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Summary

In this thesis we consider bilinear pairings on elliptic curves. First, we give an introduction
to algebraic geometry and in particular the concept of divisors. Further, we consider elliptic
curves and their arithmetic. We study two different pairings on elliptic curves, the Weil pairing
and the Tate pairing. We state the Weil pairing in to versions and prove the relation between
them. Further, we describe the Tate pairing in details and show the properties of both pairings.
We also explain how to calculate them. Finally, we describe the MOV-attack and the tripartite
Diffie-Hellman key agreement, as an example of the use of pairings in cryptography.

Samandrag

I denne oppgåva studerer vi bilineære parringer på elliptiske kurver. Først gir vi ein introduksjon
til algebraisk geometri og spesielt omgrepet divisorar. Vidare ser vi på elliptiske kurver og
deira aritmetikk. Vi ser på to ulike parringer på elliptiske kurver, Weilparringa og Tateparringa.
Vi skildrar Weilparringa på to ulike måtar og viser provet for relasjonen mellom dei. Vidare
skildrar vi Tateparringa i detalj og syner eigenskapane til begge parringane. Vi syner òg korleis
dei kan reknast ut. Til slutt skildrar vi MOV-angrepet og den tredelte nøkkelavtala til Diffie-
Hellman som døme på bruk av parringar i kryptografi.
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Chapter 1
Introduction

The theme of this thesis is bilinear pairings on elliptic curves. We discuss the topic with the
assumption that the reader has basic knowledge of groups, rings, fields, number theory and cryp-
tography. Two different bilinear pairings, the Weil pairing and the Tate pairing, are presented.
To do this, we need algebraic geometry and the arithmetic of elliptic curves.

We describe the structure of the thesis. Chapter 2 deals with algebraic geometry and lays
the foundation for us to talk about elliptic curves. In Chapter 3 we describe elliptic curves and
how we can do calculations with points on such curves. After these chapters we are ready to
study bilinear pairings. We do this in Chapters 4 and 5. First, we look at the Weil pairing and
its properties. Then, we look at the Tate pairing. Finally, we use the pairings in two examples
from cryptography in Chapter 6.

Notation: We let the symbols

Z, Q, R, C, Fq and Z/nZ,

denote the integers, rational, real and complex numbers, a finite field with q elements and n-adic
numbers, respectively. Further, we let A[n] denote the elements of order dividing n, given that
A is an abelian group.

References: Bibliographical references are given in squared brackets, e.g. [8, p. 55]. Cross-
references to equations are given in parentheses, e.g. (2.2). Cross-references to figures, theo-
rems, sections etc. are given with reference to chapter, e.g. Lemma 1.1, Theorem 3.4.
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Chapter 2
Algebraic Geometry

Algebraic geometry is the study of geometries that can be described algebraically. In this chap-
ter we will define some concepts that will be used throughout this thesis. In Section 2.1 we
introduce affine and projective n-spaces. This lays the basis for working with elliptic curves.
Further, we describe divisors of curves in Section 2.2.

The definitions in this thesis are based on the assumption that we work in a perfect field K.
A field is said to be perfect if every algebraic extension of it is separable [1, p. 316]. Note that
in a perfect field K = {xq | x ∈ K}. The field of rational numbers is an example of a perfect
field with characteristic 0. The characteristic of a field K is denoted n = char(K). By that, we
mean the smallest integer n such that

(1 + 1 + ...+ 1︸ ︷︷ ︸
n times

) = 0

where 1 and 0 are the multiplicative and additive identity, respectively. Other examples of
perfect fields are all finite fields, Fpk = Fp[X]/〈f(X)〉, where k is a positive integer, p a prime
number and 〈f(X)〉 an irreducible polynomial.

We finish the introduction to perfect fields by showing an example of a non perfect field.
Consider F(X) =

{
f(x)
g(x)
| f(x), g(x) ∈ F[X]

}
. It has characteristic p > 0 and there exists a

map given by f(x) 7→ f(x)p. If F(X) is perfect, then there exist an element f(x)
g(x)

such that
x = f(x)p

g(x)p
. We write out the equation for xg(x)p = f(x)p to see if there is such an element and

get that

x(gp0 + gp1x
p + ...+ gpn(xp)n) = fp

0 + fp
1x

p + ...+ fp
m(xp)m. (2.1)

From (2.1), we find that f(x) = g(x) = 0, but that gives us a problem since our plan was to
find an x such that x = f(x)p

g(x)p
. We cannot find such an x, hence F(X) is not perfect.

Finally, some remarks on notation. A perfect field will always be denoted K. By K, we
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denote a fixed algebraic closure of K and the Galois group of K/K is denoted GK/K .

2.1 Affine and Projective n-spaces

Throughout this thesis, we work with affine and projective n-spaces. They are described in
detail in Fulton [2], and this introduction follows his book. Both affine and projective n-spaces
are sets of n-tuples. We start by looking at affine n-spaces. An affine space, An, is a cartesian
product of K with itself n times.

Definition 2.1. An affine n-space over K is a set of n-tuples of elements of K. We call its
elements points and denote them by

An = An(K) =
{
P = (x1, ..., xn) | xi ∈ K

}
In particular, an affine 1-space is a line given by A1 =

{
P = (x1) | x1 ∈ K

}
and an affine

2-space is a plane consisting of all points (x1, x2) such that x1, x2 ∈ K. Further, we let S be a
set of polynomials with coefficients in K such that S ⊆ K[X1, ..., Xn]. Let V (S) = {P ∈ An |
F (P ) = 0 for all F ∈ S}. That is, V (S) is the set of all points P in An that gives F (P ) = 0

for all F ∈ S. Given these assumptions, we define an affine algebraic set,

Definition 2.2. A subset X ⊂ An(K) is an affine algebraic set if X = V (S) for some S.

Imagine that you want to find all the intersections between two curves. For example, con-
sider the line Y = 1

a
X and the curve Y 2 = X2−4. They intersects in two points for a /∈ [−1, 1]

given that we restrict ourselves to real values of X and Y . If we allow X, Y ∈ C, the curves
intersect when Y = ±

√
X2 − 4. This gives intersections as long as a 6= ±1.

The curve is asymptotic to the line when a = ±1, as shown for a = 1 in Figure 2.1. We
would like them to intersect at infinity, so we let (x, y) ∈ A2 correspond to (x, y, 1) ∈ A3. We
do this by letting (x, y, 1) determine a line through (0, 0, 0) and (x, y, 1). Further, we let the
lines through (0, 0, 0) in the xy-plane correspond to O, the point at infinity. This way, we may
define all lines through (0, 0, ..., 0) in An+1 as the projective n-space over K.

In order to define a projective n-space over K, we need to know when two points are equiv-
alent. The equivalence of points is based on the fact that any point x = (x1, ..., xn+1) 6=
(0, 0, ..., 0) determine a unique line. We say that x and y determine the same line if and only if
there exists a λ 6= 0 in K such that yi = λxi for all i = 1, ..., n + 1. If x and y determine the
same line, we say that they are equivalent. The projective n-space, Pn, can be considered as the
set of divisor classes of points in An+1 \ (0, 0, ..., 0).

Definition 2.3. A projective n-space over K is a set of n-tuples

Pn = Pn(K) = {(x0, ..., xn) ∈ An | (x0, ..., xn) 6= (0, ..., 0) mod (x0, ..., xn) ∼ (y0, ..., yn)} ,

4



Figure 2.1 Intersection of Y 2 = X2 − 4 and Y = X

where (x0, ..., xn) ∼ (y0, ..., yn) denotes that the points are equivalent.

