represents the Kronecker product of the two
matrices A and B. Tr(A) denotes the trace of A. AT

denotes the transpose of A.
• vec(A) denotes the vectorization of the matrix A formed
by stacking its columns into a single column vector.

• [N ] denotes the set {1, · · · ,N }.
• For a vector s ∈ RN , Supp(s) denotes {i ∈ [N ] : s(i) 6=
0}. the support of s. For a matrix A ∈ RN×L , Supp(A) is
{i ∈ [N ] : A E(i) 6= 0}.

• |K | is the cardinality of the set K .
• A(k) and a(k) show the matrix A and the vector a updated
in the k’th step of the proposed algorithm, respectively.

II. PROBLEM FORMULATION
The MMV problem can be expressed as

Y = 8X, (12)

where Y ∈ RM×L , 8 ∈ RM×N and X ∈ RN×L are the
observation matrix, the dictionary and the solution matrix,
respectively (M � N and L � N ). The independent
components are mixed and observed through some channels

FIGURE 1. Visual representation of (12) and (15).

or sensors. Mathematically speaking, each column of X rep-
resents a mixture of these signals, i.e.,

X = SA, (13)

where A ∈ RL×L is an unknown full-rank mixing matrix, and
S ∈ RN×L is an unknown source matrix including L source
vectors where each column shows a sparse source. A source
si, i.e., the i’th column of S, is an unknown sparse vector. It is
assumed that the sources are independent. The multiplication
of the source matrix S and the mixing matrix A results in
matrix X, which consists of L linear mixtures of the sources.
The matrix A captures the dependences among columns of
X . The motivation of this modeling is that the matrix X can
have a higher number of nonzero elements than each column
S as shown Fig. 1. The following trivial lemma describes the
minimum and maximum value of nonzero rows of X in terms
of the columns of S.
Lemma 1: Let the columns of a matrix S ∈ RN×L be

ri-sparse and independent, and a matrix A ∈ RL×L be a full-
rank matrix. If X = SA, the number of nonzero rows of the
matrix X meets the following inequality

max
i
{|Supp(si)|} ≤ R(X) ≤

L∑
i=1

|Supp (si)| . (14)

Proof: See Appendix A. �
Intuitively, since X has a higher number of nonzero rows,

if we could find A, it would be easier to solve the problem.
This will be discussed in detail in Section IV. Fig 1 shows
the problem while X is composed of the linear mixtures of
independent sources.

Using (12) and (13), one can write the observation matrix
in terms of S and A as

Y = 8SA. (15)

Since we want to find the sparsest S satisfying (15),
we would ideally like to solve the optimization problem
in (7).
Remark 1: {S̃, Ã} is considered as solution where the i’th

column of S̃ is ri sparse and S̃ is the sparsest solution.
Remark 2: In (7), the solution S̃ has the least number of

nonzero elements. However, the aim of the MMV problem is
to find the matrix X̃, therefore X̃ = S̃Ã is also called the
solution in this work.
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Before tackling the problem in (7), we show in the fol-
lowing theorem that solving (7) leads to the matrix X with
the least number of nonzero rows. This is important because
MMV algorithms’ object is to find X with the least nonzero
rows.
Theorem 1: If {S̃, Ã} is the solution to (7) and the condi-

tion (8) is satisfied, the multiplication S̃ and Ã, i.e. X̃ = S̃Ã
will have the least number of nonzero rows in Xs satisfying
Y = 8X .

Proof: See Appendix B. �
Due to the complexity of minimizing the `0-norm, two

algorithms are proposed, one based on orthogonal matching
pursuit and the other one based on basis pursuit approach
which will be discussed in the following section.

III. ALGORITHMS
One should ideally solve the optimization (7), however,
the problem in (7) is computationally complicated because
of the `0-norm minimization.

