
E�cient Generation of Shared RSA keys(Extended Abstract)Dan Boneh Matthew Franklindabo@bellcore.com franklin@research.att.comAbstractWe describe e�cient techniques for three (or more) parties to jointly generate an RSA key. Atthe end of the protocol an RSA modulus N = pq is publicly known. None of the parties know thefactorization of N . In addition a public encryption exponent is publicly known and each party holdsa share of the private exponent that enables threshold decryption. Our protocols are e�cient incomputation and communication.Keywords: RSA, Threshold Cryptography, Primality testing, Multiparty computation.1 IntroductionWe propose e�cient protocols for three (or more) parties to jointly generate an RSA modulus N = pqwhere p; q are prime. At the end of the computation the parties are convinced that N is indeed aproduct of two large primes. However, none of the parties know the factorization of N . We then showhow the parties can proceed to compute a public exponent e and shares of the corresponding privateexponent.Our techniques require a number of steps including a new distributed primality test. The testenables two (or more) parties to test that a random integer N is a product of two large primes withoutrevealing the primes themselves.A number of cryptographic protocols require an RSA modulus N for which none of the participantsknow the factorization. For examples see [12, 13, 15, 19, 20, 21]. Usually this is done by asking a dealerto generate N . Consequently, the dealer must be trusted not to reveal the factorization of N . Ourresults eliminate the need for a trusted dealer since the parties can generate the modulus N themselves.Threshold cryptography is a concrete example where shared generation of RSA keys is very useful.We give a brief motivating discussion and refer to [10] for a survey. A threshold RSA signature schemeinvolves k parties and enables any subset of t of them to generate an RSA signature of a given message.No subset of t�1 parties can generate a signature. A complete solution to this problem was given in [9].Unfortunately, the modulus N and the shares of the private key were assumed to be generated by adealer. The dealer, or anyone who compromises the dealer, can forge signatures. Our results eliminatethe need for a trusted dealer since the k parties can generate N and the private shares themselves. Suchresults were previously known for the ElGamal public key system [22], but not for RSA.We note that generic secure circuit evaluation techniques, e.g. [26, 17, 3, 7] can also be used togenerate shared RSA keys. After all, a primality test can be represented as a boolean circuit. However,such general techniques are usually too ine�cient. 1

Our protocols are useful even when only two parties are involved. However, some steps of theprotocol require the parties to interact with a third \helper" party we call Henry. At the end of theprotocol Henry learns nothing, but the value of N which is public. The case of two parties wishing togenerate a shared RSA key with the help of a third party comes up naturally in some contexts. Forinstance, consider two users who wish to create the shares of an RSA key on their smartcards. Theusers could insert their cards into two card readers connected to one host. The cards and the host thenengage in our protocol for generating the RSA key where the host is used as the helper party. At theend of the computation, the shares appear on the smartcards, while the host has no information aboutthe shares or the private key.For simplicity, we �rst describe our results for the case of two parties with a third helper (Sections2-6). We note that the general three party case can be easily reduced to two parties with a helper. InSection 7, we explain how our methods generalize to more parties. An overview of our techniques isgiven in Section 2, and the various stages of the protocol are given in Sections 3-6.2 OverviewIn this section we give a high level overview of the protocol. The parties are Alice and Bob, with a thirdhelper party Henry (see Section 7 for a generalization to more parties). Alice and Bob wish to generatea shared RSA key. More precisely, they wish to generate an RSA modulus N = pq and a public/privatepair of exponents e; d. At the end of the computation N and e are public, and d is shared between Aliceand Bob in a way which enables threshold decryption. Alice and Bob should be convinced that N isindeed a product of two primes, but neither of them know the factorization of N .We assume a model of passive adversaries, i.e. all three parties follow the protocol as required. Atthe end of the protocol no party is able to factor N .At a high level the protocol works as follows:(1) pick candidates: The following two steps are repeated twice.(a) secret choice: Alice and Bob pick random n-bit integers pa and pb respectively, and keepthem secret.(b) trial division: Using a private distributed computation Alice, Bob and Henry determinethat pa + pb is not divisible by small primes. If this step fails repeat step (a).Denote the secret values picked at the �rst iteration by pa; pb, and at the second iteration by qa; qb.(2) compute N : Using a private distributed computation Alice, Bob and Henry computeN = (pa + pb) � (qa + qb)Other than the value of N , this step reveals no further information about the secret valuespa; qa; pb; qb.(3) primality test: Alice and Bob (without Henry) engage in a private distributed computation totest that N is indeed the product of two primes. If the test fails, then the protocol is restartedfrom step 1.(4) key generation: Alice and Bob (without Henry) engage in a private distributed computation togenerate a public encryption exponent e and a shared secret decryption exponent d.2

Notation Throughout the paper we adhere to the following notation: the RSA modulus is denotedby N and is a product of two n bit primes p; q. When p =P pi we denote by pi the share in possessionof party i. Similarly for qi. When the pi's themselves are shared among the parties we denote by pi;jthe share of pi that is sent to party j.Performance issues Our protocol generates two random numbers and tests thatN = pq is a productof two primes. By the prime number theorem the probability that both p and q are prime is 1=n2.Therefore, naively one has to perform n2 probes on average until a suitable N is found. This issomewhat worse than the expected 2n probes needed in traditional generation of an RSA modulus(only 2n probes are necessary since one �rst generates one prime using n probes and then a secondprime using another n probes). This n=2 degradation in performance is usually unacceptable (typicallyn = 512).Fortunately, thanks to trial division things aren't so bad. Our trial division tests each prime indi-vidually. Therefore, to analyze our protocol we must analyze the e�ectiveness of trial division. Supposea random n-bit number p passes the trial division test where all primes less than B are tested. Wetake B = c � n for some constant c. How likely is p to be prime? Using a classic result due to Mertens,DeBruijn [8] shows that asymptoticallyPr[p prime j trial division up to B] = e
 lnBln 2n + o(1=n) = 2:57lnBn (1 + o(1=n))Hence, when n = 512 bits and lnB = 9 (i.e. B = 8; 103) the probability that p is prime is approximately1=22. Consequently, traditional RSA modulus generation requires 44 probes while our protocol requires484 probes. This eleven fold degradation in performance is unfortunate, but manageable.Generation of shares In step (1) of the protocol each of Alice and Bob uniformly picked a randomn bit integer pa; pb as its secret share. The prime p was taken to be the sum of these shares. Since thesum of uniform independent random variables over the integers is not uniformly distributed, p is pickedfrom a distribution with slightly less entropy than uniform. We show that this is not a problem. Forthe generalization to k parties, each party i uniformly picks a random n bit integer pi. Then p =Pi piis at most an n + log k bit number. On the other hand, one can easily show that p is chosen from adistribution with at least n bits of entropy (since the n least signi�cant bits of p are a uniformly chosenn bit string). Intuitively, these log k bits of \lost" entropy can not help an adversary, since they can beeasily guessed (the number of parties k is small, certainly k < n). This is formally argued in the nextlemma. We note that by allowing some communication between the parties it is possible to ensure thatp is uniformly distributed among \most" n bit integers.A second issue that comes up is the fact that the shares themselves leak some information aboutthe factors of N . For instance, party i knows that p > pi. We argue that this information does not helpan adversary either. Note that since some tiny amount of information is actually leaked, one can notuse a standard simulation argument.The two issues raised above are dealt with in the following lemma. Let ZZ(2)n be the set of RSAmoduli N = pq that can be output by our protocol above when k parties are involved. We assumek < logN .Lemma 2.1 Suppose there exists a polynomial time algorithm A that given a random N 2 ZZ(2)n chosenfrom the distribution above and the shares fpig of k�1 parties, factors N with probability at least 1=nd.Then there exists an expected polynomial time algorithm B that factors 1=nd+2 of the integers in ZZ(2)n .3