Let P ∈ Pn be a zero of a polynomial F ∈ K[X1, ..., Xn+1]. That is, F (x1, ..., xn+1) = 0

for all homogeneous coordinates (x1, ..., xn+1) for P . If P is a zero for F , we write F (P ) = 0.
Let S be a set of polynomials in K[X1, ..., Xn+1] and let

V (S) = {P ∈ Pn | F (P ) = 0 for all F ∈ S}.

Consider the ideal generated by S, and denote it by I . The ideal is homogeneous if it is gener-
ated by homogeneous polynomials. F =

∑
aiX

i is homogeneous of degree d if all coefficients
are zero except for ad. If I is homogeneous we associate it with a subset of Pn,

Definition 2.4. A projective algebraic set is a set VI on the form

VI = {P ∈ Pn | F (P ) = 0 for all homogeneous F ∈ I},

where I is a homogeneous ideal.

We finish this section with the definition of a function field from [4] and the definition of the
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order of a function at a point. Let IK(C) be the ideal generated by homogeneous polynomials,

IK(C) = ({f ∈ K[C] | f is homogeneous and f(P ) = 0 for all P ∈ C}) .

Then a function field is given by Definition 2.5.

Definition 2.5. Let C be a curve defined over K. Then the function field K(C) is the set

K(C) = {f1/f2 | f1, f2 ∈ K[C] homogeneous of the same degree , f2 /∈ IK(C)}

of classes under the equivalence relation f1/f2 ≡ f3/f4 if and only if f1f4 − f2f3 ∈ IK(C).

Let C be a curve and P ∈ C be a smooth point. We define the order of f ∈ K(C) at P as
the smallest integer m such that mP = O and denote it ordP (f). We say that f has a zero at P
if ordP (f) > 0 and if ordP (f) < 0, f has a pole at P [11, p. 18].

2.2 Divisors

The study of elliptic curves requires work with functions on curves. These functions have poles
and zeroes, which will be of great importance. We need a tool to keep track of the poles and
zeroes, and divisors are suitable for this purpose. First, we take a look at the divisor of a curve.
We will follow [10] and [11] and use notation as in the latter.

Definition 2.6. Let P be a point on the curve, C. The divisor of C is a formal sum,

D =
∑
P∈C

nP (P ),

of the points on the curve, with only a finite number of nonzero coefficients nP ∈ Z.

We write divisors with the points in round brackets and place the multiplicity of the points
in front. We will focus on some types of divisors, based on what we call the degree of a divisor.

Definition 2.7. Let D =
∑
P∈C

nP (P ) be a divisor on a curve C. The degree of D is denoted

deg(D) =
∑
P∈C

nP .

In this thesis we shall mostly work with divisors of degree zero. The degree of the divisor is
the sum of what we call the valuation at each point P . We define the valuation vP (D) at a point
P of a divisor D to be the the coefficient of (P ) in D, where D =

∑
P∈C

nP (P ). The set of points

with nonzero valuation is called the support of D. In [10], Miller gives the following definition
of support,

6



Definition 2.8. Let C be a curve and D =
∑
P∈C

nP (P ) be a divisor on C. The support of D is

Supp(D) = {P ∈ C | vP (D) 6= 0}.

We will now look at divisors of functions. Consider a smooth curve C and a function
f ∈ K(C). Then, f has poles or zeroes in finitely many points of C. These points give rise to
the definition of a divisor associated with the function,

Definition 2.9. Let C and f be as described above and P be a point on the curve C. Then,

div(f) =
∑
P∈C

ordP (f)(P ).

Further, this definition is used to define an expression for a function f(D). In Chapter 4, we
describe the Weil pairing in terms of this function and use the notation for proving some of the
properties of the Weil pairing.

Definition 2.10. Let C be a curve, D a divisor and P ∈ C a point. Let vP (D) be the valuation
of f at P and f ∈ K(C) be a function such that Supp(D) ∩ Supp(div(f)) = ∅. Then, we
define

f(D) :=
∏
P∈C

f(P )vP (D).

2.2.1 Properties

The properties of divisors are of great interest in the following chapters. They allow us to com-
pare divisors, make calculations and simplify expressions. Therefore, we present the properties
in this subsection. The first property is a very interesting result, namely the Weil reciprocity law
[10].

Proposition 2.11 (The Weil Reciprocity Law). Let C be a curve and f, g 6= 0 be functions in

the function field K(C) with disjoint supports. Then,

f(div(g)) = g(div(f)).

The proof of Proposition 2.11 is out of scope for this thesis, but a proof can be found in [11,
p. 39].

Definition 2.12. A divisor D ∈ Div(C) is said to be principal if it can be written as D = div(f)

for some f ∈ K(C)∗.

Thus, if a divisor represents the zeroes and poles of a rational function, then the divisor is
principal. In order to know whether a divisor is principal or not, we may calculate two sums,

7



Proposition 2.13. Let E be an elliptic curve and D =
∑
P∈C

nP (P ) a divisor. Then D is a

principal divisor if and only if∑
P∈E

nP = 0 and
∑
P∈E

nPP = O.

The first sum is a sum of integers, while the latter is the addition of the points on E.

A proof of this proposition can be found in [11, p. 63], but is out of scope for this thesis.
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Chapter 3
Elliptic curves

The study of bilinear pairings on elliptic curves is based on the arithmetic of elliptic curves
which will be described in Section 3.2. It is of great interest, as knowledge about the arithmetic
is required in order to understand the rest of this thesis. Elliptic curves are examples of projec-
tive groups and can be defined in the following way. Given a nonsingular cubic curve E and an
identity element O ∈ E, an elliptic curve can be given by the pair (E,O). Often, we denote it
E. If the curve E is defined over K and O ∈ E(K), we say that the elliptic curve is defined
over K, written E/K. It can be shown that an elliptic curve has an abelian group structure.
This is best explained for Weierstrass form, a form which will be described in Section 3.1.

3.1 Weierstrass form

We would like to study the arithmetic of elliptic curves. The first step is to look at how to
present them. Silverman [11, p. 42] writes an elliptic curve as a homogeneous equation,

E : Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3,

where E is defined over K if a1, ..., a6 ∈ K. In addition, he includes a point at infinity denoted
O. The infinity point is given in projective coordinates by O = [0, 1, 0]. By substituting
x = X/Z and y = Y/Z into the equation we get the nonhomogeneous equation,

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

As before, if a1, ..., a6 ∈ K we say that E is defined over K. This representation is called the
Weierstrass form for an elliptic curve. We can simplify the expression in the cases where the
characteristic of K is different from 2 and 3. That gives us a new expression for an elliptic
curve, E : y2 = x3 + ax+ b. This is called the Weierstrass normal form of an elliptic curve and
is what we mostly will use throughout this thesis.

9



3.2 The Arithmetic of Elliptic Curves

In this section, we describe how to do arithmetic of elliptic curves. First, we describe the group
operations in detail in a composition law and show it in figures. Then, we state and prove
the properties of the composition law (except for associativity) and we show an example of
arithmetic on an elliptic curve. The presentation follows Silverman [11].

It can be shown that any line in the projective plane intersects an elliptic curve in exactly
three points if we count multiplicity [11, p. 51]. This gives rise to the definition of the compo-
sition law.