A. INDEPENDENT COMPONENT ANALYSIS BASIS
PURSUIT (ICABP)
The problem in (7) can be convexified by the following
optimization,

min
S,A

L∑
i=1

‖si‖1 , s.t. Y = 8SA,
∥∥∥aj∥∥∥

2
= 1. (16)

In order to solve (16), an algorithm is proposed which
minimizes

∑N
i=1 ‖si‖1 and the corresponding mixing matrix

A. This can be written similar to LASSO as [47]

min
S,A

1
2
‖Y −8SA‖2F + λ

∑
i

‖si‖1 . (17)

If applying the operator vec on both sides of (15), it can be
written as

vecL,M
(
YT
)
= vecL,M

(
(8SA)T

)
= (8⊗ AT )vecL,N (ST ). (18)

For a simpler notation, let y = vecL,M (YT ), s =
vecL,N (ST ) and φA = 8⊗ AT .We can write (18) as

y = φAs. (19)

This leads to an SMV while the dictionary matrix φA is
not known due to an unknown A. Therefore (17) can be
equivalently written as

min
s,A

L(s,A) = min
s,A

1
2

∥∥y− φAs∥∥22 + λ ‖s‖1 . (20)

The gradient projection sparse reconstruction (GPSR) algo-
rithm can be employed to solve (20).

The sparse representation solution s can be formulated by
its positive and negative parts as

s = s+ + s−, s+ � 0, s− � 0, (21)

where the operators (.)+ and (.)− are

s+ =

{
(s+)(i) = s(i) s(i) > 0
0, otherwise,

s− =

{
(s−)(i) = −s(i) s(i) < 0
0, otherwise

. (22)

With this notation, the optimization problem (20) can be
reformulated as

min
s,A

1
2

∥∥y− φA(s+ − s−)∥∥22 + λ (1TLN s+ + 1TLN s−
)
, (23)

where 1LN = [1, · · · , 1]T ∈ RLN . The cost function in (23)
can be rewritten as

min
s,A

G(s,A) = min
s,A

1
2
uTCAu+ cTu,

u =
[
s+
s−

]
, (24)

c = λ12LN +
[
−φTAy
φTAy

]
,

CA =

[
φTAφA −φTAφA
−φTAφA φTAφA

]
. (25)

The GPSR algorithm exploits the gradient descent and
standard line-search method [48] to solve (24). With this
approach, the vector u is updated as

u(k+1) = u(k) − µ(k) ∂G
∂u

∣∣∣∣
u=u(k),A=A(k)

, (26)

where ∂G/∂u = c+ CAu and µ is the step size.
A closed-form for updating A is obtained by taking the

derivative of G with respect to A and setting the result to zero.

∂G
∂A
=
∂L
∂A
=
∂
(
‖y− φAs‖

2
2

)
∂A

=
∂
(
‖Y −8SA‖2F

)
∂A

= 0.

(27)

Solving (27) leads to the A with the least error given S. The
derivative in (27) can be expanded as

∂G
∂A
=

∂

∂A
(Tr (Y −8SA) (Y −8SA)T )

=
∂

∂A
(Tr(−2YATST8T

+8SAATST8T ))

=
∂

∂A
(Tr(−2YT8SA+ AATST8T8S))

= −2ST8TY + 2ST8T8SA = 0. (28)

One can update A(k+1) in terms of S(k) using (28)

A(k+1)
=

((
S(k)

)T
8T8S(k)

)−1 (
S(k)

)T
8TY , (29)

where S(k) can be simply obtained by

S(k)
T
= vec−1L,N

((
s(k)
))
, (30)
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TABLE 1. ICABP: The independent component analysis basis pursuit
algorithm.

s is given using (24) and (21). In order to set the step size, one
may use the approach employed in GPSR [31],

µ(k)
= argmin

µ
G(u(k) − µh(k)), (31)

where h is defined as

h(k)(i) =



(
∂G(u(k),A(k))

∂u

)
(i)

,

u(k)(i) > 0 or
(
∂G(u(k),A(k))

∂u

)
(i)
< 0

0, otherwise.

