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Abstract: Dual specificity phosphatases (DUSPs) have a well-known role as regulators of the immune
response through the modulation of mitogen-activated protein kinases (MAPKs). Yet the precise
interplay between the various members of the DUSP family with protein kinases is not well understood.
Recent multi-omics studies characterizing the transcriptomes and proteomes of immune cells have
provided snapshots of molecular mechanisms underlying innate immune response in unprecedented
detail. In this study, we focus on deciphering the interplay between members of the DUSP family
with protein kinases in immune cells using publicly available omics datasets. Our analysis resulted in
the identification of potential DUSP-mediated hub proteins including MAPK7, MAPK8, AURKA,
and IGF1R. Furthermore, we analyzed the association of DUSP expression with TLR4 signaling
and identified VEGF, FGFR, and SCF-KIT pathway modules to be regulated by the activation of
TLR4 signaling. Finally, we identified several important kinases including LRRK2, MAPK8, and
cyclin-dependent kinases as potential DUSP-mediated hubs in TLR4 signaling. The findings from
this study have the potential to aid in the understanding of DUSP signaling in the context of innate
immunity. Further, this will promote the development of therapeutic modalities for disorders with
aberrant DUSP signaling.
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1. Introduction

Reversible phosphorylation and dephosphorylation events serve as regulatory switches that
control the structure, activity as well as the localization of the proteins in subcellular space thereby
influencing vital biological processes [1,2]. A coordinated interplay between protein kinases (PKs)
and protein phosphatases is crucial to regulate these intracellular signaling events as perturbation
events in the basal phosphorylation levels of proteins can lead to undesirable consequences including
the development of diseases such as cancers [3]. Over the years, more than 500 PKs have been
reported [4], a majority of which are druggable [5]. On the contrary, protein phosphatases although
being essential regulators of signaling, have drawn less attention. Among the protein phosphatases,
the dual-specificity phosphatase (DUSP) family of phosphatases are the most diverse group with a
wide-ranging preference for substrates. A unique feature that distinguishes DUSPs from other protein
phosphatases is their ability to dephosphorylate both serine/threonine and tyrosine residues within
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the same substrates [6]. Recent studies have proposed that there are about 40 members of the DUSP
family and nine subfamilies [7]. These DUSPs have been implicated as critical modulators of several
important signaling pathways that are dysregulated in various diseases.

DUSPs include the Mitogen-activated protein kinase phosphatases (MKPs) and their role as
regulators of MAPK signaling mediated cellular processes in both innate and adaptive immunity have
been widely discussed [8–10]. For instance, DUSP1 also known as MKP-1 has been found to be a primary
regulator of innate immunity [11] and was identified as an important regulator of T cell activation [12].
Additionally, it was also shown to regulate IL12-mediated Th1 immune response through enhanced
expression of IRF1 [13]. Upon LPS treatment, DUSP1-deficient mouse macrophages showed increased
expression and activation of p38MAPK leading to increased production of chemokines such as
CCL3, CCL4, and CXCL2 thereby increasing the susceptibility to lethal LPS shock [14]. In the same
study, DUSP1-deficient murine macrophages primed with LPS showed transient increase in JNK
activity, elevated levels of pro-inflammatory cytokines and increased p38MAPK activation. Further,
DUSP10-deficient mice induced with autoimmune encephalomyelitis showed reduced incidence and
severity and prevented LPS-induced vascular damage by regulation of superoxide production in
neutrophils [15] indicating its key role in innate and adaptive immune responses. Similarly, other
DUSPs such as DUSP2 and DUSP5 have been found to participate in the positive regulation of
inflammatory processes [16] and are required for normal T cell development and function [17].

In addition to their potential role in immune regulation, studies have discussed the association of
DUSPs namely DUSP1, DUSP4 and DUSP6 in oncogenesis especially in the epithelial-to-mesenchymal
transition of breast cancer cells and the maintenance of cancer stem cells [18]. Inhibition of DUSP1 and
DUSP6 induces apoptosis of highly aggressive breast cancer cells through the increased activation of
MAPK signaling [19]. Furthermore, DUSP1-deficient mice form rapidly growing head and neck tumors
causing increased tumor-associated inflammation [20]. In addition to members of MKP subfamily,
members of the Protein tyrosine phosphatase type IV subfamily (PTPIV, also known as PRLs) have also
been suggested to be potential anti-tumor immunotherapy targets due to their role in carcinogenesis
with antibody therapy against PRL proteins inhibiting metastasis in PRL-expressing tumors [21,22].
Additionally, PTP4A3 (PRL-3) has been reported to trigger tumor angiogenesis through the recruitment
of endothelial cells [23]. Owing to their regulatory roles in cancer and immunological disorders,
DUSPs have been identified as promising therapeutic targets of these diseases [24].

Although the role of certain members of DUSPs have been well characterized, the mechanism by
which other members, especially atypical DUSPs, modulate immune response is still largely unknown.
Furthermore, the interplay between members of the DUSP family and PKs and their reciprocal
actions is minimally understood. Systems biology and integrative biology offer several approaches
to identify molecular mechanisms operating behind biological processes in unprecedented detail.
Integrated approaches such as Proteogenomics can provide macro-resolution snapshots to facilitate
understanding of intricate molecular mechanisms in cancers [25,26] and infectious diseases [27,28].
Applying integrated approaches in the context of immunology can, therefore, offer unique insights
into mechanisms of innate and adaptive immunity. In the past few years, several high-throughput
datasets were published on naïve and activated immune and hematopoietic cells [29–38]. In this
study, an integrated meta-analysis of high-throughput omics datasets related to innate immunity
was carried out to delineate the expression dynamics of DUSPs in hematopoietic cells. In addition,
the signaling crosstalk between DUSPs with the members of the protein kinase families in immune
cells was deciphered. Finally, we analyzed the association of DUSP signaling pathways downstream
of TLR4 signaling. Collectively, this study provides potential DUSP-mediated signaling pathways and
hubs thus facilitating a better understanding of DUSP signaling in innate immunity.
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2. Results

2.1. DUSP Classification into Subfamilies and Evolutionary Conservation

We compiled a list of DUSPs from previously published studies and used it to for further analysis.
We also aligned protein sequences for known DUSPs, classified them into subfamilies according to
their clustering patterns and validated the classification using domain analysis. The classification
of DUSPs based on sequence similarity was performed by multiple sequence alignment analysis of
DUSP protein sequences (Figure 1a). For the analysis, the list of DUSPs and their subfamilies was
compiled from Chen et al. [7], and the results were found to be concordant with this classification
system. The classification includes members belonging to CDC14, DSP1, DSP14, DSP15, DSP3,
DSP6, DSP8, PRL, and Slingshot subfamilies. Protein domain analysis of all DUSP members also
validated the sub-classification of DUSPs (Figure 1b). Most DUSP subfamily members exhibited
similar architectures with a common DSPc domain. However, members of a few subfamilies contained
additional domains besides DSPc namely CDC14 subfamily (N-terminal DSP domain), DSP1, DSP6,
and DSP8 (Rhodanese-like domain) subfamilies and members of Slingshot subfamily (DEK domain at
the carboxy terminus). Next, we aimed to determine the evolutionary conservation of dual specificity
phosphatases across eukaryotic species by calculating the number of orthologs for all human DUSPs
obtained from Homologene database [39]. Our analysis revealed the distribution of DUSPs ranging
from a minimum, of six orthologs for DUSP2 to 20 for DUSP12 (Figure 1c). The distribution of the
entire human proteome was similar with a minimum of one and a maximum of 21 ortholog counts.
Most DUSPs were found to be conserved in mammals, and particularly among primates suggesting
evolutionary conservation across eukaryotic species.

2.2. Expression of Dual Specificity Phosphatases and Protein Kinases in Hematopoietic Cells, Primary and
Secondary Lymphoid Organs

Earlier reports suggest that the expression of DUSPs are regulated during development in a cell
type-specific manner or upon cell activation in contrast to their ubiquitous substrate expression [8].
In addition, PKs play important roles in immunity [40,41] and are widely known to be modulated by
DUSPs. In order to determine the extent of expression of DUSPs and PKs across human hematopoietic
cells, we analyzed the proteomic data from Rieckemann et al. [29] as it is currently the largest
high-resolution dataset containing expression data pertaining to 28 different hematopoietic cell types
analyzed on a single platform (Figure S1, Table S1). On an average, 15 DUSPs and 240 PKs were
found to be expressed across hematopoietic cells (Figure 2a) at the protein level. Among the various
cell lineages, T8 TEMRA (terminally differentiated effector memory T cells which express CD45RA,
as opposed to TEM cells which are CDC45RA-negative) cells expressed the highest number of DUSPs
(19), while we did not identify expression of DUSPs from the erythrocyte data. On the contrary, 264 PKs
were found to be expressed in NK CD56bright cells, whereas only 15 were found to be expressed in
erythrocytes. NK CD56bright cell types have been previously described to be regulatory in nature
influencing innate immunity through cytokine production as opposed to NK CD56dim cells, which
have cytotoxic activity [42].
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Figure 1. (a) Dendrogram describing the sequence similarity of members of the dual specificity 
phosphatase (DUSP) family. Protein sequences for various members of the dual specificity family 
obtained from RefSeq were aligned using Clustal Omega. The DUSPs were classified into subfamilies 
and their chromosomal location mapped using data and classification system from Chen et al. [7]. The 

Figure 1. (a) Dendrogram describing the sequence similarity of members of the dual specificity
phosphatase (DUSP) family. Protein sequences for various members of the dual specificity family
obtained from RefSeq were aligned using Clustal Omega. The DUSPs were classified into subfamilies
and their chromosomal location mapped using data and classification system from Chen et al. [7].
The tree shows largely distinct clustering of distinct DUSP subfamilies. (b) Domain architecture of DUSP
subfamilies. Members of the DUSP family were subjected to domain analysis using SMART domain
prediction. (c) Conservation of dual specificity phosphatases across species. Ortholog counts were
obtained for all human genes from Homologene and the density of ortholog counts for DUSP family
members was plotted against the density of ortholog counts for all human genes in the background.
The graph largely indicates conservation of DUSPs across various species.
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Figure 2. (a) Protein kinases and dual specificity phosphatase expression in hematopoietic cells. 
Hematopoietic cell expression data for protein kinase and dual specificity phosphatases (DUSPs) 
were obtained from Rieckmann et al., Nat Immunol (2017) [29]. All hematopoietic cells except 
erythrocytes and thrombocytes expressed similar number of kinases and DUSPs. (b) Correlation of 
transcriptomic and proteomic data of cells. Transcriptomic and proteomic data for T4 naïve, T4 TCM, 
B memory and classical monocytes from Rieckmann et al., Nat Immunol (2017) [29] showed poor 
correlation. (c) Correlation of protein kinase and DUSP expression patterns in hematopoietic cells. 
The correlation was carried out using Spearman’s rank correlation to identify kinase-DUSP pairs that 
may have reciprocal activities. The kinase-DUSP pairs with high correlation coefficients are shown 
on the right-hand side. 

