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Abstract

Several of the widely used cryptographic hash functions in use today are
under attack. With the need to maintain a certain level of security, NIST
is in the process of selecting new cryptographic hash function(s). Through
a public competition the candidates will be evaluated and analyzed by the
public and the winner(s) become the new standard cryptographic hash
algorithm(s). Cryptographic hash algorithms have a wide range of appli-
cations, and the winner(s) will have to perform well in various platforms
and application areas.

The number of constrained devices surrounding us at a daily basis
is rapidly increasing. As these devices are used for a great variety of
applications, security issues arise. The winning algorithm(s) will not only
have to prove a strong security, but also show good performance and
capability to run on constrained devices.

In this thesis, we show the results of our implementation of the sec-
ond round SHA-3 candidates in Java, and perform a cost and perfor-
mance analysis of them on a low-cost 32-bit ARM9 CPU by measuring
cycles/byte and ROM requirements. The analysis is conducted on the Sun
SPOT platform, by Sun Microsystems, with a Squawk Virtual Machine.
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1
Introduction

The National Institute of Standards and Technology (NIST) is in the
process of selecting a new cryptographic hash function through a public
competition [3]. The winner(s) of this competition will be selected as the
new Secure Hash Algorithm (SHA)-3 standard(s). At the First SHA-3
Candidate Conference several individuals stressed the need for supporting
constrained platforms [3].

Hash functions may be designed for a specific purpose, such as mes-
sage authentication, however in the context of becoming the SHA-3 algo-
rithm(s) the candidate(s) need to fit a wider range of applications. While
security is the highest criteria, performance and flexibility of the candi-
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1. INTRODUCTION

dates are also important to emphasize. Since the new standard will need
to operate on many platforms, research with the aim of producing mea-
surements of the candidates on constrained platforms should be of interest
for the comunity when evaluating the candidates. Fig. 1.1 depicts a typical
purpose of a hash function.

S
H

A
-3

This is a secret information. The 

autenticity of the information inside 

this box can be obtained by 

producing a hash value on the 

sender side, and comparing this with 

the hash value on the receiver side. 

If the two are the same, then we 

know that this information is correct.  

1A4F2460B326432CD3

Figure 1.1: A Typical Hash Function

The number of small entities connecting to the Internet of Things1, is
rapidly increasing. For instance, in 2008 5.085 billion smart cards shipped
globally, while the estimates for 2010 are 5.455 billion smart cards [2]. Fur-
ther, smart cards have a wide range of applications spanning from cryptog-
raphy and health care to identification and authentication. Since next gen-
eration of smart cards running java are not currently available, the work
conducted in this thesis will be carried out a Sun Small Programmable
Object Technology (SPOT), running the same Virtual Machine (VM) and
Central Processing Unit (CPU).

To our knowledge, no work has been demonstrated for comparing Java
implementations of all the SHA-3 candidates on constrained platforms. In

1Internet of Things refers to the networked interconnection of everyday objects.
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1.2. METHOD

this thesis, we compare the implementation costs of the remaining SHA-3
candidates on a Sun SPOT running Java on a low-cost 32-bit ARM9 CPU
by measuring cycles/byte and ROM costs. The device has many of the
same properties as other constrained devices with regards to memory and
computing efficiency. A further explanation is given in Sect. 2.5.

1.1 Method

The work in this thesis is conducted by the two authors in cooperation.
The reference C implementation of the candidates is run in Microsoft Vi-
sual Studio, while the Java implementation is done using the Netbeans
Integrated Development Environment (IDE). A debugger on both sides
has been used to verify intermediate values, while implementing the algo-
rithms.

Netbeans is further used to communicate with the Sun SPOT, with
regards to implementing and getting feedback on the console when exe-
cuting the hash function. Messages of different input lenghts have been
tested, to give a bigger perspective as to how each candidate performs
on a small device. The Java implementations are also being tested on a
desktop computer as a reference.

1.2 Scope and Objectives

This thesis seek to answer the request for Java implementation on con-
strained devices. Measurements of Java implementations of all the 14
remaining candidates, run on a constrained device, will be produced. A
summary of this work was submitted to the second SHA-3 hash conference
that will held in Santa Barbara in period 23-24 August 2010. There exist

3



1. INTRODUCTION

no publicly available Java implementation of all candidates, so this work
will hopefully give some input to the conference, as the candidates will be
implemented in a new language on a new platform.

1.3 Outline

This work is outlined as follows:

Chapter 2 presents the tools and background for this work.

Chapter 3 describes the general design choices when imple-
menting the candidate algorithms in Java.

Chapter 4 gives an in-depth look at each candidate’s imple-
mentation.

Chapter 5 explaines how the measurements for performance
and size was conducted. Further, our results from running the
Java implementations on our constrained device are presented.

Chapter 6 concludes this work, and proposes future work.

4



2
Background Technologies

In this chapter cryptographic hash functions and selected hash construc-
tions are presented. A summary of the National Institute of Standards
and Technology (NIST) Cryptographic Hash Algorithm Competition will
be given, before we describe the Advanced RISC Machine (ARM) proces-
sor architecture and the Sun SPOT, with the Squawk VM. Finally, the
Netbeans development tool is presented.
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2. BACKGROUND TECHNOLOGIES

2.1 Cryptographic Hash Functions

A hash function is a mathematical deterministic function that takes a
binary input, referred to as the message M, and produces a fixed-size
condensed version of the input message. The condensed version of the
input message is referred to as the message digest h, and is the output of
the function H. I.e. h=H(M ) [42].

A cryptographic hash function is an algorithm where it is computa-
tional infeasible to find a matching input given you know the hashed out-
put (the one-way property), or to find two inputs that maps to the same
hash result(the collision-free property) [11, 47]. Tab. 2.1 depicts generally
accepted requirements presented for a cryptographic hash function [47].

Requirement Description
Variable input size H can be applied to a block of data of any size
Fixed output size H produces a fixed-length output
Efficiency H(x) is relatively easy to compute for any given x,

making both hardware and software implementations
practical.

Preimage resistant(one-way prop-
erty)

For any given hash value h, it is computationally in-
feasible to find y such that H(y) = h.

Second preimage resistant(weak
collision resistant)

For any given block x, it is computationally infeasible
to find y 6= x with H(y) = H(x).

Collision resistant(strong collision
resistant)

It is computationally infeasible to find any pair (x,y)
such that H(x) = H(y).

Pseudorandomness Output of H meets standard tests for pseudorandom-
ness.

Table 2.1: Requirements for a Cryptographic Hash Function (taken from
[47])

Cryptographic hash functions are versatile and are widely used in many
applications such as password verification, message integrity, digital sig-
natures, key derivation, message authentication codes and pseudorandom
number generators. The various application purposes have different secu-

6



2.2. HASH FUNCTION CONSTRUCTIONS

rity requirements, and hence several algorithms may be better suited for
a certain application [28].

The two most commonly used cryptographic hash functions are Message-
Digest algorithm 5 (MD5) and SHA-1. However, MD5 is broken, and
attacks can produce collisions with a complexity of 210 [49]. In addi-
tion, SHA-1 was also successfully collision attacked with a complexity of
263 [48]. NIST recognizes any good 160-bit hash function to have a lower
limit of 280 computations [28]. The weaknesses reported in the two most
commonly used hash functions resulted in an initiative from NIST to de-
velop a new hash function, this initiative is further discussed in Sect. 2.3.

2.2 Hash Function Constructions

Most of the hash functions in use today are designed as an iterative pro-
cess, known as Merkle-Damgård construction. While there exist a wide
range of designs, 50-60 known in 1993, atleast 75% of them were broken at
that time [43]. Since 1993 another 30-40 designs have emerged, however
most of them have been broken [44]. In the SHA-3 competition, numerous
designs are represented, the following subsections will give an introduction
to these.

2.2.1 Merkle-Damgård Construction

A great deal of cryptographic hash functions have an iterative design. Such
a design hash data by iterating a basic compression function of subsequent
blocks of data. Fig. 2.1 depicts an iterative design, known as Merkle-
Damgård design. Here a message, X, is decomposed into n blocks of data
x1, ..., xn. The compression function, f, is then applied to each block and

7



2. BACKGROUND TECHNOLOGIES

F FFF

X1 X2 Xn-1 Xn

h(x)IV

Figure 2.1: An Iterative Cryptographic Hash Function

also the result of the compression function of the previous block. The last
compression step becomes the output h(x) [42].

In Merkle-Damgård constructions the compression function fMD is as
follow: fMD : {0, 1}mc × {0, 1}n → {0, 1}mc . Here, mc denotes the size
of the chaining value, and n denotes the block size for the compression
function. Merkle-Damgård constructions use a padding called Merkle-
Damgård strengthening. The messages are padded with a padding that
encodes the length of the original message. The goal of this is to prevent
collison and pseudo-collision attacks [42].

2.2.2 HAIFA Construction

The HAIFA1 construction is quite similar to the Merkle-Damgård con-
struction. However, it differs in the inputs added to the compression
function. In a HAIFA compression function there are four inputs: the
message, the initial value (IV), the number of bits hashed so far and the
salt value [39]. The explicit use of input salt and the number of bits
hashed so far to the compression function are quite distinguishing for this
construction. The idea is that this input will alter the chaining values of
each stage.

1The name HAIFA is taken from HAsh Iterative FrAmework

8



2.2. HASH FUNCTION CONSTRUCTIONS

The compression function of HAIFA, f, is then proposed as follows.
fHAIF A : {0, 1}mc×{0, 1}n×{0, 1}b×{0, 1}s → {0, 1}mc . When compared
with the Merkle-Damgård compression function presented in Sect. 2.2.1,
the difference is the bits hashed so far, b, and the salt s. In cases where
there is no need for adding salt, such as message authentication codes, the
salt is set to 0 [39]. Fig. 2.2 depicts the HAIFA construction.

Figure 2.2: The HAIFA Construction (taken from [40])

2.2.3 Sponge Construction

Sponge constructions operate on states with b=r+c bits. Here r is the
bitrate, b is width and c represents the capacity [38]. Fig. 2.3 depicts the
sponge construction.

The sponge construction starts with initializing all the bits in the state
to zero. Then the input message is padded and split into blocks of r-bit
length. After this the construction goes through two phases: the absorbing
phase and the squeezing phase [38].

The absorbing phase xors the r-bit input message blocks into the first
r-bits of the state, interleaved with applications of f. After all message
blocks are processed, the absorb phase is ended and the construction
switches to squeezing phase [38]. Fig. 2.3 depicts the absorbing phase

9



2. BACKGROUND TECHNOLOGIES

Figure 2.3: The Sponge Construction (taken from [38])

on the left-hand side, while the squeezing is on the right-hand side of the
figure.

In the squeezing phase, the r first bits of the state are used as output
blocks, interleaved with the function f. Since the value of b is greater than
the value of c, the last c bits of the state are never used for the output
during the squeezing phase [38].

2.2.4 Wide-pipe and Double-pipe Construction

To make a hash function resistant against certain multi-collision-type at-
tacks, a proposal to make the intermediate chaining values og Merkle-
Damgård mode twice as long as the final hash value. This mode is known
as the wide-pipe mode [33]. In wide-pipe constructions the size of the
internal state of an n-bit hash function is increased to w > n bit. While
in the double-pipe design an internal state with size twice the hash size is
maintained. In designs with a larger internal state, the idea is to improve
protection against internal collision [40].

10



2.3. CRYPTOGRAPHIC HASH ALGORITHM COMPETITION

Figure 2.4: Wide-pipe Hash Constructions (taken from [40])

In the wide-pipe design, two compression functions are used, f and f’.
f’ is invoked at the end of the computation. The compression functions
are:

• f :{0, 1}w × {0, 1}m → {0, 1}w

• f’ :{0, 1}w → {0, 1}n

The input message M is divided into r-blocks, M = m1, m2, .., mr.
Fig. 2.4 depicts the process with the two compression functions. In the
figure IV0 is an initial value.

2.3 Cryptographic Hash Algorithm Competition

Feb. 2005 Prof. Xiaoyun Wang et al. announced a differential attack on
the existing SHA-1 hash function. With the new discoveries, and later
improvements to the attacks, Prof. Wang et al. claimed to have found
a method to find collisions in the SHA-1 hash function with a time com-
plexity of 263 [48]. NIST recognizes any good 160-bit hash function to
have a lower limit of 280 computations to produce a hash collision, and
hence the method proposed by Prof.Wang et al. represents a theoretical
collision attack on SHA-1 [3, 28].

11



2. BACKGROUND TECHNOLOGIES

In response to the results presented by Prof.Wang et al. NIST opened
a public competition to develop a new cryptographic hash algorithm. The
winner(s) of the competition will be named SHA-3, and will complement
the SHA-2 hash algorithms currently specified in Federal Information Pro-
cessing Standard (FIPS) 180-3, Secure Hash Standard [3]. The competi-
tion was opened November 7, 2007 and submissions to the competition
were to be received by October 31, 2008. NIST further specified that
the winning algorithm will be a publicly disclosed algorithm, available
worldwide without royalties and intellectual properties. After submission
deadline all submissions were made publicly available for review and com-
ment [11]. Tab. 2.2 depicts the remaining timeline of the competition.

Year 4 (2010)
2Q Public comment period ends.
2Q Hold the Second Hash Function Candidate Conference. Discuss the

analysis results on the submitted candidates.Submitters may identify
possible improvements for their algorithms.

3Q Address the public comments on the submitted candidates; select the
finalists. Prepare a report to explain the selection. Announce the
finalists. Publish the selection report.

4Q Submitters of the finalist candidates announce any tweaks to their sub-
missions. Final round begins.

Year 5 (2011)
4Q Public comment period ends for the final round.
Year 6 (2012)
1Q Host the Final Hash Function Candidate Conference. Submitters of

the finalist algorithms discuss the comments on their submissions.
2Q Address public comments, and select the winner. Prepare a report to

describe the final selection(s). Announce the new hash function(s).
3Q Draft the revised hash standard. Publish the draft standard for public

comments.
4Q Public comment period ends. Address public comments. Send the

proposed standard to the Secretary of Commerce for signature.

Table 2.2: Remaining Tentative Timeline for the Hash Algorithm Compe-
tition (taken from [11])

NIST proposed three categories of evaluation criteria that will be used
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2.3. CRYPTOGRAPHIC HASH ALGORITHM COMPETITION

to measure the submitted candidate algorithms against each other. The
criterias are security, cost and performance, and algorithm and implemen-
tation characteristics [1].

Security of the algorithm was identified as the most important factor
when evaluating the candidates. In [1] NIST identifies a number of well-
defined security properties that is expected of the winning candidate. This
thesis will not go into further details of the security of the remaining SHA-
3 candidates, as that is not within the scope of our research.

In [1] cost and performance were identified as the second-most impor-
tant criterion upon evaluating the various candidates. Within the context
of this competition, cost includes computational efficiency and memory
requirements [1]. Computational efficiency refers to the speed of an algo-
rithm. And as NIST states in [3]: ”NIST expects SHA-3 to offer improved
performance over the SHA-2 family of hash algorithms at a given secu-
rity strength”. In the case of memory requirements, both code size and
Random-Access Memory (RAM) are of interest. Further, NIST identifies
cost as a particular concern for constrained platforms, and several remarks
regarding the need for supporting constrained platforms such as mobile
phones, smart cards and Radio-Frequency Identification (RFID) systems
were made at the First SHA-3 Candidate Conference [3]. In constrained
environments the computational power and RAM sizes are often the lim-
iting factor, leading to resource consumption awareness for the candidate
algorithms.

Regarding the third evaluation criteria, NIST states candidate algo-
rithms with greater flexibility may be given preference over other algo-
rithms. This means algorithms capable of running on a wide range of
platforms, and algorithms that use parallelism or instruction set exten-
sions to achieve a higher performance [3]. In addition, a SHA-3 submis-
sion needs to support hash results of 224, 256, 348 and 512 bits. Designers
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should present a full and detailed design documentation, which includes
a reference implementation and optimized versions for 32-bit and 64-bit
machines.

At the submission deadline, a total number of 64 entries were received
by NIST, however only 51 met the minimum requirements and were an-
nounced as first round candidates. On July 24, 2009, 14 second round
candidates were announced. The 14 candidates advancing to round 2 are
depicted in Tab. 2.3 below [3].

Algorithm Name
BLAKE JH
Blue Midnight Wish Keccak
CubeHash Luffa
ECHO Shabal
Fugue SHAvite-3
Grøstl SIMD
Hamsi Skein

Table 2.3: Round 2 Candidates (taken from [11])

As described in Tab. 2.2 the 14 round 2 candidates will go through
extensive review before a final round heat of candidates will be selected.
The final selection(s) and the announcement of the new hash function(s)
will take place in second quarter of 2012 [11].

