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Part I

Secure Integer Comparison
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Secure Integer Comparison
I Given integers a and b, securely compute a > b.

I Many variations:
I a, b can be private, public or secret shared.
I Same for the result.
I We can have two or more players.
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Auctions
I Traditional auction:

I Bidders must be on-line.
I Bidding continues until a deadline is reached.

I Maximum bid auction:

I Pi may submit a maximum bid Mi .

I A public current price x is incremented
until only one Mi > x .

I Problem: Auction house knows Mi and
is a trusted third party.

4 / 24



Auctions
I Traditional auction:

I Bidders must be on-line.
I Bidding continues until a deadline is reached.

I Maximum bid auction:

Price

M2

M1

M3

I Pi may submit a maximum bid Mi .

I A public current price x is incremented
until only one Mi > x .

I Problem: Auction house knows Mi and
is a trusted third party.

4 / 24



Auctions
I Traditional auction:

I Bidders must be on-line.
I Bidding continues until a deadline is reached.

I Maximum bid auction:

Price

M2

M1

M3
x

I Pi may submit a maximum bid Mi .
I A public current price x is incremented

until only one Mi > x .

I Problem: Auction house knows Mi and
is a trusted third party.

4 / 24



Auctions
I Traditional auction:

I Bidders must be on-line.
I Bidding continues until a deadline is reached.

I Maximum bid auction:

Price

M2

M1

M3

x

I Pi may submit a maximum bid Mi .
I A public current price x is incremented

until only one Mi > x .

I Problem: Auction house knows Mi and
is a trusted third party.

4 / 24



Auctions
I Traditional auction:

I Bidders must be on-line.
I Bidding continues until a deadline is reached.

I Maximum bid auction:

Price

M2

M1

M3

x

I Pi may submit a maximum bid Mi .
I A public current price x is incremented

until only one Mi > x .

I Problem: Auction house knows Mi and
is a trusted third party.

4 / 24



Auctions
I Traditional auction:

I Bidders must be on-line.
I Bidding continues until a deadline is reached.

I Maximum bid auction:

Price

M2

M1

M3

x

I Pi may submit a maximum bid Mi .
I A public current price x is incremented

until only one Mi > x .

I Problem: Auction house knows Mi and
is a trusted third party.

4 / 24



Auctions
I Traditional auction:

I Bidders must be on-line.
I Bidding continues until a deadline is reached.

I Maximum bid auction:

Price

M2

M1

M3

x P2 pays x

P2 wins

I Pi may submit a maximum bid Mi .
I A public current price x is incremented

until only one Mi > x .

I Problem: Auction house knows Mi and
is a trusted third party.

4 / 24



Auctions
I Traditional auction:

I Bidders must be on-line.
I Bidding continues until a deadline is reached.

I Maximum bid auction:

Price

M2

M1

M3

x P2 pays x

P2 wins

I Pi may submit a maximum bid Mi .
I A public current price x is incremented

until only one Mi > x .
I Problem: Auction house knows Mi and

is a trusted third party.

4 / 24



Removing Trust in the Auction House

Pi

T

Mi

A B

a, b = share(Mi)

a b

Protocol

I Want to remove trusted party T .

I Split T into parties A and B.
I User Pi shares Mi into a and b.
I A gets a, B gets b.
I A and B run a comparison

protocol.
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Homomorphic Encryption Scheme
I Encryption:

Epk(m, r) = gmhr mod n.

I Homomorphic:

Epk(m, r) · Epk(m′, r ′) mod n = Epk(m + m′ mod u, r + r ′).

I Check c = Epk(m, r) for m = 0:

cv mod n = (gv )m mod n.
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Calculating M > x

1 0 1 0 1 1 0 1 0 0x :
` 1

1 0 1 1 0 1 0 0 1 0M:

I We wish to compute M > x
for `-bit numbers.

I xi is the i ’th bit of x , mi is
the i ’th bit of M.

I Define the following:

ci = xi −mi + 1

+
∑̀

j=i+1
mj ⊕ xj .

I M > x ⇐⇒ ∃i : ci = 0.
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Protocol for M > x

A B

Pi

M = m` . . .m1

mi = ai + bi

ai bi

cA
i cB

iEpk(cA
i )

cB
iEpk(cisi)

M > x

I A and B know pk, A knows sk.
I Input x is public, M known to Pi .