Figure 2. (a) Protein kinases and dual specificity phosphatase expression in hematopoietic cells.
Hematopoietic cell expression data for protein kinase and dual specificity phosphatases (DUSPs) were
obtained from Rieckmann et al., Nat Immunol (2017) [29]. All hematopoietic cells except erythrocytes
and thrombocytes expressed similar number of kinases and DUSPs. (b) Correlation of transcriptomic
and proteomic data of cells. Transcriptomic and proteomic data for T4 naïve, T4 TCM, B memory
and classical monocytes from Rieckmann et al., Nat Immunol (2017) [29] showed poor correlation.
(c) Correlation of protein kinase and DUSP expression patterns in hematopoietic cells. The correlation
was carried out using Spearman’s rank correlation to identify kinase-DUSP pairs that may have
reciprocal activities. The kinase-DUSP pairs with high correlation coefficients are shown on the
right-hand side.
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Among the DUSP family members, 11 DUSPs were found to be expressed in a large majority of
the hematopoietic cells analyzed. These include DUSP12, DUSP23, DUSP3, SSH3 and PTP4A2, which
were found to be expressed in 27 of 28 hematopoietic cells and DUSP11, DUSP22, PTPMT1, RNGTT,
SSH1 and SSH2 found to be expressed in 26 of the 28 cells. 18 members of the DUSP family were not
identified in any of the cell types. Furthermore, we did not observe restricted expression of DUSP
members to any one cell type. Among the PKs, only 287 were found to be identified in at least one
hematopoietic cell type with the rest not being identified in any cell type. While 13 members of the
PKs including MAPK1, MAP2K2, ILK, and ROCK2 were found to have ubiquitous expression, four
kinases including PRKCD, KALRN, MYLK and PTK2 were found to have restricted expression in
thrombocytes. At least five PKs including MKNK2, STK33, CSNK1E, TAOK2 and BLK were found to
be restricted to 2 of the 28 cell types. Of these, MKNK2, STK33 and BLK were expressed commonly in
B memory cells. STK33 was expressed in B naïve and B memory cells and seemed to be linked with B
cell types. We compared proteomics and transcriptomics datasets to see if changes at the transcript
level could be equated with changes in protein expression (Figure 2b, Table S2).

Overall, we observed the expression of kinases and DUSPs to be relatively lower compared to
housekeeping proteins such as tubulin (TUBB). The notable exceptions were PRKCB with abundant
expression in B memory cells and plasmacytoid dendritic cells and PRKDC with nearly ubiquitous high
expression across all hematopoietic cell types. Cell type enriched expression patterns were observed
for several kinases including MAPKAPK3 (high in eosinophils), BTK (basophils), ILK (thrombocytes)
and HCK with highly abundant expression in classical, non-classical and intermediate monocytes.
While ILK in thrombocytes has been implicated in the regulation of integrin signaling [43], HCK has
been described as a key regulator of gene expression in activated monocytes [44]. The importance of
these expression patterns need to be further investigated and may be important in the regulation of
cell-specific processes.

We analyzed tissue expression levels of DUSPs and PKs in immune-related tissues. We chose to
study expression data pertaining to lymphoid organs that are the major components of the immune
system involved in producing B- and T-cells (primary) and are responsible for the coordinating the
cell-mediated immune response (secondary) [45]. The primary lymphoid organs consist of the thymus
and the bone marrow while the secondary lymphoid organs consist of lymph nodes, spleen, tonsils, and
the mucosa-associated lymphoid tissues such as Peyer’s patches [46]. More recently, the appendix has
been deemed to be a lymphoid organ capable of carrying out immunological functions [47,48]. For the
analysis, we compiled gene expression data (Table S3) from multiple projects including FANTOM5 [49],
Genotype-Tissue Expression (GTEx) Project [50], The Human Protein Atlas [51,52], Illumina Body
Map [53], NIH Roadmap Epigenomics Mapping Consortium [54] and the ENCODE project [55].
The PK and DUSP expression in these various tissue expression datasets largely correlated (Figure 3a,b).
A majority of the 505 PKs were found to be expressed in at least one lymphoid organ and expression
of only a mere 7 kinases were not observed. A significant observation was that all the members of
the DUSP family were present in at least one lymphoid organ. 460 of the 505 PKs were found to be
expressed in all 7 lymphoid organs while 36 of the 40 DUSPs were expressed in as many lymphoid
organs. Two kinases-EPHA8 and PAK5 were found to be restricted to only lymphoid organ -spleen and
thymus respectively. DUSP21 was found to be restricted in the bone marrow while DUPD1 was found
to be restricted to only the thymus and the tonsil. Similarity matrices indicated a similar distribution of
kinases and DUSP expression across primary and secondary lymphoid organs suggesting potential
reciprocal pairs (Figure 3a,b). In conclusion, members of the DUSP family were found to be expressed
in every lymphoid tissue, thereby suggesting DUSP mediated control of protein kinase activity.
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Figure 3. (a) Similarity matrix for protein kinase expression in primary and secondary lymphoid
organs. (b) Similarity matrix for DUSP expression in primary and secondary lymphoid organs.
The expression data Bone marrow, spleen, thymus, lymph node, tonsil, appendix and Peyer’s patches
were obtained from various studies including FANTOM5, HPA, GTEx, ENCODE, Illumina Bodymap
and NIH Roadmap project consortia. The PK and DUSP expression in these various tissue expression
datasets largely correlated (c) DUSP-Protein kinase interaction network. Protein-protein interaction
data between DUSP and protein kinases obtained from Compartmentalized Protein-Protein Interaction
(comPPI) Database were analyzed in Cytoscape using Network Analyzer to obtain network properties
including Betweenness Centrality. Protein kinases with high Betweenness Centrality indicate primary
regulatory proteins associated with DUSPs.
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2.3. Correlation of Dual Specificity Phosphatase Activity with Protein Kinase Activity in Immune Cells

Since it is widely known that DUSPs regulate protein kinases, identifying DUSPs and protein
kinases pairs with reciprocal activities could identify regulatory mechanisms that can be potentially
exploited to develop strategies for therapeutic interventions in conditions such as systemic inflammatory
and autoimmune disorders. To identify potentially reciprocal DUSP-kinase pairs and to determine its
probable role in immune cells, we correlated the expression profiles of DUSPs and PKs expressed in
hematopoietic cells from Rieckemann et al. [29] (Figure 2c, Table 1, Table S4).

Table 1. A table summarizing representative known and potentially novel human and murine
DUSP-kinase pairs with reciprocal activities.

DUSP-Protein Kinase Pair
(Spearman’s Rank Correlation

Coefficient %)
Relationship Known/Novel

SSH1-AURKA (0.94) Aurora Kinase A (AURKA) overexpression increased slingshot
kinase 1 (SSH1) expression in breast cancer cells [56] Known

DUSP1-MAPK7 (0.79) DUSP1 gene silencing increased MAPK7 expression in
osteosarcoma cells [57] Known

DUSP1-MAPK8 (0.82) DUSP1 gene silencing increased MAPK8 expression in
osteosarcoma cells [57] Known

DUSP10-MAPK8 (0.81) DUSP10 (MKP-5) dephosphorylates MAPK8 (JNK) [58] Known

Dusp16-Mapk8 (0.83) DUSP-16 (MKP-7) regulates MAPK8 (JNK) in LPS-activated
macrophages [59] Known

SSH1-CDK17(0.94) Novel
DUSP12-CLK3(0.97) Novel
SSH1-LMTK2 (0.97) Novel

DUSP12-AURKA (0.96) Novel
Ptpmt1-Mast3 (0.97) Novel

Dusp1-Egfr (0.73) Novel
Dusp16-Lrrk2 (0.86) Novel
Dusp10-Igf1r (0.99) Novel

We identified 231 DUSP-kinase pairs with similar coexpression patterns in immune cells with
a Spearman’s rank correlation coefficient of 0.9 or more indicating high confident reciprocal pairs.
Similarly, 701 DUSP-kinase pairs with similar coexpression patterns in immune cells had a Spearman’s
rank correlation coefficient of 0.8 or more. Some of the pairs identified include SSH1-AURKA (% = 0.94),
DUSP1- MAPK7 (% = 0.79), DUSP1-MAPK8 (%= 0.82), DUSP10-MAPK8 (% = 0.81). Among these, the
role of DUSP1 and DUSP10 as negative regulators of MAPK8 is well known. The significance of
SSH1-AURKA pair in immune cells is currently not well described at this time.

We also used an interactome-based approach to identify co-expressed and co-interacting proteins
to identify potential DUSP-kinase regulatory mechanisms. Interactome analysis to identify reciprocal
DUSP-protein kinase pairs from baseline protein-protein interaction (PPI) data from the comPPI
database resulted in the generation of an interaction network containing 1715 DUSP-specific interactions
with 1276 nodes (Figure S2). Since the network was too complex to comprehend the interplay between
DUSPs and PKs, we separated interactions between DUSPs and kinases and generated an additional
kinase and DUSP-specific network. This network contained 195 protein-protein interactions between
35 DUSP members and 82 PKs (Figure 3c, Table S5). Several potential hub proteins that communicate
with the dual specificity phosphatase family members were deduced from the interaction network.
Among the PKs, MAPK1 and MAPK3 had 12 and 10 interactions (directed edges) respectively with
DUSPs. Other PKs with a high number of interactions included MAPK14 (9), IGF1R (9), AATK (9)
and ERBB4 (8). Among the DUSPs, DUSP18 and DUSP19 had the most number of directed edges
-14 each. Other DUSP family members with several directed edges included STYX (13), DUSP 1 (11),
DUSP14 (10), DUSP9 (9) and DUSP 10 (9). It is interesting to note that DUSP19, and STYX are some of
the poorly characterized members. The PKs with the highest betweenness centrality included MAPK1,
IGF1R, AURKB, and AATK. Combining the directed edge and the betweenness centrality data revealed
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several kinases belonging to the MAPK family and receptor tyrosine kinases such as MAPK1, MAPK3,
IGF1R, AATK, MAPK14, ERBB4, LMTK2, MAPK9 and MAPK8 to be strongly associated with DUSPs.

2.4. Expression Landscape and Signaling Dynamics of DUSPs and Kinases in Activated Immune Cells

The data provided by Rieckemann et al. also includes steady-state and activated protein expression
profiles of 17 cell types which were analyzed to determine the effect of various activating ligands on
the expression of DUSPs and PKs (Table S6). Our analysis resulted in the identification of 152 events
of differential expression of 18 DUSPs across 17 cells types (Figure S3a) Of these, 57 and 95 were
found to be overexpressed and downregulated respectively across the activated cell types. Similarly,
we identified 2311 events of differential expression of 269 PKs across 17 cells types (Figure S3b).
Of these, 1058 and 1253 were found to be overexpressed and downregulated respectively across the
activated cell types. Several kinases and DUSPs were found to be differentially expressed in multiple
activated cell types. The most overexpressed DUSPs included DUSP12 (9 cell types), DUSP23 (7 cell
types), DUSP1, DUSP10 (6 cell types each) and STYX (4 cell types), while the most downregulated
DUSPs included SSH3 (13 cell types), PTPMT1 (12 cell types), DUSP3 (10 cell types), SSH2 (9 cell types),
DUSP1 (8 cell types) and SSH1 (7 cell types). Similarly, among the kinases the most overexpressed
included CDK1 (14 cell types), PLK1 (14 cell types), TGFRB1 (13 cell types), RIOK3 (13 cell types) and
RIOK2 (13 cell types) while the most downregulated included ATM (15 cell types), MAST3 (14 cell
types), PRKACB (13 cell types), MAP3K5, LMTK2 and SYK (12 cell types each).

