Implementing Asynchronous
Multi-Party Computation

Martin Geisler

BRICS
Department of Computer Science
University of Aarhus

February 21st, 2008

24



Part |

Secure Integer Comparison

2/24



Secure Integer Comparison

» Given integers a and b, securely compute a > b.
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Secure Integer Comparison

» Given integers a and b, securely compute a > b.

» Many variations:
> a, b can be private, public or secret shared.
» Same for the result.
» We can have two or more players.
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Auctions

» Traditional auction:

» Bidders must be on-line.
» Bidding continues until a deadline is reached.

» Maximum bid auction:

Price » P; may submit a maximum bid M;.
M, 4+ P, wins » A public current price x is incremented
until only one M; > x.
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Auctions

» Traditional auction:

» Bidders must be on-line.
» Bidding continues until a deadline is reached.

» Maximum bid auction:

Price » P; may submit a maximum bid M;.
M, + P, wins » A public current price x is incremented
until only one M; > x.
X --1-- P, pays x » Problem: Auction house knows M, and
My 4 is a trusted third party.

M 1
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Removing Trust in the Auction House

» Want to remove trusted party T.
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Removing Trust in the Auction House

» Want to remove trusted party T.
» Split T into parties A and B.
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Removing Trust in the Auction House

Protocol

Pi
a, b = share(M;)

vV v v v Y

Want to remove trusted party T.

Split T into parties A and B.
User P; shares M; into a and b.
A gets a, B gets b.

A and B run a comparison
protocol.
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Homomorphic Encryption Scheme

» Encryption:
Epi(m,r) = g™h" mod n.

» Homomorphic:

Epi(m,r) - Epp(m',r") mod n = Ep(m+ m' mod u, r +r').

» Check ¢ = Epi(m, r) for m = 0:

¢ mod n=(g*)™ mod n.

6
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Calculating M > x

l 1
x{1010110100]|

M:[1011010010]

» We wish to compute M > x
for /-bit numbers.

> Xx; is the j'th bit of x, m; is
the i'th bit of M.
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Calculating M > x

l 1
x{1010110100]|

M:[1011010010]
Equal bits

» We wish to compute M > x
for /-bit numbers.

> Xx; is the j'th bit of x, m; is
the i'th bit of M.
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Calculating M > x

l 1
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M:[1011010010]
Signifgnt bit

» We wish to compute M > x
for /-bit numbers.

> Xx; is the j'th bit of x, m; is
the i'th bit of M.
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Calculating M > x

l 1
x{1010110100]|

M:[1011010010]

Non-significant bits

» We wish to compute M > x
for /-bit numbers.

> Xx; is the j'th bit of x, m; is
the i'th bit of M.
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Calculating M > x

/ 1 » We wish to compute M > x

X: |1 010 | for ¢-bit numbers.
> Xx; is the j'th bit of x, m; is

M 1011 | the i'th bit of M.

> Define the following:

C:| |

Gi=xi—mi+1
‘

+ > m®x.
j=i+1

24

~



Calculating M > x

/ 1 » We wish to compute M > x

X: |1 010 | for ¢-bit numbers.
> Xx; is the j'th bit of x, m; is

M 1011 | the i'th bit of M.

> Define the following:

cl111 |

Gi=xi—mi+1
‘

+ > m®x.
j=i+1

24

~



Calculating M > x

/ 1 » We wish to compute M > x

X: |1 010 | for ¢-bit numbers.
> Xx; is the j'th bit of x, m; is

M 1011 | the i'th bit of M.

> Define the following:

c{1110 |

Gi=xi—mi+1
‘

+ > m®x.
j=i+1

24

~



Calculating M > x

/ 1 » We wish to compute M > x

X: |1 010 | for ¢-bit numbers.

> Xx; is the j'th bit of x, m; is
M 1011 | the i'th bit of M.

> Define the following:
cli110 |

T c=xi—m;+1
¢
+ Z m; & Xj.

j=it1
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Calculating M > x

l

x{1010

M:[1011

cl1110

» We wish to compute M > x
for /-bit numbers.

> Xx; is the j'th bit of x, m; is
the i'th bit of M.

> Define the following:

Gi=xi—mi+1
‘

+ > m®x.
j=i+1

» M>x <— di: ¢ =0.

~
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Protocol for M > x

» A and B know pk, A knows sk.
» Input x is public, M known to P;.
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Protocol for M > x

Epk(C'A)

]

vV v v v Y

A and B know pk, A knows sk.

Input x is public, M known to P;.

Input m; additively secret shared.

A and B compute shares of ¢;.
A sends Epx(cf') to B.
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Protocol for M > x

A and B know pk, A knows sk.
Input x is public, M known to P;.

