
Secret Sharing and Secure Multi-party
Computation

Michael Mortensen

1. July 2007

Department of Informatics
University of Bergen

PB. 7800
N-5020 BERGEN

Preface

This thesis explores the different secret sharing schemes from the 1970s until
today. We present the schemes and provide descriptions and examples on
how they work. More time is devoted to exploring monotone span programs,
a generalisation of secret sharing schemes, as these are the building blocks of
all modern research on secret sharing.

We also investigate an application of secret sharing known as unconditionally
secure multi-party computation.

i

Acknowledgements

First and foremost I would like to thank my thesis supervisor Matthew Geof-
frey Parker, not only for introducing me to the interesting concept of secret
sharing, but also for always taking the time for a talk, no matter how busy
he was.

I would also like to thank my friends at department for many good times
and lots of encouragement, but especially Haakon Nilsen who also took the
time to spell check my thesis.

ii

Acknowledgements iii

List of Notation

F - A field
P - The set of players or participants
Pi - Player i from the set P
Γ - Access structure
∆ - Adversary structure
R - Vector a random values
ri - a random value in R

λ - A recombination vector
M - Monotone Span Program
M - A matrix
M (1) - The first vector column of M
M (i,...,n) - A matrix consisting of columns i through n of M
M(i) - The i-th row of M
Gv - Local complementation on vertex v in the graph G

List of Acronyms

LSSS - Linear secret sharing scheme
MPC - Multi-party computation
LC - Local Complementation
MSP - Monotone Span Program

Table of Contents

1 Introduction 1
1.1 Objective of Thesis . 2
1.2 Thesis Outline . 2

2 Simple Secret Sharing and Threshold Schemes 3
2.1 Introduction . 3
2.2 Simple Secret Sharing . 3

2.2.1 Additive Secret Sharing 4
2.3 Threshold Secret Sharing Schemes 4

2.3.1 Shamir’s Secret Sharing Scheme 5
2.3.2 Blakley’s Scheme . 8
2.3.3 The Asmuth & Bloom Secret Sharing Scheme 9
2.3.4 Mignotte’s Threshold Secret Sharing Scheme 10

2.4 Linear Secret Sharing . 11
2.4.1 Security . 14
2.4.2 Limitations . 14

3 Access Structures & Monotone Span Programs 15
3.1 Introduction . 15
3.2 Monotone Circuits . 16

3.2.1 Circuit Construction 16
3.3 Monotone Span Programs . 18

3.3.1 Preliminaries and Notation 18
3.3.2 Monotone Span Programs 18
3.3.3 Realising General Access Structure with Monotone Span

Programs . 21
3.3.4 Multiplicative MSPs 22
3.3.5 Operations on MSPs 24
3.3.6 Known Results and Open Problems on MSPs 26

3.4 Dynamic Graphs and Access Structures 27

iv

TABLE OF CONTENTS v

4 Secure Multi-party Computation 30
4.1 Introduction . 30
4.2 Preliminaries . 31
4.3 Commitment Scheme . 32
4.4 Unconditionally Secure Multi-party Computation 35

4.4.1 Secure MPC with a Passive Adversary 36
4.4.2 Secure MPC with an Active Adversary 37

4.5 Conclusions . 39

5 Summary and Conclusion 40
5.1 Summary . 40
5.2 Conclusion . 40
5.3 Open Problems . 41

5.3.1 Secure MPC on Distributed Networks 41

A Appendix 43
A.1 Methods to reconstruct a Shamir secret 43

A.1.1 The Chinese Remainder Theorem 43
A.1.2 Linearity in Ideal Threshold Secret Sharing Schemes . 44

A.2 MSP Examples . 45
A.2.1 Addition of MSPs . 45
A.2.2 Combination of MSPs 46

A.3 Secure Multi-party Computation Examples 47
A.3.1 Passive Threshold MPC 47
A.3.2 Commitment Example 49

A.4 Definitions . 50
A.4.1 The Kronecker product 50
A.4.2 Adjacency Matrix . 51
A.4.3 Homomorphic Encryption 51