2.4 ARM Processor Architecture

The ARM is a 32-bit Reduced Instruction Set Computer (RISC) archi-
tecture. ARM architectures incorporate typical RISC features such as a
large uniform register file, load/store architecture and simple addressing
modes [6].

Originally intended for desktop computers, the simplicity of the ARM
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made it suitable for constrained devices, and today it is the dominant chip
used in mobile phones and handheld devices, such as digital media and
music players. The ARM architecture is licensable, companies holding or
formerly holding a ARM licensee include among others Apple Inc, Atmel,
NVIDIA and Samsung [5]. As of 2007, about 98% of all mobile phones
sold each year contains at least one ARM processor [7].

CPU

CPU

Program and 

Data Memory

Program 

Memory
Data Memory

Von Neumann 

Architecture

Harvard 

Architecture

Figure 2.5: Harvard Architecture vs von Neumann Architecture

2.4.1 ARM920T Core

With the ARM9 family, ARM design moved from the von Neumann ar-
chitecture to the Harvard architecture. The Harvard architecture is an
architecture with physically separate storage and buses for instructions
and data. In contrast, the von Neumann architecture uses the same bus
for both data and instructions. With the Harvard architecture, a CPU can
both read an instruction and perform a memory access at the same time.
In the von Neumann this has to be carried out in two operations. Fig. 2.5
depicts the difference in the von Neumann and the Harvard architecture.
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2.5 Sun SPOT

Figure 2.6: A Sun SPOT (taken from [36])

A Sun SPOT is a small embedded device developed at Sun Labs. The
Sun SPOT is a programmable device originally developed for Wireless
Sensor Network experimentation. A Sun SPOT is depicted in Fig. 2.6 [36].

The hardware platform residing in the currently available Sun SPOTs,
the eSPOT main board, has a main processor running a Java VM named
Squawk. Squawk is further described in Sec. 2.5.2. Below are the eSPOT
main board specifications [35].

• ARM920T 180MHz Processor

• 4MB Flash memory

• 512KB pseudo-static RAM

• 2.4 GHz IEEE 802.15.4 radio with integrated antenna

• 2 AT91 Timer Counters

• USB interface
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In addition to this the Sun SPOT also contains a sensor board with
sensors for temperature, light, and a three-axis accelerometer. The sensor
board also contains eight LED lights, I/O pins and analog inputs. The Sun
SPOT is powered by a 3.7V rechargeable 750 mAh lithium-ion battery [35].

Applications running on the Sun SPOT are called MIDlets. A MIDlet
is an application that runs on implementations of the Mobile Information
Device Profile, one of the Java ME specifications. Due to its easily pro-
grammable interface, and variety of sensors, the Sun SPOT is applicable
for a wide range of purposes.

2.5.1 AT91 Timer Counter

As mentioned, the Sun SPOT includes two AT91 Timer Counters that can
be used in a variety of ways. Each of the Timer Counters includes three
identical 16-bit channels. Of these six Timer Counter channels, four are
available for SPOT applications, the two remaining are reserved for system
use [37]. Each channel has five internal clock input signals which can be
configured by the programmer. The Timer can count in various ways, and
the rate is determined by which clock is used. The five internal clock inputs
are connected to the Master Clock (MCK), the Slow Clock (SLCK) and
to divisions of the MCK [37]. Tab. 2.4 depicts the available clock speeds.

TC Clock Input Clock Clock
Speed
(KHz)

Time
for One
Tick(usec)

Maximum Dura-
tion (msec)

TC_CLKS_MCK2 MCK/2 29,952 0.0334 2.188
TC_CLKS_MCK8 MCK/8 7,488 0.1335 8.752
TC_CLKS_MCK32 MCK/32 1,872 0.5342 35.009
TC_CLKS_MCK128 MCK/128 468 2.1368 140.034
TC_CLKS_SLCK SLCK 32.768 30.5176 2,000.0

Table 2.4: Available Clock Speeds (taken from [37])
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In this work, the clocks are used in Capture Mode to read the value of
the Counter before and after the performed computation.

2.5.2 Squawk Virtual Machine

A VM takes the place of the Operating System (OS) for which the program
would be tailored for ordinarily. Java is ported to the platform creating
a layer isolating the application from the specifics of the underlying hard-
ware and OS, and hence there are no need to develop separate versions of
the application [41].

The Squawk VM is a small Java VM designed for constrained devices.
Squawk runs without any OS [2, 45, 46]. Constrained devices allows the
VM design to be simpler and more compact, providing the OS function-
ality in the VM [46]. Most VMs for Java are written in native languages
such as C and assembler. Squawk utilizes a different approach, as it is
written almost entirely in Java. Implementing Squawk in Java provides
ease of portability, and a seamless integration of the VM and the appli-
cation resources such as threads and objects [45, 46]. Fig. 2.7 depicts the
Squawk VM and the corresponding standard Java VM [34].

As can be seen from the figure, only the I/O Library and Native Code
are not written in Java. Most VMs assume there is an OS running on
the device. However, Squawk allows applications to run on the bare metal
– directly on the CPU without the usage of an OS. This results in a
lower amount of overhead and a better control of the device [34]. Hence,
resource-constrained devices running Squawk will not require additional
resources to support the execution and maintenance of an OS [34].

Further, the Squawk VM allows the developers to run multiple appli-
cations on one instance of the VM. Squawk also allows an application
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Figure 2.7: Standard Java VM vs Squawk Java VM (taken from [34])

to migrate a running device from one device to another. The migration
actually allows the application to continue running from the point it was
before the migration. With the ability to run multiple applications on the
same VM instance, and by utilizing a more compact class file representa-
tion, the Squawk VM makes better use of the resources on a constrained
device [34].

Fig. 2.8 depicts the Split VM architecture utilized by Squawk [34].
The split VM is a way to reduce the amount of work done by the devices.
All the resource-consuming work, needed to perform class loading and
optimizing, is done on the workstation while the execution is done on the
device [34].

The size of the Java class files has previously been known as an issue
for constrained devices [45]. To deal with this, Squawk includes a mech-
anism for serializing a graph of objects. This serialization of the objects
becomes a collection of internal classes encapsulated in an object, referred
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Figure 2.8: The ”Split VM” Architecture (taken from [34])

to as a suite [46]. The suites are ready to use as-is and need no more
transformation done by the device [34]. The design of the suite file was
developed to be read serially. In addition the information in the suite file
is in the best order for installation using as little RAM as possible [45].
On average, suite files are 35% the size of a corresponding class file [46].

2.6 Netbeans

Netbeans is an open-source IDE which supports development of all Java
application types, as well as a wide range of other languages [27]. It is
written in Java and may be used everywhere a Java VM is running. For
development functionality with Java, a Java Development Kit (JDK) is
required.

Netbeans was started as a Java IDE student project at Charles Uni-
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Figure 2.9: The Netbeans Graphical User Interface

versity in Prague. In 1999 it was bought by Sun Microsystems and made
open source the following year. Current version of Netbeans is 6.8, released
December 10th 2010. Development of Netbeans has grown substantially
since Sun Microsystems aquired the control of the project, also [10].

The use of a set of modular software components, called modules, al-
lows applications to be developed. The work conducted in this thesis is
carried out with the Sun SPOT Plugin for Netbeans [22]. This module al-
lows the creation of a new SPOT project, containing all the files needed for
a new Sun SPOT application, in NetBeans. Fig. 2.9 depicts the Graphical
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User Interface (GUI) presented to the user when developing in Netbeans
IDE.
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3
Java Implementation

The submitted candidates are written in the C programming language.
To enable them to run on a Java platform, they have to be implemented
in the Java language based on their current implementation. In this chap-
ter we present some differences between the two programming languages,
Java and C. Further, the inferface for our implementations are presented
and our design choices are summarized. Finally we conclude with an ap-
plication for verifying the correctness of our Java implementations.
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3.1 Programming Java

In contrast to a low-level language, like C, the memory management in
Java is not handled by the programmer. This makes it difficult to translate
an optimized C-version of the candidates, as the two languages can differ in
many ways. For instance, in C the union is a value that may have several
representations in various formats. The primary usefulness of a union is
to conserve space, since it provides a way of letting many different types
be stored in the same space. The Java language guarantees type safety, so
each member of a union has to be implemented as single variables which
have to be synchronized when one of them are alternated. Other important
differences between the two languages are summarized in Tab. 3.1 [14].

Feature C Java
Paradigms Function Oriented Object Oriented
Compilation Native machine code Java VM byte code
Memory Management Manual Managed, using Garbage Collector
Pointers Yes No
Bound Check Arrays No Yes
Complex Data Types Structures and Unions Classes
Unsigned Integers Yes No
Macros Yes No

Table 3.1: Programming C vs Java

Java compiles the code into byte code which can be run on several
architectures. This is due to the fact that the code executes on a virtual
machine like the Squawk VM described in Sect. 2.5.2. This makes software
written in Java platform independent, and hard to optimize for a given
platform. Characteristics like endianness do not have to be taken into
consideration, as this is handled by the virtual machine.
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3.2 Design Choices

The Java implementations of the candidates are based on the reference im-
plementation representing the candidate in the second round. During the
work of this thesis we have contacted several cryptographers and received
different opinions about our strategy to use reference C implementations
as a starting point for our Java implementation (not the optimized C
codes). The main reason for the decision we made, is because the com-
plexity of optimized C code does not allow easy (if at all possible) direct
Java translation. The rest of this section will explain the general design
choices we made for all candidates.

3.2.1 Message Digest

As the goal is to measure the algorithms on a small constrained device, we
have only implemented the parts of each algorithm required to output a
256-bit message digest. Parts of the reference implementation which is not
needed for this purpose is discarded. External functionality like salting
and keyed hashing modes have not been implemented.

3.2.2 Input Length

The purpose of this work is to test the candidates on a constrained device.
As such devices hold a limited amount of memory, we did not implement
the possibility for hashing extremely long messages. This means removing
the possibility for calling the Update() function several times.

Hashing extremely long messages would be very time consuming on a
small device. The nature of such a device indicates that only relatively
small amount of data will be hashed.
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3.2.3 Fairness

Some of the reference implementations can be optimized, but the goal of
this work was to give a fair impression of the performance of all candi-
dates in Java. The implementation is also done by the two authors of
this thesis in cooperation. The reason for this is to make sure that all
implementations follow the same pattern, and all candidates are treated
equally.

3.2.4 Error Handling

While translating to Java, we removed all error messages and exception
handling mechanisms. The Java implementation is originally meant to be
used by us for testing purposes, and hence we did not see any reason to
implement error checking or error handling mechanisms. This is due to
the fact that we only wanted to keep the code necessary to perform the
hashing operation.

3.2.5 Correctness

Finally, the algorithms have been tested to make sure that they provide a
correct output up to an input of 4096 bit. We give no guarantee that the
algorithms produce correct output after this bit length is exceeded. The
procedure of this testing if further explained in Sect. 3.5.

3.3 Application Programming Interface

The Java implementation of the candidates have been implemented with
the same Application Programming Interface (API), as the one provided
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by NIST for the C implementations [4]. The API consist of a few data
definitions, one data structure, and four functions to compute hashes. The
rest of this section will give a quick overview of the API, and how it was
adapted to Java.

3.3.1 Data Definitions

In C, the following typedef is given by the API to hold both arrays for the
resulting hash value, as well as holding the data input:

typedef unsigned char BitSequence;

Java has no clear equivalent for unsigned char’s, and no possibilities
to define your own primitive data types. Hence the BitSequence typedef is
replaced by the primitive data type byte[] which is an array in java that
is able to hold 8-bit characters. Java also requires that the length of this
array is set upon initialization.

To hold the datalength of the message being hashed, NIST proposed
the following typedef :

typedef unsigned long long DataLength;

Java has no clear equivalent here either, so the primitive data type long
is used for the java implementations. This is a signed data type which is
able to hold 64-bit of data.

3.3.2 Data Structure

NIST proposed a hash state structure to contain all fields required to
hold the state of the candidate algorithm. The following is required to
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implement in C:

1 typede f s t r u c t {
2 // h a s h b i t l e n + a lgor i thm s p e c i f i c parameters
3 } hashState ;

A structure like this cannot be implemented in Java. As only one
instance of each algorithm is needed for this thesis, all state information
is saved in static variables. Constants which are final are declared with
final.

3.3.3 Function Calls

The NIST API specifies four function calls. Three methods for the incre-
mental hashing, and one to perform the full hashing. The first specified
is the Init() method to initialize the state of the candidate. The method
is defined with the given parameters listed below:

HashReturn Init(hashState *state, int hashbitlen);

In the Java implementation, the state does not need to be given to
the Init() method as all state information is available in static variables.
The hashbitlen input is also removed as we only implemented the 256-bit
part of each candidate. Hence the Java version of the initialization is
implemented without any inputs.

Next, the API specifies the Update() fuction to perform all of the
candidates compression functions. The following is taken from the API:

HashReturn Update(hashState *state, const BitSequence *data,
DataLength databitlen);
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The state of the algorithm is again removed from the input, as the
needed variables are available due to the static declaration. The two other
parts of the input are changed to a byte array for holding the data, and a
64-bit integer to hold the databitlen as explained in Sect. 3.3.1

The post processing and output filtering is performed by the Final()
method. The API proposes the following:

HashReturn Final(hashState *state, BitSequence *hashval);

As with Init() and Update(), the state is removed from the input and
a byte array is used to hold the hashval variable. The size of this array is
set to 32-bytes as this thesis only focuses on 256-bit message digests.

Finally the Hash() method is specified. This calls Init(), Update()
and Final() once, in that order, to perform the full hashing and provide
the resulting hash. The only difference in Java, except the previously
mentioned, is that this method has no return value. This means that all
error checking/handling is removed from the Java implementation. The
candidates are instead tested manually that they provide correct output.
To summarize, all candidates follow this interface:

1 public class candidate {
2
3 private stat ic ∗ someStateVar iable ∗ ;
4
5 public stat ic void I n i t ( ) ;
6 public stat ic void Update (byte [ ] data , long da tab i t l e n ) ;
7 public stat ic void Fina l (byte [ ] hashval ) ;
8
9 public stat ic void Hash (byte [ ] data , long datab i t l en , byte [ ]

hashval ) {
10 I n i t ( ) ;
11 Update ( data , da t ab i t l en ) ;
12 Fina l ( hashval ) ;
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13 }
14 }

3.4 Tools for Implementation

The reference compiler used by NIST is the the ANSI C compiler in the
Microsoft Visual Studio 2005 Professional Edition. To comply with this,
the reference implementation of each candidate was run in Microsoft Vi-
sual Studio at the same time as the algorithms were implemented in Java
with Netbeans.

A debugger in both applications were used to go through the implemen-
tation step-by-step to make sure that the intermediate values were correct
before continuing implementing new stages of the algorithm. Finally, the
implementations were tested against the Known Answer Test (KAT) to
ensure its correctness for inputs up to 4096-bit, and this is described in
detail in the following section.

3.5 Verifying Correctness

In order to verify that the translated versions of the candidates produce
a correct output, a simple application was designed. The complete code
of the application, CheckKAT.java, is fully presented in Appendix A. A
description of the application is given below.

CheckKAT maintains an array with the Java implementations of the
14 candidates.
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1 Class [ ] a l gor i thms = { SHAvite3 . class , Blake . class ,
BlueMidnightWish . class , Shabal . class , Skein . class , Luf fa .
class , Hamsi . class , Keccak . class , CubeHash . class , SIMD.
class , Groes t l . class , Echo . class , JH . class , Fugue . class } ;

This array is given as an input to the start() method, and processed
in a for loop with the performCheck() method.

1 for ( Class a lgor i thm : a lgor i thms ) {
2 boolean r e s u l t = performCheck ( a lgor i thm ) ;
3 System . out . p r i n t l n ( r e s u l t ? " 100 Match" : "" ;
4 }

In the performCheck() method, the submitted KAT files are read in
and processed. Fig. 3.1 depicts an excerpt of the Keccak short message
KAT file.

Figure 3.1: An Excerpt from the ShortMsgKAT_256.txt of Keccak

CheckKAT reads in the file, and stores the values of the Len, Msg and
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MD fields. Below is the code for storing the Len and Msg field.

