
Experimenting with Shared Generation of RSA keys�Michael Malkin Thomas Wu Dan Bonehymikeym@stanford.edu tjw@cs.stanford.edu dabo@cs.stanford.eduComputer Science Department,Stanford University,Stanford, CA, 94305-9045AbstractWe describe an implementation of a distributed algo-rithm to generate a shared RSA key. At the end ofthe computation, an RSA modulus N = pq is pub-licly known. All servers involved in the computationare convinced that N is a product of two large primes,however none of them know the factorization of N .In addition, a public encryption exponent is publiclyknown and each server holds a share of the private ex-ponent. Such a sharing of an RSA key has many ap-plications and can be used to secure sensitive privatekeys. Previously, the only known method to gener-ate a shared RSA key was through a trusted dealer.Our implementation demonstrates the e�ectiveness ofshared RSA key generation, eliminating the need fora trusted dealer.1 IntroductionTo protect an RSA private key, one may break it intoa number of pieces (shares) and store each piece ata separate location. Sensitive private keys, such asCerti�cation Authority (CA) keys, can be protectedin this way. Fortunately, for the RSA cryptosystem itis possible to share a private key among several siteswithout having to reconstruct the key in order to useit { a CA can issue certi�cates without reconstructingits private key at a single location [8]. To explain howthis is done we brie
y recall the details of the RSAsystem. Let N = pq be a product of two large primes.Let e be a public signature veri�cation exponent andd be the corresponding private signing exponent. Aprivate RSA key is the pair hd;Ni (other informationsuch as p and q is often included for e�cient signa-�Project URL: http://www.stanford.edu/�dabo/ITTCySupported by darpa contract #F30602-97-C-0326.

ture generation). To share its private key among foursites, the CA does the following: it picks four randomintegers d1; : : : ; d4 in the range [�N; : : : ; N] such thatd1 + d2 + d3 + d4 = d. Each of these shares is thenstored in a separate location. To issue a certi�cate,the CA creates a signature on a message m by ask-ing each site to compute si = mdi mod N . Each sitethen sends si to the entity requesting the certi�cate.The requesting entity multiplies the four si's to obtains = md1+d2+d3+d4 = md mod N . Thus, a valid signa-ture is obtained. The beauty of this simple procedureis that the private key d is never reconstructed at asingle location. If a hacker penetrates even three ofthe four sites, she learns no information about the pri-vate key. To achieve fault-tolerance the scheme maybe slightly modi�ed so that any 3-out-of-4 sites canissue a certi�cate. Indeed, in SET [14] the privatekey belonging to the root CA is shared in this fashionamong four entities [5]. Shared keys are also used inthe Omega (
) public key management system devel-oped at AT&T [11].An important issue left out of the above discussionis key generation. Who generates the modulus N andthe private key d? A simple solution is to ask a trusteddealer to generate two primes p and q, multiply themto getN and then generate e and d. Finally, the dealersplits d into four pieces and sends one piece to each ofthe sites. Unfortunately, a trusted dealer introduces asingle point of attack: the dealer, or anyone who com-promises the dealer, has the private key and can is-sue false certi�cates. Recently, Boneh and Franklin [4]showed how three (or more) servers can generate ashared RSA key without a trusted dealer. They de-scribe an e�cient distributed algorithm that enables anumber of sites to jointly generate a shared key so thatnone of them know the private key d or the factoriza-tion of N . Once the key is generated it can be used fordistributed certi�cate generation as described above.1

Distributed generation of an RSA modulus with anunknown factorization is useful in other contexts aswell. For instance, in the Fiat-Shamir authenticationscheme [7] a number of entities may use a commonmodulus N = pq for authentication, but none of themshould know the factorization of N . The original Fiat-Shamir scheme calls for a trusted dealer to generateN .The Boneh-Franklin algorithm eliminates the need fora trusted dealer in this context as well.In this paper we study the practicality of distributedgeneration of shared RSA keys. In order to achieve op-timal performance we implemented a number of prac-tical optimizations that greatly reduce the algorithm'srunning time while still (provably) preserving security.The paper describes our implementation, including theoptimizations we used, and gives detailed timing mea-surements on the algorithm's performance. Our re-sults demonstrate the e�ectiveness of shared RSA keygeneration. We hope these results will reduce the re-liance on trusted dealers for generating shared keys.In our experiments we used up to �ve servers togenerate the shared key. Communication between theservers is protected using SSL as implemented in theSSLeay package by Eric Young [17]. To store theshared RSA key on disk we designed an appropriateASN.1 structure and store the key in PEM format.Once the shared key is generated we perform a num-ber of tests to verify proper sharing. We describe theimplementation in detail in Section 3.Detailed timing measurements are given in Sec-tion 5. Here we brie
y summarize the results. Ouroptimized implementation takes under 91 seconds onaverage to generate a 1024 bit key among three serversusing 333MHz Pentium machines on a 10Mbps Ether-net. During the execution of the algorithm each serversends approximately 1.2Mb of data across the network.As an experiment we also ran our distributed compu-tation across the continent by using servers located atvarious places in the US. We were able to generate a1024 bit shared RSA key in under 6 minutes. Such acon�guration may be used when the shares of a sharedRSA key must be stored in remote locations. The op-timizations we used to achieve this performance aredescribed in Section 4.The algorithm can be easily made robust againstan attacker who is able to corrupt one of the serversduring key generation. The attacker can disrupt keygeneration (and consequently be detected). However,if a shared key is generated, the attacker will not knowthe factorization of N or the private key d. We discussthis issue in Section 6.