There have been several studies focused on the genome-wide effects of TLR ligands on
hematopoietic cells such as monocytes [60]. In the current study, we aimed to determine the
specific roles of DUSPs and PKs in TLR4 signaling. An integrated analysis of RNA and protein
expression datasets [29,33,61] pertaining to dendritic cells (DCs) and monocytes (MOs) activated by
LPS was performed (Table S17). The data were categorized into murine DCs (mDCs), human DCs
(hDCs) and human MOs (hMOs) and a list of molecules differentially expressed in response to LPS
was generated (Table S8). 57 proteins including 4 DUSPs and 53 PKs were found to be overexpressed
in mDCs while 80 were downregulated (2 DUSPs, 78 PKs) in response to LPS. In hDCs, 50 proteins
(4 DUSPs, 46 PKs) and 154 (10 DUSPs, 144 PKs) proteins were found to were found to be overexpressed
and downregulated respectively. In the case of hMOs, 35 (1 DUSP, 34 PKs) were overexpressed and 80
(6 DUSPs, 74 PKs) were downregulated.

DUSPs overexpressed in dendritic cells included Dusp1/DUSP1 (mDCs and hDCs), Dusp14,
Dusp16, Ptp4a2 (all in mDCs), DUSP5, DUSP7, and DUSP 10 (all in hDCs). Downregulated DUSPs
included Dusp3, Dusp19 (mDCs), DUSP4, DUSP11, DUSP12, DUSP23, PTP4A2, PTPMT1, SSH1,
SSH2, SSH3, and STYX (hDCs) (Figure 4a and Figure S5a–c). In hMOs stimulated with LPS, DUSP
10 was overexpressed while DUSP1, DUSP11, PTP4A2, PTPMT1, RNGTT, and SSH3 were found
to be downregulated. DUSP1 (Dusp1) seems to be important in both hDCs and mDCs signaling
as it was found to be upregulated in both species in response to LPS and is in concordance with
previously published studies on dendritic cells stimulated with LPS [14]. However, it was found
to be downregulated in hMOs. The overexpression of DUSP1 in dendritic cells identified from our
analysis is in concordance with previously published studies on dendritic cells stimulated with LPS.
DUSP10 was found to be upregulated in both hDCs and hMOs while in mDCs, it was not found
to be differentially expressed. Among differentially expressed genes in dendritic cells, Dusp14 and
Dusp16 were exclusively overexpressed in the dendritic cells from mice while DUSP5, DUSP7, and
DUSP10 seemed to be exclusive to humans. Taken together, our analysis suggests probable existence
of species-specific differential expression of DUSPs in TLR4 signaling. In a recent paper, human and
murine macrophages were found to have varying mechanisms of immunometabolism [62]. Functional
analysis of differentially expressed PKs and DUSPs in murine dendritic cells stimulated with LPS
showed enrichment of several processes including MAPK cascade, response to reactive oxygen species,
cellular senescence, and cell migration pathways among others (Figure 4b).
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Figure 4. DUSP and kinase dynamics in response to Toll-like receptor 4 ligand-LPS. (a) Venn diagram
showing differentially expressed protein/transcripts in human monocytes and dendritic cells stimulated
with LPS. Members of the DUSP family are indicated within insets. (b) Enriched biological processes
in murine dendritic cells stimulated with LPS. Differentially expressed protein kinases and DUSPs
in response to LPS were analyzed using ClueGO in Cytoscape. Different colors indicate clusters of
similar processes.
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Figure 5. Pathway analysis of DUSPs and kinases differentially expressed in response to LPS.
Differentially expressed genes were tested for hypergeometric enrichment of Reactome Pathways.
Genesets with less than 10 genes were excluded from the analysis and p-values were adjusted by
Benjamini–Hochberg (FDR) correction.

We next performed pathway enrichment analysis using pathway data from Reactome database for
DUSP and PKs showing differential expression upon LPS stimulation (Figure 5, Table S9). We found
several pathways including TLR signaling, MyD88 cascade, and MAPK signaling pathways to be
enriched across LPS-activated MOs and DCs. Oxidative stress-induced senescence pathways were
downregulated in mDCs, hDCs, and hMOs. VEGF signaling also seemed to be affected through
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DUSP and PKs after stimulation with LPS. While induction of TLR signaling by LPS is widely known,
there are a few reports on the induction of VEGF signaling by LPS stimulation [63]. FGFR signaling
and SCF-KIT signaling pathways were up in hDCs, while C-lectin receptor signaling pathway was
downregulated in hMOs upon LPS stimulation. Apoptotic pathways was found to be downregulated
in hMOs while being upregulated in hDCs suggesting opposing cell death phenotypes in hMOs and
hDCs in response to LPS.

To identify DUSP-kinase pairs with reciprocal activities, correlation analysis between DUSP
and kinase expression in mDCs and mMOs treated with LPS was carried out (Figure S5d, Table S10.
Our analysis resulted in the identification of several important pairs including Ptpmt1-Mast3 (% = 0.97),
Dusp1-Egfr (% = 0.73), Dusp1-Mapk8 (% = 0.66), Dusp16-Mapk8 (% = 0.83), Dusp16-Lrrk2 % = (0.86),
Dusp10-Igf1r (ρ = 0.99).

In order to identify the interacting partners of DUSPs in TLR4 signaling, we carried out interactome
analysis of members of the DUSP and protein kinase families that were found to be differentially
expressed in dendritic cells and monocytes (Figures S6–S8). Analysis of network properties identified
several proteins that seemed to be regulated by DUSP signaling. In the networks of differentially
expressed proteins identified in activated mDCs, proteins including Akt1, Lrrk2, Pim1, Dusp1, Dusp16
(overexpressed), Mapk1/3, Pik3cg, Cdk1, Dusp3 and Dusp19 (downregulated) had a high number of
edges and high betweenness centrality suggesting their importance in innate immunity. In activated
hDCs, proteins including MAPK1, CDK2, PIK3CA, MAPK13, DUSP1, DUSP5, DUSP7 and DUSP10
(upregulated), PRKACA, LRRK2, CHUK and DUSP13 (downregulated) had a high betweenness
centrality and were identified to be relevant in LPS-induced signaling. Similarly, in activated hMOs,
PRKCZ, CDK6, DUSP10, TGFBR1 (upregulated), LRRK2, ATM, ATR, MAPK1, DUSP1, MAP3K1
(downregulated) among others had a high betweenness centrality.

3. Discussion

Dual-specificity phosphatases (DUSPs) are a family of phosphatases that can act on both
serine/threonine and tyrosine residues of several protein substrates leading to wide-ranging effects
on cellular signaling and biological processes. With the exact number of DUSP members still being
controversial [7,64–68], we chose to consider the latest classification described by Chen et al. [7],
consisting of 40 DUSPs with 9 subfamilies containing more than one member. We validated the
subfamily-based classification of DUSPs using two approaches namely-sequence alignment and
SMART-based domain analysis. Evolutionary conservation analysis of DUSP family members revealed
high sequence conservation of all DUSP members, especially in higher mammals.

So as to determine the extent of expression of dual specificity phosphatases and protein kinases
across the human hematopoietic cells and lymphoid organs, publicly available datasets were mined.
Since hematopoietic cells are derived from lymphoid tissues, we chose to analyze expression profiles of
these. To date, Rieckemann et al. have provided the largest expression dataset pertaining to 28 different
hematopoietic cell types consisting of high throughput omics data acquired under a single platform
containing. Our analysis of this dataset revealed new insights into the expression dynamics of several
understudied DUSPs such as slingshot family of phosphatases (SSH1, SSH2 and SSH3) and STYX
in various hematopoietic cell types. Additionally, our analysis also resulted in the evaluation of the
expression patterns of several understudied protein kinases described by Huang et al. [69] including
STK17A, SCYL3, MAST3, CSNK1G2, and the RIO family of kinases (RIOK1, RIOK2 and RIOK3).
Furthermore, among the hematopoietic cells, erythrocytes and thrombocytes (platelets) expressed
the least number of DUSPs and PKs The restricted expression patterns of these proteins could be
potentially exploited for therapeutic modalities in erythrocyte and platelet disorders. In fact, four
different PKs (PRKCD, KALRN, MYLK, and PTK2) showed restricted expression in thrombocytes.
PRKCD has been previously reported to modulate collagen-induced platelet aggregation [70] while
MYLK and PTK2 have been reported to be important in megakaryopoiesis [71,72]. Further, the different
patterns of DUSP and PK expression in erythrocytes and thrombocytes compared to the rest of the
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hematopoietic cells may be attributed to their structures, diverse biological functions performed by
these cells, their numbers in the human body and the differing lineages that form erythrocytes and
thrombocytes during hematopoiesis.

Among the 701 DUSP-kinase pairs with potential reciprocal activities identified from the
unstimulated hematopoietic cell expression data, several pairs with previously known reciprocal
actions were also identified thereby proving our analysis methods. Among these, SSH1-AURKA
pair was identified with a high Spearman’s rank correlation coefficient (% = 0.94). Aurora Kinase A
(AURKA) overexpression has been previously reported to increase the expression of slingshot kinase 1
(SSH1) resulting in increased cofilin activation and migration of breast cancer cells [56]. Other notable
pairs that we identified from the correlation and that were previously reported in the literature included
DUSP1- MAPK7 (% = 0.79) and DUSP1-MAPK8 (% = 0.82). DUSP1 gene silencing has been shown to
increase the expression of MAPK7 and MAPK8 transcripts in osteosarcoma cells suggesting reciprocal
actions between them [57]. DUSP10 (MKP-5) has been well known to dephosphorylate MAPK8
(JNK) [58] and has also been implicated in immune function. Knocking down DUSP10 expression
increased JNK activity and inflammation in murine mesangial cells while its overexpression led to
decreased JNK activation [73]. A study by Zhang et al. further found that Dusp10-deficient murine
cells exhibited increased JNK (MAPK8) activity, elevated levels of proinflammatory cytokines and
increased T cell activation [74]. In our correlation analysis, the DUSP10-MAPK8 pair was identified
with a Spearman’s rank correlation coefficient of 0.81.

We used a subset of omics datasets for investigating the expression of DUSPs and their interplay
with PKs upon LPS stimulation in activated dendritic cells and monocytes. Though a previous study
on the meta-analysis of TLR4 signaling datasets exists, its focus was on activated macrophages [75].
Biological process-based enrichment upon LPS stimulation showed the enrichment of several processes
including MAPK cascade, response to reactive oxygen species, cellular senescence and cell migration,
autophagy pathways among others. While these processes are widely known in the context of
macrophages, the effects of LPS stimulation seem to be similar in dendritic cells as well. We also
correlated DUSP and PK expression in these cells and carried out interactome analysis to identify
key molecules that are potential regulators of LPS-induced signaling. Correlation analysis indicated
the presence of DUSP-PK pairs with reciprocal activities in response to activation. Some of these
pairs including DUSP1-MAPK8, DUSP1-MAPK8 have already been described in previous literature,
thus confirming our findings. DUSP-16 (MKP-7) has previously been identified to regulate MAPK8
(JNK) in LPS-activated macrophages [59] and in activated endothelial cells [76]. Dusp16 (MKP-7) was
also reported to have a critical role in the activation and functioning of T cells. Dusp16-deficient T
cells had an exaggerated response to TCR activation and had enhanced proliferation properties [77].
DUSP16-deficient macrophages have also been reported to overproduce IL-12 in the context of TLR
stimulation [78]. DUSP1 has been reported to play a key role in the feedback control and regulate
MAPK8 during glucocorticoid-mediated repression of inflammatory gene expression [79]. DUSP1
is already known to regulate the expression of LPS-induced genes [14]. We also found DUSP 1 and
DUSP16 to be important regulators of several MAP kinases from the interactome analysis.