Definition 3.1 (Composition Law). Let L be a line that intersects E in the two points P,Q. If
P = Q, let L be the tangent line of E in P . L will intersect the line in a third point, denoted R.
The line L′ intersects E in R,O and a third point. We denote this point P +Q.

The group operation is shown in Figure 3.1, where the first figure shows how to find P +Q

when P and Q are distinct. The second shows it when they are equal and the third and fourth
figures illustrates the neutral element and the inverse element, respectively.

Figure 3.1 The composition law on elliptic curves

•P •
Q •

R

•
P +Q

Addition P +Q
“Chord rule”

•P •
R

•
2P

Doubling P + P
“Tangent rule”

O

Neutral element O

•P

•
−P

Inverse element −P

Based on the composition law, we can show that the group law has five useful properties.
These properties are essential for the usage of arithmetic of elliptic curves.

Proposition 3.2. The properties of the composition law are given by,

1. For a line L that intersects E at points, P,Q,R, we have (P +Q) +R = O.

2. P +O = P for all P ∈ E.

3. P +Q = Q+ P for all P,Q ∈ E.

4. Let P ∈ E. Then there exists a point of E, denoted −P , such that P + (−P ) = O.

5. Let P,Q,R ∈ E. Then (P +Q) +R = P + (Q+R) .

10



Proof. 1. Let the line L intersect E at the points, P,Q,R. By the composition law, the line
L′ intersects E in (P + Q) and by definition L′ is the line through R and O. It follows
that (P +Q) +R = O.

2. Insert Q = O into the composition law. Then L will intersect E in P,O, R and L′ will
intersectE inR,O, P , but the latter point is defined as P+Q. Thus P = P+Q = P+O
for all P ∈ E.

3. Let P,Q ∈ E. Further, let L and L∗ be the lines passing through P,Q and Q,P , respec-
tively. By the composition law, L and L∗ will intersect E in the same point R. Since both
(P +Q) and (Q+P ) are constructed by letting the line L′ through R and O intersect E,
we get the desired result. P +Q = Q+ P for all P,Q ∈ E.

4. Let P ∈ E and let L be the line through P and O. Then L also intersects E in R. By
3.2.1 and by 3.2.2 we know that

O = (P +O) +R = P +R.

Define (−P ) := R and we get P + (−P ) = O.

5. The proof of associativity is difficult, but a geometric proof can be found in Fulton [2,
p. 63].

The collection of these five properties provides us with a set of rules that can be used for
calculations. These calculations are required for the two types of bilinear pairings that we will
present in the next chapters. In addition, the properties give us that E is an abelian group with
O as identity element [11, p. 52].

Example 3.3. Let E/Q be the elliptic curve E : y2 = x3 + 37. By using the software system
SageMath, we easily find the points on the curves with integer coordinates (in Appendix). These
are: P = (−1, 6), Q = (3, 8), R = (234, 3788). We find that

P +Q = (−7/4,−45/8) and P +R = (−7/4, 45/8),

which gives us that P +Q = −(P +R).

We have discussed the properties of the composition law. Finally, we will define n-torsion
points and show how equality of two points on an elliptic curve affects the relation of their
divisors.

Definition 3.4. Let P be a point on an elliptic curve. P is called an n-torsion point if there
exists a nonzero integer n such that nP = O.

11



A torsion subgroup E[n] consists of all n-torsion points on an elliptic curve, E.

Lemma 3.5. Let C be a curve with genus one and P,Q ∈ C. Then,

(P ) ∼ (Q) if and only if P = Q.

The proof of the lemma is out of scope for this thesis, but a proof can be read in [11, p. 61].

12



Chapter 4
The Weil Pairing

In this chapter, we present the Weil pairing on an elliptic curve. We do the presentation of the
Weil pairing in two different ways in Section 4.1 and show the relation between them. Further,
we state and prove the properties of the Weil pairing in Section 4.2. The proofs are based on
the introduction given in Section 4.1 and equip us with tools to continue our work on the Weil
pairing.

The study of the Weil pairing is a study of algebraic maps between elliptic curves. It is
important for the utility of the Weil pairing that the calculations can be done effectively. We
explain how to compute the pairing in Section 4.3, using Miller’s algorithm. The properties of
the Weil pairing make us able to use the pairing in cryptography. This will be done in Chapter
6.

4.1 Introduction

4.1.1 Version I

Silverman [11] gives a description of the Weil pairing. Consider the isomorphism

E[n] ∼= Z/nZ× Z/nZ,

where E[n] is the group of n-torsion points and E/K is an elliptic curve. The Weil pairing is
a bilinear map from E[n] to the nth roots of unity. We construct it by letting n be an integer
which is relatively prime to p, the characteristics of K, and such that it fulfills the requirement
that n ≥ 2. Next, we choose points on the elliptic curve that we want to pair. Choose Q to
be an n-torsion point and let Q′ ∈ E be chosen such that [n]Q′ = Q. Then, it exists functions
f, g ∈ K(E) that have divisors given by (4.1) and (4.2), respectively.

div(f) = n(Q)− n(O), (4.1)

13



div(g) = [n]∗(Q)− [n]∗(O) =
∑

R∈E[n]

((Q′ +R)−R). (4.2)

Here, [n]∗ maps the divisor (Q) to the divisor (R1) + (R2) + ...+ (Rn) where nRi = Q for all
i ∈ {1, ..., n}. We know that [n](Q′ + R) = [n]Q′ + [n]R = Q+O = Q for all i ∈ {1, ..., n}.
From Corollary 6.4 in [11], we know that the number of elements in the group E[n] is n2.
Hence, we sum over n2 terms. By the group law for points on an elliptic curve, we have that

(Q′ +R)−R = Q′ + (R + (−R)) = Q′ +O = Q′.

Our sum is reduced to a sum over Q′, which gives us div(g) = [n2]Q′ = [n]Q = O.

We show that f ◦ [n] and gn have the same divisor by observing that

div(f ◦ [n]) = div([n]∗f) = [n]∗ div(f) = [m]∗(n(P )− n(O)) = div(gn).

We may therefore assume that f ◦ [n] = gn. Further, we choose a new n-torsion point P on the
elliptic curve and let X be any point on E. P might be equal to Q. We get that

g(X + P )n = f([n]X + [n]P ) = f([n]X +O) = f([n]X) = f ◦ [n](X) = g(X)n.

Thus, g(X + P )/g(X) has an nth root of unity for all X ∈ E, and takes finitely many values.
We define the Weil pairing in terms of our newly created function g,

Definition 4.1. Let E, g, P,Q be as above and let µn = {x ∈ K | xn = 1}. Then, the Weil
pairing is given by

en : E[n]× E[n]→ µn,

en(P ,Q) =
g(X + P )

g(X)
.

4.1.2 Version II

Miller gives a different approach to the Weil pairing in [10]. Like Silverman, he defines func-
tions, but he works more directly with divisors on elliptic curves. Miller suggests that we choose
an integer n > 1 and divisors D1,D2 of the curve such that both nD1 and nD2 are equivalent
toO. He uses Weil functions when he defines the Weil pairing. These functions are constructed
by first looking at their divisors.

Assume that the elliptic curve is on Weierstrass form and start by fixing uniformizers uO, uP
to the point at infinity and to the point P , respectively,

uO := −y/x,
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uP :=

x− x(P ), ord(P ) 6= 2

y − y(P ), ord(P ) = 2

This allow us to use the Laurent series.