2 OverviewBefore describing our implementation and the practi-cal optimizations we brie
y describe the algorithm forgenerating shared RSA keys. The algorithm is some-what complex and here we only give a high-level de-scription. For a detailed explanation along with proofsof security see [4].The goal is to enable k servers to generate a mod-ulus N = pq and exponents e and d. At the end ofthe computation all servers should be convinced thatN is the product of two primes, however none of themshould know the factorization. Furthermore, e shouldbe public while d should be shared among the serversin a way that enables t-out-of-k threshold signaturegeneration. That is, any t servers should be able to is-sue a certi�cate (without reconstructing the key d). Atthe same time, an attacker who penetrates at most t�1servers should not be able to obtain any informationabout the private key. Our key generation algorithmproceeds in a number of steps. At a high level thesesteps are as follows:(1) pick candidates: Each of the k servers picks tworandom n-bit integers pi; qi and keeps them secret.(2) compute N : Using a private distributed compu-tation the k servers computeN = (p1 + : : :+ pk) � (q1 + : : :+ qk)Other than the value of N , this step reveals noinformation about the secret values p1; : : : ; pk andq1; : : : ; qk. Now that N is public, the k servers ap-ply trial division to ensure that N is not divisibleby small primes.(3) primality test: The k servers engage in a pri-vate distributed computation to test that N is theproduct of two primes. If the test fails, the proto-col is restarted from step 1. As before, this stepreveals no information about the private shares.(4) key generation: Given a public encryption ex-ponent e, the servers use a private distributed com-putation to generate a shared secret decryption ex-ponent d.Before describing how each of the steps is imple-mented we explain the security features achieved bythe protocol.Collusion The algorithm is bk�12 c private. That is,even if bk�12 c servers share the information they2

learn during the protocol, they will still not be ableto recover the factorization of N or the private keyd. Hence, when three or four servers are involved,no single server has any information. When �veservers are used, no pair learns anything.Honest parties In this section we assume all serversare honestly following the protocol. This model isoften called honest but curious parties | curiousparties learn nothing from the protocol. In Sec-tion 6 we explain how the protocol can be maderobust against malicious participants. Techniquesfor achieving stronger robustness properties are de-scribed in [9].Private and authenticated channels The con-nection between server i and server j must besecure. Otherwise, an adversary can tap allcommunication and expose critical information.Our system implements private channel using theSSL protocol as described in Section 3.2.1 Distributed computation of NFor completeness, the next three subsections describesteps (2) { (4) of the algorithm. The reader may skipto Section 3 and refer back these subsections as neces-sary.We begin by describing the private computation ofN (Step 2). Each server has a secret pi; qi. They wishto make the product N = (P pi)(P qi) public withoutrevealing any information about their private sharesbeyond what is revealed by the knowledge of N . Ourtechnique is a practical adaptation of a generic securecircuit evaluation protocol due to BenOr, Goldwasserand Wigderson (BGW) [1]. From here on, let P > Nbe some prime. Unless otherwise stated, all arithmeticoperations are done modulo P . The protocol works asfollows:Step 1: Let l = bk�12 c. For all i = 1; : : : ; k serveri picks two random degree l polynomials fi; gi 2ZP [x] satisfying fi(0) = pi and gi(0) = qi. In otherwords, the constant term of fi; gi are set to pi; qiand all other coe�cients are chosen at random. Inaddition, each server i picks a random degree 2lpolynomial hi 2 ZP [x] satisfying hi(0) = 0.Step 2: For all i = 1; : : : ; k server i computes8j = 1; : : : ; k : pi;j = fi(j)qi;j = gi(j)hi;j = hi(j)

Server i then privately sends the triplehpi;j ; qi;j ; hi;ji to server j for all j 6= i. Notethat the pi;j for j = 1; : : : ; k are standard l-out-of-k Shamir secret sharings of pi. The same holds forqi.Step 3: At this point, each server i has all ofhpj;i; qj;i; hj;ii for j = 1; : : : ; k. Server i computes:Ni = 0@ kXj=1 pj;i1A �0@ kXj=1 qj;i1A+ kXj=1 hj;i (mod P)Server i broadcasts Ni to all other servers.Step 4: At this point each server j has all values Nifor i = 1; : : : ; k. Let �(x) be the polynomial�(x) = (Xj fj(x))(Xj gj(x)) +Xj hj(x) (mod P)Observe that �(i) = Ni and by de�nition of fi; giand hi we have �(0) = N . Furthermore, �(x) is apolynomial of degree 2l. We note that l is de�ned sothat k � 2l+1. Since all servers have at least 2l+1points on �(x) they can interpolate it and discoverits coe�cients. Finally, each server evaluates �(0)and obtains N mod P . Since N < P the serverslearn the correct value of N .From the description of the protocol it is clear thatall servers learn the value N . The protocol requiresthat at least three servers be involved, in which caselinear polynomials are used and the protocol is 1-private. The following lemma states that a coalitionof bk�12 c servers learns no other information about theprivate shares. This statement holds in the informa-tion theoretic sense { no complexity assumptions areneeded.Lemma 2.1 Given N , any coalition of bk�12 c serverscan simulate the transcript of the protocol. Conse-quently, the protocol is bk�12 c private.2.1.1 Sharing the �nal outcomeIn some cases (as in Section 4.1) we wish to have theservers evaluate the function N = (P pi)(P qi); how-ever the result should be additively shared among theservers rather than become publicly available. Thatis, at the end of the computation each server shouldhave an Mi such thatkXi=1 Mi = (kXi=1 pi)(kXi=1 qi) (mod P)3