Several novel DUSP-PK pairs were identified, and these require further characterization to
confirm their role in immunity. Particularly interesting among these include pairs involving slingshot
phosphatases which constitute a group of understudied phosphatases. SSH1-CDK13, SSH1-CDK19,
SSH2-EPHB2 were identified with high significance. Slingshot phosphatases have been previously
implicated in cancer progression [80,81] and have been known to mediate caspase-modulated actin
polymerization towards bacterial clearance upon Legionella infection [82]. In our analysis, Slingshot
phosphatase members SSH1, SSH2 were found to be downregulated exclusively in human DCs, while
SSH3 was downregulated in both human DCs and MOs. Slingshot phosphatase members SSH1 and
SSH2 were found to be downregulated exclusively in human DCs, while SSH3 was downregulated in
both human DCs and MOs. DUSP10 and IGF1R expression were also found to be highly correlated.
Insulin-like growth factors have been known to inhibit anti-tumoral responses of dendritic cells through
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the regulation of MAP kinases and have therefore been suggested to be targets for immunotherapy [83].
IGF1 has also been reported to influence activation of macrophages in response to high-fat diet or
helminthic infection [84]. Additionally, we identified LRRK2 (leucine-rich repeat kinase 2) from the
interactome analysis in activated DCs and MOs, to be potentially important in the context of immune
signaling. LRRK2 was found to interact with DUSP1 and DUSP16. LRRK2 has been mainly associated
with familial cases of Parkinson’s disease [85] and has been known to play an important in innate
immunity in the peripheral and central nervous system [86], especially in microglial inflammatory
processes [87]. This present finding suggests the possibility of LRRK2 being additionally important in
DUSP-mediated immune signaling.

4. Materials and Methods

4.1. Datasets

Studies pertaining to immune cells acquired using high-throughput techniques were searched
using PubMed. The data matrices pertaining to each dataset were downloaded from the site of the
publisher of these articles. Gene expression datasets were downloaded from Gene Expression Omnibus
(GEO, https://www.ncbi.nlm.nih.gov/geo/) wherever applicable. The details of all the studies used in
this study are provided in Table S11.

4.2. DUSP and Kinase Lists for Analysis

The list of DUSPs used for the analysis was sourced from Chen et al. [7]. The list of human and
mouse kinases was sourced from UniProt (https://www.uniprot.org/docs/pkinfam) which used data
from [4,88,89]. The master lists of dual specificity phosphatases and PKs used for data analysis in the
current study are provided as Tables S12 and S13.

4.3. Classification of DUSP Family Members, Domain Analysis and Species Conservation Analysis of
DUSP Sequences

The similarity tree between DUSPs was drawn using iTOL with alignment performed with Clustal
Omega. Briefly, RefSeq accessions of the longest protein isoforms for all dual specificity phosphatases
were retrieved from NCBI gene (https://www.ncbi.nlm.nih.gov/gene). The protein sequences were
obtained with Batch Entrez (https://www.ncbi.nlm.nih.gov/sites/batchentrez) and aligned using Clustal
Omega (https://www.ebi.ac.uk/Tools/msa/clustalo/) using default settings. The output alignment in
PHYLIP (.ph) format and was visualized with Interactive Tree of Life (https://itol.embl.de/) with custom
colors and tracks.

Domain analysis was carried out for the longest isoforms of all proteins belonging to DUSP
subfamilies with multiple members using the SMART domain prediction tool (http://smart.embl-
heidelberg.de/) [90], using the option “PFAM domains”. Orthology data for all human genes were
obtained from Homologene (Release 68, downloaded on October 4, 2018 from https://www.ncbi.nlm.
nih.gov/homologene) for the analysis of sequence conservation across species. The counts for all genes
in the Homologene database were obtained and the Taxonomy ID for each gene was mapped to the
species type. The densities of ortholog counts for DUSP family members was plotted against the density
of ortholog counts for all human genes in the background using R (v3.5.1) (https://cran.r-project.org/).

4.4. Landscape of DUSPs and Kinases in Immune Cells

Proteomic and transcriptomic data matrices were obtained from supplementary files of respective
articles and accessions were converted into Entrez gene accession formats using bioDBnet:db2db
(https://biodbnet-abcc.ncifcrf.gov/db/db2db.php) [91] and g:Profiler (https://biit.cs.ut.ee/gprofiler/
gconvert.cgi) [92]. Gene expression data was also downloaded from Gene Expression Omnibus (GEO)
wherever supplementary data was not available. Z-score-based normalization of data matrices from
all studies was carried out using base R (v3.5.1). DUSP and kinase expression data were subsequently
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https://www.ncbi.nlm.nih.gov/homologene
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obtained from the normalized datasets. Cell type data and cell sorting information wherever available
were retrieved for each of the expression datasets and appended with the expression data. Heatmaps
were drawn in Morpheus (https://software.broadinstitute.org/morpheus/) with hierarchical clustering
based on Euclidean distance metric, complete linkage method and clustering by rows and columns.
We carried out correlation and interactome analysis to look at the interplay between DUSPs and PKs in
naïve and activated immune cells. Correlation analysis between z-scores of kinase and DUSP profiles
of immune cell proteomes was performed using “Spearman” method through R (v3.5.1). Heatmaps
were drawn using Morpheus (https://software.broadinstitute.org/morpheus/).

4.5. Landscape of DUSPs and Kinases in Primary and Secondary Lymphoid Organs

We compiled tissue-based expression data from various datasets present in the Expression Atlas
(https://www.ebi.ac.uk/gxa/home). Briefly, the pre-processed datasets from The FANTOM5 project [49],
Genotype-Tissue Expression (GTEx) Project [50], The Human Protein Atlas [51,52], Illumina Body
Map [53], NIH Roadmap Epigenomics Mapping Consortium [54] and the ENCODE project [55]
were downloaded (Download date January 11,2019). The datasets were subjected to z-score-based
normalization using R (v3.5.1). Data from primary and secondary lymphoid tissues were selected
and DUSP and kinase expression data were compiled using in-house scripts. The data was plotted as
heatmaps with Morpheus using the same parameters as in the previous section.

4.6. Baseline DUSP Interactome

We analyzed publicly available Protein-protein interaction (PPI) data to identify DUSP-kinase
interactions. We chose the comPPI database (Compartmentalized Protein-Protein Interaction Database,
v2.1.1, http://comppi.linkgroup.hu/home) to identify biologically significant high-confident interactions
between proteins with similar subcellular localization patterns. ComPPI is an integrated database of
protein subcellular localization and protein-protein interactions from multiple databases including
BioGRID, CCSB, DIP, HPRD, IntAct and MatrixDB. [93]. The highly confident interactomes of each
member of the dual specificity phosphatase family for Homo sapiens were fetched from comPPI,
filtering for localization score and interaction score thresholds of 0.7 each. The accessions of interacting
proteins were obtained through bioDBnet: db2db (https://biodbnet-abcc.ncifcrf.gov/db/db2db.php)
and g: Profiler (https://biit.cs.ut.ee/gprofiler/gconvert.cgi) and the set of interactions were compiled
and visualized in Cytoscape (version 3.7.0) to obtain an integrated DUSP interactome. The interactome
was clustered into DUSP neighborhood networks using the AutoAnnotate (v1.2) package. The network
statistics of the interactome were analyzed using the Network Analyzer tool in Cytoscape [94].
The network analysis identified several network parameters. For the sake of clear understanding,
we define a few basic concepts of graph theory [95]. Typically, a network consists of nodes which
are in this case genes/proteins and edges which describe the relationship between them. A directed
graph is a triple ordered graph G = (V, E, f) where V represents vertices called node, E represents
edges representing connections between nodes and f is a function that maps each element in E to an
ordered pair of vertices in V. The ordered pair of vertices are known as directed edges and represented
by E = (i, j). Network properties provide valuable insight into the organizational structure of a
biological network and network centralities show how nodes can be ranked/prioritized according
to their properties. One of the network centralities is betweenness centrality, which is a measure of
how nodes that are intermediate between neighbors rank higher. This essentially means that without
these nodes, there would be no other way that the two neighbors could communicate with each other.
In the current study, the betweenness centralities measure were used to identify protein hubs central to
the DUSP network, which could influence the flow of information triggered by DUSPs. Individual
interactomes of each DUSP member were also analyzed to identify central proteins associated with
DUSPs using the betweenness centrality measure.

https://software.broadinstitute.org/morpheus/
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4.7. Landscape of DUSPs and Kinases in Activated Immune Cells

Data matrices from proteomics and transcriptomics datasets containing gene/protein expression
data were fetched from the supplementary tables or GEO for the following studies [29,32,33,61].
DUSP and kinase expression data were obtained from the normalized datasets. Fold-change ratios
were calculated by dividing the ratio of intensity/RPKMs of activated/stimulated cells by the ratio
of respective intensity/RPKM values of steady-state/unstimulated cells. The fold-change ratios were
converted into log2(fold-change) by log transformation. Genes/proteins with log2(fold-change) of
1 (fold-ratio of 2) were considered to upregulated while those with −1 (fold-ratio of −1) were considered
to be downregulated. Genes/proteins with ambiguous trends across studies were ignored (both up and
down) and only those with overall trends of either up and down were considered for further analysis
and genes. We carried out correlation and interactome analysis to investigate the interplay between
DUSPs and PKs in activated immune cells. Correlation analysis between z-scores of kinase and DUSP
expression profiles of activated immune cells was performed as described above.

4.8. Functional, Pathway and Network Analysis

The differentially expressed molecules in response to LPS were analyzed with Gene Ontology-based
functional analysis through CLUEGO (ClueGO v2.5.2 + CluePedia v 1.5.2) [96] in Cytoscape (v 3.7.0)
to identify processes affected by LPS. The parameters used included ‘ClueGO: Functions’ analysis
mode, murine ‘GO: Biological Process’ (dated 18.01.2019), global network specificity, pV ≤ 0.05000
with GO Term grouping. Hypergeometric enrichment-based pathway analysis was performed using
Reactome Pathways [97] in R/Bioconductor 3.5.1/3.7 [98] with clusterProfiler 3.8.1 [99] and reactome.db
1.64.0. Genesets with less than 10 genes were excluded from the analysis and p values were adjusted by
Benjamini–Hochberg correction. Pathways reaching adjusted p-values ≤ 0.0075 were curated manually
and plotted in R with ggplot package (v2 3.1.0) (https://cran.r-project.org/web/packages/ggplot2).
Network analysis of activated DCs and MOs was performed using STRING in Cytoscape. The network
properties were calculated using Network Analyzer.