(32)

The closed-form solution for (31) is given in [31]

µ(k)
=

(h(k))Th(k)

(h(k))TCAh(k)
. (33)

Moreover, the GPSR algorithm uses the backtracking linear
search method [31] that ensures the step size of the gradient
decreases in each iteration. In [31], it is proposed that the stop
condition of the backtracking linear search should satisfy the
following inequality

G((u(k) − µ(k)∂G(u(k)))+)

> G(u(k))− β
(
G(u(k))
∂u

)T
×

(
uT − G((u(k) − µ(k)∂G(u(k)))+)

)
, (34)

where β is a small constant value. Table 1 lists the steps of
the proposed algorithm.
Remark 3: This work deals with the case that the number

of columns of Y is equal to the number of columns of X, and
matrices X and A are full-rank. The case that the number
of columns of Y is larger than the number of columns of X,
means that the columns ofY are linearly dependent. However,
in this case, the extra columns of Y do not provide additional
information when noise is not contaminating the signals (See
the model in (12)). Therefore, one can apply a dimension

reduction algorithm on Y to find a matrix whose number of
columns is equal to Rank(Y ). Then, the problem in (17) can
be solved with the assumptions in this work.

B. INDEPENDENT COMPONENT ANALYSIS ORTHOGONAL
MATCHING PURSUIT (ICAOMP)
In this part, we describe how to apply the OMP algorithm
to MMV problem when the solution matrix has the linear
mixture structure. Suppose that the i’th column of S̃ is ri
sparse and its support is Bi. The aim is to correctly find
the support of S̃. One way of looking at this problem is
to apply the OMP algorithm on each column of Y . Each
column of Y is a linear combination of the columns of 8
whose indexes are in

⋃
i Bi. However, when the exact A is

known, the multiplication of Y with the inverse of A results
in Y ′ whose columns can only be represented with the linear
mixture of the columns of 8 with the indexes in Bi, i.e.

y′i =
∑
j∈Bi

S(j,i)φj,

where y′i is the i’th column of Y ′. Clearly, the cardinality
of
⋃

i Bi is larger than the cardinality of Bi for all i. Then,
in order to represent the columns of Y ′, one may need a
smaller number of columns of 8 compared with the sparse
representation of Y . First, the mixing matrix is estimated, and
the columns of Y are demixed. Then, OMP is applied on the
demixed observation.

In each iteration, the matrix A is updated by minimiz-
ing ‖Y − 8SA‖2F using the estimate of S in the last step.
Since the same function is minimized similar to the ICABP
in Section III-A, the same formulation will be obtained as
in (29),

Y (k1) = 8SA
(
A(k1)

)−1
. (35)

Now we can apply the OMP algorithm on each column
of Y (k1).

For each k1 we apply the OMP algorithm. Let B(k)i be the
set including the indexes of the support of s(k)i in the k’th
iteration. Table 2 lists the steps of the algorithm.

IV. RECOVERY GUARANTEE
In this section, the conditions, which guarantee the exact
support can be obtained for the proposed algorithms, are
studied.

A. UNIQUENESS CONDITION FOR `1-MINIMIZATION
The ICABP algorithm exploits the `1-norm to estimate S and
A, and accordingly X . The aim is to find the condition in
which the solution to (17) is the sparsest solution.

We start with the ideal case in which the mixing matrix is
known or estimated exactly with zero error.
Theorem 2: Let {S̃, Ã} resulting in X̃ = S̃Ã to be a solu-

tion to the problem (P1) where the columns of matrix S̃ are
supported on Bi ⊂ [N ] and |Bi| = ri. If Ã is known and 8
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TABLE 2. ICAOMP: The independent component analysis orthogonal
matching pursuit algorithm.

satisfies the null space property R = max{ri}, i.e., NSP(R),
the solution with the least `1-norm is equal to the solution X̃ .