and no information is revealed about the private sharesor the �nal result.The modi�cation to BGW in order to achieve theabove goal is immediate. The servers do not performStep 4 of the protocol and do not perform the broad-cast described at the end of Step 3. Consequently, theyeach end up with a point on a polynomial �(x) of de-gree 2l that evaluates to N at x = 0. Using Lagrangeinterpolation we know thatN = �(0) = kXi=1 �i(0)Ni mod Pwhere �i(x) = Qj 6=i(x � j)=(i � j) is the appropriateLagrange coe�cient. Therefore, rather than broadcastNi at the end of Step 3, server i simply sets Mi =�i(0)Ni. The resulting Mi's are an additive sharing ofN as required.2.2 Distributed primality testWe describe a simpli�ed version of the distributed pri-mality test (Step 3). Server i has two secret n-bitintegers pi; qi. At this point, all servers know N whereN = pq = (P pi)(P qi). They wish to determine ifN is the product of two primes without revealing anyinformation about the factors of N .Distributed primality test:Step 1: The servers pick a random g 2 Z�N. Thevalue g is known to all k servers.Step 2: Server 1 computes v1 = gN�p1�q1+1 mod N .All other servers compute vi = gpi+qi mod N . Theservers exchange the vi values with each other andverify that v1 = kYi=2 vi (mod N)If the test fails then the servers declare that N isnot a product of two primes. Otherwise, they de-clare success.We refer to the above test as a Fermat test for test-ing that a number is a product of two primes. Essen-tially, what is being tested is thatgN�p�q+1 = 1 (mod N)Note that there exist N that are not a product oftwo primes yet they always pass the test. The den-sity of such integers is extremely small (less than 1 in

1040) [12]. A full probabilistic primality test (that onlyadmits integers that are a product of two primes) wasdesigned by Boneh and Franklin [4]. Once an integerN that passes the Fermat test above is found, the fullBoneh-Franklin test can be applied to ensure that thenumber is indeed a product of two primes. Currentlyour implementation only tests the number using thesimple Fermat test protocol above.When N is the product of two distinct primes, theprimality test protocol reveals no information aboutthe private shares of the participants.2.3 Shared generation of public andprivate keysOnce the servers successfully construct an RSA mod-ulus N = pq = (P pi)(P qi) they wish to computeshares of d = e�1 mod �(N) for a given encryptionexponent e (Step 4). At the end of the computationeach server should have a di such that d =P di. Thereare two approaches for doing so. The �rst approachworks for small e (say e < 220) but is very e�cient re-quiring very little communication between the servers.The second works for any e and is still e�cient, how-ever it requires more communication. Since signaturegeneration usually makes use of a small RSA public ex-ponent (so that signature veri�cation is fast) we choseto implement the �rst approach as described below.Step 1: Server 1 locally computes �1 = N�p1�q1+1.All other servers locally compute �i = �pi � qi.Observe that �(N) =P�i.Step 2: The servers jointly determine the value of` = �(N) mod e. Since ` = P�i mod e, it is pos-sible to compute ` without revealing any other in-formation about the private shares. To do so weuse a simple protocol due to Benaloh [3] whichis k � 1 private: each server i creates an addi-tive sharing of �i, namely �i = Pj
i;j mod efor random
i;j . It then sends
i;j to server j.Server j now has
i;j for all i. It computes thesum �j = Pi
i;j mod e and sends �j to all otherservers. Then each server locally computes Pj �jwhich satis�es P�j =Pj �j = ` mod e.Step 3: Let � = `�1 mod e. Then, it is not di�cultto see that d = (�� � �+1)=e. Each party i locallycomputes: di = ��� � �ie �As a result we have d =P di + r mod �(N) where0 � r < k.4

Step 4: The above sharing of d enablesshared decryption [8] using the equalitycd � cr Q cdi mod N . Server 1 deter-mines the value of r by trying all possible valuesof 0 � r � k during a trial decryption. It thensubtracts r from its own share d1.The above approach leaks ` = �(N) mod e and r.This is a total of log2 e + log2 k bits. As a result thisapproach only works for small e. In our implementa-tion we use e = 65537, a standard small public expo-nent. We emphasize that an alternate approach worksfor all e and doesn't leak any information (see [4]). Wechose not to implement it since it is more costly.2.4 t-out-of-k sharingThe previous subsection explains how we obtain ak-out-of-k sharing of d. However, to provide fault-tolerance it is often desirable to have a t-out-of-k shar-ing enabling any subset of t servers to apply the privatekey. We explain how to achieve 2-out-of-3 sharing ofthe RSA key. This approach generalizes to any t-out-of-k as long as k is not too big (e.g. k < 20). StandardShamir secret sharing [15] is inadequate since the pri-vate key would have to be reconstructed at a singlelocation in order for it to be used.We �rst explain the structure of a 2-out-of-3 RSAsignature generation scheme. Write the private key das d = d1+d2 = d3+d4 where d1; d2; d3; d4 are randomintegers in [�N;N]. Each of the three server is givenshares according to the following table:S1 S2 S3d1 d2 d1d3 d4Observe that any pair of servers can generate a sig-nature (without having to reconstruct the key). Nosingle server has any information about d. The pri-vate share of the key given to each server is composedof N and a list of di's. As a result, in the implemen-tation we de�ne a new ASN.1 private key structure,as described in Section 3.2. We note that an alter-nate approach to a t-out-of-k sharing of an RSA keyis described in [13].We can now explain how a t-out-of-k sharing of das above can be generated by the servers themselves(without a trusted dealer). Once the servers generatea k-out-of-k sharing (as explained in the previous sec-tion) they can easily convert it into a t-out-of-k sharingas follows: each server i constructs a t-out-of-k sharing