Epk(cisi)

Input m; additively secret shared.
A and B compute shares of ¢;.
A sends Epx(cf') to B.

B calculates Epi(cis;) using the
Pi homomorphic property.
B sends shuffled Epi(c;s;) to A.
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Protocol for M > x

A and B know pk, A knows sk.
Input x is public, M known to P;.

M > x
A B

Input m; additively secret shared.
A and B compute shares of ¢;.
A sends Epx(cf') to B.

B calculates Epi(cis;) using the
Pi homomorphic property.
B sends shuffled Epi(c;s;) to A.

A checks if any ¢;s; is zero.

vV v V. v Vv Y
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di:csi=0 < M > x.



Related Work

Communication

Computation

» Marc Fischlin's protocol:

» Blake and Kolesnikov's protocol:
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Related Work

Communication

OF

DGK BK
o o

Computation

» Marc Fischlin's protocol:

» Quadratic residuosity assumption.

» Encoding expands by A factor.
» Blake and Kolesnikov's protocol:

> Paillier encryption.

» No expansion.

» Our protocol: Best of both worlds.
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Benchmark Results
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VIFF Overview
» Framework for specifying MPC.

» Provides building-blocks for larger protocols.

» Asynchronous design.

» Automatic parallel scheduling.
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Asynchronous vs. Synchronous

“““““““““““ » All rounds equally fast.

» Optimal execution.
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Asynchronous vs. Synchronous

Time

Time

» All rounds equally fast.

» Optimal execution.

» Processing stalls.
» Wasted time!
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Asynchronous Design

r = rt.open((x +y) * z) » Entire tree is scheduled at once.
$ > Result is a form of “greedy
r scheduling”.
T » Implicit synchronization, no rounds.
rt.open
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Asynchronous Design

r = rt.open((x + y) * z)

» Entire tree is scheduled at once.

> Result is a form of “greedy
scheduling”.

» Implicit synchronization, no rounds.

» Advantages:

» Automatic parallel scheduling.
» Software scalability.
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Example: Hamming Distance

def xor(a, b):
assert a.field is b.field
if a.field is GF256:
return a + b
else:
returna + b —2%xaxb

> Straight-forward exclusive-or.

» Fast for GF(28) elements.
» Slower for Z, elements.
> (Already part of VIFF.)
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Example: Hamming Distance

def xor(a, b):
assert a.field is b.field
if a.field is GF256:
return a + b
else:
returna + b —2%xaxb

def hamming(s, t):
distance = 0
for i in range(len(s)):
distance += xor(s]i], t[i])
return distance

vV v v VY

v

v

Straight-forward exclusive-or.

Fast for GF(28) elements.
Slower for Z, elements.
(Already part of VIFF.)

Hamming distance.

Exclusive-ors run in parallel!

15 /24



Asynchronous Ideal Functionality

N = 1 )
Po| | P2| -+ |Pn
]

) 7 J J

» Reacts on input from Z via P;.

» Inputs are tagged with a program counter.
» F forwards masked input to S.
» F relays traffic between S and P;.
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Asynchronous Ideal Functionality

N =11 ]
Po| | P2| -+ |Pn
)

) 7 J J

Reacts on input from Z via P;.

v

v

Inputs are tagged with a program counter.

v

F forwards masked input to S.

v

F queues replies.

v

Released upon signal from S.
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Operations

Assignment:
Output:

> (
> (
> Linear combination: (x:=c¢;-x1 + - -+ ¢ - X, pc).
» Multiplication: (
> (

Synchronization:
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Operations

>
>
>
>
>
>

Assignment:
Output:

Linear combination:
Multiplication:

Synchronization:

(synchronize, pc).

Direct correspondence to methods in VIFF Runtime.
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Simulating Assignment

Real World:
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Simulating Assignment

Real World:
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Performance Results

» Tested on 3 machines: USA, Norway, and Denmark.
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Performance Results

> Tested on 3 machines: USA, Norway, and Denmark.
» Tested multiplications and comparisons.

» Tested parallel and serial multiplications:

\ Idle

Idle[

Idle

Idle
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Parallel Multiplications

Average time (ms)
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Serial Multiplications
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Parallel Comparisons
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Future Work

» Implement protocols for active security.

» Self-trust: protocols with t = n — 1.
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Conclusion

» Comparison protocol for one public and one shared input.
» A homomorphic encryption scheme.
» Low communication complexity.
» Low computational complexity.
» Virtual ldeal Functionality Framework.
» Light-weight design for doing MPC.
» Asynchronous design gives automatic parallelism.
» See: http://viff.dk/.

Thank you for listening!
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