List of Figures

2.1 Illustration of Blakey’s scheme in three dimensions. The secret
is the position where all three planes intersect. 8

3.1 A monotone circuit. The final output is the secret S. 17
3.2 Creation of shares . 22
3.3 Local Complementation on the vertex labelled P1 28
3.4 Complete Multi-partite Graph and Local Complementation . . 29

4.1 Illustration of an arithmetic circuit. 31

5.1 Distributed network . 42

vi

List of Tables

3.1 A Vandermonde matrix for a threshold sharing scheme. 20
3.2 Secret sharing pieces . 21

4.1 Security of secure multi-party computation 38

A.1 Shares of cij . 49

vii

Chapter 1

Introduction

We are all familiar with the scenario where the president and his highest
ranking general both have a key, so that the participation of both of them
is required to unlock the trigger for the nuclear missile. The digital analogy
of this would be that they both have a secret piece of information, and only
the combination of these two pieces will be accepted as a working key by the
launch computer. In cryptography, we call this secret sharing.

Besides the exciting application of warfare management, there are many other
applications of the cryptographic primitive called secret sharing. Modern
cryptographic secret sharing, attributed to Shamir [32] and Blakley [6], was
first designed for key safeguarding, but has since been applied far beyond its
original intent. Today, secret sharing is a cornerstone in secure multi-party
computation [4] [11] [23] [10] [16], electronic voting [25], metering schemes
[28], and distributed key distribution [12] [29].

Today, computers and working environments are becoming more and more
distributed. This greatly increases the need for protocols which secure the
distribution of tasks while protecting the privacy of users and the reliability
of results. This problem is known as secure multi-party computation [34].
One of the paradigms in secure multi-party computation uses secret sharing,
which offers unconditionally secure protocols solving the multi-party compu-
tation problem.

1

1.1. Objective of Thesis 2

1.1 Objective of Thesis

The objective of this thesis is to provide the reader with an overview of the
evolution of secret sharing as well as introducing the necessary preliminaries
and terminology, providing a deeper insight to the mechanisms of modern
secret sharing. In addition, we will describe a practical application of secret
sharing demonstrating the versatility of the primitive.

1.2 Thesis Outline

Chapter 2 introduces the classic concept of secret sharing, as well as the
modern schemes created in the 1970s and 1980s. We review many of
the different schemes and see how they relate to one another.

Chapter 3 builds on the constructions of Chapter 2 and introduces a more
generalised notion of secret sharing, one that is the de facto standard
today. We study this generalisation in detail and define several opera-
tions that manipulate the secret sharing scheme.

Chapter 4 presents an actual application of secret sharing. We look at
a form of secure multi-party computation that builds on the secret
sharing primitive.

Chapter 2

Simple Secret Sharing and
Threshold Schemes

2.1 Introduction

Secret sharing is nothing new; it is a problem that has been encountered and
solved many times. The solutions vary in theory, application and elegance.
The simplest form of a secret sharing scheme is one that requires all n par-
ticipants to be present in order to unlock the secret while keeping it hidden
for any smaller group. A few of these will be presented briefly in section 2.2.
More complex schemes also exist, schemes that require a threshold number of
people to cooperate in order to reconstruct the secret and even more flexible
schemes that allow predefined groups of people to “unlock” the secret, using
a structure known as an access structure, which will be discussed in chapter
3.

2.2 Simple Secret Sharing

There exists a multitude of secret sharing schemes which require all the par-
ticipants to cooperate in order to reconstruct the secret. We briefly mention
one in Section 2.2.1.

3

2.3. Threshold Secret Sharing Schemes 4

2.2.1 Additive Secret Sharing

Given a secret s ∈ F , the dealer D select n − 1 random integers R =
{r1, r2, rn−1} uniformly from F . D then computes

sn = s−
n−1∑

i=i

ri mod F (2.1)

D sends each player Pi 1 ≤ i ≤ n − 1 the share si = ri, and the share sn is
sent to Pn.