5. Conclusions

Though the role of dual specificity phosphatases in innate and adaptive immunity is known,
their interplay with kinases was not precisely understood. In the current study, we expanded the
knowledge on the role of dual specificity phosphatase signaling in activated and steady-state cells
through the analysis of high-resolution expression datasets. We confirmed the importance of several
known DUSPs such as DUSP1 and DUSP10 in innate immunity. We also report potentially novel role of
DUSPs such as the Slingshot phosphatases and PKs such as LRKK2 in immune signaling. These need
to be further validated to confirm their roles. we also identified selective patterns of expression
of a few DUSPs and PKs across hematopoietic cells which could be used as potential therapeutic
targets. Furthermore, we also identified potential species-specific events of DUSP signaling which
need to be further validated. Finally, we demonstrate the utility of meta-analysis of existing datasets to
identify molecular mechanisms of various biological processes and fill existing gaps in understanding
understudied proteins. The findings from this study will aid in the understanding of DUSP signaling
in the context of innate immunity.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/20/9/2086/
s1.

Author Contributions: Conceptualization, R.K.K.; methodology, R.K.K., Y.S.; formal analysis, Y.S., K.B.; data
curation, S.M.P.; writing—original draft preparation, Y.S.; writing—review and editing, S.M.P., K.B., R.K.K., T.S.K.P.
supervision, R.K.K. and T.S.K.P.; funding acquisition, R.K.K.

Funding: This research was funded by the Research Council of Norway (FRIMEDBIO “Young Research Talent”
Grant 263168 to R.K.K.; and Centres of Excellence Funding Scheme Project 223255/F50 to CEMIR), Onsager
fellowship from NTNU (to R.K.K.).

https://cran.r-project.org/web/packages/ggplot2
http://www.mdpi.com/1422-0067/20/9/2086/s1
http://www.mdpi.com/1422-0067/20/9/2086/s1


Int. J. Mol. Sci. 2019, 20, 2086 17 of 22

Acknowledgments: We thank the authors of the datasets used in this study for making their data publicly available.

Conflicts of Interest: The authors declare no conflict of interest

Abbreviations

DC Dendritic cells
MO Monocytes
LPS Lipopolysaccharides
DUSP Dual Specificity Phosphatase
PK Protein Kinase
GO Gene Ontology

References

1. Humphrey, S.J.; James, D.E.; Mann, M. Protein Phosphorylation: A Major Switch Mechanism for Metabolic
Regulation. Trends Endocrinol. Metab. 2015, 26, 676–687. [CrossRef] [PubMed]

2. Cohen, P. The origins of protein phosphorylation. Nat. Cell Biol. 2002, 4, E127–E130. [CrossRef]
3. Ardito, F.; Giuliani, M.; Perrone, D.; Troiano, G.; Lo Muzio, L. The crucial role of protein phosphorylation

in cell signaling and its use as targeted therapy (Review). Int. J. Mol. Med. 2017, 40, 271–280. [CrossRef]
[PubMed]

4. Manning, G.; Whyte, D.B.; Martinez, R.; Hunter, T.; Sudarsanam, S. The protein kinase complement of the
human genome. Science 2002, 298, 1912–1934. [CrossRef]

5. Griffith, M.; Griffith, O.L.; Coffman, A.C.; Weible, J.V.; McMichael, J.F.; Spies, N.C.; Koval, J.; Das, I.;
Callaway, M.B.; Eldred, J.M.; et al. DGIdb: Mining the druggable genome. Nat. Methods 2013, 10, 1209–1210.
[CrossRef]

6. Alonso, A.; Sasin, J.; Bottini, N.; Friedberg, I.; Friedberg, I.; Osterman, A.; Godzik, A.; Hunter, T.; Dixon, J.;
Mustelin, T. Protein tyrosine phosphatases in the human genome. Cell 2004, 117, 699–711. [CrossRef]
[PubMed]

7. Chen, M.J.; Dixon, J.E.; Manning, G. Genomics and evolution of protein phosphatases. Sci. Signal. 2017,
10, 474. [CrossRef]

8. Lang, R.; Hammer, M.; Mages, J. DUSP meet immunology: dual specificity MAPK phosphatases in control
of the inflammatory response. J. Immunol. 2006, 177, 7497–7504. [CrossRef]

9. Liu, Y.; Shepherd, E.G.; Nelin, L.D. MAPK phosphatases–regulating the immune response. Nat. Rev. Immunol.
2007, 7, 202–212. [CrossRef] [PubMed]

10. Jeffrey, K.L.; Camps, M.; Rommel, C.; Mackay, C.R. Targeting dual-specificity phosphatases: manipulating
MAP kinase signalling and immune responses. Nat. Rev. Drug Discov. 2007, 6, 391–403. [CrossRef] [PubMed]

11. Abraham, S.M.; Clark, A.R. Dual-specificity phosphatase 1: A critical regulator of innate immune responses.
Biochem. Soc. Trans. 2006, 34, 1018–1023. [CrossRef] [PubMed]

12. Zhang, Y.; Reynolds, J.M.; Chang, S.H.; Martin-Orozco, N.; Chung, Y.; Nurieva, R.I.; Dong, C. MKP-1 is
necessary for T cell activation and function. J. Biol. Chem. 2009, 284, 30815–30824. [CrossRef]

13. Korhonen, R.; Huotari, N.; Hommo, T.; Leppanen, T.; Moilanen, E. The expression of interleukin-12 is
increased by MAP kinase phosphatase-1 through a mechanism related to interferon regulatory factor 1.
Mol. Immunol. 2012, 51, 219–226. [CrossRef] [PubMed]

14. Hammer, M.; Mages, J.; Dietrich, H.; Servatius, A.; Howells, N.; Cato, A.C.; Lang, R. Dual specificity
phosphatase 1 (DUSP1) regulates a subset of LPS-induced genes and protects mice from lethal endotoxin
shock. J. Exp. Med. 2006, 203, 15–20. [CrossRef] [PubMed]

15. Qian, F.; Deng, J.; Cheng, N.; Welch, E.J.; Zhang, Y.; Malik, A.B.; Flavell, R.A.; Dong, C.; Ye, R.D.
A non-redundant role for MKP5 in limiting ROS production and preventing LPS-induced vascular injury.
EMBO J. 2009, 28, 2896–2907. [CrossRef] [PubMed]

16. Jeffrey, K.L.; Brummer, T.; Rolph, M.S.; Liu, S.M.; Callejas, N.A.; Grumont, R.J.; Gillieron, C.; Mackay, F.;
Grey, S.; Camps, M.; Rommel, C.; et al. Positive regulation of immune cell function and inflammatory
responses by phosphatase PAC-1. Nat. Immunol. 2006, 7, 274–283. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.tem.2015.09.013
http://www.ncbi.nlm.nih.gov/pubmed/26498855
http://dx.doi.org/10.1038/ncb0502-e127
http://dx.doi.org/10.3892/ijmm.2017.3036
http://www.ncbi.nlm.nih.gov/pubmed/28656226
http://dx.doi.org/10.1126/science.1075762
http://dx.doi.org/10.1038/nmeth.2689
http://dx.doi.org/10.1016/j.cell.2004.05.018
http://www.ncbi.nlm.nih.gov/pubmed/15186772
http://dx.doi.org/10.1126/scisignal.aag1796
http://dx.doi.org/10.4049/jimmunol.177.11.7497
http://dx.doi.org/10.1038/nri2035
http://www.ncbi.nlm.nih.gov/pubmed/17318231
http://dx.doi.org/10.1038/nrd2289
http://www.ncbi.nlm.nih.gov/pubmed/17473844
http://dx.doi.org/10.1042/BST0341018
http://www.ncbi.nlm.nih.gov/pubmed/17073741
http://dx.doi.org/10.1074/jbc.M109.052472
http://dx.doi.org/10.1016/j.molimm.2012.03.019
http://www.ncbi.nlm.nih.gov/pubmed/22464096
http://dx.doi.org/10.1084/jem.20051753
http://www.ncbi.nlm.nih.gov/pubmed/16380512
http://dx.doi.org/10.1038/emboj.2009.234
http://www.ncbi.nlm.nih.gov/pubmed/19696743
http://dx.doi.org/10.1038/ni1310
http://www.ncbi.nlm.nih.gov/pubmed/16474395


Int. J. Mol. Sci. 2019, 20, 2086 18 of 22

17. Kovanen, P.E.; Bernard, J.; Al-Shami, A.; Liu, C.; Bollenbacher-Reilley, J.; Young, L.; Pise-Masison, C.;
Spolski, R.; Leonard, W.J. T-cell development and function are modulated by dual specificity phosphatase
DUSP5. J. Biol. Chem. 2008, 283, 17362–17369. [CrossRef]

18. Boulding, T.; Wu, F.; McCuaig, R.; Dunn, J.; Sutton, C.R.; Hardy, K.; Tu, W.; Bullman, A.; Yip, D.; Dahlstrom, J.E.;
Rao, S. Differential Roles for DUSP Family Members in Epithelial-to-Mesenchymal Transition and Cancer
Stem Cell Regulation in Breast Cancer. PLoS ONE 2016, 11, e0148065. [CrossRef] [PubMed]

19. Kaltenmeier, C.T.; Vollmer, L.L.; Vernetti, L.A.; Caprio, L.; Davis, K.; Korotchenko, V.N.; Day, B.W.; Tsang, M.;
Hulkower, K.I.; Lotze, M.T.; Vogt, A. A Tumor Cell-Selective Inhibitor of Mitogen-Activated Protein Kinase
Phosphatases Sensitizes Breast Cancer Cells to Lymphokine-Activated Killer Cell Activity. J. Pharmacol.
Exp. Ther. 2017, 361, 39–50. [CrossRef] [PubMed]

20. Zhang, X.; Hyer, J.M.; Yu, H.; D’Silva, N.J.; Kirkwood, K.L. DUSP1 phosphatase regulates the proinflammatory
milieu in head and neck squamous cell carcinoma. Cancer Res. 2014, 74, 7191–7197. [CrossRef] [PubMed]

21. Guo, K.; Li, J.; Tang, J.P.; Tan, C.P.; Hong, C.W.; Al-Aidaroos, A.Q.; Varghese, L.; Huang, C.; Zeng, Q. Targeting
intracellular oncoproteins with antibody therapy or vaccination. Sci. Transl. Med. 2011, 3, 99ra85. [CrossRef]

22. Guo, K.; Tang, J.P.; Tan, C.P.; Wang, H.; Zeng, Q. Monoclonal antibodies target intracellular PRL phosphatases
to inhibit cancer metastases in mice. Cancer Biol. Ther. 2008, 7, 750–757. [CrossRef] [PubMed]

23. Guo, K.; Li, J.; Wang, H.; Osato, M.; Tang, J.P.; Quah, S.Y.; Gan, B.Q.; Zeng, Q. PRL-3 initiates tumor
angiogenesis by recruiting endothelial cells in vitro and in vivo. Cancer Res. 2006, 66, 9625–9635. [CrossRef]

24. Rios, P.; Nunes-Xavier, C.E.; Tabernero, L.; Kohn, M.; Pulido, R. Dual-specificity phosphatases as molecular
targets for inhibition in human disease. Antioxid. Redox Signal. 2014, 20, 2251–2273. [CrossRef]

25. Subbannayya, Y.; Pinto, S.M.; Gowda, H.; Prasad, T.S. Proteogenomics for understanding oncology: recent
advances and future prospects. Expert. Rev. Proteomics 2016, 13, 297–308. [CrossRef] [PubMed]