Proof Sketch Given N 2 ZZ(2)n algorithm B works by repeating the following two steps until N isfactored: (1) pick random independent n bit integers p1; : : : ; pk�1. (2) Run algorithm A on the input Nand p1; : : : ; pk�1. For 1=nd+2 of the integers in ZZ(2)n , after a polynomial number of iterations algorithmB will output a factorization of N . 23 Distributed primality testIn this section we consider the distributed primality test. We describe our protocol for the case of twoparties, and discuss the case of k > 2 parties in Section 7.In the case of two parties, Alice and Bob possess integers pa; qa and pb; qb respectively. Both partiesknow N , where N = (pa + pb)(qa + qb). They wish to determine if N is the product of two primes.The primality test is a mix of the Solovay-Strassen [24] and the Rabin-Miller [23] primality tests. Weassume that the secret values chosen by the parties satisfy pa = qa = 3 mod 4 and pb = qb = 0 mod 4.This can be agreed upon before hand and causes the resulting modulus N to be a Blum integer1, sincep � q � 3 mod 4. The test is as follows:1. Alice and Bob agree on a random g 2 ZZ�N .2. Alice computes the Jacobi symbol of g over N . If � gN � 6= 1 the protocol is restarted at step (1).3. Otherwise, Alice computes va = g(N�pa�qa+1)=4 mod N , and Bob computes vb = g(pb+qb)=4 mod N .They exchange these values, and verify thatva = �vb (mod N)If the test fails then the parties declare that N is not a product of two primes. Otherwise theydeclare success.Since pa = qa = 3 mod 4 and pb = qb = 0 mod 4 both exponents in the computation of va; vb areintegers after division by 4. The correctness and privacy of the protocol is proved in the next twolemmas.Lemma 3.1 Let N = pq be an integer with p � q � 3 mod 4. If N is a product of two distinct primesthen success is declared in all invocations of the protocol. Otherwise, for all but an exponentially smallfraction of N , with probability at least 12 (over the choice of g) the parties declare that N is not a productof two primes.Proof The test in step (3) of the protocol is equivalent to checking that g(N�p�q+1)=4 � �1 mod N .Suppose p and q are prime. In step (2) we verify that � gN � = 1. This implies �gp� = �gq�. Also, sinceq�12 and p�12 are odd we have,8><>: g�(N)=4 = �g p�12 �q�12 � �gp� q�12 = �gp� (mod p)g�(N)=4 = �g q�12 � p�12 � �gq� p�12 = �gq� (mod q)1The primality test described in this section is best suited for Blum integers. For non-Blum moduli the test may leaka few bits of information depending on the power of two dividing lcm(p� 1; q� 1). For non-Blum integers these problemscan be avoided by working in the twisted group F �p2=F �p rather than the group F �p .4

Since �gp� = �gq� it follows that g�(N)=4 � �1 mod N . Since �(N) = N � p � q + 1 when p and q areprime, it follows that the test in step 3 always succeeds.Suppose at least one of p; q is not prime. That is, N = rd11 � � �rdss is a non-trivial factorization of Nwith Pdi � 3 and s � 1. Set e = (N � p� q + 1)=4 = (p� 1)(q� 1)=4 to be the exponent used in step(3). Note that e is odd since p � q � 3 mod 4. De�ne the following two subgroups of ZZ�N :G = fg 2 ZZN s.t. �gn� = 1g and H = fg 2 G s.t. ge = �1 mod NgTo prove the lemma we show that jH j � 12 jGj. Since H is a subgroup of G it su�ces to prove propercontainment of H in G, i.e. prove the existence of g 2 G nH . There are four cases to consider.Case 1. Suppose s � 3. Let a be a quadratic non-residue modulo r3. De�ne g 2 ZZN to be an elementsatisfyingg � 1 mod r1 and g � �1 mod r2 and g � 8<: 1 mod r3 if ��1r2 � = 1a mod r3 if ��1r2 � = �1and g � 1 mod ri for i > 3. Observe that g 2 G. Since e is odd ge = g = 1 mod r1 andge = g = �1 mod r2. Consequently, ge 6= �1 mod N i.e. g 62 H .Case 2. Suppose gcd(p; q) > 1. Then there exists an odd prime r such that r divides both p and q.Then r2 divides N implying that r divides �(N). It follows that in ZZ�N there exists an element gof order r. Since r is odd we have � gN � = �grN � = � 1N � = 1, i.e. g 2 G. Since r divides both p andq we know that r does not divide N � p� q+1 = 4e. Consequently g4e 6= 1 mod N implying thatge 6= �1 mod N . Hence, g 62 H .Case 3. The only way N = pq does not fall into both cases above is if p = rd11 and q = rd22 where r1; r2are distinct primes and at least one of d1; d2 is bigger than 1 (case 2 handles the case when N isa prime power N = rd). By symmetry we may assume d1 > 1. Since ZZ�p is a cyclic group of orderrd1�11 (r1� 1) it contains an element of order rd1�11 . It follows that ZZ�N also contains an element gof order rd1�11 . As before, � gN � = 1, i.e. g 2 G. If q 6= 1 mod rd1�11 then 4e = N � p� q + 1 is notdivisible by rd1�11 . Consequently, g4e 6= 1 mod N , i.e. g 62 H .Case 4. We are left with the case N = pq with p = rd11 ; q = rd22 ; d1 > 1 as above and q � 1 mod rd1�11 .In this case it may indeed happen2 that H = G. Observe that rd1�11 � pp � 2n=2. Consequently,since p and q are chosen independently the probability of q � 1 mod rd1�11 is less than 1=2n=2.In addition, p has to be a prime power which happens with probability less than n=2n=2. Theprobability that both events happen is less than n=2n. Hence, this case occurs with exponentiallysmall probability. 2We note that an extra step can be added to the protocol to �lter out integers that fall into case 4above. This extra step ensures that all integers that are not a product of two primes fail the test withprobability half (over the choice of g). The details are given in the appendix. Since case 4 occurs withexponentially small probability actual implementations may ignore this extra step.2For example, p = 3n and q = 2 � 3n�1 + 1 with n odd and q prime.5

