
July 2009
Stig Frode Mjølsnes, ITEM
Tord I. Reistad, ITEM

Master of Science in Communication Technology
Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Telematics

Realizing Distributed RSA using Secure
Multiparty Computations

Atle Mauland

Problem Description
A multiparty computation is where three or more parties compute a commonly agreed function
with secret input and possibly public output by carrying out some multiparty crypto protocol. Any
scenario that involves some kind of both information hiding and sharing between several parties
can normally be converted into a multiparty computation problem. A multiparty computation is
done without the assistance of a trusted third party. The trusted party responsibility is shared
among the participants instead.

Quite a lot of theoretical literature on the topic of multiparty computations and the technique of
sharing a secret among several participants exists, but few of the schemes are practical and have
been realized.

This master thesis work will focus on understanding the basic theory of multiparty computations,
select some interesting multiparty computation problem, and then program and make
experiments with a multiparty crypto protocol solution using VIFF (see http://viff.dk).

Assignment given: 15. January 2009
Supervisor: Stig Frode Mjølsnes, ITEM

“The good thing about secrets is that they can be shared.”

- Atle Mauland

Abstract

This thesis describes the basic theory of multiparty computation (MPC) in ad-
dition to a fully functional distributed Rivest-Shamir-Adleman (RSA) protocol
for three players implemented in Virtual Ideal Functionality Framework (VIFF)
using secure MPC (SMPC). MPC can be used to solve problems where n play-
ers, each with a private input xi, wants to compute a function with public
output f(x1, x2, ..., xn) = y, such that the private inputs remains secret for
each player, but the output y is public. A cornerstone in MPC is the concept
of secret sharing. In secret sharing, a dealer has a secret and gives each partic-
ipating player a share of the secret in such a way that a certain number of the
players are needed in order to reconstruct the secret. The number of players
needed to reconstruct the secret is referred to as the threshold of the scheme.
VIFF is a high level programming framework that allows programmers to create
applications using SMPC for any number of players in an easy, efficient and
secure manner. The distributed RSA solution implemented in VIFF includes
distributed key generation, decryption and signature, which are the main func-
tions needed for the distributed RSA scheme, and is based on the distributed
RSA algorithm proposed by Dan Boneh and Matthew Franklin in 1997.

Four improvements compared to Boneh and Franklin’s algorithm are described,
two related to the run-time and two related to the security of the algorithm.
The run-time improvements are regarding the distributed trial division step and
the local trial division on the revealed N , both implemented. The security im-
provements are related to the way a random number is used to secure a revealed
number. The first security improvement is related to the distributed trial divi-
sion, whereas the second security improvement is regarding the alternative step
in the biprimality test. The first security improvement, which is also the more
important of the two, has been implemented in this thesis.

At last some benchmarks regarding the key generation, decryption and signa-
ture process are presented, which indicates that the current implementation is
best suited for scenarios where the distributed RSA keys can be generated in

i

ii

advance, whereas the decryption and signature process is fast enough for any
type of scenario. The key generation process can become much faster with a
few adjustments described at the end of the thesis.

Acknowledgements

This master’s thesis is the result of a twenty weeks long project conducted dur-
ing the 10th semester of my masters program at the Department of Telematics
at the Norwegian University of Science and Technology, NTNU.

I would like to thank my supervisor, PhD student Tord Ingolf Reistad, who has
provided me with valuable inputs, good feedback and helpful assistance when-
ever needed through meetings, discussions and via e-mail.

Also, I would like to thank Håvard Vegge for the collaboration in the writing
process for some parts of the background material in addition to several discus-
sion to clarify the concepts of secret sharing, MPC and VIFF.

In addition, I would also like to thank the following people:

• Professor Stig Frode Mjølsnes for valuable inputs regarding the problem
description and good feedback regarding the report writing.

• Marting Geisler and the rest of the VIFF Developer Team for very fast
and informative answers on the VIFF mailing list.

• Pål Sturla Sæther, engineer at the Department of Telematics at NTNU,
for supplying me with equipment needed to benchmark the application.

• Steffen Tøsse Brun for proofreading this thesis.

• Bengt Jonny Mauland for proofreading parts of this thesis.

iii

iv

Contents

Abstract i

Acknowledgements iii

Contents v

List of Figures ix

List of Tables xi

List of Abbreviations xiii

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 2
1.3 Methodology . 2
1.4 Related Work . 3
1.5 Report Outline . 4

2 Secret Sharing 5
2.1 Finite Fields . 5
2.2 Secret Splitting . 6

2.2.1 Terminology . 6
2.2.2 Insecure Flawed Scheme 7
2.2.3 Additive Scheme . 8

2.3 Threshold Schemes . 10
2.3.1 Introduction . 11
2.3.2 Shamir’s Secret Sharing Scheme 11
2.3.3 Blakley’s Scheme . 16

v

vi CONTENTS

3 Multiparty Computation 17
3.1 Introduction . 17
3.2 Stages in MPC . 20

3.2.1 Input Stage . 20
3.2.2 Computation Stage . 20
3.2.3 Final Stage . 21

3.3 Adversary Model . 21
3.3.1 Passive Adversary . 21
3.3.2 Active Adversary . 22
3.3.3 Static vs. Adaptive Adversary 22

3.4 Secure Multiparty Computation 22
3.5 Addition . 25
3.6 Multiplication . 25

3.6.1 Multiplication Example 26

4 Virtual Ideal Functionality Framework 29
4.1 Background . 29
4.2 Model . 30
4.3 Security Assumptions . 30
4.4 Implementation . 31

4.4.1 The Basics . 31
4.4.2 Deferred and Shares 32
4.4.3 Runtime . 33
4.4.4 Fields . 34
4.4.5 Asynchronous Communication 35
4.4.6 Parallel Execution . 36

5 RSA 39
5.1 Public-key Encryption . 39
5.2 RSA Scheme . 42
5.3 Distributed RSA scheme . 44

5.3.1 Pick Candidates . 44
5.3.2 Trial Division on N . 46
5.3.3 Distributed Biprimality Test 46
5.3.4 Calculate Exponents 47
5.3.5 Decryption . 49
5.3.6 Signature . 49

6 Distributed RSA Implementation in VIFF 51
6.1 Coding Style . 51
6.2 Initialization . 52
6.3 Key Generation . 52

6.3.1 Pick Candidates . 52
6.3.2 Trial Division on N . 54

CONTENTS vii

6.3.3 Distributed Biprimality Test 56
6.3.4 Calculate Exponents 56

6.4 Decryption and Signature . 58
6.5 Code for Benchmarking . 59
6.6 Running the Program . 59

7 Security Analysis and Benchmarking 61
7.1 Security Weaknesses . 61

7.1.1 Weakness 1: Distributed Trial Division 61
7.1.2 Weakness 2: Alternative Step in Distributed Bipri-

mality Test . 63
7.2 RSA Key Size Recommendation 64
7.3 Benchmarking the Implementation 65

7.3.1 Benchmark Equipment 65
7.3.2 Key Generation . 65
7.3.3 Decryption . 68

8 Conclusions 71

9 Further Work 73

References 75

Appendices 81

A Electronic Appendix 81

B Install VIFF 83
B.1 Download and Install all the Necessary Files 83
B.2 Run Test Application . 85

C Mathematics 89
C.1 Linear System Approach . 89
C.2 Vandermonde Matrix . 90

D VIFF Distributed RSA Code 93

E GMPY 113
E.1 find prime . 113
E.2 jacobi . 113
E.3 pow . 113
E.4 divm . 114
E.5 gcd . 114

viii CONTENTS

List of Figures

1.1 VIFF layers. 3

2.1 Illustration of secret sharing. 7
2.2 Creating shares with Shamir’s scheme using a polynomial of

degree 1. 12
2.3 Creating shares with Shamir’s scheme using a polynomial of

degree 2. 13
2.4 Blakley’s scheme in three dimensions. 16

3.1 Multiple secret sharings, the input stage of MPC. 18
3.2 Multiple secret sharing, computation stage and final stage. . . 19
3.3 MPC multiplication. 28

4.1 Programming language stack for VIFF. 30
4.2 VIFF code for doing a simple MPC. 32
4.3 Calculation layers in VIFF. 33
4.4 Definitions for overloading operators in VIFF. 34
4.5 VIFF code for adding Share objects. 35
4.6 VIFF tree structure for shares and operators. 37
4.7 Parallel scheduling of multiplications in VIFF. 37
4.8 VIFF benchmarking: Multiplying random 65-bit numbers in

parallel (top) and in serial (bottom). 38

5.1 Comic strip from xkcd regarding RSA security. 39
5.2 Public-key encryption: Confidentiality. 40
5.3 Public-key encryption: Authentication. 41
5.4 The four steps of the distributed RSA protocol. 45

6.1 Flow chart for picking candidates. 53
6.2 Flow chart for local trial division on N 54
6.3 VIFF code for the local trial division on N 55

ix

x LIST OF FIGURES

6.4 Flow chart for the distributed biprimality test. 56
6.5 VIFF code for secret sharing the generator g. 57
6.6 Flow chart for calculating the public and private exponents. . 57
6.7 VIFF code for performing distributed RSA decryption. 58
6.8 Player 1’s output when generating a distributed 128-bit RSA

key. 60
6.9 Player 2’s output when generating a distributed 128-bit RSA

key. 60
6.10 Player 3’s output when generating a distributed 128-bit RSA

key. 60

B.1 First step to update Windows XP’s environment variable: Go
to the computers properties. 84

B.2 Second step to update Windows XP’s environment variable:
Go to the Environment Variables. 85

B.3 Third step to update Windows XP’s environment variable:
Open the System Variable Path. 86

B.4 Fourth step to update Windows XP’s environment variable:
Append a path for the System Variable. 87

B.5 Player 1’s output when the test application finishes. 87
B.6 Player 2’s output when the test application finishes. 87
B.7 Player 3’s output when the test application finishes. 87

List of Tables

3.1 Explanation of the passive adversaries limit. 24
3.2 Summary of some important properties of secret sharing and

MPC. 24
3.3 Example matrix for secret shared multiplication. 27
3.4 The players’ shares of the total polynomial. 27

7.1 Benchmark for generating distributed RSA keys on LAN. . . 66
7.2 Benchmark for generating distributed RSA keys locally. . . . 68
7.3 Average function count when generating a 1024-bit key. . . . 69
7.4 Benchmark for decryption. 69

xi

xii LIST OF TABLES

List of Abbreviations

2PC Two-party Computation
CA Certificate Authority
CACE Computer Aided Cryptography Engineering
ECC Error-Correcting Code
GB Gigabyte
gcd Greatest Common Divisor
GF Galois Field
GHz Gigahertz
GMPY General Multiprecision PYthon
IP Internet Protocol
LAN Local Area Network
Mbit/s Megabit per second
MHz Megahertz
MIT Massachusetts Institute of Technology
MITM Man-in-the-middle
MPC Multiparty Computation
NTNU Norwegian University of Science and Technology
PR Private key
PRSS Pseudo-random Secret Sharing
PU Public key
RSA Rivest-Shamir-Adleman
SCET Secure Computing Economy and Trust
SIMAP Secure Information Management and Processing
SMPC Secure Multiparty Computation
SP3 Service Pack 3
SSL Secure Sockets Layer
SSSS Shamir’s Secret Sharing Scheme
TLS Transport Layer Security
TTP Trusted Third Pary
VIFF Virtual Ideal Functionality Framework
VM Virtual Machine
XOR Exclusive or

xiii

xiv LIST OF TABLES

Chapter 1
Introduction

1.1 Motivation

The concepts of secret sharing and multiparty computation were introduced
about 3 decades ago. Since then, quite a lot of theoretical contributions have
been published on the subjects, but very few of the schemes have been real-
ized and made practical. Today, well known scenarios like certificates issued
from certificate authorities (CA) on the Internet, stock trading on all of the
world’s stock exchanges, auctions and voting schemes of all kinds includes a
trusted third party (TTP). Such a TTP is a neutral entity which operates
as the communication link between several non-trusting players. The TTP
accepts private inputs from players and gives outputs to the players. The
need for a TTP can be avoided by using SMPC, in which the responsibility
of the TTP is shared in a secure manner among some or all of the partici-
pating players instead.

The general problem with SMPC has been that very few schemes have been
realized and even fewer have proven practical. In recent years, more frame-
works for easy implementation of SMPC have appeared, making it easier to
realize practical protocols in larger scale. The most prominent frameworks
as of today are FairplayMP ([BDNP08]), which is developed in Israel, and
VIFF ([rGiN09]), which is developed in Denmark. VIFF, which is the al-
ternative chosen for this thesis, has its origin in a former framework called
Secure Information Management and Processing (SIMAP). SIMAP has al-
ready been used to perform the world’s first large scale SMPC in 2008 when
the auction between the Danish sugar beets processor, Danisco, and the
Danish sugar beets farmers took place to securely find the marked clearing
price for sugar beets ([BCD+08]).

As such frameworks are getting faster, more reliable and more usable, the

1

2 CHAPTER 1. INTRODUCTION

number of realized practical protocols is likely to increase in the near future.
VIFF already has all the functionality that SIMAP had and much more, so
if SIMAP could do large scale SMPC, then surely VIFF can as well.

The RSA algorithm is the most widely used general-purpose algorithm for
public-key encryption today. It can be used for both encryption and signa-
ture of messages, and is used tremendously amount of times on the Internet
every day, mostly for exchanging private keys to use in private-key encryp-
tion, e.g. in secure sockets layer (SSL) or transport layer security (TLS), in
addition to encryption and signing of digital certificates.

1.2 Problem Statement

The focus in this thesis is to get a basic understanding of the theory of MPC
and use that knowledge to experiment and realize a cryptographic protocol
using the MPC framework VIFF. The chosen protocol is distributed RSA
(also referred to as shared RSA), with that bringing two highly relevant and
powerful security concepts together in one solution. Such a solution can for
example be used to digitally sign certificates by n servers instead of a single
server (TTP), which increases the security by increasing the probability that
the signed certificate is from a trusted entity.

Distributed RSA protocols have been implemented before, but never in
VIFF, which makes this a challenge. The main part of this thesis is to realize
a fully functional distributed RSA protocol for three players in VIFF, which
will include key generation and possibility for decryption and signature, all
conducted in a secure and distributed manner. In addition, a supplementary
part is to benchmark and analyze the security of the solution in order to
improve both the run-time and the security of the application.

1.3 Methodology

The whole implementation is written in VIFF, which allows a program-
mer to write high-level code on top of a well-defined structure of already
implemented modules. The code written for this thesis is written in the
application layer shown in Figure 1.1. Writing VIFF code in the applica-
tion layer means using overloaded mathematical operators that operates on
secret shared values to do MPC, which again uses a secret sharing scheme
to secret share values among the players. The secret shared values need to
be transferred between the players, which is done by the network communi-
cation layer.

2

1.4. RELATED WORK 3

Figure 1.1: VIFF structure: Network Communication, secret sharing scheme and
MPC. The programmer writes applications on top of the VIFF structure, using the
VIFF modules, and does not need to think about the underlying layers.

The methodology used in this thesis has been to first study the concepts of
secret sharing, MPC and RSA in order to acquire a fundamental understand-
ing of these topics. At the same time, experimentation with simple secret
sharing and MPC examples have been conducted in VIFF by implementing
simple protocols in order to understand the structure of the framework.

The implemented distributed RSA protocol is the result of an iterative pro-
cess by implementing one step of the algorithm at the time. Once a func-
tional algorithm was in place, work was conducted to improve both the
run-time and the security of the algorithm, also in an iterative manner.
Time spent implementing and improving the distributed RSA protocol has
been the most time-consuming part of this thesis.

1.4 Related Work

Even though a distributed RSA protocol has not been implemented in VIFF
before, both the distributed RSA protocol and VIFF are fields in continuous
development. The current milestone for distributed RSA is, as mentioned,
documented in [BF97], with follow-up work documented in [MWB99]. An-
other distributed RSA protocol is presented in [ACS02], which is comparable
in speed to Boneh and Franklin’s protocol for normal distributed RSA, but
with the possibility of using safe primes1 in the public modulus N = pq
in a very efficient manner. As for the calculation of the exponents used in

1A safe prime is a prime number of the form 2p+ 1, where p is also a prime ([Con09f]).

3

4 CHAPTER 1. INTRODUCTION

distributed RSA, both [ACS02] and [CGH00] have proposed alternative and
efficient methods compared to [BF97].

VIFF is developed by the VIFF Development Team, who works on adding
functionality to the framework, speeding it up and making it more secure.

1.5 Report Outline

Section 3.5 and 3.6 (along with Appendix C) has been written in collabo-
ration with H̊avard Vegge. The remainder of this thesis is outlined as follows:

Chapter 2 - Secret Sharing
This chapter presents the basic concepts of secret sharing, with the additive
scheme and Shamir’s scheme being the two most important schemes.

Chapter 3 - Multiparty Computation
This chapter gives an introduction to multiparty computations in general,
along with detailed description of how to perform addition and multiplica-
tion in MPC.

Chapter 4 - Virtual Ideal Functionality Framework
This chapter gives an introduction to VIFF, the MPC framework used for
realizing SMPC in this thesis.

Chapter 5 - RSA
This chapter describes public-key encryption and the RSA scheme, both the
standard RSA scheme and the distributed RSA scheme.

Chapter 6 - Distributed RSA Implementation in VIFF
This chapter describes the distributed RSA implementation made in VIFF.

Chapter 7 - Security Analysis and Benchmarking
In this chapter a security analysis of the distributed RSA scheme is given
along with benchmark results of the implementation.

Chapter 8 - Conclusions
This chapter summarizes and concludes the thesis.

Chapter 9 - Further Work
In this chapter, some suggestions for further work are given.

4

Chapter 2
Secret Sharing

Secret sharing was introduced by Adi Shamir and George Blakley indepen-
dently in 1979. Their two schemes along with a numerous of other schemes
can all be used in different cryptographic scenarios where it’s desirable that
a secret is not in hands of a single player. Secret sharing is very important
in MPC and is therefore described in detail in this chapter.

The main idea of secret sharing is to have a dealer distribute a secret s
among more than one player. Each player will only have a share of the
secret, not the secret itself, see Figure 2.1. The secret can be reconstructed
and used for a specified purpose by recombining a certain number of the to-
tal shares, depending on the scheme used. The security is based on the fact
that each share is useless when used alone, but can be used for its purpose
when combined.

This chapter will first give a brief explanation of finite fields, which are used
in secret sharing schemes, before presenting secret sharing in general. Secret
sharing is mainly divided into secret splitting schemes and threshold schemes,
which will both be described below along with some numeric examples to
clarify the concepts.

2.1 Finite Fields

Finite fields are of particular interest in many cryptographic protocols. Ev-
ery finite field contains a finite number of elements, where the number of
elements is referred to as the order of the finite field. The order of a finite
field must be a power of a prime p, that is, the order is on the form pn for
a prime p and a positive integer n. A finite field of order pn is generally
written GF(pn), where GF stands for Galois Field (after Évariste Galois,
the first one to study finite fields).

5

6 CHAPTER 2. SECRET SHARING

The prime p is called the characteristic of the field and is defined to be the
smallest number of times one must add the multiplicative identity element

(1) to itself to get the additive identity element (0), that is
p summands︷ ︸︸ ︷
1 + . . .+ 1 = 0.

For secret sharing, a special case of the finite fields is used, more specifically
finite fields with n = 1, having the form GF(p), which contains p elements.
GF(p) is defined as the set Zp of integers {0, 1, 2, ..., p − 1} and arithmetic
operations are performed modulo p. Observe that all nonzero element in Zp
has a multiplicative inverse, because every element 1, 2, ..., p− 1 is relatively
prime to p. Given that every operation is performed mod p, this ensures
that all values are restricted to the interval [0, p). In addition, every element
in Zp is relative prime to p, which ensures the uniform random distribution
of values in the field, making finite fields an important necessity to obtain
what is called perfect security (see Definition 3 below).

Normally when doing modular arithmetic modulo an integer n, the opera-
tions addition, subtraction and multiplication are defined for any element
in the field and can all be performed without leaving the set. The obser-
vation above ensures that every nonzero element in the finite field has a
multiplicative inverse, which means that finite fields also includes division
by any nonzero number.

Example 1. (Finite fields calculations) First, let a finite field be defined
to Zp = GF(19). Next, two elements in the field are defined: x = Zp(10)
and y = Zp(15). Now, operations can be performed on the elements in the
field:

x+ y = 10 + 15 mod 19 = 6
x− y = 10− 15 mod 19 = 14
x× y = 10× 15 mod 19 = 17
x / y = x× y−1 = 10×−5 mod 19 = 7

2.2 Secret Splitting

This section defines secret splitting in addition to presenting two secret
splitting schemes, one insecure and one secure.

2.2.1 Terminology

The secret splitting scheme is the simplest of the secret sharing schemes,
and is defined as follows ([GF02]):

6

2.2. SECRET SPLITTING 7

Definition 1. Secret splitting is done by giving each player a share of the
secret in such a way that it takes all the players to reconstruct the secret.

General secret sharing is illustrated in Figure 2.1. A dealer has a secret s
that is to be secret shared among a set of players. The dealer creates shares,
si, out of s and distributes them (in a secure manner) to a number of players.

Figure 2.1: Illustration of distribution of shares for three players using secret shar-
ing. The dealer creates the shares and distributes them (through secure channels)
to the players.

Further, the privacy of a secret sharing protocol is defined as ([BOGW88]):

Definition 2. A protocol is t-private if any set of at most t players cannot
compute after the protocol more than they could jointly compute solely from
their set of private inputs and outputs.

Secret splitting is therefore (n − 1)-private and can be conducted in many
ways, all of which have in common that all the players needs to input their
share to be able to reconstruct the secret.

2.2.2 Insecure Flawed Scheme

Suppose that the message “secret” is to be secret shared among 3 players.
The naive approach would be to split the word in three and let each player
have one third of the word, that is:

7

8 CHAPTER 2. SECRET SHARING

Player 1:“se′′
Player 2:“cr′′
Player 3:“et′′

As can be seen above, all players know a part of the secret, but none of them
know the whole secret. The flaw in this scheme is that even though none of
the players know the whole secret, they all know something about the actual
secret. They all know they have 1/n part of the actual secret. This makes
it easier to reconstruct the secret for a shareholder. A person that holds no
share, but knows the secret is 6 letters long (restricted to lower case for this
example), would have to guess all the letters, which is equivalent to 266 =
309 million combinations. For a player with one share, only 264 = 457 000
combinations exist for the remaining four letters. This also means that the
more of the players that collaborates, the more they know about the actual
secret.

The insecure scheme described above is illustrative for the secret sharing
concept, but it should come as no surprise that this scheme is flawed. The
next scheme on the other hand, is secure and can be used in many secret
sharing scenarios.

2.2.3 Additive Scheme

In any secret sharing scheme it’s a necessity that the players’ individual
shares yield no information about the actual secret, that is, a player hold-
ing a share should not give that player any advantage in reconstructing the
secret alone.

Additive schemes involve that all players input their share to reconstruct the
secret. The procedure of additive secret sharing for n players with a secret
s in a finite field Zp and a dealer D is conducted in the following way:

D picks n−1 random numbers {r1, r2, . . . , rn−1} from Zp. D then computes

sn = s−
n−1∑
i=1

ri (mod p)

Then player 1, player 2,..., player n− 1 receives the shares si = ri from the
dealer (through secure channels). Player n receives the share sn (as calcu-
lated above) from the dealer (through a secure channel). The reconstruction
of the secret is done simply by adding the shares from all the players in the
finite field Zp:

s =
n∑
i=1

si (mod p)

8

2.2. SECRET SPLITTING 9

As shown above, no single shareholder knows anything about the actual se-
cret, only a random integer. Suppose an adversary should get hold of n− 1
shares, this would yield nothing about the actual secret, because the last
random integer does only make sure that the secret s is in the range [0, p),
which is already given by the finite field used.

Another variant of the additive scheme is the exclusive or (XOR) scheme.
The XOR scheme also needs all the players to participate to reconstruct
the secret, therefore being (n− 1)-private. The scheme is conducted in the
following way: A dealer wants to secret share a message M among several
players, where M is of length l-bit. The dealer gives the first n−1 players a
random l-bit sequence each, and give the last player the l-bit sequence such
that the XOR of all bit sequences equal the bit sequence of the message M .
More formally it can be written:

mi = {0, 1}l for i ∈ [1, n− 1]
mn = M ⊕m1 ⊕ . . .⊕mn−1

As can be seen from the equations above, each player has only a random bit
sequence, but when they are all XOR-ed together, they will yield the message
M . The same privacy applies here as for the additive scheme, (n−1)-private,
knowing all except one share of the secret yields nothing for an adversary.
The adversary can XOR all obtained shares, but this only yields a random
bit sequence, and knowing no bits of the actual secret makes every l-bit
sequence a possible last share, that is, M can be any l-bit sequence, which
is already given. This is a very neat property of the additive schemes, all
shares have the same length as the actual secret, but gives no information
to adversaries unless all shares are known. This leads to another definition
for perfect security in a cryptographic system (from [Sch96]):

Definition 3. Perfect security is a cryptographic system in which the
ciphertext yields no possible information about the plaintext (except possibly
its length).

