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1 Introduction
More than 25 years ago Yao [40] defined the problem of secure two-party com-
putation. In 1987 Goldreich et al. [19] extended the problem to multi-party
computation and showed that all functions can be evaluated securely and cor-
rectly by a group with honest majority in the presence of a passive adversary.
Today the area of secure multi-party computation is a very active research area.

This PhD progress report will look at both the theory behind the protocols
and at the issues that arise when one wants to implement the protocols efficiently
on real life communication networks.

1.1 Overview
We begin in Section 2 by looking at an efficient secure comparison protocol.
This material is from the paper “Homomorphic Encryption and Secure Com-
parison” [12] which is joint work with Ivan Damgård and Mikkel Krøigaard. The
protocol is motivated by the increasingly important scenario of on-line auctions
in which a number of bidders compete against each other. In order to avoid
being on-line during the entire auction (which may run for several days) the
bidders submit an encrypted maximum bid to the auction. These encrypted
bids are compared with a public current price, which is incremented in rounds
until only one winning bid is larger.

The comparison protocol is based on a new efficient homomorphic encryption
scheme which can also used as the basis of efficient and general secure multiparty
computation. We show how our comparison protocol can be used to improve
security of on-line auctions, and demonstrate that it is efficient enough to be used
in practice. For comparison of 16 bit numbers with security based on 1024 bit
RSA (executed by two parties), our implementation takes 0.28 seconds including
all computation and communication.

Section 3 presents material not previously published. It describes the im-
plementation and security properties of a system called the Virtual Ideal Func-
tionality Framework (VIFF). Using VIFF, one can easily program general se-
cure multi-party computations in an asynchronous setting. The protocol imple-
mented by VIFF is proven secure in the Universally Composable (UC) security
framework by Canetti [7].

While there has been a large amount of theoretical work done on crypto-
graphic protocols and secure multi-party computation, little effort has been
spent trying to implement the protocols. The protocols were viewed as imprac-
tical for real tasks. But as more and more efficient protocols are discovered and
faster processors and networks are developed, it becomes feasible to implement
multi-party computations for problems other than simple toy examples. The
double auction run by the SIMAP1 project is the first example of a multi-party
computation used in real life.

Section 4 describes the plans for future work both on cryptographic protocols
in general and on VIFF in particular. VIFF is still in its initial development
iteration and there are many planned improvements which could be implemented
given sufficient time. The report concludes with Section 5, which sums up the
contributions presented.

1SIMAP is described in Section 3.1.2.
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2 Homomorphic Encryption and Secure
Comparison

The results in this section were presented in [12], which itself is an extended
version of a paper presented at the ACISP 2007 conference [11].

2.1 Introduction
We define secure comparison of integers as the following problem: Two or more
players are given integers nA, nB , where one or both are private, i.e., not known
to all players. We then want to decide whether nA ≥ nB , while making sure
that the comparison result is the only new information that becomes known.
Many variants of this problem exist, depending on whether nA, nB are known
to particular players, or unknown to everyone. It may even be the case that
the comparison result is not supposed to be public, but is to be produced in
encrypted form, for instance.

Secure comparison is a special case of general secure computation where
all players hold private inputs and want to compute some agreed function of
these inputs. Comparison protocols are very important ingredients in many
potential applications of secure computation. Examples of this include auctions,
benchmarking, and secure extraction of statistical data from databases.

As a concrete example to illustrate the application of our results, we take a
closer look at on-line auctions: Many on-line auction systems offer as a service
to their customers that one can submit a maximum bid to the system. It is
then not necessary to be on-line permanently, the system will automatically bid
for you, until you win the auction or your specified maximum is exceeded. We
assume in the following what we believe is a realistic scenario, namely that the
auction system needs to handle bidders that bid on-line manually, as well as
others that use the option of submitting a maximum bid.

Clearly, such a maximum bid is confidential information: Both the auction
company and other participants in the auction have an interest in knowing such
maximum bids in advance, and could exploit such knowledge to their advan-
tage: The auction company could force higher prices (what is known as “shill
bidding”) and thereby increase its income and other bidders might learn how
valuable a given item is to others and change their strategy accordingly.
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In a situation where anyone can place a bid by just connecting to a web site,
the security one can obtain by storing the maximum bids with a single trusted
party is questionable, in particular if that trusted party is the auction company.
Indeed, there are cases known from real auctions where an auction company has
been accused of misusing its knowledge of maximum bids [34].

An obvious solution is to share the responsibility of storing the critical data
among several parties, and do the required operations via secure computation.
One can then make sure that, unless all parties are corrupted, every time the
bid goes up, it will become known whether a given player is still in the game
because his maximum is larger then the current price, but the actual value of the
maximum will remain secret. To keep the communication pattern simple and
to minimize problems with maintenance and other logistical problems, it seems
better to keep the number of involved players small. We therefore consider the
following model:

An input client C supplies an ` bit integer m as private input to the compu-
tation, which is done by players A and B. Because of our motivating scenario,
we require that the input is supplied by sending one message to A, respectively
to B, and no further interaction with C is necessary. One may, for instance,
think of A as the auction house and B as an accounting company. We will also
refer to these as the server and assisting server.

An integer x (which we think of as the currently highest bid) is public input.
As public output, we want to compute one bit that is 1 ifm > x and 0 otherwise,
i.e., the output tells us if C is still in the game and wants to raise the bid, say by
some fixed amount agreed in advance. Of course, we want to do the computation
securely so that neither A nor B learns any information on m other than the
comparison result.

We will assume that players are honest but curious. We believe this is quite a
reasonable assumption in our scenario: C may submit incorrectly formed input,
but since the protocol handles even malformed input deterministically, he cannot
gain anything from this: any malformed bid will determine a number x0 such
that when the current price reaches x0, the protocol output will cause C to leave
the game. So this is equivalent to submitting x0 in correct format. Moreover,
the actions of A and B can be checked after the auction is over – if C notices
that incorrect decisions were taken, he can prove that his bid was not correctly
handled. Such “public disgrace” is likely to be enough to discourage cheating in
our scenario. In the original paper [12] we sketch how to obtain active security
at moderate extra cost.

2.1.1 Our Contribution

We first propose a new homomorphic cryptosystem that is well suited for our
application, this is the topic of Section 2.2. The cryptosystem is much more
efficient than, e.g., the encryption scheme by Paillier [29] in terms of en- and
decryption time. The efficiency is obtained partly by using a variant of Groth’s
idea of exploiting subgroups of Z∗n for an RSA modulus n [20], and partly by
aiming for a rather small plaintext space, of size Θ(`).

In Section 2.3 we propose a comparison protocol in our model described
above, based on additive secret sharing and homomorphic encryption. The pro-
tocol is a new variant of an idea originating in a paper by Blake and Kolesnikov
[3]. Their original idea was also based on homomorphic encryption but required
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a plaintext space of size exponential in `. Here, we present a new technique
allowing us to make do with a smaller plaintext space. This means that the
exponentiations we do will be with smaller exponents and this improves effi-
ciency. Also, we save computing time by using additive secret sharing as much
as possible instead of homomorphic encryption.

As mentioned, our encryption is based on a k bit RSA modulus. In addition
there is an “information theoretic” security parameter t involved which is ap-
proximately the logarithm of the size of the subgroup of Z∗n we use. Here, t needs
to be large enough so that exhaustive search for the order of the subgroup and
other generic attacks are not feasible. Section 2.4 contains more information
about the security of the protocol.

In the protocol, C sends a single message to A and another to B, both of
size O(` log `+k) bits. To do the comparison, there is one message from A to B
and one from B to A. The size of each of these messages is O(`k) bits. As for
computational complexity, both A and B need to do O(`(t + log `)) multipli-
cations mod n. Realistic values of the parameters might be k = 1024, t = 160,
and ` = 16. In this case, counting the actual number of multiplications works
out to roughly 7 full scale exponentiations mod n, and takes 0.28 seconds in our
implementation, including all computation and communication time. Moreover,
most of the work can be done as preprocessing. Using this possibility in the
concrete case above, the on-line work for B is about 0.6 exponentiations for A
and 0.06 for B, so that we can expect to save a factor of at least 10 compared to
the basic version. It is clear that the on-line performance of such a protocol is
extremely important: Auctions often run up a certain deadline, and bidders in
practice sometimes play a strategy where they suddenly submit a much larger
bid just before the deadline in the hope of taking other bidders by surprise. In
such a scenario, one cannot wait a long time for a comparison protocol to finish.