26. Lee, S.E.; Song, J.; Bosl, K.; Muller, A.C.; Vitko, D.; Bennett, K.L.; Superti-Furga, G.; Pandey, A.;
Kandasamy, R.K.; Kim, M.S. Proteogenomic Analysis to Identify Missing Proteins from Haploid Cell
Lines. Proteomics 2018, 18, e1700386. [CrossRef] [PubMed]

27. Pinto, S.M.; Verma, R.; Advani, J.; Chatterjee, O.; Patil, A.H.; Kapoor, S.; Subbannayya, Y.; Raja, R.; Gandotra, S.;
Prasad, T.S.K. Integrated Multi-Omic Analysis of Mycobacterium tuberculosis H37Ra Redefines Virulence
Attributes. Front. Microbiol. 2018, 9, 1314. [CrossRef]

28. Kandasamy, R.K.; Vladimer, G.I.; Snijder, B.; Muller, A.C.; Rebsamen, M.; Bigenzahn, J.W.; Moskovskich, A.;
Sabler, M.; Stefanovic, A.; Scorzoni, S.; et al. A time-resolved molecular map of the macrophage response to
VSV infection. NPJ Syst. Biol. Appl. 2016, 2, 16027. [CrossRef] [PubMed]

29. Rieckmann, J.C.; Geiger, R.; Hornburg, D.; Wolf, T.; Kveler, K.; Jarrossay, D.; Sallusto, F.; Shen-Orr, S.S.;
Lanzavecchia, A.; Mann, M.; et al. Social network architecture of human immune cells unveiled by
quantitative proteomics. Nat. Immunol. 2017, 18, 583–593. [CrossRef] [PubMed]

30. Chevrier, N.; Mertins, P.; Artyomov, M.N.; Shalek, A.K.; Iannacone, M.; Ciaccio, M.F.; Gat-Viks, I.; Tonti, E.;
DeGrace, M.M.; Clauser, K.R.; et al. Systematic discovery of TLR signaling components delineates
viral-sensing circuits. Cell 2011, 147, 853–867. [CrossRef]

31. Elpek, K.G.; Cremasco, V.; Shen, H.; Harvey, C.J.; Wucherpfennig, K.W.; Goldstein, D.R.; Monach, P.A.;
Turley, S.J. The tumor microenvironment shapes lineage, transcriptional, and functional diversity of infiltrating
myeloid cells. Cancer Immunol. Res. 2014, 2, 655–667. [CrossRef]

32. Gat-Viks, I.; Chevrier, N.; Wilentzik, R.; Eisenhaure, T.; Raychowdhury, R.; Steuerman, Y.; Shalek, A.K.;
Hacohen, N.; Amit, I.; Regev, A. Deciphering molecular circuits from genetic variation underlying
transcriptional responsiveness to stimuli. Nat. Biotechnol. 2013, 31, 342–349. [CrossRef]

33. Jovanovic, M.; Rooney, M.S.; Mertins, P.; Przybylski, D.; Chevrier, N.; Satija, R.; Rodriguez, E.H.; Fields, A.P.;
Schwartz, S.; Raychowdhury, R.; et al. Immunogenetics. Dynamic profiling of the protein life cycle in
response to pathogens. Science 2015, 347, 1259038. [CrossRef] [PubMed]

34. Kamal, A.H.M.; Fessler, M.B.; Chowdhury, S.M. Comparative and network-based proteomic analysis of
low dose ethanol- and lipopolysaccharide-induced macrophages. PLoS ONE 2018, 13, e0193104. [CrossRef]
[PubMed]

35. Mertins, P.; Przybylski, D.; Yosef, N.; Qiao, J.; Clauser, K.; Raychowdhury, R.; Eisenhaure, T.M.; Maritzen, T.;
Haucke, V.; Satoh, T.; et al. An Integrative Framework Reveals Signaling-to-Transcription Events in Toll-like
Receptor Signaling. Cell Rep. 2017, 19, 2853–2866. [CrossRef] [PubMed]

http://dx.doi.org/10.1074/jbc.M709887200
http://dx.doi.org/10.1371/journal.pone.0148065
http://www.ncbi.nlm.nih.gov/pubmed/26859151
http://dx.doi.org/10.1124/jpet.116.239756
http://www.ncbi.nlm.nih.gov/pubmed/28154014
http://dx.doi.org/10.1158/0008-5472.CAN-14-1379
http://www.ncbi.nlm.nih.gov/pubmed/25312268
http://dx.doi.org/10.1126/scitranslmed.3002296
http://dx.doi.org/10.4161/cbt.7.5.5764
http://www.ncbi.nlm.nih.gov/pubmed/18364570
http://dx.doi.org/10.1158/0008-5472.CAN-06-0726
http://dx.doi.org/10.1089/ars.2013.5709
http://dx.doi.org/10.1586/14789450.2016.1136217
http://www.ncbi.nlm.nih.gov/pubmed/26697917
http://dx.doi.org/10.1002/pmic.201700386
http://www.ncbi.nlm.nih.gov/pubmed/29474001
http://dx.doi.org/10.3389/fmicb.2018.01314
http://dx.doi.org/10.1038/npjsba.2016.27
http://www.ncbi.nlm.nih.gov/pubmed/28725479
http://dx.doi.org/10.1038/ni.3693
http://www.ncbi.nlm.nih.gov/pubmed/28263321
http://dx.doi.org/10.1016/j.cell.2011.10.022
http://dx.doi.org/10.1158/2326-6066.CIR-13-0209
http://dx.doi.org/10.1038/nbt.2519
http://dx.doi.org/10.1126/science.1259038
http://www.ncbi.nlm.nih.gov/pubmed/25745177
http://dx.doi.org/10.1371/journal.pone.0193104
http://www.ncbi.nlm.nih.gov/pubmed/29481576
http://dx.doi.org/10.1016/j.celrep.2017.06.016
http://www.ncbi.nlm.nih.gov/pubmed/28658630


Int. J. Mol. Sci. 2019, 20, 2086 19 of 22

36. Mingueneau, M.; Kreslavsky, T.; Gray, D.; Heng, T.; Cruse, R.; Ericson, J.; Bendall, S.; Spitzer, M.H.; Nolan, G.P.;
Kobayashi, K.; et al. The transcriptional landscape of alphabeta T cell differentiation. Nat. Immunol. 2013, 14,
619–632. [CrossRef] [PubMed]

37. Muller, M.M.; Lehmann, R.; Klassert, T.E.; Reifenstein, S.; Conrad, T.; Moore, C.; Kuhn, A.; Behnert, A.;
Guthke, R.; Driesch, D.; et al. Global analysis of glycoproteins identifies markers of endotoxin tolerant
monocytes and GPR84 as a modulator of TNFalpha expression. Sci. Rep. 2017, 7, 838. [CrossRef] [PubMed]

38. Shalek, A.K.; Satija, R.; Adiconis, X.; Gertner, R.S.; Gaublomme, J.T.; Raychowdhury, R.; Schwartz, S.;
Yosef, N.; Malboeuf, C.; Lu, D.; et al. Single-cell transcriptomics reveals bimodality in expression and splicing
in immune cells. Nature 2013, 498, 236–240. [CrossRef] [PubMed]

39. Coordinators, N.R. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res.
2016, 44, D7–D19.

40. Arthur, J.S.; Ley, S.C. Mitogen-activated protein kinases in innate immunity. Nat. Rev. Immunol. 2013, 13,
679–692. [CrossRef]

41. Yuan, X.; Wu, H.; Bu, H.; Zhou, J.; Zhang, H. Targeting the immunity protein kinases for immuno-oncology.
Eur. J. Med. Chem. 2019, 163, 413–427. [CrossRef]

42. Michel, T.; Poli, A.; Cuapio, A.; Briquemont, B.; Iserentant, G.; Ollert, M.; Zimmer, J. Human CD56bright NK
Cells: An Update. J. Immunol. 2016, 196, 2923–2931. [CrossRef] [PubMed]

43. Tucker, K.L.; Sage, T.; Stevens, J.M.; Jordan, P.A.; Jones, S.; Barrett, N.E.; St-Arnaud, R.; Frampton, J.;
Dedhar, S.; Gibbins, J.M. A dual role for integrin-linked kinase in platelets: regulating integrin function and
alpha-granule secretion. Blood 2008, 112, 4523–4531. [CrossRef]

44. Bhattacharjee, A.; Pal, S.; Feldman, G.M.; Cathcart, M.K. Hck is a key regulator of gene expression in
alternatively activated human monocytes. J. Biol. Chem. 2011, 286, 36709–36723. [CrossRef] [PubMed]

45. Boehm, T.; Hess, I.; Swann, J.B. Evolution of lymphoid tissues. Trends Immunol. 2012, 33, 315–321. [CrossRef]
[PubMed]

46. Pabst, R. Plasticity and heterogeneity of lymphoid organs. What are the criteria to call a lymphoid organ
primary, secondary or tertiary? Immunol. Lett. 2007, 112, 1–8. [CrossRef] [PubMed]

47. Girard-Madoux, M.J.H.; Gomez de Aguero, M.; Ganal-Vonarburg, S.C.; Mooser, C.; Belz, G.T.;
Macpherson, A.J.; Vivier, E. The immunological functions of the Appendix: An example of redundancy?
Semin Immunol. 2018, 36, 31–44. [CrossRef]

48. Kooij, I.A.; Sahami, S.; Meijer, S.L.; Buskens, C.J.; Te Velde, A.A. The immunology of the vermiform appendix:
A review of the literature. Clin. Exp. Immunol. 2016, 186, 1–9. [CrossRef] [PubMed]

49. Kawaji, H.; Kasukawa, T.; Forrest, A.; Carninci, P.; Hayashizaki, Y. The FANTOM5 collection, a data series
underpinning mammalian transcriptome atlases in diverse cell types. Sci. Data 2017, 4, 170113. [CrossRef]
[PubMed]

50. Consortium, G.T. Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue
gene regulation in humans. Science 2015, 348, 648–660. [CrossRef] [PubMed]

51. Uhlen, M.; Zhang, C.; Lee, S.; Sjostedt, E.; Fagerberg, L.; Bidkhori, G.; Benfeitas, R.; Arif, M.; Liu, Z.;
Edfors, F.; et al. A pathology atlas of the human cancer transcriptome. Science 2017, 357, 6352. [CrossRef]
[PubMed]

52. Uhlen, M.; Fagerberg, L.; Hallstrom, B.M.; Lindskog, C.; Oksvold, P.; Mardinoglu, A.; Sivertsson, A.;
Kampf, C.; Sjostedt, E.; Asplund, A.; et al. Proteomics. Tissue-based map of the human proteome. Science
2015, 347, 1260419. [CrossRef]

53. Barbosa-Morais, N.L.; Irimia, M.; Pan, Q.; Xiong, H.Y.; Gueroussov, S.; Lee, L.J.; Slobodeniuc, V.; Kutter, C.;
Watt, S.; Colak, R.; et al. The evolutionary landscape of alternative splicing in vertebrate species. Science
2012, 338, 1587–1593. [CrossRef] [PubMed]

54. Roadmap Epigenomics Consortium; Kundaje, A.; Meuleman, W.; Ernst, J.; Bilenky, M.; Yen, A.;
Heravi-Moussavi, A.; Kheradpour, P.; Zhang, Z.; Wang, J.; et al. Integrative analysis of 111 reference
human epigenomes. Nature 2015, 518, 317–330. [CrossRef] [PubMed]