Step (2) of the protocol is crucial. Without it the condition of step (3) might fail (and reveal thefactorization) even when p and q are prime. We also note that in practice the probability that a nonRSA modulus passes even one iteration of this test is actually much less than a half.Lemma 3.2 Suppose p; q are prime. Then either party can simulate the transcript of the primalitytesting protocol. Consequently, neither party learns nothing about the factors of N from this protocol.Proof Sketch Since p; q are prime we know that va = �vb mod N where va; vb are de�ned as in step(3) of the protocol. Consequently, given either of va or vb, the simulator can compute the other oneup to sign. If va = vb then �gp� = �gq� = 1, and if va = �vb then �gp� = �gq� = �1. That is, thesign determines whether g is a quadratic residue or not modulo N . If the simulator chooses the signaccording to the
ip of an unbiased coin, the resulting distribution is indistinguishable from the truedistribution assuming the hardness of quadratic residuosity modulo a Blum integer. 24 Distributed computation of NWe now turn our attention to the computation of N . We describe our protocols for the case of twoparties and discuss the case of k > 2 parties in Section 7.In the case of two parties, Alice and Bob posses integers pa; qa and pb; qb respectively. They wishto compute the integer N = (pa + pb)(qa + qb) such that at the end of the computation Alice has noinformation about pb; qb beyond what is revealed by the knowledge of N . The same should hold for Bob.To make the protocol secure in the information theoretic sense we require the help of a third \helper"party called Henry. Henry has no information about either pi nor qi (for i = a; b) and the same shouldhold at the end of the protocol. Clearly, Henry learns N (since N is public) but he learns nothing more.BenOr, Goldwasser and Wigderson [3] (and similarly Chaum, Cr�epeau and Damg�ard [7]) describe aprotocol for private evaluation of general functions for three or more parties. Their full technique is anoverkill for the simple function we have in mind. We adapt and optimize their protocol in several waysso as to minimize the amount of computation and communication between the parties. From here on,let P > N be some prime. Unless otherwise stated, all arithmetic operations are done modulo P . Theprotocol works as follows:Alice: Alice picks two random lines that intersect the y axis at pa; qa respectively. This is done bypicking two integers ca; da 2 ZZ�P and using the lines cax + pa and dax + qa. She evaluates eachline at three points xa = 1; xb = 2; xh = 3. Let pa;i = caxi + pa and qa;i = daxi + qa for i = a; b; h.Next, Alice picks two random numbers pb;a; qb;a and a random quadratic polynomial r(x) suchthat r(0) = 0. Set ri = r(xi) for i = a; b; h. She computes Na = (pa;a + pb;a)(qa;a + qb;a) + ra.Finally, she sends pa;b; qa;b and pb;a; qb;a and rb to Bob. She sends pa;h; qa;h; rh and Na to Henry.Bob: Bob computes cb = (pb;a � pb)=xa and db = (qb;a � qb)=xa. Note that the two lines cbx + pb anddbx + qb intersect the y-axis at pb; qb respectively and evaluate to pb;a; qb;a at xa.Next, Bob computes pb;i = cbxi + pb and qb;i = dbxi + qb for i = b; h. He computes Nb =(pa;b + pb;b)(qa;b + qb;b) + rb and sends pb;h; qb;h and Nb to Henry.Henry: Henry computes Nh = (pa;h + pb;h)(qa;h + qb;h) + rh. He then interpolates the quadraticpolynomial �(x) that passes through the points (xa; Na) ; (xb; Nb) ; (xh; Nh). We have �(0) = N .Henry sends N to Alice and Bob. 6

To see that �(0) indeed equals N observe that the polynomial �(x) satis�es�(x) = �(cax+ pa) + (cbx+ pb)��(dax+ qa) + (dbx+ qb)�+ r(x)Indeed, �(xi) = Ni for i = a; b; h.Lemma 4.1 Given N , Alice, Bob and Henry can each simulate the transcript of the protocol. Conse-quently, they learn nothing more than the value of N .Proof Sketch This is clear for Alice and Bob. To simulate Henry's view the simulator pickspa;h; qa;h; pb;h; qb;h; rh at random and computes Nh = (pa;h + pb;h)(qa;h + qb;h) + rh. It then picks arandom quadratic polynomial �(x) satisfying �(0) = N and �(xh) = Nh. It computes Na = �(xa) andNb = �(xb). These values are a perfect simulation of Henry's view. 2The protocol's communication pattern is very simple: initially Alice sends one message to Bob andone to Henry. Then Bob sends a message to Henry. Finally, Henry publishes the value of N . Hence,during the protocol only three messages are sent. The protocol is also e�cient in computation sinceonly three multi-precision multiplications are performed.The protocol di�ers from the BGW protocol in two ways. First, there is no need for a truncationstep. Second, to minimize the number of messages we let Alice pick her shares pb;a and qb;a of Bob'ssecret. Bob then picks his polynomial to be consistent with Alice's choice.5 Trial divisionIn this section, we consider the trial division step. We describe our protocol for the case of two partiesand discuss the case of k > 2 parties in Section 7.Let q be some random number. The �rst step in testing the primality of q is trial division, whichtests if q is divisible by any small prime. In our case q = qa+qb where Alice knows qa and Bob knows qb.Let p1; : : : ; pj be the set of small primes to be considered. Together they wish to test that q 6= 0 mod pifor all i, 1 � i � j, without revealing any other information about qa; qb. This is equivalent to testingthat qa mod pi 6= �qb mod pi for all i, 1 � i � j. A number of simple protocols have been proposedfor privately evaluating the equality predicate [16], including one with a third helper party, based onuniversal classes of hash functions [6, 25] (attributed to Noga Alon in [16]). Using this equality test,the trial division protocol is as follows:Alice Pick random ci 2 ZZpi and di 2 ZZ�p. Compute ui = ci + diqa mod pi, for all i, 1 � i � j. Sendc1; d1; : : : ; cj ; dj to Bob and u1; : : : ; uj to Henry.Bob Compute vi = ci � diqb mod pi for all i, 1 � i � j. Send v1; : : : ; vj to Henry.Henry Output \pass" if ui 6= vi for all i, 1 � i � j. Otherwise, output \fail".Lemma 5.1 The output of the protocol is \pass" if and only if q 6= 0 mod pi for all i, 1 � i � j.Lemma 5.2 When the output is \pass", each party can simulate its view of the transcript of the protocol.Consequently, when the output is "pass", the parties learn nothing about q other than the fact thatq 6= 0 mod pi for all i, 1 � i � j. 7