We emphasize that, while it may seem easier to do secure comparison when
one of the input numbers is public, we do this variant only because it comes up
naturally in our example scenario. In fact, it is straightforward to modify our
protocol to fit related scenarios. For instance, the case where A has a private
integer a, B has a private integer b and we want to compare a and b, can
be handled with essentially the same cost as in our model. Moreover, at the
expense of a factor about 2 in the round, communication and computational
complexities, our protocol generalizes to handle comparison of two integers that
are shared between A and B, i.e., are unknown to both of them. It is also
possible to keep the comparison result secret, i.e., produce it in encrypted form.
The details on that and other extensions can be found in the full version [12].

Finally, in Section 2.5 we describe our implementation and the results of a
benchmark between our proposed protocol and the one from [16].

2.1.2 Related Work

There is a very large amount of work on secure auctions, which we do not
attempt to survey here, as our main concern is secure protocols for comparison,
and the on-line auction is mainly a motivating scenario. One may of course do
secure comparison of integers using generic multiparty computation techniques.
For the two-party case, the most efficient generic solution is based on Yao-
garbled circuits, which were proposed for use in auctions by Naor et al. [26].
Such methods are typically less efficient than ad hoc methods for comparison –
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although the difference is not very large when considering passive security. For
instance, the Yao garbled circuit method requires – in addition to garbling the
circuit – that we do an oblivious transfer of a secret key for every bit position
of the numbers to compare. This last part is already comparable to the cost of
the best known ad hoc methods.

There are several existing ad hoc techniques for comparison, we already
mentioned the one from [3] above, a later variant appeared in [4], allowing
comparison of two numbers that are unknown to the parties. A completely
different technique was proposed earlier by Fischlin [16].

It should be noted that previous protocols typically are for the model where
A and B want to compare two private numbers. Our model is a bit different, as
we have one public number that is to be compared to a number that should be
known to neither party, and so has to be shared between them. However, the
distinction is not very important: Previous protocols can quite easily be trans-
formed to our model, and as mentioned above, our protocol can also handle the
other models at marginal extra cost. Therefore the comparison of our solution
to previous work can safely ignore the choice of model.

Fischlin’s protocol is based on the well-known idea of encrypting bits as
quadratic residues and non-residues modulo an RSA modulus, and essentially
simulates a Boolean formula that computes the result of the comparison. Com-
pared to [3, 4], this saves computing time, since creating such an encryption is
much faster than creating a Paillier encryption. However, in order to handle the
non-linear operations required in the formula, Fischlin extends the encryption
of each bit into a sequence of λ numbers, where λ is a parameter controlling
the probability that the protocol returns an incorrect answer. Since these en-
cryptions have to be communicated, we get a communication complexity of
Ω(λ`k) bits. Choosing λ such that 5` ·2−λ is an acceptable (small enough) error
probability makes the communication complexity significantly larger than the
O(`k) bits one gets in our protocol and the one from [4].

The computational complexity for Fischlin’s protocol is O(`λ) modular mul-
tiplications, which for typical parameter values is much smaller than that of [3,
4], namely O(`k) multiplications.2 Fischlin’s result is not directly comparable
to ours, since our parameter t is of a different nature than Fischlin’s λ: t con-
trols the probability that the best known generic attack breaks our encryption
scheme, while λ controls the probability that the protocol gives incorrect re-
sults. When the parameters are chosen to make the two probabilities be roughly
equal, then the two computational complexities are asymptotically the same.

Thus, in a nutshell, [3, 4] has small communication and large computational
complexity while [16] is the other way around. In comparison, our contribution
allows us to get “the best of both worlds”. In Section 2.5.3 we give results of
a comparison between implementations of our own and Fischlin’s protocols.
Finally, note that our protocol always computes the correct result, whereas
Fischlin’s has a small error probability.

In concurrent independent work, Garay et al. [17] propose protocols for com-
parison based on homomorphic encryption that are somewhat related to ours,
although they focus on the model where the comparison result is to remain
secret. They present a logarithmic round protocol based on emulating a new

2In [3, 4] the emphasis is on using the comparison to transfer a piece of data, conditioned on
the result of the comparison. For this application, their solution has advantages over Fischlin’s,
even though the comparison itself is slower.
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Boolean circuit for comparison, and they also have a constant round solution. In
comparison, we do not consider the possibility of saving computation and com-
munication in return for a larger number of rounds. On the other hand, their
constant round solution is based directly on Blake and Kolesnikov’s method,
i.e., they do not have our optimization that allows us to make do with a smaller
plaintext space for the encryption scheme, which means that our constant round
protocol is more efficient.

2.2 Homomorphic Encryption
For our protocol we need a semantically secure and additively homomorphic
cryptosystem which we will now describe.

To generate keys, we take as input parameters k, t, and `, where k > t > `.
We first generate a k bit RSA modulus n = pq for primes p, q. This should be
done in such a way that there exists another pair of primes u, v, both of which
should divide p−1 and q−1. We will later be doing additions of small numbers
in Zu where we want to avoid reductions modulo u, but for efficiency we want u
to be as small as possible. For these reasons we choose u as the minimal prime
greater than `+ 2. The only condition on v is that it is a random t bit prime.

Finally, we choose random elements g, h ∈ Z∗n such that the multiplicative
order of h is v modulo p and q, and g has order uv. The public key is now
pk = (n, g, h, u) and the secret key is sk = (p, q, v). The plaintext space is Zu,
while the ciphertext space is Z∗n. To encrypt m ∈ Zu, we choose r as a random
2t bit integer, and let the ciphertext be

Epk(m, r) = gmhr mod n.

We note that by choosing r as a much larger number than v, we make sure that
hr will be statistically indistinguishable from a uniformly random element in
the group generated by h. The owner of the secret key (who knows v) can do it
more efficiently by using a random r ∈ Zv.

For decryption of a ciphertext c, it turns out that for our main protocol,
we will only need to decide whether c encrypts 0 or not. This is easy, since
cv mod n = 1 if and only if c encrypts 0. This follows from the fact that v is the
order of h, uv is the order of g, and m < u. If the party doing the decryption has
also stored the factors of n, one can optimize this by instead checking whether
cv mod p = 1, which will save a factor of 3–4 in practice.

It is also possible to do a “real” decryption by noting that

Epk(m, r)v = (gv)m mod n.

Clearly, gv has order u, so there is a 1–1 correspondence between values of m
and values of (gv)m mod n. Since u is very small, one can simply build a table
containing values of (gv)m mod n and corresponding values of m.

To evaluate the security, there are various attacks to consider: factoring n
will be sufficient to break the scheme, so we must assume factoring is hard. Also
note that it does not seem easy to compute elements with orders such as g, h
unless you know the factors of n, so we implicitly assume here that knowledge
of g, h does not help to factor. Note that it is very important that g, h both have
the same order modulo both p and q. If g had order uv modulo p but was 1
modulo q, then g would have the correct order modulo n, but gcd(g−1, n) would
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immediately give a factor of n. One may also search for the secret key v, and so
t needs to be large enough so that exhaustive search for v is not feasible. A more
efficient generic attack (which is the best we know of) is to compute hR mod n
for many large and random values of R. By the “birthday paradox”, we are likely
to find values R,R′ where hR = hR

′ mod n after about 2t/2 attempts. In this
case v divides R − R′, so generating a few of these differences and computing
the greatest common divisor will produce v. Thus, we need to choose t such that
2t/2 exponentiations is infeasible.

To say something more precise about the required assumption, let G be the
group generated by g, and H the group generated by h. We have H ≤ G and
that a random encryption is indistinguishable from a uniformly random element
in G. The assumption underlying security is now

Conjecture 2.1 For any constant ` and for appropriate choice of t as a func-
tion of the security parameter k, the tuple (n, g, h, u, x) is computationally in-
distinguishable from (n, g, h, u, y), where n, g, h, u are generated by the key gen-
eration algorithm sketched above, x is uniform in G and y is uniform in H.

Proposition 2.2 Under the above conjecture, the cryptosystem is semantically
secure.

Proof: Consider any polynomial time adversary who after seeing the public key,
chooses a messagem and gets an encryption ofm, which is of the form gmhr mod
n, where g has order uv and h has order v modulo p and q. The conjecture
now states that even given the public key, the adversary cannot distinguish
between a uniformly random element from H and one from G. But hr was
already statistically indistinguishable from a random element in H, and so it
must also be computationally indistinguishable from a random element in G.
But this means that the adversary cannot distinguish the entire encryption from
a random element of G, and this is equivalent to semantic security – recall that
one of the equivalent definitions of semantic security requires that encryptions
of m be computationally indistinguishable from random encryptions.