1 F i l e f i l e = new F i l e ( System . getProperty ( " user . d i r " ) + " /
shortmsgkat / "

2 + c l a z z . getSimpleName ( ) + "ShortMsgKAT_256 . txt " ) ;
3 BufferedReader br = new BufferedReader (new InputStreamReader (
4 new Fi leInputStream ( f i l e ) ) ) ;
5 i f ( l i n e . s tartsWith ( "Len " ) ) {
6 da tab i t l en = Long . parseLong ( ( l i n e . s p l i t ( "= " ) [ 1 ] ) ) ;
7 }
8 i f ( l i n e . s tartsWith ( "Msg" ) ) {
9 St r ing value = null ;
10 int po in t e r = 0 ;
11 St r ing tmp = l i n e . s p l i t ( "= " ) [ 1 ] ;
12 data = new byte [ tmp . l ength ( ) / 2 ] ;
13 for ( int i = 0 ; i < data . l ength ; i++) {
14 value = tmp . sub s t r i ng ( po inter , po in t e r + 2) ;
15 data [ i ] = (byte ) In t eg e r . pa r s e In t ( va lue . tr im ( ) , 16) ;
16 po in t e r += 2 ;
17 }
18 }

Once the fields are stored, they are sent as input to the corresponding
hash function and the resulting message digest is compared to the MD
field in the KAT file.

1 method . invoke ( " foo " , data , datab i t l en , hashval ) ;
2 S t r i ngBu f f e r sb = new St r i ngBu f f e r ( hashval . l ength ∗ 2) ;
3 for ( int i = 0 ; i < 32 ; ++i ) {
4 sb . append ( hexChar [ ( hashval [ i ] & 0 xf0 ) >>> 4 ] ) ;
5 sb . append ( hexChar [ hashval [ i ] & 0 x0f ] ) ;
6 }
7 i f ( ! tmp . equa l s ( sb . t oS t r i ng ( ) ) ) {
8 e r r o r ( datab i t l en , sb . t oS t r i ng ( ) , tmp) ;
9 return fa lse ;
10 }
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In the code above, tmp contains the message digest from the KAT file,
and sb.toString() is the computed message digest. If these are unequal,
an error method is invoked. If not the application continues with reading
and processing the fields.

Figure 3.2: An Excerpt from the Output of CheckKAT.java

Fig. 3.2 depicts an excerpt from the output produced from running the
CheckKAT application with all 14 candidates.

33



3. JAVA IMPLEMENTATION

34



4
Comments on the Candidates

This chapter will provide an in-depth comment on each of the candidates.
Relevant technical aspects of the algorithms will be provided, in addi-
tion to our implementation of the compression functions. Examples from
the reference C implementation will be compared to our Java equivalent
code, to illustrate our design choices. Our subjective opinion will finally
be given as to how we experienced the process with regards to ease of
implementation.
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4.1 BLAKE

BLAKE’s iteration mode is based on a HAIFA construction. It’s internal
structure is a local wide-pipe, and the compression function is a modified
version of the stream cipher ChaCha [8]. Fig. 4.1 illustrates the compres-
sion function, and the Java code for the same function is given below.

1 private stat ic void compress (byte [ ] datablock , int po in t e r ) {
2 int o f f s e t = extraPadding ? po inter−− : po in t e r ;
3
4 m[ 0 ] = U8TO32_BE( datablock , 0 + o f f s e t ) ;
5 m[ 1 ] = U8TO32_BE( datablock , 4 + o f f s e t ) ;
6 m[ 2 ] = U8TO32_BE( datablock , 8 + o f f s e t ) ;
7 m[ 3 ] = U8TO32_BE( datablock , 12 + o f f s e t ) ;
8 ( . . . )
9 m[ 1 5 ] = U8TO32_BE( datablock , 60 + o f f s e t ) ;
10
11 v [ 0 ] = h32 [ 0 ] ; v [ 1 ] = h32 [ 1 ] ;
12 v [ 2 ] = h32 [ 2 ] ; v [ 3 ] = h32 [ 3 ] ;
13 v [ 4 ] = h32 [ 4 ] ; v [ 5 ] = h32 [ 5 ] ;
14 v [ 6 ] = h32 [ 6 ] ; v [ 7 ] = h32 [ 7 ] ;
15 v [ 8 ] = c32 [ 0 ] ; v [ 9 ] = c32 [ 1 ] ;
16 v [ 1 0 ] = c32 [ 2 ] ; v [ 1 1 ] = c32 [ 3 ] ;
17
18 i f ( n u l l t != 0) {
19 v [ 1 2 ] = c32 [ 4 ] ; v [ 1 3 ] = c32 [ 5 ] ;
20 v [ 1 4 ] = c32 [ 6 ] ; v [ 1 5 ] = c32 [ 7 ] ;
21 } else {
22 v [ 1 2 ] = t32 [ 0 ] ^ c32 [ 4 ] ; v [ 1 3 ] = t32 [ 0 ] ^ c32 [ 5 ] ;
23 v [ 1 4 ] = t32 [ 1 ] ^ c32 [ 6 ] ; v [ 1 5 ] = t32 [ 1 ] ^ c32 [ 7 ] ;
24 }
25
26 for ( int round = 0 ; round < 10 ; ++round ) {
27 G32(0 , 4 , 8 , 12 , 0 , round ) ; G32(1 , 5 , 9 , 13 , 1 , round ) ;
28 G32(2 , 6 , 10 , 14 , 2 , round ) ; G32(3 , 7 , 11 , 15 , 3 , round ) ;
29 G32(0 , 5 , 10 , 15 , 4 , round ) ; G32(1 , 6 , 11 , 12 , 5 , round ) ;
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30 G32(2 , 7 , 8 , 13 , 6 , round ) ; G32(3 , 4 , 9 , 14 , 7 , round ) ;
31 }
32
33 h32 [ 0 ] ^= v [ 0 ] ^ v [ 8 ] ; h32 [ 1 ] ^= v [ 1 ] ^ v [ 9 ] ;
34 h32 [ 2 ] ^= v [ 2 ] ^ v [ 1 0 ] ; h32 [ 3 ] ^= v [ 3 ] ^ v [ 1 1 ] ;
35 h32 [ 4 ] ^= v [ 4 ] ^ v [ 1 2 ] ; h32 [ 5 ] ^= v [ 5 ] ^ v [ 1 3 ] ;
36 h32 [ 6 ] ^= v [ 6 ] ^ v [ 1 4 ] ; h32 [ 7 ] ^= v [ 7 ] ^ v [ 1 5 ] ;
37 }

Figure 4.1: The local wide-pipe construction of BLAKE’s compression
function (taken from [8])

We implemented BLAKE-32 which compress message blocks of 512-
bits, and the padding scheme is to append a ’1’ followed by ’0’s followed
by a ’1’, followed by appending a 64-bit representation of the message [20].

BLAKE is relatively easy to implement in Java. It has some macros
which are straight forward to implement as regular Java methods. An
example is the macro ROT32() which looks like this in C [8]:

#define ROT32(x,n) ((x << (32-n))|( x >> n))

The Java equivalent of this macro is a method which takes the same
input, and returns the same value as the macro body. As Java does not
support unsigned integers, we also use an unsigned right shift operator for
these operations in Java.
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1 private stat ic int ROT32( int x , int n) {
2 return ( x << 32 − n) | ( x >>> n) ;
3 }

4.2 Blue Midnight Wish

Blue Midnight Wish has a double-pipe Merkle-Damgård design. It uses 16
32-bit variables as a double-pipe and it has three main functions [9]. The
compression function is illustrated in Fig. 4.2. Our corresponding Java
implementation is given below:

1 private stat ic void Compression256 ( int [ ] M32, int [ ] H) {
2
3 int i ;
4 int XL32 , XH32 ;
5 int [ ] Q = new int [ 3 2 ] ;
6 int [ ] W = new int [ 3 2 ] ;
7
8 W[ 0 ] = (M32 [ 5 ] ^ H[ 5 ] ) − (M32 [ 7 ] ^ H[ 7 ] ) + (M32 [ 1 0 ] ^ H[ 1 0 ] )
9 + (M32 [ 1 3 ] ^ H[ 1 3 ] ) + (M32 [ 1 4 ] ^ H[ 1 4 ] ) ;
10 W[ 1 ] = (M32 [ 6 ] ^ H[ 6 ] ) − (M32 [ 8 ] ^ H[ 8 ] ) + (M32 [ 1 1 ] ^ H[ 1 1 ] )
11 + (M32 [ 1 4 ] ^ H[ 1 4 ] ) − (M32 [ 1 5 ] ^ H[ 1 5 ] ) ;
12 W[ 2 ] = (M32 [ 0 ] ^ H[ 0 ] ) + (M32 [ 7 ] ^ H[ 7 ] ) + (M32 [ 9 ] ^ H[ 9 ] )
13 − (M32 [ 1 2 ] ^ H[ 1 2 ] ) + (M32 [ 1 5 ] ^ H[ 1 5 ] ) ;
14 ( . . . )
15 W[ 1 5 ] = (M32 [ 1 2 ] ^ H[ 1 2 ] ) − (M32 [ 4 ] ^ H[ 4 ] ) − (M32 [ 6 ] ^ H[ 6 ] )
16 − (M32 [ 9 ] ^ H[ 9 ] ) + (M32 [ 1 3 ] ^ H[ 1 3 ] ) ;
17
18 Q[ 0 ] = s32_0 (W[ 0 ] ) + H[ 1 ] ;
19 Q[ 1 ] = s32_1 (W[ 1 ] ) + H[ 2 ] ;
20 Q[ 2 ] = s32_2 (W[ 2 ] ) + H[ 3 ] ;
21 ( . . . )
22 Q[ 1 5 ] = s32_0 (W[ 1 5 ] ) + H[ 0 ] ;
23

38



4.2. BLUE MIDNIGHT WISH

24 for ( i = 0 ; i < EXPAND_1_ROUNDS; i++)
25 Q[ i + 16 ] = expand32_1 ( i + 16 , M32, H, Q) ;
26 for ( i = EXPAND_1_ROUNDS; i < EXPAND_1_ROUNDS +
27 EXPAND_2_ROUNDS; i++)
28 Q[ i + 16 ] = expand32_2 ( i + 16 , M32, H, Q) ;
29
30 XL32 = Q[ 1 6 ] ^ Q[ 1 7 ] ^ Q[ 1 8 ] ^ Q[ 1 9 ] ^ Q[ 2 0 ]
31 ^ Q[ 2 1 ] ^ Q[ 2 2 ] ^ Q[ 2 3 ] ;
32 XH32 = XL32 ^ Q[ 2 4 ] ^ Q[ 2 5 ] ^ Q[ 2 6 ] ^ Q[ 2 7 ]
33 ^ Q[ 2 8 ] ^ Q[ 2 9 ] ^ Q[ 3 0 ] ^ Q[ 3 1 ] ;
34
35 H[ 0 ] = ( sh l (XH32 , 5) ^ shr (Q[ 1 6 ] , 5) ^ M32 [ 0 ] )
36 + (XL32 ^ Q[ 2 4 ] ^ Q[ 0 ] ) ;
37 ( . . . )
38 H[ 3 ] = ( shr (XH32 , 1) ^ sh l (Q[ 1 9 ] , 5) ^ M32 [ 3 ] )
39 + (XL32 ^ Q[ 2 7 ] ^ Q[ 3 ] ) ;
40 ( . . . )
41 H[ 1 5 ] = r o t l 3 2 (H[ 3 ] , 16) + (XH32 ^ Q[ 3 1 ] ^ M32 [ 1 5 ] ) + ( shr (

XL32 , 2) ^ Q[ 2 2 ] ^ Q[ 1 5 ] ) ;
42 }

Blue Midnight Wish compress message blocks of 512-bits, and the
padding scheme is to append a ’1’ followed by ’0’s and finally the message
length as an 64-bit integer. This is done to make sure that the output is
a multiple of the input block size [20].

Blue Midnight Wish (BMW) is relatively harder to implement in Java
compared with the other candidates. Inside the Update() function, the
M32 variable is an unsigned integer which share memory space with the
data given as input [9]. Java ensures type safety, which means that an
extra method has to be implemented in Java to synchronize our 8-bit data
array with the 32-bit M32() array.
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Figure 4.2: Compression function in Blue Midnight Wish (taken from [9])

1 private stat ic void setM32 ( int [ ] M32, byte [ ] data , long
da tab i t l e n ) {

2 int a = 0 ;
3 try {
4 for ( int i = 0 ; i < M32 . l ength ; i++) {
5 M32 [ i ] = ( data [ a++] & 255) << 0 ;
6 M32 [ i ] |= ( data [ a++] & 255) << 8 ;
7 M32 [ i ] |= ( data [ a++] & 255) << 16 ;
8 M32 [ i ] |= ( data [ a++] & 255) << 24 ;
9 }
10 } catch ( Exception e ) {
11 }
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12 M32Pointer = ( int ) Math . c e i l ( (double ) data . l ength / 4) ;
13 }

An extra integer is also implemented to work as a pointer for the M32
array. Every time some of the data in M32 is consumed, the array pointer
is set accordingly.

4.3 CubeHash

CubeHash is a sponge-like hash algorithm based on a fixed permutation [3].
CubeHash process message blocks by appending a ’1’, followed by as many
’0’s as required to get a multiple of the b-block size [20].

The rounds() function performs the permutation. Our implementation
of the rounds() function is provided below, where we can see that the
permutation uses additions, XORs and rotation.

1 private stat ic void rounds ( ) {
2 int tmp = 0 ;
3 for ( int r = 0 ; r < 16 ; ++r ) {
4 for ( int j = 0 ; j < 2 ; ++j )
5 for ( int k = 0 ; k < 2 ; ++k)
6 for ( int l = 0 ; l < 2 ; ++l )
7 for ( int m = 0 ; m < 2 ; ++m)
8 x [ 1 ] [ j ] [ k ] [ l ] [m] += x [ 0 ] [ j ] [ k ] [ l ] [m] ;
9 for ( int j = 0 ; j < 2 ; ++j )
10 for ( int k = 0 ; k < 2 ; ++k)
11 for ( int l = 0 ; l < 2 ; ++l )
12 for ( int m = 0 ; m < 2 ; ++m)
13 x [ 0 ] [ j ] [ k ] [ l ] [m] = rotateUpwards7 (x [ 0 ] [ j ] [ k ] [ l ] [m] )

;
14 for ( int k = 0 ; k < 2 ; ++k) {
15 for ( int l = 0 ; l < 2 ; ++l ) {
16 for ( int m = 0 ; m < 2 ; ++m) {
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17 tmp = x [ 0 ] [ 0 ] [ k ] [ l ] [m] ;
18 x [ 0 ] [ 0 ] [ k ] [ l ] [m] = x [ 0 ] [ 1 ] [ k ] [ l ] [m] ;
19 x [ 0 ] [ 1 ] [ k ] [ l ] [m] = tmp ;
20 }
21 }
22 }
23 for ( int j = 0 ; j < 2 ; ++j )
24 for ( int k = 0 ; k < 2 ; ++k)
25 for ( int l = 0 ; l < 2 ; ++l )
26 for ( int m = 0 ; m < 2 ; ++m)
27 x [ 0 ] [ j ] [ k ] [ l ] [m] ^= x [ 1 ] [ j ] [ k ] [ l ] [m] ;
28 for ( int j = 0 ; j < 2 ; ++j ) {
29 for ( int k = 0 ; k < 2 ; ++k) {
30 for ( int m = 0 ; m < 2 ; ++m) {
31 tmp = x [ 1 ] [ j ] [ k ] [ 0 ] [m] ;
32 x [ 1 ] [ j ] [ k ] [ 0 ] [m] = x [ 1 ] [ j ] [ k ] [ 1 ] [m] ;
33 x [ 1 ] [ j ] [ k ] [ 1 ] [m] = tmp ;
34 }
35 }
36 }
37 for ( int j = 0 ; j < 2 ; ++j )
38 for ( int k = 0 ; k < 2 ; ++k)
39 for ( int l = 0 ; l < 2 ; ++l )
40 for ( int m = 0 ; m < 2 ; ++m)
41 x [ 1 ] [ j ] [ k ] [ l ] [m] += x [ 0 ] [ j ] [ k ] [ l ] [m] ;
42 for ( int j = 0 ; j < 2 ; ++j )
43 for ( int k = 0 ; k < 2 ; ++k)
44 for ( int l = 0 ; l < 2 ; ++l )
45 for ( int m = 0 ; m < 2 ; ++m)
46 x [ 0 ] [ j ] [ k ] [ l ] [m] = rotateUpwards11 (x [ 0 ] [ j ] [ k ] [ l ] [m

] ) ;
47 for ( int j = 0 ; j < 2 ; ++j ) {
48 for ( int l = 0 ; l < 2 ; ++l ) {
49 for ( int m = 0 ; m < 2 ; ++m) {
50 tmp = x [ 0 ] [ j ] [ 0 ] [ l ] [m] ;
51 x [ 0 ] [ j ] [ 0 ] [ l ] [m] = x [ 0 ] [ j ] [ 1 ] [ l ] [m] ;
52 x [ 0 ] [ j ] [ 1 ] [ l ] [m] = tmp ;
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53 }
54 }
55 }
56 for ( int j = 0 ; j < 2 ; ++j )
57 for ( int k = 0 ; k < 2 ; ++k)
58 for ( int l = 0 ; l < 2 ; ++l )
59 for ( int m = 0 ; m < 2 ; ++m)
60 x [ 0 ] [ j ] [ k ] [ l ] [m] ^= x [ 1 ] [ j ] [ k ] [ l ] [m] ;
61 for ( int j = 0 ; j < 2 ; ++j ) {
62 for ( int k = 0 ; k < 2 ; ++k) {
63 for ( int l = 0 ; l < 2 ; ++l ) {
64 tmp = x [ 1 ] [ j ] [ k ] [ l ] [ 0 ] ;
65 x [ 1 ] [ j ] [ k ] [ l ] [ 0 ] = x [ 1 ] [ j ] [ k ] [ l ] [ 1 ] ;
66 x [ 1 ] [ j ] [ k ] [ l ] [ 1 ] = tmp ;
67 }
68 }
69 }
70 }
71 }

CubeHash is relatively easy to implement in Java [12]. No special
considerations have to be taken, except from using the unsigned right shift
operator for Java in both the rotateUpwards7() and rotateUpwards11()
functions, as shown below. The Java implementation is very similar to
the reference implementation.