6 Shared generation of public/private keysIn this section, we consider the step of key generation. We describe our protocol for the case of twoparties and discuss the case of k > 2 parties in Section 7.Suppose Alice and Bob have successfully computed N = pq = (pa + pb)(qa + qb). They wish tocompute shares of d = e�1 mod �(N) for some agreed upon value of e. We have two approaches forcomputing shares of d. The �rst only works for small e (say e < 1000) but is very e�cient requiringvery little communication between the parties. The second works for any e and is still e�cient, howeverit requires the help of Henry and takes more rounds of communication (but still constant).6.1 Small public exponentWe begin by describing an e�cient technique for generating shares of d when the public exponent e issmall. For simlicity throughout the section we assume e = 3.First, Alice and Bob compute �(N) mod 3, by exchanging pa + qa mod 3 and pb + qb mod 3. Thisreveals some little information (less than two bits) about �(N); this information is of no use since itcan be easily guessed. Observe that3:(d = [�(N) + 1]=3 = 13 [N + 2� (pa + pb + qa + qb)] if �(N) = 2 mod 3d = [2�(N) + 1]=3 = 23 [N � (pa + pb + qa + qb)] + 1 if �(N) = 1 mod 3Consequently, knowing �(N) mod 3 enables Alice and Bob to locally compute shares of the de-cryption exponent d: If �(N) mod 3 = 1, then Alice sets her share to be da = bN�2pa�2qa3 c + 1and Bob sets his share to be db = dN�2pb�2qb3 e. If �(N) mod 3 = 2, then da = bN�pa�qa+23 c anddb = d�pb�qb3 e. Either way d = da + db mod �(N). This enables threshold decryption as describedin [14], i.e., cd � cdacdb mod N .6.2 Arbitrary public exponentUnlike the previous technique, our second method for generating shares of d works for arbitrary publicexponent e and leaks no information. However, it requires the help of Henry.Recall that the public modulus N = (pa+ pb)(qa+ qb) satisi�es �(N) = (N � pa� qa+1)� (pb+ qb).We set �a = N�pa�qa+1 and �b = �pb�qb. Then �(N) = �a+�b is a sharing of �(N) between Aliceand Bob. The private exponent d is the inverse of e mod �a + �b. Unfortunately, traditional inversionalgoerithms, e.g. extended gcd, involve computations modulo �a + �b. When � = �a + �b is sharedamong two users we do not know how to e�ciently perform these computations. We therefore developan inversion algorithm for computing e�1 mod � that avoids any computation modulo �.When only a single user is involved the inversion algorithm works as follows: (1) Compute � =���1 mod e. (2) Set T = � � �+ 1. Observe that T � 0 mod e. (3) Set d = T=e. Then d = e�1 mod �since d �e � 1 mod �. Notice that the algorithm made no reductions modulo �. Our inversion algorithmmade use of a curious fact, namely that e�1 mod � can be immediately deduced from ��1 mod e.We now show how the above inversion algorithm can be used to compute shares da+ db = e�1 mod�a + �b. Cleary we may assume gcd(�(N); e) = 1.3The case �(N) = 0 mod 3 is of no interest since in that case e = 3 can not be used as a public RSA exponent.8

Step 1. Alice and Bob convert their sharing of �(N) into multiplicative shares modulo e. That is,they wish to each posses a number a; b mod e such that a � b = �(N) mod e. They do soas follows: Alice picks a random number r 2 ZZ�e and sets a = r�1 mod e. Using the BGWprotocol of Section 4 Bob to computes b = (r+0)(�a+�b) mod e. Since r; �a are known to Aliceand 0; �b are known to Bob the function Bob computes here is identical to the one computed inSection 4. Observe that both a; b are random elements in ZZ�e and hence provide no informationby themselves.Recall that in Section 4 the �nal computed value became public. In contrast, here the �nalcomputed value b must remain known only to Bob. This can be easily done by letting Bob dothe �nal interpolation rather than Henry. Notice that since e is odd (gcd(�(N); e) = 1) all therequired Lagrange coe�cients indeed exist.Step 2. Alice and Bob each locally compute �a = �1a mod e and �n = �1b mod e. These localcomputations can be e�ciently performed using traditional inversion techniques, e.g. extendedgcd. Observe that �a � �b = �(N)�1 mod e.Step 3. Next they convert their multiplicative sharing of �(N)�1 mod e to an additive sharing �a+�b =�(N)�1 mod e. To do this Alice picks a random elements r 2 ZZe and sets �a = �r�a mod e. Usingthe BGW protocol of Section 4 they enable Bob to compute �b = (�a+0)(r+�b) mod e. Observethat �a+ �b = �(N)�1 mod e. Since �a; �b are random elements in ZZe by themselves they provideno information. As in Step 1 the protocol of Section 4 must be slightly modi�ed to ensure thatBob is the only who learns the value �b.Step 4. Next they �x an arbitrary odd integer P > 2N2e, e.g.P = 2N2e + 1. They then regard theshares 0 � �a; �b < e as elements of ZZP . Using a modi�cation of the BGW protocol of Section 4they compute a sharing of A+B = �(�a + �b)(�a + �b) + 1 mod Psuch that Alice knows A and Bob knows B. Recall that in Section 4 Alice uses a random quadraticr(x) such that r(0) = 0. Instead, Alice will choose a truly random quadratic r(x). Then the �nalresult computed by Henry is o�set from the desired result by an additive factor of r(0), whereonly Alice knows r(0). If Henry gives his �nal result to Bob, then Alice and Bob have additiveshares of the desired result. These shares could then be re-randomized if Alice adds, and Bobsubtracts, an agreed-upon random value unknown to Henry.Step 5. From here on we regard A and B as integers 0 � A;B < P . Our objective is to ensure thatover the integers A+B = �(�a+ �b)(�a + �b) + 1Observe that 0 � A + B mod P < P=N (since �a + �b < 2e and �(N) < N). It follows thatA+ B > P with probability more than 1� 1N (the only way that A +B < P is if both A and Bare less than P=N). Therefore, if Alice sets A A� P then over the integers we haveA+B = �(�a+ �b)(�a + �b) + 1In the very unlikely event (that occures with probability 1=N) that this relation doesn't hold overthe integers, the wrong sharing of the private key will be generated. This will be detected whenthe parties do a trial decryption . 9