The only reason we set t to be a function of k is that the standard definition
of semantic security talks about what happens asymptotically when a single
security parameter goes to infinity. From the known attacks sketched above, we
can choose t much smaller than k. Realistic values might be k = 1024, t = 160.

A central property of the encryption scheme is that it is homomorphic over u:

Epk(m, r) · Epk(m′, r′) mod n = Epk(m+m′ mod u, r + r′).

The cryptosystem is related to that of Groth [20], in fact ciphertexts in his
system also have the form gmhr mod n. The difference lies in the way n, g and
h are chosen. In particular, our idea of letting h, g have the same order modulo
p and q allows us to improve efficiency by using subgroups of Z∗n that are even
smaller than those from [20].

2.3 Comparison Protocol
For the protocol, we assume that A has generated a key pair sk = (p, q, v) and
pk = (n, u, g, h) for the homomorphic cryptosystem we described previously.
The protocol proceeds in two phases: An input sharing phase in which the client
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must be on-line, and a computation phase where the server and assisting server
determine the result while the client is offline. See Figure 2.1 for an overview.

In the input sharing phase C secret shares his input m between A and B:

• Let the binary representation of m be m` . . .m1, where m1 is the least
significant bit. C chooses, for i = 1, . . . , `, random pairs ai, bi ∈ Zu subject
to mi = ai + bi mod u.

• C sends privately a1, . . . , a` to A and b1, . . . , b` to B. This can be done
using any secure public-key cryptosystem with security parameter k, and
requires communicating O(` log u+k) bits.3 In practice, a standard TLS4

connection would probably be used.

In the second phase we wish to determine the result m > x where x is the
current public price (with binary representation x` . . . x1).

Assuming a value y ∈ Zu has been shared additively between A and B, as
C did it in the first phase, we write [y] for the pairs of shares involved, so [y]
stands for “a sharing of” y. Since the secret sharing scheme is linear over Zu,
A and B can compute from [y], [w] and a publically known value α a sharing
[y + αw mod u]. Note that this does not require interaction but merely local
computation. The protocol proceeds as follows:

• A and B compute, for i = 1, . . . , ` sharings [wi] where

wi = mi + xi − 2ximi = mi ⊕ xi.

• A and B now compute, for i = 1, . . . , ` sharings [ci] where

ci = xi −mi + 1 +
∑̀
j=i+1

wj .

Note that if m > x, then there is exactly one position i where ci = 0,
otherwise no such position exists. Note also, that by the choice of u, it can
be seen that no reductions modulo u take place in the above computations.

• Let αi and βi be the shares of ci that A and B have now locally computed.
A computes encryptions Epk(αi, ri) and sends them all to B.

• B chooses at random si ∈ Z∗u and s′i as a 2t bit integer and computes a
random encryption of the form

γi =
(
Epk(αi, ri) · gβi

)si · hs′i mod n.

Note that, if ci = 0, this will be an essentially random encryption of 0,
otherwise it is an essentially random encryption of a random nonzero value.
B sends these encryptions to A in randomly permuted order.

• A uses his secret key to decide, as described in the previous section,
whether any of the received encryptions contain 0. If this is the case,
he outputs “m > x”, otherwise he outputs “m ≤ x”.

3We need to send ` log u bits, and public-key systems typically have Θ(k)-bit plaintexts
and ciphertexts.

4TLS (Transport Layer Security [14]) is the successor to SSL (Secure Sockets Layer).
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A note on preprocessing: One can observe that the protocol frequently in-
structs players to compute a number of form hr mod n where r is randomly
chosen in some range, typically [0 . . . 22t[. Since these numbers do not depend
on the input, they can be precomputed and stored. As mentioned in the Intro-
duction, this has a major effect on performance because all other exponentiations
are done with very small exponents.

A B

C

a
1 , . . . , a

` b 1
, .
. .
, b̀

Epk(α1, r1), . . . , Epk(α`, r`)

π(γ1, . . . , γ`)m > x

Figure 2.1: Our proposed proto-
col with both phases illustrated. In
the first phase C sends shares to A
and B. The second phase consists
of a message from A to B and a re-
ply, which A can decrypt to learn
the result of the computation.

2.4 Security
In this section the protocol is proven secure against an honest but curious ad-
versary corrupting a single player at the start of the protocol.

The client C has as input its maximum bid m and all players have as input
the public bid x. The output given to A is the evaluation of m > x, and B and
C get no output.

In the following we argue correctness and we argue privacy using a simulation
argument. This immediately implies that our protocol is secure in Canetti’s
model for secure function evaluation [6] against a static and passive adversary.

2.4.1 Correctness

The protocol must terminate with the correct result: m > x ⇐⇒ ∃i : ci = 0.
This follows easily by noting that both xi −mi + 1 and wi is nonnegative so

ci = 0 ⇐⇒ xi −mi + 1 +
∑̀
j=i+1

wj = 0

⇐⇒ xi −mi + 1 = 0 ∧
∑̀
j=i+1

wj = 0.

We can now conclude correctness of the protocol since xi −mi + 1 = 0 ⇐⇒
mi > xi and

∑`
j=i+1 wj = 0 ⇐⇒ ∀j > i : mj = xj , which together imply

m > x. Note that since the sum of the wj is positive after the first position in
which xi 6= mi, there can be at most one zero among the ci.

2.4.2 Privacy

Privacy in our setting means that A learns only the result of the comparison,
and B learns nothing new. We can ignore the client as it has the only secret
input and already knows the result based on its input.
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First assume that A is corrupt, i.e, that A tries to deduce information about
the maximum bid based on the messages it sees. From the client, A sees both his
own shares a1, . . . , a`, and the ones for B encrypted under some semantically
secure cryptosystem, e.g., TLS. From B, A sees the message:(

Epk(αi, ri) · gβi
)si · hs′i mod n.

By the homomorphic properties of our cryptosystem this can be rewritten as

Epk(si · αi, si · ri) · Epk(si · βi, s′i) = Epk
(
si(αi + βi), si · ri + s′i

)
.

In order to prove that A learns no additional information, we can show that A
could – given knowledge of the result, the publically known number and nothing
else – simulate the messages it would receive in a real run of the protocol.

The message received and seen from the client can trivially be simulated as
it consists simply of ` random numbers modulo u and ` encrypted shares. The
cryptosystem used for these messages is semantically secure, so the encrypted
shares for B can be simulated with encryptions of random numbers.

To simulate the messages received from B, we use our knowledge of the
result of the comparison. If the result is “m > x”, we can construct the second
message as `− 1 encryptions of a nonzero element of Z∗u and one encryption of
zero in a random place in the sequence. If the result is “m ≤ x”, we instead
construct ` encryptions of nonzero elements in Z∗u.

If we look at the encryptions that B would send in a real run of the protocol,
we see that the plaintexts are of form (αi + βi)si mod u. Since si is uniformly
chosen, these values are random in Zu if αi + βi 6= 0 and 0 otherwise. Thus the
plaintexts are distributed identically to what was simulated above. Furthermore,
the ciphertexts are formed by multiplying g(αi+βi)si by

hsiri+s
′
i = hsirihs

′
i .

But h has order v which is t bits long, and therefore taking h to the power of
the random 2t bit number s′i will produce something which is statistically in-
distinguishable from the uniform distribution on the subgroup generated by h.
But since hsiri ∈ 〈h〉, the product will indistinguishable from the uniform dis-
tribution on 〈h〉. So the s′i effectively mask out siri and makes the distribution
of the encryption statistically indistinguishable from a random encryption of
(αi + βi)si. Therefore, the simulation is statistically indistinguishable from the
real protocol messages.

The analysis for the case where B is corrupt is similar. Again we will prove
that we can simulate the messages of the protocol. The shares received from the
client and the encryptions seen are again simply ` random numbers modulo u
and ` random encryptions and are therefore easy to simulate. Also, B receives
the following from A:

Epk(αi, ri).

But since the cryptosystem is semantically secure, we can make our own random
encryptions instead and their distribution will be computationally indistinguish-
able from the one we would get by running the protocol normally.
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2.5 Complexity and Performance
In this section we measure the performance of our solution through practical
tests. The protocol by Fischlin [16] provides a general solution to comparing
two secret integers using fewer multiplications than the other known general
solutions. We show that in the special case where one integer is publically known
and the other is additively shared between two parties, our solution provides for
faster comparisons than our adaptation of [16].