The reconstruction of secret s ∈ F is trivial; simply add all of the shares
together:

s =
n∑

i=1

si mod F

The above additive secret sharing scheme requires all participants to con-
tribute their shares in order to reconstruct the secret. If one or more of
the participants are missing, no information about the original secret can be
recovered; such a scheme is known as a perfect secret sharing scheme.

Theorem A perfect secret sharing scheme is perfect in an information theo-
retic sense when the required P participants can reconstruct the secret s ∈ F ,
but any smaller set cannot discover anything about the secret.

Proof. Given a secret s ∈ F and a random uniform distribution of the shares
or shadows of the secret among P participants, all participants are needed
to reconstruct the secret. Consider the situation where |P| − 1 participants
attempt to compute the secret s:

s′ =

|P|−1∑

i=1

si (2.2)

By adding their values together, they can compute s′ = s + s|P|. Since the
random value s|P| is unknown, they have no information on what the secret
s may be.

2.3 Threshold Secret Sharing Schemes

In 1979, both Shamir and Blakley presented simple, albeit powerful secret
sharing schemes that allowed a t-threshold of n people, where t ≤ n, to

2.3. Threshold Secret Sharing Schemes 5

reconstruct the secret. Both solved an impractical real world problem often
found in combinatorics textbooks [22]:

Eleven scientists are working on a secret project. They wish
to lock up the documents in a cabinet so that the cabinet can
be opened if and only if six or more of the scientists are present.
What is the smallest number of keys to the locks each scientist
must carry?

In the real world the number of locks on the cabinet would be
(
11
5

)
= 462

while the number of keys each scientist would have to carry would be
(
10
5

)
=

252. Luckily, mathematics offers a much cleaner and more practical solution.
From geometry, we know that given two arbitrary distinct points on the
circumference of a circle, we do not have enough information to reconstruct
the entire circle. However, given three distinct points, we can reconstruct
the entire circle. If we think of this circle as the secret, we can see that we
have just constructed a simple 3-threshold secret sharing scheme. While this
circle obviously has severe limitations, there exist other structures which can
have an arbitrary number of points and hence an arbitrarily sized threshold.
One such scheme was constructed by Shamir in [32]. His solution used curves
and reconstructed the secret by interpolation when a threshold of t people
supplied their part. In Section 2.3.1, we will demonstrate this scheme using
polynomial interpolation. In Section 2.3.2, we briefly present another scheme,
invented by Blakley [6], that reconstructs the secret by the intersection of
hyperplanes. Another secret sharing scheme, by Asmuth and Bloom [1], that
uses congruence classes to solve the secret sharing problem, is presented in
Section 2.3.3.

Definition A (t,n)-threshold secret sharing scheme is a secret sharing scheme
that can divide a secret s ∈ F into shares {s1, s2, . . . , sn} ∈ F so that t ≤ n
and:

1. Given any set of t or more shares si, s can be reconstructed.

2. Any set of fewer than t shares gives no information about s.

2.3.1 Shamir’s Secret Sharing Scheme

Given n participants P = {P1, . . . , Pn}, we can use polynomial interpolation
to construct a (t, n)-threshold secret sharing scheme that will require a subset
A ⊆ P, |A| ≥ t in order to successfuly reconstruct the secret.

2.3. Threshold Secret Sharing Schemes 6

Creating the Shares

In order to create the shares, the dealer D first selects a secret s ∈ F to share.
We then construct a random polynomial f(x) with a degree of deg(f) = t−1.

f(x) = s+ r1x+ r2x
2 + ...+ rt−1x

t−1 mod F (2.3)

subject to the following conditions:

• The field F > n and F is GF (q) for some prime power q.

• The secret s ∈ F .

• The threshold t ≤ n.

• The coefficients {r1, . . . , rt−1} are chosen independently and randomly
from the interval [0,F).

Each share si of the secret can then be created by an evaluation of the
function f . In other words:

s1 = f(1), s2 = f(2), . . . , sn = f(n).