(as the above table) of its own share di. It then sendsto server j the shares of di that belong to j. Finally,each server adds up all the shares it received from theother servers. The resulting di's are a t-out-of-k shar-ing of d.3 Implementation detailsOur implementation consists of two independent com-ponents. The �rst is a communications package(COM) that abstracts low level communications. Itprovides encrypted links between servers as well as aconvenient interface for sending abstract data types,such as large numbers, over the network. The sec-ond component is the algorithm module (GEN) thatimplements the key generation algorithm. Our code iswritten in C for high performance and easy integrationinto existing products.3.1 Communications packageThe clients and servers use a communications packagebased on SSL to ensure the authenticity and con�den-tiality of connections. The communications packagehandles the following tasks internally:� Tunneling communications using an underlying se-cure transport, like SSL.� Providing an intuitive, platform-independent inter-face for reading and writing abstract data types,like large integers.� Managing a large number of simultaneous networkconnections and presenting a simpli�ed networkingAPI for higher-level code.� Handling transparent end-to-end authenticationusing techniques such as certi�cates and sequencenumbers.� Maximizing e�ciency by taking advantage ofbu�ering and nonblocking I/O.In short, the package ensures that the underlyingprotocol security assumptions mentioned earlier aremet while abstracting away the complexities of asyn-chronous networking and any optimizations we imple-ment at the communications level.A con�guration �le, which is read upon programstartup, contains network settings for the clients andservers, such as IP addresses, port numbers, and path-names. Instead of requiring each program to know all5

the details of each server, the API allows servers to bereferenced directly by number. The communicationpackage takes care of the mappings between servernumber and address/port information. In addition,it handles peer identi�cation transparently, so that aserver knows the identity of any clients that contactit.3.1.1 AuthenticationAs stated earlier, the communications package is basedon Eric Young's SSLeay [17] package. Client andserver certi�cates are issued by a private CA, whosepublic key is distributed by hand to all clients andservers beforehand. Each party has its own certi�cate,signed by this CA, which contains its own identity aspart of the signed certi�cate data. For example, thecerti�cate for server 0 has a subject �eld that lookslike:/C=US/ST=California/O=Stanford University/OU=ITTC Project/CN=[SERVER 0]The name �eld contains the authenticated identityof the party, which can be veri�ed by clients and otherservers.At the moment our approach to authentication isad-hoc. After all, the method of authentication de-pends on the environment in which our system is used.For instance, when generating a CA private key, au-thentication can be done using certi�cates generatedby a higher level CA. For a root CA authenticationcan be done using the current CA root key. In otherenvironments where shared keys are used authentica-tion can be done using standard certi�cates issued bya CA.In addition to certi�cate authentication, the com-munications package keeps track of sequence numbersfor each pair of parties. This allows the system todetect when a private key is compromised and used,since this would introduce a skew between the se-quence numbers held by the servers and the legitimateclient.3.1.2 Multiparty I/OThere are many instances where conventional networkprogramming can lead to considerable implementationine�ciencies, even under normal usage. Consider anapplication of threshold decryption when one of theservers has failed. One of the bene�ts of thresholddecryption is the ability to tolerate the loss of one ormore shares. However, if one naively attempts to con-

nect to each server in series, the procedure will stallwhen the non-functioning server is reached.Instead, the communications package uses non-blocking I/O underneath to alleviate this problem. Inthis mode, when the communications package makesan I/O request, it tells the operating system to re-turn immediately instead of waiting until the opera-tion can be completed. This is useful when communi-cating with multiple parties, because the applicationcan open multiple connections and have the communi-cations package deliver packets on several of the con-nections without waiting for acknowledgments. Thisreduces the amount of time spent waiting on the net-work to its theoretical minimum.The core of the communications package is a statemachine that tracks the status of each connection.This state machine handles the initial connection es-tablishment and negotiates the initial authenticationhandshakes transparently to the application. This ap-proach is needed because multiple connections, in dif-ferent stages, may be in progress simultaneously. Alldata is bu�ered internally and delivered to the appli-cation as complete and well-formed packets.3.2 Key storageThe SSLeay package supports reading and writingboth public and private keys in PEM format. Ourprivate shares and shared public keys are representedinternally as extensions of the standard RSA key datastructure1. On disk, we support a PEM-encodedASN.1 format similar to that used for RSA keys. Theprivate and public share formats are described in Ta-ble 1. Note that none of these �les contains the op-tional values d mod p� 1; d mod q � 1, or q�1 mod pnormally used to optimize RSA computations becausenone of the parties can construct these values.The values g and gdi mod N stored in the publicshared key are used to detect incorrect (or possiblycompromised) private share operations by the shareservers. Their function is not discussed in this paper.3.3 Testing the shared keysOnce a shared key is generated among the servers itundergoes a number of tests to verify proper sharing.The �rst thing the servers do is trial decryption: eachserver picks a random message, encrypts it using the1Because SSLeay supports some degree of object polymor-phism, our \extended" RSA keys can be used interchangeablywith \ordinary" RSA keys in SSLeay.6

Private share �le format Public key �le formatData Type Field Data Type FieldINTEGER Version INTEGER VersionINTEGER N INTEGER NINTEGER e INTEGER eINTEGER k (number of sets) INTEGER g (generator)INTEGER d1 INTEGER k (number of sets)... ... INTEGER gd1 mod NINTEGER dkINTEGER gdk mod NTable 1: Private and public shared key formatspublic key, and sends the result to all other servers.Each server then applies its private share to the ci-phertext and sends the result back to the originatingserver. The originating server combines all the resultsand compares the resulting plaintext to the originalrandom message it chose.When our system is run in a test mode, more ag-gressive testing is done on the output. Once the key isgenerated, all servers send their shares of the privatekey d to all other servers. They also send their privateshares of the factors p and q. Each server then veri�esthat p and q are both prime, that N = pq, and thate � d = 1 mod �(N). This test should clearly not bedone under normal system operation since it exposesthe private key to each of the servers, defeating themain point of key sharing.4 Practical optimizationsWe describe several practical optimizations we use toimprove the performance of distributed key genera-tion. First, we explain the main reason why our im-plementation is slower than standard single user gen-eration. To generate an RSA key, a single user re-peatedly picks random numbers until two primes arefound. These primes are multiplied to form N = pq.The probability that a random n-bit integer is primeis approximately 1=n. Consequently, an average of nprobes are needed until a prime is found; 2n are neededuntil two primes are found. This approach cannot beused in distributed key generation since the prime fac-tors have to be kept secret. Instead, in our implemen-tation the servers �rst share two random n-bit integersp and q. The shared numbers are multiplied to obtainN = pq and a double-primality test is then directlyapplied to N . The probability that both p and q aresimultaneously prime is asymptotically 1=n2. There-