Proof: See Appendix C. �
This is, however, not a practical case, since matrix A is

unknown. In the following theorem the condition that guar-
antees exact recovery in the case when A is unknown.
Theorem 3: Let {S̃, Ã} be the sparsest solution giving X̃ =

S̃Ã, where the columns of matrix S̃ are independent and sup-
ported on Bi ⊂ [N ] and |Bi| = ri. If matrix8 satisfies the null
space property

∣∣∣⋃N
i=1 Bi

∣∣∣ , i.e., NSP(∣∣∣⋃N
i=1 Bi

∣∣∣), the matrix S̃
is the sparsest by solving the minimization problem (16).

Proof: See Appendix D. �
Theorem 2 describes the case where A is estimated exactly

without any error. Since Bi ⊆
⋃N

i=1 Bi, the condition in
Theorem 2 can be much less restrictive than the condition
in Theorem 3. The condition in Theorem 3 is the same as
the condition for general MMV in [49] with a different cost
function. Theorem 3 explains that X can be uniquely recov-
ered irrespective of the estimate ofA.The first condition is for
the ideal case (unrealistic) and the second one is very loose.
Although the estimation of A depends on the algorithm used,
different algorithms can estimate A with some accuracy [50].
Therefore, we derive a practical condition based on the accu-
racy of the estimate of A. Since the matrix A can be estimated
with some accuracy, i.e.

∥∥∥tT ÃÂ−1∥∥∥
1
< (1 + α)

∥∥tT∥∥1 for a
small α and a vector t, a practical condition can be obtained
as presented in the following theorem. We need the following
definition in [51] and lemma for the theorem.
Definition 3: For any set B ⊂ [N ] with |B| < κ , a matrix

8 is said to satisfy the `1 stable null space property of order
κ with constant τ, 0 < 1− τ < 1, if∥∥v∣∣B∥∥1 < (1− τ )

∥∥v∣∣Bc∥∥1 , (36)

for all v ∈ Ker(8).

Lemma 2: If {S̄, Ā} is the solution to the equation Y =
8SA whose columns’ `1-norms are the least, then the fol-
lowing inequality holds

N∑
i=1

‖s̄i‖1 ≤
N∑
i=1

∥∥8+yi∥∥1 . (37)

Proof: Assume

N∑
i=1

∥∥8+yi∥∥1 < N∑
i=1

‖s̄i‖1 . (38)

Based on the assumption in the lemma, S̄ is the solution with
the least `1-norm. But using (38), the solution {8+Y , I},
where I is an L × L identity matrix, will have a smaller `1-
norm than {S̄, Ā}. This is a contradiction and thus completes
the lemma. �
Theorem 4: Let {S̃, Ã} be the solution giving X̃ = S̃Ã

where the columns of matrix S̃ are independent and supported
on Bi ⊂ [N ] and |Bi| = ri. The solution to (16) is equal to X̃
if the following conditions hold

1)
∥∥∥tT ÃÂ−1∥∥∥

1
< (1+ α)

∥∥tT∥∥1 for any vector t ∈ RN ,

2) Matrix 8 satisfies null space property of the order
‖r‖∞ with constant τ, where

τ >
α

δ

1
N

∑N
i=1

∥∥8+yi∥∥1
‖r‖1

, (39)

3)
∣∣∣S̃(i,j)∣∣∣ > δ for δ > 0,

where r = [r1, r2, · · · , rN ].
Proof: See Appendix E. �

The condition in Theorem 4 depends on the accuracy of
the estimate of A; i.e., α. If α goes to 0, in other words, if A
is estimated exactly, τ will go to 0. Then, the conditions in
Theorem 2 and Theorem 4 will be the same. This means we
require the less restrictive condition for a better estimate ofA.

