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Abstract

This report describes the interface to the virtual machine provided by the VIFF framework
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1 Introduction
This deliverable should be read in connection with other CACE deliverables: D4.2 which de-
scribes PySMCL, a domain specific high-level language for multiparty computation (MPC).
PySMCL programs will be compiled to Python programs that can be run using the virtual ma-
chine described here. D4.4 describes different low-level protocols that we intend to implement
(or in some cases have already implemented). By including different run-time classes (a notion
described in details below), a PySMCL program can be run using any of the implemented
protocols.

This deliverable serves as documentation showing that the project has successfully passed
milestones M4.3 Benchmark Requirements and M4.4 MPC virtual machine specification.

We assume the reader is familiar with the MPC notion, see D4.1 for an introduction.
The platform, or virtual machine, described in this document is named VIFF which is

short for Virtual Ideal Functionality Framework. The first prototype of VIFF was created in
the spring of 2007. At the start of the CACE project, it was decided to build the CACE
virtual machine based on VIFF, since this would give a shorter time to a full implementation.
As a result, in the first year of CACE, we have completed not only the design, but also the
the implementation of a more advanced prototype. In the coming period, a full version imple-
menting the protocols described in D4.4 is planned. As agreed between the CACE partners,
VIFF is publicly available under the LGPL license.

VIFF provides the following notable features:

Asynchronous execution: As described in further detail in Section 6, modern networks
are all asynchronous by nature. VIFF is designed to be used on such networks.

Automatic parallel scheduling: Network latencies will typically dominate the execution
time. This makes it important to execute many operations in parallel in order to lower
the average waiting time. Also, the automatic parallelism can potentially yield a faster
execution since it will adapt better to changing network conditions: With a static sched-
ule based on rounds, the execution stalls if a round takes longer than expected. VIFF
would begin executing the next available operation immediately.

High degree of modularity: VIFF was designed with a simple core on which more com-
plex protocols can be built.

Easy composability: Combining smaller protocols into larger protocols is an essential fea-
ture. Protocols written for VIFF can automatically be run in parallel with other proto-
cols. This applies to both new primitive operations and complex protocols.

In parallel with the work on the current prototype of VIFF, we have implemented the
Fairplay set of secure multi-party computation protocols [1, 4], which is based on a different
set of cryptographic protocols than those currently implemented in VIFF. Each of these
two sets of cryptographic protocols are better suited for implementing different operations (in
short, the protocols implemented in Fairplay are better for performing bit-wise operations and
for comparing numbers, while the current VIFF protocols are better at performing arithmetic
operations like addition and multiplication). The current Fairplay package translates programs
written in a high-level language called SFDL into implementations of cryptographic protocols
written in Java or C.



2 CACE — Computer Aided Cryptography Engineering

The final version of VIFF will be extended so that it integrates both types of implemented
protocols in a single framework which will allow users to access the protocols in a unified way.
This extension has been designed (but not yet implemented) and it is described in Section 7.3.

The framework provides a Python library for writing MPC protocols. We see this library as
a bytecode language for a higher-level language. The high-level language can provide different
kinds of static security analysis of the programs, something which is not possible for VIFF
itself to do. Figure 1 illustrates how VIFF can be used as an intermediate language.

High-level language

VIFF library calls

Python VM

Operating System

compiled to

interpreted by

executed on

Figure 1: The language stack.

2 Asynchronous Communication
Like many languages, Python comes with a standard library that gives access to sockets for
doing network communication. The Python standard library presents a thin wrapper over the
standard BSD socket interface. Twisted [3] is a Python framework that abstracts the low-
level socket communication away and allows the programmer to easily build efficient network
applications with asynchronous communication.

A key functionality provided by Twisted is asynchronous communication. With syn-
chronous communication a call like s.recv(4096) will block until some data (up to 4096 bytes)
is available in the socket s. With asynchronous communication one would instead create a
function and arrange for this to be called when data is available. Such a function is denoted
a callback in Twisted.

If a program uses just a single socket the asynchronous programming style provides no
benefit. However, when several sockets are used, the select function makes it easy to wait
on input from any of them. A single threaded program can thus efficiently process input
from several connections. An event loop is created in which the program repeatedly sleeps
waiting for input events from its list of open sockets. When data arrives it is dispatched to the
corresponding event handler (callback function). In Twisted, a reactor object maintains the
event loop and must be started with reactor.run() before events are processed. The program
shuts down when reactor.stop() is executed.

