
Implementing Asynchronous
Multi-Party Computation

Martin Geisler

BRICS
Department of Computer Science

University of Aarhus

February 21st, 2008

1 / 24



Part I

Secure Integer Comparison

2 / 24



Secure Integer Comparison
I Given integers a and b, securely compute a > b.

I Many variations:
I a, b can be private, public or secret shared.
I Same for the result.
I We can have two or more players.

3 / 24



Secure Integer Comparison
I Given integers a and b, securely compute a > b.
I Many variations:

I a, b can be private, public or secret shared.
I Same for the result.
I We can have two or more players.

3 / 24



Auctions
I Traditional auction:

I Bidders must be on-line.
I Bidding continues until a deadline is reached.

I Maximum bid auction:

I Pi may submit a maximum bid Mi .

I A public current price x is incremented
until only one Mi > x .

I Problem: Auction house knows Mi and
is a trusted third party.

4 / 24



Auctions
I Traditional auction:

I Bidders must be on-line.
I Bidding continues until a deadline is reached.

I Maximum bid auction:

Price

M2

M1

M3

I Pi may submit a maximum bid Mi .

I A public current price x is incremented
until only one Mi > x .

I Problem: Auction house knows Mi and
is a trusted third party.

4 / 24



Auctions
I Traditional auction:

I Bidders must be on-line.
I Bidding continues until a deadline is reached.

I Maximum bid auction:

Price

M2

M1

M3
x

I Pi may submit a maximum bid Mi .
I A public current price x is incremented

until only one Mi > x .

I Problem: Auction house knows Mi and
is a trusted third party.

4 / 24



Auctions
I Traditional auction:

I Bidders must be on-line.
I Bidding continues until a deadline is reached.

I Maximum bid auction:

Price

M2

M1

M3

x

I Pi may submit a maximum bid Mi .
I A public current price x is incremented

until only one Mi > x .

I Problem: Auction house knows Mi and
is a trusted third party.

4 / 24



Auctions
I Traditional auction:

I Bidders must be on-line.
I Bidding continues until a deadline is reached.

I Maximum bid auction:

Price

M2

M1

M3

x

I Pi may submit a maximum bid Mi .
I A public current price x is incremented

until only one Mi > x .

I Problem: Auction house knows Mi and
is a trusted third party.

4 / 24



Auctions
I Traditional auction:

I Bidders must be on-line.
I Bidding continues until a deadline is reached.

I Maximum bid auction:

Price

M2

M1

M3

x

I Pi may submit a maximum bid Mi .
I A public current price x is incremented

until only one Mi > x .

I Problem: Auction house knows Mi and
is a trusted third party.

4 / 24



Auctions
I Traditional auction:

I Bidders must be on-line.
I Bidding continues until a deadline is reached.

I Maximum bid auction:

Price

M2

M1

M3

x P2 pays x

P2 wins

I Pi may submit a maximum bid Mi .
I A public current price x is incremented

until only one Mi > x .

I Problem: Auction house knows Mi and
is a trusted third party.

4 / 24



Auctions
I Traditional auction:

I Bidders must be on-line.
I Bidding continues until a deadline is reached.

I Maximum bid auction:

Price

M2

M1

M3

x P2 pays x

P2 wins

I Pi may submit a maximum bid Mi .
I A public current price x is incremented

until only one Mi > x .
I Problem: Auction house knows Mi and

is a trusted third party.

4 / 24



Removing Trust in the Auction House

Pi

T

Mi

A B

a, b = share(Mi)

a b

Protocol

I Want to remove trusted party T .

I Split T into parties A and B.
I User Pi shares Mi into a and b.
I A gets a, B gets b.
I A and B run a comparison

protocol.

5 / 24



Removing Trust in the Auction House

Pi

A B

a, b = share(Mi)

a b

Protocol

I Want to remove trusted party T .
I Split T into parties A and B.