2.5.1 Setup and Parameters

As described above, our special case consists of a server, an assisting server and
a client. The client must be able to send his value and go offline, whereafter
the other two parties should be able to do the computations together. In our
protocol the client simply sends additive shares to each of the servers and goes
offline. However, the protocol by Fischlin needs to be adapted to this scenario
before we can make any reasonable comparisons. A very simple way to mimic
the additive sharing is for the client to simply send his secret key used for the
encoding of his value to the server while sending the actual encoding to the
assisting server. Clearly the computations can now be done by the server and
assisting server alone, where the server plays the role of the client. The modified
protocol is shown in Figure 2.2.
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Epk(x > m)

x > m

Figure 2.2: The modified Fischlin
protocol. The client C can go off-
line after having sent the key to
A and the encryptions to B. From
that point the protocol proceeds as
in [16].

Together, the key and encoding determine the client’s secret value, but the
key or the encoding alone do not. The key of course reveals no information about
the value. Because of semantic security, the encryption alone does not reveal the
secret to a computationally bounded adversary.

Another issue is to how to compare the two protocols in a fair way. Naturally,
we want to choose the parameters such that the two protocols offer the same
security level, but it is not clear what this should mean – some of the parameters
in the protocols control events of very different nature. Below, we describe the
choices we have made and the consequences of making different choices.

Both protocols use an RSA modulus for their encryption schemes, and it is
certainly reasonable to use the same bit length of the modulus in both cases, say
1024 bits. Our encryption scheme also needs a parameter t which we propose to
choose as t = 160. This is because the best known attack tries to have random
results of exponentiations collide in the subgroup with about 2160 elements.
Assuming the adversary cannot do much more than 240 exponentiations, the
collision probability is roughly 22·40/2160 = 2−80.
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We do not have this kind of attack against Fischlin, but we do have an
error probability of 5` · 2−λ per comparison. If we choose the rationale that the
probability of “something going wrong” should be the same in both protocols,
we should choose λ such that Fischlin’s protocol has an error probability of
2−80. An easy computation shows that for ` = 16, λ = 86 gives us the desired
error probability, and it follows that λ = 87 works for ` = 32.

We have chosen the parameter values as described above for our implemen-
tation, but it is also possible to argue for different choices. One could argue, for
instance, that breaking our scheme should be as hard as factoring the (1024 bit)
modulus using the best known algorithm, even when the generic attack is used.
Based on this, t should probably be around 200. One could also argue that
having one comparison fail is not as devastating as having the cryptosystem
broken, so that one could perhaps live with a smaller value of λ than what we
chose. Fischlin mentions an error probability of 2−40 as being acceptable. These
questions are very subjective, but fortunately, the complexities of the protocols
are linear in t and λ, so it is easy to predict how modified values would affect
the performance data we give below. Since we find that our protocol is about
10 times faster, it remains competitive even with t = 200, λ = 40.

2.5.2 Implementation

To evaluate the performance of our proposed protocol we implemented it along
with the modified version of the protocol by Fischlin [16] described above. The
implementation was done in Java 1.5 using the standard BigInteger class for the
algebraic calculations and Socket and ServerSocket classes for TCP communi-
cation. The result is two sets of programs, each containing a server, an assisting
server, and a client. Both implementations weigh in at about 1,300 lines of code.
We have naturally tried our best to give equal attention to optimizations in the
two implementations.

We tested the implementations using keys of different sizes (k in the range
of 512–2048 bits) and different parameters for the plaintext space (` = 16 and
` = 32). We fixed the security parameters to t = 160 and λ = 86 which, as
noted above, should give a comparable level of security.

The tests were conducted on six otherwise idle machines, each equipped
with two 3 GHz Intel Xeon CPUs and 1 GiB of RAM. The machines were
connected by a high-speed LAN. In a real application the parties would not
be located on the same LAN – for credibility the server and assisting server
would have to be placed in different locations and under the control of different
organizations (e.g., the auction house and the accountant), and the client would
connect via a typical Internet connection with a limited upstream bandwidth.
Since the client is only involved in the initial sharing of his input, this should not
pose a big problem – the majority of network traffic and computations are done
between the server and assisting server, who, presumably, have better Internet
connections and considerable computing power.

The time complexity is linear in `, so using 16 bit numbers instead of 32 bit
numbers cuts the times in half. In many scenarios one will find 16 bit to be
enough, considering that most auctions have a minimum required increment for
each bid, meaning that the entire range is never used. As an example, eBay
require a minimum increment which grows with the size of the maximum bid
meaning that there can only be about 450 different bids on items selling for
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less than $5,000 [15]. The eBay system solves ties by extra small increments,
but even when one accounts for them one sees that the 65,536 different prices
offered by a 16 bit integer would be enough for the vast majority of cases.

2.5.3 Benchmark Results

The results of the benchmarks can be found in Table 2.1 with a graph in Fig-
ure 2.3. From the table and the graph it is clear to see that our protocol has
performed significantly faster in the tests than the modified Fischlin protocol.
The results also substantiate our claim that the time taken by an operation is
proportional to the size of ` and that we do indeed roughly halve the time taken
by reducing the size of ` from 32 to 16 bits.

k DGK16 F16 DGK32 F32

512 82 844 193 1,743
768 168 1,563 331 3,113
1024 280 2,535 544 5,032
1536 564 4,978 1,134 10,135
2048 969 8,238 1,977 16,500

Table 2.1: Benchmark results. The first column denotes the key size k, the follow-
ing columns have the average time to a comparison. The average was taken over
500 rounds, after an initial warm-up phase of 10 rounds. All times are in milliseconds.
The abbreviation “DGK” refers to our protocol and “F” refers to the modified Fischlin
protocol. The subscripts refer to the ` parameter used in the timings.
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Figure 2.3: Graph of the data from Table 2.1.

We should note that these results are from a fairly straight-forward imple-
mentation of both protocols and that further optimizations might be possible.
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3 Efficient Asynchronous Multi-Party
Computation

The benchmarks described in the previous section were made with a special pur-
pose one-off implementation. We will now describe a framework called VIFF [18]
which allows general multi-party computations. VIFF is short for Virtual Ideal
Functionality Framework and the goal is to create a library of building blocks
that make implementing secure multi-party computations easy. In the UC frame-
work [7] a multi-party computation will implement an ideal functionality, and
one can consider the VIFF implementation to be a virtual ideal functionality.
The VIFF homepage is http://viff.dk/, from where the VIFF source code
can be downloaded.

3.1 Introduction
VIFF was created in the spring of 2007 as a test-bed for alternative MPC im-
plementations and to show that it is possible to make a simple and light-weight
framework for MPC. The ideas in VIFF has since shown themselves to be solid
and VIFF has grown from being a toy to a full and efficient MPC framework.

VIFF is implemented in the Python programming language developed by van
Rossum et al. [39] in the early 1990s. Python is a general purpose program-
ming language with support for object-oriented programming. Anonymous and
higher-order functions make some functional programming possible too.

The choice of Python was largely driven by the desire to have a flexible
language for rapid prototyping and by the need for a good library for asyn-
chronous network communication. Like many languages, Python comes with a
standard library that gives access to sockets for doing network communication.
Twisted [23] is a Python framework that abstracts the low-level socket com-
munication away and allows the programmer to easily build efficient network
applications with asynchronous communication.

3.1.1 Our Contribution

The main contribution of VIFF is an automatic parallel scheduling of operations.
Operations are executed as soon as their operands are ready without waiting for
the other parties. Intuitively this is secure since although an adversary might
see things in a different order than normal, he still sees exactly the same shares
as if we had waited for the other parties. We formalize and prove this in the
UC framework.

Choosing this model of execution brings two important benefits:

• Efficient use of network resources. Network latency is the dominant factor
in our benchmarks and by scheduling many operations in parallel the
average cost can be greatly reduced.

• Modular design. Each operation in VIFF is independent of the others
which makes it easy to implement new and faster operations.

VIFF is still a young project with a code base of only 2,500 lines. The design
is simple on purpose to keep it transparent with only the needed abstractions.
This should make VIFF readily adaptable to new requirements.
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3.1.2 Related Work

The MPC operations in VIFF are inspired by the commands of the FMPC ideal
functionality by Toft [37]. The greater_than comparison protocol is from [36].

VIFF is a spin-off project from the Secure Information Management and
Processing (SIMAP) project, which in turn is a successor to the Secure Com-
puting Economy and Trust (SCET) project, both at the University of Aarhus.
The SCET project set out to implement a platform for multi-party computa-
tions with a focus on economic applications such as auctions and benchmarking.
The project implemented a prototype of a secure double auction [5]. The SIMAP
project is more general and will be designing a dedicated programming language
in which high-level protocol descriptions can be specified [27].

