
Multiparty Computation made Practical
Using the Virtual Ideal Functionality Framework

Martin Geisler
〈mg@daimi.au.dk〉

BRICS
Department of Computer Science

University of Aarhus
Denmark

ECRYPT Research Meeting
June 23–25, 2008

1 / 25



Outline
Background

Setting
Related Projects

Design Goals
Automatic Parallel Execution
Program Counters

Benchmark Results
Multiplications
Comparisons

Possible Improvements
Program Counters
Memory Overheads
Debugging

Conclusion

2 / 25



Setting
Real World

P1 P2

P3

Ideal World

P1 P2

P3

F

3 / 25



Setting
Real World

P1 P2

P3

Ideal World

P1 P2

P3

F

3 / 25



Setting
Real World

P1 P2

P3

≈
Statistically

indistinguishable

Ideal World

P1 P2

P3

F

3 / 25



Functionality provided by VIFF

I Input
I Shamir secret sharing

I Output
I Reconstruct shares

I Addition
I Local addition
I No communication

I Multiplication
I Local multiplication
I Resharing

I Comparison
I Two protocols

Ideal World

P1 P2

P3

F

4 / 25



Functionality provided by VIFF

I Input
I Shamir secret sharing

I Output
I Reconstruct shares

I Addition
I Local addition
I No communication

I Multiplication
I Local multiplication
I Resharing

I Comparison
I Two protocols

Ideal World

P1 P2

P3

F

4 / 25



Functionality provided by VIFF

I Input
I Shamir secret sharing

I Output
I Reconstruct shares

I Addition
I Local addition
I No communication

I Multiplication
I Local multiplication
I Resharing

I Comparison
I Two protocols

Ideal World

P1 P2

P3

F

4 / 25



Functionality provided by VIFF

I Input
I Shamir secret sharing

I Output
I Reconstruct shares

I Addition
I Local addition
I No communication

I Multiplication
I Local multiplication
I Resharing

I Comparison
I Two protocols

Ideal World

P1 P2

P3

F

4 / 25



Functionality provided by VIFF

I Input
I Shamir secret sharing

I Output
I Reconstruct shares

I Addition
I Local addition
I No communication

I Multiplication
I Local multiplication
I Resharing

I Comparison
I Two protocols

Ideal World

P1 P2

P3

F

4 / 25



Functionality provided by VIFF

I Input
I Shamir secret sharing

I Output
I Reconstruct shares

I Addition
I Local addition
I No communication

I Multiplication
I Local multiplication
I Resharing

I Comparison
I Two protocols

All over arbitrary finite fields.

Ideal World

P1 P2

P3

F

4 / 25



Related Projects
I FairPlay project (Haifa, Israel)

I Yao-garbled circuits for 2 players
I Java implementation
I Working on multiparty computation

I SCET project (Aarhus, Denmark)
I General multiparty computations
I C# implementation

I SIMAP project (Aarhus, Denmark)
I General multiparty computations
I Java implementation
I Some work done on a domain specific language

5 / 25



Related Projects
I FairPlay project (Haifa, Israel)

I Yao-garbled circuits for 2 players
I Java implementation
I Working on multiparty computation

I SCET project (Aarhus, Denmark)
I General multiparty computations
I C# implementation

I SIMAP project (Aarhus, Denmark)
I General multiparty computations
I Java implementation
I Some work done on a domain specific language

5 / 25



Related Projects
I FairPlay project (Haifa, Israel)

I Yao-garbled circuits for 2 players
I Java implementation
I Working on multiparty computation

I SCET project (Aarhus, Denmark)
I General multiparty computations
I C# implementation

I SIMAP project (Aarhus, Denmark)
I General multiparty computations
I Java implementation
I Some work done on a domain specific language

5 / 25



Outline
Background

Setting
Related Projects

Design Goals
Automatic Parallel Execution
Program Counters

Benchmark Results
Multiplications
Comparisons

Possible Improvements
Program Counters
Memory Overheads
Debugging

Conclusion

6 / 25



VIFF Goals
I Easy to use for the programmer:

x = 2 ∗ a − b ∗ c

I Automatically run things in parallel:

x = a ∗ b
y = c ∗ d
z = e ∗ f

I Extensible with new operations:

def max(a, b):
c = a > b
return c ∗ a + (1 − c) ∗ b

7 / 25



VIFF Goals
I Easy to use for the programmer:

x = 2 ∗ a − b ∗ c

I Automatically run things in parallel:

x = a ∗ b
y = c ∗ d
z = e ∗ f

I Extensible with new operations:

def max(a, b):
c = a > b
return c ∗ a + (1 − c) ∗ b

7 / 25



VIFF Goals
I Easy to use for the programmer:

x = 2 ∗ a − b ∗ c

I Automatically run things in parallel:

x = a ∗ b
y = c ∗ d
z = e ∗ f

I Extensible with new operations:

def max(a, b):
c = a > b
return c ∗ a + (1 − c) ∗ b

7 / 25



Parallel Execution
I Networks have significant latency
I Want to run many operations in parallel
I Including primitive and compound operations