Step 6. At this point observe that e divides A+ B. This follows sinceA+B = (�a + �b)(�a + �b) + 1 = �(�a + �b)�1(�a + �b) + 1 � 0 (mod e)Therefore d = (A+B)=e since de = A+B = k�(N) + 1 � 1 mod �(N). Consequently, Alice setsda = bA=ec and Bob sets db = dB=ee. Clearly d = da + db.Notice that the value P we use in step 4 is quite large. As a result the shares da; db are of the orderof N2. In actual implementations there is no need for this to happen. The only reason P has to bethis large is to ensure that step 5 succeeds with overwhelming probability. If one is willing to tolerateleakage of one bit in step 5 then the parties can use a much smaller P , e.g. P = 2Ne+1. If the resultingA;B satisfy A + B > P then the correct sharing of d is obtained. Otherwise, trial decryption will failand the parties learn that A + B < P . In this case, Alice adds P back to her share A and step 6 isrepeated again. The correct sharing of d is now obtained. This results in shares da; db of order N .7 Generalizations to k partiesOur results thus far show how two parties can generate an RSA modulus N = (pa + pb)(qa + qb)with the help of a third neutral party. In this section we discuss how these results generalize tothe case of three or more parties. In this case, the k parties will be generating an RSA modulusN = (p1+ : : :+pk)(q1+ : : :+qk), where each party i knows pi; qi. Afterwards, assuming that the partiesfollow the protocol as required, no coalition of dk=2e � 1 parties can factor N .The primality test from Section 3 generalizes easily to k > 2 parties. Assume that the secret valueschosen by the parties satisfy p1 = q1 = 3 mod 4 while for all other parties pi = qi = 0 mod 4. Thenparty 1 computes v1 = gN�p1�q1+14 mod N . Party i computes vi = g pi+qi4 , 2 � i � k. They all publishtheir values and verify that v1 � �v2v3 : : : vk mod N . The arguments for correctness and privacy areessentially the same. The resulting protocol is k-private.The distributed computation of N from Section 4 generalizes to k > 2 parties as follows. Byusing higher degree polynomials (rather than linear) the BGW protocol can be made private (i.e. noinformation about the pi; qi is leaked) even when dk=2e � 1 parties collude. When k = 3, however, wecan reduce directly to our solution for two parties with a helper. Suppose Alice, Bob and Carol wishto generate a shared RSA modulus. Let pi; qi for i = a; b; c be their secret shares. The protocols inSection 4 and 5 work modulo some prime P . Before these protocols are started Carol picks four randomelements of ZZP denoted by pc;a; pc;b and qc;a; qc;b such that pc = pc;a+pc;b and qc = qc;a+qc;b. She sendspc;a; qc;a to Alice and pc;b; qc;b to Bob. Now Alice and Bob add the shares of pc; qc they receive to theirown shares. That is, they each compute p0i = pi + pc;i and q0i = qi + qc;i for i = a; b. They then engagein the required protocol using p0i; q0i as their shares with Carol playing the role of Henry. SinceN = (pa + pb + pc)(qa + qb + qc) = (p0a + p0b)(q0a + q0b)the correct results are computed. To conclude, using two extra messages, three parties can use theprotocols of the previous sections. The resulting computation is 1-private.For trial division (Section 5) among k = 3 parties, we can reduce directly to our solution for twoparties with a helper. The idea is essentially the same as for the distributed computation of N in thepreceding paragraph. For k > 3, trial division can be done dk=2e � 1 privately, but a di�erent protocolmust be used. We adapt an idea due to Beaver [2]. Let q = q1 + : : :+ qk be an integer shared amongthe k parties. Let p be a small prime. To test if p divides q each party picks a random number ri 2 ZZp.10