fore, naively one has to perform n2 probes on averageuntil a suitable N is found. This is much worse thanthe expected 2n probes needed in single user genera-tion, resulting in a slowdown of a factor of 256 (!) for a1024 bit RSA modulus. Our �rst and most signi�cantoptimization eliminates much of this slowdown by anapproach we call distributed sieving. Other optimiza-tions take advantage of the distributed environment inwhich the computation takes place.4.1 Distributed sievingThe goal of distributed sieving is to ensure that inStep 1 (Section 2) of the algorithm, when the serversgenerate shares of two random integer p and q, theseintegers are not divisible by small primes. Unfortu-nately, since p must remain secretly shared among theservers as p = p1 + : : : + pk it is not possible to e�-ciently perform trial division on p. Instead, we use atechnique that enables each server to pick a randomshare pi and be guaranteed that P pi is not divisibleby small primes. Our method leaks no information {server i learns nothing about the shares of p belongingto other servers.This single optimization results in a 10-fold improve-ment in running time when generating a 1024-bit mod-ulus. In what follows we let M be the product ofall odd small primes up to some bound which we callthe sieving bound. The only constraint is that M besmaller than p.Step 1: Each server i picks a random integer ai in therange [1; : : : ;M] such that ai is relatively prime toM . To do so, we use a classic sieving technique: theserver picks a random integer r between 1 and M .It then initializes a small boolean array represent-ing the integers r; r + 1; r+ 2; : : : ; r + 30. For eachof the small prime divisors of M it loops through7

the array and crosses out the elements divisible bythat prime. Finally, it sets ai to be the �rst entrythat was not crossed out. If all entries were crossedout the process is restarted and a new random aiis chosen.In general, the size of the array should be propor-tional to log logM . An array of size 30 was exper-imentally proven to be su�cient for our purposes.Step 2: Since each ai is a random integer relativelyprime to M , their product a = a1 � � � ak mod M isalso a random integer relatively prime to M . Weneed to convert this multiplicative sharing of a intoan additive sharing. More precisely, each servershould obtain a private bi in the range [0; : : : ;M]such that a = b1+ : : :+bk mod M . No informationabout a should be leaked.We convert the multiplicative sharing a =a1 � � � ak mod M to an additive sharing by con-sidering one server at a time. Suppose for some1 � ` < k the value a` = Qì=1 a1 � � � a` mod M isalready converted into an additive sharinga` = b1;` + : : :+ bk;` (mod M)Initially ` = 1. To convert a`+1 = a1 � � � a`+1 toan additive sharing we run the algorithm of Sec-tion 2.1.1 on the input(b1;` + : : :+ bk;`) � (u1 + : : :+ uk) (mod M)where u`+1 = a`+1 and ui = 0 for i 6= ` + 1. Thealgorithm produces the required additive sharinga`+1 = b1;`+1 + : : : + bk;`+1 of the product. Afterk�1 iterations of this procedure (for ` = 1; : : : ; k�1) we obtain the desired additive sharing a = b1 +: : : + bk mod M of a1 � � � ak mod M . The privacyachieved is identical to that of Section 2.1.1, henceno information about a mod M is leaked.Step 3: Finally, each server i picks a random ri inthe range [0; 2nM] and sets pi = riM + bi. Clearly,p = P pi � a mod M and hence p is not divisibleby any small prime factors.One caveat in the procedure of Step 2 is that thealgorithm of Section 2.1.1 is carried out modulo Mwhich is not prime. This is not a problem as longas the smallest prime factor of M is not smaller thanthe number of parties k. Shamir secret sharing is notpossible in ZM when the smallest prime factor of Mis less than k. The algorithm of Section 2.1.1 cannotbe executed modulo such M . In our experiments thenumber of servers is always less than 7. Hence, we

apply distributed sieving modulo M = 7 � 11 � 13 � � � p`where p` is the sieving bound. To ensure that p andq are not divisible by 2; 3 and 5 we �x their valuesmodulo 30.4.2 Testing candidates in parallelWhile generating and testing a particular candidate,the algorithm is synchronous. All servers step fromone phase to another in synchrony. As a result, time iswasted at various synchronization points. To improveperformance we run multiple threads on each server.Thread 1 on each server talks to thread 1 on otherservers, thread 2 talks to thread 2 on other servers,and so on. As a result, multiple candidates are testedat once and synchronization overhead is reduced. Onceone of the threads �nds a modulus, the search termi-nates and all other threads die. Currently, each set ofthreads communicate on a separate set of ports.Multithreading the key generation process greatlyimproves performance. Section 5 gives timing mea-surements to illustrate its e�ect. As expected, mul-tithreading gives the greatest bene�ts in situationswhere synchronization is taking a lot of time.It is possible to estimate the number of iterationsthat a thread must complete before �nding an RSAmodulus. If ` is the number of iterations that a single-threaded implementation would expect to run before�nding a modulus, then an implementation with nthreads expectsiterations = 11� (1� 1̀)n :Since 1̀ is small, we have (1� 1̀)n � 1� ǹ , and henceiterations � ǹ :The timing measurements in Section 5 generally fol-low this formula. They do not match exactly due torandom
uctuations.An interesting consequence is the diminishing gainof multithreading. Increasing the number of threadsfrom n to n + 1 causes the expected number of itera-tions to go from ln to ln+1 , resulting in a decrease of afactor of l=n+ 1l=n = nn+ 1 :As the number of threads becomes larger, nn+1 tendsto 1, hence adding new threads has little e�ect on thenumber of iterations needed to �nd a modulus.8