I User Pi shares Mi into a and b.
I A gets a, B gets b.
I A and B run a comparison

protocol.

5 / 24



Removing Trust in the Auction House

Pi

A B

a, b = share(Mi)

a b

Protocol I Want to remove trusted party T .
I Split T into parties A and B.
I User Pi shares Mi into a and b.
I A gets a, B gets b.
I A and B run a comparison

protocol.

5 / 24



Homomorphic Encryption Scheme
I Encryption:

Epk(m, r) = gmhr mod n.

I Homomorphic:

Epk(m, r) · Epk(m′, r ′) mod n = Epk(m + m′ mod u, r + r ′).

I Check c = Epk(m, r) for m = 0:

cv mod n = (gv )m mod n.

6 / 24



Calculating M > x

1 0 1 0 1 1 0 1 0 0x :
` 1

1 0 1 1 0 1 0 0 1 0M:

I We wish to compute M > x
for `-bit numbers.

I xi is the i ’th bit of x , mi is
the i ’th bit of M.

I Define the following:

ci = xi −mi + 1

+
∑̀

j=i+1
mj ⊕ xj .

I M > x ⇐⇒ ∃i : ci = 0.

7 / 24



Calculating M > x

1 0 1 0 1 1 0 1 0 0x :
` 1

Equal bits
1 0 1 1 0 1 0 0 1 0M:

I We wish to compute M > x
for `-bit numbers.

I xi is the i ’th bit of x , mi is
the i ’th bit of M.

I Define the following:

ci = xi −mi + 1

+
∑̀

j=i+1
mj ⊕ xj .

I M > x ⇐⇒ ∃i : ci = 0.

7 / 24



Calculating M > x

1 0 1 0 1 1 0 1 0 0x :
` 1

Significant bit
1 0 1 1 0 1 0 0 1 0M:

I We wish to compute M > x
for `-bit numbers.

I xi is the i ’th bit of x , mi is
the i ’th bit of M.

I Define the following:

ci = xi −mi + 1

+
∑̀

j=i+1
mj ⊕ xj .

I M > x ⇐⇒ ∃i : ci = 0.

7 / 24



Calculating M > x

1 0 1 0 1 1 0 1 0 0x :
` 1

Non-significant bits
1 0 1 1 0 1 0 0 1 0M:

I We wish to compute M > x
for `-bit numbers.

I xi is the i ’th bit of x , mi is
the i ’th bit of M.

I Define the following:

ci = xi −mi + 1

+
∑̀

j=i+1
mj ⊕ xj .

I M > x ⇐⇒ ∃i : ci = 0.

7 / 24



Calculating M > x

1 0 1 0x :
` 1

1 0 1 1M:

c:

I We wish to compute M > x
for `-bit numbers.

I xi is the i ’th bit of x , mi is
the i ’th bit of M.

I Define the following:

ci = xi −mi + 1

+
∑̀

j=i+1
mj ⊕ xj .

I M > x ⇐⇒ ∃i : ci = 0.

7 / 24



Calculating M > x

1 0 1 0x :
` 1

1 0 1 1M:

c: 1 1 1

I We wish to compute M > x
for `-bit numbers.

I xi is the i ’th bit of x , mi is
the i ’th bit of M.

I Define the following:

ci = xi −mi + 1

+
∑̀

j=i+1
mj ⊕ xj .

I M > x ⇐⇒ ∃i : ci = 0.

7 / 24



Calculating M > x

1 0 1 0x :
` 1

1 0 1 1M:

c: 1 1 1 0

I We wish to compute M > x
for `-bit numbers.

I xi is the i ’th bit of x , mi is
the i ’th bit of M.

I Define the following:

ci = xi −mi + 1

+
∑̀

j=i+1
mj ⊕ xj .

I M > x ⇐⇒ ∃i : ci = 0.