B. RECOVERY GUARANTEE FOR ICAOMP
In this subsection, the conditions are found which if satisfied,
ICAOMP will find the support of X̃ . Here we start with the
ideal case that the matrix Ã is known.
Theorem 5: Let S̃ be the sparsest solution to (12) where the

columns of matrix S̃ are supported on Bi ⊂ [N ] and |Bi| = ri.
If matrix Ã is known, the solution X̃ is unique if the matrix8
satisfies the following inequality∥∥∥8+BIφj∥∥∥1 < 1,

I = argmax
i

(ri) , 1 ≤ i ≤ L. (40)

Proof: See Appendix F. �
Theorem 5 shows that the condition is restricted by the set

with the highest cardinality value.
Now we describe the condition for the ICAOMP recovery

guarantee when A is unknown.
Theorem 6: Let {S̃, Ã} giving the matrix X̃ = S̃Ã to be the

sparsest solution to (12) where the columns of matrix S̃ are
supported on Bi ⊂ [N ] and |Bi| = ri. The matrix X̃ can be
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FIGURE 2. Mean of α in terms of number of measurements M.

uniquely recovered irrespective of the estimate of matrix A,
if matrix Ã is unknown and matrix 8 satisfies the following
inequality

∥∥8+B φj∥∥1 < 1, B =
L⋃
i=1

Bi. (41)

Proof: See Appendix G. �
Even though the condition in Theorem 6 is the same as

the condition in [49], the algorithms are different. We show
in Section V that the proposed algorithm is more effective
when a certain structure is used on the solution matrix like
for example PPG and rPPG applications.

V. RESULTS
The performance of the proposed algorithms is evaluated
and comparedwith traditional algorithms. Different scenarios
are considered and 500 trials are generated in each scenario.
In the experiments, 8 ∈ RM×N is generated by a Gaussian
distribution with unit variance. The support of the vector s̃i
is generated by a uniform random variable from 1 to N . The
nonzero elements of S̃ are found from a unit variance Laplace
distribution. The elements of Ã are Gaussian distributed with
unit variance. The observation matrix Y and the matrix X̃ are
8X̃ and S̃Ã, respectively. In noise-free cases, the number of
missed elements in the support of X̂ is found by

α =

∣∣∣Supp (X̃)− Supp
(
X̂
)∣∣∣∣∣∣Supp (X̃)∣∣∣ . (42)

The following algorithms are used for the comparison
purpose.
• CS-MUSIC, proposed in [52].1

• MFOCUSS, the regularized M-FOCUSS proposed
in [53].2 We set its p-norm p = 0.8, as suggested by
the authors.

• MFOCUSS with p = 1.

1http://bispl.weebly.com/compressive-music.html
2http://dsp.ucsd.edu/ zhilin/MFOCUSS.m

FIGURE 3. Mean of α in terms of number of measurements M.

FIGURE 4. Mean of α in terms of number of measurements M.

In order to evaluate the estimation accuracy of A, Amari
error is used which is defined as

Amari error =
L∑
i=1

 L∑
j=1

|H (i,j)|

maxk |H (i,k)|
− 1


+

L∑
j=1

(
L∑
i=1

|H (i,j)|

maxk |H (k,j)|
− 1

)
. (43)

where the matrixH equals ÃÂ
−1
. Since the traditional MMV

algorithms do not estimate A, one of the successful BSS
algorithms called EBM in [54] is used to obtain Â from X̂ .

A. RECOVERY PERFORMANCE IN TERMS OF NUMBER OF
MEASUREMENTS
The motivation of this experiment is to evaluate the perfor-
mance of the algorithms in terms of number ofmeasurements.
In this experiment, we generate 6 independent sources S̃ ∈
R200×6 which are mixed by a 6 × 6 mixing matrix Ã. The
mixture X̃ is measured by the measurement matrix 8 results
in the observation vector Y . Each column of S̃ is 10 sparse.
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FIGURE 5. General steps for HR estimation.