Both the additive and Shamir’s scheme (explained later) offers perfect se-
curity by doing modular arithmetic mod p, which means that all values are
in the interval [0, p), but all values are equally likely, and therefore offers
no information to any of the players. Definition 3 was theorized by Claude
Shannon such that perfect security is possible only if the number of possible
keys is at least as large as the number of possible messages. In other words,
the key must be at least as large as the message itself, and no key can be
reused, which makes the One-time pad (Vernam cipher) or equivalents the
only cryptographic systems that achieves perfect security (for more infor-
mation about the One-time pad scheme, see [WM05] and [Sta06]).

9

10 CHAPTER 2. SECRET SHARING

The XOR secret sharing scheme for two players is equivalent to the One-time
pad cryptographic scheme, where the plaintext message (as a bit sequence
of length l) is XOR-ed with a random bit sequence, also of length l, to get
the ciphertext (encrypted message) of length l. The encrypted message can
then be decrypted back to the plaintext by taking the XOR of the ciphertext
and the random bit sequence. An example is included below to illustrate the
additive secret sharing scheme using the XOR technique for three players.

Example 2. (XOR secret sharing) Dealer D wants to secret share a
message M with length 4 bits. M = 1001 and is to be secret shared among
n = 3 players, Alice, Bob and Carol, using the XOR secret sharing scheme.

The dealer is the only one that knows M , and uses M to generate shares
for all the players. The dealer needs to generate n − 1 random bit-string
shares and calculate the last share based on M and the random generated
shares. The dealer generates 2 random bit-strings, 0111 and 1100, and gives
them (in a secure manner) to Alice and Bob respectively. The dealer then
calculates the last share as 1001 ⊕ 0111 ⊕ 1100 = 0010 and gives that share
(also in a secure manner) to Carol. The players now have the following (and
nothing else):

Alice : 0111
Bob : 1100
Carol : 0010

Now, if all the players are willing to participate in message decryption, they
can find the message M , but one player resisting is enough for M to remain
secret. It can easily be seen that this protocol works by using XOR with all
the shares:

M = mAlice ⊕mBob ⊕mCarol

M = 0111⊕ 1100⊕ 0010 = 1001

2.3 Threshold Schemes

Eleven scientists are working on a secret project. They wish to lock up the
documents in a cabinet so that the cabinet can be opened if and only if six
or more of the scientists are present. What is the smallest number of locks
needed? What is the smallest number of keys to the locks each scientist must
carry? ([Liu68])

In this section, threshold secret sharing schemes are presented, starting with
defining threshold schemes in general before presenting the two threshold
schemes invented independently by Shamir and Blakley in 1979.

10

2.3. THRESHOLD SCHEMES 11

2.3.1 Introduction

The answer to the problem stated above using combinatorics is that the

number of locks on the cabinet is
(

11
5

)
= 462 and the number of keys each

scientist has to carry is
(

10
5

)
= 252. This clearly is impossible in reality,

but a much more sophisticated solution exists, namely a threshold scheme
([BL90] and [Mor07]):

Definition 4. Given a finite field Zp of possible secret values, a (t,n)-
threshold secret sharing scheme is a secret sharing scheme that can
divide a secret s ∈ Zp into shares {s1, s2, . . . , sn} ∈ Zp so that t ≤ n and:

1. Given any set of t or more shares si, s can be reconstructed.

2. Any set of fewer than t shares gives no information about s.

From Definition 2 it can be verified that threshold schemes are (t−1)-private,
where t refers to the threshold used.

2.3.2 Shamir’s Secret Sharing Scheme

Shamir’s secret sharing scheme (SSSS) was introduced by Adi Shamir in 1979
([Sha79]). Shamir’s secret sharing is very suitable with threshold schemes
and is a widely used secret sharing scheme. This scheme uses a secret random
polynomial to hide the secret and Lagrange’s interpolation to reconstruct
the secret. The good suitability for threshold schemes is due to the simple
fact that two points are needed to uniquely define a straight line (polyno-
mial of degree 1), three points are needed to uniquely define a quadratic
function (polynomial of degree 2) and so on, and therefore the degree of the
polynomial defines the threshold t.

SSSS has, like the additive scheme, perfect security. All the shares are of
the same length as the secret, [0, p), and no information about the secret
can be found without knowing at least t shares (all values in [0, p) has equal
probability as a last share).

Creating the Shares

A dealer wants to share a secret s using SSSS. The dealer then constructs a
random polynomial f(x) with degree deg(f) = t− 1:

f(x) = s+ r1x+ r2x
2 + . . .+ rt−1x

t−1 mod p

The following conditions for SSSS must hold:

11

12 CHAPTER 2. SECRET SHARING

• The threshold t ≤ n

• The secret s ∈ Zp for a prime number p.

• The number of players n < p

• The coefficients {r1, r2 . . . , rt−1} used in the polynomial are randomly
and independently chosen from the interval [0, p).

Creating shares si for the n players is now really simple. The dealer first
picks a random polynomial of degree t − 1, where t is the threshold. Each
player has a different id, Pid = xi, which is constant for that player in the
current scheme and is known by everyone. Normally, this id is given in
increasing order for simplicity, such that xi = 1, 2, 3, ... for player 1, 2, 3,
The dealer now give each player a share f(xi), such that player 1 gets the
share s1 = f(1), player 2 gets the share s2 = f(2) and so on. The SSSS
share creation for a secret s, n players and threshold t = 2 (a straight line)
is illustrated in Figure 2.2.

Figure 2.2: Creating the shares with SSSS in a (2, n)-threshold scheme: Each
player receives from the dealer a share si = f(xi) from the secret polynomial f(x),
and it will take at least 2 players to reconstruct the secret s.

In Figure 2.2 it will take at least 2 out of the n players to reconstruct the
secret, making it a (2, n)-threshold scheme. Another example where it will
take at least 3 out of the n players, making it a (3, n)-threshold scheme, is

12

2.3. THRESHOLD SCHEMES 13

illustrated in Figure 2.3. This function is quadratic (of degree 2), and such
a function can be uniquely defined by knowing at least 3 function values.

Figure 2.3: Creating the shares with SSSS in a (3, n)-threshold scheme: Each
player receives from the dealer a share si = f(xi)) from the secret polynomial f(x),
and it will take at least 3 players to reconstruct the secret s.

A very neat property of the threshold schemes is that the number of players,
n, can be increased at any time without the need to create new shares for
the former set of players. The dealer just needs to assign a Pid = xn+1 to
the new player and give the share sn+1 = f(xn+1) to that player. This way
the total number of players has increased from n to n+ 1, but the number
of shares needed to reconstruct the secret is still the threshold t since the
secret polynomial has not changed.

Example 3. (SSSS share creation) A dealer wants to share a secret
s = 11 using SSSS among five players with a threshold t = 3 using SSSS. The
dealer chooses a prime number p = 23 and generates two random numbers
r1 = 5 and r2 = 2, which yields the following polynomial:

f(x) = 11 + 5x+ 2x2 mod 23

The dealer then calculates one share for each player and gives it to that
player in a secure manner:

13

14 CHAPTER 2. SECRET SHARING

s1 = f(1) = 11 + 5 · 1 + 2 · 12 mod 23 = 18
s2 = f(2) = 11 + 5 · 2 + 2 · 22 mod 23 = 6
s3 = f(3) = 21
s4 = f(4) = 17
s5 = f(5) = 17

The secret s is now secret shared among the 5 players, each of them having
their own distinct share of s. It would require at least t = 3 players in order
to reconstruct the dealers secret, the method is explained next.

Reconstructing the Secret

Reconstructing the secret can be performed by any t number of players using
their values xi and f(xi). The reconstruction is done by using Lagrange’s
interpolation on t (or more) shares. Lagrange interpolation is defined as
follows ([Kre99]):

f(x) =
n∑
i=1

Li(x)fi =
n∑
i=1

li(x)
li(xi)

fi

where li(x) and li(xi) is defined as follows:

li(x) =
n,i6=j∏
j=1

(x− xj)

li(xi) =
n,i 6=j∏
j=1

(xi − xj)

By substituting the expressions for li(x), li(xi) and setting fi = si, f(x) can
be rewritten as:

f(x) =
n∑
i=1

si ·
n,i 6=j∏
j=1

x− xj
xi − xj

Since the threshold is t, n can be substituted by t. The secret is found
for x = 0, therefore the desired expression is found by finding f(0), and
all values are calculated mod p in secret sharing schemes, which yields the
following:

f(0) =
t∑
i=1

si ·
t,i 6=j∏
j=1

0− xj
xi − xj

mod p

By multiplying both the numerator and the denominator by minus one,
which interchanges the indexes for i and j in the denominator, and putting

14

2.3. THRESHOLD SCHEMES 15

the denominator as a power of minus one instead, the final expression for
calculation is:

s = f(0) =
t∑
i=1

si ·
t,i 6=j∏
j=1

xj · (xj − xi)−1 mod p (2.1)

Notice that the indices i and j refers to the Pid’s of the players participating
in the reconstruction, but are written as 1 to t here for simplicity.

Example 4. (Reconstructing the secret with SSSS) Continuing from
Example 3 the shares of s have now been distributed to the players. Three
of the players, player 1, player 3 and player 4 want to reconstruct the secret
s. Each of these players has two values each, xi and f(xi) that is used in
the reconstruction:

Player 1 : (1, 18)
Player 3 : (3, 21)
Player 4 : (4, 17)

These values can be used as input to Equation 2.1 to reconstruct the secret
as shown below:

s =
t∑
i=1

si ·
t,i 6=j∏
j=1

xj · (xj − xi)−1 mod 23

= 18 ·
t,i 6=j∏
j=1

xj · (xj − xi)−1 + 21 ·
t,i 6=j∏
j=1

xj · (xj − xi)−1 +

17 ·
t,i 6=j∏
j=1

xj · (xj − xi)−1 mod 23

= 18 · (3 · (3− 1)−1) · (4 · (4− 1)−1) +
21 · (1 · (1− 3)−1) · (4 · (4− 3)−1) +
17 · (1 · (1− 4)−1) · (4 · (3− 4)−1) mod 23

= 18 · (3 · 12) · (4 · 8) + 21 · (1 · 11) · (4 · 1) +
17 · (1 · 15) · (3 · 22) mod 23

= 20736 + 924 + 16830 mod 23
= 38490 mod 23
= 11

Example 4 above shows that using three out of the five shares is enough to
obtain the secret s = 11 using Lagrange’s interpolation. The calculations
require finding inverses mod p1.

1The parenthesis (xj − xi)−1 can be calculated by first calculating (xj − xi). If this
value is negative, add a multiple of p to obtain a value in the interval [0, p). Calculating
numbers with negative powers mod p requires finding inverses mod p, and substituting the

15

16 CHAPTER 2. SECRET SHARING

2.3.3 Blakley’s Scheme

In Blakley’s scheme the secret is a point in a t-dimensional space. Each of the
n shares constructed and distributed to the players are nonparallel planes
in this t-dimensional space which contains the secret point. The secret is
reconstructed by finding the intersection of (at least) t shares (planes), as
shown in Figure 2.4 (taken from [Con09g]).

Figure 2.4: Blakley’s scheme in three dimensions: Each share is a plane, and the
secret is the point at which three shares intersect.

Each share is a plane and the secret itself is just a point in the t-dimensional
space. This means that the shares are t times larger than the secret. In both
the additive schemes and in SSSS the shares are as large as the secret itself,
which is one of the properties of perfect security.

Blakley’s scheme also lacks another property of perfect security. An ad-
versary with a share of the secret knows the secret is a point on its plane.
Knowing more shares makes an adversary know more about each of the
dimensions, therefore also more about the actual secret. The scheme can
however be modified to achieve perfect security (see [Sim92] and [Bri90]).

number with the inverse instead. To calculate a−b mod p, find an inverse x of a mod p: x
= a−1 mod p and calculate xb mod p instead. Inverses can be found using the Extended
Euclidean Algorithm (see [CLRS01], [Ros03] or [TW06]).

16

Chapter 3
Multiparty Computation

Three millionaires that do not trust each other want to rank their fortunes
to find out once and for all who’s the richest. Each of them wants to know
the ranking of the fortunes, but no one wants to reveal their own fortune to
any of the other two millionaires. How can this be achieved?

3.1 Introduction

The traditional model for trust between several players involves a TTP which
all the players trust. This scheme is widely used in many fields of communi-
cations today, including CA on the Internet, stock trading in all the world’s
largest stock exchanges, auctions and important elections of all sorts. These
all relies on that the trusted third party, who takes some inputs from play-
ers, does some computations and gives the public output, actually can be
trusted. A big problem with this scheme is that the TTP is a single point
of failure, which means that corrupting the TTP, corrupts the whole scheme.

The millionaire problem at the beginning of this chapter is a variant of the
millionaire problem introduced by Andrew C. Yao in 1982 ([Yao82]). The
solution to the problem can be accomplished by using multiparty computa-
tions. In fact all problems that uses a TTP can be avoided by using MPC
instead.

MPC can be used in situations where a group of players want to calculate
the value of a public function f(x1, x2, . . . , xn) = y, where xi is the pri-
vate input for player i, and y is the public output, with the restriction that
no player should learn more information about the public calculation of f
other than what is given from that player’s input to the public function and
the public information. Put another way, each player wants to keep their
private value, xi, secret, but all players want to know the result from the

17

18 CHAPTER 3. MULTIPARTY COMPUTATION

public calculation of f . Note that the value y can also be a vector of values,
y = (y1, y2, ..., yn), if all players should only learn its part of y.

General MPC is defined to be 3 players or more, while the 2 player case
most often is referred to as two-party computation (2PC). The main idea
is to let the trusted third party role be distributed among some or all of
the players instead. MPC is closely related to secret sharing described in
Chapter 2 in the way that every MPC uses a secret sharing scheme as it’s
cornerstone for calculating the outcome of the function f .

The difference between secret sharing and MPC can be described as follows:
In secret sharing a dealer knows a secret and wants to distribute it among
more than one player so that a certain number of players are needed to
reconstruct the secret. In MPC on the other hand, the secret of each player
is to be kept secret at all times, and only the public output from the function
f is wanted. Therefore, in MPC each player that has an input to the function
f is a dealer and secret share its private value to the other players, such
that the players jointly can calculate the public outcome of f without ever
knowing each of the private inputs.

Figure 3.1: Multiple secret sharings: Three players have a private data, x, y and
z for player 1, 2 and 3, respectively. They all secret share the values among all
three players, resulting in each player i having three shares: xi, yi and zi. This is a
possible scenario for the input stage of an MPC (see below).

Figure 3.1 shows three players who each secret share a private value with
the other two players. Each player i holds 3 shares, xi, yi and zi, one for
each of the private inputs. Once the secret sharing has been performed,

18

3.1. INTRODUCTION 19

the players can compute their share of the function f by using the received
shares from the other players. Notice however, that a round of distribution
of the calculated values is needed to obtain the answer that is to be revealed,
explained in the example below.

Example 5. (MPC) The three millionaires want to find their total fortune
without revealing to the others their own fortune. Here, the three million-
aires are player 1, 2 and 3, with a private input x, y and z respectively. They
want to do an MPC to find f(x, y, z) = x + y + z, such that none of them
get to know any of the private values except their own, but everyone gets
the public output from f .

The solution to this problem is to use a simple MPC addition (explained in
more detail in section 3.5). Each millionaire has its own private input x, y
and z (the fortune), which is to be kept secret. The millionaires wants to
calculate the function f(x, y, z) = x+ y + z.

Figure 3.2: Three players calculating the outcome of the function f(x, y, z) =
x+y+z = s (where the total line intersects the y-axis). First each player secret share
their private input (x, y, z) with the other players, such that each player i obtains
xi, yi, zi. Next each player calculates the addition of its shares, by calculating
si = xi + yi + zi, where si is player i’s share of the total polynomial. Next, every
player sends their share si to the other players, so that every player locally can
interpolate the si’s and find s, which is the output of f .

Each millionaire secret shares their secret using SSSS with the other two

19

20 CHAPTER 3. MULTIPARTY COMPUTATION

millionaires as shown in Figure 3.1, resulting in Figure 3.2. Each of the
players’ lines represents the randomly chosen polynomial where the dot at
the y-axis represents that player’s fortune (x, y and z). After all players
secret share their fortune, each player has a share of all lines (xi, yi, zi). Each
player can add its shares from all the players’ lines and obtain a share of
the total polynomial (dot on the total line), si. Now comes the distribution
part mentioned above, they now each have a share on the total polynomial,
but that is not sufficient for interpolating and reconstructing the public
output alone. Each player therefore distributes their share si on the total
polynomial to the other players, such that each player has all si’s. The
millionaires can now locally use Lagrange’s interpolation on these si’s to
obtain the output of f , which is s, (the dot on the total line at the y-axis
intersection) without revealing any information about the fortunes of each
millionaire.

3.2 Stages in MPC

Generally, MPC consist of three stages: input stage, computation stage and
final stage. An important point here is that the group of players that is
active in each stage is not defined to be some static subgroup or follow some
kind of pattern. This group of players will vary from each computation to
be done, and the same group of players need not participate in all stages,
all depending on the function f .

3.2.1 Input Stage

The input stage is where the players give input to the function f(x1, x2, . . . , xn)
to be calculated. As mentioned, these xi’s are the private values for player
i, and these are to remain private for that player. Every player having an
input xi therefore acts as a dealer for its own private input, and secret share
the input among all the players as shown in Figure 3.1. Several inputs per
player are possible if the function f requires more than one value from cer-
tain players (this would result in more random polynomial picked by that
player, and shares of the new polynomial(s) distributed to all the players).
When the input stage ends, the players hold shares of the inputs to be used
to calculate the shares of f , and can continue to the computation stage.

3.2.2 Computation Stage

The computation stage is where the actual computation on the shared values
to obtain a share of the output of f . Several operations can be supported,
although the most common ones are the basic addition and multiplication
(described in detail later in this chapter). In this stage the calculations are
done on shares, not on actual values, which is a requirement because the

20

3.3. ADVERSARY MODEL 21

inputs values are to be kept secret. When all the calculations are finished,
the players have a share of the output from f , which are the si’s in Figure
3.2, and the protocol moves on to the last stage.

3.2.3 Final Stage

The final stage is where the output values of the function f are revealed to
all or some of the players. This is carried out by each player distributing
their share of the total polynomial, si, to all the other players. That way
every player can locally use Lagrange interpolation to find the public output
s, which is the intersection of the total line with the y-axis in Figure 3.2.
Revealed values are of course not reversible, that is, knowing a revealed
value does not make it easier to find the inputs to the function f . This is
easily seen from Figure 3.2, each player only knows one point of the other
players’ polynomial, which is not enough to reconstruct any of the private
inputs besides their own. Numeric examples of the procedure of an MPC
multiplication is described in Section 3.6.

3.3 Adversary Model

Adversaries in cryptographic protocols are malicious players who aim to pre-
vent the protocol from running correctly. This can be done by corrupting
honest players or some part of the system in such a way that the outcome is
incorrect or absent. Adversaries can also try to collect helpful information
by eavesdropping or act as a man-in-the-middle (MITM) to threaten the
privacy of other players and the protocol.

Generally, the adversaries for MPC are divided into two groups, passive
adversaries and active adversaries. Mobile adversaries are also mentioned
in some literature, but will not be described any further in this thesis. The
adversaries can often be seen as one entity, the adversary, to simplify of the
concept.

3.3.1 Passive Adversary

The passive adversary is also known as the honest-but-curious or the semi-
honest adversary. The passive adversary follows the protocol seemingly
properly, but also does something more on the side. This could be to delib-
erately not delete some internal data, deviate from the randomness suppose
to be used, eavesdropping on traffic or any other action that will not directly
harm the execution of the protocol. A passive adversary can either input
the correct value to the calculation or no value, but not an incorrect value.

21

22 CHAPTER 3. MULTIPARTY COMPUTATION

The passive adversary is seen as violator of the privacy constraint. As an
example, a passive adversary in an election has respect for the majority’s
opinion and would thus not alter the results in any way, but would want to
know who voted for whom.

3.3.2 Active Adversary

The active adversary is also known as the malicious or the Byzantine adver-
sary. This coalition of players can deviate arbitrary from the protocol with
the intent to disrupt the computations and by doing so, produce incorrect
results and/or violate the privacy of the other players.

The active adversary is seen as violator of both the privacy and the cor-
rectness constraint. As an example, an active adversary can omit to give
an input to the protocol at any time during execution or give an incorrect
input to prevent the correctness of the protocol.

3.3.3 Static vs. Adaptive Adversary

Both types of adversaries can be static or adaptive. A static adversary must
choose the set of players to corrupt before the execution of the protocol,
i.e., the set of corrupted players is fixed (but typically unknown) during the
whole computation. An adaptive adversary on the other hand, can choose
to corrupt players at arbitrary times during the execution of the protocol,
depending on the information gathered so far.

Adversaries in MPC are a large field of study, and therefore much is left out
of this thesis. For more details about the adversary model, mobile adver-
saries and general adversary structures for MPC, the reader is referred to
[GMW87], [Gol97], [Gol99], [Gol00], [CDM00], [CrN08], [Can95] and [Hir01].

3.4 Secure Multiparty Computation

Secure multiparty computation means that the MPC protocol is declared
secure by some measurement. Generally, SMPC is divided into two groups:
computationally secure MPC and information-theoretically secure MPC, both
are described below:

• Computationally secure MPC is based on some unproven crypto-
graphic primitive (e.g. a mathematical problem, like factoring) which
is assumed to be computationally infeasible to solve. The players share
an authenticated, but otherwise insecure channel, which means an ad-
versary have access to all the messages sent, but it’s computationally
infeasible for the adversary to modify the messages.

22

3.4. SECURE MULTIPARTY COMPUTATION 23

• Information-theoretically secure MPC is secure even if the ad-
versary has unbounded computing power, because the players are as-
sumed to communicate over (somewhat impractical, but fully possible)
pairwise secure channels, i.e. the adversary gets no information at all
about messages exchanged between honest players (except that some-
thing was sent).

Recall from Chapter 2 that both the additive scheme and Shamir’s scheme
offers perfect security, which also makes them information-theoretically se-
cure. This property is one of the reasons that these schemes are a cornerstone
in SMPC.

From [BOGW88] and [CCD88] the following are two important definitions
about adversaries in MPC using threshold schemes:

• If the adversary is passive and adaptive, then every function can be
securely computed with perfect security if and only if the adversary
corrupts less than n/2 players, i.e. the adversary gets no additional
information about the honest players.

• If the adversary is active and adaptive, then every function can be
securely computed with perfect security if and only if the adversary
corrupts less than n/3 players, i.e. the adversary gets no additional
information about the honest players.

The limits for maximum adversaries vary depending on what security that
is to be used, with perfect security having the strictest requirements. See
tables in [Mor07] and [CrN08] for limits with other security measures.

The limits are optimal in the sense that they prevent the adversaries to:

1. Collaborate to reconstructing the secret.

2. Collaborate to prevent the honest players from reconstructing the se-
cret.

Since the passive adversaries cannot input incorrect values to the calcula-
tion, point 2 for passive adversaries is only regarding whether they input
the correct value or nothing. To see that the n/2 is the optimal limit, let
n = 6 and n = 7 be the number of players and let t be the threshold.

Table 3.1 shows how many adversaries are needed to accomplish the unde-
sired points 1 and 2 above for n = 6 and n = 7 players (the same pattern
relate to all n). To prevent the adversaries of both point 1 and 2 above, the
maximum number of adversaries needs to be less than both the Reconstruct

23

24 CHAPTER 3. MULTIPARTY COMPUTATION

n = 6 n = 7
Threshold Reconstruct Prevent Reconstruct Prevent

t = 2 2 5 2 6
t = 3 3 4 3 5
t = 4 4 3 4 4
t = 5 5 2 5 3
t = 6 6 1 6 2
t = 7 - - 7 1

Table 3.1: Explanation of the passive adversaries limit for n = 6 and n = 7 players.
Threshold is the number of players needed to reconstruct the secret, Reconstruct
is the number of adversaries needed to reconstruct the secret (equal to t) and
Prevent is the number of adversaries needed to prevent the honest players from
reconstructing the secret.

and the Prevent column at the same time. The row that maximizes this
number is the row with t = dn/2e (two rows are applicable if n is even).
The maximum number of adversaries if therefore less than 3 and less than
4 for n = 6 and n = 7 respectively, which agrees with the limit < n/2.

Note that the maximum number of adversaries increase for odd numbers of
n only, and therefore, in general, odd number of players are most common
in MPC schemes.

The limit for maximum active adversaries is lower than for passive adver-
saries, namely n/3, because the active adversaries can also input incorrect
values. An intuitive way to see how to cope with incorrect inputs is to let
3 versions of each share determine the correctness of the share, e.g. if two
players say the value is 5, and a third player says the value is 8, then the two
players with the same value would be seen as honest players, while the third
player would be seen as an adversary. In reality it’s not exactly that simple,
because the adversaries are not evenly distributed among the players, and
therefore error-correcting codes (ECC) are used, see more in [BOGW88].