1 private stat ic int rotateUpwards7 ( int i ) {
2 return ( ( i << 7) | ( i >>> 25) ) ;
3 }
4 private stat ic int rotateUpwards11 ( int i ) {
5 return ( ( i << 11) | ( i >>> 21) ) ;
6 }
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4.4 ECHO

ECHO follows the HAIFA construction, and is a wide-pipe hash algo-
rithm [3]. The design embodies the goal of reusing, and thereby echoing,
as many aspects of the Advanced Encryption Standard (AES) as possi-
ble [15]. The Java implementation of the Compress() function is provided
as follows:

1 private stat ic void Compress ( ) {
2 Backup ( ) ;
3 counter_hi = mess l enh i ;
4 counter_lo = mess l en lo ;
5 for ( int i = 0 ; i < rounds ; i++) {
6 BigSubWords ( ) ;
7 BigShiftRows ( ) ;
8 BigMixColumns ( ) ;
9 }
10 BigFina l ( ) ;
11 }

First off, the BigSubWords() transformation applies two AES rounds
to each of the 16 words of the state. This is illustrated in Fig. 4.3. The
Java code for this is:

1 private stat ic void BigSubWords ( ) {
2 k1 [ 0 ] [ 1 ] = ( counter_hi >> 0) ;
3 k1 [ 1 ] [ 1 ] = ( counter_hi >> 8) ;
4 k1 [ 2 ] [ 1 ] = ( counter_hi >> 16) ;
5 k1 [ 3 ] [ 1 ] = ( counter_hi >> 24) ;
6
7 for ( int j = 0 ; j < 4 ; j++) {
8 for ( int i = 0 ; i < 4 ; i++) {
9 k1 [ 0 ] [ 0 ] = ( counter_lo >> 0) ;
10 k1 [ 1 ] [ 0 ] = ( counter_lo >> 8) ;
11 k1 [ 2 ] [ 0 ] = ( counter_lo >> 16) ;
12 k1 [ 3 ] [ 0 ] = ( counter_lo >> 24) ;
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13
14 aes ( tab [ i ] [ j ] , k1 ) ;
15 aes ( tab [ i ] [ j ] , k2 ) ;
16
17 counter_lo++;
18 i f ( counter_lo == 0) {
19 counter_hi++;
20 k1 [ 0 ] [ 1 ] = ( counter_hi >> 0) ;
21 k1 [ 1 ] [ 1 ] = ( counter_hi >> 8) ;
22 k1 [ 2 ] [ 1 ] = ( counter_hi >> 16) ;
23 k1 [ 3 ] [ 1 ] = ( counter_hi >> 24) ;
24
25 }
26 }
27 }
28 }

Figure 4.3: BigSubWords in Echo (taken from [16])

Below follows the BigShiftRows() transformation. This function mim-
ics AES’s ShiftRows, but on 128-bit words. This is illustrated in Fig. 4.4.
The Java code for this is:
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1 private stat ic void BigShiftRows ( ) {
2 byte [ ] [ ] [ ] tmp = new byte [ 4 ] [ 4 ] [ 4 ] ;
3 int m;
4
5 for ( int i = 1 ; i < 4 ; i++) {
6 for ( int j = 0 ; j < 4 ; j++) {
7 m = ( j + i ) 4;for (int k = 0; k < 4; k++ {
8 for ( int l = 0 ; l < 4 ; l++) {
9 tmp [ j ] [ k ] [ l ] = tab [ i ] [m] [ k ] [ l ] ;
10 }
11 }
12 }
13 for ( int j = 0 ; j < 4 ; j++) {
14 for ( int k = 0 ; k < 4 ; k++) {
15 for ( int l = 0 ; l < 4 ; l++) {
16 tab [ i ] [ j ] [ k ] [ l ] = tmp [ j ] [ k ] [ l ] ;
17 }
18 }
19 }
20 }
21 }

Figure 4.4: BigShiftWords in Echo (taken from [16])
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The BigMixColumns() transformation applies AES’s MixColumns to
4-tuples of bytes throughout the state. This is illustrated in Fig. 4.5. The
Java code for this is:

1 private stat ic void BigMixColumns ( ) {
2 for ( int i = 0 ; i < 4 ; i++) {
3 for ( int j = 0 ; j < 4 ; j++) {
4 for ( int k = 0 ; k < 4 ; k++) {
5 NewMix4Bytes ( i , j , k ) ;
6 }
7 }
8 }
9 }

Figure 4.5: BigMixColums in Echo (taken from [16])

ECHO process message blocks of size 1536-bit. The padding is done
by appending a ’1’ followed by ’0’s, followed by a 16-bit representation of
the message digest size followed by a 128-bit representation of the message
length such that the output is a multiple of the input block size [20].

ECHO is relatively harder to implement in Java, compared with the
other candidates. The reference implementation in C uses an Addresses
pointer array which points to positions in the four dimensional tab ar-
ray [15].
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1 for ( j =0; j <4; j++)
2 for ( i =0; i <4; i++)
3 for ( l =0; l <4; l++)
4 for ( k=0; k<4; k++){
5 state−>tab [ i ] [ j ] [ k ] [ l ] = 0 ;
6 s tate−>Addresses [m++] = & state−>tab [ i ] [ j ] [ k ] [ l ] ;
7 }

In functions like Pop and Push, the algorithm uses the Addresses array
to access the tab array in an easy way. The Pop function, in C, is as
follows [15]:

1 word8 Pop( hashState ∗ s t a t e ) {
2 return ∗ s ta te−>Addresses [ s ta te−>index++];
3 }

Our Java equivalent is a bit different as it has to access the tab array
directly via the index variable:

1 private stat ic int Pop ( ) {
2 int a = index / 64 ;
3 int b = ( index > 15) ? ( ( index / 16) MOD 4) : 0 ;
4 int c = ( index > 3) ? ( ( index / 4) MOD 4) : 0 ;
5 int d = ( ( index − ( index / 4) ) + ( index / 4) ) MOD 4 ;
6 index++;
7 return tab [ b ] [ a ] [ d ] [ c ] ;
8 }

This can cause some overhead with regards to performance, and re-
quires some extra work when implementing ECHO in Java.
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4.5 Fugue

Fugue maintains a large state, and is a variant of the sponge construc-
tion [17]. The padding scheme of Fugue is to pad with ’0’s to get a multi-
ple of the block size, and then add an extra block containing the message
length [20].

Fugue is one of the hardest candidates to implement in Java. It has a
couple of unions like the following [17]:

1 typede f union {
2 uint32 d ;
3 u int8 b [ 4 ] ;
4 } hash32_s ;
5 typede f hash32_s∗ hash32_p ;
6
7 hash32_s State [ 3 6 ] ;

The two variables, d and b in this case, are sharing memory space,
and are often written to subsequently. In Java, the State variable has to
be implemented as an inner class with d and b as its member variables.
Every time one of them is written to, they have to be synchronized, before
a read/write operation is conducted on the other. The Java class for the
given union is:

1 private stat ic class M {
2 int d ;
3 byte [ ] b = new byte [ 4 ] ;
4
5 private void syncFromByte ( ) { . . code . . }
6 private void syncFromInt ( ) { . . code . . }
7
8 }
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This especially causes overhead in the DoneFugue() function, with a
small code sample given below:

1 Col_Xor_RORn(p , p , 0 , 0) ;
2 for ( int i = 0 ; i < State . l ength ; i++)
3 State [ i ] . syncFromInt ( ) ;
4 Super_Mix ( ) ;
5 for ( int i = 0 ; i < State . l ength ; i++)
6 State [ i ] . syncFromByte ( ) ;
7 Col_Xor_RORn(p − 1 , p + 1 , 0 , 0) ;
8 for ( int i = 0 ; i < State . l ength ; i++)
9 State [ i ] . syncFromInt ( ) ;
10 Super_Mix ( ) ;
11 for ( int i = 0 ; i < State . l ength ; i++)
12 State [ i ] . syncFromByte ( ) ;

At the core of Fugue is a permutation called SuperMix(). It consists of a
layer of AES S-box substitutions followed by the multiplication with a 16×
16 constant GF (28) matrix from the left [21]. A graphical representation
of this function is included in Fig. 4.6 from the documentation of Fugue.

1 private stat ic void Super_Mix ( ) {
2 M[ ] U = new M[ 4 ] ;
3 for ( int i = 0 ; i < U. l ength ; i++)
4 U[ i ] = new M() ;
5 M D = new M() ;
6 M[ ] W = new M[ 4 ] ;
7 for ( int i = 0 ; i < W. length ; i++)
8 W[ i ] = new M() ;
9 int r , c ;
10
11 for ( r = 0 ; r < 4 ; r++)
12 for ( c = 0 ; c < 4 ; c++)
13 U[ c ] . b [ r ] = aessub [BYTES( r , c ) & 2 5 5 ] ;
14 for ( r = 0 ; r < 4 ; r++)
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15 for ( c = 0 ; c < 4 ; c++)
16 i f ( r != c )
17 D. b [ r ] ^= U[ c ] . b [ r ] ;
18
19 for ( r = 0 ; r < 4 ; r++)
20 for ( c = 0 ; c < 4 ; c++)
21 W[ c ] . b [ r ] = (byte ) ( gf2mul [U[ c ] . b [ 0 ] & 2 5 5 ] . b [m[ 0 ] . b [ r ] &

255 ]
22 ^ gf2mul [U[ c ] . b [ 1 ] & 2 5 5 ] . b [m[ 1 ] . b [ r ] & 255 ]
23 ^ gf2mul [U[ c ] . b [ 2 ] & 2 5 5 ] . b [m[ 2 ] . b [ r ] & 255 ]
24 ^ gf2mul [U[ c ] . b [ 3 ] & 2 5 5 ] . b [m[ 3 ] . b [ r ] & 255 ] ^ gf2mul

[D. b [ r ] & 2 5 5 ] . b [m[ r ] . b [ c ] & 255 ] & 255) ;
25
26 for ( r = 0 ; r < 4 ; r++)
27 for ( c = 0 ; c < 4 ; c++)
28 State [COLUMN(( c − r ) & 3) ] . b [ r ] = W[ c ] . b [ r ] ;
29 }

Figure 4.6: SMIX function of Fugue (taken from [17])

As mentioned, the hash state of the algorithm is relatively big and the
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reference implementation contains several macros and inline functions.
With the extra inner classes, and small compensations which have to be
made for macros, the Java implementation has a large potential for im-
provements with regards to both speed and size.

4.6 Grøstl

Grøstl is an iterated hash algorithm with a compression function built
from two fixed, large, distinct permutations [18]. It is a wide-pipe Merkle-
Damgård hash construction with post-processing [3]. The Transform()
function of Grøstl is depicted in Fig. 4.7, with the Java implementation
given below.

Our 256-bit implementation of Grøstl compress message blocks of 512-
bits, and the padding scheme is to append a ’1’ followed by ’0’s, followed
by the number of message blocks as an 64-bit integer such that the output
is a multiple of the input block size [20].

1 private stat ic void Transform (byte [ ] input , int msglen , int
o f f s e t ) {

2
3 int [ ] [ ] temp1 = new int [ 8 ] [ 1 6 ] ;
4 int [ ] [ ] temp2 = new int [ 8 ] [ 1 6 ] ;
5
6 for ( ; msglen >= 64 ; msglen −= 64 , o f f s e t += 64) {
7 for ( int i = 0 ; i < 8 ; i++) {
8 for ( int j = 0 ; j < 8 ; j++) {
9 temp1 [ i ] [ j ] = cha in ing [ i ] [ j ]
10 ^ input [ ( j ∗ 8 + i ) + o f f s e t ] ;
11 temp2 [ i ] [ j ] = input [ ( j ∗ 8 + i ) + o f f s e t ] ;
12 }
13 }
14
15 P( temp1 ) ;
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16 Q( temp2 ) ;
17
18 for ( int i = 0 ; i < 8 ; i++) {
19 for ( int j = 0 ; j < 8 ; j++) {
20 cha in ing [ i ] [ j ] ^= temp1 [ i ] [ j ] ^ temp2 [ i ] [ j ] ;
21 }
22 }
23
24 block_counter++;
25 }
26 }

Figure 4.7: Compression function of Grøstl (taken from [18])

Grøstl is relatively easy to implement in Java.

4.7 Hamsi

Hamsi is relatively okay to implement in Java. Some macros and inline
functions have been given some extra attention, but nothing that stands
out compared to the other algorithms with the same functions.
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On the other hand, Hamsi uses a three-dimensional array with the
given dimensions: T256[4][256][8] [19]. Our constrained platform gives
an error here, which says that this array exceeds the allowed constant size
in Java. Hence, we were unable to compile this code for the constrained
platform, and Hamsi is left out when measuring on the Sun SPOT. No
further comment on the implementation will be given here due to this fact.

4.8 JH

JH uses a construction which is reminiscent of a sponge construction to
build a hash algorithm out of a single, large, fixed permutation [3]. Our
Java implementation of the bijective function E8() is provided below, while
the illustration of this is function is depicted in Fig. 4.8.

1 private stat ic void E8 ( ) {
2 int t0 , t1 , t2 , t3 ;
3 int [ ] tem = new int [ 2 5 6 ] ;
4
5 for ( int i = 0 ; i < 256 ; i++) {
6 t0 = (H[ i >> 3 ] >> (7 − ( i & 7) ) ) & 1 ;
7 t1 = (H[ ( i + 256) >> 3 ] >> (7 − ( i & 7) ) ) & 1 ;
8 t2 = (H[ ( i + 512) >> 3 ] >> (7 − ( i & 7) ) ) & 1 ;
9 t3 = (H[ ( i + 768) >> 3 ] >> (7 − ( i & 7) ) ) & 1 ;
10 tem [ i ] = ( t0 << 3) | ( t1 << 2) | ( t2 << 1) | ( t3 << 0) ;
11 }
12 for ( int i = 0 ; i < 128 ; i++) {
13 A[ i << 1 ] = tem [ i ] ;
14 A[ ( i << 1) + 1 ] = tem [ i + 1 2 8 ] ;
15 }
16 for ( int i = 0 ; i < 35 ; i++) {
17 R8( ) ;
18 update_roundconstant ( ) ;
19 }
20
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21 last_half_round_R8 ( ) ;
22
23 for ( int i = 0 ; i < 128 ; i++)
24 H[ i ] = 0 ;
25 for ( int i = 0 ; i < 128 ; i++) {
26 tem [ i ] = A[ i << 1 ] ;
27 tem [ i + 128 ] = A[ ( i << 1) + 1 ] ;
28 }
29 for ( int i = 0 ; i < 256 ; i++) {
30 t0 = ( tem [ i ] >> 3) & 1 ;
31 t1 = ( tem [ i ] >> 2) & 1 ;
32 t2 = ( tem [ i ] >> 1) & 1 ;
33 t3 = ( tem [ i ] >> 0) & 1 ;
34
35 H[ i >> 3 ] |= t0 << (7 − ( i & 7) ) ;
36 H[ ( i + 256) >> 3 ] |= t1 << (7 − ( i & 7) ) ;
37 H[ ( i + 512) >> 3 ] |= t2 << (7 − ( i & 7) ) ;
38 H[ ( i + 768) >> 3 ] |= t3 << (7 − ( i & 7) ) ;
39 }
40 }

The code for the function E8(), provided above, gives an example as to
why the reference implementation of this algorithm will perform poorly.
Most operations are done by iterating through arrays, and performing
operations directly on the arrays. The reference implementation of the
candidate has a lot of potential for improvements on performance. On the
other hand it is relatively easy to implement in Java.