Example (Polynomial construction) Let F = 17, s = 4, t = 3, and r{1..t−1} =
{3, 6}. Our polynomial is then, as stated in equation (2.3),

f(x) = 4 + 3x+ 6x2 mod 17

and some of our secret shares are:

s1 = f(1) = 4 + 3 · 1 + 6 · 12 mod 17 = 13

s2 = f(2) = 4 + 3 · 2 + 6 · 22 mod 17 = 0

s3 = f(3) = 16

s7 = f(7) = 13

Reconstructing the Secret

We can reconstruct the secret using polynomial interpolation. A minimum
of t participants, one more than the degree of the polynomial, will have to
contribute to the reconstruction of the polynomial. The information needed
from each participant is a tuple consisting of his value for x and the output

2.3. Threshold Secret Sharing Schemes 7

of the polynomial function on x. In other words, each participant has a tuple
(x, q(x) = sx). As no two participants share the same value for x, the tuples
are in Lagrange form, and the interpolation polynomial in the Lagrange form
is defined as:

L(z) =

t∑

i=1

q(xi) ·

t,j 6=i∏

j=1

z − xj
xi − xj

mod F (2.4)

Since we are only interested in the first coefficient, s, we can simplify equation
(2.4) by setting z = 0:

L(0) =

t∑

i=1

q(xi) ·

t,j 6=i∏

j=1

0 − xj
xi − xj

mod F

=

t∑

i=1

q(xi) ·

t,j 6=i∏

j=1

xj
xj − xi

mod F

=

t∑

i=1

q(xi) ·

t,j 6=i∏

j=1

xj · (xj − xi)
−1 mod F (2.5)

In fact, we can generalise this a bit more; by writing the equation as

L(0) =

t∑

i=1

q(xi) · λi mod F

λi =

t,j 6=i∏

j=1

0 − xj
xi − xj

(2.6)

we see that λi is independent of the shares and only depends on the number
of shares used in the reconstruction of the polynomial. This means that we
can pre-calculate the values of λi and use them later when we recombine the
secret.

Definition The vector λ = {λ1, . . . , λn} such that s =
∑t

i=1 siλi is known
as the recombination vector.

Example Reconstruction of the secret using polynomial interpolation In the
previous example we constructed a polynomial mod 17 and generated the

2.3. Threshold Secret Sharing Schemes 8

shares s1 = 13, s2 = 0, s3 = 16, s7 = 13. Using equation (2.5), and three of
the shares created (for example s1, s2, and s7) our secret is

L(0) =

t∑

i=1

q(xi) ·

t,j 6=i∏

j=1

xj · (xj − xi)
−1 mod 17

= 13 ·

t,j 6=i∏

j=1

xj · (xj − xi)
−1 + 0 ·

t,j 6=i∏

j=1

xj · (xj − xi)
−1 +

13 ·

t,j 6=i∏

j=1

xj · (xj − xi)
−1 mod 17

= 13 ·
(
2 · (2 − 1)−1 · 7 · (7 − 1)−1

)
+

13 ·
(
1 · (1 − 7)−1 · 2 · (2 − 7)−1

)
mod 17

= 13 · (2 · 1 · 7 · 3) + 13 · (1 · 14 · 2 · 10) mod 17

= 4

The relationship between this method and reconstruction using the Chinese
remainder theorem is illustrated in Appendix 2.3.3.

2.3.2 Blakley’s Scheme

Given an n-dimensional non-parallel hyperplanes they will intersect at a spe-
cific point. Some coordinate of this point will be the secret. This is the idea
behind Blakley’s threshold secret sharing theme [6]. Figure 2.3.2 illustrates
this in three dimensions.

Figure 2.1: Illustration of Blakey’s scheme in three dimensions. The secret
is the position where all three planes intersect.

2.3. Threshold Secret Sharing Schemes 9

2.3.3 The Asmuth & Bloom Secret Sharing Scheme

The idea behind this scheme, first proposed by Asmuth and Bloom [1], is that
the keys, also called shadows, are congruence classes of a number associated
with the original key.

