Secret Sharing and Splitting

Laurence Grant Brian Fleming

Notre Dame, IN - December 16, 2002

Abstract

From nuclear weapons to governments to class projects, the prob-
lem of mistrust in any working relationship requires a secure system
to prevent access, power, or information from being compromised by a
single member, or a small group of members. While our project does
not claim unbreakable security for high-level government secrets, the
concept of Secret Sharing or Secret Splitting would allow a feasible
solution for small-scale situations where the information put in each
parties’ keys is the only way to gain access the secret key.

1 Keywords

applied cryptography, cryptology, XOR, secret sharing, secret splitting, key
management

2 Introduction

In the situation that a large amount of power, or sensitive information, is in
the hands of a group of people, there is the possibility (or even probability)
that it is undesirable for any one member to wield direct access to the key
necessary. The solution approached in our project was to create an n number
of distinct keys, one for each party, where only a certain combination of the
keys would allow access, ensuring that one, or even a coalition of, members
would not be able to hijack access and compromise the data and its power.



3 Implementation

Our program is actually an implementation of two different methods of dis-
tributing a share of the secret key equally among several different parties.
The first way, Secret Splitting, gives each person 1 piece of the key, and it
requires all the pieces to reconstruct the secret key[SC96]. The second way,
Secret Sharing, gives each person 1 piece of the key, but it only requires a
certain number of the total pieces to reconstruct the secret key[SC96]. Each
has its place in real world applications, and each can be properly implemented
to best fit the situation.

3.1 Secret Splitting

The first mode which does the splitting of the secret key, is the secret splitting
mode. This mode takes the number of pieces, X, which are required, and
the key, K, to generate X equally important pieces. To generate X pieces
of your key, you create X — 1 random numbers. After Py, P, P, ..., Px_1q,
random numbers are created using a secure random number generator (this
prevents someone from trying to duplicate the splitting procedure), you then
operate on these pieces.

szpl@Pg@Pg@...@PX—l@K

Now to the users you give the Py pieces, and you destroy K. While from
this method it may seem as though the final piece is the only one with any
value relating to the key itself, this is not the case. With the XOR function
(@) each piece is inherently important in the reconstruction of the key, if any
bits in any of the pieces are changed, then the key is not recoverable. To
reassemble the key, you do a very similar operation.

KIPlEBPQEBPg@---EBPX—l@PX

Some argue that the length of these random numbers should be the same
length as the key. This is to prevent two or more users from determining the
size of the key by looking for similarities. But this result is the same as if
the pieces weren’t the same size as the key, so it provides no extra security.

3.2 Secret Sharing

The second mode of splitting in our program is known as Secret Sharing.
This also breaks up the secret number, but now, there is a way to reconstruct



the number without all the pieces. An example of this in the real world
might be something like nuclear launch device, which any three of 5 generals
can launch. This way no single general who goes crazy can launch, but it
does allow for a pair of generals to not have to be at the main launching
base at all times. This is known as a threshold scheme, more specifically
a (m,n) — threshold scheme. For each secret number you make N pieces,
known as shadows, and it only requires M of these shadows to reassemble
the secret number.

The specific version of this Secret Sharing which we are doing is known
as the LaGrange Interpolating Polynomial Scheme which was origi-
nally presented by Adi Shamir[SH79]. You first choose a prime, P, which is
larger than both the possible number of shadows, and the largest possible
secret (in our program P is set at 1051). This P is also always made public.
In our program we allow the user to create (2,2),(2,3),...,(2,7) pairs. We
generate a random number, A which is to be kept secret, and is discarded

after the operation.
F(X)= Az + K (mod P)

You can pick any value for X which is less than P — 1, and you use the
previous equation to generate N shadow pairs;

(X1, F(X)1), (X2, F(X)2), .., (XN, F(X)N)

To reassemble this you only need two pairs of shadows, you then plug
them into the above equation, and are left with two unknowns, A and K. If
you have less than two equations, you can gain no extra information, because
this only reduces the possible solution space to an infinite line of solutions.
And any more than two shadows is redundant.

Due to the complexity of solving the matrix in the finite field Zp which
results from these operations, we only implemented a (2, N) system, with
P =1051. The reduction of this operation to a linear function is outlined in
the following equations. Assume you know the two pairs (B, C) and (D, E)
with B and D being the X value of the equation AX + M = F(X), and C
and E being the F'(X) values, so we must look for K, the secret key.

52 [4]-[8) wmmemon
RN IR

3



C
[B 1][A]:[E—%] Which means:

0 1 K b
B
E — €D
K=—=——F
B

This equation looks simple, but then one must remember we are working
in a finite field, so multiplication, addition, and subtraction are fairly easy,
but division requires computing the inverse of the denominator in the size
of your prime (in our case, 1051). Luckily, because we have chosen our own
B and D’s we can precompute the inverses to save time while running the
program. This reduces the number of inverses we have to find from 3 to 1.

To find a multiplicative inverse in a finite field is not an easy task. First
we must Make sure the number, which we are trying to find an inverse does
have an inverse in the field we are working. To check this we must make sure
the ged of the number and the field size is one. This is the reason we work in
a prime field, to ensure all elements in the field have multiplicative inverses.