Definition 4.2. A Laurent series is a power series with a finite number of terms with negative
exponents in x. The leading term, ltx(f) = lt(f), of a Laurent series is the term in which the
smallest exponent of x occurs. The smallest exponent is called the degree of the Laurent series.
For f(x) = axn + bxn+1 + ..., we have deg(f) = n and lt(f) = axn.

We construct Weil functions inductively. Our goal is to build them such that div(f) =

n((P )− (O)), and we do this by constructing a function fm,P which meets the requirement that
for a suitable m < n,

div(fm,P ) = m(P )− (mP )− (m− 1)(O).

Let f be a nonzero function on E. f is normalized if 1 is the leading coefficient of f as a
Laurent series in uO. We let LP,Q be the normalized function where the line through the points
P,Q is given by LP,Q = 0. If P = Q, it is the tangent line through P . Given the normalized
function, we may define a function gP,Q.

Definition 4.3. Let P,Q ∈ E. We define

gP,Q :=
LP,Q

LP+Q,−(P+Q)

.

We would like find the divisor of this function. That requires knowledge about div(LP,Q)

which is found directly from the definition of addition on elliptic curves. Given a normalized
function LP,Q as described above,

div(LP,Q) = (P ) + (Q) + (−(P +Q))− 3(O).

This can be used to calculate the divisor of gP,Q,

div(gP,Q) = div(LP,Q)− div(LP+Q,−(P+Q))

= (P ) + (Q) + (−(P +Q))− 3(O) (4.3)

− ((P +Q) + (−(P +Q)) + (−((P +Q)− (P +Q)))− 3(O))

= (P ) + (Q)− (P +Q)− (O).

We are now ready to define our Weil functions, fn,P . First, we define the functions for the
base cases where n ∈ {0, 1}. Define constant functions f0,P = f1,P = 1. The induction step is
given by the following definition.
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Definition 4.4. Let P ∈ E and f0,P = f1,P = 1. Then for n > 0, define,

fn+1,P := fn,PgP,nP ,

f−n,P :=
1

fn,PgnP,−nP
.

To increase the speed of the computations, the following lemma might be useful,

Lemma 4.5. Let P,Q ∈ E and let m, n be integers. Then

fm+n,P := fm,Pfn,PgmP,nP

fmn,P := fn
m,Pfn,mP = fm

n,Pfm,nP

div(fn,P ) = n(P )− (n− 1)(O)− (nP ).

Figure 4.1 Addition of points

LP,iP = 0
•P

•
iP

• − (P + iP )
= −(i+ 1)P

LP+iP,−(P+iP ) = 0

• P + iP
= (i+ 1)P

Example 4.6. Assume that f0,P = f1,P = 1. We know that fi,P should be built such that
div(fi,P ) = i(P )− (iP )− (i− 1)(O). Further, we look at the divisor of fi+1,P . By definition,
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div(fi+1,P ) = (i+ 1)(P )− ((i+ 1)P )− i(O). We notice the following relation,

div(fi+1,P ) = (i+ 1)(P )− ((i+ 1)P )− i(O)

= i(P )− (iP )− (i− 1)(O)︸ ︷︷ ︸
div(fi,P )

+ (P ) + (iP )− ((i+ 1)P )− (O)︸ ︷︷ ︸
div(LP,iP )−div(LP+iP,−(P+iP ))

= div(fi,P ) + div(gP,iP ).

The last equality is due to (4.3) and Lemma 4.5. In Figure 4.1, we see the lines LP,iP = 0

and LP+iP,−(P+iP ) = 0. We observe that fi+1,P will get the desired divisor if we let fi+1,P :=

fi,PgP,iP .

Definition 4.7. The Weil pairing on an elliptic curve E uses Weil functions and provides a
family of maps ẽn : E[n] × E[n] → µn, where µn is the algebraic group of nth roots of unity.
The maps are defined over K and there is one for each positive integer n relatively prime to
p = char(K).

ẽn(D1,D2) =
f1(D2)

f2(D1)
(4.4)

It is useful to express the Weil pairing in the following way.

Proposition 4.8. Let T ∈ E be a point different from P,Q,Q− P, and O. Then (P )− (O) ∼
(P + T )− (T ). In addition, (Q)− (O) and (P +Q)− (T ) have disjoint supports. We get that

ẽn(P,Q) =
fn,Q(T )

fn,P (−T )

fn,P (Q− T )

fn,Q(P + T )
. (4.5)

Proof. By the definition of the Weil pairing, there is a function f1 such that div(f1) = n(P +

T )− n(T ) and

ẽn(P,Q) =
f1(Q)/f1(O)

fn,Q(P + T )/fn,Q(T )
. (4.6)

Observe that div(f1) = div(fn,P ◦ τ−T ). If we insert it to (4.6), we get the desired result.

4.1.3 Proof of the Relation Between Version I and II.

The proof of the relation between the two versions of the Weil pairing in Sections 4.1.1 and 4.1.2
follows [8]. First, we look at the assumptions made in the two approaches to the Weil pairing.
Both approaches choose an integer n > 1 relatively prime to p = char(K). The formulas for
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version I and II of the Weil pairing are given in (4.7) and (4.8), respectively.

en(P ,Q) =
g(X + P )

g(X)
, (4.7)

ẽn(D1,D2) =
f1(D2)

f2(D1)
. (4.8)

Theorem 4.9. Let P,Q ∈ E[n]. Then

en(P ,Q) =
1

ẽn(P ,Q)
.

Proof. Assume that D1 = (P ) − (O),D2 = (Q) − (O), where P ,Q ∈ E[n]. The divisors
nD1 and nD2 are principal since P and Q are n-torsion points. Therefore, it exists functions
f1, f2 ∈ K(E) with divisors div(f1) = nD1 and div(f2) = nD2.

Let us assume that Q′ and P ′ are such that [n]Q′ = Q and [n]P ′ = P . Observe that, by the
same argument as for (4.2), it exists a function g1 such that div(g1) =

∑
R∈E[n]

((P ′+R)−R) and

gn1 = f1 ◦ [n]. We choose X ∈ E such that

D = (n− 1)(P ′ +X) + (P ′ − P +X)− n(X)

is a divisor with Supp(D) ∩ Supp(div(g)) = ∅ and let h ∈ K(E) be a function with div(h) =

D.

To prove the relation between Silverman’s and Miller’s version of the Weil pairing, we look
at the divisors of h and g, where g is given in (4.2). First, we express g(div(h)) in terms of
en(P,Q).

g(div(h)) = g(D)

=
g(P ′ +X)n−1g(P ′ − P +X)

g(X)n

=
g(P ′ +X)n

g(X)n
g(P ′ − P +X)

g(P ′ +X)
Let P ′′ = P ′ − P +X

=
f ◦ [n](P ′ +X)

f ◦ [n](X)

g(P ′′)

g(P ′′ + P )
Given en(P,Q) as in Definition 4.1

=
f(P ′ + [n]X)

f([n]X)

1

en(P,Q)
.

Next, we look at h(div(g)) and observe that

h(div(g)) = h

 ∑
R∈E[n]

(Q′ +R)− (R)

 =
∏

R∈E[n]

h(Q′ +R)

h(R)
.
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Based on that, we define a new function H ∈ K(E) as

H(S) =
∏

R∈E[n]

h(S +R) =
∏

R∈E[n]

h ◦ τR(S)

with divisor given by

div(H) =
∑

R∈E[n]

div(h ◦ τR)

=
∑

R∈E[n]

((n− 1)(P ′ +X −R) + (P ′ − P +X −R)− n(X −R))

=
∑

R∈E[n]

((n− 1)(P ′ +X +R) + (P ′ +X +R)− n(X +R))

= n
∑

R∈E[n]

((P ′ +X +R)− (X +R))

= n div(g1 ◦ τ−X)

= div(gn1 ◦ τ−X).