Property Shamir Additive
Distributed among n n
Needed to reconstruct t n
Maximum passive adversaries < n/2 0
Maximum active adversaries < n/3 0

Table 3.2: Summary of some important properties of secret sharing and MPC.

Table 3.2 summarizes some of the important points for secret sharing and
SMPC. As can be seen, in each of the two secret sharing schemes, the secret
is shared among all the n players. The reconstruction depends on whether

24

3.5. ADDITION 25

the secret sharing scheme is threshold or additive, which takes t and n play-
ers, respectively, to reconstruct the secret, where t is the threshold. In
Shamir’s scheme, the number of passive adversaries must be less than n/2,
while the number of active adversaries must be less than n/3 in order for
the protocol to be computed securely with perfect security. In the addi-
tive scheme, there is no room for any adversaries, because the lack of one
or more input values or faulty input values will produce an erroneous output.

3.5 Addition

Let sf and sg be two secrets that are shared with Shamir’s secret sharing
scheme using the polynomials f(x) and g(x), respectively. Every player has
a share of both secrets denoted by si,j where i is the polynomial and j is the
player. The addition of sf and sg can be done locally by each player simply
by adding its own shares of the secrets sf and sg resulting in a new share
for each player. For three players the calculations are:

snew,1 = sf,1 + sg,1
snew,2 = sf,2 + sg,2
snew,3 = sf,3 + sg,3

This is possible due to the following calculations. Let f and g be the two
polynomials:

f(x) = sf + r1fx+ r2fx
2 + . . .+ rt−1fx

t−1

g(x) = sg + r1gx+ r2gx
2 + . . .+ rt−1gx

t−1

Let h(x) be the sum of f(x) and g(x):

h(x) = f(x) + g(x)
h(x) = (sf + sg) + (r1f + r1g)x+ (r2f + r2g)x2 + . . .+ (rt−1f + rt−1g)xt−1

h(x) = (sf + sg) + r1x+ r2x
2 + . . .+ rt−1x

t−1

The result is a new polynomial with the same degree as f(x) and g(x),
where the coefficients in each term of h(x) is the sum of the coefficients in
the corresponding terms of f(x) and g(x). The polynomial h(x) intersects
the y-axis in the same point as the addition of f(x) + g(x).

3.6 Multiplication

Multiplication is a bit more complicated than addition. Again, let sf and
sg be two secrets that are shared using the polynomials f(x) and g(x), re-
spectively, which are of degree t− 1. The multiplication of two polynomials

25

26 CHAPTER 3. MULTIPARTY COMPUTATION

of degree t− 1 will result in a new polynomial h(x) with degree 2t− 2. This
would require more points for the interpolation used to reconstruct the se-
cret, meaning that more players have to participate in the reconstruction.
Additional multiplications will raise the degree even further, eventually ren-
dering the interpolation impossible due to the lack of participating players.
To overcome this problem, h(x) needs to be reduced to the original degree
t− 1. Let f and g be the two polynomials:

f(x) = sf + r1fx+ r2fx
2 + . . .+ rt−1fx

t−1

g(x) = sg + r1gx+ r2gx
2 + . . .+ rt−1gx

t−1

The multiplication of f(x) · g(x) results in a new polynomial h(x):

h(x) = f(x) · g(x)
h(x) = sfg(x) + r1fxg(x) + r2fx

2g(x) + . . .+ rt−1fx
t−1g(x)

h(x) = sfsg + sfr1gx+ sfr2gx
2 + . . .+ r1f sgx+ . . .+ rt−1fx

t−1rt−1gx
t−1

To clarify h(x) can be written in the following form:

h(x) = sfsg + r1x+ r2x
2 + . . .+ r2t−2x

2t−2

Each player now holds a “share” of h(x), a polynomial of degree 2t − 2,
which needs to be reduced to a degree t−1 polynomial. These h(x) outputs
are then used as input to a new round of sharing, which results in a new set
of shares in new random polynomials on the form of i(y):

i(y) = h(x, y) = h(x) + r1y + r2y
2 + . . .+ rt−1y

t−1

3.6.1 Multiplication Example

In order to explain the secret shared multiplication, an example with small
numbers is included below. Two secret are defined (3 and 2), and the two
polynomials are set to:

f(x) = 3− 2x
g(x) = 2 + x

Each player has a share in f(x) and g(x) where x = 1, 2, 3 for player 1,
player 2 and player 3, respectively.

Player 1: f(1) = 1 g(1) = 3
Player 2: f(2) = −1 g(2) = 4
Player 3: f(3) = −3 g(3) = 5

26

3.6. MULTIPLICATION 27

By multiplying the shares from f(x) and g(x) each player obtain a “share”
in h(x). The players share these values with a new random polynomial as
shown in row 4 in Table 3.3. The rest of the table is calculated by each
player inputting x = 1, 2, 3 in its own polynomial and distributes a share to
each of the other players. As an example, player 1 calculates:

Share 1: 3 + 2 · 1 = 5
Share 2: 3 + 2 · 2 = 7
Share 3: 3 + 2 · 3 = 9

Player 1 then distributes share 2 to player 2 and share 3 to player 3. Both
player 2 and player 3 calculate their column in Table 3.3 and distribute the
shares to the other players.

Player 1 Player 2 Player 3
f(x) 1 -1 -3
g(x) 3 4 5
h(x) 3 -4 -15

3 + 2x -4 + 3x -15 + x Sh
Player 1 5 -1 -14 4
Player 2 7 2 -13 2
Player 3 9 5 -12 0

Table 3.3: Example matrix for secret shared multiplication.

Now each player holds its secret polynomial (player 1 holds 3 + 2x etc.)
together with a single point from each of the other players’ polynomials
(player 1 receives −1 from player 2 and −14 from player 3). With this
information, each player can calculate its share of the total polynomial using
one of two methods:

• Linear system approach (Appendix C.1)

• Vandermonde matrix (Appendix C.2)

These calculations give the players the following values, which can also be
found in the sh column in Table 3.3:

Player Share value
1 4
2 2
3 0

Table 3.4: The players’ shares of the total polynomial.

27

28 CHAPTER 3. MULTIPARTY COMPUTATION

When a subset of at least two players exchanges shares the secret can be
reconstructed. By plotting the values as shown in Figure 3.3, the secret is
found where the line intersects the y-axis. The revealed number is 6, which
corresponds with the multiplication of the initial secrets 3 and 2.

Figure 3.3: Graph with the points (1,4), (2,2) and (3,0) which implies that the
secret is 6 (the line intersects the y-axis).

28

Chapter 4
Virtual Ideal Functionality
Framework

VIFF is used as the framework for experimenting and realizing SMPC in
this thesis, more specifically, a protocol for distributed RSA has been imple-
mented using this framework. This chapter will present some useful infor-
mation regarding the background of VIFF and the framework in general. A
complete guide for setting up VIFF on a computer using Windows XP can
be found in Appendix B.

4.1 Background

VIFF was started by Martin Geisler in March 2007 and is now a part of
the Computer Aided Cryptography Engineering (CACE). It grew out of the
research project SIMAP, which is the successor of Secure Computing Econ-
omy and Trust (SCET). All these projects aim to increase the easiness of
using secure protocols when many parties are communicating, regardless of
what type of protocol they perform.

VIFF is a library with building blocks for developing secure cryptographic
protocols. The goal is to provide a solid basis on which practical applica-
tions using SMPC can easily be developed. By hiding most of the difficult
mathematics behind MPC, security can be achieved more efficient and with
less knowledge, and therefore making it more realistic for use in real life
scenarios. Recall from Figure 1.1 that VIFF already contains the modules
for doing network communication, secret sharing and MPC operations such
that the programmer can focus on developing applications instead of the
underlying mathematics and security.

Since the start, the supported MPC mathematical operators have increased

29

30
CHAPTER 4. VIRTUAL IDEAL FUNCTIONALITY

FRAMEWORK

and the VIFF team is continuously working on speeding up the framework.
Already a large number of useful applications are available for free use from
the VIFF web page ([Tea09]) and the number is growing.

4.2 Model

VIFF is implemented using Python ([vR08]) and Twisted ([Lef09]), it’s free
to use and is supported on all major platforms (Linux, Windows and Mac
OS X). Each module and each application in VIFF is written as a standard
Python file.

Python is a very flexible, high level programming language with support
for object-oriented programming. Twisted is an event-driven network pro-
gramming framework written in Python that abstracts the low-level socket
communication away for the programmer, which allows the programmer to
implement efficient asynchronous (see below) network applications in an easy
way.

Figure 4.1 (taken from [Gei09]) shows the language stack for VIFF applica-
tions:

Figure 4.1: The language stack: VIFF is used as an intermediate language between
the programmer and the Python virtual machine (VM).

4.3 Security Assumptions

As explained earlier, the standard model for trust used today is the use of
a TTP. If a set of players have access to an incorruptible TTP, then this
would be an ideal process ([Can01]):

30

4.4. IMPLEMENTATION 31

Definition 5. Ideal process imply that all players hand their inputs to a
trusted party who locally computes the outputs, and hands each player its
prescribed outputs.

VIFF allows programmers to write programs as if they had access to an
ideal functionality, which means an incorruptible party in an ideal protocol,
making it an ideal process (for more information about the ideal function-
ality, see [Gei09] and [rGiN09]). This includes both correctness, that is the
expected input-output relations of uncorrupted parties, and secrecy, which
means the acceptable leakage of information to the adversary. Therefore
ideal protocols can be performed using VIFF with the use of a simulated
TTP.

In addition to the ideal functionality, VIFF states three security assumptions
([Tea09]):

• The adversary can only corrupt up to a certain threshold of the total
number of players. The threshold will normally be 1/2 of the players,
so for three players, at most one player may be corrupted (there must
be an honest majority).

• The adversary is computationally bounded. The protocols used by
VIFF rely on certain computational hardness assumptions, and there-
fore only polynomial time adversaries are allowed.

• The adversary is passive. Being passive means that the adversary only
monitors the network traffic, but still follows the protocol.

4.4 Implementation

This section explains the important concepts of how VIFF is implemented.
Some code examples are included to simplify the understanding of the frame-
work.

4.4.1 The Basics

The implementation of VIFF seeks to offer an easy way of writing SMPC
programs. In order to do so, there needs to be a well defined foundation that
allows the programmer to focus on what to input to the function f of the
MPC, instead of the mathematics that are being done in the background in
order to maintain security. An example of a simple VIFF code snippet is
included in Figure 4.2.

This is a very simple example to show how MPC are easily carried out
in VIFF. Remember from Section 3.2 that MPC consist of three stages,

31

32
CHAPTER 4. VIRTUAL IDEAL FUNCTIONALITY

FRAMEWORK

Figure 4.2: Simple VIFF code for sharing three values from three players, calcu-
lating the sum and the product of the inputs and revealing them.

the input, computation and final stage. These can clearly be seen in the
code snippet shown in Figure 4.2. First every player has an input, which
is secret shared among the players, yielding the shares a, b and c for each
player. Next, some computations are done with the shares, in this example
the sum and product are calculated. At last, the result is computed and
revealed by printing it to the screen. To fully understand the whole code,
the concept of the Share class, the Runtime class and the Field class needs
to be understood. These are the three main layers used for implementing
protocols using VIFF. Briefly, the programmer writes program where Python
integers or Share objects are manipulated. The runtime deals with shares
and normal integers, and the field elements deal with modular arithmetic.
An illustration of the relationship between the three layers is illustrated in
Figure 4.3.

4.4.2 Deferred and Shares

Central to the Twisted application is the concept of the Deferred class. A
deferred is a value that has not yet been computed because some of the
data required to calculate the value is not ready yet, but it is certain that it
will obtain a value sometime in the future. A deferred object can be passed
around, just like ordinary objects, but it cannot be asked for its value. The
deferred objects works by adding what is called a callback chain to the ob-
ject. Callbacks are simply function pointers, and each function that depends

32

4.4. IMPLEMENTATION 33

Figure 4.3: The three main layers in VIFF. Applications are written using Share
objects, which is interpreted in the runtime, where operator overloading etc. is
conducted automatically. At the bottom, the actual values that are being calculated
are represented as field objects.

on a deferred, is added in that deferred’s callback list. When the deferred
obtain its value (typically when some share value is received over the net-
work), these functions will be called, which again can possibly create a chain
of callbacks in other deferred objects.

VIFF uses a class called Share to represent and do calculations on shares.
This Share class is a subclass of the Deferred class found in Twisted. Fur-
thermore, the Share class overloads the arithmetic operators. If a and b are
Share objects, then the expression x = a + b will create a new Share object
x which will eventually contain the correct share value of a and b added.
This overloading of arithmetic operators is delegated to a Runtime instance,
which is described below.

4.4.3 Runtime

The Runtime class is located in the runtime.py file and is one of the corner-
stones in VIFF. As explained above, once the values are represented using
the Share class, code to compute share values can be written using standard
operators for plus, minus, multiplication and so on. This is accomplished
by overloading the operators as shown in Figure 4.4.

Figure 4.4 only shows the overloaded definitions for addition and multipli-
cation, several others exist, like XOR, less than, less than or equal, equal,
just to mention some. These are just the redefinitions of the operators, the
actual code is found in the Runtime class (still in the runtime.py file). The
code for shared addition is included in Figure 4.5.

The code shown in Figure 4.5 is not very complex. First the field variable is
set to the field used for share a. If this field is undefined, use the field from

33

34
CHAPTER 4. VIRTUAL IDEAL FUNCTIONALITY

FRAMEWORK

Figure 4.4: Definitions for overloading the basic operators for shares in VIFF
(screen capture from runtime.py).

share b instead, and if none are defined, it’s equal to None since neither
share a nor share b is actually a share. Next, make Share objects of both
the variables share a and share b (if they are not already Share objects).
The gather shares function defines which variables that must contain values
before the result is ready. Next comes one of the reasons for using Python
to implement VIFF, namely the easy use of the so-called lambda functions.
Lambda functions are anonymous functions (nameless functions) that are
created at runtime, and do not need to be defined elsewhere in the code. In
the code for addition on shares, a lambda function is defined at runtime to
take two parameters, a and b, and to return the sum of these two. Next, this
lambda function is added as a callback on the result variable, which means
that when share a and share b obtains its values, the lambda function will
be calculated with a equal to the value of share a and b equal to the value
of share b.

4.4.4 Fields

The implementation of Galois fields is modeled in the field.py file, and are
used to do all kinds of modular arithmetic. There are two possible field
classes to use, FieldElement and GF256. A field of type FieldElement uses
a prime p as the characteristic and the order, whereas GF(256) uses the field
GF(28), with characteristic of 2 and with an order of 256.

The values contained in FieldElement objects or GF256 objects holds the
concrete values on which calculations are performed, and is therefore an
ordinary Python integer. Examples of how operations are conducted in
finite fields can be found in Section 2.1, and VIFF code examples are found
in Figure 4.2, where a field GF(1031) is instantiated such that the shares

34

4.4. IMPLEMENTATION 35

Figure 4.5: VIFF code for adding Share objects.

a, b, c are FieldElement objects with modulus 1031.

4.4.5 Asynchronous Communication

The communication model used on the Internet today is asynchronous,
which means that communication can be initiated at arbitrary points in
time and there’s no guarantee that a message is delivered before a certain
time (as opposed to synchronous communication) or delivered at all. VIFF
implements asynchronous MPC with the use of Twisted explained earlier.
One big benefit of using asynchronous communication is that there is no
need to adapt the communication into time slots, where each time slot must
be long enough for all honest players to deliver their communication to every
other player, and if the time slot is not sufficient for one or more players,
they will marked as corrupted players. This increases the efficiency of the
framework since all the calculations are performed as soon as they can be
performed for all players individually. The Share objects and the lambda
functions explained earlier is necessary in order to be able for VIFF to func-
tion in this way, because all required values does not necessarily arrive at
the same time given that the communication model is asynchronous.

Although VIFF is an asynchronous framework, the framework has the op-
portunity to have a single synchronization point, but this is not necessary.
If such a synchronization point is chosen, the players have an asynchronous
communication model all the time up to the synchronization point and all

35

36
CHAPTER 4. VIRTUAL IDEAL FUNCTIONALITY

FRAMEWORK

the time after. This requires two modifications of the asynchronous model
as follows ([Tea09]):

• The protocol is allowed to have one synchronization point. More pre-
cisely, the assumption is that a certain time-out is set, and all messages
sent by honest players before the deadline will also be delivered before
the deadline.

• There is no guarantee that the protocol always terminates and gives
output to all honest players. Instead, the following is required: The
preprocessing phase of the protocol, up to the synchronization point,
never releases any new information to the adversary. The adversary
may cause the preprocessing to fail, but if it terminates successfully,
the protocol is guaranteed to terminate with output to all honest play-
ers.

The first point is simply to ensure that every honest player have the possi-
bility to contribute input as long as they reach the deadline set. The second
point of course gives an adversary extra power to stop the protocol, but if
the adversary stops the protocol at a point where no information is released,
why bother wasting time on it?

4.4.6 Parallel Execution

As described in Chapter 3, addition and multiplication in MPC are quite
different. Addition is very easy, and requires no communication between
players (done locally), while multiplication on the other hand is much more
complex and involve communication between players. It is therefore desir-
able that many sequential computations are not conducted in a serial manner
if these can actually be conducted in parallel. VIFF solves this problem by
building a tree structure of computations. With the use of the Share class,
all computations can be scheduled before the actual values are ready, which
speeds up the performance. The concept for tree structure computations in
VIFF is shown in Figure 4.6 (taken from [rGiN09]).

As shown in Figure 4.6, x and y are independent and can therefore be
calculated in parallel and since all shares are Share objects, z can also be
scheduled and calculated as fast as x and y has obtained their values. The
concept of time-saving by scheduling and calculating in parallel is shown in
Figure 4.7 (taken from [Gei08c]).

Given that network latency is the dominant factor in benchmark of MPC
conducted in VIFF ([Gei08b]), efficient use of network resources is a key
to speeding up the framework. The property of scheduling and calculating
many operations in parallel greatly reduces the average cost of computations

36

4.4. IMPLEMENTATION 37

Figure 4.6: Left: A small VIFF code snippet for secret sharing values a, b, c
and d using the shamir share and the prss share random functions respectively
(pseudo-random secret sharing). Right: A tree structure of how the calculations
are parallelized and calculated separately to increase efficiency.

Figure 4.7: Three multiplications scheduled in parallel (to the left) and in serial (to
the right) between two parties A and B. The difference amount of idle time spent for
the two approaches is shown. Every operator that requires communication between
players will follow the same scheme.

in VIFF according to benchmarks for multiplications in Figure 4.8 (taken
from [Gei08c]).

From Figure 4.8 it can be seen that from 50 multiplications scheduled in
parallel to 12000 multiplications scheduled in parallel, the average used per
multiplications decreases from approximately 4.5 milliseconds per multipli-
cation to approximately 1.3 milliseconds per multiplication. As for the serial
scheduling case, the average is, not surprisingly, almost constant and ap-
proximately 190 milliseconds per multiplication. This tremendous decrease
in average time per multiplication makes VIFF a lot more efficient.

The same decrease in average time can be found in all operators that requires
communication between players, such as comparison operators. For more

37

38
CHAPTER 4. VIRTUAL IDEAL FUNCTIONALITY

FRAMEWORK

Figure 4.8: VIFF benchmarking: Multiplying random 65-bit numbers in parallel
and in serial.

details on VIFF benchmarks see [rGiN09], [Gei08a], [Gei09] and [Gei08c].

38

Chapter 5
RSA

Figure 5.1: Comic strip from xkcd regarding RSA security ([XKC09]).

This chapter will present public-key encryption in general before describing
the RSA scheme. Both the standard RSA scheme and a distributed RSA
scheme will be described.

5.1 Public-key Encryption

Public-key encryption (also known as asymmetric encryption) is a form of
cryptosystem that uses different keys for the encryption and decryption pro-
cedures, one public key (PU), which is known by all, and one private key

39

40 CHAPTER 5. RSA

(PR), which is only known by the one generating it. One of the keys is
used along with an encryption algorithm to transform a plaintext into a
ciphertext, while the paired key used along with a decryption algorithm re-
covers the plaintext from the ciphertext again. Public-key encryption can
be used for confidentiality1 (encryption), authentication2 (digital signature),
or both.

The opposite of public-key encryption is secret-key encryption (also known
as symmetric encryption) where the same key is used for both encryption
and decryption.

Figure 5.2 shows how public-key encryption is conducted when Alice wants
to send a message to Bob in such a way that only Bob can read the message.

Figure 5.2: Public-key encryption: Alice sends a confidential (encrypted) message
to Bob using Bob’s public key, PUb. Bob is the only one with the paired key, PRb,
and therefore the only one who can decrypt and read the message.

First Alice downloads Bob’s public key (PUb) which is publicly available.
Alice then inputs the message M and Bob’s public key to the encryption
algorithm and sends the output from the encryption (ciphertext C) to Bob.
Once M is encrypted with Bob’s public key, only the paired key (Bob’s
private key, PRb) can obtain M again. This is done by Bob inputting the
ciphertext C and his private key to the decryption algorithm which outputs
M for Bob to read.

Figure 5.3 shows how public-key encryption is conducted when Bob wants
to authenticate that a message actually is sent by him (referred to as signing
a message). Notice that in this figure, the arrows are from Bob, while in
Figure 5.2 they are towards Bob. This is because now the authentication
is the important property, Bob wants to prove that he actually sent the

1Confidentiality: Protection of data from unauthorized disclosure ([Sta06]).
2Authentication: Assurance that the communicating entity is the one that it claims to

be ([Sta06]).

40

5.1. PUBLIC-KEY ENCRYPTION 41

message, but the message is not secret. The procedure is as follows: Bob
uses his private key to encrypt a message M and sends it to Alice, which
in turn uses Bob’s public key to assure herself that this message actually is
from Bob. Anyone who obtains the ciphertext C sent from Bob can decrypt
it by using Bob’s public key.

Figure 5.3: Public-key encryption: Bob sends an authenticated (signed) message
to Alice by using his private key, PRb to encrypt a message M into the ciphertext
C. Alice receives C and uses Bob’s public key, PUb to decrypt the ciphertext C
into the message M .

Notice that if Bob wants to send a confidential and authenticated message
to Alice, he first needs to sign the message using his own private key and
the message M as input to the encryption algorithm, obtaining C1. Next,
inputting this C1 along with Alice’s public key to the encryption algorithm,
results in C2, which he sends to Alice. Alice would now need to use her
own private key and C2 as input to the decryption algorithm to obtain C1.
Lastly, Alice inputs C1 and Bob’s public key to the decryption algorithm
and obtains the message M . A figure for this scheme is omitted here.

A common misconception about public-key schemes is that one pair of keys
is enough to send messages back and forth between two or more players. But
as can be seen in Figure 5.2 and 5.3 this would only yield confidentiality one
way and authentication the other way. Therefore, each player needs a own
key pair in order to be able to maintain both confidentiality and authenti-
cation both ways.

Well-known public-key algorithms include RSA ([RSA78]), Diffie-Hellman
key exchange ([DH76]) and ElGamal encryption system ([EG85]), where
RSA is based on the difficulty of factoring large numbers, whereas both
Diffie-Hellman and ElGamal relies on the difficulty of computing discrete
logarithms.

41

42 CHAPTER 5. RSA

5.2 RSA Scheme

RSA was developed by Ron Rivest, Adi Shamir and Leonard Adleman at
Massachusetts Institute of Technology (MIT) in 1977 and published in 1978
in the article [RSA78]. Since then, it has become the most widely used
general-purpose algorithm for public-key encryption. The security of RSA
relies on the difficulty of factoring large numbers, more specifically the fac-
toring of the public modulus N .

The RSA algorithm consists of four separate parts, namely: key generation,
encryption, decryption and signature, all described in full detail below.

Key generation:
Select p, q p and q are both prime, p 6= q
Calculate N = p · q
Calculate ϕ(N) = (p− 1)(q − 1)
Select an integer e gcd(ϕ(N), e) = 1, 1 < e < ϕ(N)
Calculate d d ≡ e−1 (mod ϕ(N))
Public key PU = {e, N}
Private key PR = {d, N}

Encryption:
Plaintext M < N
Ciphertext C = M e mod N

Decryption:
Ciphertext C
Plaintext M = Cd mod N

Signature:
Plaintext M < N
Ciphertext C = Md mod N
Verification M = Ce mod N

The protocol for key generation must be done first. It starts by finding two
distinct prime numbers p and q. From p and q, N and ϕ(N) are calculated
as N = p · q and ϕ(N) = (p − 1) · (q − 1) where ϕ(N) is the Euler totient
function3. Next, an integer e is selected such that the greatest common di-
visor (gcd) of ϕ(N) and e is equal to 1, and e is a number larger than 1 but
less than ϕ(N). The reason why e is selected with these restrictions is that

3Euler’s totient function ϕ(N) is defined to be the number of positive integers less than
N and relatively prime to N . This means that if p is prime, then ϕ(p) = p−1 by definition
of prime numbers. It can also be shown that if p and q are distinct primes, with N = p · q,
then ϕ(N) = ϕ(pq) = ϕ(p) · ϕ(q) = (p− 1) · (q − 1) ([Fra03]).