I Input mi additively secret shared.
I A and B compute shares of ci .
I A sends Epk(cA

i ) to B.
I B calculates Epk(cisi) using the

homomorphic property.
I B sends shuffled Epk(cisi) to A.
I A checks if any cisi is zero.
I ∃i : cisi = 0 ⇐⇒ M > x .
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Related Work

Computation

Communication I Marc Fischlin’s protocol:

I Quadratic residuosity assumption.
I Encoding expands by λ factor.

I Blake and Kolesnikov’s protocol:

I Paillier encryption.
I No expansion.

I Our protocol: Best of both worlds.

9 / 24



Related Work

Computation

Communication

F

I Marc Fischlin’s protocol:
I Quadratic residuosity assumption.
I Encoding expands by λ factor.

I Blake and Kolesnikov’s protocol:

I Paillier encryption.
I No expansion.

I Our protocol: Best of both worlds.

9 / 24



Related Work

Computation

Communication

F

BK

I Marc Fischlin’s protocol:
I Quadratic residuosity assumption.
I Encoding expands by λ factor.

I Blake and Kolesnikov’s protocol:
I Paillier encryption.
I No expansion.

I Our protocol: Best of both worlds.

9 / 24



Related Work

Computation

Communication

F

BKDGK

I Marc Fischlin’s protocol:
I Quadratic residuosity assumption.
I Encoding expands by λ factor.

I Blake and Kolesnikov’s protocol:
I Paillier encryption.
I No expansion.

I Our protocol: Best of both worlds.

9 / 24



Benchmark Results
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Part II

Virtual Ideal Functionality Framework
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VIFF Overview
I Framework for specifying MPC.
I Provides building-blocks for larger protocols.
I Asynchronous design.
I Automatic parallel scheduling.
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Asynchronous vs. Synchronous
Ti
m
e

share share share share

multiply multiply
I All rounds equally fast.
I Optimal execution.

Ti
m
e

share share share share

multiply multiply I Processing stalls.
I Wasted time!
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Asynchronous Design

r = rt.open((x + y) ∗ z)

 

r

rt.open

∗

+

x y

z

I Entire tree is scheduled at once.
I Result is a form of “greedy

scheduling”.
I Implicit synchronization, no rounds.

I Advantages:
I Automatic parallel scheduling.
I Software scalability.
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Example: Hamming Distance

def xor(a, b):
assert a.field is b.field
if a.field is GF256:

return a + b
else:

return a + b − 2 ∗ a ∗ b

I Straight-forward exclusive-or.
I Fast for GF (28) elements.
I Slower for Zp elements.
I (Already part of VIFF.)

def hamming(s, t):
distance = 0
for i in range(len(s)):

distance += xor(s[i], t[i])
return distance

I Hamming distance.
I Exclusive-ors run in parallel!
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Asynchronous Ideal Functionality

S A

Z

P1 P2 · · · Pn

F

I Reacts on input from Z via Pi .
I Inputs are tagged with a program counter.
I F forwards masked input to S.
I F relays traffic between S and Pi .
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Operations
I Assignment: 〈x := v , pc〉.
I Output: 〈output, x ,Pi , pc〉.
I Linear combination: 〈x := c1 · x1 + · · ·+ cj · xj , pc〉.
I Multiplication: 〈x := y · z , pc〉.
I Synchronization: 〈synchronize, pc〉.

I Direct correspondence to methods in VIFF Runtime.
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Simulating Assignment
Real World:

A

Z

P1 P2 P3

Ideal World:

S A

Z

P1 P2 P3

F
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Performance Results
I Tested on 3 machines: USA, Norway, and Denmark.

I Tested multiplications and comparisons.
I Tested parallel and serial multiplications:

Idle

A B

Idle

Idle

Idle

A B
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Serial Multiplications
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Parallel Comparisons
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Future Work
I Implement protocols for active security.
I Self-trust: protocols with t = n − 1.
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Conclusion

I Comparison protocol for one public and one shared input.
I A homomorphic encryption scheme.
I Low communication complexity.
I Low computational complexity.

I Virtual Ideal Functionality Framework.
I Light-weight design for doing MPC.
I Asynchronous design gives automatic parallelism.
I See: http://viff.dk/.
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Thank you for listening!
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