Adding new threads slows down the servers, but notas much as would be expected under normal circum-stances. For example, when going from one thread totwo threads, the servers do not operate at half theirspeed because one thread can utilize the CPU whilethe other is waiting for another server to synchronize.The optimal number of threads is the result of thistradeo�. Adding threads lowers the expected numberof iterations, while slowing down each iteration. Sinceit is very hard to calculate this tradeo�, the optimalnumber of threads is found by experimentation (SeeSection 5).4.3 Parallel trial divisionRecall that once N is computed the servers performtrial division on it before invoking the distributed pri-mality test (Step 2 in Section 2). The k servers canperform this trial division in parallel { each server is incharge of verifying that N is not divisible by some setof small primes. This can be e�ciently done by hard-coding all small primes p1; p2; : : : ; pl (greater than thesieving bound) in a list. Server i is in charge of testingthat N is not divisible by any of the primes pj in thelist for which j = i mod k. This factor of k speedupenables us to use a large trial division bound, increas-ing the e�ectiveness of trial division.To further improve performance of trial division wedivide by multiple primes at once. For instance, totest if p is divisible by 5 or 7 one can compute p mod 5and then p mod 7 and verify that both values are notzero. However, one can compute a = p mod 35 at thecost of one division; by testing if gcd(a; 35) = 1, it canbe seen if either 5 or 7 (or both) divide a. To takeadvantage of this trick, we pack as many small primesas possible into a single 32 bits word W and computep mod W . Hence, at the cost of one division we testmultiple small primes. This packing of small primesinto 32-bit words is done before the algorithm beginsand is identical on all servers.4.4 Load balancingIn Step (3) of the primality test (Section 2.2) server1 has to compute v1 = gN+1�p1�q1 mod N while allother servers only have to compute vi = gpi+qi mod N .Notice that N + 1 is roughly 2n bits while pi + qi isonly about n bits. Consequently, server 1 has to worktwice as hard as the other servers. Ideally, a serverwould be chosen at random for every iteration andgiven the role of server 1. However, choosing a ran-dom server would require communication between all

of the servers, and is thus undesirable. A determin-istic method to even things out is to assign the roleof server 1 to a di�erent server for each thread, andincrement this server after each iteration. This waythe computation of gN+1 mod N is not always doneon the same server leading to better load balancing.Furthermore, the randomized timing of the iterationswill result in a fairly random and even distribution ofthe role of server 1. As a result, primality test time isreduced by up to a factor of two.5 Timing measurementsWe measured the performance of distributed key gen-eration in a number of environments. First, we mea-sured the performance of our implementation for anumber of common RSA key sizes. Table 2 summa-rizes our results when running the system on threeservers. Note that all of the measurements, except fornetwork tra�c, are given as an average per thread. Forexample, Table 2 shows that when computing a 512-bitmodulus, each thread spent an average of 55.7ms periteration executing the BGW protocol. All times are inmilliseconds, unless otherwise noted. Network tra�cmeasurements are given for the entire key-generationprocess, and re
ect the total load on the network. Thesame amount of tra�c is sent as is received, so onlyone statistic is given in the table.We used 333MHz Pentium II's running Solaris 2.5.1.The servers are connected by a 10-Megabit Ethernet.Communication between the servers is protected bySSL, and the optimal (largest) sieving bound is used.The �rst column measures the time for distributedsieving for both p and q (Section 4.1). The secondcolumn measures the average time per iteration forthe BGW protocol, which is used four times in sievingand once in the distributed computation of N (Sec-tion 2.1). Next we measure the average time per it-eration of trial division with a bound of 15,000. Thenext two columns give both the average running timeof the primality test and number of times it was exe-cuted. Following this is the number of iterations untila modulus is found and the total average running timeper iteration. Finally, the average network tra�c perkey generation is given in megabytes. The timings areaveraged over 20 executions of the algorithm. Notethat the total time to generate a 1024-bit key is ap-proximately 90 seconds.We do not give the time to generate a sharing of thesigning exponent d once the modulus is found (Sec-tion 2.3) since it is negligible compared to the rest of9

Sieving BGW trial div. prime test iterations total net number oftime time time time num time num time tra�c threads512 bit 39.9 55.7 2.4 37.6 36.4 77.2 119 0.15 min 0.180 Mb 21024 bit 362.4 82.6 2.3 637.2 49.1 696.9 130 1.51 min 1.162 Mb 62048 bit 369.3 470.9 3.6 4177.3 233.9 2198.0 495 18.13 min 7.48 Mb 6Table 2: Shared key generation time among three servers.the computation. These times ranges from 20ms for a512-bit key to 500ms for a 2048-bit key.Experimentally, 2 threads per server is optimal fora 512-bit key and 6 threads per server is optimal for a1024-bit key. For 2048 bits, 6 threads also appears tobe optimal.There is a large di�erences between the 1024-bit keyand the 2048-bit key in the number of primality testsand the number of iterations. This di�erence is muchsmaller between the 512-bit key and the 1024-bit keybecause the 512-bit key uses 2 threads per server, whilethe other two use 6 threads per server. Since the num-bers given are the average per thread, the di�erencesbetween the 512-bit key and the 1024-bit key are actu-ally quite large. For example, the 512-bit key requiresan average of 238 iterations overall (238 = 119 � 2),while the 1024-bit key requires an average of 780 iter-ations overall (780 = 130 � 6).It is interesting to note that for a 1024 bit key thenumber of primality tests is about a third of the num-ber of iterations. Trial division up to 15000 is able toeliminate two thirds of the candidates without a pri-mality test. Normally, trial division is much more ef-fective. However, due to the distributed sieving, the ef-fect of trial division is diminished. Nevertheless, elimi-nating two thirds of the candidates is signi�cant. Notethat, as expected, the e�ect of trial division is smallerfor the 2048 bit modulus (only 1 in 2 moduli are �l-tered out by it).Fixed key, varying conditions In Table 3 we �xthe key size to 1024 bits and study our system's behav-ior under di�erent conditions. We generate a sharedkey among di�erent numbers of servers: 3,4 and 5. Allservers run 6 threads.Running time is measured when all communicationis sent in the clear and when SSL is used to securecommunication. Performance is measured over a widearea network (WAN), and when all servers run on asingle machine. In all these experiments, the trial di-vision bound is set as in the previous table. Again,all measurements are in milliseconds unless otherwisenoted.

