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Abstract—Multiple measurement vector (MMYV) enables joint
sparse recovery which can be applied in wide range of appli-
cations. Traditional MMV algorithms assume that the solution
has independent columns or correlation among the columns. This
assumption is not accurate for applications like signal estimation
in photoplethysmography (PPG). In this paper, we consider
a structure for the solution matrix decomposed into a sparse
matrix with independent columns and a square mixing matrix.
Based on this structure, we find the uniqueness condition for ¢,
minimization. Moreover, an algorithm is proposed that provides
a new cost function based on the new structure. It is shown that
the new structure increases the recovery performance especially
in low number of measurements.

I. INTRODUCTION

There are many signals of interest that can be well ap-
proximated in a few number of nonzero elements in a certain
domain. Compressed sensing (CS) deals with sparse recovery
from single measure vector (SMV). Multiple measurement
vector (MMYV) is the generalization of CS where multiple
measurement vectors are available. This problem has attracted
many applications such as image processing [1], [2], biomed-
ical signal processing [3]-[5], speech processing [6] and radar
signal processing [7]. The MMV problem can be formulated
as

Y = X, (1)

where Y € RMxL X ¢ RVNXL and & € RM*N are
an observation matrix, a row sparse matrix and a known
dictionary where M < N. In order to find the solution with
the lowest number of nonzero rows, the following optimization
problem is considered,
m)}n R(X) st. Y =®X, 2)
where R(X) shows the number of nonzero rows of X.
Many algorithms have been proposed to solve MMV and
SMV problems. For example, one of the approaches was
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sparse representation via a greedy search like orthogonal
matching pursuits (OMP) [8], [9]. In [10], [11], it was proved
that OMP can result in the sparsest solution under a specific
condition. There were some works to extend the greedy
algorithms for MMV problem like [12]. Beside the OMP,
there are algorithms such as FOCUSS [13] and T-MSBL [14]
whose cost functions are not convex but practically perform
very well. The shortcoming of these algorithms was that they
had local minima [15]. Another well-known approach was
minimization of ¢; norm to obtain the sparse solution like
basis pursuit and LASSO [16], [17]. The ¢; minimization
algorithms attracted attentions due to their convex property
and easy implementation. In [18], a condition was presented
to guarantee the solution to the ¢; minimization to be the
sparsest solution.

In addition to the importance of the cost function, a suitable
assumption on the structure of the solution matrix could
improve the performance of the sparse recovery [14]. In [14],
the linear correlation among the columns of the solution was
modeled using an unknown covariance matrix. However, this
model cannot well describe the solution matrix for the applica-
tions like PPG signal extraction. In this application, matrix X
includes the mixtures of the PPG signal and undesired signals
which are independent. Therefore, the dependence among the
columns of X cannot be well captured by covariance matrix.

Motivated to find the solution for this problem, in this
paper, we propose to decompose the solution matrix X into
a mixing matrix A and a matrix S with independent and
sparse columns; i.e., X = SA. The matrix A captures the
dependence among the columns of X. Using this model, the
covariance of each row of X is obtained by B = ATTA,
where I' is a diagonal matrix whose elements are the variance
of the columns of S. The covariance matrix B can be obtained
by second order statistics of X. The successful algorithm,
T-MSBL, exploited matrix B to model the structure of X.
However, the independent components in matrix S may not
be obtained using the covariance matrix B. Considering the
independence assumption on sources gives the capability to
estimate the independent components S and the mixture
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Fig. 1: Visual representation of (1) and (3).

matrix A using matrix X [19]. Using this model, the problem
based on minimizing the ¢; norm of the columns of S is
formulated. We derive a condition that the solution to the
optimization problem is equal to X with the least number
of nonzero rows. In addition, an algorithm is proposed which
solves the problem based on coordinate descent. Finally, some
simulation results are provided to evaluate the efficiency of the
proposed method compared to traditional algorithms.