Creating the Shares

To share the secret s, s > 0 among n people with a t-threshold, choose a
number p > s and a set of numbers m1 < m2 < m3 < . . . < mn such that
gcd(mi, mj) = 1 for i 6= j, gcd(mi, p) = 1∀i, and

∏t

i=1mi > p
∏t−1

i=1 mn−i+1.
Calculate the value M =

∏t

i=1mi and select an arbitrary integer A such that
0 ≤ y < M where y = x+ A · p. The keys are then Si = y mod mi.

Example Key construction Let our secret be s = 2 and select a set of
numbers that meet the constraints mentioned above. For this example we
will use p = 3, t = 3, n = 4, and m1 = 5, m2 = 7, m3 = 9, m4 = 11.
Our number M = 5 · 7 · 9 = 315. Let our random integer A be 50. Thus,
y = x+A ·p = 2+50∗3 = 152 which clearly meets the condition 0 ≤ y < M .
Our keys are then

s1 = 152 mod 5 = 2

s2 = 152 mod 7 = 5

s3 = 152 mod 9 = 8

s4 = 152 mod 11 = 9

Reconstructing the Secret

Reconstructing the secret is fairly simple in this scheme. First, find the
original y-value by applying the Chinese remainder theorem on the set of
congruences. In other words, solve the congruence system:

y ≡ s1 mod m1

y ≡ s2 mod m2

y ≡ s3 mod m3

...

y ≡ st mod mt

2.3. Threshold Secret Sharing Schemes 10

After the y-value has been reconstructed, the original secret is

s = y mod p (2.7)

where p is a public variable that was chosen during the creation of the keys.

Example Given t keys or shadows from the shadows s1 . . . sn created in
Example 2.3.3, we can rediscover the secret s by first finding the value y by
applying the Chinese remainder theorem on t = 3 of our congruences:

y ≡ 5 mod 7

y ≡ 8 mod 9

y ≡ 9 mod 11

Here y = 152, so by equation (2.7) we find that our secret s = 152 mod 3 = 2.

2.3.4 Mignotte’s Threshold Secret Sharing Scheme

Another scheme that uses the Chinese remainder theorem to solve the prob-
lem of secret sharing is the Mignotte’s threshold secret sharing scheme [24].
It is quite similar to the scheme mentioned in section 2.3.3, but differs in
the requirements and restrictions on the input data and choice of coprime
moduli.

Creating the Shares

To share a secret among n ≥ 2 people with a threshold t ≤ n, create
n coprime integers such that m1 < m2 < . . . < mn−1 < mn, mn−t+2 ·
mn−t+3 · · ·mn < m1 · m2 · · ·mt and choose a secret s which lies within
the interval [mn−t+2 · mn−t+3 · · ·mn, m1 · m2 · · ·mt]. Each share is then
si = s mod mi.

Reconstructing the Secret

Given a set of t shares the secret can be recovered by using the Chinese
remainder theorem on the given set of congruence classes

s ≡ Si1 mod mi1

...

s ≡ Sit mod mit

2.4. Linear Secret Sharing 11

2.4 Linear Secret Sharing

An interesting aspect of all the above secret sharing schemes is that they use
ideas from linear algebra to solve the problem of secret sharing. Actually,
if we were to use the Asmuth&Bloom scheme on polynomials instead of
integers, we would have generalised the Asmuth&Bloom scheme to Shamir’s
scheme. In fact, with small modifications, all the above schemes can be
generalised as was shown in [21].

As they are nearly equivalent, many features, such as key updating algo-
rithms, are easily applied across the different schemes. Other traits, such as
information security, are equally as good from one scheme to the next.

From here on in this chapter we will focus on different traits and security as-
pects of linear secret sharing schemes (LSSSs). We will primarily use Shamir’s
scheme in our descriptions, but the methods used apply equally as well to
the LSSSs.