When a call is made to an asynchronous function for which no data is available yet, a
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Deferred instance is returned instead of the real data when the data. Given a Deferred instance
one can basically do just one thing: add callbacks to it by invoking its addCallback method.
The instance keeps a list of callback functions which are called in sequence when the Deferred
gets a result. If the functions f and g have been added as callbacks to a Deferred d, then a
call to d.callback(10) will result in g(f(10)) being executed. In other words, the first callback
function (f) is executed with the data passed to the callback method. The return value from
f is then passed onto g.

An example of a function returning a Deferred is the getPage function defined in Twisted.
Figure 2 shows how it can be used to download a web page, compute the length of the page,
print this number and finally stop the event loop.

from twisted.web.client import getPage
from twisted.internet import reactor

def count_lines(content):
return content.count("\n")

def print_count(count):
print "Lines:", count

def stop_reactor(ignored):
reactor.stop()

page = getPage("http://example.net/")
page.addCallback(count_lines)
page.addCallback(print_count)
page.addCallback(stop_reactor)

reactor.run()

Figure 2: Using callbacks in Twisted.

The third callback, stop_reactor, has an argument which is not used. The argument is
necessary because the callback is passed the result from print_count – functions without a
return statement will implicitly return None in Python.

3 VIFF

3.1 The Runtime Classes

Any VIFF program will have an object which we call a “runtime” since it provides the basis for
the protocol execution. The current prototype includes three different runtime classes. These
correspond directly to three of the protocols from our implementation suite, as described in
D.4.4, as follows:

• PassiveRuntime from the viff.passive module, this is the Asynchronous Protocol from
D4.4, except that so far we only guarantee passive security.
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• ActiveRuntime from the viff.active module, this is the Hybrid protocol from D4.4.

• PaillierRuntime from the viff.paillier module, this is the 2-party Self-trust Protocol from
D4.4, except that so far, we only guarantee passive security.

These classes all provide a common API which will be described in Section 7.
In addition, in the fully implemented version of VIFF, we plan that programs will have

access to the following runtime classes:

• Fairplay2P, which implements a Fairplay version of a 2-party self-trust protocol based
on the implementation described in [4].

• FairplayMP, which implements a Fairplay version of an asynchronous multi-party pro-
tocol based on the implementation described in [1].

• MSTP, implementing a Multi-Party Self-trust protocol with properties as described in
D4.4.

The viff.runtime module provides BasicRuntime, which is a common super class for the
other runtime classes. This class is responsible for the basic infrastructure that allows the
players to know one another and to communicate securely. Twisted provides support for secure
communication using SSL so in the current prototype players are connected to each other with
pairwise SSL connections, where we currently assume that the necessary certificates have been
distributed correctly before the protocol starts. In the final version, all secure communication
will be done using the NaCl library from CACE WP2.

3.2 Finite Fields

VIFF provides classes for modeling Galois (finite) fields. The GF function creates classes which
implements Galois fields of prime order whereas the GF256 class implements the GF(28) field
with characteristic 2.

All fields work the same: instantiate an object from a field to get hold of an element
of that field. Field elements implement the normal arithmetic one would expect: addition,
multiplication, etc. This is provided via overloaded operators allowing one to write:

Zp = GF(19)
a = Zp(10)
b = Zp(5)
c = 2 ∗ a + b
After this c is a FieldElement object with a value of six.

3.3 Secret Shared Values

In Twisted the Deferred class represents a generic deferred value. In VIFF the subclass Share
does the same, but it is specialized to always hold a deferred FieldElement.

Furthermore, the Share class overloads the arithmetic operators. If a and b are Share
objects, then the expression x = a + b will create a new Share object x which will eventually
contain the correct sum of a and b.

The calculation of the arithmetic operations is delegated to a Runtime instance. All shares
are associated with the runtime used to create them, and in the example a + b will result in the
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call a.runtime.add(a, b). Similar calls will be made for subtraction, multiplication, exclusive-or,
comparisons, etc.

4 System Overview
VIFF is a software library which provides the necessary infrastructure to conduct crypto-
graphic protocols. The protocol is executed between n parties. The parties will typically be
run on different hosts, connected by secure lines as described above.