55. Lin, S.; Lin, Y.; Nery, J.R.; Urich, M.A.; Breschi, A.; Davis, C.A.; Dobin, A.; Zaleski, C.; Beer, M.A.;
Chapman, W.C.; et al. Comparison of the transcriptional landscapes between human and mouse tissues.
Proc. Natl. Acad. Sci. USA 2014, 111, 17224–17229. [CrossRef] [PubMed]

http://dx.doi.org/10.1038/ni.2590
http://www.ncbi.nlm.nih.gov/pubmed/23644507
http://dx.doi.org/10.1038/s41598-017-00828-y
http://www.ncbi.nlm.nih.gov/pubmed/28404994
http://dx.doi.org/10.1038/nature12172
http://www.ncbi.nlm.nih.gov/pubmed/23685454
http://dx.doi.org/10.1038/nri3495
http://dx.doi.org/10.1016/j.ejmech.2018.11.072
http://dx.doi.org/10.4049/jimmunol.1502570
http://www.ncbi.nlm.nih.gov/pubmed/26994304
http://dx.doi.org/10.1182/blood-2008-03-148502
http://dx.doi.org/10.1074/jbc.M111.291492
http://www.ncbi.nlm.nih.gov/pubmed/21878628
http://dx.doi.org/10.1016/j.it.2012.02.005
http://www.ncbi.nlm.nih.gov/pubmed/22483556
http://dx.doi.org/10.1016/j.imlet.2007.06.009
http://www.ncbi.nlm.nih.gov/pubmed/17698207
http://dx.doi.org/10.1016/j.smim.2018.02.005
http://dx.doi.org/10.1111/cei.12821
http://www.ncbi.nlm.nih.gov/pubmed/27271818
http://dx.doi.org/10.1038/sdata.2017.113
http://www.ncbi.nlm.nih.gov/pubmed/28850107
http://dx.doi.org/10.1126/science.1262110
http://www.ncbi.nlm.nih.gov/pubmed/25954001
http://dx.doi.org/10.1126/science.aan2507
http://www.ncbi.nlm.nih.gov/pubmed/28818916
http://dx.doi.org/10.1126/science.1260419
http://dx.doi.org/10.1126/science.1230612
http://www.ncbi.nlm.nih.gov/pubmed/23258890
http://dx.doi.org/10.1038/nature14248
http://www.ncbi.nlm.nih.gov/pubmed/25693563
http://dx.doi.org/10.1073/pnas.1413624111
http://www.ncbi.nlm.nih.gov/pubmed/25413365


Int. J. Mol. Sci. 2019, 20, 2086 20 of 22

56. Wang, L.H.; Xiang, J.; Yan, M.; Zhang, Y.; Zhao, Y.; Yue, C.F.; Xu, J.; Zheng, F.M.; Chen, J.N.; Kang, Z.; et al.
The mitotic kinase Aurora-A induces mammary cell migration and breast cancer metastasis by activating the
Cofilin-F-actin pathway. Cancer Res. 2010, 70, 9118–9128. [CrossRef] [PubMed]

57. Lopes, L.J.S.; Tesser-Gamba, F.; Petrilli, A.S.; de Seixas Alves, M.T.; Garcia-Filho, R.J.; Toledo, S.R.C. MAPK
pathways regulation by DUSP1 in the development of osteosarcoma: Potential markers and therapeutic
targets. Mol. Carcinog. 2017, 56, 1630–1641. [CrossRef] [PubMed]

58. Theodosiou, A.; Smith, A.; Gillieron, C.; Arkinstall, S.; Ashworth, A. MKP5, a new member of the MAP
kinase phosphatase family, which selectively dephosphorylates stress-activated kinases. Oncogene 1999, 18,
6981–6988. [CrossRef]

59. Matsuguchi, T.; Musikacharoen, T.; Johnson, T.R.; Kraft, A.S.; Yoshikai, Y. A novel mitogen-activated protein
kinase phosphatase is an important negative regulator of lipopolysaccharide-mediated c-Jun N-terminal
kinase activation in mouse macrophage cell lines. Mol. Cell. Biol. 2001, 21, 6999–7009. [CrossRef] [PubMed]

60. Bosl, K.; Giambelluca, M.; Haug, M.; Bugge, M.; Espevik, T.; Kandasamy, R.K.; Bergstrom, B. Coactivation
of TLR2 and TLR8 in Primary Human Monocytes Triggers a Distinct Inflammatory Signaling Response.
Front. Physiol. 2018, 9, 618. [CrossRef] [PubMed]

61. Amit, I.; Garber, M.; Chevrier, N.; Leite, A.P.; Donner, Y.; Eisenhaure, T.; Guttman, M.; Grenier, J.K.; Li, W.;
Zuk, O.; et al. Unbiased reconstruction of a mammalian transcriptional network mediating pathogen
responses. Science 2009, 326, 257–263. [CrossRef] [PubMed]

62. Vijayan, V.; Pradhan, P.; Braud, L.; Fuchs, H.R.; Gueler, F.; Motterlini, R.; Foresti, R.; Immenschuh, S. Human
and murine macrophages exhibit differential metabolic responses to lipopolysaccharide—A divergent role
for glycolysis. Redox Biol. 2019, 22, 101147. [CrossRef] [PubMed]

63. Sakuta, T.; Matsushita, K.; Yamaguchi, N.; Oyama, T.; Motani, R.; Koga, T.; Nagaoka, S.; Abeyama, K.;
Maruyama, I.; Takada, H.; et al. Enhanced production of vascular endothelial growth factor by human
monocytic cells stimulated with endotoxin through transcription factor SP-1. J. Med. Microbiol. 2001, 50,
233–237. [CrossRef]

64. Huang, C.Y.; Tan, T.H. DUSPs, to MAP kinases and beyond. Cell Biosci. 2012, 2, 24. [CrossRef] [PubMed]
65. Bhore, N.; Wang, B.J.; Chen, Y.W.; Liao, Y.F. Critical Roles of Dual-Specificity Phosphatases in Neuronal

Proteostasis and Neurological Diseases. Int. J. Mol. Sci. 2017, 18, 1963. [CrossRef] [PubMed]
66. Alonso, A.; Pulido, R. The extended human PTPome: A growing tyrosine phosphatase family. FEBS J. 2016,

283, 1404–1429. [CrossRef] [PubMed]
67. Hatzihristidis, T.; Liu, S.; Pryszcz, L.; Hutchins, A.P.; Gabaldon, T.; Tremblay, M.L.; Miranda-Saavedra, D.

PTP-central: A comprehensive resource of protein tyrosine phosphatases in eukaryotic genomes. Methods
2014, 65, 156–164. [CrossRef] [PubMed]

68. Rios, P.; Li, X.; Kohn, M. Molecular mechanisms of the PRL phosphatases. FEBS J. 2013, 280, 505–524.
[CrossRef]

69. Huang, L.C.; Ross, K.E.; Baffi, T.R.; Drabkin, H.; Kochut, K.J.; Ruan, Z.; D’Eustachio, P.; McSkimming, D.;
Arighi, C.; Chen, C.; et al. Integrative annotation and knowledge discovery of kinase post-translational
modifications and cancer-associated mutations through federated protein ontologies and resources. Sci. Rep.
2018, 8, 6518. [CrossRef]

70. Pula, G.; Schuh, K.; Nakayama, K.; Nakayama, K.I.; Walter, U.; Poole, A.W. PKCdelta regulates
collagen-induced platelet aggregation through inhibition of VASP-mediated filopodia formation. Blood 2006,
108, 4035–4044. [CrossRef]

71. Meinders, M.; Kulu, D.I.; van de Werken, H.J.; Hoogenboezem, M.; Janssen, H.; Brouwer, R.W.; van Ijcken, W.F.;
Rijkers, E.J.; Demmers, J.A.; Kruger, I.; et al. Sp1/Sp3 transcription factors regulate hallmarks of megakaryocyte
maturation and platelet formation and function. Blood 2015, 125, 1957–1967. [CrossRef]

72. Hitchcock, I.S.; Fox, N.E.; Prevost, N.; Sear, K.; Shattil, S.J.; Kaushansky, K. Roles of focal adhesion kinase
(FAK) in megakaryopoiesis and platelet function: Studies using a megakaryocyte lineage specific FAK
knockout. Blood 2008, 111, 596–604. [CrossRef]

73. Wu, J.; Mei, C.; Vlassara, H.; Striker, G.E.; Zheng, F. Oxidative stress-induced JNK activation contributes
to proinflammatory phenotype of aging diabetic mesangial cells. Am. J. Physiol. Renal. Physiol. 2009, 297,
F1622–F1631. [CrossRef] [PubMed]

http://dx.doi.org/10.1158/0008-5472.CAN-10-1246
http://www.ncbi.nlm.nih.gov/pubmed/21045147
http://dx.doi.org/10.1002/mc.22619
http://www.ncbi.nlm.nih.gov/pubmed/28112450
http://dx.doi.org/10.1038/sj.onc.1203185
http://dx.doi.org/10.1128/MCB.21.20.6999-7009.2001
http://www.ncbi.nlm.nih.gov/pubmed/11564882
http://dx.doi.org/10.3389/fphys.2018.00618
http://www.ncbi.nlm.nih.gov/pubmed/29896111
http://dx.doi.org/10.1126/science.1179050
http://www.ncbi.nlm.nih.gov/pubmed/19729616
http://dx.doi.org/10.1016/j.redox.2019.101147
http://www.ncbi.nlm.nih.gov/pubmed/30825774
http://dx.doi.org/10.1099/0022-1317-50-3-233
http://dx.doi.org/10.1186/2045-3701-2-24
http://www.ncbi.nlm.nih.gov/pubmed/22769588
http://dx.doi.org/10.3390/ijms18091963
http://www.ncbi.nlm.nih.gov/pubmed/28902166
http://dx.doi.org/10.1111/febs.13600
http://www.ncbi.nlm.nih.gov/pubmed/26573778
http://dx.doi.org/10.1016/j.ymeth.2013.07.031
http://www.ncbi.nlm.nih.gov/pubmed/23911837
http://dx.doi.org/10.1111/j.1742-4658.2012.08565.x
http://dx.doi.org/10.1038/s41598-018-24457-1
http://dx.doi.org/10.1182/blood-2006-05-023739
http://dx.doi.org/10.1182/blood-2014-08-593343
http://dx.doi.org/10.1182/blood-2007-05-089680
http://dx.doi.org/10.1152/ajprenal.00078.2009
http://www.ncbi.nlm.nih.gov/pubmed/19776174


Int. J. Mol. Sci. 2019, 20, 2086 21 of 22

74. Zhang, Y.; Blattman, J.N.; Kennedy, N.J.; Duong, J.; Nguyen, T.; Wang, Y.; Davis, R.J.; Greenberg, P.D.;
Flavell, R.A.; Dong, C. Regulation of innate and adaptive immune responses by MAP kinase phosphatase 5.
Nature 2004, 430, 793–797. [CrossRef]

75. Hammer, M.; Mages, J.; Dietrich, H.; Schmitz, F.; Striebel, F.; Murray, P.J.; Wagner, H.; Lang, R. Control of
dual-specificity phosphatase-1 expression in activated macrophages by IL-10. Eur. J. Immunol. 2005, 35,
2991–3001. [CrossRef] [PubMed]