Updating the Keys

In some scenarios, such as a company where employees may come and go
and where board members are exchanged annually, it may be necessary to
secretly update the keys held by the remaining active participants. This can
easily be accomplished. First, generate t− 1 random α-values. Then, create
a new polynomial, with zero as the first coefficient,

P (x) = 0 +
t−1∑

i=1

αi · x
i mod F (2.8)

and calculate the shares s′1 . . . s
′
n with this polynomial. Once this is done,

distribute each share s′i to the person with the corresponding si share and
have him calculate his new share snewi = s′i + si. Once the new share is
created, si and s′i should be destroyed.

Example Suppose we have the secret s = 5 and the Shamir secret sharing
polynomial f(x) = 5 + 3x + 2x2 mod 7. For the four participants P =

2.4. Linear Secret Sharing 12

{P1, P2, P3, P4} the dealer would create the following shares:

s1 = f(1) = 3

s2 = f(2) = 5

s3 = f(3) = 4

s4 = f(4) = 0

Now suppose that the dealer does not want participant P3 to hold a valid
share any longer, to exclude P3 he creates a new polynomial p(x) = 0 + 6 ·
x1 + 1 · x2 mod 7 and generates the shares:

s′1 = p(1) = 0

s′2 = p(2) = 2

s′4 = p(4) = 5

and distributes them to their corresponding participants. Each player that
receives such a share computes his new share in the scheme:

snew1 = s1 + s′1 = 3 + 0 = 3

snew2 = s2 + s′2 = 5 + 2 = 0

snew4 = s4 + s′4 = 0 + 5 = 5

Using the new shares the participants can reconstruct the correct secret.
Conversely, any collusion of two new shares and the share s3 does not recon-
struct the correct secret.

Verifying the Shares

In [15], P. Feldman introduced a verifiable secret sharing (VSS) scheme based
upon the Shamir-scheme. Using homomorphic encryption (as defined in Ap-
pendix A.4.3), the Feldman scheme allows the participants to verify whether
or not the shares they have received are consistent. It should be noted, how-
ever, that while the Feldman scheme binds a player to a value, the secret
is now only computationally secure, i.e., retrieving the secret without the
correct number of shares is computationally intractable.

One homomorphic encryption method that allows us to utilize this scheme
is the use of discrete logarithms. For example, if a dealer D wanted to

2.4. Linear Secret Sharing 13

commit to a value s, i.e., allow the players to validate that they have a valid
share of s, he would first generate the shares with the polynomial f(x) =
s +

∑t−1
i=1 ai · x

i mod F and would then select a suitable integer q such that
r = Fq + 1 is prime and g is a generator of Z∗

r . He would then compute the
values c0 = gs, c1 = ga0, . . . , ct−1 = gat−1 and broadcast these values to the
shareholders. The shareholders could then verify their shares by computing

gsi = c0

t−1∏

j=1

ci
j

j (2.9)

Another method of verifiable secret sharing where the secret remains secure
in the information theoretic sense, but where the consistency of the shares
is only computationally secure, is a method by Torben Pedersen [30]. The
Pedersen VSS scheme allows a player to non-interactively check whether the
share he has received is consistent. It works as follows:

Let q be a Sophie Germain prime, i.e., p = 2q + 1 is also prime. Let G be a
subgroup of Z∗

p of order q and g a generator of G. Let g and h be elements
of G chosen by a trusted party before use of the scheme or by some other
cryptographic primitive (like coin flipping) so that loggh remains unknown
to the participants.

Define the operation commit to be:

Commit(s, t) = gsht mod p (2.10)

where s ∈ Zq is the value D wishes to commit to and t ∈ Zq is a random
value chosen by D. The commit operation is computationally binding, that
is, the player committing to s cannot open a commitment to s′ 6= s unless
he can solve loggh.

In order to create a verifiable secret sharing scheme using the Pedersen com-
mitment, create two polynomials f(x) = α0 + α1x + · · · + αt−1x

t−1 and
f(x) = β0 + β1x + · · · + βt−1x

t−1 by using Shamir’s secret sharing scheme.
Let α0 = s and β0 = t. For each participant Pi, create the shares si = f(i)
and s′i = f ′(i). Also create the commitments ci = Commit(αi, βi) where
0 ≤ i ≤ t − 1. Let the commitments c0, . . . , ct−1 be publically available.
Each participant Pi can now check the validity of his shares (si, s

′
i) by the

equation:

ci = sgi s
′h
i =

t−1∏

j=0

ci
j

j (2.11)

2.4. Linear Secret Sharing 14

2.4.1 Security

As it was with the simple secret sharing schemes, the linear threshold secret
sharing schemes are also perfectly secure.