7 / 24



Calculating M > x

1 0 1 0x :
` 1

1 0 1 1M:

c: 1 1 1 0
≥ 1

I We wish to compute M > x
for `-bit numbers.

I xi is the i ’th bit of x , mi is
the i ’th bit of M.

I Define the following:

ci = xi −mi + 1

+
∑̀

j=i+1
mj ⊕ xj .

I M > x ⇐⇒ ∃i : ci = 0.

7 / 24



Calculating M > x

1 0 1 0x :
` 1

1 0 1 1M:

c: 1 1 1 0
≥ 1

I We wish to compute M > x
for `-bit numbers.

I xi is the i ’th bit of x , mi is
the i ’th bit of M.

I Define the following:

ci = xi −mi + 1

+
∑̀

j=i+1
mj ⊕ xj .

I M > x ⇐⇒ ∃i : ci = 0.

7 / 24



Protocol for M > x

A B

Pi

M = m` . . .m1

mi = ai + bi

ai bi

cA
i cB

iEpk(cA
i )

cB
iEpk(cisi)

M > x

I A and B know pk, A knows sk.
I Input x is public, M known to Pi .

I Input mi additively secret shared.
I A and B compute shares of ci .
I A sends Epk(cA

i ) to B.
I B calculates Epk(cisi) using the

homomorphic property.
I B sends shuffled Epk(cisi) to A.
I A checks if any cisi is zero.
I ∃i : cisi = 0 ⇐⇒ M > x .

8 / 24



Protocol for M > x

A B

Pi

M = m` . . .m1
mi = ai + bi

ai bi

cA
i cB

iEpk(cA
i )

cB
iEpk(cisi)

M > x

I A and B know pk, A knows sk.
I Input x is public, M known to Pi .
I Input mi additively secret shared.

I A and B compute shares of ci .
I A sends Epk(cA

i ) to B.
I B calculates Epk(cisi) using the

homomorphic property.
I B sends shuffled Epk(cisi) to A.
I A checks if any cisi is zero.
I ∃i : cisi = 0 ⇐⇒ M > x .

8 / 24



Protocol for M > x

A B

Pi

M = m` . . .m1

mi = ai + bi

ai bi

cA
i cB

i

Epk(cA
i )

cB
iEpk(cisi)

M > x

I A and B know pk, A knows sk.
I Input x is public, M known to Pi .
I Input mi additively secret shared.
I A and B compute shares of ci .

I A sends Epk(cA
i ) to B.

I B calculates Epk(cisi) using the
homomorphic property.

I B sends shuffled Epk(cisi) to A.
I A checks if any cisi is zero.
I ∃i : cisi = 0 ⇐⇒ M > x .

8 / 24



Protocol for M > x

A B

Pi

M = m` . . .m1

mi = ai + bi

ai bi

cA
i cB

i

Epk(cA
i )

cB
i

Epk(cisi)
M > x

I A and B know pk, A knows sk.
I Input x is public, M known to Pi .
I Input mi additively secret shared.
I A and B compute shares of ci .
I A sends Epk(cA

i ) to B.

I B calculates Epk(cisi) using the
homomorphic property.

I B sends shuffled Epk(cisi) to A.
I A checks if any cisi is zero.
I ∃i : cisi = 0 ⇐⇒ M > x .

8 / 24



Protocol for M > x

A B

Pi

M = m` . . .m1

mi = ai + bi

ai bi

cA
i cB

iEpk(cA
i )

cB
i

Epk(cisi)

M > x

I A and B know pk, A knows sk.
I Input x is public, M known to Pi .
I Input mi additively secret shared.
I A and B compute shares of ci .
I A sends Epk(cA

i ) to B.
I B calculates Epk(cisi) using the

homomorphic property.
I B sends shuffled Epk(cisi) to A.

I A checks if any cisi is zero.
I ∃i : cisi = 0 ⇐⇒ M > x .

