Implementing Asynchronous
Multi-Party Computation

Martin Geisler

BRICS
Department of Computer Science
University of Aarhus

February 21st, 2008

24

Part |

Secure Integer Comparison

2/24

Secure Integer Comparison

» Given integers a and b, securely compute a > b.

24

Secure Integer Comparison

» Given integers a and b, securely compute a > b.

» Many variations:
> a, b can be private, public or secret shared.
» Same for the result.
» We can have two or more players.

24

Auctions

» Traditional auction:

» Bidders must be on-line.
» Bidding continues until a deadline is reached.

24

Auctions

» Traditional auction:

» Bidders must be on-line.
» Bidding continues until a deadline is reached.

» Maximum bid auction:

Price » P; may submit a maximum bid M;.

M 1

My 1

M 1

24

Auctions

» Traditional auction:

» Bidders must be on-line.
» Bidding continues until a deadline is reached.

» Maximum bid auction:

Price » P; may submit a maximum bid M;.

M, + » A public current price x is incremented
until only one M; > x.

My 1

M 1

24

Auctions

» Tradit
» B
» B

ional auction:

idders must be on-line.
idding continues until a deadline is reached.

» Maximum bid auction:

Price » P; may submit a maximum bid M;.

Mj 4

M; 1

Ms -

» A public current price x is incremented
until only one M; > x.

24

Auctions

» Tradit
» B
» B

ional auction:

idders must be on-line.
idding continues until a deadline is reached.

» Maximum bid auction:

Price » P; may submit a maximum bid M;.

Mj 4

» A public current price x is incremented
until only one M; > x.

24

Auctions

» Tradit
» B
» B

ional auction:

idders must be on-line.
idding continues until a deadline is reached.

» Maximum bid auction:

Price » P; may submit a maximum bid M;.
M, + » A plublic current price x is incremented
until only one M; > x.
X - -
My +

Ms -

24

Auctions

» Traditional auction:

» Bidders must be on-line.
» Bidding continues until a deadline is reached.

» Maximum bid auction:

Price » P; may submit a maximum bid M;.
M, 4+ P, wins » A public current price x is incremented
until only one M; > x.
X --4-- P, pays x
My +

M 1

24

Auctions

» Traditional auction:

» Bidders must be on-line.
» Bidding continues until a deadline is reached.

» Maximum bid auction:

Price » P; may submit a maximum bid M;.
M, + P, wins » A public current price x is incremented
until only one M; > x.
X --1-- P, pays x » Problem: Auction house knows M, and
My 4 is a trusted third party.

M 1

24

Removing Trust in the Auction House

» Want to remove trusted party T.

/ 24

Removing Trust in the Auction House

» Want to remove trusted party T.
» Split T into parties A and B.

24

Removing Trust in the Auction House

Protocol

Pi
a, b = share(M;)

vV v v v Y

Want to remove trusted party T.

Split T into parties A and B.
User P; shares M; into a and b.
A gets a, B gets b.

A and B run a comparison
protocol.

5/24

Homomorphic Encryption Scheme

» Encryption:
Epi(m,r) = g™h" mod n.

» Homomorphic:

Epi(m,r) - Epp(m',r") mod n = Ep(m+ m' mod u, r +r').

» Check ¢ = Epi(m, r) for m = 0:

¢ mod n=(g*)™ mod n.

6

24

Calculating M > x

l 1
x{1010110100]|

M:[1011010010]

» We wish to compute M > x
for /-bit numbers.

> Xx; is the j'th bit of x, m; is
the i'th bit of M.

24

Calculating M > x

l 1
x{1010110100]|

M:[1011010010]
Equal bits

» We wish to compute M > x
for /-bit numbers.

> Xx; is the j'th bit of x, m; is
the i'th bit of M.

24

Calculating M > x

l 1
x{1010110100]|

M:[1011010010]
Signifgnt bit

» We wish to compute M > x
for /-bit numbers.

> Xx; is the j'th bit of x, m; is
the i'th bit of M.

24

Calculating M > x

l 1
x{1010110100]|

M:[1011010010]

Non-significant bits

» We wish to compute M > x
for /-bit numbers.