42

5.2. RSA SCHEME 43

there must exist an inverse to e mod ϕ(N). Such an inverse can be found by
using the Extended Euclidean Algorithm (see [CLRS01], [Ros03] or [TW06])
if and only if gcd(ϕ(N), e) = 1. Lastly, the inverse d ≡ e−1 mod ϕ(N) is
calculated, yielding the public key PU = {e, N} and the private key PR =
{d, N}. The size of a RSA key is the length of the modulus N in bits, mean-
ing that p and q preferably are approximately half the key size in length each.

Encryption and decryption are closely related, and encryption must be con-
ducted first. Say Alice wants to send a message M to Bob such that no
other person than Bob can read the message as shown in Figure 5.2. Alice
downloads Bob’s public key {e, N} and calculate the ciphertext as C = M e

mod N , before sending C to Bob. Notice if M is larger than N , Alice needs
to break the message into smaller pieces before encrypting it, M1,M2 . . .,
where each Mi < N , resulting in C1, C2

When Bob receives C from Alice, he can use his private key {d, N} to obtain
the plaintext M . This is done by Bob calculating M = Cd mod N . It can
easily be seen that this protocol is correct:

C = M e mod N
M = Cd mod N = (M e)d mod N = M ed mod N

Since d is the inverse of e (mod N), this means that ed ≡ 1 mod N , which
in turn makes the last expression equal to M1 mod N = M .

The signature protocol is very similar to encryption and decryption, the only
difference is that the private key is used for encryption and the public key
is used for decryption, the opposite of how the keys are used in standard
encryption and decryption. An example with actual values for encryption
and decryption are included in Example 6 below.

Example 6. (RSA encryption/decryption) Bob has generated a valid
RSA key as explained above obtaining the values:

p = 19
q = 23
N = p · q = 437
ϕ(N) = (p− 1) · (q − 1) = 396
e = 17
d = e−1 mod 396 = 233

This means that the Bob’s private and public keys are {233, 437} and
{17, 437}, respectively. Alice wants to send a message M = 2 to Bob.
She encrypts the message using Bob’s public key to obtain the ciphertext
C:

C = M e mod N = 217 mod 437 = 409

43

44 CHAPTER 5. RSA

Alice then sends C to Bob, which uses his private key to obtain the message
M :

M = Cd mod N = 409233 mod 437 = 2

Bob yields the message M = 2, which is correct. Signature is very similar,
as explained earlier, therefore an example is omitted here.

5.3 Distributed RSA scheme

The difference between a standard RSA protocol and a distributed RSA
protocol is that no single player can have complete knowledge of the private
key, meaning that the private key needs to be secret shared among all the
players. Distributed RSA can be performed in a number of different ways,
although the method which has gained most acceptance is the one proposed
by Dan Boneh and Matthew Franklin in their article Efficient Generation
of Shared RSA keys ([BF97]), and in the updated and more detailed version
Experimenting with Shared Generation of RSA keys ([MWB99]) by Michael
Malkin, Thomas Wu and Dan Boneh. This method is the current milestone
for generating distributed RSA keys, and will be described here. The gener-
ation of distributed RSA keys using this method consists of 4 steps: Picking
candidates, trial division on N, distributed biprimality test and calculate ex-
ponents, shown in Figure 5.4. These steps, in addition to how to perform
distributed decryption and distributed signature are all described in detail
in the following.

5.3.1 Pick Candidates

This step is where candidates for p and q are chosen, but since the character
p is also used as the order of the finite field, q will be used here for the can-
didates. Each player i picks a secret integer qi and keeps it secret. For the
protocol to work, N needs to be a Blum integer4, therefore player 1 picks a
random q1 which is congruent to 3 mod 4, while the rest of the players picks
qi’s which are congruent to 0 mod 4, such that the total q = q1 + q2 + ...+ qk
(where k is the number of players), is congruent to 3 mod 4, making N a
Blum integer.

Next, the parties performs distributed trial division to determine that q =
q1 + q2 + ...+ qk is not divisible by any small prime less than a boundary B1
by using MPC. The distributed trial division is conducted as follow: Let q
be as defined above, and let l be a small prime. To test if l divides q each
player picks a random ri ∈ Zp. Next, the players compute

4N is a Blum integer if N = p · q where p and q are distinct prime numbers congruent
to 3 mod 4. That is, p and q must be of the form 4t+ 3, for some integer t ([Con09a]).

44

5.3. DISTRIBUTED RSA SCHEME 45

Figure 5.4: The distributed RSA protocol consists of 4 steps: Picking candidates,
trial division on N, distributed biprimality test and calculate exponents. The pro-
tocol can fail at any of the 3 first steps, which means that new candidates must be
picked.

qr =
(k∑
i=1

qi

)(k∑
i=1

ri

)
mod l

If qr 6= 0, then l does not divide q. By using this method a bad candidate
is always rejected, but a good candidate can also be rejected if l divides
r = r1 + r2 + ... + rk. To decrease the probability of discarding a good
candidate, do the test with two different picked r for each l such that r1 =
r11 + r12 + ...+ r1k and r2 = r21 + r22 + ...+ r2k, and therefore computing

qr1 =
(k∑
i=1

qi

)(k∑
i=1

r1i

)
mod l

qr2 =
(k∑
i=1

qi

)(k∑
i=1

r2i

)
mod l

The test for l is passed if at least one of the values is different from zero,
that is if qr1+qr2 6= 0. If the test is passed, then set l to the next prime and
redo the test until the boundary B1 is reached. If the test fails at any of the
l’s, then a new q needs to be picked as described above. If B1 is reached,

45

46 CHAPTER 5. RSA

then q has passed the distributed trial division, and the other prime q is
picked and tested in the same manner.

5.3.2 Trial Division on N

When both the candidates p and q have passed the distributed trial division,
an MPC is conducted to compute N = (p1 +p2 + ...+pk) · (q1 +q2 + ...+qk),
which is revealed to all players. As N is the product of two large candidate
primes p and q, it should not be divisible by any other primes. The players
therefore do a more comprehensive trial division on the revealed N locally
to check that N is not divisible by any small prime in the range [B1, B2] for
some boundary B2 (typically much larger than B1). If it turns out that N
is indeed divisible by a small prime up to B2, this test is declared a failure
and the whole key generation protocol restarts by the players picking new
values for the candidates p and q.

5.3.3 Distributed Biprimality Test

After the two trial division tests already conducted, it is clear that N is not
divisible by any small prime numbers up to the boundary B2. The next
test is a distributed test and also a probabilistic test since it’s infeasible to
check all prime number up to the square root5 of p and q to be absolutely
sure that p and q actually are prime numbers.

The distributed biprimality test consists of 4 steps (for proof of the correct-
ness of the protocol the reader is referred to [BF97] due to the length of the
proof).

Step 1: The players agree on a random g ∈ Z∗N .6 This can be done by
one of the players picking a random g and revealing it to all the other
players.

Step 2: The players compute the Jacobi symbol7 g over N . If (gN) 6= 1 the
protocol is restarted at step 1 by choosing a new g.

Step 3: Otherwise, the players computes v = gϕ(n)/4 mod N as an MPC.
Note that ϕ(n) = (p − 1)(q − 1) = N − p − q + 1, therefore player 1
computes v1 = g(N−p1−q1+1)/4 mod N . The rest of the players compute
vi = g−(pi+qi)/4 mod N . Next, all players secret share their values of

5If n is a composite integer, then n has a prime divisor less than or equal to
√
n.

([Ros03]).
6Z∗N is the set of nonzero members of ZN ([Fra03]).
7The Jacobi symbol is a generalization of the Legendre symbol ([Con09c]) and defined

as follows: For any integer a and any positive odd integer n the Jacobi symbol is defined
as the product of the Legendre symbols corresponding to the prime factors of n:

(
a
n

)
=(

a
p1

)α1(a
p2

)α2
. . .
(
a
pk

)αk where n = pα1
1 p

α2
2 . . . p

αk
k ([Con09b]).

46

5.3. DISTRIBUTED RSA SCHEME 47

vi such that v can be calculated and revealed, v =
k∏
i=1

vi mod N . Once

v is revealed, the players check if:

v =
k∏
i=1

vi
?= ±1 mod N

If the test fails the parties declare that N is not a product of two
distinct primes, and the protocol is restarted from the beginning by
picking new values for p and q.

Step 4: There are two ways of implementing step 4, and only the alter-
native step is shown here. This alternative step requires very little
calculations, although there is a bit more communication between the
players. The step tests if gcd(N, p + q − 1) > 1. The players cannot
reveal their private pi and qi, therefore each player picks a random
number ri ∈ ZN and keeps it secret. Then they do an MPC by calcu-
lating z such that p and q are not revealed:

z =
(k∑
i=1

ri

)
·
(
− 1 +

k∑
i=1

(pi + qi)
)
mod N

Next, z is revealed, and the players check if gcd(z,N) > 1. If so, N is
rejected, and the protocol is restarted from the beginning by picking
new values for p and q. If N is actually a product of two distinct prime
numbers, it will pass this test with overwhelmingly high probability.
If N passes this test, then N is declared to be the product of two
distinct primes, and the calculation of the public and private exponent
can start.

5.3.4 Calculate Exponents

When p and q have been found and N has been calculated, the next step
is to find e and d that form the public key and private key respectively to-
gether with N . There are two options regarding the public exponent e, it
can be set to a standard (small) RSA exponent such that no calculations are
required, or it can be calculated, and therefore vary from key to key. In this
description, only the static e approach is outlined, which can use a chosen
e less than approximately 220 ([MWB99]). In the following, it’s given that
ϕ = ϕ(N). Since e is an RSA exponent, it is given that gcd(e, ϕ) = 1.

The calculation of d =
k∑
i=1

di needs to be computed in a distributed manner,

where at the end of the computation, each player only knows its own di.
Traditionally, the gcd algorithm is used to find an inverse of e mod ϕ, but

47

48 CHAPTER 5. RSA

that would involve computing modular arithmetic when the modulus is se-
cret shared, which is possible, but really slow. The value of ϕ = N−p−q+1
is not known by any of the players, but all players know their part, ϕi, where

ϕ =
k∑
i=1

ϕi. Knowing this, fortunately there is a trick for computing e−1 mod

ϕ without using any reductions modulo ϕ. The trick involves three steps:

1. Compute ς = ϕ−1 mod e.

2. Set T = −ς · ϕ+ 1. Observe that T ≡ 0 mod e.

3. Set d = T/e. It can be verified that d = e−1 mod ϕ since d · e =
T ≡ 1 mod ϕ. Using this method, the need for reductions modulo ϕ
is avoided.

The protocol is performed as follows:

Step 1: The players compute the value of l = ϕ mod e. This can be done
by each player calculating li =

∑
ϕi mod e locally, before doing a

joint MPC to obtain the value l =
∑
li mod e.

Step 2: Each player now calculates ς = l−1 mod e locally. As shown above
d = T/e = (−ς · ϕ+ 1)/e, therefore each player also locally calculates

di =
⌊−ς · ϕi

e

⌋

After each player has successfully calculated di, the RSA private ex-
ponent d =

∑
di + r where 1 ≤ r < k.

Step 3: Once each player has obtained its di, a final computation needs to
be done in order to determine the value of r. Note that for a encrypted
message c, the decryption would be

M ≡ cd ≡ cr
∏

cdi mod N

Therefore, one of the players can determine the value of r simply by
trying all possible r’s in a trial decryption. Say player 1 is the one doing
the trial decryption, it picks a random message m ∈ ZN and computes
c = me mod N . Then every player participates in a decryption of c.
Each player calculates mi = cdi mod N locally, and sends the result to
player 1. Player 1 knows that the value of r is in the range 1 ≤ r < k,
and tries all of them to see which one satisfies

m
?=
(∏

mi

)
cr mod N

48

5.3. DISTRIBUTED RSA SCHEME 49

At last player 1 updates d1 by setting d1 = d1 + r. The distributed
RSA protocol is now complete with the correct value of d secret shared
among the k players.

Note that using a static e makes the protocol very efficient, but some bits of
the key is leaked to all the players. The leakage happens when calculating
l = ϕ mod e and the trial decryption process where r is determined. This is
a total of log2 e+ log2 k bits. This step can however be conducted such that
no bits are leaked by using an arbitrary public exponent (calculated each
time a key is generated), but this makes the protocol somewhat less efficient
(see [BF97]). Another approach is to just increase the total number of bits
in N to compensate for the leaked bits.

5.3.5 Decryption

Once a distributed RSA key is generated, the players can participate in a
joint decryption of a ciphertext C that has been encrypted using the public
key. In order to do so, the players do almost the same as are done when the
trial decryption is conducted, only this time r is already found, therefore
they do an MPC to find M directly:

M =
k∏
i=1

mi mod N =
k∏
i=1

Cdi mod N

The decryption process is conducted by each player locally calculating its
part of M , mi = Cdi mod N , which in turn is secret shared among the
players. Next, the players perform an MPC on the shared mi’s to obtain
the total m

m =
k∏
i=1

mi

The value of m is revealed and the message M is found by calculating

M = m mod N

5.3.6 Signature

The players can also sign a message, and therefore provide authentication.
The signature process is performed as follows: A message M is to be signed
using the secret shared part of the private key, d. The message M is chosen
by one of the players and sent securely to all the other players. Then each
player calculates its part, ci, of the signature C:

ci = Mdi mod N

49

50 CHAPTER 5. RSA

The values of the ci’s are then secret shared among all the players, and the
total c is obtained by conducting an MPC

c =
k∏
i=1

ci

The value of c is revealed and the signature C is found by calculating

C = c mod N

50

Chapter 6
Distributed RSA Implementation in
VIFF

This chapter describes the implementation of a distributed RSA protocol
for three players in VIFF, programmed as the main part of this thesis (the
code can easily be altered to support more players). The implemented code
is included in Appendix D, and a description of the general multiprecision
Python (GMPY) module, which is used extensively throughout the imple-
mentation, is found in Appendix E.

The distributed RSA implementation is based on the protocol proposed in
[BF97], which is described in detail in Section 5.3. Two changes have been
made to the protocol to speed up the time needed to generate valid keys,
regarding the distributed trial division and trial division on N , respectively.
The implemented algorithm can generate arbitrary large key sizes (validated
up to 4096 bits in VIFF) with a success rate of 100%. At the end of the
key generation process, the players are convinced that the public N is the
product of two unknown distinct primes, p and q, and that they share a
valid key.

6.1 Coding Style

Recall from Section 3.2 that an MPC consists of three stages: Input stage,
computation stage and final stage. Further, as explained in Section 4.4.1,
these three stages are implemented using two functions in VIFF. The first
function is used for the two first stages, inputting the values and do the
computations. The second function is used for the final stage, to reveal the
answer. Throughout the distributed RSA code, this procedure is used thor-
oughly, the first function having a descriptive name function name() and
the reveal function having the paired name check function name().

51

52
CHAPTER 6. DISTRIBUTED RSA IMPLEMENTATION IN

VIFF

The first step in the distributed RSA algorithm, involving picking candidates
for p and q, have distinct functions for p and q, although the code contained
in these functions are virtually alike, the only difference found is when the
protocol moves to the next step (trial division on N). This choice is purely
for simplifying the readability of the code, and does not make the code slower
in any way, although more code is needed.

6.2 Initialization

The initialization process is a standard code used in all VIFF applications
to setup the program with the right parameters and is written by the VIFF
Developer Team. Basically, this code creates a runtime instance, parses the
command line arguments into the application and starts the Twisted event
loop. Next, the application is initialized by making an instance of the Pro-
tocol class, which is the main application. The code for the setup process is
of course included in the distributed RSA code in Appendix D, but will not
be described in any more detail in this thesis.

The main application starts at the init function in the class Protocol,
where variables marked as changeable variables must be set to the desired
output from the protocol. These include the number of rounds to be con-
ducted (both for key generation and for decryption), the key size for each
round, and the boundaries for trial division.

6.3 Key Generation

The step to generating valid keys is by far the most time consuming step
in the protocol. As shown in Figure 5.4, the algorithm for generating dis-
tributed RSA keys involve 4 steps, which will be described in the following.

6.3.1 Pick Candidates

An overview of the implemented function in VIFF for picking candidates is
shown in Figure 6.1. To avoid misunderstandings with the candidate p and
the size of the finite field Zp, q is used to represent both the candidates, p
and q, in the following.

The implementation starts by each player picking a private qi such that
q = q1 + q2 + q3. Next, the players perform a distributed trial division on q,
which assures that q is not divisible by any small prime number up to the
boundary B1.

52

6.3. KEY GENERATION 53

Figure 6.1: Flow chart for the implemented functions for picking candidates p and
q and doing distributed trial division. Parameters to the functions are omitted.

The trial division in this thesis is implemented in a more optimized manner
compared to the method described in Section 5.3.1, and is the first of the two
improvements to the algorithm. Recall that for the distributed trial division
in [BF97], the distributed trial test is conducted two times for each small
prime l < B1 to decrease the probability of discarding a good candidate.
By doing this the probability of discarding a good candidate is equal to

1−
∏
l<B1

(1− 1
l2

) <
1
2

In the VIFF implementation, a boundary B1 = 12 is used, meaning that
the probability of discarding a good candidate p and q, independently, would
have been approximately 17.1%. Consequently nearly 1/5 of the good can-
didates would have been discarded for both p and q. The implemented
method for the distributed trial division in this thesis has zero probability
of discarding a good candidate, and is specially constructed for three play-
ers, although it can easily be expanded to support an arbitrary number of
players. The method is as follow: Let l < B1 be a small prime number and
qi be player i’s part of q. Each player now locally calculates q triali = qi
mod l and picks a random integer ri ∈ Z∗p. Then the players secret share
the values of q triali and ri and computes

q trial tot = (q trial1 + q trial2 + q trial3)
r trial tot = (r1 + r2 + r3)

53

54
CHAPTER 6. DISTRIBUTED RSA IMPLEMENTATION IN

VIFF

Next, for simplicity, set t = q trial tot, and the players computes trial reveal
as follows

trial reveal = t · (t− l) · (t− 2 · l) · r trial tot

and the answer trial reveal is revealed to all players. The beauty of this
method is that the revealed answer is now zero if and only if q is a bad
candidate, else it’s just a random number. The correctness of this method
is because when summing up t =

∑
(q triali mod l), for three players, there

are only three illegal t’s, namely: 0, l and 2 · l (for four players an additional
multiplication of (t − 3 · l) would have been needed and so forth). If the
revealed answer is not zero, it’s just a random number that does not yield
any information about q.

Notice from Figure 6.1 that the distributed trial division is performed on
the primes p and q separately, which means failing either p or q, it’s only
necessary to generate the failed prime again.

6.3.2 Trial Division on N

The next step in the algorithm is to revealN and continue by doing local trial
division on this value. The second improvement in comparison to [BF97] is
implemented for this step. An overview for the implementation functions
regarding trial division on N is shown in Figure 6.2.

Figure 6.2: Flow chart for the implemented functions for doing trial division on
the revealed N . Parameters to the functions are omitted.

54

6.3. KEY GENERATION 55

In [BF97], once p and q have passed the distributed trial division and N
has been computed using an MPC, a more comprehensive trial division on
N in the range [B1, B2] is conducted locally. In the VIFF implementation
however, the same range [B1, B2] is not checked by each player. Instead
each player checks a different range of small primes, and when finished, all
players agree whether any of the players have found an illegal factor of N .

The VIFF code is written such that the players collaborate to check that
N is not divisible by any prime number less than 20000. Player 1 checks
all the primes from B1(= 12) to 15000 (1749 in total). Player 2 checks all
primes from 15001 to 17500 (260 in total), and finally, player 3 checks all
primes from 17501 to 20000 (248 in total). The code for the trial division
on N is included in Figure 6.3 (comments omitted):

Figure 6.3: VIFF code for the local trial division on N. Each player checks a range
of small primes before all players agree whether N has an illegal factor not equal
to p or q.

As can be seen in Figure 6.3 each player runs through its list of prime num-
bers and checks that N is not divisible by any of them. If N turns out to be
divisible by a prime number, the loop for that player will break. Next, the
value from each player is secret shared and summed up by doing an MPC
before it is revealed (the reveal function check primality test N is not shown
here). If the revealed answer is not equal to zero, one or more of the players
have failed N as a candidate, and the whole process have to start over again
with picking p and q. One interesting thing to notice here is why player 1
can check a much larger span of prime numbers. This is simply because of
the break command in the code. The probability of a number N being di-
visible by any prime number is higher for small primes, and therefore player
1 will fail in the loop most often. If all players had checked equal amounts
of prime numbers, then on average player 1 would fail rather quickly and
would just be waiting, while player 2 and player 3 would most often have to
finish their whole lists.

55

56
CHAPTER 6. DISTRIBUTED RSA IMPLEMENTATION IN

VIFF

Both [BF97] and [MWB99] have proposed similar and quite different meth-
ods for optimizing this step, see more in Further Work (Chapter 9).

6.3.3 Distributed Biprimality Test

No changes have been done to the distributed biprimality test as it is ex-
plained in Section 5.3.3. The implemented functions for this step are shown
in Figure 6.4. This test can fail when checking the v and when checking the
z, both of which will result in picking new candidate primes p and q from
the beginning. Failing the test on g is solved by picking a new g and does
not have to start the whole protocol from the beginning.

Figure 6.4: Flow chart for the implemented functions for performing the dis-
tributed biprimality test. Parameters to the functions are omitted.

One thing to notice in the implemented code is when generating the g (shown
in Figure 6.5). The g is picked by player 1, but everyone needs to get hold of
the value. This is done by a simple secret sharing where player 1 inputs its
g-value, and the other players participate in the sharing, but does not input
anything to the shamir share-function. This way, the players can efficiently
agree on the value of g.

6.3.4 Calculate Exponents

After the first three steps in generating a distributed RSA key, the rest of
the protocol, calculating the exponents, cannot fail, and is therefore done

56

6.3. KEY GENERATION 57

Figure 6.5: VIFF code for sharing the g picked by player 1 among all players
before revealing the value.

quickly in order of time consumption. The flow chart for implementing this
step in VIFF is shown in Figure 6.6.

Figure 6.6: Flow chart for the implemented functions for calculating the public
and private exponents. In addition, decryption and signature are shown as seperate
functions, which can only be performed after the whole key generation is already
done. Parameters to the functions are omitted.

This step is carried out precisely as described in Section 5.3.4, where the
public exponent used is the standard RSA exponent e = 216 + 1 = 65537
and player 3 is the one adjusting d3 = d3 + r in the implemented code when
trial decryption is conducted. Note that it’s very common to use a static,
small RSA exponent as the public exponent e, like the one chosen in this
implementation. In practice, the most common static e’s are the Fermat

57

58
CHAPTER 6. DISTRIBUTED RSA IMPLEMENTATION IN

VIFF

primes1. The reason why these numbers are convenient to use is because
they make the modular exponentiation operations faster. When representing
a Fermat prime in bits, there are only two 1’s (the most significant bit and
the least significant bit), the rest of the bits are zeros, meaning that the
needed calculations are minimal. This approach however, can suffer from
some powerful attacks, see [FKJM+06] and [AA07].

6.4 Decryption and Signature

The functions for decryption and signature are separate functions that can
be executed after a valid distributed key has been generated. The flow chart
for the implemented VIFF decryption and signature functions are included
in Figure 6.6. The trial decryption when adjusting the private exponent
d, decryption and signature are all very similar, and the code for normal
decryption is shown in Figure 6.7.

Figure 6.7: VIFF code for performing a distributed RSA decryption for three
players.

1Fermat Primes: Prime numbers Fx, that have the form Fx = 22x + 1. The first
three Fermat primes are 3, 17 and 65537, referring to x = 0, 2, 4 respectively ([Lim09]).

58

6.5. CODE FOR BENCHMARKING 59

The code consists of two functions, decryption and check decryption, where
decryption does the computations and check decryption reveals the answer.
As can be seen, first each player locally calculates its m i, which in turn is
secret shared among the players, obtaining the variables m1, m2 and m3
with shared values. Next, an MPC is conducted yielding m tot = m1 ·m2 ·
m3, before the result of m tot is opened and revealed when the result is
ready. The final answer, message M , is found by calculating the revealed
value modulus N .

6.5 Code for Benchmarking

The implemented VIFF distributed RSA code also contains functions for
benchmarking. Benchmarking of the key generation process is incorporated
in the trial decryption at the end of the step for calculating the RSA expo-
nents. In addition, the decryption process can also be benchmarked, which
is optional. If this benchmark is activated, several decryptions of different
ciphertexts are perform in a serial manner. The number of rounds for both
key generation benchmark and decryption benchmark is set as described in
the initialization above, and needs to be set before the protocol is executed.