To find the multiplicative inverse of any number, n, in a prime field of
size p, we can let n=t = n?~2. So now when we need two divide a number,
a by p, we can reduce this by multiplying a by n~*[ST97]. But to do this
in the program it requires a loop with p — 2 operations. This is the major
reason we precompute the inverses of our B’s and D’s. And as the size of
our p would rise we would need to find a more efficient way of computing this
inverse. There are ways which exist, but to implement them would require
more work than time it saves when we are working in a field of size 1051.

Our program’s limit of size of prime and a (2, N) size system is by no
means the limit of this idea. For example, to extend it to a (5, V) domain,
given the key, K, one w ould need to generate random numbers A, B, C, D.

F(X) = A" + Bx* + C2* + Dz + K (mod P)

To generate N shadows, you would just need to provide N different X’s
into this equation, and output N pairs of (X, F'(X)). Then, to reassemble,
you plug in the five (X, F/(X)) pairs, and then you solve the 5 x 5 matrix for
A, B,C, D,and K with K being your secret key.



4 Possible Exploits

While the secret splitting algorithms we have implemented are impossible to
break if all parties only have access to their own keys, if this trust is broken,
at any stage of the process, then the level of security all but disappears.
The following hypothetical example is one which shows how one party, with
complete knowledge, can use information to cheat one person in particular,
this could be extended to complete knowledge cheating everyone, or partial
knowledge cheating some of the participants.

We begin by meeting our participants, Adam, Brent, Chet, David, and
Eve. While none of these parties trust each other, and thus the need for the
secret splitting algorithm, there exists an even higher level of animosity be-
tween Adam and Eve (something about the Apple Corporation). The code
which they are breaking up is one which allows all parties to successfully
receive the next set of information in a fight to win a government contract.
The code has several variations, one which allows all parties to move on, oth-
ers which allow certain parties to continue, and many which end all parties’
involvement in the contract. If Eve knows that the number given to them
by the government allows all parties to continue, including Adam, and she
knows which code removes Adam from the race, and Eve has access to all
the codes, then Eve has power over the whole system. All Eve has to do is
to put all the other people’s pieces the other people got, excluding her own,
into the "generator”, and to replace her number, the secret number which
will end Adam’s chance at the contract. The number which these 5 codes
generate Eve can now use as her code, and when all parties re-convene, she
can successfully exact revenge upon Adam.

Another possible way to break our program’s Secret Sharing protocol lies
in the weakness of the random generator function. Currently the generator
is seeded with a combination of the key and the number of pieces. If one
were to have access to a few of the pieces, and the program, he would be able
to generate all the possible combinations of keys and number of pieces in a
brute force attack . Because you are not actually working with the system
for which the key was designed, there are no repercussions involved with
testing all possible options. This weakness could be removed by improving
both the seeding of the random number generator and the number generator
itself.



5 Summary

We feel that our program met all of our original goals. It successfully splits
the key into 2 - 7 pieces, and the user can choose whether to require all pieces
to reassemble, or just 2 pieces are needed. It operates in a GUI environment
which works equally well for Windows or UNIX environments. The speed
of the program is appropriate for the difficulty of operations which it is
performing.

6 The Future of SCB

While SCB did meet its original goals of implementing both secret sharing
and secret splitting, there is almost unlimited room for growth. The most
obvious extension would be to allow larger number to be split into as many
pieces as the user required. Also we could allow for any (M, N) combinations
(for up to a reasonable size M).

Another possible option would be to allow a third party to enter the secret
key remotely and only display the pieces to the group members. Also this
could be set up so the third party enters the key, and N e-mail addresses,
and have the program automatically send the pieces to the users.

A third extension would be to add a file encryption module right into the
program itself. Then the group would give the program a file location, the
number of pieces needed, and the type of splitting. Then the program would
encrypt the file with a secret key which no one would ever see. The program
would next take this key, split it properly, and display the pieces to the group
members. Then to reassemble, the group would gather all the pieces, and the
encrypted file (which they could all safely keep a copy of themselves, because
no one party could unlock it), and let the program output the original file.

7 Thanks

We’d like to first thank our families. We’d also like to thank Professor Iza-
guirre, Bertrand Meyer, Seymour Cray, Fr. Sam Peters, Fr. Sorin and our
fellow classmates who were with us through the long nights in Fitzy.



8 Credits

8.1 Brian ”George” Fleming

Brian is a junior in computer science at the University of Notre Dame and
hails from the great state of Maryland. His interests involve computers be-
cause of their purity, but he appreciates such things as the aesthetic beauty
inherent in cleaning lawn mowers. Regardless of future plans, he firmly be-
lieves that rock and roll is, in fact, here to stay.

8.2 Laurence ”"LT” Grant

LT is a junior math major from the small town of Newark Valley, NY who
now is a Screaming Otter of Sorin College. He hopes to go on and get his
Ph.D. in math, probably specializing in Cryptography. In his spare time, L'T
is a video game and sport junkie.

References

[SC96] Bruce Schneier, Applied Cryptography, New York, NY, John Wiley &
Sons, Inc. 1996.

[SH79] Adi Shamir, How to Share a Secret, Communications of the ACM 24
(1979), n. 11, (1979), 612-613.

[ST97] Saul Stahl, Introductory Modern Algebra, New York, NY, John Wiley
& Sons, Inc., 1997.