The locations of the nonzero elements of each column are
picked from a discrete uniform random variable from 1 to
200. The values of the nonzero elements are from a Laplace
distribution with unit variance.

Fig. 2 and Fig. 3 show the mean and median of α. It can
be seen that the proposed algorithms outperform especially
for a low number of samples. Fig. 4 shows the Amari errors
of the algorithms. It can be seen that the proposed algorithms
have better estimation of the mixing matrix in comparison
with traditional methods.

B. REAL DATA
In this experiment, the algorithms are evaluated by real data,
i.e., heart rate (HR) estimation from face video recording.
For this purpose, we briefly describe rPPG signal estima-
tion. RPPG enables contact-less measuring of human cardiac
activities by color variations on human skin using an RGB
camera [55]. The main steps of rPPG and HR estimation are
shown in Fig. 5. In ROI tracking step, an ROI including skin,
e.g. face, is chosen and tracked over the time. In preprocess-
ing step, three one-dimension signals in time are extracted
from RGB channels where each element is the average of
ROI’s pixels in the corresponding frame. These three signal
include rPPG signal, noise and motion artifacts. Then noise
and motion artifacts are suppressed from the rPPG signal.
In the final stage, the HR is estimated using spectrum esti-
mation methods. The proposed approaches are applied after
the preprocessing stage.

The reason that rPPG can be measured by a recording is
that the blood’s hemoglobin absorbs light differently than
other tissues over time. When arterial blood volume changes
during the cardiac cycles, light absorption of the human skin
fluctuates [56]. RPPG captures the color variations in time
during the recording. HR can be estimated by recording tiny
color variations along with minor light intensity variation of
the skin.

Since the target of this paper is not ROI tracking, we used
face recording of a person who sat still in front of the cam-
era. The frame rate was 30 frames per second (fps). The
person’s forehead was selected as ROI. After tracking ROI,
in the preprocessing step, three one-dimensional signals from
RGB channels were estimated. In order to suppress noise and
motion artifacts, the signals were filtered using a bandpass
filter which kept the coefficients in the range of 40 beats
per minute (bpm) to 180 bpm. In this experiment, we used
partially known support assumption by removing the coeffi-
cients in the range of [0 - 0.6] Hz and [3 - 15] Hz. Matrix
8 is the DCT transformation matrix including the columns

FIGURE 6. The error of heart rate estimation.

corresponds to [0.6 - 3] Hz. A pulse oximeter measuring heart
rate frequency was used as a reference.

The error is simply obtained by the absolute value of the
difference between the estimated heart rate by the algorithms
and that measured by the pulse oximeter. Fig. 6 shows the
error of heart rate estimation by the algorithms. The red line
in the middle of each box shows the median of the error. As it
can be seen in Fig. 6, the proposed algorithms outperformed
CSMUSIC and TMSBL. Since MFOCUSS algorithm failed
in the experiment, the corresponding results are removed for
a clearer presentation.

VI. CONCLUSION
In this paper, the MMV problem is addressed in such a case
that the solution matrix has linear mixture structure. The
solution model structure is applicable in practical scenarios
like PPG or rPPG signal estimation. The solution is decom-
posed into mixing matrix A and matrix S with independent
columns. The key idea of this model is that the matrix S can
bemuch sparser than themixtureX .Based on this model, two
algorithms are proposed, one based on OMP and the other
one based on basis pursuit. The conditions which guarantee
the exact recovery of the solution are derived. It is shown
that the estimation accuracy of matrix A is significant in the
sparse recovery performance. Experimental results show that
the proposed methods can improve the performance when a
few measurements are available.