6.6 Running the Program

To run the distributed RSA protocol, VIFF needs to be installed, see how
to do so in Appendix B. As explained above, in the function init a list
of alterable variables is found, that are the preferences for the output of the
protocol, and needs to be set. Do not however alter the variables that are
outlined as unalterable variables, as this may result in failure of the proto-
col. This guide to run the program is described for running all three players
locally on one machine using SSL between the players.

Start by opening three Windows Command Prompts, then create the con-
figuration files and the certificates files before starting the program for each
player in separate windows, the procedure is as follows:

Window 1 : python generate-config-files.py -n 3 -t 1 localhost:9001 local-
host:9002 localhost:9003

Window 1 : python generate-certificates.py

Window 1 : python RSA.py player-1.ini

Window 2 : python RSA.py player-2.ini

Window 3 : python RSA.py player-3.ini

59

60
CHAPTER 6. DISTRIBUTED RSA IMPLEMENTATION IN

VIFF

The time required to finish the protocol will vary, depending on the size
of the key and the number of rounds chosen, and of course the speed of
the computer used. In Figure 6.8, Figure 6.9 and Figure 6.10 the output
from player 1, player 2 and player 3 respectively are shown when a 128-bit
distributed RSA key is generated.

Figure 6.8: Player 1’s output when generating a distributed 128-bit RSA key.

Figure 6.9: Player 2’s output when generating a distributed 128-bit RSA key.

Figure 6.10: Player 3’s output when generating a distributed 128-bit RSA key.
Notice that player 3 is the one doing trial decryption and therefore has more output.

Even though a 128-bit key is not very hard to attack and considered to-
tally insecure, it’s just as an example, larger keys would produce multi lines
output for some or all of the variables, making it harder to read.

60

Chapter 7
Security Analysis and
Benchmarking

This chapter starts by describing two security weaknesses found in the pro-
tocol in [BF97], followed by some guidelines for required key size in RSA.
Finally, the benchmark results of the implemented distributed RSA algo-
rithm in VIFF are presented and discussed.

7.1 Security Weaknesses

Two weaknesses are found in the article [BF97], both with respect to the
way a random number is used to secure the revealed answer. Both weak-
nesses could possibly reveal p and q and therefore also the private key {d,N}.

7.1.1 Weakness 1: Distributed Trial Division

The first weakness is found in the distributed trial division, one of the very
first steps in the protocol, but can be avoided by implementing the improve-
ment described in Section 6.3.1.

As explained in Section 5.3.1, let q = q1 + q2 + q3 be the candidate, l be a
small prime and ri a randomly picked integer by player i from the field Zp.
In the proposed algorithm in [BF97], the players now compute

qr =
(∑

qi
)(∑

ri
)
mod l

The problem here is that
∑
ri is a random number from a large field Zp,

meaning that the probability for r to be prime is approximately 1/ln(p)1

1The Prime Number Theorem: The ratio of the number of primes not exceeding x

61

62
CHAPTER 7. SECURITY ANALYSIS AND

BENCHMARKING

(where ln(p) represents the natural logarithm of p). If r is not a prime,
it must be composite, meaning that it can be factorized into prime num-
bers smaller than r. Any number, a, can be written as a product of prime
numbers, a = pα1

1 · p
α2
2 . . . pαnn for prime numbers pi and positive integers

αi. Therefore the security of q in this scheme is dependent of the size of
the biggest factor of r. If the biggest factor of r is small enough, r can be
successfully factorized and in turn, q can be found.

The security can however be increased by letting each player locally calculate
si = qi mod l, then jointly compute

qr =
(∑

si
)(∑

ri
)
mod l

This way, the calculation of q mod l is correct, and since the actual q is
never included in the calculation it can therefore not be found even if the
factorization of r is found. The problem however, is that the speed improve-
ment proposed for this step in Section 6.3.1 would then not apply. On the
other hand, by using the distributed trial division improvement proposed in
this thesis, both the speed and the security is improved and is therefore the
preferred method.

This weakness can be exposed after the protocol has accepted a pair of
candidates p and q. Knowing that p and q are actually prime numbers, by
the fact that the trial decryption for d was correct, a player can go back
to this step and find all small factors of r. When the remainder of qr,
after successfully dividing it by small prime numbers, is close to ln2(N)/2
bits, a statistical prime test2 can be used to check a range of primes around
the remainder of qr, then there’s a chance that the correct prime is found.
The reason is that the number of bits in the remaining part of qr, after
successfully dividing it by small prime numbers, will decrease with ln2(x)
bits (where x is a prime factor of qr) for each successful factor found of qr,
and both p and q are approximately ln2(N/2) bits. Knowing that p and q
are valid candidates and knowing the public exponent N makes it easy to
check if a valid prime has been found since N has exactly two factors, and
guessing one of them, reveals the other one.

and x/ln(x) approaches 1 as x grows without bound. This consequently means that the
probability for a randomly picked integer x to be prime is approximately (x/ln(x))/x =
1/ln(x) ([Ros03]).

2A statistical prime test (actually a compositeness test, since the test only outputs
probably prime, or not prime) is most often a simple fast test that is performed many times
to achieve a certain probability of a correct answer. The most popular prime tests are the
Miller-Rabin primality test, Solovay-Strassen primality test and the Fermat’s primality
test, see [TW06] for detailed information about each of them.

62

7.1. SECURITY WEAKNESSES 63

7.1.2 Weakness 2: Alternative Step in Distributed Biprimal-
ity Test

The second weakness is found in the alternative step to step 4 in the bipri-
mality test. The step checks the integers that fall into case 4 in the proof in
[BF97], meaning whether gcd(N, p+ q − 1) > 1. If the test is true, then N
is rejected and the whole protocol will have to restart by picking candidates
for p and q. Each player picks a random ri ∈ ZN and keeps it secret. Next,
the players jointly computes

z =
(3∑
i=1

ri
)(
− 1 +

3∑
i=1

(pi + qi)
)

(mod N)

where the mod N part must be done after z is revealed. Because the mod
N part needs to be done after revealing z, this step suffers from the same
weakness as the weakness described for the distributed trial division. The
security relies on the random number r, and more specifically, on the largest
prime factor of r. If r does not consist of large enough factors, both p and
q can be found by any of the players by finding the relation of N = pq and
part of the expression used to calculate z, namely p+ q.

It can be seen that the expression (−1 + p + q) is approximately b =
(log2(N/2) + 1) bits long. Now consider if r actually consist of very many
small factors, such that it’s computationally feasible to find all factors of
z except the factor (−1 + p + q). The search for factors ends when z is
divided down to approximately b bits. If such is the case, then the following
relationship between N and p, q can be found:

N = pq ⇒ q = N
p

z = r(−1 + p+ q)
Rearranging variables and inserting the new expression for q yields

z
r = −1 + p+ q
z
r + 1 = p+ N

p
z
r + 1− p = N

p
zp
r + p− p2 = N

Moving all values on the left side yields

−p2 + zp

r
+ p−N = 0

This is a quadratic equation3 where p is the only unknown value. Solving
this equation yields two possible p’s, where the right one is found by dividing

3A quadratic equation is given on the form ax2 +bx+c = 0, where a 6= 0. The solution
to this equation (if any) is found by calculating x = −b±

√
b2−4ac

2a .

63

64
CHAPTER 7. SECURITY ANALYSIS AND

BENCHMARKING

N/p for both p’s and see which one yields an integer as the answer, which
in fact is the other factor of N .

Given that (−1 + p+ q) is not necessarily a prime, the probability of a suc-
cessful attack is higher for the trial division weakness (weakness 1), because
there it is given that one of the factors are around half the length in bits.
If (−1 + p + q) also turns out to be a composite number with many small
factors, every combination of small factors is possible for the factorization
of r, including those factors found for (−1 + p+ q).

In both weaknesses, the security relies on the biggest factor of the random
number r. One way of securing both the weaknesses is to pick random
numbers r that are guaranteed to have a large factor or ensure that r is
prime, but this is of course bothersome, and in fact the same problem that
is to be solved by picking the prime numbers p and q. Another way for
securing this weakness is to do the normal step in the distributed biprimality
test instead (see [BF97] and [MWB99]).

7.2 RSA Key Size Recommendation

The security of RSA relies on the difficulty of factoring large prime numbers
and therefore the size of a RSA key, both a standard key and a distributed
key, should be large enough such that is would be computationally infeasible
to factor the key and find p and q in reasonable amount of time. The size
of the key should therefore take into consideration how long the key will be
in use, and what it’s supposed to protect.

The RSA Laboratories started a challenge in 1991 with the name The RSA
Factoring Challenge, where RSA keys of different sizes where generated and
the modulus N was published for each of them. The aim of the challenge
was to be the first to find p and q given N , where finding the solution in-
volved collection of a prize money reward (for some key sizes only). The
challenge ended in 2007, and the highest factored key so far is the RSA-200
(factored in 2005), which contains 200 decimals, equal to 663 bits. For more
about the challenge, see [Sec07], [Con09d] and [Con09e].

Although the factoring of a 663-bit key was conducted using 80 powerful
computers and took several months to finish, keys less than 1024 bits are
considered insecure and are advised not to be used in any circumstances.
1024-bit RSA keys are used in many applications today, and for many of
those applications very high security is not required, typically in scenarios
where a key is used only once to send some data, e.g. form data, over the
Internet. A 1024-bit RSA key is not expected to be broken in the very near

64

7.3. BENCHMARKING THE IMPLEMENTATION 65

future, although it’s the next of the main keys sizes that will fall, since the
512-bit RSA key was broken in 1999.

For other applications that are more dependent on high security in order
to maintain their reputation, such as banks, a key size of at least 2048 bits
is recommended, in some cases also 3072 bits or 4096 bits, all of which are
expected not to be breakable in decades to come. In the case of a bank,
typically the RSA key is used to encrypt a certificate that is used to commu-
nicate securely with the bank. Such a certificate often has long operating
time, ranging from several months to several year, which strengthen the
recommended need of a very secure key.

7.3 Benchmarking the Implementation

Benchmarking for the implemented distributed RSA protocol in VIFF has
been conducted both with three players on three distinct computers on a
local area network (LAN) in addition to all players performing the protocol
on one computer (using different port numbers). Both key generation and
decryption have been benchmarked. The results are discussed in this section.

7.3.1 Benchmark Equipment

The benchmark equipment used is three computers which are connected via
a 10 Mbit/s wired LAN. The specifications on the three computers are as
follows:

• HP Compaq DC7900, Intel Core 2 Duo processor clocked at 3 GHz,
3.5 GB memory, Windows XP SP3.

• Dell Optiplex GX270, Intel Pentium 4 processor clocked at 2.6 GHz,
1 GB memory, Windows XP SP3.

• Dell Optiplex GX270, Intel Pentium 4 processor clocked at 2.6 GHz,
1 GB memory, Windows XP SP3.

All three computers have been used when benchmarking over LAN, while
the HP Compaq DC7900 computer has been used to benchmark locally with
all player on the same computer.

7.3.2 Key Generation

The key generation part measures the average time needed to generate a
valid key. In this thesis the average is found by performing the key genera-
tion protocol 100 times and take the average of all rounds. The benchmark-
ing is conducted for key sizes 32-bit to 4096-bit using SSL on all tests. The

65

66
CHAPTER 7. SECURITY ANALYSIS AND

BENCHMARKING

bits Rounds Avg.time Ratio Min (s) Max (s)
32 100 1.75 s 0.03 min N/A 0.30 6.54
64 100 3.08 s 0.05 min 1.76 0.48 9.67
128 100 15.20 s 0.25 min 4.94 0.77 87.17
256 100 58.28 s 0.97 min 3.83 0.67 294.77
512 100 226.55 s 3.78 min 3.89 1.04 1326.16
1024 100 1956.69 s 32.61 min 8.64 7.04 8861.80
2048 10 7252.28 s 120.87 min 3.71 9.51 20713.43
4096 1 132603.92 s 2210.07 min 18.28 - -

Table 7.1: Benchmark for generating valid distributed RSA keys on LAN. Ratio
is the current average divided by the previous average.

benchmarking of the largest keys is very time consuming, and has therefore
been benchmarked less rounds (10 rounds and 1 round, respectively), which
means that they are not very statistical accurate. Key sizes less than 1024
bits are generally considered insecure, and benchmarking these are purely
to get an overview of the increase in time needed to generate valid keys as
the keys get larger. The results from the LAN benchmark are presented in
Table 7.1.

The first thing to notice from Table 7.1 is that the average time for generat-
ing a 1024-bit distributed RSA key over LAN is 32.6 minutes, ranging from
7 seconds as the fastest to 8861 seconds (∼148 minutes) as the slowest. Half
an hour is quite a lot of time, and it excludes several scenarios for use of a
distributed RSA key. It can also be seen that based on 10 rounds, it takes
on average roughly 2 hours to create a 2048-bit distributed RSA key, and
a stunning 37 hours to create a single 4096-bit distributed RSA key. Even
though the last is based on one round only, it reveals that creating such a
large key can be very time consuming. On the other hand, for scenarios
where the distributed key is not needed instantly and is going to be used for
a long while, half an hour or more does not seem to be impractical.

As for the ratio measurement, notice that a steady ratio of approximately
4 applies to the low length keys (up to 512 bits), which is also the ratio to
expect when generating a distributed RSA key using the algorithm in [BF97].
Recall that the probability of a randomly picked number near N being prime
is approximately 1/ln(N). Doubling the number of bits in N means to
square the maximum value of both p and q, e.g. max(p, q) = (2256)2 = 2512,
which in turn decrease the probability of picking a prime to half.

1/ln(2256) = 1/(256 · ln(2)) = 0.56%

66

7.3. BENCHMARKING THE IMPLEMENTATION 67

1/ln(2512) = 1/(512 · ln(2)) = 0.28%

Consequently, a steady decrease factor of 2 applies for finding primes when
doubling the key size. Recall also that the distributed RSA protocol picks
both p and q before N is calculated and revealed, meaning that the proba-
bility of both being prime at the same time is

1
ln(p) ·

1
ln(q) ≈ 1/(ln(p)2)

which means that the probability is decreased as a consequence of squaring
(in reality a little less because distributed trial division is conducted when
choosing p and q, before calculating N). The total ratio is therefore ex-
pected to be approximately the decrease factor squared, that is 22 = 4.

The ratio from a 512-bit key to a 1024-bit key is 8.64, which is not accord-
ing to the expected ratio. The average time used increases from an average
of 3.78 minutes on the 512-bit keys to an average of 32.61 minutes on the
1024-bit keys, which indicates that 1024 is the first key that is less efficient
to generate. The cause is not solely one reason, but rather several reasons
is of significance. As the key sizes increases, the calculations must be per-
formed on larger numbers, requiring more memory, more network traffic is
generated (potentially exceeding the limit of maximum packet size) and a
larger Zp must be used to be able to represent all the shared values.

The results from the local benchmark are presented in Table 7.2. The first
thing to notice is that these results are greatly improved compared to the
LAN benchmarks. The reason is mainly because the network traffic can be
sent locally on different ports instead of via the wired LAN. Another reason
is that the computer benchmarking locally is slightly faster than the two
other computers. This last point does not however contribute that much,
given that this computer only have 2 cores, therefore only 2 players can do
calculations at the same time, while in the LAN benchmark, all players have
calculation power whenever needed.

Compared to the LAN benchmark, all key sizes takes approximately half the
time to conduct locally instead of over the LAN. The 1024-bit key size is ac-
tually even better, performed in approximately 43% of the time needed over
LAN. The ratios are a bit more fluctuating for this benchmark, although
reasonable near a factor of 4 up to key size of 1024 bits. An interesting
thing is the one 4096-bit key generated, using less than 3 hours compared to
the one using 37 hours to generate over LAN, which means, as mentioned
above, that such large keys can vary a lot in time consumption.

67

68
CHAPTER 7. SECURITY ANALYSIS AND

BENCHMARKING

bits Rounds Avg.time Ratio Min (s) Max (s)
32 100 0.66 s 0.01 min N/A 0.07 3.23
64 100 1.54 s 0.03 min 2.33 0.09 10.47
128 100 7.90 s 0.13 min 5.13 0.61 47.75
256 100 26.72 s 0.45 min 3.38 1.10 139.88
512 100 124.89 s 2.08 min 4.67 3.07 703.02
1024 100 835.48 s 13.92 min 6.69 4.94 3753.72
2048 10 6165.49 s 102.76 min 7.38 19.46 13128.69
4096 1 10431.07 s 173.85 min 1.69 - -

Table 7.2: Benchmark for generating valid distributed RSA keys locally. Ratio is
the current average divided by the previous average.

The range between minimum time and maximum time in the key generation
benchmarks is quite big for all key sizes and for both LAN and locally. This
is as expected because of the distribution of primes and the fact that both
p and q must be prime at the same time, which increases the variance in
these results.

From [BF97] and [MWB99] it can be read that 1024-bit keys are generated in
approximately 90 seconds on much slower computers (clocked at 300 MHz).
The reasons are many, the algorithm can be optimized in many ways, see
Chapter 9 for more details. As a comparison, standard RSA protocols that
are implemented efficiently typically uses milliseconds to generate a 1024-bit
key on a standard desktop computer, whereas 4096-bit keys typically ranges
from milliseconds to hundreds of milliseconds.

The fact that the most time-consuming step in the distributed RSA protocol
is the key generation becomes clear from Table 7.3. The important thing to
notice here is that the steps for key generation, up to the step for generating
l, is very time consuming, and is conducted numerous times. On the other
hand, once some candidates p and q have passed all the test up to the step
for checking v, the rest of the steps are only conducted 1 time. This means
that improvements on the run-time of the protocol should focus on the key
generation step, and not so much on the step for calculating the exponents
and doing decryption and signature.

7.3.3 Decryption

The benchmark results for decryption are shown in Table 7.4. Note that
these results will also be valid as signature benchmarks, because basically
the same code is executed.

The number of rounds for all key sizes is 20, which is enough to give a very

68

7.3. BENCHMARKING THE IMPLEMENTATION 69

Function name LAN Local
generate p 15049 13972
generate q 15051 13970
trial division p 39997 37152
check trial division p 39997 37152
trial division q 39999 37137
check trial division q 39999 37137
check n 6256 5812
primality test N 6256 5812
check primality test N 6256 5812
generate g 934 861
check g 934 861
check v 467 431
generate z 1 1
check z 1 1
generate l 1 1
generate d 1 1
check decrypt 1 1

Table 7.3: The average number of times each of the functions in the implementa-
tion is run when generating a valid 1024-bit key (divided into the 4 steps for the
distributed RSA protocol).

LAN Local
bits Rounds Avg. time Ratio Avg. time Ratio

32 20 6.4 ms N/A 3.3 ms N/A
64 20 6.6 ms 1.03 3.4 ms 1.03
128 20 6.7 ms 1.02 3.4 ms 1.00
256 20 7.6 ms 1.15 4.1 ms 1.21
512 20 9.7 ms 1.28 5.0 ms 1.22
1024 20 20.2 ms 2.08 12.8 ms 2.56
2048 20 69.1 ms 3.42 53.2 ms 4.16
4096 20 560.7 ms 8.11 263.6 ms 4.95

Table 7.4: Benchmark results for decrypting a message once a valid key is found.
Ratio is the current average divided by the previous average.

69

70
CHAPTER 7. SECURITY ANALYSIS AND

BENCHMARKING

good estimate for this benchmark because the variance in each set of results
is very small. As can be seen, the times are measured in milliseconds, which
means that once the key is generated, both decryption and signature can be
used to more or less all possible scenarios by virtually not using any time at
all, even for large keys.

The ratio is increasing very slowly up to 1024 bits, using almost the same
amount of time for 32-bit keys as for 512-bit keys. Again, the first leap is
from 512 bits to 1024 bits, however this leap is not as big for decryption
as for key generation. One reason for the lesser leap is that doing decryp-
tion and signature code is conducted one time only in any case, while for
key generation the leap is affected by the accumulated value of many failed
tries. The ratio leaps further to 2048 bits and 4096 bits increase even a bit
more, but the overall time needed is fairly low for all key sizes. It can also
be seen that the time needed to locally compute decryption and signature is
about half the time needed over LAN, which is essentially the same as was
found for key generation.

The results from each benchmark can be found in the electronic appendix
along with a valid generated distributed 4096-bit RSA key for 3 players.

70

Chapter 8
Conclusions

The main goal of this thesis was to understand the basic theory of multi-
party computations and implement a fully functional distributed RSA pro-
tocol using secure multiparty computations in VIFF. The theory of MPC
is covered in Chapter 2 and 3, with the main focus on additive secret shar-
ing, Shamir’s secret sharing, the three stages used in every MPC, MPC
adversaries and the two most basic mathematical operations used in MPC,
addition and multiplication. Next, a distributed RSA protocol has been suc-
cessfully implemented for three players in VIFF, which includes distributed
key generation, decryption and signature, which are the important features
of a distributed RSA protocol. The implemented protocol allows three play-
ers to generate and use a distributed RSA key of arbitrary size in a secure
manner.

A supplementary goal of this thesis was to benchmark the solution in order
to find ways to speed up the implementation. Benchmarks have shown that
generating keys sufficiently large for use in common scenarios, having at
least 1024 bits, varies from seconds to days, averaging from tens of minutes
to several hours, which indicates that the current implementation is best
suited for scenarios that allow the key to be generated in advance. The
benchmark results also show that once a key is generated, both the decryp-
tion and signature process can be conducted very fast even for large key sizes
and could be used to perform immediate tasks. Two run-time improvements
are implemented compared to the original protocol, the first at the step for
distributed trial division and the second at the step for local trial division
on the revealed N . The distributed trial division improvement is the more
important of the two when it comes to increasing the efficiency of the pro-
tocol because this step involves communication between the players, which
require much more time than local computations.

71

72 CHAPTER 8. CONCLUSIONS

Another supplementary goal of this thesis was to analyze the security of
the protocol. Two security weaknesses was found, both of which relates to
the way a random number is used to secure a revealed answer. Both weak-
nesses could possibly reveal the private key to any of the players. The first
weakness relates to the distributed trial division step, whereas the second
weakness is regarding the alternative step in the biprimality test. Methods
for avoiding both the weaknesses are described, and the distributed trial
division weakness is also repaired in the implemented protocol, a repair that
fixes the security weakness and speeds up the protocol at the same time.

72

Chapter 9
Further Work

In this chapter, some suggestions for further work for the distributed RSA
VIFF implementation are presented. In general, many changes can be done
in order to enhance the efficiency of the implementation. These changes
have not been carried out in this thesis due to the lack of time. Most of the
proposed changes are inspired by [MWB99], where a lot of experimentation
has been conducted. Implementing some or all of these changes will defi-
nitely make the key generation process a lot faster, and therefore making it
more useful in any type of scenario.

• GMPY should be used to represent all the values in the VIFF program.
Using GMPY instead of standard Python integers on all values in the
program will greatly increase the efficiency of the protocol. Sigurd
Meldgaard from the VIFF Developer Team estimates a 10-20% speed
up in key generation with this rather simple fix alone.

• Apply distributed sieving to improve the distributed trial division step.
The players can pick their pi and qi in such a way that it is guaranteed
that

∑
pi and

∑
qi is not divisible by any prime less than a sieving

bound. The experimentation in [MWB99] reports on a 10-fold improve-
ment in running time for this step alone when generating a 1024-bit
key.

• Test several candidates in parallel by testing several values for p and q
simultaneously. The nature of MPC is not very efficient, given that the
players are waiting at several synchronization points to receive shares
from each other. By testing several candidates in parallel, each player
normally have some calculations that can be done for at least one of
the candidates, which decreases the idle time for each player, and thus
improving the efficiency of the protocol.

73

74 CHAPTER 9. FURTHER WORK

• Perform parallel trial division on N , which is the idea of trying many
primes in each division conducted. The idea is that instead of checking
that N is not divisible by any prime number [B1, B2] for some bounds
B1 and B2, instead a more efficient check is to multiply several primes
from this range, a = p1 · p2 · ... , and check that gcd(a,N) = 1. If any
of the primes divide N , then gcd(a,N) will not output 1, and the test
consequently fails.

• Apply load balancing, which is the idea of balancing the calculations
done for each player. Recall that the protocol at several places let
a specific player do some calculation, such as the calculation of the
Jacobi symbol in the distributed biprimality test, which is always con-
ducted by player 1, or the trial decryption process which is always cal-
culated by player 3 in the implementation. The responsibility should
rotate between all players, such that player i does the calculations ev-
ery k time, where k is the total number of players. Applied together
with testing several candidates in parallel, makes the workload for each
player very uniform.

• The step for calculating the private exponent d should be implemented
for arbitrary e’s, either using the method described in [BF97] or the
method described in [CGH00]. This step will hardly affect the run-
time for generating a valid key, but will increase the security of the
protocol.

74

References

[AA07] P. Antonov and V. Antonova. Development of the attack
against rsa with low public exponent and related messages. In
CompSysTech ’07: Proceedings of the 2007 international con-
ference on Computer systems and technologies, pages 1–8, New
York, NY, USA, 2007. ACM.