Each party runs a program which uses VIFF as a library. The program will communicate
with other parties through the Runtime class explained above. We will describe the detailed
interface for this class in Section 7. Using the Runtime class a party can proved secret inputs
to the calculation, do computations with secret values, and open the intended results. The
variables used for most computations are Share objects, which store values that are secret:
all players hold data related to the value, but it can only be reconstructed if the players
cooperate. Please see Figure 3 for an overview of how the different objects relate to each
other at runtime.

Most operations in VIFF are symmetric: all parties play an equal role. This is true for
binary operations like addition and multiplication where all n parties jointly share x and y
and wish to compute a shared representation of, e.g., x ∗ y. An example of an asymmetric
operation is secret sharing of input values: one party provides the input and the other parties
receive shares.

Because the majority of operations are symmetric, each party will execute the same code.
The idea is that though the execution is done in parallel on n machines, one should not have
to worry too much about this. In this code one writes z = x ∗ y to multiply x and y and store
the result in z. The fact that x and z are Share objects and that this operation requires a
network round trip is hidden. Also, the same code is used regardless of which party did the
original secret sharing. As an example, consider the code in Figure 4 which shows an example
of an asymmetric protocol.

The correct way to view a VIFF program is to think of it as an abstract, opaque “machine”
which can do arithmetic. The machine can take inputs via methods like shamir_share and
prss_share and one can extract values with the open method. When a value is stored in the
machine one can only manipulate it with the arithmetic operations provided. We will describe
this machine further in Section 7.

5 Programs using VIFF

5.1 Simple VIFF Program

A simple program that uses VIFF is given in Figure 5. The program is for three players who
each provide a private input. The three input numbers are multiplied and the opened product
is published to everybody.

The program is executed on three machines. If the program is saved in a file called
multiply.py, then Pi executes
python multiply.py player−i.ini vi
where i is replaced with the player number and vi is replaced by the value Pi wants to
contribute. Each player has a configuration file with information about the other players. An
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Figure 3: Relations between class instances at runtime. Each party is represented by a big circle.
The Runtime objects are connected to each other via ShareExchanger objects, which maintain SSL
connections between the parties. A number of Share objects exist on each party, they use the Runtime
object when asked to perform calculations such as addition, multiplication, etc.

if rt.id in (1, 2):
input = int(raw_input("Enter a value: "))
x, y = rt.shamir_share([1, 2], input)

else:
x, y = rt.shamir_share([1, 2])

z = x + y

Figure 4: Asymmetric protocol where only P1 and P2 provide input. The rt variable is a Runtime
object which has an id attribute. This makes it easy to only ask for user input when the code is
executed as P1 or P2. The parties Pi for i > 2 must still participate in the Shamir sharing in order to
receive their shares. In the final line all n parties compute the sum based on their shares.
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import sys
2 from twisted.internet import reactor

4 from viff.field import GF
from viff.runtime import create_runtime

6 from viff.config import load_config

8 id, players = load_config(sys.arg[1])
input = int(sys.argv[2])

10
def protocol(rt):

12 def got_result(result):
print "Product:", result

14 rt.shutdown()

16 Zp = GF(1031)
x, y, z = rt.shamir_share([1, 2, 3], Zp, input)

18 product = x ∗ y ∗ z
opened_product = rt.open(product)

20 opened_product.addCallback(got_result)

22 pre_runtime = create_runtime(id, players, 1)
pre_runtime.addCallback(protocol)

24 reactor.run()

Figure 5: Simple example of a VIFF program.
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example is given in Figure 6 which shows the file for P1 with information about two other
players: the host and port entries specify the Internet location of each player, the pubkey and
seckey entries hold Paillier [6] keys (tuples and triples) used for homomorphic encryptions and
the prss_keys entries hold shared keys used used for pseudo-random secret sharing [2] amont
different subsets of the players. Please note that P1 has full information about its own keys,
but only knows the public keys of the other players. The files for P2 and P3 look similar,
except that they have only public knowledge about P1.