Using the BGW protocol they compute qr = (P qi)(P ri) mod p. If qr 6= 0 then p does not divide q.Furthermore, since r is unknown to any minority of parties, qr provides no other information aboutq. Note that if qr = 0 mod p it could still be the case that p does not divide q. However, if the testis repeated twice for each small prime p, the probability that a good candidate is rejected is at most1� Yp<B(1� 1p2) < 12.The key generation protocols from Section 6 can be easily generalized to k-out-of-k sharing of aprivate key among k > 2 parties. We give details for the small public exponent case from Section 6.1.The k parties �rst compute �(N) mod 3. Since this is a simple sum, it can be done k-privately ande�ciently as shown by Benaloh [4]. If �(N) mod 3 = 1, then party 1 computes d1 = b2N�2p1�2q13 c + 1while each party i computes di = b�2pi�2qi3 c, 2 � i � k. If �(N) mod 3 = 2, then party 1 computesd1 = bN�p1�q1+23 c while each party i computes di = b�pi�qi3 c, 2 � i � k. This results in shares of dsuch that d � k � Pi di � d. Now one trial decryption (e.g., each party publishes r3di mod N for anagreed upon r) will su�ce to determine the di�erence d �Pi di (by searching for � 2 [0; k] such thatr = r3�Qi r3di).The more di�cult case of t-out-of-k sharing of a private key among k > 2 parties is treated in thenext subsection.7.1 t-out-of-k sharingTo achieve t-out-of-k sharing of d, �rst share d using a k-out-of-k scheme as described above, i.e. eachparty computes a share di such that d =Pdi mod �(N). Then each party i shares its share di with allother parties using a t-out-of-k scheme. We denote the share of di sent to party j by di;j . A coalition Cof t parties can do threshold decryption using its shares of d and its shares di;j for i 62 C. Thus, we areleft with the problem of generating the di;j given di. Secret sharing modulo �(N) is not easy. An elegantsolution was given in [9] where the authors show how a trusted dealer (who knows the factorizationof N) can generate shares di;j as required. We can show that when N = (P pi)(P qi) where party ionly knows pi; qi, there is no need for a trusted dealer. That is, the parties can engage in a multi-partyprotocol to compute the same shares di;j that were generated by the dealer in [9]. Unfortunately, thisrequires multiple invocations of the BGW protocol described in Section 4.Since we are mainly concerned with e�cient solutions we describe an alternate approach which workswell when the threshold t is small. When t is small t-out-of-k sharing can be achieved through t-out-of-tsharing. Naively this can by done by giving each of the �kt� coalitions a t-out-of-t sharing of the secret.Other techniques [1] can reduce t-out-of-k sharing to t-out-of-t sharing using fewer instances4. However,it is essential for these reductions that the instances of t-out-of-t sharing be independent. Because it isdi�cult to compute reduction modulo �(N) e�ciently without revealing �(N), ordinary techniques forgenerating new sharing instances cannot be used.We propose the following procedure for party i to generate many independent t-out-of-t sharings ofdi. To avoid unnecessary indices we refer to di as s. Pick t� 1 random integers s1; : : : ; st�1 2R [�B;B]for some large B and compute st = s �Pt�1j=1 sj (where addition is over the integers). We show thats1; : : : ; st is a private t-out-of-t sharing of s for suitable choice of B. Note that this sharing scheme is4For instance we show how to e�ciently implement 2-out-of-k sharing from 2-out-of-2 sharing. Let d be a secret andr = dlog ke. Let d = d1;0+d1;1 = d2;0 +d2;1 = � � � = dr;0 +dr;1 be r independent 2-out-of-2 sharings of the secret d. For ani 2 [0; k] let i = ir ir�1 : : : i0 be the binary digits of i. Party i's share of the secret d is the set fdr;ir ; dr�1;ir�1 ; : : : ; d0;i0g.Given two parties i = ir ir�1 : : : i0 and j = jrjr�1 : : : j0 there exists an s such that is 6= js. Then d = ds;is + ds;js enablingthe two parties to reconstruct the secret. Hence, we achieved 2-out-of-k sharing using only log k independent 2-out-of-2sharings (as opposed to �k2� required by the naive solution). This generalizes to larger values of t as well [1].11

at least as secure as the scheme where every share is a random elements in [�B;B] and i publishesthe di�erence between the secret and the sum of all the shares. When s 2 [1; b] the following lemmaestablishes that this scheme is su�ciently private when B > tb2+� for any �xed � > 0.Lemma 7.1 Let s 2 [1 : : : b], and let px = prob(s = x) = 1b for all x 2 [1; b]. Let (s1; : : : ; st) 2R[�B;B]t, and � = Pti=1 si � s. For any coalition C � [1; t], let px;C = prob(s = xj�; fsigi2C). Then, forevery coalition C and every � > 0, the distributions fpxgx and fpx;Cgx are statistically indistinguishablewhen B > tb2+�.Proof It su�ces to consider coalitions of size t � 1. Consider the coalition C of all parties otherthan party 1. The main observation is that if s1 2 [�B + b; B � 1] then px = px;C = 1=b for allx 2 [1; b]. In other words, given s2; : : : ; st; � all possibilities for s = x are equally likely. This followssince when s1 2 [�B + b; B � 1] then for every s0 2 [1; b] there exists a unique s01 2 [�B;B] such that� =Pi6=1 si + s01 � s. Consequently, if all s1; : : : ; st 2 [�B + b; B � 1] then px = px;C for every coalitionand every x. Otherwise, since trivially jpx � px;Cj � 1, we have that for every coalition C and every x:jpx � px;Cj � Pr �9si 62 [�B + b; B � 1]� = 1� (2B � b2B + 1)t = 1� (1� b+ 12B + 1)tIt follows that bXx=1 jpx � px;Cj � b�1� (1� (b+ 12B + 1))t�For statistical indistinguishability, we need to choose B large enough so that this last expression issmaller than 1logcb for every c � 1. Taking B > tb2+� satis�es this inequality. 2We note that our protocols before this point do not enable any minority of users to factor themodulus. In some application one may wish to enable any subset of t parties to factor N . The results ofthis section enable the parties to do just that. Recall that given a pair of (public,private) exponents onecan easily factor the modulus N . Hence, since t parties can together reconstruct the private key, theycan also factor the modulus N . Of course, there are more direct ways to achieve t-threshold sharing ofthe ability to factor, e.g., if each party i shares pi; qi using any t-threshold sharing scheme.8 Summary and open problemsWe presented techniques which allow two or more parties to generate an RSA modulus N = pq suchthat all parties are convinced that N is indeed a product of two primes; however none of them can factorN . When only two parties are involved, interaction with a third helper party is needed to completesome steps of the protocol. Finally we show how the parties can generate shares of a private decryptionexponent to allow threshold decryption.Our protocols are practical, though there is some slowdown in comparison to single user generationof an RSA key. The main reason is that both primes p; q are generated at once. This increases thenumber of tries until a suitable N is found, as was discussed in Section 2. One possible approachfor solving this is to generate N as N = papb(qa + qb) where pa; pb are primes known to Alice, Bobrespectively and qa; qb are random n bit integers chosen by Alice,Bob respectively. The parties cancompute N without revealing their inputs (say, using the BGW protocol). The primality test can thenbe modi�ed to test that N is indeed a product of three primes. The number of probes until qa + qb isfound to be prime is just as in single user generation of N . Unfortunately, this approach doesn't scalewell. To support k parties, N must be a product of k + 1 primes.12