The following notations are for a vector s, a matrix A and
a set K. [s]lo,|s]l1,]|8ll2, || Al| = denote the £y norm of the
vector s, the /1 norm of s, the ¢5 norm of s and the Frobenius
norm of the matrix A, respectively. R(A) and R(s) denote
the number of nonzero rows in the matrix A and the number
of nonzero elements in the vector s which equals to | s||o,
respectively. A(; jy, and s(;) denote the element that lies in
the i-th row and the j-th column of A and i-th element of s
respectively. AT denotes the transpose of A. A(;) and A,
denote the i’th row of A and the j’th column of A.If s € RV,
the support of s, Supp(s), denotes {i € {1,--- , N} : 50 #
0}. If A € RV*L Supp(A)is {i € {1,--- ,N}: A(;) # 0}.
|K| is the cardinality of the set K. The vector s equals to
difference between two nonnegative variables sy,s_ = 0;
ie., S —S_.

II. PROBLEM FORMULATION

In applications like PPG or remote PPG signal extraction
the desired signal is sparse and independent from noise and
artifacts. The independent components are mixed and observed
through some channels or sensors. Each column of S is
considered as a source. Then, these sources are mixed and
result in matrix X . Mathematically speaking, each column of
X represents a mixture of these signals; i.e.,

Xnxr = SNxLALxL, 3)

where A € RE*E is an unknown full-rank mixing matrix,
and § € RY*Z is an unknown source matrix including L
source vectors where each column shows a sparse source. The
matrix structure (1) and the problem (3) is visually shown in
Fig 1. The figure shows the case where the columns of S
have no common support. In such a case, S is much sparser
than X. The following proposition describes the number of

nonzero rows of X in terms of the columns of the sources
S(“—),i e{1,---,L}.

Proposition 1. Let columns of a matrix S € RN*L be r;-
sparse, independent, and a matrix A € RE*E be a full-rank
matrix. If X = S A, the number of nonzero rows of the matrix
X meets the following inequality with the probability of one

L
max {[Supp(S(1))[} < R(X) <D [Supp (S| - ()

i=1

Proof. See Appendix A. O

The lower bound in Proposition 1 shows that the number
of nonzero rows of X is always larger than the number
of nonzero elements of the columns of S. Intuitively, this
means that if the matrix A is estimated correctly, it is better
to minimize the number of nonzero elements of S than the
number of nonzero rows of X . Therefore, a new cost function
is defined to obtain the sparsest S unlike the previous MMV
approaches which search for row sparse matrix X. To find the
sparsest S, the number of nonzero elements of the columns
of S need to be minimized which leads to,

L
(Py) : gl’ij‘l;”%i)uo’ subject to Y = ®SA, X = SA.
(5)

Due to non-convexity of ¢y norm, we change the problem in
(5) to the following ¢; norm minimization problem,

L
(P)) : g{g‘lgns(wnl, subject to Y = ®SA, X = SA

and |45 =1 ©

.

Since if {S, A} is a solution, {S,bA} will also be a
solution for a bounded constant b. The last constraint in (6) is
applied on the rows A to avoid the scaling ambiguity. Note that
any scale or permutation ambiguity is not important because
they result in the same matrix X.

Remark 1. The solution of the minimization problem in (6)
is {S, A}. However, we also call X = SA as the solution
because the target of the MMV problem is to find X.

Remark 2. This paper deals with the case that the number of
columns of Y is equal to the number of columns of X, and
matrices X and A are full-rank. The case that the number
of columns of Y is larger than the number of columns of X,
means that the columns of Y are linearly dependent. However,
in this case, the extra columns of Y do not provide more
information when noise is not contaminated with the signals
(See the model in (1).). Therefore, one can apply a dimension
reduction algorithm on 'Y to find a matrix whose number of
columns is equal to Rank(Y'). Then, the problem in (6) can
be solved with the assumptions in this paper.



III. RECOVERY GUARANTEE
This section deals with the~ conglitjon that ~results in the
solution of (6) to be equal to X = S A where S has the least
number of nonzero elements. Conditions for the both known
and unknown A cases are derived.