# VIFF config file for Player 1

[Player 1]
host = localhost
port = 6001
pubkey = 4943726044. . .59, 1868523483. . .68
seckey = 4943726044. . .59, 1868523483. . .68, 8239543407. . .36
[[prss_keys]]
1 3 = 0x3466d8a4ddb2a805e7caeac6998ecaa3a2d1a8fbL
1 2 = 0xd3b7d0af5088bc5f457b4eb9baeb27cb801011d1L

[[prss_dealer_keys]]
[[[Dealer 1]]]
1 3 = 0xa71d201802aed3716a28d6fd48a54c6d810d1900L
1 2 = 0xb233934c5de67ca31273f146e6357ca360a0f29fL
2 3 = 0x205ab3a2d78a23a3e4e1f5af65cf589186363a9cL

[[[Dealer 2]]]
1 3 = 0x6dd7345218b80d6782934fa8fcf93c1d1af48944L
1 2 = 0xf8bdc0812a92900279a03d8d79d464ef72df087fL

[[[Dealer 3]]]
1 3 = 0xc8c8cff9861336cb64725b5d987af831b2192f21L
1 2 = 0x5325dbe156b886a35bad876e769ced7d27f85c04L

[Player 2]
host = localhost
port = 6002
pubkey = 1104608088. . .83, 2803958346. . .63

[Player 3]
host = localhost
port = 6003
pubkey = 9928137166. . .03, 8881390462. . .28

# End of config

Figure 6: Example configuration file for player 1. The integer literals for the public and secret Paillier
keys have been abbreviated to fit on the page.

Currently, the configuration files for all players are generated by a trusted party in a
setup phase by using a script called generate−certificates.py. Given a suitable PKI it should
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be simple to let each player generate his own keys in private and then distribute the (signed)
public keys as needed. However, for the simple testing done so far, a central solution suffices.

5.2 Common Structures

The program in Figure 5 is about as simple as it can be with VIFF, and in this section we
will look more carefully at the idioms used when programming with VIFF.

5.2.1 Program Outline

Like any Python program the one in Figure 5 starts by importing any needed modules.
The standard sys module gives access to the command line arguments, and twisted.internet
contains the reactor object from Twisted. Following that a number of functions are imported
from VIFF.

VIFF uses a simple configuration file to store information about the other players. This file
is loaded from the first command line argument with the load_config function. It returns the
ID of this player and a list with information about the other players. The second command
line argument is used as the input value.

Then follows the definition of a function which will be used to execute the protocol proper,
we will examine the function shortly. On line 22 the create_runtime function is used. It
is given the ID of this player, the information about other players and the threshold that
should be used for Shamir secret sharing. The result is a Deferred which will be fired with a
PassiveRuntime object. The pre_runtime will only fire when the connections have been estab-
lished to the other two players. We add our protocol function as a callback to pre_runtime –
this will ensure that protocol is run with an initialized runtime as its first argument.

Finally we must start the Twisted reactor. The create_runtime has scheduled the opening
of TCP connections between the parties, and it is necessary to start the reactor to process
the events associated with this.

The outline of the simple program can be condensed into:

• Import needed functions from Python, Twisted and VIFF.

• Parse command line arguments.

• Define a protocol callback.

• Create a deferred runtime.

• Initiate the Twisted event-loop.

5.2.2 Simple Calculations

After defining the finite field Zp over which the calculations will be done, the protocol function
runs three MPC protocols:

1. It invokes the shamir_share method on the runtime rt in line 17. All players contribute
their inputs which are then Shamir secret shared and the shares are distributed among
the players.
The result is that each player holds three variables: x is the player’s share of the input
number from P1, y is the share from P2’s input number and z is the share from P3.
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2. Two secure multiplication are done in line 18. The x, y and z variables are Share instances,
and so the overloaded ∗ operator will take care of calling the mul method on rt. This
means that this line is equivalent to the longer:

product = rt.mul(rt.mul(x, y), z)

The mul method does a local multiplication followed by a resharing step in order to
obtain shares with the correct threshold.

3. Finally the product is opened on line 20. The open method simply sends the shares to
the designated receivers (all players by default) and Shamir recombines them.

The important thing to note is that most VIFF functions take Share arguments and return
new Share arguments. The shamir_share method takes a normal integer since it is used at the
beginning of a calculation.

The opened_product is a Share. This means that we cannot directly print its value. We
must instead add the callback we defined in the beginning of the function. The got_result
callback prints the result and stops the runtime. The shutdown method will make the players
synchronize, close the TCP connections and stop the reactor.