It follows that H = gn1 ◦ τ−X = f1 ◦ [n] ◦ τ−X . We express h(div(g)) in terms of f1,

h(div(g)) =
∏

R∈E[n]

h(Q′ +R)

h(R)
=
H(Q′)

H(O)
=
f1 ◦ [n] ◦ τ−X(Q′)

f1 ◦ [n] ◦ τ−X(O)

=
f1 ◦ [n](Q′ −X)

f1 ◦ [n] ◦ τ−X(O)
=
f1(Q− [n]X)

f1(−[n]X)
.

Finally, we use that h(div(g)) = g(div(h)) by Weil reciprocity law and that f = f2 to complete
the proof. As we insert the expressions for both h(div(g)) and g(div(h)), we get

f1(Q− [n]X)

f1(−[n]X)
=
f2(P

′ + [n]X)

f2([n]X)

1

en(P,Q)
.

We reformulate the equation to

en(P,Q) =
f1(−[n]X)

f1(Q− [n]X)

f2(P
′ + [n]X)

f2([n]X)

1

en(P,Q)
=
f2(D1)

f1(D2)
=

1

ẽn(P,Q)
,

which proves the relation en(P,Q) = 1
ẽn(P,Q)

= ẽn(Q,P ).

4.2 Properties of the Weil Pairing

We have shown that Miller and Silverman describe two closely related pairings . Our next step
is to prove that the Weil pairing is bilinear, alternating, nondegenerate and compatible. We state
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the properties in the following lemmas.

Lemma 4.10 (Bilinearity). If P,Q,R ∈ E[n], then

en(P +Q,R) = en(P,R)en(Q,R),

en(P,Q+R) = en(P,Q)en(P,R).

Proof. The proof of bilinearity follows Miller [10]. Let D1,D2,D3 be divisors on the elliptic
curve E, with disjoint supports. First, we prove linearity in the first factor. By Definition 4.7,
given that f1f2(D3) := f1(D3)f2(D3),

en(D1 + D2,D3) =
f1f2(D3)

f3(D1 + D2)
.

Observe that by Definition 2.10 the denominator can be written as follows,

f3(D1 + D2) =
∏
P∈E

f3(P )v(D1+D2)

=
∏
P∈E

f3(P )v(D1)+v(D2)

=
∏
P∈E

f3(P )v(D1)
∏
P∈E

f3(P )v(D2)

= f3(D1)f3(D2).

Further, we see that the numerator is given by f1f2(D3) = f1(D3)f2(D3) which gives us the
desired result,

en(D1 + D2,D3) =
f1f2(D3)

f3(D1 + D2)
=
f1(D3)f2(D3)

f3(D1)f3(D2)
= en(D1,D3)en(D2,D3).

In the same way, it can be shown that linearity holds for the second factor.

Lemma 4.11 (Alternating). If P ∈ E[n], then en(P, P ) = 1. Together with linearity, we get

that if P,Q ∈ E[n], then

en(P,Q) = en(Q,P )−1

Proof. The proof follows Miller [10]. Suppose that T is a point different from O and ±P , then

en(P, P ) =
fn,P (T )

fn,P (−T )

fn,P (P − T )

fn,P (P + T )
. (4.9)
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We consider two cases. Let T be of order 2, giving us T = −T . Inserted in (4.9) we get,

en(P, P ) =
fn,P (T )

fn,P (−T )

fn,P (P − T )

fn,P (P + T )
=
fn,P (T )

fn,P (T )

fn,P (P + T )

fn,P (P + T )
= 1.

We check that T meets the requirement stated in the beginning of the proof, namely that T /∈
{O,±P}. Case 1: n is odd. Since P is an n-torsion point and T a point of order 2, it follows
that T 6= ±P . Further, T cannot be O because O is not of order 2. Case 2: n is even. Since n
is defined to be relatively prime to p = char(K), we need the characteristics to be odd. There
are three points of order 2 in E[2]. We know that O is not one of them and at most two of them
are ±P . Therefore, we may choose the last point as T .

Lemma 4.12 (Non-degeneracy). If en(P,Q) = 1 for all Q ∈ E[n], then P = O and if

en(P,Q) = 1 for all P ∈ E[n], then Q = O.

Proof. The proof of nondegeneracy follows Silverman [11]. Assume that Q ∈ E[n] is such that
en(P,Q) = 1 for all P ∈ E[n]. Then, g(X + P ) = g(X) for all P ∈ E[n].

By Proposition 9.34 in [15], it exists a function h ∈ K(E) such that g = h ◦ [n]. This gives
us the relation between the functions h and f ,

(h ◦ [n])n = gn = f ◦ [n].

Since (h ◦ [n])n = (hn) ◦ [n], we get that hn = f . Thus,

n div(h) = div(hn) = div(f) = n(Q)− n(O),

where the last equality is due to (4.1). Hence, div(h) = (Q) − (O). We know that div(h) = 0

and therefore (Q) ∼ (O).
E is an elliptic curve and thus has genus 1. From Lemma 3.5, it implies that Q = O. The

Weil pairing is therefore nondegenerate in P , and by Lemma 4.11 it is also nondegenerate in
Q.

Lemma 4.13 (Compatibility). Let P ∈ E[mn] and Q ∈ E[n]. Then

emn(P,Q) = en(mP,Q)

Proof. The proof of compatibility follows Miller [10]. To prove the compatibility property, we
write out the expression for both emn(P,Q) and en(mP,Q). We show that the first expression
can be reformulated to be equal to the latter. First, assume that P ∈ E[mn] and Q ∈ E[n].
Suppose further that there are functions f1, f2, f3 such that,

div(f1) = mn((P )− (O)),
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div(f2) = n((Q+ T )− (T )),

div(f3) = n((mP )− (O)).

The divisors of the functions are used in the definition of the Weil pairing. We insert them in
(4.5), giving the expressions of the desired Weil pairings,

emn(P,Q) =
f1((Q+ T )− (T ))

fm
2 ((P )− (O))

,

en(mP,Q) =
f3((Q+ T )− (T ))

f2((P )− (O))
.

We would like to show that they are equal. To do that, we first express div(f3) in terms of
div(f1). This is done by adding and subtracting the same element in the equation, allowing us
to extract div(f1) from the expression. We get

div(f3) = n((mP )− (O))

= n((mP )− (O) +m(P )−m(P ) +m(O)−m(O))

= n((mP )− (m− 1)(O)−m(P )) +mn((P )− (O))

= div(fn
4 ) + div(f1)

= div(fn
4 f1),

where div(f4) = (mP ) − (m − 1)(O) −m(P ). Further, we use the relationship between the
divisors of f3 and f1 to express emn(P,Q). Let

emn(P,Q) =
f1((Q+ T )− (T ))

fm
2 ((P )− (O))

f1 = f3f
−n
4

=
f3f

−n
4 ((Q+ T )− (T ))

fm
2 ((P )− (O))

=
f3((Q+ T )− (T ))f−n4 ((Q+ T )− (T ))

fm
2 ((P )− (O))

=
f3((Q+ T )− (T ))

fn
4 ((Q+ T )− (T ))fm

2 ((P )− (O))

=
f3((Q+ T )− (T ))

f4(n((Q+ T )− (T )))fm
2 ((P )− (O))

n((Q+ T )− (T )) = div(f2)

=
f3((Q+ T )− (T ))

f4(div(f2))fm
2 ((P )− (O))

Weil reciprocity law

=
f3((Q+ T )− (T ))

f2(div(f4))fm
2 ((P )− (O))

=
f3((Q+ T )− (T ))

f2(div(f4) +m((P )− (O))
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=
f3((Q+ T )− (T ))

f2((mP ) + (m− 1)(O)−m(P ) +m(P )−m(O))

=
f3((Q+ T )− (T ))

f2((mP )− (O))

= en(mP,Q).