We have shown that any subset of participants consisting of at least t mem-
bers can reconstruct the secret. Let us assume that an adversary has obtained
t − 1 shares. For each possible value in the interval [0,F), he can now con-
struct one unique polynomial f ′ with degree t− 1 such that f ′(0) = s′. Even
though one of these values will contain the correct secret, each of the values
are equally likely, hence by knowing t − 1 of the shares the adversary still
has learned nothing about the secret.

2.4.2 Limitations

Threshold schemes, albeit powerful, have some impractical limitations. In
a threshold scheme, we presume that every participant is equal. However,
to paraphrase George Orwell, some participants are more equal than others.
That is, in certain situations we might want to trust some participants more
than we trust others. For example, in a network of computers, where each
computer represents a participant, we might want to require a higher thresh-
old of computers that are more likely to be corrupted, like those connected
to the outside world, and a lower threshold for the more trusted computers.
In other words, we would like to define differently sized subsets of the partic-
ipants needed to reconstruct the secret. The structure consisting of all these
sets is called an access structure, and will be covered in Chapter 3.

Chapter 3

Access Structures & Monotone
Span Programs

3.1 Introduction

The threshold schemes presented in the previous chapter only allowed any
subset of a size t or greater to reconstruct the secret. This approach has ob-
vious disadvantages where we want a more fine-grained configurable scheme.
Ideally, we would like a method where we could define a set of potentially
differently sized authorised subsets. This flexibility is exactly what access
structures provides us with. Introduced in [19], an access structure, denoted
by Γ, consists of a set of authorised subsets where each authorised subset has
the ability to reconstruct the secret.

Definition A perfect secret sharing scheme realising the access structure Γ
is a method of sharing a secret S among a set of k participants (denoted by
P), in such a way that the following two properties are satisfied [33]:

1. If an authorised subset of participants B ⊆ P pool their shares, then
they can determine the value of S

2. If an unauthorised subset of participants B ⊆ P pool their shares, then
they can determine nothing about the value of S .

Definition The unauthorised or adversary structure, denoted by ∆, consists
of all the sets that are not in Γ. The tuple (Γ,∆) is an access structure if
Γ ∩ ∆ = ∅. An access structure is said to be complete if Γ ∪ ∆ = P.

15

3.2. Monotone Circuits 16

Definition An access structure Γ is said to be monotone increasing if it
satisfies the following property:

• If B ⊆ P is an authorised subset of Γ and B ⊆ C then C is also an
authorised subset of Γ.

Likewise, the unauthorised set ∆ is monotone decreasing, in other words, if
a set A is in ∆ then any set B ⊂ A is also in ∆.

Definition All subsets of Γ that cannot be split into smaller authorised
subsets are known as minimal sets. The collection of these sets form the
basis of the access structure. This set of minimal subsets is denoted by Γ0.

Example If we have five participants (P1,P2, . . . ,P5) and an access struc-
ture Γ with the authorised sets {P1,P2}, {P1,P3,P5}, {P2,P3,P4}, {P1,P2,P3}
thus,

Γ0 = {P1,P2} ∪ {P1,P3,P5} ∪ {P2,P3,P4}

Γ = Γ0

⋃
{P1,P2,P3}

As the set {P1,P2,P3} ⊃ {P1,P2} it is not part of the basis Γ0

3.2 Monotone Circuits

3.2.1 Circuit Construction

An elegant method of realising an access structure with a perfect secret
sharing scheme was provided by J. Benaloh and J. Leichter in [5].