In the two party case our protocols require the use of a third helper party. The helper party isneeded for the private computation of N = (pa+pb)(qa+qb). Therefore, it is of some interest to develope�cient two party protocols for this speci�c function which do not make use of a third party. Generaltwo party computation protocols(e.g. [26]) are too ine�cient.Our protocols generate an RSA modulus which is the product of two large random primes. It wouldbe useful to be able to generate moduli of some special form. For example, a modulus which is a productof \safe primes" (i.e., where both p�12 and q�12 are prime) has been considered for security purposes [5]as well as for technical reasons related to threshold cryptography [11, 18].Throughout the paper we use a model in which parties honestly follow the protocol. The case ofactive adversaries that cheat during the protocol is of great interest as well. Since the RSA function isveri�able (the parties can simply check that they correctly decrypt encrypted messages) active adver-saries are limited in the amount of damage they can cause. However, it may still be possible that oneparty can cheat during the protocol and consequently be able to factor the resulting N . Our techniquescan be made to withstand some number of active adversaries though we leave the details for the fullversion of the paper.AcknowledgmentsWe thank Yair Frankel for several stimulating discussions on our results.References[1] N. Alon, Z. Galil and M. Yung, \Dynamic-resharing veri�able secret sharing," ESA 1995.[2] D. Beaver, \Security, fault tolerance, and communication complexity in distributed systems,"Ph.D. thesis, Harvard University, May 1990.[3] M. Ben-Or, S. Goldwasser, A. Wigderson, \Completeness theorems for non-cryptographic faulttolerant distributed computation", STOC 1988, pp. 1{10.[4] J. Benaloh (Cohen), \Secret sharing homomorphisms: keeping shares of a secret secret," Crypto'86, 251-260.[5] B. Blakley and G. Blakley, \Security of number theoretic public key cryptosystems againstrandom attack," Cryptologia, Part I (Vol. 2, No. 4, Oct 1978), Part II (Vol. 3, No. 1, Jan1979), Part III (Vol. 3, No. 2, Apr 1979).[6] J. Carter and M. Wegman, "Universal classes of hash functions", J. Comput. Syst. Sci. 18(1979), 143{154.[7] D. Chaum, C. Cr�epeau, and I. Damg�ard, \Multiparty unconditionally secure protocols," ACMSTOC 1988, 11-19.[8] N. De Bruijn, "On the number of uncanceled elements in the sieve of Eratosthenes", Proc.Neder. Akad. Wetensch, vol. 53, 1950, pp. 803{812. Reviewed in LeVeque Reviews in NumberTheory, Vol. 4, Section N-28, p. 221.[9] A. DeSantis, Y. Desmedt, Y. Frankel, M. Yung, \How to share a function securely", STOC1994, pp. 522{533. 13

[10] Y. Desmedt, \Threshold cryptography," European Transactions on Telecommunications andRelated Technologies, Vol. 5, No. 4, July-August 1994, pp. 35{43.[11] Y. Desmedt and Y. Frankel, \Shared generation of authenticators and signatures", Crypto '91,457{469.[12] U. Feige, A. Fiat, and A. Shamir, \Zero-knowledge proofs of identity," Journal of Cryptology1 (1988), 77-94.[13] A. Fiat and A. Shamir, \How to prove yourself: Practical solutions to identi�cation andsignature problems," Crypto '86, 186-194.[14] Y. Frankel, \A practical protocol for large group oriented networks", Eurocrypt 89, pp. 56{61.[15] M. Franklin and S. Haber, \Joint encryption and message-e�cient secure computation," Jour-nal of Cryptology, 9 (1996), 217-232.[16] R. Fagin, M. Naor, P. Winkler, \Comparing information without leaking it", CACM, Vol 39,No. 5, May 1996, pp. 77{85.[17] O. Goldreich, S. Micali, A. Wigderson, \How to play any mental game", STOC 1987, pp.218{229.[18] , R. Gennaro, S. Jarecki, H. Krawczyk, T. Rabin, \Robust and e�cient sharing of RSA func-tions", Crypto 96, pp. 157{172.[19] L. Guillou and J. Quisquater, \A practical zero-knowledge protocol �tted to security micro-processor minimizing both transmission and memory," Eurocrypt '88, 123-128.[20] K. Ohta and T. Okamoto, \A modi�cation of the Fiat-Shamir scheme," Crpto '88, 232-243.[21] H. Ong and C. Schnorr, \Fast signature generation with a Fiat Shamir-like scheme," Eurocrypt'90, 432-440.[22] T. Pederson, \A threshold cryptosystem without a trusted party," Proceedings of Eurocrypt91, pp. 522{526.[23] M. Rabin, \Probabilistic algorithm for testing primality", J. of Number Theory, vol. 12, pp.128{138, 1980.[24] R. Solovay, V. Strassen, \A fast monte carlo test for primality", SIAM journal of computing,vol. 6, pp. 84{85, 1977.[25] M. Wegman and J. Carter, \New hash functions and their use in authentication and setequality", J. Comput. Syst. Sci. 22 (1981), 265{279.[26] A. Yao, \How to generate and exchange secrets", FOCS 1986, pp. 162{167.14

Appendix. A complete distributed primality testIn Section 3 we presented a distributed primality test for testing if an integer N = pq = (pa+pb)(qa+qb)is a product of two primes. Recall that the test produces incorrect results for an exponentially smallfraction of N . This is not a serious problem since the number N is picked at random and the test willtherefore produce an incorrect result with exponentially small probability. Nevertheless, it is desirableto have a complete distributed primality test. In this section we add one extra step to the protocol ofSection 3 to ensure that all integers N are correctly tested for being a product of two primes.The �rst three steps of the protocol remain unchanged. For completeness we write them here followedby the new fourth step. As before we assume Alice and Bob possess integers pa; qa and pb; qb respectivelywhere pa � qa � 3 mod 4 and pb � qb � 0 mod 4. Therefore, p � q � 3 mod 4. Both parties know N ,where N = pq = (pa+ pb)(qa+ qb). They wish to determine if N is the product of two primes. The testis as follows:1. Alice and Bob agree on a random g 2 ZZ�N .2. Alice computes the Jacobi symbol of g over N . If � gN � 6= 1 the protocol is restarted at step (1).3. Otherwise, Alice computes va = g(N�pa�qa+1)=4 mod N , and Bob computes vb = g(pb+qb)=4 mod N .They exchange these values, and test thatva = �vb (mod N)If the test fails then the parties declare that N is not a product of two primes.4. The parties agree on a random linear polynomial g(x) = �x + � 2 ZZN [x] with gcd(�; �;N) = 1.Alice computes ha(x) = g(x)N+1+pa+qa mod x2 + 1 = �1x+ �1 and sets
1 = �1=�1 mod N . Bobcomputes5 hb(x) = g(x)pb+qb mod x2 + 1 = �2x + �2 and sets
2 = �2=�2 mod N . They thenexchange
1 and
2 and check that
1+
2 = 0 mod N . If so they declare success, i.e. N is likelyto be a product of two primes. Otherwise the parties declare that N is not a product of twoprimes.If one of �1; �2 is 0 mod N the parties declare success if �1 = �2 = 0 mod N . Otherwise, theydeclare that N not a product of two primes.The correctness and privacy of the protocol is proved in the next two lemmas.Lemma .1 If N = pq is a product of two primes then success is declared in all invocations of theprotocol. Otherwise, with probability at least 12 (over the choice of g and g(x)) the parties declare thatN is not a product of two primes.Proof Since the �rst three steps of the protocol are unchanged from Section 3 we need only worryabout the last step.In step 4 we work with the group G = �ZZN [x]=(x2 + 1)��. That is, G is the group of invertibleelements in ZZN [x]=(x2+1). The elements in this group are represented by linear polynomials �x+� 2ZZN [x] with gcd(�; �;N) = 1. Observe that ZZ�N is a subgroup of G. De�ne G1 = �ZZp[x]=(x2+ 1)�� andG2 = �ZZq[x]=(x2+ 1)��. When gcd(p; q) = 1 we have G �= G1 � G2. Clearly ZZ�p is a subgroup of G1and ZZ�q a subgroup of G2.5Since ZZN [x] is not a Euclidean ring the notation g(x) mod x2 + 1 is not well de�ned. It should be interpreted as:reduce the polynomial g(x) modulo the ideal generated by x2 + 1. The reduction modulo x2 + 1 is carried out using thelong division algorithm modulo N . For example, ax2 + bx+ c mod x2 + 1 = bx+ (a� c) mod N .15