Theorem 1. Let {S’,A} be the solution to (P;) where
Supp(g(u)) = B; where B; C {1,---,L} and |B;| = 7.
A sufficient condition for X 10 be the unique solution to (P;)
when matrix A is known, is that

Hq)EI(I)JHl < 1,V] ¢ Bla
I =argmax(r;), 1<i<L @)

i
where ®p, includes the columns of ® whose indexes are in
the set B; and @Ei is the generalized inverse of ®p,, i.e.,
T 14T
(¢Bi¢Bi) (}Bi'

Proof. See Appendix B. O

Now the condition is presented for the unknown A case in
the following theorem.

Theorem 2. Let {S,A} be the solution to (P)) where
Supp(S(yiy) = Bi and B; C {1,--- N} where |B;| = r;. A
sufficient condition for X to be the unique solution by solving

the minimization problem in (Py) when matrix A s full-rank,
is that

|®5®;]l1 <1, Vj¢B, (8)

irrespective of the estimation of A, where B = U¢L=1 B; and
® i includes the columns of ® whose indexes are in the set B.

Proof. See Appendix C. O

The condition in Theorem 2 guarantees that the solution
obtained by minimizing (6) is also the sparsest solution.
IV. METHOD

In this section, we briefly describe the proposed algorithm
that estimates both S and A. The following cost function is
defined using the idea of LASSO problem,

=1

€))

To solve (9), an iterative algorithm is developed that estimates
A and S. In order to update A, the following update rule can
be used due to the fact that only the term || Y — <I’SAH§ in
(9) depends on A,

A= (ST"®S)"

1 S
pig 5 IV~ @SAL+ A3 8ol st 4

STeTy. (10)

The estimate in (10) may result in a matrix A with the rows
not equal to 1. After the estimate, we simply normalize the
rows of A.

1

- A (11)
(@) HA . (@)
(1) 2

This normalization is done in order to avoid scaling ambiguity
which is well-known in BSS problem. By multiplying the
inverse of A to both sides of (1), one obtain
!/
Y

=®S5(; foralli. (12)

(12) can be considered as L. SMV problem. The cost function
in (9) can be modified to

L. 2 ,
5 Hlsln HYF(/M) — @S(u) ) + A ||S(M)H1 for all <.

13)

where Y/ = Y A~! and ) is a regularization parameter. The
cost function in (13) can be optimized using traditional ¢;
minimization algorithms. Coordinate descent is used which is
an efficient procedure in ¢; minimization [20]. Table I lists the
steps of the proposed algorithm based on coordinate descent.

TABLE I: The proposed algorithm

P, Y, Aand e.
1) Initialization: k =0, A=1,S=0, R=Y AL
2) k=k+1,j=Fkmod(N +1).
3) Obtain the residual R by
Ry = Y0 o — Zkzs 2k Sk,
4) Obtain univariate OLS solution for all ¢
@) R
= (®15)" Ry
5) Update S(s,5) (univariate LASSO solution),
S(z i) = Slgn(sz)(lsl| )
6) If k mod(N) =0, update A using (10).
4 for all 4.
Tl
8) Obtain Y' = YA*
9) If the value HR ® ;)8 -

A, otherwise go to step 2.
10) Retum S and A.

H < g, return S and
DIl F

V. EXPERIMENTAL RESULTS

In this section, the performance of the proposed algorithm is
evaluated and compared with traditional algorithms. Each ex-
periment includes 500 trials. In the experiments, ® € RM >N
is generated by a Gaussian distribution with unit variance.
The support of the vector S( 1é) 1s generated using a uniform
random variable from 1 to N. The nonzero elements of S are
from a Laplace distribution with unit variance. The elements
of A are from Gaussian distribution with unit variance. The
matrices Y and X are ®X and SA respectively. Note that X
shares common support among its column as the assumption
for MMV approaches. In order to evaluate the performance,
the number of missed elements in the support of X is found

y e
oon (%)

The following algorithms are used for comparison purpose.

o T-MSBL, proposed in [14] (http://sccn.ucsd.edu/~zhang/
TMSBL_code.zip).

a= (14)
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e CS-MUSIC, proposed in [12] (http://bispl.weebly.com/
compressive-music.html).

o« MFOCUSS, the regularized M-FOCUSS proposed in [13]
(http://dsp.ucsd.edu/~zhilin/MFOCUSS.m). We set its p
norm p = 0.8, as suggested by the authors.