5.2.3 Program Phases

The program in Figure 5 does its computation in a single phase, but more complex programs
might need several phases. An example is programs that employ the ActiveRuntime class which
has a pre-processing phase followed by the actual computation phase.

Another example is the following simple game for three players. We want the players to
secret share a number each. When everybody has shared their input we open the shares to
reveal the numbers. The player with the highest number wins the game.

A naïve implementation would be this:

def announce_winner(results):
m, i = max(zip(results, [1, 2, 3]))
print "The winner was Player", i, "with the number", m

def protocol(rt):
x, y, z = rt.shamir_share([1, 2, 3], Zp, input)
results = gather_shares([rt.open(x), rt.open(y), rt.open(z)])
results.addCallback(announce_winner)

In this program P1 will share x into x1, x2, x3, send x2 to P2 and x3 to P3. Likewise for P2
and P3. To open the shared values all players broadcast their shares to everybody else, i.e.,
P1 will send x1 to P2 and P3 and do the same with y1 and z1.

Unfortunately this wont be secure, not even against a passive adversary. The problem is
that the calls to rt.open will schedule the broadcast of shares immediatedly. This means that
P1 will send out x1 right after having computed it from x, and will send out y1 right after
having received it from P2! This allows a corrupt P3 to sit quiet and wait until the honest P1
and P2 sends him their shares – and so P3 can compute x and y before having to share z.
That makes it very easy for him to win the game! Please note that P3 did not deviate from
the protocol, he only waited a little which is allowed in an asynchronous setting.
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This “trigger-happy” behaviour is an unfortunate artifact of the automatic parallel schedul-
ing done in VIFF – if a value is ready, it is processed as quick as possible. In this case P1
knows that is needs to open y and to do so it will send y1 to everybody immediately, even
though it destroys the security in the example.

The solution is to put in an explicit synchronization point after the sharing phase and then
only proceed to the opening phase after everybody has reached this point. The synchronize
method is used for this: it gives back a Deferred which will fire when everybody has executed
the same call to synchronize. We wish to synchronize after having received all our shares. To
do this we use another tool, gather_shares, which takes a list of shares and waits on all of
them.

The revised program is:
def announce_winner(results):

2 m, i = max(zip(results, [1, 2, 3]))
print "The winner was Player", i, "with the number", m

4
def open(ignored, rt, shares):

6 x, y, z = shares
results = gather_shares([rt.open(x), rt.open(y), rt.open(z)])

8 results.addCallback(announce_winner)

10 def synchronize(ignored, rt, shares):
sync = rt.synchronize()

12 sync.addCallback(open, rt, shares)

14 def protocol(rt):
x, y, z = rt.shamir_share([1, 2, 3], Zp, input)

16 shares = gather_shares([x, y, z])
shares.addCallback(synchronize, rt, [x, y, z])
The first argument to the synchronize callback (line 10) is a list with the three field elements

in x, y and z. We ignore those since we need to call the open method on the Share instances
(x, y and z), not the FieldElement instances. In the open callback (line 5) the first argument
is None since this is the “result” of a call to the synchronize method (line 11). We therefore
ignore it as well.

The above code is somewhat verbose in its form. As mentioned previously, we plan to let
the programmer work in a higher-level language, which will then be compiled into code like
the above. We therefore find the complexity acceptable.

6 Network Assumptions
The classic results on secure multiparty computation are made under the assumption of a
synchronous setting where the communication takes place on a network with known packet
delays (latency) and where the parties are equipped with clocks with a known maximum drift
rate. In this setting it is easy to divide the protocols into logical units called rounds. A round
begins with the delivery of all messages sent in the previous round. Each party is then asked to
specify a number of new messages which will be delivered at the beginning of the next round.
It is natural to take the number of rounds needed as a measure of the protocol execution time.
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The total number of bits transmitted (communication complexity) is often counted as well.
The time used for local computation by the parties is assumed to be negligible in comparison
to the network delays and is typically not counted.

6.1 Modern Asynchronous Communication Networks

The synchronous model often does not match communication networks or computers as we
know them today. Modern networks are often better thought of as being asynchronous.

For instance, when sending packets over the Internet, the Internet Protocol (IP) [7] has
the responsibility of getting the packets to the correct destination. But the IP gives very few
guarantees: Intermediate routers might drop packets at any time (due problems like congestion
and transmission errors) and packets may be reordered or duplicated. In particular, the IP
gives no guarantees about delivery time (if the packet even reaches the destination).