The biggest difference between VIFF and SIMAP is that VIFF automatically
makes operations run in parallel, whereas this must be done explicitly with the
SIMAP runtime. This makes VIFF much simpler since one does not need to
specify how a new primitive interacts with every other primitive. Also, the
automatic parallelism can potentially yield a faster execution since it will adapt
better to changing network conditions: With a static schedule based on rounds,
the execution stalls if a round takes longer than expected. VIFF would begin
executing the next available operation immediately, see Figure 3.1.
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(a) An optimal execution in which all
four sharings proceed quickly and both
rounds are fast.
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(b) A slow execution where time is
wasted (gray) when the second multipli-
cation waits for the unrelated sharing.

Figure 3.1: An execution where fixed communication rounds leads to wasted time.
The dashed lines represent the synchronization done between each round and multiple
operations in the same line represent parallel execution.

Another example of a cryptographically aware compiler is CAO by Page
[28]. This project is more low-level than VIFF and SIMAP and is focusing on
aspects such as how to efficiently implement cryptographic primitives without
being prone to timing attacks at the CPU level. No thought has been put into
these issues in VIFF. It might be possible to use CAO as a back-end for VIFF,
providing both more speed and better security than plain Python.

VIFF currently only works for computations where an honest majority can
be found – that means the smallest number of parties is three. The Fairplay
system by Malkhi et al. [24] is an example of a system for only two parties. In
VIFF you specify the desired computation as a normal Python program, but in
Fairplay you write the function to be evaluated in a special purpose language. A
compiler transforms the function into an optimized Boolean circuit. The circuit
is evaluated using the technique described by Yao [41]. Currently Fairplay does
secure function evaluation only whereas VIFF allows reactive programs with
multiple rounds of interaction between the parties.
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3.2 The Universally Composable Security Framework
Proving that a cryptographic protocol is secure is a hard problem. First we
must define rigorously what “secure” means, and then we must prove that the
protocol lives up to the definition. The Universally Composable (UC) security
framework by Canetti [7] helps solve these problems. We will now give a brief
overview of the UC framework and describe how it relates to the work on VIFF.

3.2.1 Security Definition

We begin with an informal statement of what it means to be “secure”:
Definition 3.1 A protocol is secure if an outside observer cannot distinguish
between an execution of the real protocol and a secure replacement protocol.

Even though this definition is very short, it turns out to be useful. It gives
a testable condition of when a protocol is secure: You take a protocol which is
known to be secure and prove that the new protocol is indistinguishable from
the secure protocol. To bootstrap this process we use a trick and compare our
protocol with a protocol which we define to be secure. This ideal protocol uses
an ideal functionality to do the computation. This is an interactive Turing ma-
chine, F , which cannot be corrupted and always calculates the correct result.
The ideal protocol is simple: Everybody starts by handing their inputs over to
F , which spends some time calculating and finally gives everybody their correct
result. Clearly no information is leaked and it makes good sense to define this
as “secure”. Since the parties do nothing in the ideal protocol we will call them
dummy parties. To provide maximum generality, we will allow the observer to
specify the inputs to the dummy parties. We will call the observer the environ-
ment and denote it by Z from now on to match the standard UC terminology.

The real protocol is not so simple and contains actual parties which fol-
low some protocol π without having an ideal functionality to help them. An
additional entity is the adversary, A. By default the adversary listens to all
communication between the parties and observes the internal state of corrupted
players (a passive adversary) but may also be allowed to take full control over
a party and change messages arbitrarily (an active adversary). The adversary
can talk with the environment both to provide details of what it sees in the
protocol, but also to receive instructions on what to do next. Figure 3.2a shows
this situation with no corruptions. Note that the parties cannot communicate
directly with each other – all communication between parties must pass through
the adversary. As a worst case assumption, A is allowed to delay and reorder
the delivery of the messages sent between the parties in the protocol arbitrarily,
even when passive. We only require that messages are eventually delivered –
this models an asynchronously network with a reliable transport layer.

The goal of Z is to distinguish the situation in Figure 3.2a from the ideal
protocol execution. Since Z expects to talk to the adversary, we include an
extra party called a simulator, S, in the ideal protocol experiment shown in
Figure 3.2b. The job of the simulator is to pretend to be the adversary towards
Z. To do this the simulator gets help from F – the precise amount of help
allowed is part of the description of F . Since the behavior of F is our definition
of security, we do not want this help to leak private information, so F will
typically send messages of the form 〈x := ?〉 which only tells S that x now has
a value, but does not tell which value.
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A P1 P2 · · · Pn

Z

(a) Real world.

S P1 P2 · · · Pn

Z

F
(b) Ideal world.

Figure 3.2: The two central protocol experiments in the UC framework. Note how
the two figures looks exactly the same towards Z who, in both cases, interacts with
n+ 1 parties over a network.

As mentioned above, the adversary has the power to corrupt some of the
parties. We will allow up to t corruptions, where n = 2t+1. We restrict A to be
static and passive. Static means that the adversary chooses a fixed subset of the
parties to corrupt at the beginning of the protocol. The corrupted parties do
not take part in the protocol, instead A sends messages on their behalf. Passive
means that A still follows the protocol – it is honest-but-curious.

Having described the two protocol experiments and their participants, we
now define a random variable execF,S,Z to be the output of Z in the ideal world
execution with the ideal functionality F and simulator S. Define execπ,A,Z to
be the output of Z in the real world execution of π under attack by A. Let k
be the security parameter. We can then refine Definition 3.1 slightly as follows:

Definition 3.2 A protocol π is secure with regard to an ideal functionality F
if for any adversary A there exists a simulator S such that for any environment
Z the statistical difference between execF,S,Z and execπ,A,Z is negligible in k.

A more formal definition can be found in the full UC paper [7], but this definition
should capture the gist of what it means to be UC-secure. Let us just here remark
that if the environment has unbounded computational power, one talks about
perfect security when the two distributions are equal, and statistical security
otherwise. If Z is limited to polynomial computations one obtains computational
security. In this report we will only deal with polynomial time interactive Turing
machines and thus aim for computational security.

3.2.2 Simulation

To prove that a protocol is secure, we must describe how the simulator fools the
environment. It must produce output distributed in the same way as A would in
the real world, otherwise Z would notice and the protocol would not be secure.
Figure 3.3 shows how the simulator for VIFF does this: It runs a copy of A
inside and feeds this copy with inputs as it gets messages from F .

SA P1 P2 · · · Pn

Z

F

Figure 3.3: The ideal world with
the adversary run by the simula-
tor. Giving A inputs distributed
as in the real world ensures that
the output of A is correctly dis-
tributed in the ideal world.
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3.2.3 Composability

An important benefit of the UC framework is that UC-secure protocols can be
composed in arbitrary ways to build larger protocols, which remain UC-secure.
Previously one had to prove the security of new protocols from first principles,
but with the UC framework one can easily build on top of the work of others.
UC functionalities have been defined for standard tasks such as secure message
transmission, public-key cryptography, secret sharing, etc.

3.3 Network Assumptions
The classic results on secure multi-party computation are made under the as-
sumption of a synchronous setting where the communication takes place on a
network with known packet delays (latency) and where the parties are equipped
with clocks with a known maximum drift rate. In this setting it is easy to divide
the protocols into logical units called rounds. A round begins with the delivery
of all messages sent in the previous round. Each party is then asked to specify
a number of new messages which will be delivered at the beginning of the next
round. It is natural to take the number of rounds needed as a measure of the
protocol execution time. The total number of bits transmitted (communication
complexity) is often counted as well. The time used for local computation by
the parties is assumed to be negligible in comparison to the network delays and
is typically not counted.

3.3.1 Modern Asynchronous Communication Networks

The synchronous model does not match communication networks or computers
as we know them today. Modern networks are asynchronous and computers do
normally not have access to precise clocks.

When sending packets over the Internet, the Internet Protocol (IP) [31] has
the responsibility of getting the packets to the correct destination. But the
IP gives very few guarantees: Intermediate routers might drop packets at any
time (due problems like congestion and transmission errors) and packets may be
reordered or duplicated. In particular, the IP gives no guarantees about delivery
time (if the packet even reaches the destination).

The Transmission Control Protocol (TCP) [32] is normally used to create
a virtual connection on top of the connection-less IP network. Because packets
can be lost on the IP level, TCP must be prepared to ask for retransmission of
data. This means that the delivery can be delayed further. A sender and receiver
communicating over TCP are reading and writing a stream of bytes – there are
no messages at the TCP level. As bytes are written to the stream, TCP will
take care of buffering and will send out IP packets as they are filled or when
it has been too long since the last packet was sent. Such buffering introduces
further unpredictable delays in the protocol.