JH compress message blocks of 512-bits, and the padding scheme is to
append a ’1’ followed by ’0’s followed by a 128-bit representation of the
message length [20].
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Figure 4.8: Compression function of JH (taken from [23])

4.9 Keccak

Keccak uses a large fixed permutation which can be seen as an SP-network,
with 5-bit wide S-boxes, or as a combination of a linear mixing operation
and a very simple nonlinear mixing operation [3]. The algorithm follows
a sponge construction. The permutation function is implemented as:

1 private stat ic void KeccakPermutationOnWords ( long [ ] s t a t e ) {
2 for ( int i = 0 ; i < 24 ; i++) {
3 theta ( s t a t e ) ;
4 rho ( s t a t e ) ;
5 p i ( s t a t e ) ;
6 ch i ( s t a t e ) ;
7 i o t a ( s tate , i ) ;
8 }
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9 }

Each of the functions in the permutation is implemented as follows:

1 private stat ic void theta ( long [ ] A) {
2
3 long [ ] C = new long [ 5 ] ;
4 long [ ] D = new long [ 5 ] ;
5
6 for ( int x = 0 ; x < 5 ; x++) {
7 C[ x ] = 0 ;
8 for ( int y = 0 ; y < 5 ; y++)
9 C[ x ] ^= A[ index (x , y ) ] ;
10 D[ x ] = ROL64(C[ x ] , 1) ;
11 }
12 for ( int x = 0 ; x < 5 ; x++)
13 for ( int y = 0 ; y < 5 ; y++)
14 A[ index (x , y ) ] \^= D[ ( x + 1) \ 5] Ĉ[(x + 4 \ 5];

1 private stat ic void rho ( long [ ] A) {
2 for ( int x = 0 ; x < 5 ; x++)
3 for ( int y = 0 ; y < 5 ; y++)
4 A[ index (x , y ) ] = ROL64(A[ index (x , y ) ] , KeccakRhoOffsets [

index (x , y ) ] ) ;
5 }

1 private stat ic void pi ( long [ ] A) {
2 long [ ] tempA = new long [ 2 5 ] ;
3
4 for ( int x = 0 ; x < 5 ; x++)
5 for ( int y = 0 ; y < 5 ; y++)
6 tempA [ index (x , y ) ] = A[ index (x , y ) ] ;
7 for ( int x = 0 ; x < 5 ; x++)
8 for ( int y = 0 ; y < 5 ; y++)
9 A[ index (0 ∗ x + 1 ∗ y , 2 ∗ x + 3 ∗ y ) ] = tempA [ index (x , y

) ] ;
10 }
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1 private stat ic void ch i ( long [ ] A) {
2 long [ ] C = new long [ 5 ] ;
3 for ( int y = 0 ; y < 5 ; y++) {
4 for ( int x = 0 ; x < 5 ; x++)
5 C[ x ] = A[ index (x , y ) ] ^ ((~A[ index (x + 1 , y ) ] ) & A[ index (

x + 2 , y ) ] ) ;
6 for ( int x = 0 ; x < 5 ; x++)
7 A[ index (x , y ) ] = C[ x ] ;
8 }
9 }

1 private stat ic void i o t a ( long [ ] A, int indexRound ) {
2 A[ index (0 , 0) ] ^= KeccakRoundConstants [ indexRound ] ;
3 }

The padding scheme of Keccak is to append a ’1’ followed by ’0’s to
a multiple of ’8’, followed by a digest specific constant, followed by a ’1’
and ’0’s to a multiple of the input block size [20].

Keccak is relatively hard to implement in Java, based on its reference
implementation in C. The code base of the reference implementation is
quite big, so some time were spent to find which parts of the code were
relevant, as both displaying intermediate values as well as endian specific
code is removed from the Java implementation [24].

A couple of extra methods are included in this Java implementation
for synchronizing two arrays of different bit-lengths. An example is shown
in the code below where the KeccakPermutation() function takes in a 8-bit
array, which is passed on to KeccakPermutaionOnWord() function shown
above, as a 64-bit array:
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1 private stat ic void KeccakPermutation (byte [ ] s t a t e ) {
2 long [ ] s tateLong = new long [ s t a t e . l ength / 8 ] ;
3 stateToLong ( stateLong ) ;
4 KeccakPermutationOnWords ( stateLong ) ;
5 stateFromLong ( stateLong ) ;
6 }

This causes some overhead to the java implementation, but it is still
quite similar to the reference implementation.

4.10 Luffa

Luffa is a variant of the sponge construction, using a linear mixing op-
eration and several fixed 256-bit permutations in place of a single wider
permutation [3]. The Java implementation of the round function is given
below as well as the code for the mi() and tweak() function. The same
round function is depicted in Fig. 4.9.

1 private stat ic void rnd ( int [ ] c ) {
2 mi ( ) ;
3 tweak ( ) ;
4 for ( int i = 0 ; i < 8 ; i++) {
5 step ( c ) ;
6 }
7 }

1 private stat ic void mi ( ) {
2 int [ ] t = new int [ 4 0 ] ;
3 for ( int i = 0 ; i < 8 ; i++) {
4 t [ i ] = 0 ;
5 for ( int j = 0 ; j < 3 ; j++) {
6 t [ i ] ^= chainv [ i + 8 ∗ j ] ;
7 }
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8 }
9 mult2 ( t , 0 , 0) ;
10 for ( int j = 0 ; j < 3 ; j++) {
11 for ( int i = 0 ; i < 8 ; i++) {
12 chainv [ i + 8 ∗ j ] ^= t [ i ] ;
13 }
14 }
15 for ( int j = 0 ; j < 3 ; j++) {
16 for ( int i = 0 ; i < 8 ; i++) {
17 chainv [ i + 8 ∗ j ] ^= bu f f e r [ i ] ;
18 }
19 mult2 ( bu f f e r , 0 , 1) ;
20 }
21 return ;
22 }

1 private stat ic void tweak ( ) {
2 for ( int j = 0 ; j < 3 ; j++) {
3 for ( int i = 4 ; i < 8 ; i++) {
4 chainv [ ( 8 ∗ j ) + i ] = ( chainv [ ( 8 ∗ j ) + i ] << j ) | (

chainv [ ( 8 ∗ j ) + i ] >>> (32 − j ) ) ;
5 }
6 }
7 return ;
8 }

Luffa is relatively easy to implement in Java. A couple of extra meth-
ods have to be implemented for synchronizing an 8-bit array with a 32-bit
array. The methods syncBuffer() and setByteBuffer() takes an 8-bit array
p as input, and synchronizes it with the static 32-bit buffer array [25].

Luffa compress message blocks of 256-bits, and the padding scheme is
to append a ’1’ followed by as many ’0’s as required to get a multiple of
the input block size [20].
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Figure 4.9: Round function of Luffa (taken from [25])

4.11 Shabal

Shabal is a hash algorithm that is constructed using chaining mode, which
can be seen as a variant of a wide-pipe Merkle-Damgård hash construc-
tion [3]. Shabal processes message blocks with a size of 512-bits, and the
padding scheme is to append a ’1’ followed by as many ’0’s as required to
get a multiple of the input block size [20]. The graphical representation
of the inner message rounds is depicted in Fig. 4.10. The following is our
implementation of these rounds in Java:

1 input_block_add (m) ;
2 xor_counter ( ) ;
3 apply_perm (m) ;
4 input_block_sub (m) ;
5 swap_bc ( ) ;
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1 private stat ic void input_block_add ( int [ ] m) {
2 for ( int i = 0 ; i < sM; i++) {
3 B[ i ] = T32(B[ i ] + m[ i ] ) ;
4 }
5 }

1 private stat ic void xor_counter ( ) {
2 A[ 0 ] ^= Wlow ;
3 A[ 1 ] ^= Whigh ;
4 }

1 private stat ic void apply_perm ( int [ ] m) {
2 int i , j ;
3 int xAm1, xA ;
4 for ( i = 0 ; i < sM; i++) {
5 int t ;
6 t = B[ i ] ;
7 B[ i ] = (T32( t << 17) | ( t >>> 15) ) ;
8 }
9 for ( j = 0 ; j < 3 ; j++) {
10 for ( i = 0 ; i < sM; i++) {
11 int tB ;
12 xA = xA( i , j ) ;
13 xAm1 = xAm1( i , j ) ;
14 xA = U(xA ^ V(T32(xAm1 << 15) | (xAm1 >>> 17) ) ^ C[ ( 8 +

sM − i ) MOD sM] ) ^ B[ ( i + 13) MOD sM] ^ (B[ ( i + 9)
MOD sM] & ~B[ ( i + 6) MOD sM] ) ^ m[ i ] ;

15 A[ ( i + sM ∗ j ) MOD nR] = xA;
16 A[ ( i + sM ∗ j + (nR − 1) ) MOD nR] = xAm1;
17 tB = B[ i ] ;
18 B[ i ] = T32 ( ( ( tB << 1) | ( tB >>> 31) ) ^ ~xA) ;
19 }
20 }
21 for ( j = 0 ; j < (3 ∗ nR) ; j++) {
22 A[ ( 3 ∗ nR − 1 − j ) MOD nR] = T32(A[ ( 3 ∗ nR − 1 − j ) MOD nR]

+ C[ ( 3 ∗ nR ∗ sM + 6 − j ) MOD sM] ) ;

62



4.11. SHABAL

Figure 4.10: Message rounds of Shabal (taken from [29])

23 }
24 }

1 private stat ic void input_block_sub ( int [ ] m) {
2 for ( int i = 0 ; i < sM; i++)
3 C[ i ] = T32(C[ i ] − m[ i ] ) ;
4 }

1 private stat ic void swap_bc ( ) {
2 int t ;
3 for ( int i = 0 ; i < sM; i++) {
4 t = B[ i ] ;
5 B[ i ] = C[ i ] ;
6 C[ i ] = t ;
7 }
8 }

Shabal is relatively okay to implement in Java. Some extra code is
provided in the reference implementation which is C specific. An example
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of this is [29]:

1 #i f d e f ULLONG_MAX
2 typede f unsigned long long DataLength ;
3 #else
4 typede f unsigned long DataLength ;
5 #end i f

There exists no equivalent for this in Java. Our strategy was to find the
most convenient way to implement this, and since DataLenght is defined
as a 64-bit long for all other candidates, we chose to keep it this way. An
extra 32-bit integer is also introduced in the code, and is used as an array
pointer in Java.

4.12 SHAvite-3

SHAvite-3 is a HAIFA hash algorithm, based on the AES building blocks.
The compression function shown below is a keyed permutation that is used
in the Davies-Meyer construction [3].

1 private stat ic void Compress256 ( f ina l byte [ ] message_block , int
o f f s e t , byte [ ] chaining_value , long counter ) {

2 int [ ] pt = new int [ 8 ] ;
3 int [ ] c t = new int [ 8 ] ;
4 int [ ] msg_u32 = new int [ 1 6 ] ;
5 int [ ] cnt = new int [ 2 ] ;
6 for ( int i = 0 ; i < 8 ; i++)
7 pt [ i ] = U8TO32_LITTLE( chaining_value , 4 ∗ i ) ;
8 for ( int i = 0 ; i < 16 ; i++)
9 msg_u32 [ i ] = U8TO32_LITTLE(message_block , (4 ∗ i ) + o f f s e t )

;
10 cnt [ 1 ] = ( int ) ( counter >> 32) ;
11 cnt [ 0 ] = ( int ) ( counter & 0xFFFFFFFFL) ;
12 E256 ( pt , ct , msg_u32 , cnt ) ;
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Figure 4.11: Rounds of E256 (taken from [30])

13 for ( int i = 0 ; i < 8 ; i++)
14 pt [ i ] ^= ct [ i ] ;
15 for ( int i = 0 ; i < 8 ; i++)
16 U32TO8_LITTLE( chaining_value , i ∗ 4 , pt [ i ] ) ;
17 }

Our implementation of the E256() function is provided here, and il-
lustrated in Fig. 4.11:

1 private stat ic void E256 ( int [ ] pt , int [ ] ct , int [ ] message , int
[ ] counter ) {

2
3 int [ ] s t a t e = new int [ 8 ] ;
4 int [ ] input = new int [ 4 ] ;
5 int [ ] output = new int [ 4 ] ;
6 int [ ] rk = new int [ 1 4 4 ] ;
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7 for ( int i = 0 ; i < 8 ; i++)
8 s t a t e [ i ] = pt [ i ] ;
9 for ( int i = 0 ; i < 16 ; i++)
10 rk [ i ] = message [ i ] ;
11 MessageExpansion256 ( rk , counter ) ;
12 for ( int i = 0 ; i < 12 ; i++) {
13 for ( int j = 0 ; j < 4 ; j++)
14 input [ j ] = s t a t e [ 4 + j ] ;
15 roundAESkeyf irst ( input , output , rk , 12 ∗ i ) ;
16 for ( int j = 0 ; j < 4 ; j++)
17 input [ j ] = output [ j ] ;
18 roundAESkeyf irst ( input , output , rk , 12 ∗ i + 4) ;
19 for ( int j = 0 ; j < 4 ; j++)
20 input [ j ] = output [ j ] ;
21 roundAESkeyf irst ( input , output , rk , 12 ∗ i + 8) ;
22 for ( int j = 0 ; j < 4 ; j++)
23 s t a t e [ j ] ^= output [ j ] ;
24 for ( int j = 0 ; j < 4 ; j++) {
25 int temp = s t a t e [ j ] ;
26 s t a t e [ j ] = s t a t e [ j + 4 ] ;
27 s t a t e [ j + 4 ] = temp ;
28 }
29 }
30 for ( int i = 0 ; i < 8 ; i++)
31 ct [ i ] = s t a t e [ i ] ;
32 }

SHAvite-3 process message blocks of size 512-bit. The padding scheme
is done by appending a ’1’ followed by ’0’s, followed by the message length,
followed by the digest length such that the output is a multiple of the input
block size [20].

SHAvite-3 is relatively okay to implement in Java. The reference imple-
mentation explains very well each step necessary to perform the hashing.
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A portable.h file is included with SHAvite-3 which contains several
C specific mechanisms [30]. Some time were spent to find the correct
definitions for use with Java, as some of them were endian-, processor- or
application specific. The java implementation for the macro U8TO32 is
shown below:

1 private stat ic int U8TO32_LITTLE(byte [ ] c , int o f f s e t ) {
2 int value ;
3 va lue = 255 & c [ o f f s e t ++];
4 va lue |= (255 & c [ o f f s e t ++]) << 8 ;
5 value |= (255 & c [ o f f s e t ++]) << 16 ;
6 value |= (255 & c [ o f f s e t ++]) << 24 ;
7 return value ;
8 }

The reference implementation in C offered other ways to implement
the same macro with regards to endianess. An offset is also added as array
pointers are not supported in Java.

4.13 SIMD

SIMD is a wide-pipe Merkle-Damgård hash construction, where the com-
pression function is built from a Feistel-like cipher in Davies-Meyer mode [31].
SIMD has an internal state which is twice as big as the output size.
The compression function is implemented in Java as shown below, while
Fig. 4.12 depicts it.

1 private stat ic void SIMD_Compress (byte [ ] M, int f i n a l e ) {
2 int [ ] [ ] W = new int [ 3 2 ] [ 8 ] ;
3 int [ ] [ ] IV = new int [ 4 ] [ 8 ] ;
4 for ( int i = 0 ; i < n_ f e i s t e l s ; i++) {
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5 IV [ 0 ] [ i ] = A[ i ] ;
6 IV [ 1 ] [ i ] = B[ i ] ;
7 IV [ 2 ] [ i ] = C[ i ] ;
8 IV [ 3 ] [ i ] = D[ i ] ;
9 }
10 message_expansion (W, M, f i n a l e ) ;
11 for ( int j = 0 ; j < n_ f e i s t e l s ; j++) {
12 A[ j ] ^= PACK(M, 4 ∗ j ) ;
13 B[ j ] ^= PACK(M, 4 ∗ j + 4 ∗ n_ f e i s t e l s ) ;
14 C[ j ] ^= PACK(M, 4 ∗ j + 8 ∗ n_ f e i s t e l s ) ;
15 D[ j ] ^= PACK(M, 4 ∗ j + 12 ∗ n_ f e i s t e l s ) ;
16 }
17
18 Round(W, 0 , 3 , 23 , 17 , 27) ;
19 Round(W, 1 , 28 , 19 , 22 , 7) ;
20 Round(W, 2 , 29 , 9 , 15 , 5) ;
21 Round(W, 3 , 4 , 13 , 10 , 25) ;
22
23 Step ( IV [ 0 ] , 32 , 4 , 13 , 0) ;
24 Step ( IV [ 1 ] , 33 , 13 , 10 , 0) ;
25 Step ( IV [ 2 ] , 34 , 10 , 25 , 0) ;
26 Step ( IV [ 3 ] , 35 , 25 , 4 , 0) ;
27
28 }

SIMD process message blocks of size 512-bit. The padding scheme is
done by padding with ’0’s to get a multiple of the block size, and then
add an extra block containing the message length. [20].