The Transmission Control Protocol (TCP) [8] is normally used to create a virtual connec-
tion on top of the connection-less IP network. Because packets can be lost on the IP level,
TCP must be prepared to ask for retransmission of data. This means that the delivery can be
delayed further. A sender and receiver communicating over TCP are reading and writing a
stream of bytes – there are no messages at the TCP level. As bytes are written to the stream,
TCP will take care of buffering and will send out IP packets as they are filled or when it has
been too long since the last packet was sent. Such buffering introduces further unpredictable
delays in the protocol.

Normal computers also have no access to a globally correct clock. Computers are typically
built with an on-board oscillator used to keep track of the time. Even if initially synchronized,
clocks will drift away from each other since frequencies of oscillators vary with temperature.
The Network Time Protocol (NTP) is widely used to keep computers synchronized to a stan-
dard time [5]. Roughly speaking, this is done by exchanging packets containing timestamps,
from which the network delay can be estimated and the local clock adjusted accordingly. But
the NTP server is a trusted third party and we would rather design our protocols without
relying on such a service.

6.2 Implementing Protocols on Asynchronous Networks

To cope with the asynchronous setting the VIFF runtime system tries to avoid waiting unless
it is explicitly asked to do so. In a synchronous setting all parties wait for each other at the end
of each round, but VIFF has no notion of “rounds”. What determines the order of execution
is solely the inherent dependencies in a given program. If two parts of a program have no
mutual dependencies, then their relative ordering in the execution is unpredictable. This
assumes that the calculations remain secure when executed out-of-order. Protocols written
for asynchronous networks naturally enjoy this property since the adversary can delay packets
arbitrarily, which makes the reordering done by VIFF a special case.

As an example, consider the simple program in Figure 7a for three parties, n = 3. It starts
by reading some input from the user (an integer) and then defines the field Z1031 where the
toy-calculation will take place. All three parties then take part in a Shamir sharing of their
respective inputs, this results in three Share objects being defined. A fourth Share object is
generated using pseudo-random secret sharing [2].

Here all variables represent secret-shared values – VIFF supports Shamir secret sharing
for when n ≥ 3 and additive secret shares for when n = 2. The execution of the above
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# (Standard program setup not shown.)
Zp = GF(1031)

input = int(raw_input("Your input: "))
a, b, c = rt.shamir_share([1, 2, 3], Zp, input)
d = rt.prss_share_random(Zp)

x = a ∗ b
y = c ∗ d
z = x + y

(a) VIFF program, rt is a Runtime object.

z

+

x

∗

a b

y

∗

c d

shamir_share prss_share_random
(b) Expression tree.

Figure 7: A small toy-example written for VIFF and the corresponding expression tree.

calculation is best understood as the evaluation of a tree, please see Figure 7b. Arrows denote
dependencies between the expressions that result in the calculation of the variable z.

The two variables x and y are mutually independent, and so one cannot reliably say which
will be calculated first. But more importantly: We may calculate x and y in parallel. It is in
fact very important for efficiency reasons that we calculate x and y in parallel. The execution
time of a multiparty computation is limited by the speed of the CPUs engaged in the local
computations and by the delays in the network. Network latencies can reach several hundred
milliseconds, and will typically dominate the running time. So when we say parallel we mean
that when the calculation of x waits on network communication from other parties, then it is
important that the calculation of y gets a chance to begin its network communication. This
puts maximum load on both the CPU and the network.

7 Virtual Machine Interface
We will now describe the high-level interface provided by the VIFF runtime system. In Sec-
tion 4 it was briefly described that a VIFF program should be seen as a series of manipulations
of values stored in an abstract “machine”, which can be formally modelled as an ideal func-
tionality. We will describe the operations available to each party, but the semantics of each
command is best understood with a global view of the computation. This view will correspond
to a description of the ideal functionality.