8 / 24



Protocol for M > x

A B

Pi

M = m` . . .m1

mi = ai + bi

ai bi

cA
i cB

iEpk(cA
i )

cB
iEpk(cisi)

M > x I A and B know pk, A knows sk.
I Input x is public, M known to Pi .
I Input mi additively secret shared.
I A and B compute shares of ci .
I A sends Epk(cA

i ) to B.
I B calculates Epk(cisi) using the

homomorphic property.
I B sends shuffled Epk(cisi) to A.
I A checks if any cisi is zero.
I ∃i : cisi = 0 ⇐⇒ M > x .

8 / 24



Related Work

Computation

Communication I Marc Fischlin’s protocol:

I Quadratic residuosity assumption.
I Encoding expands by λ factor.

I Blake and Kolesnikov’s protocol:

I Paillier encryption.
I No expansion.

I Our protocol: Best of both worlds.

9 / 24



Related Work

Computation

Communication

F

I Marc Fischlin’s protocol:
I Quadratic residuosity assumption.
I Encoding expands by λ factor.

I Blake and Kolesnikov’s protocol:

I Paillier encryption.
I No expansion.

I Our protocol: Best of both worlds.

9 / 24



Related Work

Computation

Communication

F

BK

I Marc Fischlin’s protocol:
I Quadratic residuosity assumption.
I Encoding expands by λ factor.

I Blake and Kolesnikov’s protocol:
I Paillier encryption.
I No expansion.

I Our protocol: Best of both worlds.

9 / 24



Related Work

Computation

Communication

F

BKDGK

I Marc Fischlin’s protocol:
I Quadratic residuosity assumption.
I Encoding expands by λ factor.

I Blake and Kolesnikov’s protocol:
I Paillier encryption.
I No expansion.

I Our protocol: Best of both worlds.

9 / 24



Benchmark Results

512 768 1024 1536 2048

2

4

6

8

10

12

14

16

DGK16

F16

DGK32

F32

Key size k (bits)

Ti
m
e
pe
rc

om
pa
ris
on

(s
ec
on

ds
)

10 / 24



Part II

Virtual Ideal Functionality Framework

11 / 24



VIFF Overview
I Framework for specifying MPC.
I Provides building-blocks for larger protocols.
I Asynchronous design.
I Automatic parallel scheduling.

12 / 24



Asynchronous vs. Synchronous
Ti
m
e

share share share share

multiply multiply
I All rounds equally fast.
I Optimal execution.

Ti
m
e

share share share share

multiply multiply I Processing stalls.
I Wasted time!

13 / 24



Asynchronous vs. Synchronous
Ti
m
e

share share share share

multiply multiply
I All rounds equally fast.
I Optimal execution.

Ti
m
e

share share share share

multiply multiply I Processing stalls.
I Wasted time!

13 / 24



Asynchronous Design

r = rt.open((x + y) ∗ z)

 

r

rt.open

∗

+

x y

z

I Entire tree is scheduled at once.
I Result is a form of “greedy

scheduling”.
I Implicit synchronization, no rounds.

I Advantages:
I Automatic parallel scheduling.
I Software scalability.

14 / 24



Asynchronous Design

r = rt.open((x + y) ∗ z)

 

r

rt.open

∗

+

x y

z

I Entire tree is scheduled at once.
I Result is a form of “greedy

scheduling”.
I Implicit synchronization, no rounds.
I Advantages:

I Automatic parallel scheduling.
I Software scalability.

14 / 24



Example: Hamming Distance

def xor(a, b):
assert a.field is b.field
if a.field is GF256:

return a + b
else:

return a + b − 2 ∗ a ∗ b

I Straight-forward exclusive-or.
I Fast for GF (28) elements.
I Slower for Zp elements.
I (Already part of VIFF.)

def hamming(s, t):
distance = 0
for i in range(len(s)):

distance += xor(s[i], t[i])
return distance

I Hamming distance.
I Exclusive-ors run in parallel!