We have shown compatibility for the Weil pairing.

Proposition 4.14. The Weil pairing has the following properties:

1. Bilinearity: en(P +Q,R) = en(P,R)en(Q,R),

en(P,Q+R) = en(P,Q)en(P,R).

2. Alternating: If P ∈ E[n], then en(P, P ) = 1. Together with linearity, we get that if

P,Q ∈ E[n], then en(Q,P ) = en(Q,P )−1

3. Non-degeneracy: If en(P,Q) = 1 for all Q ∈ E[n], then P = O.

If en(P,Q) = 1 for all P ∈ E[n], then Q = O.

4. Compatibility: Let P ∈ E[mn] and Q ∈ E[n]. Then emn(P,Q) = en(mP,Q).

Proof. The proof of Proposition 4.14 follows immediately Lemma 4.10, 4.11, 4.12 and 4.13.

4.3 Calculations

The Weil pairing can be calculated using Miller’s algorithm. The algorithm allows us to effi-
ciently find functions fP and fQ such that we can calculate the Weil pairing using Proposition
4.8. We will describe how to do calculations on an elliptic curve given by E : y2 = x3 +ax+ b.
The calculations follow Section XI.8 in Silverman [11].

First, choose an integer n and write the binary expansion,

n = ε0 + ε1 · 2 + ε2 · 22 + ...+ εt · 2t,

where εt 6= 0 and εi ∈ {0, 1} for i = 0, 1, ..., t. Further, choose two n-torsion points P =

(xP , yP ), Q = (xQ, yQ) from the elliptic curve such that they span E[n]. In addition, we need
a point on the elliptic curve with order different from n, denoted T . As described in Section
4.1.2, we need a function depending on LP,Q and LP+Q,−(P+Q). We consider the line through P
and Q. This line is given by LP,Q : y = λx+ ν, where the values of λ and ν depend on whether
the x-coordinates of P and Q are equal or not. We have that

λ =
yQ − yP
xQ − xP

, xP 6= xQ,
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λ =
3x2P + a

2yP
, xP = xQ,

ν =
yPxQ − yQxP
xQ − wP

, xP 6= xQ,

ν =
−x3P + 2b

2yP
, xP = xQ.

Given λ and a point, P , on the line the equation for the line is LP,Q : y = yP + λ(x− xP ). The
line through P + Q and −(P + Q) is vertical and thus given by x = xP+Q. By the addition
formula, we get that xP+Q = λ2 − xP − xQ. It follows that LP+Q,−(P+Q) : x = λ2 − xP − xQ.
The function gP,Q in Definition 4.3 is therefore given by

gP,Q =
y − yP − λ(x− xP )

x+ xP + xQ − λ2
.

We use Miller’s algorithm to find the Weil functions, as shown in Algorithm 1. We evaluate fP
at −T and Q − T and evaluate fQ at T and P + T . By inserting the results into (4.5), we get
the desired result.

Algorithm 1 Miller’s algorithm
Input: P ∈ E[n], T ∈ E, n = (1εt−1...ε1ε0)2
Output: fn,P (T )

1: S ← P
2: f ← 1
3: for i = t− 1 down to 0 do
4: f ← f 2 · gS,S(T )
5: S ← 2S
6: if εi = 1 then
7: f ← f · gS,P (T )
8: S = S + P
9: end if

10: end for
11: return f
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Chapter 5
The Tate Pairing

The Tate pairing is based on the work of John Tate [12, 13] and extended by Stephen Licht-
enbaum [7]. It is therefore also referred to as the Tate-Lichtenbaum pairing. We describe the
pairing in Section 5.1. Further, we state and prove the properties of the Tate pairing in Section
5.2 and show how to calculate the pairing in Section 5.3. The Tate pairing is closely related to
the Weil pairing, but we shall see that it requires less computations [11].

5.1 Introduction

In order to define the Tate pairing, we make some assumptions as done in Galbraith, Harrison
and Soldera [5]. We consider an elliptic curve E over a finite field Fq and let n be such that
gcd(q, n) = 1 and n|#E(Fq), where #E(Fq) is the number of points on the elliptic curve over
Fq. The presentation of the Tate pairing follows Galbraith [4].

Definition 5.1. Let E and n be as described above and µn = {x ∈ Fq | xn = 1}. Then there
are two families of maps, τn and tn, given by

τn : E(Fq)[n]× E(Fq)/nE(Fq)→ F∗qk/(F
∗
qk)n,

tn : E(Fq)[n]× E(Fq)/nE(Fq)→ µn.

The first is called the Tate pairing and the second is called the modified Tate pairing.

Let us clarify the notation. E(Fq)[n] denotes the n-torsion points on the elliptic curve. Fur-
ther, E(Fq)/nE(Fq) is a quotient group. F∗

qk
/(F∗

qk
)n can be considered as the set of equivalence

classes of F∗
qk

, where a ≡ b if and only if there exists a c ∈ F∗
qk

such that a = bcn.

We define the Tate pairing by choosing P ∈ E(Fq)[n] and Q ∈ E(Fq). The divisor n(P )−
n(O) is principal, and thus there exist a function f ∈ Fq(E) such that div(f) = n(P )− n(O).
In addition, we want D ∼ (Q) − (O) to have support disjoint from Supp(div(f)) and be a
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divisor on E. The Tate pairing is given by

τn(P,Q) = f(D).

We would like the Tate pairing to be well defined, but this is not necessarily the case for the
first pairing since it is a map into a quotient group. To fulfill this requirement, we exponentiate
the result in (qk − 1)/n, where k ∈ N is the smallest nonzero integer such that n|(qk − 1). This
will eliminate all multiples of order n, giving what we call the modified Tate pairing.

Proposition 5.2. The modified Tate pairing,

tn(P,Q) = τ(P,Q)(q
k−1)/n,

is well defined.

Proof. To prove that the modified Tate pairing is well defined, we first show that the Tate pairing
is well defined up to nth powers. This is shown by proving the two following lemmas.

Lemma 5.3. Let P ∈ E(Fq)[n] and let f ∈ Fq(E) be such that div(f) = n(P )−n(O). Further,

let D1,D2 be divisors on E defined over Fqwith disjoint support from {O, P}. Suppose that

D1 ∼ D2 ∼ (Q)− (O) for Q ∈ E(Fq). Then f(D1)/f(D2) ∈ (F∗q)n.

Proof. Let D2 = D1 + div(h) for a function h ∈ Fq(E). Then Supp(div(h)) ∩ {O, P} = ∅
and

f(D2) = f(D1 + div(h)) = f(D1)f(div(h)). (5.1)

This gives us f(D2)/f(D1) = f(div(h)) and by Weil reciprocity, we have that

f(div(h)) = h(div(f)) = h(n(P )− n(O))

= h(n(P ))/h(n(O)) = (h(P )/h(O))n ∈ (F∗q)n.