[ACS02] Joy Algesheimer, Jan Camenisch, and Victor Shoup. Efficient
computation modulo a shared secret with application to the
generation of shared safe-prime products. In In Advances in
Cryptology - Proceedings of CRYPTO 2002, pages 417–432.
Springer-Verlag, 2002.

[BCD+08] Peter Bogetoft, Dan Lund Christensen, Ivan Damgard, Mar-
tin Geisler, Thomas Jakobsen, Mikkel Krøigaard, Janus Dam
Nielsen, Jesper Buus Nielsen, Kurt Nielsen, Jakob Pagter,
Michael Schwartzbach, and Tomas Toft. Secure multiparty
computation goes live. Cryptology ePrint Archive, Report
2008/068, 2008.

[BDNP08] Assaf Ben-David, Noam Nisan, and Benny Pinkas. Fairplaymp:
a system for secure multi-party computation. In CCS ’08: Pro-
ceedings of the 15th ACM conference on Computer and commu-
nications security, pages 257–266, New York, NY, USA, 2008.
ACM.

[BF97] Dan Boneh and Matthew Franklin. Efficient generation of
shared rsa keys. In Advances in Cryptology – CRYPTO 97,
pages 425–439. Springer-Verlag, 1997.

[BL90] Josh Cohen Benaloh and Jerry Leichter. Generalized secret
sharing and monotone functions. In CRYPTO ’88: Proceed-
ings of the 8th Annual International Cryptology Conference

75

76 REFERENCES

on Advances in Cryptology, pages 27–35, London, UK, 1990.
Springer-Verlag.

[BOGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Com-
pleteness theorems for non-cryptographic fault-tolerant dis-
tributed computation. In STOC ’88: Proceedings of the twen-
tieth annual ACM symposium on Theory of computing, pages
1–10, New York, NY, USA, 1988. ACM Press.

[Bri90] Ernest F. Brickell. Some ideal secret sharing schemes. In EU-
ROCRYPT ’89: Proceedings of the workshop on the theory and
application of cryptographic techniques on Advances in cryptol-
ogy, pages 468–475, New York, NY, USA, 1990. Springer-Verlag
New York, Inc.

[Can95] Ran Canetti. Studies in Secure Multiparty Computation and
Applications. PhD thesis, Weizmann Institute of Science, De-
partment of Computer Science and Applied Mathematics, 1995.

[Can01] R. Canetti. Universally composable security: A new paradigm
for cryptographic protocols. In FOCS ’01: Proceedings of the
42nd IEEE symposium on Foundations of Computer Science,
page 136, Washington, DC, USA, 2001. IEEE Computer Soci-
ety.

[CCD88] David Chaum, Claude Crépeau, and Ivan Damgard. Multiparty
unconditionally secure protocols. In STOC ’88: Proceedings of
the twentieth annual ACM symposium on Theory of computing,
pages 11–19, New York, NY, USA, 1988. ACM.

[CDM00] Ronald Cramer, Ivan Damg̊ard, and Ueli Maurer. General se-
cure multi-party computation from any linear secret sharing
scheme. Cryptology ePrint Archive, Report 2000/037, 2000.
http://eprint.iacr.org/.

[CGH00] Dario Catalano, Rosario Gennaro, and Shai Halevi. Computing
inverses over a shared secret modulus. In EUROCRYPT, pages
190–206, 2000.

[CLRS01] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest,
and Clifford Stein. Introduction to Algorithms, Second Edition.
The MIT Press, 2001.

[Con09a] Wikipedia Contributors. Blum integer. http://en.
wikipedia.org/wiki/Blum_integer, 2009.

[Con09b] Wikipedia Contributors. Jacobi symbol. http://en.
wikipedia.org/wiki/Jacobi_symbol, 2009.

76

http://eprint.iacr.org/
http://en.wikipedia.org/wiki/Blum_integer
http://en.wikipedia.org/wiki/Blum_integer
http://en.wikipedia.org/wiki/Jacobi_symbol
http://en.wikipedia.org/wiki/Jacobi_symbol

REFERENCES 77

[Con09c] Wikipedia Contributors. Legendre symbol. http://en.
wikipedia.org/wiki/Legendre_symbol, 2009.

[Con09d] Wikipedia Contributors. Rsa factoring challenge. http://en.
wikipedia.org/wiki/RSA_Factoring_Challenge, 2009.

[Con09e] Wikipedia Contributors. Rsa numbers. http://en.
wikipedia.org/wiki/RSA_numbers, 2009.

[Con09f] Wikipedia Contributors. Safe prime. http://en.wikipedia.
org/wiki/Safe_prime, 2009.

[Con09g] Wikipedia Contributors. Secret sharing. http://en.
wikipedia.org/wiki/Secret_sharing, 2009.

[CrN08] Ronald Cramer, Ivan Damg̊ard, and Jesper Buus Nielsen. Mul-
tiparty computation, an introduction. http://www.daimi.au.
dk/˜ivan/mpc.pdf, 2008.

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in
cryptography. IEEE Transactions on Information Theory, IT-
22(6):644–654, 1976.

[EG85] Taher El Gamal. A public key cryptosystem and a signa-
ture scheme based on discrete logarithms. In Proceedings of
CRYPTO 84 on Advances in cryptology, pages 10–18, New
York, NY, USA, 1985. Springer-Verlag New York, Inc.

[EP87] C. H. Edwards and David E. Penney. Elementary Linear Alge-
bra. Prentice Hall, 1987.

[FKJM+06] Pierre-Alain Fouque, Sébastien Kunz-Jacques, Gwenaëlle Mar-
tinet, Frédéric Muller, and Frédéric Valette. Power attack on
small rsa public exponent. In CHES, pages 339–353, 2006.

[Fra03] John B. Fraleigh. A First Course In Abstract Algebra, Seventh
Edition. Addison Wesley, 2003.

[Gei08a] Martin Geisler. Implementing asynchronous multi-
party computation. http://viff.dk/files/
mg-progress-report-talk.pdf, February 21st, 2008.

[Gei08b] Martin Geisler. Implementing asynchronous multi-party com-
putation, phd progress report. http://viff.dk/files/
mg-progress-report.pdf, January 2008.

[Gei08c] Martin Geisler. Multiparty computation made practical using
the virtual ideal functionality framework. In ECRYPT Research
Meeting, June 23 2008.

77

http://en.wikipedia.org/wiki/Legendre_symbol
http://en.wikipedia.org/wiki/Legendre_symbol
http://en.wikipedia.org/wiki/RSA_Factoring_Challenge
http://en.wikipedia.org/wiki/RSA_Factoring_Challenge
http://en.wikipedia.org/wiki/RSA_numbers
http://en.wikipedia.org/wiki/RSA_numbers
http://en.wikipedia.org/wiki/Safe_prime
http://en.wikipedia.org/wiki/Safe_prime
http://en.wikipedia.org/wiki/Secret_sharing
http://en.wikipedia.org/wiki/Secret_sharing
http://www.daimi.au.dk/~ivan/mpc.pdf
http://www.daimi.au.dk/~ivan/mpc.pdf
http://viff.dk/files/mg-progress-report-talk.pdf
http://viff.dk/files/mg-progress-report-talk.pdf
http://viff.dk/files/mg-progress-report.pdf
http://viff.dk/files/mg-progress-report.pdf

78 REFERENCES

[Gei09] Martin Geisler. Mpc virtual machine specification. http:
//www.cace-project.eu/downloads/deliverables-y1/
CACE_D4.3_MPC_Virtual_Machine_Specification.pdf,
2009.

[GF02] Laurence Grant and Brian Fleming. Secret Sharing and Split-
ting. University of Notre Dame, Indiana, USA, 2002.

[GMP03] GMPY. General multiprecision python. http://gmpy.
sourceforge.net/, 2003.

[GMW87] O. Goldreich, S. Micali, and A. Wigderson. How to play any
mental game or a completeness theorem for protocols with hon-
est majority. In STOC ’87: Proceedings of the nineteenth an-
nual ACM symposium on Theory of computing, pages 218–229,
New York, NY, USA, 1987. ACM.

[Gol97] Shafi Goldwasser. Multi party computations: past and present.
In PODC ’97: Proceedings of the sixteenth annual ACM sym-
posium on Principles of distributed computing, pages 1–6, New
York, NY, USA, 1997. ACM.

[Gol99] Oded Goldreich. Preface to special issue on general secure
multi-party computation. http://citeseerx.ist.psu.edu/,
1999.

[Gol00] Oded Goldreich. Secure multi-party computation. Working
Draft, 2000.

[Hir01] Martin Hirt. Multi-Party Computation: Efficient Protocols,
General Adversaries, and Voting. PhD thesis, ETH Zurich,
2001.

[Kre99] Erwin Kreyszig. Advanced Engineering Mathematics, 8th Edi-
tion. John Wiley & Sons, Inc., 1999.

[Lef09] Glyph Lefkowitz. Twisted matrix labs. http://
twistedmatrix.com/trac/, 2009.

[Lim09] DI Management Services Pty Limited. Rsa algorithm. http:
//www.di-mgt.com.au/rsa_alg.html, 2009.

[Liu68] C. L. Liu. Introduction to Combinatorial Mathematics.
McGraw-Hill, 1968.

[Mor07] Michael Mortensen. Secret sharing and secure multi-party com-
putation. Master’s thesis, Department of Informatics, Univer-
sity of Bergen, 2007.

78

http://www.cace-project.eu/downloads/deliverables-y1/CACE_D4.3_MPC_Virtual_Machine_Specification.pdf
http://www.cace-project.eu/downloads/deliverables-y1/CACE_D4.3_MPC_Virtual_Machine_Specification.pdf
http://www.cace-project.eu/downloads/deliverables-y1/CACE_D4.3_MPC_Virtual_Machine_Specification.pdf
http://gmpy.sourceforge.net/
http://gmpy.sourceforge.net/
http://citeseerx.ist.psu.edu/
http://twistedmatrix.com/trac/
http://twistedmatrix.com/trac/
http://www.di-mgt.com.au/rsa_alg.html
http://www.di-mgt.com.au/rsa_alg.html

REFERENCES 79

[MWB99] Michael Malkin, Thomas Wu, and Dan Boneh. Experimenting
with shared generation of rsa keys. In In Proceedings of the In-
ternet SocietyŠs 1999 Symposium on Network and Distributed
System Security (SNDSS), pages 43–56, 1999.

[rGiN09] Ivan Damg̊ard, Martin Geisler, Mikkel Krøigaard, and Jes-
per Buus Nielsen. Asynchronous multiparty computation: The-
ory and implementation. In Stanislaw Jarecki and Gene Tsudik,
editors, Public Key Cryptography, volume 5443 of Lecture Notes
in Computer Science, pages 160–179. Springer, 2009.

[Ros03] Kenneth H. Rosen. Discrete Mathematics and Its Applications,
Fifth Edition. McGraw-Hill, 2003.

[RSA78] R.L. Rivest, A. Shamir, and L. Adleman. A method for obtain-
ing digital signatures and public-key cryptosystems. Commu-
nications of the ACM, 21:120–126, 1978.

[Sch96] Bruce Schneier. Applied Cryptography - Protocols, Algorithms,
and Source Code in C, Second Edition. John Wiley & Sons,
Inc., 1996.

[Sec07] RSA Security. The rsa factoring challenge. http://www.rsa.
com/rsalabs/node.asp?id=2092, 2007.

[Sha79] Adi Shamir. How to share a secret. Communications of the
ACM, 22(11):612–613, 1979.

[Sim92] Gustavus J. Simmons. Contemporary Cryptology: The Science
of Information Integrity. IEEE Press, 1992.

[Sta06] William Stallings. Cryptography and Network Security - Prin-
ciples and Practices, Fourth Edition. Pearson Prentice Hall,
2006.

[Tea09] VIFF Development Team. Viff, the virtual ideal functionality
framework. http://viff.dk/, 2009.

[Tur66] L. Richard Turner. Inverse of the Vandermonde Matrix With
Applications. Lewis Research Center, NASA, Cleveland, Ohio,
1966.

[TW06] Wade Trappe and Lawrence Washington. Introduction to Cryp-
tography with Coding Theory, Second Edition. Pearson Prentice
Hall, 2006.

[vR08] Guido van Rossum. Python. http://www.python.org/, De-
cember 23, 2008.

79

http://www.rsa.com/rsalabs/node.asp?id=2092
http://www.rsa.com/rsalabs/node.asp?id=2092
http://viff.dk/
http://www.python.org/

80 REFERENCES

[WM05] Michael E. Whitman and Herbert J. Mattord. Principles of
Information Security, Second Edition. Thomson Course Tech-
nology, 2005.

[XKC09] XKCD. Security. http://xkcd.com/538/, 2009.

[Yao82] Andrew C. Yao. Protocols for secure computations. In SFCS
’82: Proceedings of the 23rd Annual Symposium on Foundations
of Computer Science, pages 160–164, Washington, DC, USA,
1982. IEEE Computer Society.

80

http://xkcd.com/538/

Appendix A
Electronic Appendix

A compressed zip-file is attached to this thesis and contains the following:

• The distributed RSA code implemented in VIFF for three players.

• The references used for this thesis (articles only).

• The benchmark results for both key generation and decryption. The
results are divided into two folders, LAN and Local, each having results
for all key sizes, 32 bits to 4096 bits.

• A valid 4096-bit distributed RSA key for three players as a proof of
concept of the implemented protocol in VIFF.

81

82 APPENDIX A. ELECTRONIC APPENDIX

82

Appendix B
Install VIFF

This chapter will describe step by step how to install VIFF on a Windows
XP machine. An installation guide can also be found by choosing your pre-
ferred operating system from http://viff.dk/doc/index.html (although
some steps are missing at the time).

B.1 Download and Install all the Necessary Files

A number of programs and modules need to be downloaded and installed in
order to successfully run VIFF programs. The steps below needs to be done
in this particular order:

• From the web page http://python.org/download/ download and in-
stall Python version 2.5.4 for Windows (python-2.5.4.msi)

• Update the environment variable Path (see below).

• Download and install Twisted for Python 2.5, http://twistedmatrix.
com/trac/.

• Download and install GMPY from http://code.google.com/p/gmpy/
(press Show all to find GMPY for python 2.5).

• Download and install Win32OpenSSL for Windows (newest version)
at http://www.slproweb.com/products/Win32OpenSSL.html. If in-
stallation requires Visual C++ 2008 Redistributables, it can be found
at the same web page, and have to be installed before Win32OpenSSL.

• Download and install PyOpenSSL for Python 2.5, found at http:
//pyopenssl.sourceforge.net/.

83

http://viff.dk/doc/index.html
http://python.org/download/
http://twistedmatrix.com/trac/
http://twistedmatrix.com/trac/
http://code.google.com/p/gmpy/
http://www.slproweb.com/products/Win32OpenSSL.html
http://pyopenssl.sourceforge.net/
http://pyopenssl.sourceforge.net/

84 APPENDIX B. INSTALL VIFF

• Download and install Python for Windows extensions for Python 2.5,
found at http://sourceforge.net/project/showfiles.php?group_
id=78018&package_id=79063.

• Download and install VIFF executable file from http://viff.dk/
#releases.

• Download and unpack the VIFF zip file from the same web page, copy
the apps folder into your viff folder.

The Windows PATH environment variable needs to be updated in order
to be able to execute Python code outside the Python folder itself. Follow
these steps to update the PATH environment variable in Windows XP.

Right-click on My Computer on the desktop and choose Properties from the
menu (Figure B.1).

Figure B.1: First step to update Windows XP’s environment variable: Go to the
computers properties.

From there go to the Advanced tab and press the Environment Variables
button (Figure B.2).
Next, choose Path in the System Variables view and press the Edit button
(Figure B.3).
Lastly, input your Python install folder in the Variable Value text field,
remember to separate with ; from the last entry in the text field (Figure
B.4).

84

http://sourceforge.net/project/showfiles.php?group_id=78018&package_id=79063
http://sourceforge.net/project/showfiles.php?group_id=78018&package_id=79063
http://viff.dk/#releases
http://viff.dk/#releases

B.2. RUN TEST APPLICATION 85

Figure B.2: Second step to update Windows XP’s environment variable: Go to
the Environment Variables.

B.2 Run Test Application

To test if the installation is working, try to run the millionaire example
included in /viff/apps/ as follows:

• Start three Windows Command Prompts by pressing Start menu−− >
Run... and write cmd.

• Browse to your /apps/ folder, found in /Python25/lib/site-packages/Viff/apps/

• In the first window, execute the following command: python generate-
config-files.py -n 3 -t 1 localhost:9001 localhost:9002 localhost:9003.
The configuration files for three players are now created with a random
seed value.

• In the first window, execute the following command: python million-
aires.py –no-ssl player-3.ini.

• In the second window, execute the following command: python mil-
lionaires.py –no-ssl player-2.ini.

85

86 APPENDIX B. INSTALL VIFF

Figure B.3: Third step to update Windows XP’s environment variable: Open the
System Variable Path.

• In the last window, execute the following command: python million-
aires.py –no-ssl player-1.ini.

You should now get the correct ranking of the three millionaires, but each
window should only reveal their own amount of money (Figure B.5, Figure
B.6 and Figure B.7).

The option of running protocols with SSL is also an option. This will re-
quire running the following command in any of the windows after running
the generate-config-files.py command: generate-certificates.py. This will au-
tomatically create certificates for three players.

In order to run the program on distinct computers, and not all players
locally on one computer, both the configuration files and the certificates
(if used) needs to be distributed to the other computers, and the Internet
Protocol (IP) addresses of all the computers must be types in when running
the configuration files command. So instead of writing the addresses as
localhost:port, the command would be IPaddress:port.

86

B.2. RUN TEST APPLICATION 87

Figure B.4: Fourth step to update Windows XP’s environment variable: Append
a path for the System Variable.

Figure B.5: Player 1’s output when the test application finishes.

Figure B.6: Player 2’s output when the test application finishes.

Figure B.7: Player 3’s output when the test application finishes.

87

88 APPENDIX B. INSTALL VIFF

88

Appendix C
Mathematics

C.1 Linear System Approach

Continuing from Section 3.6.1 the players can solve a linear system of equa-
tions. Each player can establish three equations using the formula as shown
in Equation (C.1).

fg(i, j) = si,j = sh + r1j + r2j
2 (C.1)

In Equation (C.1) i refers to the player holding the share and j refers to the
player that created the share. Player 1 can do the following calculations:

fg(1, 1) = s1,1 = 5
fg(1, 2) = s1,2 = −1
fg(1, 3) = s1,3 = −14

Organizing these values into a matrix yields:sh r1 r2 5
sh 2r1 4r2 −1
sh 3r1 9r2 −14

Player 1 wants to solve the equations with respect to sh, which is player 1’s
share of the total polynomial. Solving the linear system can be done using
Gaussian elimination [EP87] as shown below:

1 1 1 5
1 2 4 −1
1 3 9 −14

 R2 − 1 ·R1
=⇒

R3 − 1 ·R1

1 1 1 5
0 1 3 −6
0 2 8 −19

 R3 − 2 ·R2
=⇒

1 1 1 5
0 1 3 −6
0 0 2 −7

 1
2 ·R3
=⇒

1 1 1 5
0 1 3 −6
0 0 1 −3.5

89

90 APPENDIX C. MATHEMATICS

Going backwards from row three, all the unknown variables can be calcu-
lated:

r2 = −3.5
r1 = −6− 3 · r2 = −6− 3 · (−3.5) = 4.5
sh = 5− r1 − r2 = 5− 4.5− (−3.5) = 4

The value sh = 4 can be located in Table 3.4. Player 2 and player 3 have to
use their values in order to calculate their value of sh.

C.2 Vandermonde Matrix

Continuing from Section 3.6.1 the players do not need to solve the linear
system. By using the inverse of a Vandermonde matrix each player can ob-
tain its share of the total polynomial by means of a less complex calculation.
The Vandermonde matrix is defined as [Tur66]:

V =

1 x1 x2

1 · · · xn−1
1

1 x2 x2
2 · · · xn−1

2
1 x3 x2

3 · · · xn−1
3

...
...

...
1 xn x2

n · · · xn−1
n

V is the Vandermonde matrix and I is the identity matrix, both of size 3x3.
For three players where x1 = 1, x2 = 2 and x3 = 3 the two matrices are
defined as follows:

V =

1 1 1
1 2 4
1 3 9

 I =

1 0 0
0 1 0
0 0 1

Gauss-Jordan elimination is used to transform [V |I] into [I|V −1].

1 1 1 1 0 0
1 2 4 0 1 0
1 3 9 0 0 1

 R2 − 1 ·R1
=⇒

R3 − 1 ·R1

1 1 1 1 0 0
0 1 3 −1 1 0
0 2 8 −1 0 1

 R3 − 2 ·R2
=⇒

1 1 1 1 0 0
0 1 3 −1 1 0
0 0 2 1 −2 1

 1
2 ·R3
=⇒

1 1 1 1 0 0
0 1 3 −1 1 0
0 0 1 1

2 −1 1
2

 R2 − 3 ·R3
=⇒

1 1 1 1 0 0
0 1 0 −5

2 4 −3
2

0 0 1 1
2 −1 1

2

 R1 − 1 ·R2
=⇒

R1 − 1 ·R3

1 0 0 3 −3 1
0 1 0 −5

2 4 3
2

0 0 1 1
2 −1 1

2

90

C.2. VANDERMONDE MATRIX 91

The tuple (3,−3, 1) in the first row of the inverse Vandermonde matrix will
always contain these values when three players are participating and they
use the indexes 1, 2 and 3. This gives an advantage for solving the linear
systems since no computation on solving the unknown variables needs to be
done.

From Table 3.3 player 1 has received the tuple of share values (5,−1,−14)
from player 1, 2 and 3, respectively. In order for player 1 to find its share
on the total polynomial, the matrix multiplication of the two tuples is cal-
culated:

[
3 −3 1

]
·

 5
−1
−14

 =
[
15 + 3− 14

]
=

[
4
]

The value 4 can be located in Table 3.4. Player 2 and player 3 will have to
calculate the Vandermonde tuple (3,−3, 1) with their own tuple from Table
3.3 in order to find their shares on the total polynomial.

91

92 APPENDIX C. MATHEMATICS

92

Appendix D
VIFF Distributed RSA Code

1 #!/ usr / bin /python

3 # Copyright 2007 , 2008 VIFF Development Team .
#

5 # This f i l e i s part o f VIFF , the Vi r tua l I d e a l Func t i ona l i t y
Framework .

#
7 # VIFF i s f r e e so f tware : you can r e d i s t r i b u t e i t and/ or modify

i t
under the terms o f the GNU Lesse r General Publ ic L i cense (LGPL

) as
9 # publ i shed by the Free Software Foundation , e i t h e r v e r s i on 3 o f

the
License , or (at your opt ion) any l a t e r v e r s i o n .

11 #
VIFF i s d i s t r i b u t e d in the hope that i t w i l l be use fu l , but

WITHOUT
13 # ANY WARRANTY; without even the impl i ed warranty o f

MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesse r

General
15 # Publ ic L i cense f o r more d e t a i l s .

#
17 # You should have r e c e i v e d a copy o f the GNU Lesse r General

Publ ic
License along with VIFF . I f not , s e e <http ://www. gnu . org /

l i c e n s e s />.
19

This code can be used to generate shared RSA keys o f any
d e s i r e d

21 # length . The implementation i s based on the a lgor i thm desc r ibed
in ” E f f i c i e n t Generation o f Shared RSA keys ” wr i t t en by

23 # Dan Boneh and Matthew Frankl in in 1997 .
#

25 # Some adjustments have been made , the f i r s t one found in the
s tep

93

94 APPENDIX D. VIFF DISTRIBUTED RSA CODE

” Tr i a l d i v i s i o n ” , which i s s p e c i a l l y implemented f o r 3 p layers
,

27 # although i t can be be extended to a r b i t r a r y number o f p l ay e r s .
The second change i s that the t r i a l d i v i s i o n f o r N i s f o r a

l a r g e r
29 # span than used in the a r t i c l e and a l s o that each p laye r checks

d i f f e r e n t spans in s t ead o f a l l p l ay e r s check the same ones .
31 #

Give a p layer c o n f i g u r a t i o n f i l e as a command l i n e argument or
run

33 # the example with ’−−help ’ f o r he lp with the command l i n e
opt ions .