SIMD is relatively hard to implement in Java. SIMD uses an IV array
of length 16 to store parts of the state information. The reference imple-
mentation uses four 32-bit pointers, to represent and operate on these 16
values. An example from the C-code is provided here [31]:
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Figure 4.12: Compression function of SIMD-256 (taken from [31])

1 u32 ∗A, ∗B, ∗C, ∗D;
2 n = 4 ;
3 s tate−>A = malloc ( (4∗n+4)∗ s i z e o f ( u32 ) ) ;
4 s ta te−>A += (( u32 ∗)NULL − s ta te−>A)&3;
5 s tate−>B = state−>A+n ;
6 s tate−>C = state−>B+n ;
7 s tate−>D = state−>C+n ;
8
9 i f ( IV)
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10 memcpy( s tate−>A, IV , 4∗n∗ s i z e o f ( u32 ) ) ;
11 else
12 memset ( s ta te−>A, 0 , 4∗n∗ s i z e o f ( u32 ) ) ;

The way to solve this in Java was to make A, B, C and D integer arrays
of length four. Instead of treating the four as pointers, they become regular
integer arrays in our Java implementation:

1 private stat ic int [ ] A = new int [ 4 ] ;
2 private stat ic int [ ] B = new int [ 4 ] ;
3 private stat ic int [ ] C = new int [ 4 ] ;
4 private stat ic int [ ] D = new int [ 4 ] ;
5
6 System . arraycopy ( IV , 0 , A, 0 , 4) ;
7 System . arraycopy ( IV , 4 , B, 0 , 4) ;
8 System . arraycopy ( IV , 8 , C, 0 , 4) ;
9 System . arraycopy ( IV , 12 , D, 0 , 4) ;

This causes some small changes throughout the algorithm on how to
read/write A, B, C and D.

4.14 Skein

Skein is a variant of a Merkle-Damgård hash construction and consist
of basically three components which is Threefish, Unique Block Iteration
and Optional Argument System [32]. The final parts of the process block
function using the Threefish-256 block cipher is provided below: Fig. 4.13
shows a summary of how Threefish works.

1 private stat ic void Skein_256_Process_Block (byte [ ] blkPtr ,
long blkCnt , int byteCntAdd ) {

2 ( . . . )
3 for ( int i = 0 ; i < WCNT; i++) /∗ do the f i r s t f u l l key

i n j e c t i o n ∗/
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4 X[ i ] = (w[ i ] + ks [ i ] ) ;
5
6 X[WCNT − 3 ] += ts [ 0 ] ;
7 X[WCNT − 2 ] += ts [ 1 ] ;
8
9 for ( int r = 1 ; r <= 72 / 8 ; r++) {
10 X[ 0 ] += X[ 1 ] ; X[ 1 ] = RotL_64(X[ 1 ] , 14) ;
11 X[ 1 ] ^= X[ 0 ] ; X[ 2 ] += X[ 3 ] ;
12 X[ 3 ] = RotL_64(X[ 3 ] , 16) ; X[ 3 ] ^= X[ 2 ] ;
13
14 ( . . . )
15
16 X[ 0 ] += X[ 3 ] ; X[ 3 ] = RotL_64(X[ 3 ] , 5) ;
17 X[ 3 ] ^= X[ 0 ] ; X[ 2 ] += X[ 1 ] ;
18 X[ 1 ] = RotL_64(X[ 1 ] , 37) ; X[ 1 ] ^= X[ 2 ] ;
19
20 InjectKey (2 ∗ r − 1 , WCNT, X, ks , t s ) ;
21
22 X[ 0 ] += X[ 1 ] ; X[ 1 ] = RotL_64(X[ 1 ] , 25) ;
23 X[ 1 ] ^= X[ 0 ] ; X[ 2 ] += X[ 3 ] ;
24 X[ 3 ] = RotL_64(X[ 3 ] , 33) ; X[ 3 ] ^= X[ 2 ] ;
25
26 ( . . . )
27
28 X[ 0 ] += X[ 3 ] ; X[ 3 ] = RotL_64(X[ 3 ] , 32) ;
29 X[ 3 ] ^= X[ 0 ] ; X[ 2 ] += X[ 1 ] ;
30 X[ 1 ] = RotL_64(X[ 1 ] , 32) ; X[ 1 ] ^= X[ 2 ] ;
31
32 InjectKey (2 ∗ r , WCNT, X, ks , t s ) ;
33 }
34
35 for ( int i = 0 ; i < WCNT; i++)
36 ctxX [ i ] = (X[ i ] ^ w[ i ] ) ;
37 Skein_Clear_First_Flag ( ) ;
38 o f f s e t += 32 ;
39
40 }
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41
42 }

Figure 4.13: Four of the 72 rounds of the Threefish-256 block cipher (taken
from [32])

Skein is relatively hard to implement in Java. Skein also uses a union
like shown below [32]:

1 union {
2 u08b_t b [SKEIN_256_STATE_BYTES ] ;
3 u64b_t w[SKEIN_256_STATE_WORDS ] ;
4 } c f g ;

This causes an extra method syncFromLong() to be created. This
method only has to be invoked once, and does not cause much overhead.
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Skein has a large code base, and uses a lot of macros. An example of
a macro which is hard to implement in Java is the following [32]:

1 #de f i n e SKEIN_T1_BLK_TYPE(T) ( ( ( u64b_t ) (SKEIN_BLK_TYPE_##T) )
2 << SKEIN_T1_POS_BLK_TYPE)

This is a macro invoking another macro, depending on the input T.
Some changes had to be made, for instance by calling the second macro
directly. This causes some changes from reference implementation in C, to
the java implementation. The padding scheme in Skein is done by padding
with ’0’s to get a multiple of the input block size [20].

4.15 Summary

The Java implementations of the candidates are based on the reference
implementations from the second round of the NIST competition. Only
the parts of the algorithm needed to output a 256-bit message digest is
implemented. The API provided by NIST for the C reference implemen-
tation is being used for all candidates, and this chapter has summarized
the most important aspects of each candidate.
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5
Measurements and Results

This chapter presents an overview of our comparison of the remaining
SHA-3 candidates, in terms of performance and cost. We present the
target architectures and their spesifications. Further, a comment on mea-
surements not conducted in this thesis is given and a quick introduction
for measuring on constrained devices. The experiments conducted to per-
form measurements, and the format of the results are described. Finally,
the results from the measurements are presented.
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5.1 Target Architectures

The primary work of this thesis is to measure the performance of the
candidates on a constrained device. In addition to this, the same code
was measured on a desktop system for comparison purposes. The following
systems were used:

• A Sun SPOT, running Squawk VM version 5.0 (red). The core CPU
is a ARM920T core (ARMv4 architecture), clocked at 180MHz.

• A PC with an Intel Pentium 4, clocked at 3.0GHz. The OS is Win-
dows 7, running in 32-bit mode. The system is running the Java
VM, version 1.6.

5.2 Out of Scope Measurements

Currently available Java Cards, which are smart cards running Java tech-
nology, are running on 8-bit or 16-bit architectures with the Java Card
2 version. In contrast to Java Card 3, this version has very limited lan-
guage support. For instance, features such as long and multi-dimensional
arrays are not supported. This makes the process of implementing the C
reference code to Java Card 2, a very large job. Despite the fact that Java
Card 2 is widespread and currently used in many applications and smart
cards, the work conducted in this thesis will not be suitable for Java Card
2.
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5.3 Measurements on Constrained Devices

In constrained devices, power consumption and the area required to imple-
ment the algorithm are limiting factors [28]. Power consumption usually
reduces to computational efficiency, which will be measured in cycles/byte.
The size, in kilobytes (kB), of the compiled file loaded on the Squawk-
capable constrained device is used as the measurement for Read-Only
Memory (ROM) requirements of the algorithms.

5.4 Measuring Performance

The performance of the candidates were measured on the Sun SPOT.
Applications running on SPOTs are Java applications, called MIDlets, as
mentioned in Sect. 2.5. In order to make the application a MIDlet, the
application must extend the MIDlet class, as shown with the code below.
The complete code for DeployOnSpot.java can be found in Appendix B.

public class DeployOnSpot extends MIDlet

implements TimerCounterBits{

In addition to extending MIDlet class, the TimerCounterBits interface is
also implemented. This allows access to the various clocks, introduced in
Sect. 2.5.1, used for timing the performance on the Sun SPOT. The choice
of clock depends on the duration of the measurement. Some algorithms
are fast and will only need the MCK, while others will need to be measured
with the SLCK.

In order to perform the measurements the following code were executed
on the Sun SPOT.
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1 private stat ic f ina l int [ ] b i t l e n = {8 , 64 , 576 ,1536 ,4096} ;
2 private stat ic long da tab i t l e n ;
3 private stat ic byte [ ] data = new byte [ 4 0 9 7 ] ;
4 private stat ic byte [ ] hashval = new byte [ 3 2 ] ;
5 private IAT91_TC timer ;
6 protected void startApp ( ) throws MIDletStateChangeException{
7
8 int l ength = 4500 ;
9 t imer = Spot . g e t In s tance ( ) . getAT91_TC(0) ;
10 t imer . c on f i gu r e (TC_CAPT | TC_CLKS_SLCK) ;
11
12 da tab i t l e n = b i t l e n [ 0 ] ∗ 8 ;
13 for ( int i =0; i < length ; i++) {
14 t imer . enableAndReset ( ) ;
15 CubeHash . Hash ( data , datab i t l en , hashval ) ;
16 int cntr = timer . counter ( ) ;
17 t imer . d i s ab l e ( ) ;
18 double i n t e r v a l = cntr ∗ 30 . 5176 ;
19 System . out . p r i n t l n ( i n t e r v a l ) ;
20 }
21 }

The code above displays the essential part of the MIDlet deployed on a
Sun SPOT while measuring the performance of CubeHash, for an input of
one byte. First, a number of variables are decleared. Arrays for message
digest, the various bit lengths and the input data to the hash function. In
addition a IAT91_TC timer is declared. The MIDlet has no main method,
and startApp() is the invoked function upon execution once deployed to
the Sun SPOT.

Inside the startApp() the following code is used to instantiate the timer,
by choosing a Timer Counter.

timer = Spot.getInstance().getAT91_TC(0);
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Further, the timer is configured with the preferred clock speed, in this
case the SLCK, and set to Capture Mode.

timer.configure(TC_CAPT | TC_CLKS_SLCK);

The databitlen field is set to the correct byte size to be measured and
a for loop is run 4500 times to measure the performance of the candidate.
Inside the loop is where the results are generated. First, the timer is
reset and started and then the specified algorithm, in this case CubeHash,
is executed with the corresponding inputs. The timer is then read after
execution, and the result stored in an int.

1 t imer . enableAndReset ( ) ;
2 CubeHash . Hash ( data , datab i t l en , hashval ) ;
3 int cntr = timer . counter ( ) ;
4 t imer . d i s ab l e ( ) ;

The number of ticks stored in cntr are then multiplied with the time
for one tick, depicted in Tab. 2.4, and the time spent executing the Hash()
function is printed.

1 double i n t e r v a l = cntr ∗ 30 . 5176 ;
2 System . out . p r i n t l n ( i n t e r v a l ) ;

This loop is run 4500 times, for each of the input sizes and each of
the candidates, and the results are loaded into a spreadsheet for process-
ing. The results, depicted in Sect. 5.6, are presented as: lower-quartile,
median and upper-quartile measured in Cycles/byte. The Cycles/byte
calculation is performed with the following parameters: Time in seconds
spent performing hash (Ts), frequency of the CPU in Hz(F) and message
input length in bytes (L). The formula for calculating Cycles/byte for a
candidates is:

Cycles/byte = Ts ∗ F

L
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5.5 Measuring Cost

Applications deployed onto the Squawk VM are first compiled to regular
Java class files and then further to a suite file. As described in Sect. 2.5.2
Squawk VM includes a mechanism for serializing a graph of objects, these
objects becomes a collection of internal classes encapsulated in the suite.
As mentioned, a suite file is on average 35% the size of the corresponding
class file [46].

As each application cannot be deployed to the device without extra
application code, this work has only measured the size of the class file
corresponding to each algorithm. This is the compiled code before it is
compiled into a suite with the rest of the files needed.

5.6 Results

This section will present the results of the performance tests, as well as
required ROM size for each candidate. Each candidate will be presented
in alphabetical order. A simple graph for both the Intel platform and the
Sun SPOT platform will be presented, depicting the cycles/byte for each of
the given inputs explained in the preceeding sections. Finally this section
will present a summary for each of the platform with all candidates. The
tables will show median cycles/byte as well as upper and lower quartile.
The tables are sorted by lowest to highest median times for each of the
inputs.

Fig.5.1-13 depicts the performance of the 14 candidates, on both the
Intel- and the Sun SPOT platform. Tab.5.1-3 depicts the results on the
Intel, while Tab.5.4-6 displays the Sun SPOT results. Finally, Tab.5.7 is
the ROM cost of the candidates.
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BLAKE

Figure 5.1: BLAKE Performance

Required ROM size: 7.31 kB
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Blue Midnight Wish

Figure 5.2: Blue Midnight Wish Performance

Required ROM size: 6.86 kB
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5.6. RESULTS

CubeHash

Figure 5.3: CubeHash Performance

Required ROM size: 4.19 kB

83



5. MEASUREMENTS AND RESULTS

ECHO

Figure 5.4: ECHO Performance

Required ROM size: 11.6 kB
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5.6. RESULTS

Fugue

Figure 5.5: Fugue Performance

Required ROM size: 10.06 kB
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Grøstl

Figure 5.6: Grøstl Performance

Required ROM size: 6.36 kB
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5.6. RESULTS

JH

Figure 5.7: JH Performance

Required ROM size: 4.93 kB
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Keccak

Figure 5.8: Keccak Performance

Required ROM size: 5.94 kB
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5.6. RESULTS

Luffa

Figure 5.9: Luffa Performance

Required ROM size: 6.26 kB
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Shabal

Figure 5.10: Shabal Performance

Required ROM size: 3.65 kB
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SHAvite-3

Figure 5.11: SHAvite-3 Performance

Required ROM size: 17.6 kB
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SIMD

Figure 5.12: SIMD Performance

Required ROM size: 6.13 kB
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5.6. RESULTS

Skein

Figure 5.13: Skein Performance

Required ROM size: 7.10 kB
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5. MEASUREMENTS AND RESULTS

Cycles/byte for 4096 bytes
Quartile Median Quartile Hash
245,38 248,12 317,46 SHAvite3256
272,80 274,93 281,46 BMW256
315,68 319,04 329,70 BLAKE256
367,64 369,17 387,42 Shabal256
495,9 508,51 514,13 Skein256
602,62 608,01 695,07 Luffa256
2332,46 2343,57 2530,97 Hamsi256
6013,94 6063,81 6248,78 Keccak256
6322,39 6424,96 6537,82 Fugue256
7442,60 7576,06 7728,87 CubeHash256
12383,79 12464,45 12643,56 JH256
16607,95 16736,06 16919,29 ECHO256
18218,33 18397,44 18528,83 SIMD256
29628,20 29691,23 29883,10 Grøstl256

Cycles/byte for 1536 bytes
Quartile Median Quartile Hash
268,14 271,34 385,74 SHAvite3256
318,13 328,15 338,72 BLAKE256
359,04 364,91 375,01 BMW256
417,15 418,37 477,38 Shabal256
512,62 523,30 566,04 Skein256
618,55 624,88 735,63 Luffa256
2369,46 2377,24 2583,17 Hamsi256
6221,30 6246,18 6549,47 Keccak256
8550,46 8726,34 8937,34 CubeHash256
10266,70 10357,05 10866,79 Fugue256
12948,53 12993,60 13444,31 JH256
18017,60 18192,51 18688,41 ECHO256
18678,86 18732,52 19221,21 SIMD256
30785,39 30843,26 31155,77 Grøstl256

Table 5.1: Performance Measurements on Intel Pentim 4 3GHz
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Cycles/byte for 576 bytes
Quartile Median Quartile Hash
330,51 335,05 604,98 SHAvite3256
351,84 354,66 367,78 Blake256
550,70 552,48 825,94 Shabal256
552,34 559,61 581,36 BMW256
552,84 564,96 801,61 Skein256
664,36 671,89 928,79 Luffa256
2450,28 2468,35 2908,26 Hamsi256
6954,92 6979,11 7305,88 Keccak256
11530,05 11792,84 12139,01 CubeHash256
14025,29 14988,33 15552,61 JH256
19949,92 19966,03 20633,97 SIMD256
20594,54 20953,36 21975,75 Fugue256
21447,48 21498,72 22522,79 ECHO256
33865,05 33931,38 34276,03 Grøstl256