> Xx; is the j'th bit of x, m; is
the i'th bit of M.

24

Calculating M > x

/ 1 » We wish to compute M > x

X: |1 010 | for ¢-bit numbers.
> Xx; is the j'th bit of x, m; is

M 1011 | the i'th bit of M.

> Define the following:

C:| |

Gi=xi—mi+1
‘

+ > m®x.
j=i+1

24

~

Calculating M > x

/ 1 » We wish to compute M > x

X: |1 010 | for ¢-bit numbers.
> Xx; is the j'th bit of x, m; is

M 1011 | the i'th bit of M.

> Define the following:

cl111 |

Gi=xi—mi+1
‘

+ > m®x.
j=i+1

24

~

Calculating M > x

/ 1 » We wish to compute M > x

X: |1 010 | for ¢-bit numbers.
> Xx; is the j'th bit of x, m; is

M 1011 | the i'th bit of M.

> Define the following:

c{1110 |

Gi=xi—mi+1
‘

+ > m®x.
j=i+1

24

~

Calculating M > x

/ 1 » We wish to compute M > x

X: |1 010 | for ¢-bit numbers.

> Xx; is the j'th bit of x, m; is
M 1011 | the i'th bit of M.

> Define the following:
cli110 |

T c=xi—m;+1
¢
+ Z m; & Xj.

j=it1

24

~

Calculating M > x

l

x{1010

M:[1011

cl1110

» We wish to compute M > x
for /-bit numbers.

> Xx; is the j'th bit of x, m; is
the i'th bit of M.

> Define the following:

Gi=xi—mi+1
‘

+ > m®x.
j=i+1

» M>x <— di: ¢ =0.

~

24

Protocol for M > x

» A and B know pk, A knows sk.
» Input x is public, M known to P;.

24

Protocol for M > x

» A and B know pk, A knows sk.
» Input x is public, M known to P;.

» Input m; additively secret shared.

24

Protocol for M > x

» A and B know pk, A knows sk.

» Input x is public, M known to P;.

» Input m; additively secret shared.

» A and B compute shares of ¢;.

24

Protocol for M > x

Epk(C'A)

]

vV v v v Y

A and B know pk, A knows sk.

Input x is public, M known to P;.

Input m; additively secret shared.

A and B compute shares of ¢;.
A sends Epx(cf') to B.

24

Protocol for M > x

A and B know pk, A knows sk.
Input x is public, M known to P;.

Epk(cisi)

Input m; additively secret shared.
A and B compute shares of ¢;.
A sends Epx(cf') to B.

B calculates Epi(cis;) using the
Pi homomorphic property.
B sends shuffled Epi(c;s;) to A.

vV v V. v Vv Y

<
[

3

3
v

Protocol for M > x

A and B know pk, A knows sk.
Input x is public, M known to P;.

M > x
A B

Input m; additively secret shared.
A and B compute shares of ¢;.
A sends Epx(cf') to B.

B calculates Epi(cis;) using the
Pi homomorphic property.
B sends shuffled Epi(c;s;) to A.

A checks if any ¢;s; is zero.

vV v V. v Vv Y

<
Il
3
3
2/

v

di:csi=0 < M > x.

Related Work

Communication

Computation

» Marc Fischlin's protocol:

» Blake and Kolesnikov's protocol:

24

Related Work

Communication

OF

Computation

» Marc Fischlin's protocol:

» Quadratic residuosity assumption.

» Encoding expands by X factor.
» Blake and Kolesnikov's protocol:

24

Related Work

Communication

OF

BK
o

Computation

» Marc Fischlin's protocol:

» Quadratic residuosity assumption.

» Encoding expands by X factor.
» Blake and Kolesnikov's protocol:

> Paillier encryption.
» No expansion.

24

Related Work

Communication

OF

DGK BK
o o

Computation

» Marc Fischlin's protocol:

» Quadratic residuosity assumption.

» Encoding expands by A factor.
» Blake and Kolesnikov's protocol:

> Paillier encryption.

» No expansion.

» Our protocol: Best of both worlds.