35 # import the nece s sa ry modules
import random

37 import math
import gmpy

39 import time

41 from optparse import OptionParser
from twi s t ed . i n t e r n e t import r e a c t o r

43
from v i f f . f i e l d import GF

45 from v i f f . runtime import Runtime , c reate runt ime , ga the r share s ,
make runt ime c lass , Share

from v i f f . comparison import ComparisonToft07Mixin , Toft05Runtime
47 from v i f f . c o n f i g import l o a d c o n f i g

from v i f f . u t i l import rand , f i nd pr ime
49 from v i f f . e q u a l i t y import P r o b a b i l i s t i c E q u a l i t y M i x i n

51 # We s t a r t by d e f i n i n g the protoco l , i t w i l l be s t a r t e d at the
bottom

of the f i l e .
53

c l a s s Protoco l :
55

re tu rn s the l i s t o f primes l a r g e r than min and l e s s or
equal to max

57 de f ge t pr imes (s e l f , min , max) :
primes = []

59 whi l e True :
prime = i n t (gmpy . next pr ime (min))

61 i f prime <= max :
primes += [prime]

63 min = prime
e l s e :

65 re turn primes

67
the func t i on f o r gene ra t ing a p r i v a t e part o f p f o r each

p laye r
69 de f genera te p (s e l f) :

s e l f . f unc t i on count [0] += 1

94

95

71 # player 1 needs to obta in i t s share o f p as congruent
to 3 mod 4

i f s e l f . runtime . id == 1 :
73 s e l f . p = 4∗random . rand int (1 , s e l f . numer ic l ength −

1) + 3
every other p laye r needs to obta in i t s share o f p as

congruent to 0 mod 4
75 e l s e :

s e l f . p = 4∗random . rand int (1 , s e l f . numer ic l ength −
1)

77
#p r i n t ”my p = ” + s t r (s e l f . p)

79 s e l f . t r i a l d i v i s i o n p ()

81
the func t i on f o r gene ra t ing a p r i v a t e part o f q f o r each

player , equal to the corre spond ing func t i on f o r p
83 de f gene ra t e q (s e l f) :

s e l f . f unc t i on count [1] += 1
85 i f s e l f . runtime . id == 1 :

s e l f . q = 4∗random . rand int (1 , s e l f . numer ic l ength −
1) + 3

87 e l s e :
s e l f . q = 4∗random . rand int (1 , s e l f . numer ic l ength −

1)
89

#p r i n t ”my q = ” + s t r (s e l f . q)
91 s e l f . t r i a l d i v i s i o n q ()

93
func t i on f o r doing shared t r i a l d i v i s i o n f o r smal l primes

on the choosen p
95 # a l t e r n a t i v e s tep to the step de s c r ibed in the a r t i c l e ,

with t h i s s o l u t i o n nothing i s r evea l ed
check i f p i s composite f o r smal l primes (done s e c r e t

shared)
97 # each p laye r choose a random number from Zp and t h i s number

along with i t s p r i v a t e p (mod the cur rent prime number
to be t e s t e d)

de f t r i a l d i v i s i o n p (s e l f) :
99 s e l f . f unc t i on count [2] += 1

the func t i on i s done i t e r a t i v e , t h e r e f o r e the next
prime to be checked needs to be choosen

101 prime num = s e l f . p r i m e l i s t b 1 [s e l f . p r ime po inte r]
c a l c u l a t e the remainder o f s e l f . p modulus the cur rent

prime number in the l i s t
103 p t r i a l = s e l f . p % prime num

#p r i n t ”my p t r i a l = ” + s t r (p t r i a l) + ” f o r prime num
= ” + s t r (prime num)

105 r t r i a l = random . randint (1 , s e l f . Zp . modulus − 1)
#p r i n t ”my random r t r i a l = ” + s t r (r t r i a l)

107
share the va lue s

95

96 APPENDIX D. VIFF DISTRIBUTED RSA CODE

109 p t r i a l 1 , p t r i a l 2 , p t r i a l 3 = s e l f . runtime . shamir share
([1 , 2 , 3] , s e l f . Zp , p t r i a l)

p r t r i a l 1 , p r t r i a l 2 , p r t r i a l 3 = s e l f . runtime .
shamir share ([1 , 2 , 3] , s e l f . Zp , r t r i a l)

111
c a l c u l a t e the needed va lue s

113 p t r i a l t o t = (p t r i a l 1 + p t r i a l 2 + p t r i a l 3)
r t r i a l t o t = (p r t r i a l 1 + p r t r i a l 2 + p r t r i a l 3)

115 # the value to revea l , p t r i a l t o t i s the sum of each
p layer s ’ p r i v a t e p , r t r i a l t o t i s the sum of a
random number from each p laye r and prime num i s the
cur rent prime number to check

t r i a l r e v e a l = p t r i a l t o t ∗ (p t r i a l t o t − prime num) ∗
(p t r i a l t o t − 2 ∗ prime num) ∗ r t r i a l t o t

117
open the value o f the o p e n t r i a l r e v e a l share

119 o p e n t r i a l r e v e a l = s e l f . runtime . open (t r i a l r e v e a l)
r e s u l t s = g a t h e r s h a r e s ([o p e n t r i a l r e v e a l])

121 # addCallback l e t s the program wait f o r the r e s u l t s to
be ready , then c a l l the func t i on given as the
argument

r e s u l t s . addCallback (s e l f . c h e c k t r i a l d i v i s i o n p)
123

125 # revea l−f unc t i on that are c a l l e d from t r i a l d i v i s i o n p ()
when the r e s u l t s are ready

from the equat ion in t r i a l d i v i s i o n p () t r i a l r e v e a l = p(p
− prime) (p − 2∗prime) ∗ r , i f prime d i v i d e s p , then s u r e l y
t h i s exp r e s s i on w i l l be zero f o r 3 p l a ye r s

127 # i f prime does NOT d iv ide p , then the r e s u l t r e t r i a l w i l l
be nothing but a random number , and r e v e a l s no
in fo rmat ion about the p layer s ’ p r i v a t e p

de f c h e c k t r i a l d i v i s i o n p (s e l f , r e s u l t s) :
129 s e l f . f unc t i on count [3] += 1

r e v t r i a l = r e s u l t s [0] . va lue
131 #pr in t ” r e v t r i a l = ” + s t r (r e v t r i a l)

133 # i f prime d i v i d e s p , generate a new p and s t a r t over
i f r e v t r i a l == 0 :

135 s e l f . p r ime po in te r = 0
#p r i n t ” gene ra t ing p again ”

137 s e l f . g enera te p ()
i f not , check i f more primes are to be tes ted , i f yes ,

go back to t r i a l d i v i s i o n p () , i f no , generate q
139 e l s e :

s e l f . p r ime po in te r += 1
141 # i f a l l the primes in the p r i m e l i s t b 1 i s te s ted ,

generate q
i f s e l f . p r ime po inte r >= len (s e l f . p r i m e l i s t b 1) :

143 s e l f . p r ime po in te r = 0
s e l f . g ene ra t e q ()

145 # e l s e , check f o r next prime in the l i s t
e l s e :

147 s e l f . t r i a l d i v i s i o n p ()

96

97

149
t h i s func t i on i s equal to the corre spond ing func t i on f o r p

151 de f t r i a l d i v i s i o n q (s e l f) :
s e l f . f unc t i on count [4] += 1

153 prime num = s e l f . p r i m e l i s t b 1 [s e l f . p r ime po inte r]
q t r i a l = s e l f . q % prime num

155 #pr in t ”my q t r i a l = ” + s t r (q t r i a l) + ” f o r prime num
= ” + s t r (prime num)

r t r i a l = random . randint (1 , s e l f . Zp . modulus − 1)
157 #pr in t ”my random r t r i a l = ” + s t r (r t r i a l)

159 q t r i a l 1 , q t r i a l 2 , q t r i a l 3 = s e l f . runtime . shamir share
([1 , 2 , 3] , s e l f . Zp , q t r i a l)

q r t r i a l 1 , q r t r i a l 2 , q r t r i a l 3 = s e l f . runtime .
shamir share ([1 , 2 , 3] , s e l f . Zp , r t r i a l)

161
q t r i a l t o t = (q t r i a l 1 + q t r i a l 2 + q t r i a l 3)

163 r t r i a l t o t = (q r t r i a l 1 + q r t r i a l 2 + q r t r i a l 3)
t r i a l r e v e a l = q t r i a l t o t ∗ (q t r i a l t o t − prime num) ∗

(q t r i a l t o t − 2 ∗ prime num) ∗ r t r i a l t o t
165

o p e n t r i a l r e v e a l = s e l f . runtime . open (t r i a l r e v e a l)
167 r e s u l t s = g a t h e r s h a r e s ([o p e n t r i a l r e v e a l])

r e s u l t s . addCallback (s e l f . c h e c k t r i a l d i v i s i o n q)
169

171 # t h i s func t i on i s equal to the cor re spond ing func t i on f o r p
u n t i l a q i s accepted so f a r

de f c h e c k t r i a l d i v i s i o n q (s e l f , r e s u l t s) :
173 s e l f . f unc t i on count [5] += 1

r e v t r i a l = r e s u l t s [0] . va lue
175 #pr in t ” r e v t r i a l = ” + s t r (r e v t r i a l)

177 i f r e v t r i a l == 0 :
s e l f . p r ime po inte r = 0

179 #pr i n t ” gene ra t ing q again ”
s e l f . g ene ra t e q ()

181 e l s e :
s e l f . p r ime po inte r += 1

183 # i f a l l the primes in the p r i m e l i s t b 1 i s te s ted ,
r e v e a l n

i f s e l f . p r ime po in te r >= len (s e l f . p r i m e l i s t b 1) :
185 s e l f . p r ime po inte r = 0

187 p1 , p2 , p3 = s e l f . runtime . shamir share ([1 , 2 ,
3] , s e l f . Zp , s e l f . p)

c a l c u l a t e the t o t a l p as a share
189 s e l f . ptot = (p1 + p2 + p3)

191 q1 , q2 , q3 = s e l f . runtime . shamir share ([1 , 2 ,
3] , s e l f . Zp , s e l f . q)

c a l c u l a t e the t o t a l q as a share
193 s e l f . qtot = (q1+ q2 + q3)

97

98 APPENDIX D. VIFF DISTRIBUTED RSA CODE

195 # c a l c u l a t e and open the RSA−modulus N
n = s e l f . ptot ∗ s e l f . qtot

197 open n = s e l f . runtime . open (n)

199 # FOR DEBUGGING ONLY
#open ptot = s e l f . runtime . open (s e l f . ptot)

201 #open qtot = s e l f . runtime . open (s e l f . qtot)
END DEBUGGING ONLY

203
r e s u l t s = g a t h e r s h a r e s ([open n]) #, open ptot ,

open qtot]) # LAST TWO FOR DEBUGGING ONLY
205 r e s u l t s . addCallback (s e l f . check n)

e l s e , check f o r next prime in the l i s t
207 e l s e :

s e l f . t r i a l d i v i s i o n q ()
209

211
func t i on to save the r evea l ed N and the shared value o f

phi , p lus do u s e f u l debugging p r i n t o u t s
213 de f check n (s e l f , r e s u l t s) :

s e l f . f unc t i on count [6] += 1
215 #pr in t ”n = ” + s t r (r e s u l t s [0])

217 s e l f . n r evea l ed = r e s u l t s [0] . va lue
s e l f . phi = (s e l f . ptot − 1) ∗ (s e l f . qtot − 1)

219 #pr in t ” completed rounds : ” + s t r (s e l f . completed rounds)
+ ” / ” + s t r (s e l f . rounds)

#p r i n t ”\ nn revea l ed = ” + s t r (s e l f . n r evea l ed)
221

FOR DEBUGGING ONLY
223 #pr in t ” p r evea l ed = ” + s t r (r e s u l t s [1] . va lue)

#p r i n t ” q r ev ea l e d = ” + s t r (r e s u l t s [2] . va lue)
225 # END DEBUGGING ONLY

227 #pr in t ”#b i t s in N = ” + s t r (math . c e i l (math . l og (s e l f .
n revea l ed , 2)))

229 s e l f . p r i m a l i t y t e s t N ()

231 # func t i on f o r more p r ima l i t y t e s t i n g on p and q
the pr ima l i t y t e s t i n g f o r N can be done very qu i ck ly

l o c a l l y f o r each p layer s i n c e N i s a r evea l ed value
233 # each p laye r checks N f o r d i f f e r e n t i n t e r v a l s (in

p r i m e l i s t b 2) f o r program speed up
de f p r i m a l i t y t e s t N (s e l f) :

235 s e l f . f unc t i on count [7] += 1
assume that the p r ima l i t y t e s t w i l l not f a i l

237 t e s t f a i l e d = 0
f o r i in s e l f . p r i m e l i s t b 2 :

239 #pr i n t ”N mod ” + s t r (i) + ” = ” + s t r (s e l f .
n r evea l ed % i)

98

99

i f the cur rent prime in the l i s t d i v i d e s N, t h i s
means that N has a f a c t o r equal to t h i s prime ,
s i n c e t h i s f a c t o r i s smal l (in comparison to the
value o f p , q and N) , t h i s means that N i s not
the product o f two l a r g e primes p and q

241 i f s e l f . n r evea l ed % i == 0 :
#p r i n t ” f a i l e d . . . ” + s t r (i) + ” d i v i d e s ” + s t r

(s e l f . n r evea l ed)
243 t e s t f a i l e d = 1

break
245

share the va lue s
247 f a i l e d 1 , f a i l e d 2 , f a i l e d 3 = s e l f . runtime . shamir share

([1 , 2 , 3] , s e l f . Zp , t e s t f a i l e d)

249 # c a l c u l a t e and open the sum of f a i l e d va lue s
f a i l e d t o t = f a i l e d 1 + f a i l e d 2 + f a i l e d 3

251 o p e n f a i l e d t o t = s e l f . runtime . open (f a i l e d t o t)

253 r e s u l t s = g a t h e r s h a r e s ([o p e n f a i l e d t o t])
r e s u l t s . addCallback (s e l f . c h e c k p r i m a l i t y t e s t N)

255

257 # func t i on f o r check ing the p r ima l i t y t e s t f o r N
de f c h e c k p r i m a l i t y t e s t N (s e l f , r e s u l t s) :

259 s e l f . f unc t i on count [8] += 1
i f each p layer has checked through i t s whole l i s t o f

primes , but none d i v i d e s N, p and q are so f a r
accepted

261 i f r e s u l t s [0] . va lue == 0 :
#p r i n t ” p r ima l i t y t e s t f o r N i s OK, generate g”

263 s e l f . g ene ra t e g ()
i f the r e s u l t s are not 0 , then or or more o f the

p l ay e r s have d i s cove r ed a f a c t o r f o r N that i s not p
or q , s t a r t the whole p roce s s from s t a r t with
gene ra t ing p

265 e l s e :
#p r i n t ” p r ima l i t y t e s t f o r N f a i l e d , s t a r t

gene ra t ing p”
267 s e l f . g enera te p ()

269
func t i on f o r ag ree ing on a random chosen g

271 de f gene ra t e g (s e l f) :
s e l f . f unc t i on count [9] += 1

273 # player 1 chooses a random number in the i n t e r v a l [1 , N
−1] and share s i t with the other p l aye r s

i f s e l f . runtime . id == 1 :
275 s e l f . g = random . rand int (1 , s e l f . n r evea l ed − 1)

#p r i n t ”g = ” + s t r (s e l f . g)
277 s e l f . g = s e l f . runtime . shamir share ([1] , s e l f . Zp ,

s e l f . g)
e l s e :

99

100 APPENDIX D. VIFF DISTRIBUTED RSA CODE

279 # no input to the shamir share means that t h i s
p laye r has no value to share , but ge t s a value o f
what i s shared (by p laye r 1)

s e l f . g = s e l f . runtime . shamir share ([1] , s e l f . Zp)
281

s e l f . open g = s e l f . runtime . open (s e l f . g)
283 r e s u l t s = g a t h e r s h a r e s ([s e l f . open g])

r e s u l t s . addCallback (s e l f . check g)
285

287 # func t i on f o r d i s t r i b u t e d b i p r i m a l i t y t e s t , check that the
j a c o b i symbol o f g i s equal to 1 , i f yes , c a l c u l a t e v

de f check g (s e l f , r e s u l t s) :
289 s e l f . f unc t i on count [1 0] += 1

#p r i n t ”g = ” + s t r (r e s u l t s [0] . va lue)
291 s e l f . g = r e s u l t s [0] . va lue

c a l c u l a t e the j a c o b i symbol o f (g/N)
293 j a c o b i = gmpy . j a c o b i (s e l f . g , s e l f . n r evea l ed) % s e l f .

n r evea l ed
#p r i n t ” j a c o b i = ” + s t r (j a c o b i)

295 # i f the j a c o b i va lue i s equal to 1 , then c a l c u l a t e v
i f j a c o b i == 1 :

297 # c a l c u l a t e the v ’ s
i f s e l f . runtime . id == 1 :

299 # c a l c u l a t e p laye r 1 ’ s p r i v a t e part o f phi (N −
p1 − q1 + 1)

s e l f . p h i i = s e l f . n r evea l ed − s e l f . p − s e l f . q +
1

301 #s e l f . v = s e l f . g ∗∗ ((s e l f . n r evea l ed − s e l f . p −
s e l f . q + 1) / 4) % s e l f . n r evea l ed

base = gmpy . mpz(s e l f . g)
303 power = gmpy . mpz(s e l f . p h i i / 4)

modulus = gmpy . mpz(s e l f . n r evea l ed)
305 s e l f . v = i n t (pow(base , power , modulus))

#s e l f . v = s e l f . powermod (s e l f . g , (s e l f . n r evea l ed
− s e l f . p − s e l f . q + 1) / 4 , s e l f . n r evea l ed)

307 e l s e :
c a l c u l a t e every other p layers ’ p r i v a t e part o f

phi −(p i + q i) f o r p laye r i
309 s e l f . p h i i = −(s e l f . p + s e l f . q)

the func t i on gmpy . divm (1 , a , b) c a l c u l a t e s the
i n v e r s e o f a mod b

311 s e l f . i n v e r s e v = i n t (gmpy . divm (1 , s e l f . g , s e l f .
n r evea l ed))

313 base = gmpy . mpz(s e l f . i n v e r s e v)
power = gmpy . mpz(− s e l f . p h i i / 4)

315 modulus = gmpy . mpz(s e l f . n r evea l ed)
s e l f . v = i n t (pow(base , power , modulus))

317
#p r i n t ” s e l f . p h i i = ” + s t r (s e l f . p h i i)

319 # i f the j a c o b i va lue i s not 1 , then choose generate a
new g

e l s e :

100

101

321 s e l f . g ene ra t e g ()
re turn

323
#p r i n t ” s e l f . v = ” + s t r (s e l f . v)

325
share the v ’ s (a l r eady mod N)

327 v1 , v2 , v3 = s e l f . runtime . shamir share ([1 , 2 , 3] , s e l f .
Zp , s e l f . v)

329 # c a l c u l a t e the t o t a l v
v t o t = v1 ∗ v2 ∗ v3

331 s e l f . open v = s e l f . runtime . open (v t o t)
r e s u l t s = g a t h e r s h a r e s ([s e l f . open v])

333 #pr in t ”GIKK GREIT MED GATHER SHARES”
r e s u l t s . addCallback (s e l f . check v)

335

337 # func t i on f o r check ing f o r a v a l i d v
de f check v (s e l f , r e s u l t s) :

339 s e l f . f unc t i on count [1 1] += 1
the r e s u l t i n g v i s a l s o c a l c u l a t e d mod N

341 v = r e s u l t s [0] . va lue % s e l f . n r evea l ed
#p r i n t ”v = ” + s t r (v)

343
i f v i s equal to 1/−1 mod N, go to the next step ,

gene ra t ing z
345 i f v == 1 or v == s e l f . n r evea l ed − 1 :

s e l f . g en e r a t e z ()
347 # e l s e , the d i s t r i b u t e d b i p r i m a l i t y t e s t f a i l e d , s t a r t

a l l over with genera t ing p
e l s e :

349 s e l f . p r ime po inte r = 0
s e l f . g ene ra te p ()

351

353 # func t i on f o r the 4 th step in the d i s t r i b u t e d b i p r i m a l i t y
t e s t −−> the a l t e r n a t i v e s tep de s c r ibed

de f g en e r a t e z (s e l f) :
355 s e l f . f unc t i on count [1 2] += 1

each p laye r generate a random number
357 s e l f . r z = random . randint (1 , s e l f . n r evea l ed − 1)

the random numbers are shared
359 r1 , r2 , r3 = s e l f . runtime . shamir share ([1 , 2 , 3] , s e l f .

Zp , s e l f . r z)
z = (r1 + r2 + r3) ∗ (−1 + (s e l f . ptot + s e l f . qtot))

361
s e l f . open z = s e l f . runtime . open (z)

363 r e s u l t s = g a t h e r s h a r e s ([s e l f . open z])
r e s u l t s . addCallback (s e l f . check z)

365

367 # func t i on f o r check ing that gcd (z , N) i s equal to 1
de f check z (s e l f , r e s u l t s) :

369 s e l f . f unc t i on count [1 3] += 1

101

102 APPENDIX D. VIFF DISTRIBUTED RSA CODE

z = r e s u l t s [0] . va lue % s e l f . n r evea l ed
371 #pr in t ” z = ” + s t r (z)

373 # c a l c u l a t e the gcd o f z and N
z n = gmpy . gcd (z , s e l f . n r evea l ed)

375 # i f the gcd i s equal to 1 , then the d i s t r i b u t e d
b i p r i m a l i t y t e s t i s passed

i f z n == 1 :
377 #pr i n t ” gcd (z , N) = 1 , s t a r t gene ra t ing e , d”

choos ing the RSA pub l i c exponent e , a prime c l o s e
to a power o f two i s o f t en chosen , 2ˆ16 + 1 =
65537 i s very o f t en used

379 s e l f . e = 2∗∗16 + 1
#s e l f . e = 17

381 #pr i n t ” e = ” + s t r (s e l f . e)
s e l f . g e n e r a t e l ()

383 #s e l f . g e n e r a t e p s i ()

385 # e l s e the d i s t r i b u t e d b i p r i m a l i t y t e s t has f a i l e d , and
the whole p ro to co l i s s t a r t e d again by gene ra t ing new
p and q ’ s

e l s e :
387 #pr i n t ” gcd (z , N) != 1 , r e s t a r t with gene ra t ing p”

s e l f . p r ime po in te r = 0
389 s e l f . g enera te p ()

391
func t i on f o r gene ra t ing l , used to f i n d i n g the p r i v a t e

exponent d
393 # by a r r i v i n g at t h i s func t i on p and q are found to be

primes , and only a shared d i s needed
de f g e n e r a t e l (s e l f) :

395 s e l f . f unc t i on count [1 4] += 1
every p laye r c a l c u l a t e s h i s / her p r i v a t e p h i i mod e (

pub l i c exponent)
397 s e l f . l = s e l f . p h i i % s e l f . e

p r i n t ”\n\nPRIVATE VARIABLES”
399 pr i n t ” s e l f . l = ” + s t r (s e l f . l)

share the l ’ s and c a l c u l a t e the t o t a l l
401 l1 , l2 , l 3 = s e l f . runtime . shamir share ([1 , 2 , 3] , s e l f .