15 / 24



Example: Hamming Distance

def xor(a, b):
assert a.field is b.field
if a.field is GF256:

return a + b
else:

return a + b − 2 ∗ a ∗ b

I Straight-forward exclusive-or.
I Fast for GF (28) elements.
I Slower for Zp elements.
I (Already part of VIFF.)

def hamming(s, t):
distance = 0
for i in range(len(s)):

distance += xor(s[i], t[i])
return distance

I Hamming distance.
I Exclusive-ors run in parallel!

15 / 24



Asynchronous Ideal Functionality

S A

Z

P1 P2 · · · Pn

F

I Reacts on input from Z via Pi .
I Inputs are tagged with a program counter.
I F forwards masked input to S.
I F relays traffic between S and Pi .

16 / 24



Asynchronous Ideal Functionality

S A

Z

P1 P2 · · · Pn

F

I Reacts on input from Z via Pi .
I Inputs are tagged with a program counter.
I F forwards masked input to S.
I F relays traffic between S and Pi .
I F queues replies.
I Released upon signal from S.

16 / 24



Operations
I Assignment: 〈x := v , pc〉.
I Output: 〈output, x ,Pi , pc〉.
I Linear combination: 〈x := c1 · x1 + · · ·+ cj · xj , pc〉.
I Multiplication: 〈x := y · z , pc〉.
I Synchronization: 〈synchronize, pc〉.

I Direct correspondence to methods in VIFF Runtime.

17 / 24



Operations
I Assignment: 〈x := v , pc〉.
I Output: 〈output, x ,Pi , pc〉.
I Linear combination: 〈x := c1 · x1 + · · ·+ cj · xj , pc〉.
I Multiplication: 〈x := y · z , pc〉.
I Synchronization: 〈synchronize, pc〉.
I Direct correspondence to methods in VIFF Runtime.

17 / 24



Simulating Assignment
Real World:

A

Z

P1 P2 P3

Ideal World:

S A

Z

P1 P2 P3

F

18 / 24



Simulating Assignment
Real World:

A

Z

P1 P2 P3

〈x := 7, 1〉

Ideal World:

S A

Z

P1 P2 P3

F

〈x := 7, 1〉

18 / 24



Simulating Assignment
Real World:

A

Z

P1 P2 P3〈Epk2(r2), 1〉
〈Epk3(r3), 1〉

Ideal World:

S A

Z

P1 P2 P3

F
〈x := 7, 1〉

18 / 24



Simulating Assignment
Real World:

A

Z

P1 P2 P3〈Epk2(r2), 1〉
〈Epk3(r3), 1〉

Ideal World:

S A

Z

P1 P2 P3

F
〈x := ?, 1〉

18 / 24



Simulating Assignment
Real World:

A

Z

P1 P2 P3〈Epk2(r2), 1〉
〈Epk3(r3), 1〉

Ideal World:

S A

Z

P1 P2 P3

F

〈Epk2(r ′2), 1〉
〈Epk3(r ′3), 1〉

18 / 24



Simulating Assignment
Real World:

A

Z

P1 P2 P3

〈Epk3(r3), 1〉

Ideal World:

S A

Z

P1 P2 P3

F

〈Epk3(r ′3), 1〉

18 / 24



Simulating Assignment
Real World:

A

Z

P1 P2 P3

〈Epk3(r3), 1〉

Ideal World:

S A

Z

P1 P2 P3

F
〈ok, 1〉

18 / 24



Simulating Assignment
Real World:

A

Z

P1 P2 P3

〈ok, 1〉

Ideal World:

S A

Z

P1 P2 P3

F

〈ok, 1〉

18 / 24



Simulating Assignment
Real World:

A

Z

P1 P2 P3

〈Epk2(r2), 1〉

Ideal World:

S A

Z

P1 P2 P3

F

〈Epk2(r ′2), 1〉

18 / 24



Simulating Assignment
Real World:

A

Z

P1 P2 P3

〈Epk2(r2), 1〉

Ideal World:

S A

Z

P1 P2 P3

F
〈ok, 1〉

18 / 24



Simulating Assignment
Real World:

A

Z

P1 P2 P3

〈ok, 1〉

Ideal World:

S A

Z

P1 P2 P3

F

〈ok, 1〉

18 / 24



Performance Results
I Tested on 3 machines: USA, Norway, and Denmark.