7.1 Primitives for Multiparty Computation

Any computable function can in principle be described as a set of Boolean operations. Boolean
operations can be further decomposed into a universal gate, like the NAND gate. However,
even though all other logical gates can be constructed from two or more of these univer-
sal gates, we often do not want to limit ourselves to just Boolean operations when writing
computer programs. Instead, we consider operations such as addition, multiplication, and
comparison as our fundamental building blocks. These primitives can be executed in a single
clock cycle on a modern CPU. In fact many such operations can normally be executed at
once due to the use of several parallel pipelines in the CPU.
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When doing MPC we consider addition and multiplication of values from a finite field as
primitive operations. As mentioned, implementing NAND or NOR on bit-values would have
been enough, but evaluating things at only such a fine granularity can be very expensive.
Giving input to the computation and producing output are considered primitives too.

We will allow several primitive operations to be started at once – not due to CPU pipelines,
but due to the inherit delays of network traffic which makes it possible to send out several
packets before getting a reply to the first. Executing several operations in parallel like this
leads to a need for a way to specify synchronization points in programs.

This gives us the following primitives:

• Secure input and output.

• Secure arithmetic (addition, subtraction and multiplication).

• Synchronization.

In the following, we will be described the API for invoking these operations.

7.2 Semantics of Multiparty Primitives

A program using VIFF works on data shared between a number of parties. Even though the
data is physically stored on distinct machines, the semantics of the operations is as if the data
was stored in one machine. We call this machine the ideal functionality, F . The functionality
has a memory M in which data can be stored associated with a variable name. The value of
the variable x is denoted M(x).

In the following we will let rt denote a Runtime instance and Zp a FiniteField instance
representing Zp for some large prime p. The available commands and their semantics are:

Input Data can be stored by letting all parties execute

x = rt.input([i], Zp, v)

where v is an integer from Zp for Pi and None for Pj with j 6= i. This stores x 7−→ v in
the memory M of F .
As a shorthand one can let several parties contribute input in a single call to the input
method:

x1, x2, . . . , xm = rt.input([i1, i2, . . . , im], Zp, vi)

Here vi is an integer from Zp for Pi with i ∈ {i1, . . . , im} and None otherwise. This is
equivalent to inputting m single numbers.
The input method is implemented as Shamir secret sharing [9] in PassiveRuntime and
as additive secret sharing in PaillierRuntime. The PassiveRuntime provides an alternative
input method, prss_share, which does pseudo-random secret sharing [2].

Output Variables can be output to reveal their value to a particular party. Letting all parties
execute

opened_x = rt.output(x, [i1, i2, . . . , im])



D4.3 — 0 15

gives opened_x the value M(x) for all Pi with i ∈ {i1, . . . , im} and None for the other
parties.
The output method recombines the Shamir shares in the case of a PassiveRuntime or the
additive shares in case of a PaillierRuntime.

Linear combination To store a linear combination of previously defined variables x1, . . . , xj
with constants c1, . . . , cj in x, all parties execute

x = c1 ∗ x1 + c2 ∗ x2 + · · · + cj ∗ xj

This makes F store the assignment x 7−→
∑j
i=1 ci ·M(xi) in its memory. Please note

that this command covers simple addition of variables when all ci = 1.
The addition and multiplication operators are overloaded for Share objects and the
above code could also be written as

x = rt.add(. . . (rt.add(rt.mul(c1, x1), rt.mul(c2, x2)), . . ., rt.mul(cj , xj)). . .)

Multiplication To store x 7−→M(y) ·M(z) in the memory M the parties execute

x = y ∗ z

The Share objects overload the multiplication operator and make the above equivalent
to, but more convenient than, this code:

x = rt.mul(y, z)

Synchronization Executing

sync = rt.synchronize()

makes sync a Deferred which will trigger when all Pi have made the same call to
synchronize.
This is a tool which can be used to create well-defined rendezvous points in a program
by scheduling the rest of the computation to take place when sync triggers.

These commands are common to all three available Runtime subclasses.

7.3 Extending VIFF with Fairplay Primitives

We will extend the VIFF package so it can incorporate the functionality that is provided by
the Fairplay package. This extension, however, has to start at the PySMCL level, since this
is the level at which users are expected to write programs, see D4.2. The combination of the
two packages must done in a way which is as transparent as possible, and which provides the
user with a unified programming framework.

Recall that a Fairplay program is written by users in a high-level language called SFDL.
This program is translated by the Fairplay compiler into a representation as a Binary circuit
which computes the same functionality as the SFDL program. The Fairplay package contains
programs which perform a secure computation of this circuit.