Lemma 5.4. Let P, f,D1,D2 be as in Lemma 5.3, but suppose that D1 ∼ (Q1) − (O) and

D2 ∼ (Q2)− (O) where Q1, Q2 ∈ E(Fq) are such that Q1 6= Q2 and Q1−Q2 ∈ nE(Fq). Then

f(D1)/f(D2) ∈ (F∗q)n.

Proof. Let Q1 − Q2 = [n]R for some point R ∈ E(Fq). Lemma 5.3 takes care of the case
where R = O, so we assume that R 6= O. Further,

(Q1)− (Q2) = n((R + S)− (S)) + div(h0)
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for some S ∈ E(Fq) with S /∈ {O,−R,P, P −R} and some h0 ∈ Fq(E). Let

D1 = (Q1)− (O) + div(h1),

D2 = (Q2)− (O) + div(h2).

We insert this into (5.1) and get that

f(D2) = f(D1 − n((R + S)− (S)) + div(h2)− div(h1)− div(h0))

= f(D1)f((R + S)− (S))nf(div((h2/(h0h1))).

We know that Supp(div(h2/(h0h1))) ⊆ Supp(D1) ∪ Supp((D2) ∪ {R + S, S} is disjoint
from {O, P}. Thus, we may use Weil reciprocity to finish the proof.

f(div(h2/(h0h1))) = (h2/(h0h1))(div(f))

= (h2/(h0h1))(n(P )− n(O))

=
(h2/(h0h1))(n(P ))

(h2/(h0h1))(n(O))

=

(
(h2/(h0h1))(P )

(h2/(h0h1))(O)

)n

∈ (F∗q)n.

The Tate pairing is well defined up to nth powers by Lemma 5.3 and Lemma 5.4. It follows
by construction that the modified Tate pairing is well defined. Thus, Proposition 5.2 is proved.

5.2 Properties

In this section we state and prove some properties of the Tate pairing. The same properties were
proved for the Weil pairing in Chapter 4.2, so we focus on the parts that differ from the proofs
for the Weil pairing.

The Tate pairing is closely related to the Weil pairing [4, p. 577]. It allows us to make use
of some of the same algorithms when proving the properties of the pairings. The Tate pairing is
bilinear and nondegenerate and we describe these properties in the following lemmas.

Lemma 5.5 (Bilinearity). If P, P1, P2 ∈ E[n] and Q,Q1, Q2 ∈ E/nE, then

tn(P1 + P2, Q) = tn(P1, Q)tn(P2, Q),

tn(P,Q1 +Q2) = tn(P,Q1)tn(P,Q2).
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Proof. The proof of bilinearity follows Galbraith [3] and we consider two cases; linearity in
first and in second factor.

First, let P1 + P2 = P3 and let g be a function such that

(P3)− (O) = (P1)− (O) + (P2)− (O) + (g).

If f1 and f2 are such that (f1) = n(P1)− n(O) and (f2) = n(P2)− n(O), then

(f1f2g
n) = (f1) + (f2) + (gn)

= (f1) + (f2) + n(g)

= n(P1)− n(O) + n(P1)− n(O) + n(g)

= n(P1)− n(O) + n(P1) + n(g)− n(O)

= n(P3)− n(O).

We let D ∼ (Q)− (O) be such that Supp(D) ∩ Supp{P1, P2, P3, Q} = ∅. This gives,

tn(P1 + P2, Q) = tn(P3, Q) = f1f2g
n(D) = f1(D)f2(D)g(D)n.

Since we work in F∗
qk
/(F∗

qk
)n, we get that g(D)n = 1. It follows that

f1(D)f2(D)g(D)n = tn(P1, Q)tn(P2, Q),

and we have completed the proof of linearity in the first factor.

Next, let us consider linearity in second factor. First, we assume thatQ1+Q2 = Q3. Further,
we observe that if D1 ∼ (Q1)− (O) and D2 ∼ (Q2)− (O), then D1 + D2 ∼ (Q3)− (O). We
use this to show linearity in second factor,

tn(P,Q1 +Q2) = tn(P,Q3)

= f(D1 + D2)

= f(D1)f(D2)

= tn(P,Q1)tn(P,Q2).

Lemma 5.6 (Non-degeneracy). IfO 6= P ∈ E[n], then there existsQ ∈ E such that tn(P,Q) /∈
(F∗

qk
)n.

Proof. The proof of nondegeneracy follows Washington [15]. Let Q ∈ E(Fq) and let Q = nR

for someR ∈ E(Fq). Recall that φ = φq is the qth power Frobenius endomorphism. We assume
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that

τn(P,Q) = en(P,R− φR) = 1 for all P ∈ E(Fq)[n],

and want to show that this is only possible if Q ∈ nE(Fq) which proves nondegeneracy in the
second factor. Next, we want to show that nondegeneracy in the first factor follows from the
fact that E(Fq)[n] and E(Fq)/nE(Fq) have the same order. In order to do this we have to state
and prove multiple lemmas.

Let 〈, 〉 : B×A→ µn be a bilinear pairing withA,B finite abelian groups written additively.
Choose the pairing such that na = 0 for all a ∈ A and nb = 0 for all b ∈ B, n ≥ 1. We consider
the homomorphism, ψn : b 7→ 〈b, a〉 for a fixed a and let the set of homomorphisms from B to
µn be denoted Hom(B,µn). We define a product for the group by letting

(α · β)(b) = α(b) · β(b) for all b ∈ B

where α, β ∈ Hom(B,µn).

We need to show that nondegeneracy in the second factor implies nondegeneracy in the first
factor. To do this, we show that it holds for groups of the same order, and show that they indeed
have the same order.

Lemma 5.7. Assume 〈, 〉 : B × A→ µn is nondegenerate in A. Then,

1. The map from A to Hom(B,µn) given by a 7→ ψn is injective.

2. If #A = #B, then 〈, 〉 is nondegenerate in B.

Proof. Suppose that 〈b, a〉 = ψa(b) = 1 for all b ∈ B. Then, by nondegeneracy of A, we get
that a = 0. Thus, a 7→ ψa is injective and we have completed the proof of (1). Further, assume
that #A = #B and let

B1 = {b ∈ B|〈b, a〉 = 1 for all a ∈ A}.

Then, for each a ∈ A, we have that βa : B/B1 → µn is a well defined homomorphism given
by βa(b mod B1) = 〈b, a〉. By (1) we know that the map A → Hom(B/B1,µn) is injective.
By Lemma 11.26 in [15] we know that Hom(B/B1,µn) has order #B/#B1. We have already
assumed that #A = #B, but then we must have #B1 = 1. It follows that B1 = 0, giving us
that 〈, 〉 is nondegenerate in B.

Lemma 5.8. Let A,B and M be finite abelian groups written additively.

1. Suppose that 〈, 〉 : B × A → µn is nondegenerate in both A and B. Then #A = #B,

and A ' Hom(B,µn) and B ' Hom(A,µn).
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2. Let α : M →M be a homomorphism. Then # Kerα = #M/#α(M).

Proof. 1. We have an injection from A to Hom(B,µn) by Lemma 5.7, so

#A ≤ # Hom(B,µn) = #B.

By the same argument, we have that

#B ≤ # Hom(A,µn) = #A.

Thus, #A = #B, and the injections are isomorphisms.

2. The result follows from Theorem B.6 in [15], where it is stated that

#M = (# Kerα)(#α(M)).