8 / 25



Example: Hamming Distance

def xor(a, b):
assert a.field is b.field
if a.field is GF256:

return a + b
else:

return a + b − 2 ∗ a ∗ b

I Straight-forward exclusive-or
I Fast for GF (28) elements
I Slower for Zp elements
I (Already part of VIFF)

def hamming(s, t):
assert len(s) == len(t)
distance = 0
for i in range(len(s)):

distance += xor(s[i], t[i])
return distance

I Hamming distance
I xor calls should run in parallel

9 / 25



Example: Hamming Distance

def xor(a, b):
assert a.field is b.field
if a.field is GF256:

return a + b
else:

return a + b − 2 ∗ a ∗ b

I Straight-forward exclusive-or
I Fast for GF (28) elements
I Slower for Zp elements
I (Already part of VIFF)

def hamming(s, t):
assert len(s) == len(t)
distance = 0
for i in range(len(s)):

distance += xor(s[i], t[i])
return distance

I Hamming distance
I xor calls should run in parallel

9 / 25



Hamming Distance Execution Tree

hamming(s, t) translates to:
+

+

+

0

xor

s[0] t[0]

xor

s[1] t[1]

xor

s[2] t[2]

xor(a, b) translates to:
−

+

a b

∗

2 ∗

a b

10 / 25



Hamming Distance Execution Tree

hamming(s, t) translates to:
+

+

+

0

xor

s[0] t[0]

xor

s[1] t[1]

xor

s[2] t[2]

xor(a, b) translates to:
−

+

a b

∗

2 ∗

a b

10 / 25



VIFF Execution Strategy
I Create execution tree as we go along
I Destroy execution tree from bottom up

I Each node waits on nodes below
I Bottom nodes wait on network traffic

I Composable: just plug new operations into tree!

11 / 25



Program Counters

−

+

a b

∗

2 ∗

a b

I No parsing — execution tree
never fully constructed

I No fixed evaluation order
I But we must identify results

12 / 25



Program Counters Implementation
I First attempt:

I Each player increments a global counter
I Fails because of asynchronous execution

I Working solution:
I Manually “weave” a program counter through program
I Tedious, easy to forget to increment program counter

I Current solution:
I Runtime methods wrapped by a decorator
I Calculated automatically based on call stack

13 / 25



Program Counters Implementation
I First attempt:

I Each player increments a global counter
I Fails because of asynchronous execution

I Working solution:
I Manually “weave” a program counter through program
I Tedious, easy to forget to increment program counter

I Current solution:
I Runtime methods wrapped by a decorator
I Calculated automatically based on call stack

13 / 25



Program Counters Implementation
I First attempt:

I Each player increments a global counter
I Fails because of asynchronous execution

I Working solution:
I Manually “weave” a program counter through program
I Tedious, easy to forget to increment program counter

I Current solution:
I Runtime methods wrapped by a decorator
I Calculated automatically based on call stack

13 / 25



Outline
Background

Setting
Related Projects

Design Goals
Automatic Parallel Execution
Program Counters

Benchmark Results
Multiplications
Comparisons

Possible Improvements
Program Counters
Memory Overheads
Debugging

Conclusion

14 / 25



Performance Results
I Tested on 3 machines: USA, Norway, and Denmark
I Results for VIFF 0.4 (VIFF 0.6 is similar or better)
I Tested multiplications and comparisons

I Tested parallel and serial multiplications

Idle

A B

Idle

Idle

Idle

A B

15 / 25



Performance Results
I Tested on 3 machines: USA, Norway, and Denmark
I Results for VIFF 0.4 (VIFF 0.6 is similar or better)
I Tested multiplications and comparisons
I Tested parallel and serial multiplications

Idle

A B

Idle

Idle

Idle

A B

15 / 25



Performance Results
I Tested on 3 machines: USA, Norway, and Denmark
I Results for VIFF 0.4 (VIFF 0.6 is similar or better)
I Tested multiplications and comparisons
I Tested parallel and serial multiplications