The �rst �ve rows show the results from running thealgorithm on di�erent numbers of servers, with andwithout SSL enabled. Disabling SSL results in a smallincrease in performance which grows as the number ofservers increases. Increasing the number of servers re-sults in a substantial decrease in performance. This isdue to an increase in synchronization time, an increasein the distributed sieving time, and an increase in net-work tra�c. We note that the two extra servers usedfor experiments with four and �ve servers are olderand much slower than the other three.The line labeled \WAN" is especially interesting.The three servers involved were two computers atStanford and one at the University of Wisconsin-Madison. We have thus performed the �rst transconti-nental, distributed RSA key generation. This takes anaverage of about 5.7 minutes. We were stymied in ourwish to perform the �rst intercontinental, distributedRSA key generation by US export laws.E�ect of sieving To demonstrate the e�ectivenessof distributed sieving we measured the algorithm'srunning time on a single thread with di�erent siev-ing bounds. Clearly, a larger sieving bound is better.The results in Table 4 are the times for generating a512-bit modulus on three servers with communicationprotected by SSL. Sieving improves performance bymore than a factor of 10 for a 1024 bit modulus.The table shows how sieving dramatically reducesthe number of iterations until a key is found. Thelarger the number, the more e�ective sieving becomes.Therefore, the key generation program automatically�nds the largest acceptable sieving bound for each keysize, given the constraint that M < p (Section 4.1).Multi-threading As discussed in Section 4.2, toreduce the time wasted on synchronization it makessense to run multiple threads on each of the servers.While one thread is waiting to synchronize with itspeers, other threads can execute. Table 5 shows thatrunning several threads in parallel results in a largedecrease in running time. As expected, each iterationtakes longer, but fewer iterations are required until10

Sieve BGW trial div. prime test time per totalSSL time time time time iteration time3 Servers No 326 413 2.2 628 695 1.51 min3 Servers Yes 362 83 2.3 637 697 1.51 min4 Servers No 689 861 1.5 2035 1707 3.70 min4 Servers Yes 804 1017 1.9 2173 1909 4.14 min5 Servers Yes 1466 1731 1.9 2013 2589 5.61 minWAN Yes 774 1012 6.3 1626 1704 5.69 minLocal No 263 334 2.7 1702 1014 2.20 minLocal Yes 267 337 3.3 1899 1115 2.42 minTable 3: The e�ect of changing the number and locality of servers
Sieving trial div. prime test iterations totaltime time time num time num timeSieve 150 22.6 1.8 36.1 89 46.8 288 14.0 secSieve 50 19.1 1.0 30.7 99 43.8 607 26.6 secNo sieve N/A 1.4 34 149 11 10794 117.0 secTable 4: The e�ect of sieving on running time

BGW trial div. prime test iterations totalthreads/serv. time time time time num timeone 46.5 2.2 201.3 319.5 1102 5.87 minfour 67.6 2.2 414.5 529.3 365 3.22 min�ve 77.1 2.2 527.2 622.7 185 1.92 minsix 82.6 2.3 637.2 696.9 130 1.51 minseven 87.5 2.5 810.8 781.4 129 1.68 minTable 5: The e�ect of multiple threads
11

one of the threads �nds a modulus. We generated the1024-bit keys among three servers with SSL enabled.Multithreading is most bene�cial when synchroniza-tion takes a lot of time. This is most obvious in theWAN trials and in the trials with 5 servers. When run-ning these tests single-threaded, key generation wasvery choppy; bursts of calculations were followed byperiods of waiting. When running multithreaded, keygeneration proceeds smoothly, making much better useof the servers' processors. On the WAN, generatinga 1024-bit key with a single thread took 26.5 min-utes, while it took only 5.7 minutes using 6 threadsper server.6 RobustnessUp until now we assumed all parties are honestly fol-lowing the key generation protocol. For some appli-cations it is desirable to make the protocol robustagainst active adversaries that cheat during the pro-tocol. Since the RSA function is veri�able (the par-ties can simply check that they correctly decrypt en-crypted test messages) active adversaries are limitedin the amount of damage they can cause. However, itmay still be possible that a party cheat during the pro-tocol and consequently be able to factor the resultingN . Similarly, a party can cheat and cause a non-RSAmodulus to be incorrectly accepted.We describe a simple method for making our non-robust protocol robust when the number of partici-pants is small (e.g. less than ten). Consider the caseof four parties where at most one of them is malicious.One can run the non-robust protocol until a candi-date modulus N is found. At this point the protocolis run four more times, once for each triplet of users.In the �rst run, party 1 shares her values p1; q1 withthe other three parties by writing p1 = p02 + p03 + p04and q1 = q02 + q03 + q04 where p0j ; q0j are random in-tegers in the range [0; N]. Party 1 then sends p0i; q0ito party i for i = 2; 3; 4. Party i adds these valuesto its own pi; qi. Next, parties 2; 3; and 4 run ournon-robust protocol among the three of them (ignor-ing party 1). If the resulting N does not match theN computed when all four parties were involved, orif N turns out to not be an RSA modulus, the N isrejected and the parties announce that one of themis misbehaving. This experiment is repeated with allfour triplets { each time exactly one party is excludedfrom the computation. Assuming at most one party ismalicious, the resulting N must be a product of twolarge primes. Furthermore, the malicious party cannot