Zp , s e l f . l)
l t o t = l 1 + l 2 + l 3

403
o p e n l t o t = s e l f . runtime . open (l t o t)

405 r e s u l t s = g a t h e r s h a r e s ([o p e n l t o t])
r e s u l t s . addCallback (s e l f . g enera te d)

407

409 # func t i on f o r gene ra t ing the p r i v a t e exponent d , each
p laye r end up with a p r i v a t e part o f the t o t a l d

de f genera te d (s e l f , r e s u l t s) :
411 s e l f . f unc t i on count [1 5] += 1

c a l c u l a t e the t o t a l l mod e
413 l t o t = r e s u l t s [0] . va lue % s e l f . e

102

103

#p r i n t ” l t o t = ” + s t r (l t o t)
415

check that t o t a l l i s i n v e r t a b l e mod e
417 try :

ze ta = gmpy . divm (1 , l t o t , s e l f . e) # CHECK IF
INVERTABLE

419 except :
i f not i nve r tab l e , the p ro to co l needs to be

s t a r t e d a l l over
421 # not i n v e r t a b l e o f t en means badly chosen ’ e ’

p r i n t ” not i n v e r t a b l e mod e ”
423 s e l f . g enera te p ()

425 #pr in t ” zeta (inv) = ” + s t r (ze ta)

427 # c a l c u l a t e t h i s p layer ’ s p r i v a t e d , rounded down , t h i s
means i t ’ s not e n t i r e l y co r r e c t , but c o r r e c t e d l a t e r

s e l f . d = i n t (− (ze ta ∗ s e l f . p h i i) / s e l f . e)
429 p r i n t ” s e l f . p = ” + s t r (s e l f . p)

p r i n t ” s e l f . q = ” + s t r (s e l f . q)
431 p r i n t ” s e l f . d = ” + s t r (s e l f . d)

p r i n t ”N (pub l i c) = ” + s t r (s e l f . n r evea l ed)
433 p r i n t ” Total b i t s in N = ” +s t r (math . l og (s e l f . n revea l ed

, 2))

435 # c a l c u l a t e t h i s p layer ’ s c , which i s used to c o r r e c t
the d with a t r i a l decrypt ion

base = gmpy . mpz(s e l f .m)
437 power = gmpy . mpz(s e l f . e)

modulus = gmpy . mpz(s e l f . n r evea l ed)
439 s e l f . c = i n t (pow(base , power , modulus))

441 # the wanted value to c a l c u l a t e i s t h i s p layer ’ s cˆ d i
mod N, but p layer 1 ’ s ’d ’ i s negat ive , t h e r e f o r e f i n d

the i n v e r s e o f p laye r 1 ’ s c mod N, and use that
in s t ead

i f s e l f . runtime . id == 1 :
443 s e l f . c = gmpy . divm (1 , s e l f . c , s e l f . n r evea l ed)

base = gmpy . mpz(s e l f . c)
445 i f s e l f . runtime . id == 1 :

power = gmpy . mpz(− s e l f . d)
447 e l s e :

power = gmpy . mpz(s e l f . d)
449 modulus = gmpy . mpz(s e l f . n r evea l ed)

decrypt = cˆ d i mod N
451 s e l f . decrypt = i n t (pow(base , power , modulus))

#p r i n t ” s e l f . decrypt (cˆ d i mod N) = ” + s t r (s e l f . decrypt
)

453
each p laye r share i t s c = s e l f . decrypt

455 c1 , c2 , c3 = s e l f . runtime . shamir share ([1 , 2 , 3] , s e l f .
Zp , s e l f . decrypt)

457 open c1 = s e l f . runtime . open (c1)

103

104 APPENDIX D. VIFF DISTRIBUTED RSA CODE

open c2 = s e l f . runtime . open (c2)
459 open c3 = s e l f . runtime . open (c3)

461 r e s u l t s = g a t h e r s h a r e s ([open c1 , open c2 , open c3])
r e s u l t s . addCallback (s e l f . check decrypt)

463
de f check decrypt (s e l f , r e s u l t s) :

465 s e l f . f unc t i on count [1 6] += 1
player 3 i s r e s p o n s i b l e f o r the t r i a l decrypt ion ,

mostly because p layer 1 has a negat ive d and that
means more c a l c u l a t i o n s i f p laye r 1 i s suppose to do
the task

467 i f s e l f . runtime . id == 3 :
c1 = r e s u l t s [0] . va lue

469 c2 = r e s u l t s [1] . va lue
c3 = r e s u l t s [2] . va lue

471
the adjustment i s at most n−1, f o r three p l a ye r s

t h i s means max 2
473 f o r i in range (0 , 3) :

c a l c u l a t e the temp decrypt
475 tmp decrypt = c1 ∗ c2 ∗ c3 % s e l f . n r evea l ed #

s e l f . c∗∗ s e l f . r ∗ c1 ∗ c2 ∗ c3 % s e l f .
n r evea l ed

p r in t ” Decryption = ” + s t r (tmp decrypt)
477 # check i f t h i s va lue i s the c o r r e c t va lue

i f (tmp decrypt == s e l f .m) :
479 p r i n t ”d found , with +r = ” + s t r (i)

i f i t i s , c o r r e c t d e c r y p t i o n s i s i n c r e a s e d
481 s e l f . c o r r e c t d e c r y p t i o n s += 1

pr in t ” Correct dec rypt i ons : ” + s t r (s e l f .
c o r r e c t d e c r y p t i o n s) + ” / ” + s t r (s e l f .
rounds)

483 break
e l s e :

485 # i f not , p laye r 3 ’ s d i s i n c r e a s e d by 1 and
c3 i s r e c a l c u l a t e d be f o r e the next

i t e r a t i o n o f the for−loop i s done
s e l f . d += 1

487 base = gmpy . mpz(s e l f . c)
power = gmpy . mpz(s e l f . d)

489 modulus = gmpy . mpz(s e l f . n r evea l ed)
c3 = i n t (pow(base , power , modulus))

491
time2 i s s e t to c a l c u l a t e the t o t a l time f o r the

gene ra t i on o f t h i s v a l i d key
493 s e l f . time2 = time . c l o ck ()

completed rounds i s i n c r e a s e d in case o f more rounds
495 s e l f . completed rounds += 1

pr in t ”Completed rounds : ” + s t r (s e l f . completed rounds)
+ ” / ” + s t r (s e l f . rounds)

497 # the time f o r f i n d i n g the cur rent key i s saved in the
t imes v a r i a b l e

s e l f . t imes += [s e l f . time2 − s e l f . time1]

104

105

499 # check i f a l l the key gene ra t i on rounds are f i n i s h e d
i f s e l f . completed rounds == s e l f . rounds :

501 # i f so , p r i n t the datas from the gene ra t i on s
p r i n t ”\n\nBENCHMARKS FOR VALID KEY GENERATION”

503 p r in t ” t imes = ” + s t r (s e l f . t imes)
p r i n t ” Average : ” + s t r (sum(s e l f . t imes) / (s e l f .

rounds))
505 p r in t ” Correct dec rypt i ons : ” + s t r (s e l f .

c o r r e c t d e c r y p t i o n s) + ” / ” + s t r (s e l f . rounds)
p r i n t ”\n”

507 f o r i in range (l en (s e l f . f unc t i on count)) :
p r i n t s t r (s e l f . funct ion count names [i]) + ” : ” +

s t r (s e l f . f unc t i on count [i]) + ” , avg : ” +
s t r (i n t (s e l f . f unc t i on count [i] / s e l f . rounds)
)

509 # t e s t i f the program i s suppose to do
decryption benchmark as we l l

i f s e l f . decrypt benchmark act ive == True :
511 s e l f . decrypt benchmark ()

re turn
513 e l s e :

the p ro to co l i s f i n i s h e d , synchron ize the
shutdown

515 s e l f . runtime . shutdown ()
e l s e :

517 # more key gene ra t i on s h a l l be done , r e s e t the
parameters f o r a new round and s t a r t the p ro to co l

again from genera te p ()
s e l f . p r ime po inte r = 0

519 s e l f . d e c r y p t t r i e s = 0
s e l f . time1 = time . c l o ck ()

521 s e l f . g enera te p ()

523
func t i on f o r benchmarking the decrypt ion time f o r a v a l i d

key
525 # the method i s to choose a message ’m’ , c a l c u l a t e the

c iphe r c = mˆe mod N, then f i n d each player ’ s part o f the
message mi = cˆ di mod N

def decrypt benchmark (s e l f) :
527 # s t a r t the c l o ck f o r time benchmark

s e l f . decrypt t ime1 = time . c l o ck ()
529

c a l c u l a t e t h i s p layer ’ s c iphe r c
531 base = gmpy . mpz(s e l f .m)

power = gmpy . mpz(s e l f . e)
533 modulus = gmpy . mpz(s e l f . n r evea l ed)

s e l f . c = i n t (pow(base , power , modulus))
535

s i n c e p layer 1 ’ s d i s negat ive , f i n d the i n v e r s e
537 i f s e l f . runtime . id == 1 :

s e l f . c = gmpy . divm (1 , s e l f . c , s e l f . n r evea l ed)
539 base = gmpy . mpz(s e l f . c)

i f s e l f . runtime . id == 1 :

105

106 APPENDIX D. VIFF DISTRIBUTED RSA CODE

541 power = gmpy . mpz(− s e l f . d)
e l s e :

543 power = gmpy . mpz(s e l f . d)

545 modulus = gmpy . mpz(s e l f . n r evea l ed)
c a l c u l a t e t h i s p layer ’ s mi = cˆ d i mod N

547 s e l f . decrypt = i n t (pow(base , power , modulus))

549 # share the va lue s
c1 , c2 , c3 = s e l f . runtime . shamir share ([1 , 2 , 3] , s e l f .

Zp , s e l f . decrypt)
551

c a l c u l a t e the t o t a l c and open
553 c t o t = c1 ∗ c2 ∗ c3

open c to t = s e l f . runtime . open (c t o t)
555

r e s u l t s = g a t h e r s h a r e s ([open c to t])
557 r e s u l t s . addCallback (s e l f . check decrypt benchmark)

559
func t i on f o r check ing the r e s u l t s from the decrypt ion

benchmark
561 de f check decrypt benchmark (s e l f , r e s u l t s) :

the o f f s e t o f the t o t a l d i s o f f by at most n−1,
i t e r a t e through a l l p o s s i b l e va lue s

563 f o r i in range (0 , 3) :
c a l c u l a t e a tmp decrypt

565 tmp decrypt = r e s u l t s [0] . va lue % s e l f . n r evea l ed
check i f t h i s i s equal to the o r i g i n a l message

567 i f tmp decrypt == s e l f .m:
i f so , stop the c l o ck

569 s e l f . decrypt t ime2 = time . c l o ck ()
update the number o f decrypt t r i e s and save

the time used f o r the cur rent decrypt ion
571 s e l f . d e c r y p t t r i e s += 1

s e l f . dec rypt t imes += [s e l f . decrypt t ime2 − s e l f
. decrypt t ime1]

573 #p r in t ” c o r r e c t decrypt ion f o r m = ” + s t r (s e l f .
m)

575 # check i f more decrypt ion benchmarks i s suppose
to be done

i f s e l f . d e c r y p t t r i e s < s e l f . decrypt rounds :
577 # i f yes , update the o r i g i n a l message to not

repeat decrypt ion f o r the same message ’
m’ every time

s e l f .m += 1
579 # go back to the decrypt benchmark () f o r a

new round
s e l f . decrypt benchmark ()

581 return
e l s e :

583 # pr i n t some u s e f u l output from the
benchmark

106

107

pr in t ”\n\nBENCHMARK FOR DECRYPTION”
585 pr i n t ” t imes = ” + s t r (s e l f . dec rypt t imes)

p r i n t ” average decrypt time = ” + s t r (sum(
s e l f . dec rypt t imes) / s e l f . decrypt rounds
)

587 # the p ro to co l i s f i n i s h e d , synchron ize the
shutdown

s e l f . runtime . shutdown ()
589 return

591
func t i on f o r d i s t r i b u t e d decrypt ion o f an a r b i t r a r y

c i p h e r t e x t
593 # the p l aye r s needs to have a shared key f o r t h i s func t i on

to work
each p laye r c a l c u l a t e s m i and share s the va lue s to obta in

the message M
595 de f decrypt ion (s e l f , c i p h e r t e x t) :

s i n c e p layer 1 ’ s d i s negat ive , f i n d the i n v e r s e
597 i f s e l f . runtime . id == 1 :

c i p h e r t e x t = gmpy . divm (1 , c iphe r t ex t , s e l f .
n r evea l ed)

599 base = gmpy . mpz(c i p h e r t e x t)

601 i f s e l f . runtime . id == 1 :
power = gmpy . mpz(− s e l f . d)

603 e l s e :
power = gmpy . mpz(s e l f . d)

605
modulus = gmpy . mpz(s e l f . n r evea l ed)

607 m i = i n t (pow(base , power , modulus))

609 m1, m2, m3 = s e l f . runtime . shamir share ([1 , 2 , 3] , s e l f .
Zp , m i)

m tot = m1 ∗ m2 ∗ m3
611 open m tot = s e l f . runtime . open (m tot)

613 r e s u l t s = g a t h e r s h a r e s ([open m tot])
r e s u l t s . addCallback (s e l f . check dec rypt ion)

615

617 # func t i on f o r r e v e a l i n g the p l a i n t e x t from decrypt ing the
c i p h e r t e x t

de f check dec rypt ion (s e l f , r e s u l t s) :
619 message = r e s u l t s [0] . va lue % s e l f . n r evea l ed

p r in t ”\ nDecryption o f c i p h e r t e x t y i e l d s M = ” + s t r (
message)

621

623 # func t i on f o r d i s t r i b u t e d s i g n a t u r e o f an a r b i t r a r y message
the p l ay e r s needs to have a shared key f o r t h i s func t i on

to work
625 # s i g n a t u r e i s c a r r i e d out by us ing the shared ’d ’ to

encrypt a message

107

108 APPENDIX D. VIFF DISTRIBUTED RSA CODE

each p laye r c a l c u l a t e s c i and share s the va lue s to obta in
the s i g n a t u r e C

627 de f s i g n a t u r e (s e l f , message) :
s i n c e p layer 1 ’ s d i s negat ive , f i n d the i n v e r s e

629 i f s e l f . runtime . id == 1 :
message = gmpy . divm (1 , message , s e l f . n r evea l ed)

631 base = gmpy . mpz(message)

633 i f s e l f . runtime . id == 1 :
power = gmpy . mpz(− s e l f . d)

635 e l s e :
power = gmpy . mpz(s e l f . d)

637
modulus = gmpy . mpz(s e l f . n r evea l ed)

639 c i = i n t (pow(base , power , modulus))

641 c1 , c2 , c3 = s e l f . runtime . shamir share ([1 , 2 , 3] , s e l f .
Zp , c i)

c t o t = c1 ∗ c2 ∗ c3
643 open c to t = s e l f . runtime . open (c t o t)

645 r e s u l t s = g a t h e r s h a r e s ([open c to t])
r e s u l t s . addCallback (s e l f . ch e ck s i gna t u r e)

647

649 # func t i on f o r r e v e a l i n g the c a l c u l a t e d s i g n a t u r e C o f a
g iven message M

def che ck s i gna t u r e (s e l f , r e s u l t s) :
651 s i g n a t u r e = r e s u l t s [0] . va lue % s e l f . n r evea l ed

p r in t ”\ nSignature f o r message M i s C = ” + s t r (
s i g n a t u r e)

653

655 # func t i on that s t a r t s the shared RSA pro to co l
de f i n i t (s e l f , runtime) :

657
CHANGEABLE VARIABLES

659 #∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

661 # rounds are the t o t a l number o f rounds to be run f o r
benchmark

s e l f . rounds = 1
663 # s e t True to do decrypt ion benchmark , Fa l se to drop

t h i s benchmark
s e l f . decrypt benchmark act ive = True

665 # The number o f decrypt ion rounds to be performed i f
a c t i v e

s e l f . decrypt rounds = 20
667 # the number o f b i t s in N (meaning p and q are b i t s N /

2 each)
s e l f . b i t s N = 64

669
m i s the message used to check f o r c o r r e c t decrypt ion

671 s e l f .m = 2

108

109

673 # the lower l i m i t f o r p r ima l i t y t e s t i n g , t e s t i n g done
s e c r e t shared

s e l f . bound1 = 12
675 # the l i m i t s f o r p r ima l i t y t e s t i n g o f N, done l o c a l l y

with d i f f e r e n t boundar ies f o r each p layer
more e f f i c i e n t to l e t p laye r 1 check l a r g e r span ,

s t a t i s t i c a l l y p laye r 1 w i l l f a i l most o f t en
677 s e l f . bound2 p1 = 15000 # 12−15000 = 1749 primes

s e l f . bound2 p2 = 17500 # 15000−17500 = 260 primes
679 s e l f . bound2 p3 = 20000 # 17500−20000 = 253 primes

681
VARIABLES NOT TO BE CHANGED

683 #∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

685 # time1 and time2 i s used to measure the t o t a l time o f
gene ra t ing a key

s e l f . time1 = time . c l o ck ()
687 s e l f . time2 = 0

completed rounds are used when running keygenerat ion
s e v e r a l t imes f o r benchmarking

689 s e l f . completed rounds = 0
times are the t imes from each round in key gene ra t i on

691 s e l f . t imes = []
c o r r e c t d e c r y p t i o n s are used to sum up the t o t a l

number o f c o r r e c t dec rypt i ons when benchmarking key
gene ra t i on

693 # i f p r in tout show that c o r r e c t d e c r y p t i o n s i s not equal
to the t o t a l number o f rounds , the p ro to co l i s

f lawed
s e l f . c o r r e c t d e c r y p t i o n s = 0

695
decrypt t ime1 /2 i s used to measure the time f o r

decrypt ion benchmark
697 s e l f . decrypt t ime1 = 0

s e l f . decrypt t ime2 = 0
699 # decrypt t imes are the t imes from each round in the

decrypt benchmark
s e l f . dec rypt t imes = []

701
#s e l f . completed decrypt = 0

703
completed decrypt i s used to count the number o f

dec rypt i ons done u n t i l now in decrypt ion benchmark
705 s e l f . d e c r y p t t r i e s = 0

707 # Save the Runtime f o r l a t e r use
s e l f . runtime = runtime

709
b i t l e n g t h i s the number o f b i t s in p and q (c o r r e c t

f o r 3 p l a ye r s)
711 s e l f . b i t l e n g t h = i n t (s e l f . b i t s N / 2) − 2

109

110 APPENDIX D. VIFF DISTRIBUTED RSA CODE

numer ic l ength i s the used to generate a numeric va lue
based on a c e r t a i n number o f b i t s and i s d iv ided by

4 because o f the way p and q are choosen l a t e r
713 s e l f . numer ic l ength = i n t ((2∗∗ s e l f . b i t l e n g t h) / 4)

715 # p r i m e l i s t b 1 i s the l i s t o f primes that are checked
s e c r e t shared

s e l f . p r i m e l i s t b 1 = s e l f . g e t pr imes (2 , s e l f . bound1)
717

p r i m e l i s t b 2 i s the l i s t o f primes that are checked
l o c a l l y by each player , and i s t h e r e f o r e d i f f e r e n t
f o r each p laye r

719 i f s e l f . runtime . id == 1 :
s e l f . p r i m e l i s t b 2 = s e l f . g e t pr imes (s e l f . bound1 ,

s e l f . bound2 p1)
721 e l i f s e l f . runtime . id == 2 :

s e l f . p r i m e l i s t b 2 = s e l f . g e t pr imes (s e l f . bound2 p1 ,
s e l f . bound2 p2)

723 e l s e :
s e l f . p r i m e l i s t b 2 = s e l f . g e t pr imes (s e l f . bound2 p2 ,

s e l f . bound2 p3)
725

#p r i n t s e l f . p r i m e l i s t b 1
727 p r i n t ” l ength o f l i s t b2 = ” + s t r (l en (s e l f .

p r i m e l i s t b 2))

729 # pr ime po in te r i s used to po int to the r i g h t prime
number in the l i s t at a l l t imes

s e l f . p r ime po in te r = 0
731

l i s t used f o r debugging how many times each func t i on
i s run

733 #
s e l f . f unc t i on count =

[0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0]
735 s e l f . funct ion count names = [” genera te p ” , ” gene ra te q ” ,

” t r i a l d i v i s i o n p ” , ” c h e c k t r i a l d i v i s i o n p ” , ”
t r i a l d i v i s i o n q ” , ” c h e c k t r i a l d i v i s i o n q ” , ” check n
” , ” p r i m a l i t y t e s t N ” , ” c h e c k p r i m a l i t y t e s t N ” , ”
gene ra t e g ” , ” check g ” , ” check v ” , ” g en e r a t e z ” , ”
check z ” , ” g e n e r a t e l ” , ” genera te d ” , ” check decrypt
”]

737 # l needs to be l a r g e enough to cope with a l l p o s s i b l e
numbers that appear in the program during execut ion

i f t h i s va lue i s too small , the va lue s could wrap
around the value o f Zp . modulus and g ive bogus outputs

739 l = i n t (s e l f . b i t s N ∗ 3 . 5)
k = runtime . opt ions . s e cu r i ty pa ramete r

741
For the comparison p ro to co l to work , we need a f i e l d

modulus
743 # b igge r than 2∗∗(l +1) + 2∗∗(l+k+1) , where the b i t

l ength o f

110

111

the input numbers i s l and k i s the s e c u r i t y parameter
.

745 # Further more , the prime must be a Blum prime (a prime
p such

that p % 4 == 3 holds) . The f ind pr ime func t i on l e t s
us f i n d

747 # a s u i t a b l e prime .
s e l f . Zp = GF(f ind pr ime (2∗∗ (l + 1) + 2∗∗(l + k + 1) ,

blum=True))
749

#p r i n t s e l f . Zp . modulus
751

s t a r t the p ro to co l by each p laye r gene ra t ing i t s own
p r i v a t e va lue f o r p

753 s e l f . g enera te p ()

755
Parse command l i n e arguments .

757 par s e r = OptionParser ()
Runtime . add opt ions (par s e r)

759 opt ions , a rgs = par s e r . p a r s e a r g s ()

761 i f l en (args) == 0 :
par s e r . e r r o r (” you must s p e c i f y a c o n f i g f i l e ”)

763 e l s e :
id , p l ay e r s = l o a d c o n f i g (args [0])

765
Create a d e f e r r e d Runtime and ask i t to run our p ro to co l when

ready .
767 #pre runt ime = crea te runt ime (id , p layer s , 1 , opt ions ,

Toft05Runtime)
r u n t i m e c l a s s = make runt ime c lass (mixins =[ComparisonToft07Mixin

])
769 pre runt ime = crea te runt ime (id , p layer s , 1 , opt ions ,

r u n t i m e c l a s s)
pre runt ime . addCallback (Protoco l)

771
Star t the Twisted event loop .

773 r e a c t o r . run ()

111

112 APPENDIX D. VIFF DISTRIBUTED RSA CODE

112

Appendix E
GMPY

The General Multiprecision PYthon project focuses on Python-usable mod-
ules providing multiprecision arithmetic functionality to Python program-
mers. GMPY supports all kinds of mathematical functions, written in the
programming language C for optimization, in an easy-to-use fashion, and
GMPY has been used extensively throughout the implementation of dis-
tributed RSA in VIFF. For more information about GMPY see [GMP03],
and for where to download GMPY see Appendix B.

All the functions used in the distributed RSA implementation will briefly
be described below.

E.1 find prime

The function next prime(x) returns the smallest prime number > x and does
so in a really fast manner even for very large x’s. Note that this function
uses a probabilistic definition of prime.

E.2 jacobi

The function jacobi(x, y) returns the Jacobi symbol
(
x
y

)
, and is used in the

distributed biprimality test.

E.3 pow

The standard power operator in Python, **, is not very optimized, and
takes from seconds to minutes to calculate typical large exponents like the
ones used in RSA. The function pow(a, b, c) returns the number ab mod
c in matter of milliseconds for arbitrary large numbers because it’s based

113

114 APPENDIX E. GMPY

on the exponentiation by squaring method (also called square-and-multiply
method).

E.4 divm

The function divm(a, b, m) returns x such that b · x ≡ a mod m, therefore
being an easy way of finding modular inverses by setting a = 1.

E.5 gcd

The function gcd(a, b) returns the greatest common denominator of the
numbers a and b.

114

	Title Page
	Problem Description
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	1 Introduction
	1.1 Motivation
	1.2 Problem Statement
	1.3 Methodology
	1.4 Related Work
	1.5 Report Outline

	2 Secret Sharing
	2.1 Finite Fields
	2.2 Secret Splitting
	2.2.1 Terminology
	2.2.2 Insecure Flawed Scheme
	2.2.3 Additive Scheme

	2.3 Threshold Schemes
	2.3.1 Introduction
	2.3.2 Shamir's Secret Sharing Scheme
	2.3.3 Blakley's Scheme

	3 Multiparty Computation
	3.1 Introduction
	3.2 Stages in MPC
	3.2.1 Input Stage
	3.2.2 Computation Stage
	3.2.3 Final Stage

	3.3 Adversary Model
	3.3.1 Passive Adversary
	3.3.2 Active Adversary
	3.3.3 Static vs. Adaptive Adversary

	3.4 Secure Multiparty Computation
	3.5 Addition
	3.6 Multiplication
	3.6.1 Multiplication Example

	4 Virtual Ideal Functionality Framework
	4.1 Background
	4.2 Model
	4.3 Security Assumptions
	4.4 Implementation
	4.4.1 The Basics
	4.4.2 Deferred and Shares
	4.4.3 Runtime
	4.4.4 Fields
	4.4.5 Asynchronous Communication
	4.4.6 Parallel Execution

	5 RSA
	5.1 Public-key Encryption
	5.2 RSA Scheme
	5.3 Distributed RSA scheme
	5.3.1 Pick Candidates
	5.3.2 Trial Division on N
	5.3.3 Distributed Biprimality Test
	5.3.4 Calculate Exponents
	5.3.5 Decryption
	5.3.6 Signature

	6 Distributed RSA Implementation in VIFF
	6.1 Coding Style
	6.2 Initialization
	6.3 Key Generation
	6.3.1 Pick Candidates
	6.3.2 Trial Division on N
	6.3.3 Distributed Biprimality Test
	6.3.4 Calculate Exponents

	6.4 Decryption and Signature
	6.5 Code for Benchmarking
	6.6 Running the Program

	7 Security Analysis and Benchmarking
	7.1 Security Weaknesses
	7.1.1 Weakness 1: Distributed Trial Division
	7.1.2 Weakness 2: Alternative Step in Distributed Biprimality Test

	7.2 RSA Key Size Recommendation
	7.3 Benchmarking the Implementation
	7.3.1 Benchmark Equipment
	7.3.2 Key Generation
	7.3.3 Decryption

	8 Conclusions
	9 Further Work
	References
	Appendices
	A Electronic Appendix
	B Install VIFF
	B.1 Download and Install all the Necessary Files
	B.2 Run Test Application

	C Mathematics
	C.1 Linear System Approach
	C.2 Vandermonde Matrix

	D VIFF Distributed RSA Code
	E GMPY
	E.1 find_prime
	E.2 jacobi
	E.3 pow
	E.4 divm
	E.5 gcd