« MFOCUSS with p = 1.

In the first experiment, the performance of the algorithms
are evaluated with different number of measurements. M is
increased from 100 to 220. NV and L are 500 and 5 respectively
and ‘Supp (S(U)N is 30 for all 3.

Fig. 2 shows the mean of « averaged over all trials. As it
can be seen, the performance of all algorithms improves as the
number of measurements increases as expected. One interest-
ing observation is that the proposed method outperforms the
other algorithms especially in lower number of measurements.

In the next experiment, all algorithms are compared in noisy
environment. The values for M, N, and L are 110, 250 and
3 respectively. The matrices S, A and ® are generated with

the same distribution as the previous experiment. The number
of nonzero elements of each column of S is 30.

Fig. 3 shows the performance the algorithms improves
as the input SNR increases. The input SNR is calculated
as || X||3/|IN||3. In noisy environment the performance of
the proposed algorithm and TMSBL are very similar. Both
outperformed other algorithms for the input SNRs were larger
than 40 dB.

VI. CONCLUSION

We addressed the multiple measurement vector (MMV)
problem, where the structure of the row-sparse solution matrix
X was modeled with multiplication of a mixing matrix and
a sparse matrix with independent columns. We derived a
condition that guaranteed the ¢; minimization solution to be
the sparsest solution. Then, an algorithm was proposed based
on coordinate descent where the structure of the solution
was taken into account. The experimental results showed the
proposed algorithm improved the performance of the sparse
recovery.

APPENDIX

A. Proof of Proposition 1

Since X = S A, each row of matrix X can be written in
terms of S and the full-rank matrix A as

X(;) = S(;)A. (15)
Based on (15), one can write
L
Supp(X) C | Supp(S(1))- (16)

=1

The cardinality of the right hand side of (16) is upper bounded
by

L
U Supp(S(y)

=1

|Supp(X)| <

L
< Z |Supp(S(14))| - (17)
=1

The upper bound is given by (17).
For the lower bound we start with assuming that there is X
such that

R(X) <mlax{ri:i€ {1,---L}}.

This assumption means that

L
Jisi € | Supp(S(ny) st. X = > SpA=0. (18

k=1

This means that Ker(A”) # {0}. Since A is square and full-
rank, it contradicts. This completes the Theorem.



B. Proof of Theorem 1

Let S and S be the solutions of optimization problem (P;),
Supp (S'(MO = B; and Supp (S(;;)) = B’. By multiplying
A~ to both sides of (1), the following equation is obtained
using (3)

YA !=8S=885. (19)
For each column, one can write

@S5 = 5 S (20)
where Az = AgAfl. Each column of both sides can be

considered as a SMV problem. Then, using the uniqueness
condition in [10] for ¢; minimization for SMV problem, we
can write

|®F @51 <1,Vj¢ B, 1<i<L. 1)

The most restrictive condition is for the set B; with the largest
cardinality.

C. Proof of Theorem 2
Let {S, A} and {S, A} be the solutions to optimization
problem (P;), Supp (S(J,i)) = B, and Supp (.Sv'(m) = B. By

multiplying A~ to both sides of (1), the following equation
is obtained using (3)

YAl =3X' = &S, (22)
where X = SAA~!. Using (22), one can write
v/ o/

where X’ and S’ include the nonzero rows of X and S
respectively. Clearly, ‘Supp( é U))’ < | B|. Therefore, ® 5 is
considered as the columns corresponding to nonzero rows of
X'. By multiplying @ to (23), we obtain,

Xy =®L®3S ). (24)
Using (24), one can write
L L L
3, <3 ], - 3wt
- L -
<. H‘I)E‘I)B(uc)Hl ‘Sflm)
i=1 k=1
L
<z;||5<¢i)|\1- (25)

The latter inequality holds in (25) if the condition in (8) is
satisfied. The first inequality holds because .S is the minimum
of (P;). This completes the theorem.
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