We have seen in Lemma 5.7 that nondegeneracy in first factor follows from nondegeneracy
in second factor if the groups have the same order. To prove that they do, the next lemma is
crucial.

Lemma 5.9. Assume A and B are finite abelian groups such that nx = 0 for all x ∈ A and for

all x ∈ B. Suppose that 〈, 〉 : B × A → µn is a bilinear pairing and nondegenerate in both A

and B. Let C be a subgroup of B and define a mapping

ψ : A→
∏
c∈C

µn, where a 7→ (..., 〈c, a〉, ...).

Then #ψ(A) = #C.

Proof. By Lemma 5.8, A ' Hom(B,µn). We express the kernel of ψ, first in terms of A and
then using the isomorphism.

Kerψ = {a ∈ A | 〈c, a〉 = 1, for all c ∈ C},

Kerψ = {f ∈ Hom(B,µn) | f(C) = 1}.

Note that a homomorphism from B/C to µn sends C to 1, but this is the same as our homomor-
phism does. We know that a homomorphism from B/C to µn has order #(B/C) = #B/#C.
We use that #A = #B and finish the proof by observing that

#ψ(A) = #A/# Kerψ = #A/#(B/C) = #C.
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Lemma 5.10. Let φ = φq be the qth power Frobenius endomorphism of E. Then Kerψ =

(φ− 1)E[n].

The proof of Lemma 5.10 is out of scope for this thesis, but a proof can be found in [15,
p. 379].

Recall our assumption that τn(P,Q) = en(P,R − φR) = 1 for all P ∈ E(Fq)[n]. Then,
R− φR ∈ Kerψ. From Lemma 5.10 we know that Kerψ = (φ− 1)E[n], but then R− φR =

φT − T for some T ∈ E[n]. We get that φ(R + T ) = R + T and know that R + T gets
coordinates in Fq, by properties of φ. It follows that R + T ∈ E(Fq).

By construction, Q = nR = nR + O = nR + nT = n(R + T ). Thus, Q ∈ nE(Fq). We
have therefore shown that

tn : E(Fq)[n]× E(Fq)/nE(Fq)→ µn.

is nondegenerate in the second factor. By Lemmas 5.7 and 5.8 with α = n, E(Fq)[n] and
E(Fq)/nE(Fq) have the same order and the pairing is indeed nondegenerate in first factor.

5.3 Calculations

We calculate the Tate pairing using Miller’s algorithm, as described in Algorithm 1. Consider
an elliptic curve E : y2 = x3 + ax + b, and let D ∼ (Q) − (O) be a divisor. Further, choose
P ∈ E(Fq)[n] and Q ∈ E(Fq). By Proposition 5.2,

tn(P,Q) = f(D)(q
k−1)/n.

To find function a f , we apply Miller’s algorithm to D. The calculations are done as in Section
4.3, but we only need to use Miller’s algorithm once to find the Tate pairing.

31



32



Chapter 6
Pairings in Cryptography

6.1 Tripartite Diffie-Hellman

The tripartite Diffie-Hellman key agreement allows three persons to agree on a shared secret
key using pairings on elliptic curves. The first version was given by Joux in [6] and required
agreement of two independent points on an elliptic curve. Later, Verheul [14] gave a protocol
using one point P and a distortion map. A distortion map Ψ is defined as follows. Let P,Q be
points such that ord(P ) = n and O 6= Q ∈ 〈P 〉. Then Ψ is an endomorphism that maps Q to a
point independent of Q, denoted Ψ(Q), where Ψ(Q) ∈ E[n]. Verheul suggests to use a version
of the modified Tate pairing given by

t̂n(P,Q) = tn(P,Ψ(Q)). (6.1)

Figure 6.1 Tripartite Diffie-Hellman

Alice

Carol Bob

aP

aPcP

cP

bP

bP

Let Alice, Bob and Carol be three persons who want to agree on a shared key. First, they
decide upon an elliptic curve E over Fq and a point P ∈ E(Fq) in public. Their second step
is to individually choose an element at random from {1, . . . , n − 1}. They choose a, b and c,
respectively. Alice computes and publishes aP , as shown in Figure 6.1. In the same way, Bob
and Carol publishes bP and cP . Now, they can all compute their shared key using the pairing
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given in (6.1). They get the shared key

t̂n(P, P )abc = t̂n(bP, cP )a = t̂n(aP, cP )b = t̂n(aP, bP )c.

The security of the tripartite Diffie-Hellman protocol relies on the difficulty of computing
t̂n(P, P )abc if you are given (P, aP, bP, cP ) where a, b, c are random numbers.

6.2 The MOV-attack

Menezes, Okamoto and Vanstone gave name to the MOV-attack when publishing [9]. The
attack consists of a reduction from a discrete logarithm problem on an elliptic curve to a discrete
logarithm problem in a finite field. They use the Weil pairing to reduce a problem from E(Fq)
to F∗

qk
.

Let P,Q ∈ E(Fq), ord(P ) = n and assume that gcd(q, n) = 1. The problem handled in
the MOV-attack is to find an a such that aP = Q, given that such an a exists. This can be done
using the Weil pairing and the following is a simple example.

Let S ∈ E[n] and u = en(P, S), v = en(Q,S). The Weil pairing is bilinear and thus

v = en(Q,S) = en(aP, S) = en(P, S)a = ua.

Since this is a discrete logarithm problem in Fqk , it can be solved there instead.
We are not guaranteed that there exists an a such that aP = Q, as showed in the next lemma.

Proposition 6.1. There exists an a such that aP = Q if and only ifQ ∈ E[n] and en(P,Q) = 1.

Proof. The proof follows [15, p. 155].
Let aP = Q. Then nQ = n(aP ) = a(nP ) = O and thus Q ∈ E[n]. We observe that

en(P,Q) = en(P, aP ) = en(P, P )a = 1a = 1.
Now, assume that Q ∈ E[n] and en(P,Q) = 1. We know that E[n] ∼= Z/nZ × Z/nZ by

Theorem 3.2 in [15, p. 79]. Let R be a point such that {P,R} is a basis of E[n]. Thus, we can
express Q as a linear combination of P and R, Q = xP + yR for some integers x, y. It can be
shown that en(P,R) = ζ is a primitive nth root of unity [15, p. 87]. By assuming en(P,Q) = 1,
we get

1 = en(P,Q) = en(P, xP + yR) = en(P, P )xen(P,R)y = ζy.

Hence, y ≡ 0 ( mod n), giving us yR = O. It follows that Q = xP .
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Appendix A

Example 3.3:

1000 A = 0
B = 37

1002 E = E l l i p t i c C u r v e ( [ A, B ] ) ; p r i n t E

1004 p o i n t s = E . i n t e g r a l _ p o i n t s ( )
O = E ( 0 )

1006

p r i n t ( " The c u r v e has t h e s e p o i n t s w i th i n t e g e r c o e f f i c i e n t s : " )
1008 p r i n t p o i n t s

p r i n t ( " The i n f i n i t y p o i n t i s g i v e n by O = " + s t r (O) )
1010

P = p o i n t s [ 0 ]
1012 Q = p o i n t s [ 1 ]

R = p o i n t s [ 2 ]
1014

i f P + Q == −(P + R) :
1016 p r i n t "We o b s e r v e t h a t P + Q = −(P + R) , where "

p r i n t " ( P+Q) = " + s t r ( P+Q)
1018 p r i n t " ( P+R) = " + s t r ( P+R)
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