Normal computers also have no access to a globally correct clock. Comput-
ers are typically built with an on-board oscillator used to keep track of the
time. Even if initially synchronized, clocks will drift away from each other since
frequencies of oscillators vary with temperature. The Network Time Protocol
(NTP) is widely used to keep computers synchronized to a standard time [25].
Roughly speaking, this is done by exchanging packets containing timestamps,
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from which the network delay can be estimated and the local clock adjusted
accordingly. But the NTP server is a trusted third party and we would rather
design our protocols without relying on such a service.

3.3.2 Implementing Protocols on Asynchronous Networks

Because of the differences between the synchronous model and what is available
for implementation, it is clear that we cannot simply implement the standard
protocols in a straightforward way. We have to adapt the situation. There are
at first glance two possible approaches

1. Use the synchronous protocol unchanged and build an emulation layer
on top of the network to simulate a synchronous network. Awerbuch [1]
describes such a simulation where n parties can synchronize by paying
an overhead of O(n) messages per round in the synchronous network. In
addition to the communication overhead of synchronization, some parties
will sit idle waiting for the other parties when they actually have the data
required to start the next round of computation as shown in Figure 3.1.
A more fundamental problem is the possibility of errors in the form of
faulty parties when considering active adversaries. The problem of syn-
chronizing several parties is then equivalent to the Byzantine agreement
problem, which is much harder [33, 38].

2. Develop new asynchronous protocols, but keep the network model un-
changed. This is the course taken by Ben-Or et al. [2] and recently by Hirt
et al. [21] for the case with active adversaries. This is the more difficult
approach, but it also has the chance of being the most efficient since the
protocols are executed in their native environment.

A third possibility is to “cheat” and run the synchronous protocol on an
asynchronous network, but prove that the resulting functionality is secure. This
is the approach taken by VIFF. Section 3.5 will describe a real world model
that captures this behavior: It is asynchronous and allow data to be delayed
in arbitrary (even malicious) ways. The real world model assumes that data
eventually arrives and that it arrives intact (the guarantees provided by TCP).
Also like TCP, the model does not provide authenticity and confidentiality.
Instead standard techniques such as TLS can be used by higher layers.

3.4 Ideal World Execution
We will now describe an ideal functionality that can be implemented on modern
communication networks as described in the previous section. We will do this
by defining a number of primitive operations necessary to do efficient MPC.

3.4.1 Primitives for Multi-Party Computation

All computations can in principle be reduced to Boolean operations, and for
those the NAND and NOR gates are universal. But even though all other log-
ical gates can be constructed from two or more of these universal gates, we
seldom want to limit ourselves to just Boolean operations. Instead we consider
operations such as addition, multiplication, and comparison primitive since they
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can be executed in a single clock cycle on a modern CPU. In fact many such
operations can normally be executed at once due to the use of several parallel
pipelines in the CPU.

When doing MPC we consider addition and multiplication of values from a
finite field as primitive operations. Implementing NAND or NOR on bit-values
would in principle have been enough, but evaluating things at such a fine gran-
ularity is very expensive, just as it would be expensive if a CPU only did a few
NAND operations per clock cycle instead of adding or multiplying whole 32- or
64-bit integers. Input to the computation in the form of sharing and output in
the form of opening of sharings are considered primitive too.

We want the functionality to allow several primitive operations to be started
at once – not due to CPU pipelines, but due to the inherit delays of network
traffic which makes it possible to send out several packets before getting a re-
ply to the first. The programming language defined by the available commands
resemble a simple imperative programming language of the same flavor as Pas-
cal and C. The language is straight-line, meaning that there are no looping
or branching constructs. The meta-program run by the environment can still
include branching and looping.

3.4.2 Ideal Protocol

The ideal functionality reacts on input from Z (sent through the dummy parties)
and processes one command at a time – if Z sends commands too fast they are
buffered. Commands are discarded if they are not valid, meaning that they
must consist of a recognized instruction as well as a program counter. This is an
opaque tag that must be unique for a given protocol run. The program counters
are used by F to associate each result with a specific command – this is necessary
because new commands may be started while waiting for the results of earlier
commands.

Each valid command may have some conditions attached to it. If the con-
ditions are not fulfilled, F buffers the command. If more than one command is
eligible for execution, F will choose the next command to execute at random.

The functionality informs the simulator of all inputs it receives from the
dummy parties, including the sending party. Private inputs in the commands
are blanked (replaced by ?). This models that values used in computation are
secret but the computation trace itself is public. As each command is executed,
Z will expect to see acknowledgments with the correct program counters. We
let S send those through F , who will simply pass on any input it get from S.

The protocol execution terminates when Z outputs a bit. It is up to Z to
decide (depending on the output it receives from the parties and A) when it
terminates the execution.

The available commands and their semantics are:

Assignment Variables are defined by their first assignment. To assign the value
v to the variable x the environment must select a single party Pi to be the
one who learns the value and send

〈x := v, pc〉,

to that party. The functionality stores x 7−→ v in its memory M .
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Output Variables can be output to reveal their value to a particular party.
When x is defined and F receives

〈output, x, Pi, pc〉,

from all parties it sends 〈M(x), pc〉 to S.

Linear combination To store a linear combination of previously defined vari-
ables x1, . . . , xj with constants c1, . . . , cj in x, Z sends the command

〈x := c1 · x1 + c2 · x2 + · · ·+ cj · xj , pc〉

to all Pi. This makes F store the assignment x 7−→
∑j
i=1 ci ·M(xi) in its

memory. Please note that this command covers simple addition of variables
when all ci = 1.

Multiplication When F has received

〈x := y · z, pc〉

from all Pi where y and z are already defined, F stores the assignment
x 7−→M(y) ·M(z) in its memory.

Synchronization By sending

〈synchronize, pc〉

to all Pi, the environment ask the parties to synchronize. Synchronization
is a tool for Z to structure its meta-program, and F needs to do nothing
here – it is handled entirely by S.

3.5 Real World Execution
We will now describe the concrete protocols which will realize the ideal world
protocol just described. This is a mathematical model of the protocols imple-
mented in VIFF.

We assume that the parties communicate using a semantically secure public-
key cryptosystem and that the public keys have been distributed securely in
advance. In practice, each party could obtain a TLS certificate from a known
certificate authority (CA) and announce this certificate to the others before the
computation starts. When keys have been distributed the different commands
are implemented as follows:

Assignment When Z sends

〈x := v, pc〉,

to Pi it secret shares the value v into shares v1, . . . , vn using a Shamir
secret sharing [35] with threshold t. The shares are sent securely to the
other parties, i.e., Pi sends 〈Epkj (vj), pc〉 to each Pj where j 6= i. When all
shares has been sent, Pi stores x 7−→ vi in Mi and outputs 〈ok, pc〉 to Z.
The other parties Pj store x 7−→ vj in Mj and output 〈ok, pc〉 to Z when
they have received the share from Pi.
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Output To open x to Pi the environment sends

〈output, x, Pi, pc〉,

to all parties. Party Pj sends its share of x securely to Pi and output
〈ok, pc〉 to Z. When receiving t+ 1 shares, Pi will reconstruct the value v
stored in x and output 〈ok, v, pc〉 to Z.

Linear combination Receiving

〈x := c1 · x1 + c2 · x2 + · · ·+ cj · xj , pc〉

where all xi are defined will make Pi store x 7−→
∑j
i=1 ci ·Mi(xi) in its

memory and output 〈ok, pc〉 to Z.

Multiplication The environment sends

〈x := y · z, pc〉,

to all parties. When receiving the command and when both shares are
defined, each party reacts by multiplying the two shares to get a tem-
porary share x′, which will correspond to a Shamir sharing of y · z with
threshold 2t.
This share is reshared by having each Pi run the same commands as if
it had received the command 〈xi := x′, pci〉 where pci is a fresh pro-
gram counter derived from pc and i. Each party Pi recombines its shares
x1, . . . , xn into its share of x using a threshold of 2t = n−1. When a party
has reconstructed its share of x, it outputs 〈ok, pc〉 to Z.

Synchronization When receiving

〈synchronize, pc〉,

Pi will send 〈ready, pc〉 to all other parties. When Pi has received such
ready messages from all parties, it outputs 〈ok, pc〉 to Z.

3.6 From Ideal to Real World
We will now on a case by case basis describe how the simulator reacts to mes-
sages from the ideal functionality in order to pose as the adversary towards the
environment. In each case S will simulate the messages seen by A in the real
world execution, and simply pass on the output (if any) to Z.