Cycles/byte for 64 bytes
Quartile Median Quartile Hash
680,57 689,72 748,01 Blake256
1343,27 1812,52 1889,51 Skein256
1124,42 2229,52 2455,31 SHAvite3256
2258,28 2261,63 3812,37 Shabal256
1266,67 2486,16 2526,57 Luffa256
2802,23 2871,14 2995,61 BMW256
3528,40 3592,92 6070,05 Hamsi256
12815,51 12879,98 14057,14 Keccak256
34333,25 34485,61 42122,44 JH256
36073,10 36169,83 37182,34 SIMD256
49545,17 49675,36 51605,04 ECHO256
62471,59 72355,69 74907,43 CubeHash256
73213,21 73382,25 74007,53 Grøstl256
153739,06 157110,19 162306,47 Fugue256

Table 5.2: Performance Measurements on Intel Pentim 4 3GHz
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Cycles/byte for 8 bytes
Quartile Median Quartile Hash
2951,25 2951,63 3088,56 BLAKE256
5260,04 5389,50 10670,87 Luffa256
7023,61 7186,13 7579,10 SHAvite3256
6300,14 10137,00 10456,70 Skein256
11785,20 12190,50 12981,87 Hamsi256
15362,36 15398,25 15470,33 Shabal256
24660,25 25022,25 25829,00 BMW256
103339,02 103809,75 105316,47 Keccak256
274813,00 275885,25 320095,42 JH256
288105,91 288845,25 291901,48 SIMD256
354701,32 355699,50 357306,72 Grøstl256
396175,13 397146,38 405545,12 ECHO256
494397,41 506217,00 528178,64 CubeHash256
1181568,87 1226854,50 1250182,79 Fugue256

Table 5.3: Performance Measurements on Intel Pentim 4 3GHz
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Cycles/byte for 4096 bytes
Quartile Median Quartile Hash
7225,57 7244,65 8323,44 BMW256
9265,59 9295,20 9305,80 Shabal256
14247,87 14703,88 15155,43 SHAvite3256
15829,13 16049,01 17146,23 BLAKE256
16261,50 16400,38 16416,46 Skein256
45044,45 47045,31 47964,37 Luffa256
73869,55 74632,52 75418,86 Keccak256
152272,21 153401,62 154566,34 SIMD256
162051,47 166768,41 170644,45 CubeHash256
211721,88 213019,05 214382,31 Fugue256
259742,44 261185,53 262626,81 ECHO256
341576,27 346572,31 351576,22 Grøstl256
670755,25 676688,53 682705,99 JH256
N/A N/A N/A Hamsi256

Cycles/byte for 1536 bytes
Quartile Median Quartile Hash
8801,49 8824,82 11141,11 BMW256
10052,41 10232,85 10238,78 Shabal256
15489,48 15521,06 17663,36 SHAvite3256
15899,37 16479,50 17219,64 BLAKE256
16755,94 16937,27 17001,17 Skein256
48255,04 48991,48 49225,08 Luffa256
78237,43 79339,80 80538,97 Keccak256
156868,67 158017,99 159768,41 SIMD256
192055,46 194056,17 197254,42 CubeHash256
274624,17 276213,91 278397,26 Fugue256
285548,90 287631,19 289857,88 ECHO256
358732,56 370554,43 381650,82 Grøstl256
775918,61 779317,67 782712,08 JH256
N/A N/A N/A Hamsi256

Table 5.4: Performance Measurements on Sun SPOT (ARM920T
180MHz)

97



5. MEASUREMENTS AND RESULTS

Cycles/byte for 576 bytes
Quartile Median Quartile Hash
12771,16 13305,59 13318,75 Shabal256
13321,63 13584,04 19580,24 BMW256
16950,20 17351,48 18905,47 BLAKE256
17782,80 17945,78 17970,88 Skein256
18376,43 18419,88 21094,73 SHAvite3256
52356,80 52413,98 52737,47 Luffa256
87915,88 88491,50 91843,89 Keccak256
166456,86 170636,30 173316,46 SIMD256
271857,87 274563,03 279125,11 CubeHash256
344922,19 350461,26 356261,96 ECHO256
405246,67 419416,73 421033,69 Grøstl256
438264,92 442195,26 446376,91 Fugue256
819573,33 828671,60 837601,74 JH256
N/A N/A N/A Hamsi256

Cycles/byte for 64 bytes
Quartile Median Quartile Hash
31304,13 32370,02 33474,77 BLAKE256
34681,42 35358,36 35690,64 Skein256
48044,74 50366,21 52670,80 Shabal256
59303,28 59664,80 67866,37 SHAvite3256
70075,04 70392,20 108408,90 BMW256
93142,73 93634,91 93810,89 Luffa256
160815,70 161055,29 169345,14 Keccak256
294708,55 295054,69 313714,86 SIMD256
804118,77 805950,74 832831,25 ECHO256
925242,90 928087,90 932236,31 Grøstl256
1293450,33 1305829,03 1338317,15 CubeHash256
2056855,65 2104913,31 2167669,40 JH256
2499328,19 2503167,99 2567218,87 Fugue256
N/A N/A N/A Hamsi256

Table 5.5: Performance Measurements on Sun SPOT (ARM920T
180MHz)
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Cycles/byte for 8 bytes
Quartile Median Quartile Hash
135025,91 137743,47 150609,67 BLAKE256
203277,62 206386,83 211322,02 Skein256
325306,92 351510,28 354179,03 Shabal256
366775,27 369936,17 415334,07 SHAvite3256
374296,11 379263,30 384047,28 Luffa256
563348,94 566022,29 879709,11 BMW256
1295028,32 1296952,13 1363139,68 Keccak256
2340421,70 2342937,10 2491367,39 SIMD256
4563850,93 4568942,48 4704900,83 Grøstl256
6422366,05 6438679,54 6652598,15 ECHO256
9239108,19 9293066,96 9536356,32 CubeHash256
16458116,05 16838963,18 17339729,84 JH256
18689930,39 18710416,85 19212191,51 Fugue256
N/A N/A N/A Hamsi256

Table 5.6: Performance Measurements on Sun SPOT (ARM920T
180MHz)

Hash Size in kB
Shabal 3,65
CubeHash 4,19
JH 4,93
Keccak 5,94
SIMD 6,13
Luffa 6,26
Grøstl 6,36
BMW 6,86
Skein 7,10
BLAKE 7,31
Fugue 10,06
ECHO 11,6
SHAVite3 17,6
Hamsi N/A

Table 5.7: Cost Measurements
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5. MEASUREMENTS AND RESULTS

5.7 Summary of the Results

The results, presented in the previous section, shows that there exists
relatively large differences between the candidates. Some of the candidates
performs best on the lower inputs, while others are again favouring the
larger input messages. As previously mentioned, Hamsi was unable to
compile for the Sun SPOT.

The difference between the Intel and the Sun SPOT results confirms
the need for research regarding performance on constrained platforms.

Our Java implementations are relatively small, and should fit well on
most constrained devices available today. However, the largest implemen-
tation, SHAvite-3, is almost five times larger than Shabal, which is the
smallest implementation.
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6
Conclusions and Future Work

The result of this work is Java implementations of the 14 candidates re-
maining in NIST’s public competition to develop a new cryptographic hash
algorithm. At the time of writing, there exist no other publicly available
Java implementations of all candidates1. The code written by the au-
thors is based on the reference implementation, in C, of the candidates
remaining in the second round.

The implementation is done by both authors of this thesis in cooper-
ation, to make sure that all candidates are treated equally. Our design
choices in general are provided in Chap. 3. Chap 4 provides an in-depth

1The sphlib project has translated 9 of the 14 candidates.
http://www.saphir2.com/sphlib/
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look at each candidate.

The Java implementations are tested on a Java enabled Sun SPOT as
well as on a regular desktop computer for reference. The performance is
measured in cycles/byte. We have also measured the ROM size required
to store the compiled Java implementation of each candiate.

A paper with our results has been submitted to the Second SHA-3
Candidate Conference at the University of California in Santa Barbara.
The paper is attached in Appendix D. The purpose of this conference is to
discuss the 14 remaining second-round candidates, and to obtain valuable
feedback for the selection of the finalists. Authors will be notified June
18, 2010 if their paper has been accepted.

Our results measured in cycles/byte show that the Java implementa-
tions of the candidates execute fairly poor on the Sun SPOT platform.
[26] provides a list of measurements of some of the C implementations,
and this confirms what we explained in Chap 4; there is still room for
improvements on our implementations. Because of this, the next section
propose some future work related to this thesis.

6.1 Future Work

Due to time limits, the priority of this work has been to get a working
implementation of all 14 candidates. Hence, none of the candidates have
been given any special effort in terms of optimization. We propose future
work to consist of giving each candidate’s Java implementation a closer
look, as to how one can optimize for both speed and size. A possibility here
can be to create two implementations of each candidate, one optimized for
size, and one optimized for speed.
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6.1. FUTURE WORK

The 32-bit Java Card 3 technology has just arrived, and it should be
an interesting task to implement the candidates on this platform to get
extensive testing for a future smart card technology.
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A
The CheckKAT Application

This appendix presents the Java code for the CheckKAT application used
to verify the correctness of the translated Java implementations.

1 public class CheckKAT {
2
3 stat ic long da tab i t l e n = 0 ;
4 stat ic byte [ ] data = null ;
5
6 public stat ic void main ( St r ing [ ] a rgs ) {
7
8 Class [ ] a lgor i thms = { SHAvite3 . class , Blake . class ,

BlueMidnightWish . class , Shabal . class , Skein . class , Luf fa .
class , Hamsi . class , Keccak . class , CubeHash . class , SIMD.
class , Groes t l . class , Echo . class , JH . class , Fugue . class
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} ;
9 s t a r t ( a lgor i thms ) ;
10 }
11
12 private stat ic void s t a r t ( Class [ ] a lgor i thms ) {
13 for ( Class a lgor i thm : a lgor i thms ) {
14 System . out . p r i n t l n ( "Now t e s t i n g : " + algor i thm .

getSimpleName ( ) ) ;
15 boolean r e s u l t = performCheck ( a lgor i thm ) ;
16 System . out . p r i n t l n ( r e s u l t ? " 100 percent Match " : " " ) ;
17 System . out . p r i n t l n ( " " ) ;
18 }
19 System . out . p r i n t l n ( " Al l done with "+a lgor i thms . l ength+"

a l go r i tms " ) ;
20 }
21
22 public stat ic boolean performCheck ( Class c l a z z ) {
23
24 F i l e f i l e = new F i l e ( System . getProperty ( " user . d i r " )+" /

shortmsgkat / "+ c l a z z . getSimpleName ( ) + "ShortMsgKAT_256
. txt " ) ;

25
26 Method method = null ;
27 try {
28 method = c l a z z . getDeclaredMethod ( "Hash " , new Class [ ] {
29 byte [ ] . class , long . class , byte [ ] . class }) ;
30 } catch ( Exception e1 ) {
31 System . out . p r i n t l n ( " Unable to c r e a t e r e f l e c t i o n method " ) ;
32 }
33
34 try {
35 BufferedReader br = new BufferedReader (new

InputStreamReader (new Fi leInputStream ( f i l e ) ) ) ;
36 St r ing l i n e ;
37 while ( ( l i n e = br . readLine ( ) ) != null ) {
38
39 i f ( l i n e . s tartsWith ( "Len " ) ) {
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40 da tab i t l en = Long . parseLong ( ( l i n e . s p l i t ( "= " ) [ 1 ] ) ) ;
41 }
42 i f ( l i n e . s tartsWith ( "Msg" ) ) {
43 St r ing value = null ;
44 int po in t e r = 0 ;
45 St r ing tmp = l i n e . s p l i t ( "= " ) [ 1 ] ;
46 data = new byte [ tmp . l ength ( ) / 2 ] ;
47 for ( int i = 0 ; i < data . l ength ; i++) {
48 value = tmp . sub s t r i ng ( po inter , po in t e r + 2) ;
49 data [ i ] = (byte ) In t eg e r . pa r s e In t ( va lue . tr im ( ) , 16)

;
50 po in t e r += 2 ;
51 }
52 }
53
54 i f ( l i n e . s tartsWith ( "MD" ) ) {
55 byte [ ] hashval = new byte [ 3 2 ] ;
56 try {
57 method . invoke ( " foo " , data , datab i t l en , hashval ) ;
58 } catch ( Exception e ) {
59 System . e r r . p r i n t l n ( " Algorithm threw an Exception .

Stackt race i s commented out\n" ) ;
60 }
61
62 S t r i ngBu f f e r sb = new St r i ngBu f f e r ( hashval . l ength ∗

2) ;
63 for ( int i = 0 ; i < 32 ; ++i ) {
64 sb . append ( hexChar [ ( hashval [ i ] & 0 xf0 ) >>> 4 ] ) ;
65 sb . append ( hexChar [ hashval [ i ] & 0 x0f ] ) ;
66
67 }
68 St r ing tmp = l i n e . s p l i t ( "= " ) [ 1 ] ;
69 i f ( ! tmp . equa l s ( sb . t oS t r i ng ( ) ) ) {
70 e r r o r ( datab i t l en , sb . t oS t r i ng ( ) , tmp) ;
71 return fa lse ;
72 }
73 }

113



74 }
75 br . c l o s e ( ) ;
76 } catch ( IOException e ) {
77 System . e r r . p r i n t l n ( c l a z z . getSimpleName ( )+ "

ShortMsgKAT_256 not found " ) ;
78 return fa l se ;
79 }
80 return true ;
81 }
82
83 private stat ic void e r r o r ( long datab i t l en , S t r ing hashval ,

S t r ing tmp) {
84 System . out . p r i n t l n ( "Got an e r r o r f o r l en : " + da tab i t l en ) ;
85 System . out . p r i n t l n ( "Your hash : " + hashval ) ;
86 System . out . p r i n t l n ( " Correct i s : " + tmp) ;
87 }
88
89 stat ic char [ ] hexChar = { ’ 0 ’ , ’ 1 ’ , ’ 2 ’ , ’ 3 ’ , ’ 4 ’ , ’ 5 ’ , ’ 6 ’ , ’

7 ’ , ’ 8 ’ , ’ 9 ’ , ’A ’ , ’B ’ , ’C ’ , ’D ’ , ’E ’ , ’F ’ } ;
90 }
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B
The DeployOnSpot Application

This appendix presents the Java code for the DeployOnSpot application
used to deploy the candidates on the Sun SPOT. In this example the
specific candidate to be deployed is substituted with CandidateName.

In the code shown below, some generalizations are done. For instance,
the TimeForOneTick variable represents the values for the distinct clocks
depicted in Tab. 2.4. Further, the TC Clock Input, also specified in
Tab. 2.4, is represented as the variable Clock in the configure() method.

1 import com . sun . spot . p e r i ph e r a l . IAT91_TC;
2 import com . sun . spot . p e r i ph e r a l . Spot ;
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3 import com . sun . spot . p e r i ph e r a l . TimerCounterBits ;
4
5 import javax . m i c roed i t i on . mid let . MIDlet ;
6 import javax . m i c roed i t i on . mid let . MIDletStateChangeException ;
7
8 /∗∗
9 ∗ The startApp method o f t h i s c l a s s i s c a l l e d
10 ∗ by the VM to s t a r t the a p p l i c a t i o n .
11 ∗
12 ∗ The mani fes t s p e c i f i e s t h i s c l a s s as MIDlet−1,
13 ∗ which means i t w i l l be s e l e c t e d f o r execu t i on .
14 ∗/
15 public class DeployOnSpot extends MIDlet implements

TimerCounterBits {
16
17
18 private stat ic byte [ ] data = new byte [ 4 0 9 7 ] ;
19 private stat ic byte [ ] hashval = new byte [ 3 2 ] ;
20 private stat ic f ina l int [ ] b i t l e n = {8 , 64 ,

576 ,1536 ,4096} ;
21 private stat ic long da tab i t l e n ;
22 private IAT91_TC timer ;
23 private ITriColorLED [ ] l e d s = EDemoBoard . g e t In s tance ( ) .

getLEDs ( ) ;
24
25
26 protected void startApp ( ) throws MIDletStateChangeException

{
27
28 int l ength = 5001 ;
29 t imer = Spot . g e t In s tance ( ) . getAT91_TC(0) ;
30 t imer . c on f i gu r e (TC\_CAPT | Clock ) ;
31
32 try {
33 da tab i t l en = b i t l e n [ i ] ∗ 8 ;
34 for ( int i =0; i < length ; i++) {
35 t imer . enableAndReset ( ) ;
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36 CandidateName . Hash ( data , datab i t l en , hashval ) ;
37 int cntr = timer . counter ( ) ;
38 t imer . d i s a b l e ( ) ;
39 double i n t e r v a l = cntr ∗ TimeForOneTick ;
40 System . out . p r i n t l n ( i n t e r v a l ) ;
41 }
42 System . out . p r i n t l n ( " Datab i t l en : "+da tab i t l e n /8+"

bytes " ) ;
43 su c c e s s ( ) ;
44 } catch ( Exception e ) {
45 f a i l ( ) ;
46 System . e r r . p r i n t l n ( "Got the f o l l ow i n g except ion : "+

e ) ;
47 }
48 not i fyDes t royed ( ) ;
49 }
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C
Attachments

The attachments to this thesis consist of an electronic attachment and a
DVD. The electronic attachment is submitted to the DAIM system [13].
The DVD is appended to this thesis.