APPENDIX A
PROOF OF LEMMA 1
Since X = SA, each row of matrix X can be written in terms
of S and the full-rank matrix A as

xi = siA, (44)
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where xi and si are the i’th rows ofX and S respectively. Based
on (44), one can write

Supp(X) ⊆
L⋃
i=1

Supp(si). (45)

The cardinality of the right hand side of (45) is upper bounded
by

|Supp(X)| ≤

∣∣∣∣∣
L⋃
i=1

Supp(si)

∣∣∣∣∣ ≤
L∑
i=1

|Supp(si)|. (46)

The upper bound is given by (46).
For the lower bound we start with assuming that there is X

such that

R(X) < max
i
{ri : i ∈ {1, · · · L}}.

This assumption means that

∃i; i ∈
L⋃
k=1

Supp(sk ) s.t. xi =
L∑
j=1

siA = 0. (47)

This means that Ker(AT ) 6= ∅. Since A is square and full-
rank, it contradicts with Ker(AT ) 6= ∅. This completes the
Lemma.

APPENDIX B
PROOF OF THEOREM 1
Assume that there exists an X̌ having a smaller number of
nonzero rows than X̃ = S̃Ã, i.e. R(X̌) < R(X̃). One can
write

8X̃ −8X̌ = 0,

or,

8S̃−8X̌Ã
−1
= 0.

This means that S̃− X̌Ã
−1
∈ ker(8). Let V be S̃− X̌Ã

−1
.

Therefore, based on the condition (8),

|Supp(vi)| ≥ max
i
|Supp (s̃i)| +

L∑
i=1

|Supp (s̃i)|, (48)

where vi is the i’th column of V . Therefore, each column of
X̌ must have more than

∑L
i=1 |Supp (s̃i)| nonzero elements.

On the other hand, based on the assumption, R(X̌) is less
than R(X̃). Therefore, according to Lemma 1, the inequality
R(X̌) <

∑L
i=1 |Supp (s̃i)| holds. This is a contradiction

which completes the theorem.

APPENDIX C
PROOF OF THEOREM 2
Let {S̃, Ã} and X̃ = S̃Ã denote the solution of (P1).

Y = 8S̃Ã = 8ŠÃ. (49)

We multiply both sides of (49) with Ã
−1
,

8S̃ = 8Š.

For each column we can write,

8s̃i = 8ši. (50)

Let V ∈ Ker (8) and X̃ + V = X̌ . Since V ∈ Ker(8), then,
V ′ = VÃ

−1
∈ Ker(8).We can write

s̄i + v′i = ši, (51)

where v′i is the i’th column ofV ′.The summation of both sides
of (51) over 1 ≤ i ≤ N .

N∑
i=1

‖s̃i‖1 ≤
N∑
i=1

∥∥∥∥s̃i + v′i∣∣∣Bi
∥∥∥∥
1
+

∥∥∥∥v′i∣∣∣Bi
∥∥∥∥
1

≤

N∑
i=1

∥∥∥∥s̃i + v′i∣∣∣Bi
∥∥∥∥
1
+

∥∥∥∥v′i∣∣∣Bci
∥∥∥∥
1

<

N∑
i=1

∥∥∥∥ši∣∣∣Bi
∥∥∥∥
1
+

∥∥∥∥v′i∣∣∣Bci
∥∥∥∥
1

<

N∑
i=1

∥∥ši∥∥1 , (52)

where v′i
∣∣∣
Bi

and v′i
∣∣∣
Bci

are the restrictions of v′i on Bi and

its complement Bci , respectively. The theorem is completed
by (52).

APPENDIX D
PROOF OF THEOREM 3
Let {S̃, Ã} and X̌ = {Š, Ǎ}, and denote the solutions of (P1)
where X̃ = S̃Ã and X̌ = ŠǍ,

Y = 8S̃Ã = 8ŠǍ. (53)

By multiplying Ǎ
−1

to both sides of (53), we obtain

Y = 8S̃ÃǍ
−1
= 8Š. (54)

Since {S̃, Ã} is a solution to the problem, one can write using
the fact that Supp