know the factorization of N since at no point in theprotocol does an honest party reveal any informationabout it's share to another single party. This approachenables the parties to detect cheating, but it does nothelp in detecting the malicious party.In general, when k parties are engaged in our non-robust protocol, and c of them are malicious, the pro-tocol can be made robust at the cost of �kc� extra invo-cations. The resulting computation is bk�c�12 c private.Clearly this approach can only be applied as long asboth k and c are very small.Recently, Frankel, MacKenzie and Yung [9] showedhow our protocol can be made to withstand bk�12 c ma-licious parties. Their approach enables the parties todetect and exclude the malicious party. In practice,one could run our non-robust protocol until a modu-lus N is found which is believed to be a product of twoprimes. Then, the robust Frankel-MacKenzie-Yungprotocol can be used to determine that no majorityof parties cheated during the non-robust phase. Formore results on robust generation of shared RSA keyssee [2].7 ConclusionsThe goal of this paper is to demonstrate the e�ective-ness of shared RSA key generation. Our optimizedimplementation and timing measurements show thatdistributed key generation is a viable method for gen-erating shared RSA keys. Using three 333MHz PC'son a 10Mbps Ethernet we were able to generate 1024bit shared RSA keys in under 91 seconds. On a widearea network, using servers across the US, we were ableto generate keys in under 6 minutes. These perfor-mance �gures are achieved using a number of e�ectiveoptimizations and by multi-threading the key gener-ation process. We hope these results can be used toreduce the need for trusted dealers. Our code will bemade available on the project's web site.We note that Spalding and Wright [16] previouslyimplemented a version of the Boneh-Franklin key gen-eration algorithm. Their implementation simulatesthe distributed environment on a single machine ina single process. Consequently, the timing measure-ments don't re
ect network latencies or the parallelismobtained by multiple servers. Their implementationdoes not use distributed sieving since the techniquewas unknown at the time.To obtain distributed key generation in under 91 sec-onds we designed and implemented a number of prac-12

tical optimizations. The most signi�cant is distributedsieving, which is responsible for a 10-fold improvementin running time. Other optimizations take additionaladvantage of the distributed environment.References[1] M. Ben-Or, S. Goldwasser, A. Wigder-son, \Completeness theorems for non-cryptographic fault tolerant distributed com-putation", STOC 1988, pp. 1{10.[2] S. Blackburn, S. Blake-Wilson, M.Burmester, S. Galbraith, \Secure con-struction of shared RSA keys", Preprint.[3] J. Benaloh (Cohen), \Secret sharing homo-morphisms: keeping shares of a secret se-cret," Crypto '86, 251-260.[4] D. Boneh, M. Franklin, \E�cient generationof shared RSA keys", in Proceedings Crypto'97, pp. 425{439.[5] CertCo, Root CertAuthority,http://www.certco.com[6] C. Cocks, \Split knowledge generation ofRSA parameters", Available from the authorcliff cocks@cesg.gov.uk.[7] A. Fiat and A. Shamir, \How to prove your-self: Practical solutions to identi�cation andsignature problems," Crypto '86, 186-194.[8] Y. Frankel, \A practical protocol for largegroup oriented networks", Eurocrypt 89, pp.56{61.[9] Y. Frankel, P. MacKenzie, M. Yung, \Ro-bust e�cient distributed RSA key genera-tion", STOC 1998, pp. 663{672.[10] P. Gemmel, \An introduction to thresholdcryptography", in CryptoBytes, a technicalnewsletter of RSA Laboratories, Vol. 2, No.7, 1997.[11] M. Reiter, M. Franklin, J. Lacy, R. Wright,\The
 key management service", Proceed-ings of the 3rd ACM conference on Computerand Communication Security, 1996.[12] R. Rivest, \Finding four million large randomprimes", Proceedings of Crypto '91.

[13] T. Rabin, \A simpli�ed approach to thresh-old and proactive RSA", Proceedings ofCrypto' 98.[14] Secure Electronic Transactions (SET),http://www.visa.com[15] A. Shamir, \How to share a secret", Comm.of the ACM, Vol. 22, 1979, pp. 612{613.[16] S. Spalding, R. Wright, "Experimental Per-formance of Shared RSA Modulus Genera-tion", In proceedings of SODA '99.[17] E. Young, SSLeay,http://www.ssleay.org/

13

Appendix: Con�guration �leAll system con�guration parameters are located in one con�guration �le. This includes IP addresses of all serversinvolved as well as type of RSA key to generate. To reduce administrative overhead, all servers use an identicalcon�guration �le. We include an example con�guration �le.;---;--- Part 1: General configuration paratmers ---;---Num_Servers: 3Threads: 4 ; Number of threads per server.HomeDir: /ITTC/Log/Word_Size: 32 ; 32 or 64 bits per word.Log_Level: Notify ; Minimum priority of logged messages.; Sieving and trial division boundsSieve: TrueTrialDiv_End: 17800Public_Key: 65537Key_Length: Normal; Possible key-lengths: Weak = 512 bits, Normal = 1024, Strong = 2048.Test_Mode: False;-------------------------------------;--- Part 2: Server parameters ---;-------------------------------------; Server_Cert: location of server's certificate.; Server_Key: location of server's private key.; Server_Transport: Clear transport vs. SSL transportServer_IP_Addr_0: saga3.stanford.eduShare_IP_Port_0: 8713Server_Cert_0: cert_s0.pemServer_Key_0: key_s0.pemServer_Transport_0: clearServer_Sequence_File_0: seq0Server_IP_Addr_1: cardinal4.stanford.eduShare_IP_Port_1: 8713Server_Cert_1: cert_s1.pemServer_Key_1: key_s1.pemServer_Transport_1: clearServer_Sequence_File_1: seq1Server_IP_Addr_2: epic2.stanford.eduShare_IP_Port_2: 8713Server_Cert_2: cert_s2.pemServer_Key_2: key_s2.pemServer_Transport_2: clearServer_Sequence_File_2: seq2Server_IP_Addr_3: amy5.stanford.eduShare_IP_Port_3: 8713Server_Cert_3: cert_s2.pemServer_Key_3: key_s2.pemServer_Transport_3: clearServer_Sequence_File_3: seq2 14