C.1 Electronic Attachments

The electronic attachment (MasterThesis.zip), uploaded to DAIM, in-
cludes the following directories:

• Thesis all files related to the writing of this thesis.
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• Paper all files related to the writing of the paper submitted to
Second SHA-3 Conference.

• Source-Code all code produced throughout the work of this thesis.

• Results Excel spreadsheets with all data collected from the mea-
surements of the candidates.

C.2 Attached DVD

Appended to this thesis is a DVD containing all the source-code produced
when translating the candidates from C to Java, all files related to the
writing of this thesis, the script used to verify correctness of the trans-
lated candidates, all collected data from measurements and also the paper
submitted to the Second SHA-3 Candidate Conference. The paper can
also be found in Appendix D.
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Abstract
In this paper, we show the results of our implementation of the second

round SHA-3 candidates in Java and perform a cost and performance anal-
ysis of them on a low-cost 32-bit ARM9 CPU by measuring cycles/byte
and ROM requirements. The analysis is conducted on the Sun SPOT
platform, by Sun Microsystems, with a Squawk Virtual Machine.

1 Introduction
The National Institute of Standards and Technology (NIST) is in the process of
selecting a new cryptographic hash algorithm through a public competition [1].
At the First SHA-3 Candidate Conference several individuals stressed the need
for supporting constrained platforms such as mobile phones and smart cards [1].

To our knowledge, no work has been demonstrated for comparing Java im-
plementations of the SHA-3 candidates on constrained platforms. In this paper,
we compare the implementation costs of the remaining SHA-3 candidates on a
low-cost 32-bit ARM9 CPU by measuring cycles/byte and ROM costs.

In the remaining part of this section, we attempt to explain the importance
of considering Java implementations on constrained devices for hash implemen-
tations. Firstly, the number of constrained devices, such as smart cards, sur-
rounding us daily is rapidly increasing. In 2008 5.085 billion smart cards shipped
globally, while the estimates for 2010 are 5.455 billion smart cards [2]. Further,
smart cards have a wide range of applications spanning from cryptography and
health care to identification and authentication.
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Java Card is the Java initiative for running Java applications on smart cards.
With Java being one of the most popular programming languages, Java Card
simplifies the development of applications for smart cards. Java Card 3.0, re-
leased late 2009, is tailored for next generation of smart cards, which have 32-bit
processors [3].

For Java to run on the ARM, a Virtual Machine(VM) resides on top of
the CPU. This VM, Squawk VM, is designed for the next generation of smart
cards [4]. Squawk is a small VM running without any Operating System (OS),
this allows for a simpler and more compact VM. Java VMs are typically written
in native languages, such as C and C++. Squawk however, has a different
approach as it is written almost entirely in Java. This provides ease of portability
and a seamless integration of the VM and the application resources such as
threads and objects [4].

At the time of writing, no commercial version of the new Java Card running
version 3.0 is available. To compensate for this, the performance tests are con-
ducted on a Sun SPOT1. The Sun SPOT is a small embedded device developed
at Sun Labs. As with Java Card 3.0, Sun SPOT is running the Squawk VM on
a low-cost 32-bit processor [4].

This paper is structured as follows. Section 2 gives a brief description of the
challenges faced, when writing C code to Java code. Section 3 gives an overview
of our performance and cost measurements. In Section 4, the results from our
measurements are presented, while Section 5 concludes the findings from this
paper.

2 Java Implementation of the Candidates
In contrast to low-level languages, like C, the memory management in Java is
not handled by the programmer. For instance, in C the union is a value that
may have several representations in various formats. The primary usefulness of
a union is to conserve space, since it provides a way of letting many different
types be stored in the same space. The Java language guarantees type safety, so
each member of a union has to be implemented as single variables which have
to be synchronized when one of them are alternated.

The Java implementations of the candidates are based on the reference im-
plementation representing the candidate in the second round. To our knowledge,
no optimized Java implementation of all the candidates are publicly presented.
With the challenges presented above, and also considering time constraints,

1SPOT stands for Small Programmable Object Technology
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none of the candidates have been optimized in any way. The goal of this work
is to give a balanced view of the candidates implemented on a new platform.

3 Overview of Our Performance and Cost Mea-
surements

This section presents an overview of our comparison of the remaining SHA-3
candidates, in terms of performance and cost. In constrained devices, power
consumption and the area required to implement the algorithm are limiting fac-
tors [1]. Power consumption usually reduces to computational efficiency, which
will be measured in cycles/byte. The size, in kilobytes (kB), of the compiled file
loaded on the Squawk-capable constrained device is used as the measurement
for ROM requirements of the algorithms.

In our comparison, we consider Java translated implementations of the sub-
mitted round 2 reference implementations. Further, our main target for esti-
mation and comparison are those variants of the hash functions which produce
a 256-bit message digest. External functionality like salting or keyed hashing
modes has not been implemented.

3.1 Measuring Performance
To measure the performance of the candidates, a Java MIDlet2 were deployed
on the Sun SPOT. The MIDlet executed each of the algorithms 4500 times for
the follow input lengths: 8, 64, 576, 1536 and 4096 bytes. Each Sun SPOT
processor board has two AT91 Timer Counters that are part of the ARM920T
system-on-a-chip (SOC) [5]. A AT91 Timer Counter were used to measure the
time consumed by each algorithm, while processing the input messages. The
output of these AT91 Timer Counters is microseconds.

Our results are presented as a lower-quartile, a median and a upper-quartile
of the 4500 measurements taken of each candidate, for each of the five input
lengths.

3.2 Measuring Cost
Applications deployed onto the Squawk VM are first compiled to regular Java
class files and then further to a suite file. Squawk VM includes a mechanism

2AMIDlet is an application that runs on implementations of the Mobile Information Device
Profile, one of the Java ME specifications.
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for serializing a graph of objects, these objects becomes a collection of internal
classes encapsulated in the suite. On average, a suite file is 35% the size of the
corresponding class file [4].

As each candidate can not be deployed to the device without extra applica-
tion code, we have only measured the size of the class file corresponding to each
algorithm. This is the compiled code before it is packed into a suite with the
rest of the files needed.

4 Results
This section presents the results generated from our work. Worth mentioning
is that Hamsi was not able to compile for Squawk VM, and hence no results
for Hamsi are presented in this section. This is due to Hamsi exceeding a Java
constant size restriction in Squawk.

4.1 Performance Results
In addition to measure the performance of the Java implementations on the Sun
SPOT, a performance test was conducted on a Intel Pentium 4 3GHz desktop
computer as a frame of reference. The results from the Intel test are depicted
in Tab. 1-3.

Tab. 4-6 depicts the results from the performance test on the Sun SPOT
ARM920T 180MHz running Squawk VM.

4.2 Cost Results
Tab. 7 depicts our cost measurements of the SHA3 candidates.
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Cycles/byte for 4096 bytes
Quartile Median Quartile Hash
245,38 248,12 317,46 SHAvite3256
272,80 274,93 281,46 BMW256
315,68 319,04 329,70 BLAKE256
367,64 369,17 387,42 Shabal256
495,9 508,51 514,13 Skein256
602,62 608,01 695,07 Luffa256
2332,46 2343,57 2530,97 Hamsi256
6013,94 6063,81 6248,78 Keccak256
6322,39 6424,96 6537,82 Fugue256
7442,60 7576,06 7728,87 CubeHash256
12383,79 12464,45 12643,56 JH256
16607,95 16736,06 16919,29 ECHO256
18218,33 18397,44 18528,83 SIMD256
29628,20 29691,23 29883,10 Grøstl256

Cycles/byte for 1536 bytes
Quartile Median Quartile Hash
268,14 271,34 385,74 SHAvite3256
318,13 328,15 338,72 BLAKE256
359,04 364,91 375,01 BMW256
417,15 418,37 477,38 Shabal256
512,62 523,30 566,04 Skein256
618,55 624,88 735,63 Luffa256
2369,46 2377,24 2583,17 Hamsi256
6221,30 6246,18 6549,47 Keccak256
8550,46 8726,34 8937,34 CubeHash256
10266,70 10357,05 10866,79 Fugue256
12948,53 12993,60 13444,31 JH256
18017,60 18192,51 18688,41 ECHO256
18678,86 18732,52 19221,21 SIMD256
30785,39 30843,26 31155,77 Grøstl256

Table 1: Performance Measurements on Intel Pentim 4 3GHz
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Cycles/byte for 576 bytes
Quartile Median Quartile Hash
330,51 335,05 604,98 SHAvite3256
351,84 354,66 367,78 Blake256
550,70 552,48 825,94 Shabal256
552,34 559,61 581,36 BMW256
552,84 564,96 801,61 Skein256
664,36 671,89 928,79 Luffa256
2450,28 2468,35 2908,26 Hamsi256
6954,92 6979,11 7305,88 Keccak256
11530,05 11792,84 12139,01 CubeHash256
14025,29 14988,33 15552,61 JH256
19949,92 19966,03 20633,97 SIMD256
20594,54 20953,36 21975,75 Fugue256
21447,48 21498,72 22522,79 ECHO256
33865,05 33931,38 34276,03 Grøstl256

Cycles/byte for 64 bytes
Quartile Median Quartile Hash
680,57 689,72 748,01 Blake256
1343,27 1812,52 1889,51 Skein256
1124,42 2229,52 2455,31 SHAvite3256
2258,28 2261,63 3812,37 Shabal256
1266,67 2486,16 2526,57 Luffa256
2802,23 2871,14 2995,61 BMW256
3528,40 3592,92 6070,05 Hamsi256
12815,51 12879,98 14057,14 Keccak256
34333,25 34485,61 42122,44 JH256
36073,10 36169,83 37182,34 SIMD256
49545,17 49675,36 51605,04 ECHO256
62471,59 72355,69 74907,43 CubeHash256
73213,21 73382,25 74007,53 Grøstl256
153739,06 157110,19 162306,47 Fugue256

Table 2: Performance Measurements on Intel Pentim 4 3GHz
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Cycles/byte for 8 bytes
Quartile Median Quartile Hash
2951,25 2951,63 3088,56 BLAKE256
5260,04 5389,50 10670,87 Luffa256
7023,61 7186,13 7579,10 SHAvite3256
6300,14 10137,00 10456,70 Skein256
11785,20 12190,50 12981,87 Hamsi256
15362,36 15398,25 15470,33 Shabal256
24660,25 25022,25 25829,00 BMW256
103339,02 103809,75 105316,47 Keccak256
274813,00 275885,25 320095,42 JH256
288105,91 288845,25 291901,48 SIMD256
354701,32 355699,50 357306,72 Grøstl256
396175,13 397146,38 405545,12 ECHO256
494397,41 506217,00 528178,64 CubeHash256
1181568,87 1226854,50 1250182,79 Fugue256

Table 3: Performance Measurements on Intel Pentim 4 3GHz
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Cycles/byte for 4096 bytes
Quartile Median Quartile Hash
7225,57 7244,65 8323,44 BMW256
9265,59 9295,20 9305,80 Shabal256
14247,87 14703,88 15155,43 SHAvite3256
15829,13 16049,01 17146,23 BLAKE256
16261,50 16400,38 16416,46 Skein256
45044,45 47045,31 47964,37 Luffa256
73869,55 74632,52 75418,86 Keccak256
152272,21 153401,62 154566,34 SIMD256
162051,47 166768,41 170644,45 CubeHash256
211721,88 213019,05 214382,31 Fugue256
259742,44 261185,53 262626,81 ECHO256
341576,27 346572,31 351576,22 Grøstl256
670755,25 676688,53 682705,99 JH256
N/A N/A N/A Hamsi256

Cycles/byte for 1536 bytes
Quartile Median Quartile Hash
8801,49 8824,82 11141,11 BMW256
10052,41 10232,85 10238,78 Shabal256
15489,48 15521,06 17663,36 SHAvite3256
15899,37 16479,50 17219,64 BLAKE256
16755,94 16937,27 17001,17 Skein256
48255,04 48991,48 49225,08 Luffa256
78237,43 79339,80 80538,97 Keccak256
156868,67 158017,99 159768,41 SIMD256
192055,46 194056,17 197254,42 CubeHash256
274624,17 276213,91 278397,26 Fugue256
285548,90 287631,19 289857,88 ECHO256
358732,56 370554,43 381650,82 Grøstl256
775918,61 779317,67 782712,08 JH256
N/A N/A N/A Hamsi256

Table 4: Performance Measurements on Sun SPOT (ARM920T 180MHz)
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Cycles/byte for 576 bytes
Quartile Median Quartile Hash
12771,16 13305,59 13318,75 Shabal256
13321,63 13584,04 19580,24 BMW256
16950,20 17351,48 18905,47 BLAKE256
17782,80 17945,78 17970,88 Skein256
18376,43 18419,88 21094,73 SHAvite3256
52356,80 52413,98 52737,47 Luffa256
87915,88 88491,50 91843,89 Keccak256
166456,86 170636,30 173316,46 SIMD256
271857,87 274563,03 279125,11 CubeHash256
344922,19 350461,26 356261,96 ECHO256
405246,67 419416,73 421033,69 Grøstl256
438264,92 442195,26 446376,91 Fugue256
819573,33 828671,60 837601,74 JH256
N/A N/A N/A Hamsi256

Cycles/byte for 64 bytes
Quartile Median Quartile Hash
31304,13 32370,02 33474,77 BLAKE256
34681,42 35358,36 35690,64 Skein256
48044,74 50366,21 52670,80 Shabal256
59303,28 59664,80 67866,37 SHAvite3256
70075,04 70392,20 108408,90 BMW256
93142,73 93634,91 93810,89 Luffa256
160815,70 161055,29 169345,14 Keccak256
294708,55 295054,69 313714,86 SIMD256
804118,77 805950,74 832831,25 ECHO256
925242,90 928087,90 932236,31 Grøstl256
1293450,33 1305829,03 1338317,15 CubeHash256
2056855,65 2104913,31 2167669,40 JH256
2499328,19 2503167,99 2567218,87 Fugue256
N/A N/A N/A Hamsi256

Table 5: Performance Measurements on Sun SPOT (ARM920T 180MHz)

130



Cycles/byte for 8 bytes
Quartile Median Quartile Hash
135025,91 137743,47 150609,67 BLAKE256
203277,62 206386,83 211322,02 Skein256
325306,92 351510,28 354179,03 Shabal256
366775,27 369936,17 415334,07 SHAvite3256
374296,11 379263,30 384047,28 Luffa256
563348,94 566022,29 879709,11 BMW256
1295028,32 1296952,13 1363139,68 Keccak256
2340421,70 2342937,10 2491367,39 SIMD256
4563850,93 4568942,48 4704900,83 Grøstl256
6422366,05 6438679,54 6652598,15 ECHO256
9239108,19 9293066,96 9536356,32 CubeHash256
16458116,05 16838963,18 17339729,84 JH256
18689930,39 18710416,85 19212191,51 Fugue256
N/A N/A N/A Hamsi256

Table 6: Performance Measurements on Sun SPOT (ARM920T 180MHz)
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Hash Size in kB
Shabal 3,65
CubeHash 4,19
JH 4,93
Keccak 5,94
SIMD 6,13
Luffa 6,26
Grøstl 6,36
BMW 6,86
Skein 7,10
BLAKE 7,31
Fugue 10,06
ECHO 11,6
SHAVite3 17,6
Hamsi N/A

Table 7: Cost Measurements

5 Conclusions

In this paper, we compared the performance and cost of the remaining SHA-3
candidates on a low-cost ARM920T running the Java based Squawk VM. The
results indicate that the computational efficiency of our Java implementations
is weak compared to optimized C.

We confirm that software implementations on constrained devices are rel-
atively slow, if not designed properly. Candidates requiring a lot of memory
management mechanisms, and with poor reference implementations, can have
poor performance on constraint platforms running Java. Some of these are
mentioned in the introduction, and was the motivation behind this work.
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