Assignment When S receives 〈x := ?, pc〉 from Pi it picks random values
r1, . . . , rn and encrypts each value cj = Epkj (rj). The simulator gives
these ciphertexts to A with Pi as the sender and Pj as the receiver. If A
produces an output, this is sent to Z. The simulator sends 〈ok, pc〉 back
to Pi (through F).
When A delivers cj to Pj , S sends 〈ok, pc〉 to Pj (again through F).
Assuming a semantically secure cryptosystem, the output produced by A
in the ideal world must match the output produced in the real world and
Z is thus unable to distinguish between the two cases.
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Output We will start by considering the case where x is opened to an honest
party Pi. The simulator sees when each Pj receives the 〈output, x, Pi, pc〉
message. The simulator invents a share rj at random and encrypts it to
get cj = Epkj (rj). The simulator gives cj to A on behalf of Pj for delivery
to Pi. Any output by A is sent to Z.
The encryptions received by A in the real world contain Shamir shares,
which (when looking at up to t shares) are uniformly random numbers.
The simulator can therefore simulate this perfectly towards the adversary
by encrypting random numbers. When S sees that A has delivered all
shares to Pi, it sends 〈ok, v, pc〉 to Pi (S was told the correct value v
by F).
If the party Pi is corrupt, S must work a little harder. In that case A
knows (by previous simulation) the share vi belonging to Pi. This share
was chosen at random by S without knowing v. But because A can only
corrupt up to t players, there will be at least one share which is unknown to
A but needed for reconstructing v. With the knowledge of v and the shares
possessed by A, S chooses consistent shares for the honest parties and
sends them securely to A. By sending the shares as the 〈output, x, Pi, pc〉
arrive, the simulator ensures that A sees the same arrival order as in the
real world and which makes the view of the adversary indistinguishable
from the real world view.

Linear combination In the real world no communication is done, and the ad-
versary sees no messages from the parties. The simulator should therefore
do nothing in the ideal world.

Multiplication In the real world A sees the communication produced by the
resharing. Those messages are produced by the result of the parties exe-
cuting the same steps as if they had received 〈xi := x′, pci〉 and it can be
simulated in the same way as a normal assignment.

Synchronization When synchronizing, the only communication produced is
the 〈ready, pc〉 messages sent by each to the other parties and the final
〈ok, pc〉 message sent to Z when a party hears that all other parties are
ready.
To simulate the messages sent in response to a 〈synchronize, pc〉, the sim-
ulator sends a 〈ready, pc〉 message to A from Pi when it learns that Pi has
received 〈synchronize, pc〉 from Z.
When A has delivered 〈ready, pc〉 message from all other parties to Pi,
then S sends 〈ok, pc〉 to Pi. This is a perfect simulation of the real world.

The correctness of this simulation was argued above and it is also clear that
the simulator is efficient. The simulator uses A as a black-box and thus works
for any A. It produces a view for Z that is identical in the two worlds, except for
the possibility that the semantically secure cryptosystem breaks. We conclude
that the real world protocol is secure with regard to F .

Having a mathematical model for a secure cryptographic protocol that can
be used for multi-party computations is only the first step towards making useful
computations. Implementing the model is the next step and will be described
in the following.
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3.7 From VIFF to the Real World Model
VIFF offers a set of commands closely resembling the MPC commands described
in Section 3.5. For the description of the VIFF commands, let rt be an instance
of the Runtime class and that x, y, and z are instances of the Share class. We
will describe the commands with three parties for concreteness, but this is not
a limit of the VIFF runtime.

Shamir sharing The rt.shamir_share method is used for Shamir sharing values
over Zp. The command is symmetric in the sense that all parties execute
it, but with different input values. The result is therefore not just one
share, but a tuple with one share for each party.
Consider three parties P1, P2, and P3 who all execute the line

x, y, z = rt.shamir_share(vi)
each with its own input value in place of vi. This corresponds directly to
the environment sending

〈x := v1, pc1〉, 〈y := v2, pc2〉, 〈z := v3, pc3〉

to P1, P2, and P3, respectively.

Opening Executing the command
open_x = rt.open(x)

will open x to all parties. This corresponds to the environment sending

〈output, x, Pi, pci〉

to all parties P1, . . . , Pn and for all i – all parties broadcast their share to
all other parties. Currently, the rt.open command is symmetric and values
are always opened to all parties, but this will be changed in the future.

Linear combination Forming a linear combination of shares x, y, and z using
coefficients a, b, and c can be done by executing

w = a ∗ x + b ∗ y + c ∗ z
and this maps directly to Z sending the command

〈w := a · x+ b · y + c · z, pc〉

to all parties. This involves no communication between the parties.

Multiplication Shares can be multiplied by executing
z = x ∗ y

and this maps directly to Z sending the command

〈z := x · y, pc〉

to all parties. As in the real world model, this involves a resharing.

Synchronization Executing a function f after synchronizing is done by
sync = rt.synchronize()
sync.addCallback(f)
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This corresponds to the environment sending

〈synchronize, pc〉

to all parties and then executing f when all parties are ready.

In addition to these primitive commands VIFF provides a number of higher-
level commands. They use the primitives described above and are thus secure
since the primitives themselves are secure. The commands are:

Exclusive-or If x and y are bit values, the exclusive-or can be calculated by
z = rt.xor_int(x, y)

This simply calculates z = x+ y − 2 · x · y.
The runtime has another method, rt.xor_bit which is used when the shares
represent values from GF(28) in which exclusive-or is simply addition and
thus can be made with no communication at all.

Pseudo-random secret sharing The runtime can create a secret sharing of
a uniformly pseudo-random number using no communication by the tech-
nique of pseudo-random secret sharing described by Cramer et al. [9]. The
parties simply execute

rand = rt.prss_share_random(field)
The field variable indicates the field, either Zp or GF(28). The parties can
share a particular value by doing

x, y, z = rt.prss_share(vi)
each with their own value for vi. The sharing costs a broadcast which needs
not be encrypted. Pseudo-random secret sharing has no corresponding
command in the real world model.

Comparison The comparison protocol by Toft [36] is used by executing
bit = rt.greater_than(x, y)

This makes bit a GF(28) share of 0 (if x ≤ y) or of 1 (if x > y). The
greater_thanII method gives a result secret shared in Zp. The protocol is
faster for large bit lengths (unpublished work by Tomas Toft).
The comparison protocols correspond to a series of primitive commands
in the real world model, which means that they are secure because the
primitives are secure under arbitrary composition.

3.8 Performance Results
The initial aim of VIFF was to create a simple and flexible system for imple-
menting secure multi-party computation. The automatic parallel scheduling of
primitive operations should improve performance since VIFF will start on the
next available operation even before the results have arrived from the previous.

We have benchmarked VIFF in an attempt to verify that the scheduling done
by VIFF really does pay off. The benchmark was run over the Internet using
full TLS encryption. Computers located in three countries were used: thyra02
at the University of Aarhus, Denmark, serengeti12 at the Norwegian University
of Science and Technology (Trondheim, Norway) and bazooka located in Los
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Country Hostname CPU Type CPU Speed RAM
Denmark thyra02 Intel Xeon 3.06 GHz 2 GiB
Norway serengeti12 Intel Pentium 4 2.60 GHz 756 MiB
USA bazooka AMD Opteron 2.20 GHz 4 GiB

Table 3.1: Specification of the machines used in the VIFF benchmark.

Angeles, USA. The last machine is the webserver hosting the VIFF homepage,
and is thus shared with other users. At the time of the benchmarking, the load
on bazooka was around 5–10, but would occasionally increase to 15 or more.5
The specifications of these computers can be found in Table 3.1. The code for the
benchmarks is revision 8803c64a055d which will be released as VIFF version 0.4.

When evaluating cryptographic protocols, the number of multiplications is a
common measure. It is therefore interesting to see how fast secret shared values
can be multiplied in VIFF. By default many multiplications will be started
before the first finishes (parallel execution) and Figure 3.4 shows the timing
results when executing more and more multiplications. In all graphs we have
marked the results from bazooka to show where the data points are. As expected,
the time grows linearly in the number of multiplications and takes about 1.3 ms
per multiplication for large number of multiplications.
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Figure 3.4: Parallel multiplication benchmark results.