I Tested multiplications and comparisons.
I Tested parallel and serial multiplications:

Idle

A B

Idle

Idle

Idle

A B

19 / 24



Performance Results
I Tested on 3 machines: USA, Norway, and Denmark.
I Tested multiplications and comparisons.

I Tested parallel and serial multiplications:

Idle

A B

Idle

Idle

Idle

A B

19 / 24



Performance Results
I Tested on 3 machines: USA, Norway, and Denmark.
I Tested multiplications and comparisons.
I Tested parallel and serial multiplications:

Idle

A B

Idle

Idle

Idle

A B

19 / 24



Performance Results
I Tested on 3 machines: USA, Norway, and Denmark.
I Tested multiplications and comparisons.
I Tested parallel and serial multiplications:

Idle

A B

Idle

Idle

Idle

A B

19 / 24



Performance Results
I Tested on 3 machines: USA, Norway, and Denmark.
I Tested multiplications and comparisons.
I Tested parallel and serial multiplications:

Idle

A B

Idle

Idle

Idle

A B

19 / 24



Performance Results
I Tested on 3 machines: USA, Norway, and Denmark.
I Tested multiplications and comparisons.
I Tested parallel and serial multiplications:

Idle

A B

Idle

Idle

Idle

A B

19 / 24



Parallel Multiplications
Av

er
ag
e
tim

e
(m

s)

50 2,000 4,000 6,000 8,000 10,000 12,000

1

2

3

4

5

20 / 24



Serial Multiplications
Av

er
ag
e
tim

e
(m

s)

5 200 400 600 800 1,000

50

100

150

200

21 / 24



Parallel Comparisons
Av

er
ag
e
tim

e
(m

s)

5 10 20 30 40 50

400

800

1200

22 / 24



Future Work
I Implement protocols for active security.
I Self-trust: protocols with t = n − 1.

23 / 24



Conclusion

I Comparison protocol for one public and one shared input.
I A homomorphic encryption scheme.
I Low communication complexity.
I Low computational complexity.

I Virtual Ideal Functionality Framework.
I Light-weight design for doing MPC.
I Asynchronous design gives automatic parallelism.
I See: http://viff.dk/.

24 / 24

http://viff.dk/


Conclusion
I Comparison protocol for one public and one shared input.

I A homomorphic encryption scheme.
I Low communication complexity.
I Low computational complexity.

I Virtual Ideal Functionality Framework.
I Light-weight design for doing MPC.
I Asynchronous design gives automatic parallelism.
I See: http://viff.dk/.

24 / 24

http://viff.dk/


Conclusion
I Comparison protocol for one public and one shared input.

I A homomorphic encryption scheme.
I Low communication complexity.
I Low computational complexity.

I Virtual Ideal Functionality Framework.
I Light-weight design for doing MPC.
I Asynchronous design gives automatic parallelism.
I See: http://viff.dk/.

24 / 24

http://viff.dk/


Conclusion
I Comparison protocol for one public and one shared input.

I A homomorphic encryption scheme.
I Low communication complexity.
I Low computational complexity.

I Virtual Ideal Functionality Framework.
I Light-weight design for doing MPC.
I Asynchronous design gives automatic parallelism.
I See: http://viff.dk/.

Thank you for listening!

24 / 24

http://viff.dk/

	Secure Integer Comparison
	Virtual Ideal Functionality Framework
	Conclusion