76. Nizamutdinova, I.T.; Kim, Y.M.; Lee, J.H.; Chang, K.C.; Kim, H.J. MKP-7, a negative regulator of JNK,
regulates VCAM-1 expression through IRF-1. Cell Signal. 2012, 24, 866–872. [CrossRef] [PubMed]

77. Zhang, Y.; Nallaparaju, K.C.; Liu, X.; Jiao, H.; Reynolds, J.M.; Wang, Z.X.; Dong, C. MAPK phosphatase 7
regulates T cell differentiation via inhibiting ERK-mediated IL-2 expression. J. Immunol. 2015, 194, 3088–3095.
[CrossRef] [PubMed]

78. Niedzielska, M.; Bodendorfer, B.; Munch, S.; Eichner, A.; Derigs, M.; da Costa, O.; Schweizer, A.; Neff, F.;
Nitschke, L.; Sparwasser, T.; et al. Gene trap mice reveal an essential function of dual specificity phosphatase
Dusp16/MKP-7 in perinatal survival and regulation of Toll-like receptor (TLR)-induced cytokine production.
J. Biol. Chem. 2014, 289, 2112–2126. [CrossRef]

79. Peng, H.Z.; Yun, Z.; Wang, W.; Ma, B.A. Dual specificity phosphatase 1 has a protective role in osteoarthritis
fibroblastlike synoviocytes via inhibition of the MAPK signaling pathway. Mol. Med. Rep. 2017, 16, 8441–8447.
[CrossRef] [PubMed]

80. Aggelou, H.; Chadla, P.; Nikou, S.; Karteri, S.; Maroulis, I.; Kalofonos, H.P.; Papadaki, H.; Bravou, V.
LIMK/cofilin pathway and Slingshot are implicated in human colorectal cancer progression and
chemoresistance. Virchows Arch. 2018, 472, 727–737. [CrossRef] [PubMed]

81. Maimaiti, Y.; Maimaitiming, M.; Li, Y.; Aibibula, S.; Ainiwaer, A.; Aili, A.; Sun, Z.; Abudureyimu, K. SSH1
expression is associated with gastric cancer progression and predicts a poor prognosis. BMC Gastroenterol.
2018, 18, 12. [CrossRef]

82. Caution, K.; Gavrilin, M.A.; Tazi, M.; Kanneganti, A.; Layman, D.; Hoque, S.; Krause, K.; Amer, A.O.
Caspase-11 and caspase-1 differentially modulate actin polymerization via RhoA and Slingshot proteins to
promote bacterial clearance. Sci. Rep. 2015, 5, 18479. [CrossRef] [PubMed]

83. Huang, C.T.; Chang, M.C.; Chen, Y.L.; Chen, T.C.; Chen, C.A.; Cheng, W.F. Insulin-like growth factors
inhibit dendritic cell-mediated anti-tumor immunity through regulating ERK1/2 phosphorylation and p38
dephosphorylation. Cancer Lett. 2015, 359, 117–126. [CrossRef] [PubMed]

84. Spadaro, O.; Camell, C.D.; Bosurgi, L.; Nguyen, K.Y.; Youm, Y.H.; Rothlin, C.V.; Dixit, V.D. IGF1 Shapes
Macrophage Activation in Response to Immunometabolic Challenge. Cell Rep. 2017, 19, 225–234. [CrossRef]
[PubMed]

85. Cook, D.A.; Kannarkat, G.T.; Cintron, A.F.; Butkovich, L.M.; Fraser, K.B.; Chang, J.; Grigoryan, N.;
Factor, S.A.; West, A.B.; Boss, J.M.; et al. LRRK2 levels in immune cells are increased in Parkinson’s disease.
NPJ Parkinsons Dis. 2017, 3, 11. [CrossRef] [PubMed]

86. Lee, H.; James, W.S.; Cowley, S.A. LRRK2 in peripheral and central nervous system innate immunity: its link
to Parkinson’s disease. Biochem. Soc. Trans. 2017, 45, 131–139. [CrossRef] [PubMed]

87. Moehle, M.S.; Webber, P.J.; Tse, T.; Sukar, N.; Standaert, D.G.; DeSilva, T.M.; Cowell, R.M.; West, A.B.
LRRK2 inhibition attenuates microglial inflammatory responses. J. Neurosci. 2012, 32, 1602–1611. [CrossRef]
[PubMed]

88. Miranda-Saavedra, D.; Barton, G.J. Classification and functional annotation of eukaryotic protein kinases.
Proteins 2007, 68, 893–914. [CrossRef]

89. Hunter, T. Signaling—2000 and beyond. Cell 2000, 100, 113–127. [CrossRef]
90. Letunic, I.; Bork, P. 20 years of the SMART protein domain annotation resource. Nucleic Acids Res. 2018, 46,

D493–D496. [CrossRef] [PubMed]
91. Mudunuri, U.; Che, A.; Yi, M.; Stephens, R.M. bioDBnet: the biological database network. Bioinformatics

2009, 25, 555–556. [CrossRef] [PubMed]
92. Reimand, J.; Arak, T.; Adler, P.; Kolberg, L.; Reisberg, S.; Peterson, H.; Vilo, J. g:Profiler-a web server for

functional interpretation of gene lists (2016 update). Nucleic Acids Res. 2016, 44, W83–W89. [CrossRef]
[PubMed]

http://dx.doi.org/10.1038/nature02764
http://dx.doi.org/10.1002/eji.200526192
http://www.ncbi.nlm.nih.gov/pubmed/16184516
http://dx.doi.org/10.1016/j.cellsig.2011.12.002
http://www.ncbi.nlm.nih.gov/pubmed/22182512
http://dx.doi.org/10.4049/jimmunol.1402638
http://www.ncbi.nlm.nih.gov/pubmed/25716993
http://dx.doi.org/10.1074/jbc.M113.535245
http://dx.doi.org/10.3892/mmr.2017.7617
http://www.ncbi.nlm.nih.gov/pubmed/28983624
http://dx.doi.org/10.1007/s00428-018-2298-0
http://www.ncbi.nlm.nih.gov/pubmed/29352327
http://dx.doi.org/10.1186/s12876-018-0739-5
http://dx.doi.org/10.1038/srep18479
http://www.ncbi.nlm.nih.gov/pubmed/26686473
http://dx.doi.org/10.1016/j.canlet.2015.01.007
http://www.ncbi.nlm.nih.gov/pubmed/25592043
http://dx.doi.org/10.1016/j.celrep.2017.03.046
http://www.ncbi.nlm.nih.gov/pubmed/28402847
http://dx.doi.org/10.1038/s41531-017-0010-8
http://www.ncbi.nlm.nih.gov/pubmed/28649611
http://dx.doi.org/10.1042/BST20160262
http://www.ncbi.nlm.nih.gov/pubmed/28202666
http://dx.doi.org/10.1523/JNEUROSCI.5601-11.2012
http://www.ncbi.nlm.nih.gov/pubmed/22302802
http://dx.doi.org/10.1002/prot.21444
http://dx.doi.org/10.1016/S0092-8674(00)81688-8
http://dx.doi.org/10.1093/nar/gkx922
http://www.ncbi.nlm.nih.gov/pubmed/29040681
http://dx.doi.org/10.1093/bioinformatics/btn654
http://www.ncbi.nlm.nih.gov/pubmed/19129209
http://dx.doi.org/10.1093/nar/gkw199
http://www.ncbi.nlm.nih.gov/pubmed/27098042


Int. J. Mol. Sci. 2019, 20, 2086 22 of 22

93. Veres, D.V.; Gyurko, D.M.; Thaler, B.; Szalay, K.Z.; Fazekas, D.; Korcsmaros, T.; Csermely, P. ComPPI:
A cellular compartment-specific database for protein-protein interaction network analysis. Nucleic Acids Res.
2015, 43, D485–D493. [CrossRef] [PubMed]

94. Assenov, Y.; Ramirez, F.; Schelhorn, S.E.; Lengauer, T.; Albrecht, M. Computing topological parameters of
biological networks. Bioinformatics 2008, 24, 282–284. [CrossRef] [PubMed]

95. Pavlopoulos, G.A.; Secrier, M.; Moschopoulos, C.N.; Soldatos, T.G.; Kossida, S.; Aerts, J.; Schneider, R.;
Bagos, P.G. Using graph theory to analyze biological networks. BioData Min. 2011, 4, 10. [CrossRef]

96. Bindea, G.; Mlecnik, B.; Hackl, H.; Charoentong, P.; Tosolini, M.; Kirilovsky, A.; Fridman, W.H.; Pages, F.;
Trajanoski, Z.; Galon, J. ClueGO: A Cytoscape plug-in to decipher functionally grouped gene ontology and
pathway annotation networks. Bioinformatics 2009, 25, 1091–1093. [CrossRef]

97. Fabregat, A.; Jupe, S.; Matthews, L.; Sidiropoulos, K.; Gillespie, M.; Garapati, P.; Haw, R.; Jassal, B.;
Korninger, F.; May, B.; et al. The Reactome Pathway Knowledgebase. Nucleic Acids Res. 2018, 46, D649–D655.
[CrossRef] [PubMed]

98. Huber, W.; Carey, V.J.; Gentleman, R.; Anders, S.; Carlson, M.; Carvalho, B.S.; Bravo, H.C.; Davis, S.; Gatto, L.;
Girke, T.; et al. Orchestrating high-throughput genomic analysis with Bioconductor. Nat. Methods 2015, 12,
115–121. [CrossRef] [PubMed]

99. Yu, G.; Wang, L.G.; Han, Y.; He, Q.Y. clusterProfiler: An R package for comparing biological themes among
gene clusters. OMICS 2012, 16, 284–287. [CrossRef] [PubMed]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1093/nar/gku1007
http://www.ncbi.nlm.nih.gov/pubmed/25348397
http://dx.doi.org/10.1093/bioinformatics/btm554
http://www.ncbi.nlm.nih.gov/pubmed/18006545
http://dx.doi.org/10.1186/1756-0381-4-10
http://dx.doi.org/10.1093/bioinformatics/btp101
http://dx.doi.org/10.1093/nar/gkx1132
http://www.ncbi.nlm.nih.gov/pubmed/29145629
http://dx.doi.org/10.1038/nmeth.3252
http://www.ncbi.nlm.nih.gov/pubmed/25633503
http://dx.doi.org/10.1089/omi.2011.0118
http://www.ncbi.nlm.nih.gov/pubmed/22455463
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	DUSP Classification into Subfamilies and Evolutionary Conservation 
	Expression of Dual Specificity Phosphatases and Protein Kinases in Hematopoietic Cells, Primary and Secondary Lymphoid Organs 
	Correlation of Dual Specificity Phosphatase Activity with Protein Kinase Activity in Immune Cells 
	Expression Landscape and Signaling Dynamics of DUSPs and Kinases in Activated Immune Cells 

	Discussion 
	Materials and Methods 
	Datasets 
	DUSP and Kinase Lists for Analysis 
	Classification of DUSP Family Members, Domain Analysis and Species Conservation Analysis of DUSP Sequences 
	Landscape of DUSPs and Kinases in Immune Cells 
	Landscape of DUSPs and Kinases in Primary and Secondary Lymphoid Organs 
	Baseline DUSP Interactome 
	Landscape of DUSPs and Kinases in Activated Immune Cells 
	Functional, Pathway and Network Analysis 

	Conclusions 
	References