To check that the automatic parallel scheduling works, another benchmark
run was made, but this time the next multiplication was only scheduled when
the current multiplication was complete. This forces VIFF to execute the multi-
plications in rounds and thwarts the normal eager scheduling. Figure 3.5 shows
the benchmark results when multiplying up to 1,000 pairs of numbers in this
way. We see that the average time per multiplication has risen to about 185 ms in
comparison to about 1.3 ms with parallel execution. The time taken for a serial
multiplication matches nicely with the observed round-trip time from thyra02
and serengeti12 to bazooka. The standard assumption is that time spent on local
computations (CPU time) is negligible and these benchmark results show that
the time spent on multiplying and on TLS encryption is a very low overhead
compared to the time it takes for a simple ping packet to move back and forth
between the hosts.

5The “load” on a UNIX system is defined as the average number of processes waiting to
access the CPU in a given interval. The load is typically given for the last 1, 5, and 15 minutes.
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Figure 3.5: Serial multiplication benchmark results.

The graph in Figure 3.4 shows a linear function between the number of
multiplications and the total time used. Figure 3.6 shows a graph of the time
per multiplication as a function of the number of multiplications. We see that
the average time per multiplication drops rapidly at first until it stabilizes at
around 1.3 ms. This shows that the graph in Figure 3.4 is only linear at a
large scale. An explanation for this could be that the machines sit idle for a
brief period when doing only a few multiplications. When the clock is started
the local multiplications are done quickly and the shares are sent out over the
network. The clock is only stopped when the resharing is done, i.e., when shares
have been received from all other parties. When more multiplications are done,
this final waiting period becomes proportionally smaller in comparison to the
total time used, and the average time per multiplication drops.
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Figure 3.6: Parallel multiplication benchmark results.

We can analyze the graph in Figure 3.5 in a similar way to get Figure 3.7.
There we see that the time per multiplication is around 187 ms and that it is
much more constant. The curves for the two machines thyra02 and serengeti12
both start out lower, but they increase to match the time on bazooka. No good
explanation has been found for why the two machines are able to finish the first
25 multiplications faster than bazooka.

In addition to multiplication, we have also benchmarked comparisons. The
comparison protocol is by Toft [36] and is implemented in the greater_than
method in VIFF. Comparisons are much slower than multiplications, so only a
few benchmark runs were made and the results are shown in Figure 3.8. We see
that the average time falls to around 800 ms when more comparisons are made,
just as for multiplications.

There has unfortunately not been time to run benchmarks for the improved
comparison protocol implemented by Tomas Toft. The other methods in the
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Figure 3.7: Serial multiplication benchmark results.
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Figure 3.8: Parallel comparison benchmark results.

VIFF runtime (pseudo-random secret sharing, exclusive-or, bit conversion, etc.)
should also be benchmarked. All the benchmarks presented here were done using
a 65 bit prime, but benchmarks using other primes should be conducted as well
to see how VIFF scales.

4 Future Work
There is still work left to be done. SIMAP and VIFF will continue for at least
another year and we will now describe some of the planned futures.

4.1 SIMAP
In the near future it would be natural to extend the SIMAP runtime to handle
active adversaries. There known protocols for this, although they are slower
than in the passive case, it would be interesting to see how much slower they
are in real life.

Another goal of the SIMAP project is to investigate the cost of protocols
with full security threshold, i.e., where t = n − 1. In such a situation we say
that we have self-trust since each party need only trust himself to be honest.
This is clearly needed in two-party protocols, but more parties might also want
this kind of security. It is known that such protocols cannot be achieved with
information theoretical security6 – we must use cryptographic primitives which

6Two players cannot even securely compute the logical AND of two bits, which renders
general multi-party computations impossible as well [8].
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rely on a computational hardness assumption. The right homomorphic encryp-
tion scheme might be the solution. As in Section 2.2, a homomorphic encryption
scheme allows you to either add or multiply values while they are encrypted.
The hard part is to find a homomorphic encryption scheme where both addition
and multiplication is easy. This will probably be the focus of some of the future
work in the SIMAP project.

The SIMAP runtime currently knows two types of variables: Booleans and
integers. Implementing division and floating point arithmetic would be very
useful for many applications. One example would be solving linear programs,
something which plays an important role in economics.

4.2 VIFF
The current version of VIFF is functional and many interesting problems can
be solved with it, but it still lacks many desirable features. We will describe
some of them here, but the reader is referred to the TODO file in the VIFF
distribution for details.

Like the SIMAP runtime, VIFF should be extended with protocols that are
secure against active adversaries. Apart from new protocols, this involves better
error-handling at all levels in VIFF since parties may then crash in arbitrary
ways in addition to sending bogus values. VIFF should also have protocols that
enable it to be used for two party protocols or protocols with full threshold.

Another important feature is pre-processing. Many protocols can be divided
into two parts of which only one is dependent of the actual input values. The
other part is independent of the inputs to the computation and can thus be
executed in advance in a pre-processing step. A typical pre-processing step is
the joint generation of random values unknown to all parties. Implementing a
general framework in VIFF for saving and loading such pre-processed values
would increase the efficiency of some protocols and make benchmarking easier.

Support for accurate and detailed benchmarking would be a valuable tool
to compare different protocol implementations and to find bottlenecks in VIFF
itself. The profiling should collect data on the amount time spent on commu-
nication, local calculations, and pre-processing. There is currently no special
support for such instrumentation in VIFF. With such a system in place, it
would be possible to run nightly regression tests and immediately see how a
code change affects the execution time of different protocols. VIFF has a test
suite, but it can only catch regressions in functionality.

Finally, all parts of the VIFF source code should be audited for security prob-
lems. One known problem is the generation of pseudo-random values. Presently,
they are generated by an ad-hoc procedure where a random seed is hashed re-
peatedly (using SHA-1) until enough pseudo-random bits have been generated.
The security of this procedure is unknown. A replacement algorithm needs to
be secure, but also fast since it will be used by essentially all parts of VIFF. A
fast stream cipher (or a block cipher running in counter mode) might be good
candidates providing both speed and security.

Although there will be no time to do it in the near future, it is interesting
to think about how VIFF would look like if it were implemented in a strongly
typed programming language. The choice of Python and Twisted has served
VIFF well, but using a strong, expressive type system has its benefits as well.
Given a type system in which you could distinguish between “n is an integer”,
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“p is a prime”, and “q is a Blum prime” would enable us to write a program in
which the requirements of the primitives chosen at the lowest levels would be
carried through to the higher levels. A good example is the comparison protocol
by Toft [36], which in principle works over any prime field Zp. But because of
how VIFF implements the protocol by Damgård et al. [10] for generating shares
of random bits, p must actually be a Blum prime, i.e., p ≡ 3 (mod 4). The
problem boils down to how VIFF calculates square roots of field elements. When
p is a Blum prime, one can calculate the square root of x by

√
x = x(p+1)/4.

This is easy to verify by squaring, which gives

(
√
x )2 = x(p+1)/2 = xx(p−1)/2 = x(xp ).

In our case we know that x is a quadratic residue and so the Legendre symbol
(xp ) = 1. But when p is not a Blum prime, (p + 1)/4 is not an integer and
something different from the square root is calculated. Such subtle errors could
have been avoided if the Python type system would allow us to express that
square roots can only be calculated when p is a Blum prime.

The functional language Haskell [30] is an example of a strongly typed lan-
guage with a very expressive type system. Haskell is a compiled language and
has strong support for numeric calculations and multi-threaded programs. Much
of the VIFF code is currently written in a functional style, and Haskell has been
the inspiration for many of the functional constructs in Python. One could there-
fore hope that a Haskell implementation of VIFF would be even more “natural”
than the current implementation in Python. Unfortunately the author does not
(yet) have the skills to reimplement VIFF in Haskell, but the language (and
other functional languages like it) remains an interesting alternative to Python
and to more traditional imperative languages like C++ or Java.

5 Conclusion
This report describes two years of PhD studies. The report started in Section 2
with a theoretic work on a new protocol for comparing a public and a secret inte-
ger using only two parties, which among other things has applications in on-line
auctions. The comparison uses a new efficient homomorphic encryption scheme.
Our benchmark results suggest that our new protocol is highly competitive and
reaches an acceptably low time per comparison for real-world application.

A general framework for doing secure multi-party computation was described
in Section 3 and its security was proven in the UC framework. VIFF is practical
in the sense that it enables rapid prototyping of new protocols for multi-party
computation and benchmarking shows that it is efficient enough for real appli-
cations running across the Internet.

The VIFF project is now run as an open-source project and the code can
be downloaded freely from http://viff.dk/. It is the hope of the author that
this will help foster new protocols for multi-party computation both within and
outside the SIMAP project. The protocols for multi-party computation have
been known for many years, but with VIFF researchers and developers finally
have access to a freely available working implementation.
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