Let ha = �1x+�1 2 G and hb = �2x+�2 2 G be de�ned as in Step 4. Set h = ha �hb mod x2+1 =g(p+1)(q+1) mod x2 + 1. Thenh = (�1x+ �1)(�2x+ �2) mod x2 + 1 = (�1�2 + �2�1)x+ (�1�2 � �1�2)It follows that h 2 ZZ�N if and only if �1�2 + �2�1 = 0 mod N . Assuming �1; �2 2 ZZ�N [f0g thiscondition can be rewritten as: h 2 ZZ�N if and only if �1 = �2 = 0 mod N or �1�1 + �2�2 = 0 mod N(the case �1 = �1 = 0 is excluded since it implies ha = 0 which is impossible since ha 2 G. Similarly�2 = �2 = 0 is excluded). This is precisely the condition checked in Step 4. In other words, Step 4simply checks that g(p+1)(q+1) mod x2 + 1 2 ZZ�N .Notice that if �1 62 ZZ�N [f0g then gcd(�1; N) > 1 implying that Alice is able to factor N all byherself. When N is a product of two primes this is impossible (according to Lemma 2.1) unless factoringis easy. The same holds for Bob. Consequently, we may indeed assume �1; �2 2 ZZ�N [f0g.Suppose p and q are prime. We show that the test at step 4 always succeeds. Since p � q � 3 mod 4the polynomial x2 + 1 has no root in IFp and IFq. Therefore, IFp[x]=(x2 + 1) and IFq[x]=(x2 + 1) arequadratic extensions of IFp and IFq respectively. It follows that jG1j = p2 � 1 and jG2j = q2 � 1and hence jGj = (p2 � 1)(q2 � 1). For all g 2 G1 we know that gp is a conjugate �g of g and thereforegp+1 = gp �g = �gg 2 ZZ�p. This proves g(p+1)(q+1) 2 ZZ�p. Similarly, for all g 2 G2 we have g(p+1)(q+1) 2 ZZ�q.We conclude that all g 2 G satisfy g(p+1)(q+1) 2 ZZ�N implying that the test of Step 4 always succeeds.Suppose N = pq is not a product of two primes. Then at least one of p; q is not prime. In Lemma 3.1we argued that for almost all N = pq the probability that step 3 succeeds is at most half. The onlyintegers for which this was not true (case 4 of Lemma 3.1) were integers of the form N = pq withp = rd11 ; q = rd22 ; d1 � 1 and q � 1 mod rd1�11 . We therefore need only worry about such N . We showthat for such N with probability at least half (over the choice of g 2 G) step 4 fails.De�ne the group H = fg 2 G s.t. g(p+1)(q+1) 2 ZZ�Ng. We show that jH j � 12 jGj. Since H is asubgroup of G it su�ces to prove proper containment, i.e. we must exhibit an element h 2 GnH . Sincep = rd11 the group G1 has size r2(d1�1)1 (r21 � 1) (this is the number of linear polynomials �x+ � 2 ZZp[x]with gcd(�; �; p) = 1). Consider the group G1=ZZ�p which has size rd1�11 (r1 + 1). This group containsan element ĝ of order r1. In other words, there exists an element g 2 G1 such that gx 2 ZZ�p impliesr1 divides x. It follows that there exists an element h 2 G such that hx 2 ZZ�N implies r1 divides x(simply take h = g mod p and h = 1 mod q). Since by assumption q � 1 mod r1 we know that r1 doesnot divide q + 1. Hence r1 does not divide N + p+ q + 1 and therefore hN+p+q+1 = h(p+1)(q+1) 62 ZZ�N .This proves h 2 G nH completing the proof of the lemma. 2Lemma .2 Suppose p; q are prime. Then either party can simulate the transcript of the primalitytesting protocol. Consequently, neither party learns nothing about the factors of N from this protocol.Proof In Lemma 3.2 we already showed that the values exchanged in the �rst three steps can bee�ciently simulated. Hence, we need only show that the values exchanged in step 4 can be simulated.Since p; q are prime we know that either �1 = �2 = 0 mod N or
1 +
2 = 0 mod N . Consequently,given �1;
1 the simulator can compute Bob's contribution to the protocol. Given �2;
2 the simulatorcan compute Alice's contribution. 2We note that Step 4 is executed only when Step 3 succeeds. Consequently, Step 4 is executed onlyonce the integer N is already extremely likely to be an RSA modulus.If one is willing to use a third helper party Henry then Step 4 of the protocol can be done far moree�ciently. Observe that integers N = pq which are �ltered out by Step 4 satisfy gcd(p+q�1; N)> 1. A16

simple way of testing this property is as follows: Alice and Bob each pick a random element ra; rb 2 ZZN .With the help of a third helper party they privately compute T = (pa+qa+pb+qb�1)(ra+rb) mod N .This can be done using the protocol of Section 4. Observe that if gcd(p+q�1; N)> 1 then gcd(T;N)> 1.Otherwise, T is uniformly distributed in ZZ�N (over the random choice of ra+rb mod N) and hence leaksno information.We see that the value T can be used to �lter out those integers that are �ltered by Step 4 of theprotocol. Hence, this simple procedure can replace the one in Step 4. A small blemish is that thisprocedure will also �lter out some proper RSA moduli. For instance, if N = pq with p; q prime andp = 2q+1 then gcd(p+q�1; N) > 1 even thoughN is a proper RSA modulus. Since being too restrictivein choosing the modulus usually doesn't hurt, this alternate approach may still be acceptable.

17