We will define PySFDL, which will be a high-level language in Python syntax, and with
the same expressive power as SFDL. In other words, a PySFDL program is valid Python code,
and it can be translated to an equivalent SFDL program.
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PySMCL code can contain functions written in PySFDL as long as they begin with a
@Fairplay decorator. A decorator is a special Python notion, in short, a decorator is a
second-order function which takes a function and outputs a new one with the same name.
Such a decorator can therefore modify Python code before it is actually run. The PySMCL
preprocessor will identify this decorator and translate the PySFDL code into SFDL. It will
then call the Fairplay compiler to translate the SFDL code into a Binary circuit. The original
PySFDL code will be replaced with a reference to the resulting Binary circuit.

The VIFF runtime environment will include a Fairplay runtime class (or possibly two
classes – a Fairplay2P class for secure two-party computation, and a FairplayMP class for
secure multi-party computation). During execution, the parts of the code written in PySFDL
will be executed by calling the Fairplay runtime class. This class will locate the relevant Binary
circuit representation of the code, and evaluate it by calling the relevant Fairplay function
(implemented in C or Java).

8 Benchmarking
To evaluate the performance of our protocol implementations a benchmarking program has
been implemented in VIFF. The program has several parameters:

• Type of operation. Currently we support benchmarking of secure multiplications, com-
parisons and equality testing.

• Number of operations.

• Parallel or sequential scheduling.

• Security against passive or active adversaries.

• Two- or multiparty computation. In the case of a two-party computation, only passive
security is currently implemented.

The goal is to test each of the protocols along several different axis by varying one parameter
while keeping the others fixed.

The motivation for the choice of operations to benchmark is that in virtually all the
protocols we consider, the only basic arithmetic operation that requires communication is
multiplication. The efficiency of this therefore determines the speed of most non-trivial cal-
culations. However, comparison is equally important as it is essential in applications such as
auctions, secure databases and benchmarking. Its efficiency does not only follow from the
speed of multiplications, but depends also on the overall protocol used, and it is therefore be
benchmarked separately.

To run a benchmark one must first generate the necessary configuration files and then start
the benchmarking script on each host. The players will connect to each other and generate
random values needed in the test. Following that, any protocol-specific preprocessing is done
(and timed). The benchmark is then executed and the players terminate. To ensure proper
timings the players synchronize before the preprocessing and the benchmark itself.

Collecting benchmark results is currently done with ad-hoc scripts, but we are working on
a unified solution suitable for running daily benchmarks. There the results will be collected
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Protocol Players Multiplication Compare
Two-party Self-Trust 2 0.3 s 10s
Asynchronous Multiparty, passive security 3 2 ms 350 ms
Asynchronous Multiparty, active security 4 4 ms 700 ms
Hybrid, active security 4 4 ms 700 ms

Figure 8: Goals for execution time for MPC protocols. Protocol types as defined in D4.4

in a database and proper statistics can be calculated. We expect this to be very helpful in
judging the precise impact of the daily code changes.

As for the performance we require from a fully implemented virtual machine, we should
consider the applications we target, but also we have to be realistic in our expectations. For
instance, protocols based on homomorphic encryption such as the existing 2-party runtime
class, cannot be as efficient as corresponding multiparty protocols based on secret sharing.
This is simply because the best known algorithms for public-key operations are cubic time,
whereas the operations for secret sharing are quadratic at worst.

It is our estimate that most of the applications we target, such as many auctions, data-
mining, benchmarking, voting and surveys, are actually not very performance-critical. This
is because the inputs are submitted up to a certain deadline and then the actual secure
computation may take minutes or in some cases even hours without this being a problem. In a
public procurement, for instance, it usually takes several days before the result is announced
using current solutions. There are exceptions, however: in on-line auctions and gambling,
on-line performance is very critical. In these cases, however, efficiency can be gained by
providing the input in special form and/or doing preprocessing. We therefore believe that
the performance targeted in Figure 8 will allow us to cover most of the relevant applications.
Note, for instance, that even though we expect comparison for 2-party self-trust to be quite
slow, with preprocessing, we expect to be able to do comparison in at most 500 ms.

The performance we list here as our goals in Figure 8 is for a case where the players are
connected by a fast LAN (otherwise, unpredictable network delays makes it very difficult to
say something precise). We list times for the minimal number of players for which the protocol
can work. The times for comparison are for 32 bit numbers.
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