(
S̃ÃǍ

−1)
⊂
⋃N

i=1 Bi,∥∥∥S̃∥∥∥
1
≤

∥∥∥S̃ÃǍ−1 + V ′∣∣∣
B

∥∥∥
1
+

∥∥∥V ′∣∣∣
B

∥∥∥
1

=

∥∥∥Š∣∣∣
B

∥∥∥
1
+

∥∥∥V ′∣∣∣
B

∥∥∥
1

<

∥∥∥Š∣∣∣
B

∥∥∥
1
+

∥∥∥V ′∣∣∣
Bc

∥∥∥
1
=

∥∥∥Š∥∥∥
1
, (55)

where B =
⋃N

i=1 Bi and S̃ÃǍ
−1
+ V ′ = Š.

The inequality in (54) shows that the solution is the spars-
est, which completes the theorem.

APPENDIX E
PROOF OF THEOREM 4
Let {S̃, Ã} and {Š, Ǎ} denote the solutions.

S̃Ã+ V̌ = ŠǍ

S̃+ V = ŠǍÃ
−1
= S̄ (56)
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Then, one can write

N∑
i=1

‖s̃i‖1 ≤
N∑
i=1

∥∥∥∥s̃i + vi∣∣∣Bi
∥∥∥∥
1
+

∥∥∥∥vi∣∣∣Bi
∥∥∥∥
1

≤

N∑
i=1

∥∥∥∥s̄i∣∣∣Bi
∥∥∥∥
1
+

∥∥∥∥vi∣∣∣Bi
∥∥∥∥
1
, (57)

using the definition of null space property, we can write

N∑
i=1

‖s̃i‖1 <
N∑
i=1

∥∥∥∥s̄i∣∣∣Bi
∥∥∥∥
1
+ (1− τ )

∥∥∥∥vi∣∣∣Bci
∥∥∥∥
1

≤

N∑
i=1

‖s̄i‖1 − τ
∥∥∥∥vi∣∣∣Bci

∥∥∥∥
1

≤

N∑
i=1

(1+ α)
∥∥ši∥∥1 − τ ∥∥∥∥vi∣∣∣Bci

∥∥∥∥
1

≤

N∑
i=1

∥∥ši∥∥1 . (58)

The latter inequality is valid if

N∑
i=1

α
∥∥ši∥∥1 < N∑

i=1

τ

∥∥∥∥vi∣∣∣Bci
∥∥∥∥
1

(59)

or

α

N

N∑
i=1

∥∥ši∥∥1 < τ

∥∥∥∥vi∣∣∣Bci
∥∥∥∥
1
, for all i. (60)

The minimum value for each element of vi
∣∣∣
Bci

is δ, then,∥∥∥∥vi∣∣∣Bci
∥∥∥∥
1
is larger than δ‖r‖∞. The term

∑N
i=1

∥∥ši∥∥1 is less

than
∑N

i=1

∥∥8+yi∥∥1 . The condition in (60) is satisfied if
α

N

N∑
i=1

∥∥8+yi∥∥1 < τδ‖r‖∞. (61)

This completes the theorem.

APPENDIX F
PROOF OF THEOREM 5
By multiplying the inverse of Ã to both sides of (12), one can
obtain

Y ′ = 8S. (62)

This leads to L independent SMV problem. Using the result
from [24] for the exact recovery condition for OMP algo-
rithm, we can write for each column that∥∥∥8+Biφj∥∥∥1 < 1, for all i, j /∈ Bi. (63)

This completes the proof of the theorem.

APPENDIX G
PROOF OF THEOREM 6
Let Â is the estimate of matrix A. By multiplying the inverse
of Â to both sides of (12), it can be written that

Y ′′ = 8S̃ÃÂ
−1
. (64)

The matrix each columns of S̃ÃÂ
−1

is supported on the union
of the supports of the columns of S̃. If we apply ICAOMP
column by column, the exact support can be recovered if∥∥8+B φj∥∥1 < 1.
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