Idle

A B

Idle

Idle

Idle

A B

15 / 25



Performance Results
I Tested on 3 machines: USA, Norway, and Denmark
I Results for VIFF 0.4 (VIFF 0.6 is similar or better)
I Tested multiplications and comparisons
I Tested parallel and serial multiplications

Idle

A B

Idle

Idle

Idle

A B

15 / 25



Performance Results
I Tested on 3 machines: USA, Norway, and Denmark
I Results for VIFF 0.4 (VIFF 0.6 is similar or better)
I Tested multiplications and comparisons
I Tested parallel and serial multiplications

Idle

A B

Idle

Idle

Idle

A B

15 / 25



Performance Results
I Tested on 3 machines: USA, Norway, and Denmark
I Results for VIFF 0.4 (VIFF 0.6 is similar or better)
I Tested multiplications and comparisons
I Tested parallel and serial multiplications

Idle

A B

Idle

Idle

Idle

A B

15 / 25



Parallel Multiplications
Multiplying random 65-bit numbers:

T
hr

ou
gh

pu
t

(m
ul

/s
)

50 2,000 4,000 6,000 8,000 10,000 12,000

200

400

600

800

16 / 25



Serial Multiplications
Multiplying random 65-bit numbers:

T
hr

ou
gh

pu
t

(m
ul

/s
)

5 200 400 600 800 1,000

1

2

3

4

5

6

17 / 25



Parallel Comparisons
Comparing random 32-bit numbers, 65-bit field modulus:

T
hr

ou
gh

pu
t

(c
om

p/
s)

5 10 20 30 40 50

0.2

0.4

0.6

0.8

1.0

1.2

18 / 25



Outline
Background

Setting
Related Projects

Design Goals
Automatic Parallel Execution
Program Counters

Benchmark Results
Multiplications
Comparisons

Possible Improvements
Program Counters
Memory Overheads
Debugging

Conclusion

19 / 25



Program Counter Overheads
I They work, but it’s a bit magic. . .
I Exactly when must the program counter be updated?
I Excessive wrapping slows down method calls
I Program counter size depends on stack depth

20 / 25



Memory Overheads
I Python objects have a large memory overhead:

I Reference count (4 bytes)
I Object attribute dictionary (144 bytes)
I Allocation overhead (>8 bytes)
I . . .

I 100,000 field elements with 65-bit prime:
I Optimal: ≈800 KB
I VIFF: ≈40 MB (expanded 50 times)
I More memory needed for execution tree

21 / 25



Memory Overheads
I Python objects have a large memory overhead:

I Reference count (4 bytes)
I Object attribute dictionary (144 bytes)
I Allocation overhead (>8 bytes)
I . . .

I 100,000 field elements with 65-bit prime:
I Optimal: ≈800 KB
I VIFF: ≈40 MB (expanded 50 times)
I More memory needed for execution tree

21 / 25



Debugging
I Something went wrong! What now?
I Debugging asynchronous programs can be hard

I Need better
I Logging infrastructure
I Handling of exceptions

22 / 25



Debugging
I Something went wrong! What now?
I Debugging asynchronous programs can be hard
I Need better

I Logging infrastructure
I Handling of exceptions

22 / 25



Type Safety
I Python is a strongly typed language

I "12" ∗ 3 == "121212" but 12 ∗ 3 == 36
I "1" + 12 raises TypeError

I Types are only checked at runtime

I Unit tests help here
I Better input validation

23 / 25



Type Safety
I Python is a strongly typed language

I "12" ∗ 3 == "121212" but 12 ∗ 3 == 36
I "1" + 12 raises TypeError

I Types are only checked at runtime
I Unit tests help here
I Better input validation

23 / 25



Outline
Background

Setting
Related Projects

Design Goals
Automatic Parallel Execution
Program Counters

Benchmark Results
Multiplications
Comparisons

Possible Improvements
Program Counters
Memory Overheads
Debugging

Conclusion

24 / 25



Conclusion
I VIFF provides a general framework for MPC
I Automatic parallel execution
I Free Software: LGPL
I Please see http://viff.dk/

I Source code
I Documentation
I Mailing list
I Bibliography

Thank you! Questions?

25 / 25

http://viff.dk/


Conclusion
I VIFF provides a general framework for MPC
I Automatic parallel execution
I Free Software: LGPL
I Please see http://viff.dk/

I Source code
I Documentation
I Mailing list
I Bibliography

Thank you! Questions?

25 / 25

http://viff.dk/

	Background
	Setting
	Related Projects

	Design Goals
	Automatic Parallel Execution
	Program Counters

	Benchmark Results
	Multiplications
	Comparisons

	Possible Improvements
	Program Counters
	Memory Overheads
	Debugging

	Conclusion