24

Benchmark Results

16 pFe
14 /
o
o
@ 12
2 /
S 10
é o F
£ 8 16
8
A 6
[}
o /O/ /O/
2 4
5 o DGK3; -
| e,

512 768 1024 1536 2048
Key size k (bits)

10/24

Part Il

Virtual Ideal Functionality Framework

11/24

VIFF Overview
» Framework for specifying MPC.

» Provides building-blocks for larger protocols.

» Asynchronous design.

» Automatic parallel scheduling.

12 /24

Asynchronous vs. Synchronous

“““““““““““ » All rounds equally fast.

» Optimal execution.

13 /24

Asynchronous vs. Synchronous

Time

Time

» All rounds equally fast.

» Optimal execution.

» Processing stalls.
» Wasted time!

13 /24

Asynchronous Design

r = rt.open((x +y) * z) » Entire tree is scheduled at once.
$ > Result is a form of “greedy
r scheduling”.
T » Implicit synchronization, no rounds.
rt.open

14 /24

Asynchronous Design

r = rt.open((x + y) * z)

» Entire tree is scheduled at once.

> Result is a form of “greedy
scheduling”.

» Implicit synchronization, no rounds.

» Advantages:

» Automatic parallel scheduling.
» Software scalability.

14 /24

Example: Hamming Distance

def xor(a, b):
assert a.field is b.field
if a.field is GF256:
return a + b
else:
returna + b —2%xaxb

> Straight-forward exclusive-or.

» Fast for GF(28) elements.
» Slower for Z, elements.
> (Already part of VIFF.)

15 /24

Example: Hamming Distance

def xor(a, b):
assert a.field is b.field
if a.field is GF256:
return a + b
else:
returna + b —2%xaxb

def hamming(s, t):
distance = 0
for i in range(len(s)):
distance += xor(s]i], t[i])
return distance

vV v v VY

v

v

Straight-forward exclusive-or.

Fast for GF(28) elements.
Slower for Z, elements.
(Already part of VIFF.)

Hamming distance.

Exclusive-ors run in parallel!

15 /24

Asynchronous Ideal Functionality

N = 1)
Po| | P2| -+ |Pn
]

) 7 J J

» Reacts on input from Z via P;.

» Inputs are tagged with a program counter.
» F forwards masked input to S.
» F relays traffic between S and P;.

16 /24

Asynchronous Ideal Functionality

N =11]
Po| | P2| -+ |Pn
)

) 7 J J

Reacts on input from Z via P;.

v

v

Inputs are tagged with a program counter.

v

F forwards masked input to S.

v

F queues replies.

v

Released upon signal from S.

16 /24

Operations

Assignment:
Output:

> (
> (
> Linear combination: (x:=c¢;-x1 + - -+ ¢ - X, pc).
» Multiplication: (
> (

Synchronization:

17 /24

Operations

>
>
>
>
>
>

Assignment:
Output:

Linear combination:
Multiplication:

Synchronization:

(synchronize, pc).

Direct correspondence to methods in VIFF Runtime.

17 /24

Simulating Assignment

Real World:
(.]
A Pi| |P2]| | P3
[]]

Ideal World:
Z
N] |
SHH A Pl |P2| | P3
N)

18 /24

Simulating Assignment

Real World:
2
(x=71 1|
A Pi| |P2| |P3
L J]
Ideal World:
2
__(_ _______ <X ::771> 1 1
S A P | P2 | P3

18 /24

Simulating Assignment

Real World:
Z
[1|
A (Epky(r2), 1) P | P2 | P3
[[<EPk3(r3)71> J J

Ideal World:
Z N
i —)
E SH AL Pi| [P2| |P3
“t ““““ (x :=17,1) J J

18 /24

Simulating Assignment
Real World:

2
[1|
A (Epk,(r2), 1) P | P2 | P3
[[<EPk3(r3)71> J J
Ideal World:
Z 2
W —)
E S/ A E Pi| [P2| |P3
t (x :=71) p= J J

18 /24

Simulating Assignment
Real World:

(. R
A (Epky(r2), 1) Pl |P2| | P3
[(Ent,(15).1) T T
Ideal World:
() 1) [\
- _(_<_E_p/_<3_(_r3_)1 1)] 1
E S —l Al Pi| [P2| |P3
| e)]

18 /24

Simulating Assignment

Real World:
(.]
A Pi| |P2]| | P3
\ J]

<EPk3(r3)7 1>

Ideal World:
(B 2 1 |
E Sk A E Pl |P2| | P3
- t _______ - J J

18 /24

Simulating Assignment

Real World:
(.]
A Pi| |P2]| | P3
\ J]

Ideal World:
Z
o T
S— A E Pl |P2| | P3
ek) e)]

18 /24

Simulating Assignment

Real World:
(ok, 1)
2
[1|
A P | P2 | P3
L J |
Ideal World:
(ok, 1)
2
i 1|
SH A P | P2 | P3

’
1
—T1
1
1
1
1
1
1
1
—
—

18 /24

Simulating Assignment

Real World:
2
[1|
A Pi| |P2| |P3
((Epiy(r2), 1))]
Ideal World:
[E@y 12 1
S Al Pi| |P2| | P3
_[_______ " J J

18 /24

Simulating Assignment

Real World:
Z
[1|
A P | P2 | P3
ut <EPk2(r2)vl> J J
Ideal World:
Z
N —)
S—AE P | P2 | P3
_t"_Zo_k_,_D pe J }

18 /24

Simulating Assignment

Real World:
Z (ok, 1)
[1|
A P | P2 | P3
L J |
Ideal World:
Z (ok, 1)
o 1|
SH A P | P2 | P3

18 /24

Performance Results

» Tested on 3 machines: USA, Norway, and Denmark.

19 /24

Performance Results

> Tested on 3 machines: USA, Norway, and Denmark.

» Tested multiplications and comparisons.

19 /24

Performance Results

> Tested on 3 machines: USA, Norway, and Denmark.

» Tested multiplications and comparisons.

» Tested parallel and serial multiplications:

A B A B

— =

19 /24

Performance Results

> Tested on 3 machines: USA, Norway, and Denmark.

» Tested multiplications and comparisons.

» Tested parallel and serial multiplications:

=]
| —

19 /24

Performance Results

> Tested on 3 machines: USA, Norway, and Denmark.

» Tested multiplications and comparisons.

» Tested parallel and serial multiplications:

VY,

19 /24

Performance Results

> Tested on 3 machines: USA, Norway, and Denmark.
» Tested multiplications and comparisons.

» Tested parallel and serial multiplications:

\ Idle

Idle[

Idle

Idle

VY,

19 /24

Parallel Multiplications

Average time (ms)
- N w B~ o1
e

50 2,000 4,000 6,000 8,000 10,000 12,000

20 /24

Serial Multiplications

200

)

150

100

(€
o

Average time (m

5 200 400 600 800 1,000

21 /24

Parallel Comparisons

1200 \

[}
o
o

S
o
o

Average time (ms

22 /24

Future Work

» Implement protocols for active security.

» Self-trust: protocols with t = n — 1.

23 /24

Conclusion

24 /24

http://viff.dk/

Conclusion

» Comparison protocol for one public and one shared input.

» A homomorphic encryption scheme.
» Low communication complexity.
» Low computational complexity.

24 /24

http://viff.dk/

Conclusion

» Comparison protocol for one public and one shared input.
» A homomorphic encryption scheme.
» Low communication complexity.
» Low computational complexity.
» Virtual ldeal Functionality Framework.
» Light-weight design for doing MPC.
» Asynchronous design gives automatic parallelism.
» See: http://viff.dk/.

24 /24

http://viff.dk/

Conclusion

» Comparison protocol for one public and one shared input.
» A homomorphic encryption scheme.
» Low communication complexity.
» Low computational complexity.
» Virtual ldeal Functionality Framework.
» Light-weight design for doing MPC.
» Asynchronous design gives automatic parallelism.
» See: http://viff.dk/.

Thank you for listening!

24 /24

http://viff.dk/

	Secure Integer Comparison
	Virtual Ideal Functionality Framework
	Conclusion