The idea is to first build a monotone circuit that describes that access struc-
ture, then to create the necessary secret sharing schemes described by the
circuit. The secret sharing schemes used are the ones mentioned in the pre-
vious chapter, but now each participant in an authorised subset will hold a
piece needed to reconstruct the secret for that subset. The shares of each
subset are independent of the shares in another subset.

To form the monotone circuit, we can first express the access structure as
collection of disjunctions on conjunctions.

Example Given the access structure mentioned in Example 3.1, our circuit
will have to realise the following disjunctions of conjunctions.

(P1 ∧ P2) ∨ (P1 ∧ P3 ∧ P5) ∨ (P2 ∧ P3 ∧ P4)

3.2. Monotone Circuits 17

A monotone circuit realising an access structure Γ will have P inputs (x1, . . . , xP),
one for each participant, and one output s ∈ F corresponding to the result-
ing secret. The circuit is called monotone as changing any of the false inputs
to true will never result in the output changing from true to false.

Using a monotone circuit C, a dealer can realise Γ by creating a (n, n)-
secret-sharing-scheme for each conjunction. For example, given the circuit
in Figure 3.1, realising the access structure seen in 3.1, we would, for every
conjunction ∧i, create a (n, n)-secret sharing scheme (si ⇒ (si1, . . . , sin))
where n = in(∧i) and in is a function that returns the number of wires going
into ∧i. Each participant Pj connected to ∧i would be assigned a share.

The resulting secret sharing scheme realises the access structure Γ by utilising
a perfect secret sharing scheme for each authorised subset A ∈ Γ. It is not
completely efficient, however, as if a participant belongs to several subsets,
as is the case in the above example, he will receive several shares.

P1 P2 P3 P4

∧1 ∧2

∨

∧3

P5

s11

s21

s12

s23

s32

s33

s43

s52

sss

s

Figure 3.1: A monotone circuit. The final output is the secret S.

Using access structures, a player may receive several shares. Sometimes this
is necessary [5], but sometimes it may be foolish, as it is possible to realise

3.3. Monotone Span Programs 18

a threshold access structure with a different secret sharing scheme for every
subset of a size equal to the threshold instead of just creating a threshold
scheme which does the same thing efficiently. This leads to a definition of an
ideal secret sharing scheme.

Definition [7] An ideal secret sharing scheme is a scheme where each par-
ticipant holds a share of the secret which is the same size as the secret.

Roughly speaking, this means that if our secret s ∈ F is represented by b =
log2|F| bits, then the share held by Pi can also be represented by b = log2|F|
bits. If the scheme is not ideal, there will be a player holding at least two
shares, thus the number of bits needed to represent his shares will exceed the
number of bits needed to represent the secret.

The threshold schemes mentioned in Chapter 2 are all ideal.

3.3 Monotone Span Programs

3.3.1 Preliminaries and Notation

A vector of size x in the field K is denoted by Kx. An m × d matrix M
defines a linear map from Fd to Fm. The kernel or nullspace of M , denoted
by ker(M) is the set of vectors v ∈ V such that Mv = 0. The image of M ,
denoted by im(M) is the set vectors v ∈ Fm such that Mu = v for some
u ∈ Fd. 〈a, b〉 denotes the standard inner product.

The operator ⊗ denotes the Kronecker product (explained in Appendix A.4.1).

Given an adversary structure ∆, we say that the structure is Q2 if for any
two sets of the structure their union is not the entire set. Similarly, a Q3

structure has a similar restriction, but is limited to three sets.

Example A adversary structure ∆ = {{P1, P2, P3}, {P3, P5}, {P3, P4}} is
Q2, but not Q3, while the structure ∆ = {{P1, P2}, {P3}, {P4}, {P5}} is Q3.

3.3.2 Monotone Span Programs

Monotone Span Programs, or MSPs, were first introduced by Karchmer and
Widgerson in [20]. Monotone Span Programs, a linear algebraic model of
computation, have a one to one mapping to linear secret sharing schemes
[20], [2].

3.3. Monotone Span Programs 19

MSPs define a monotone function, as we shall see later in this section.

Definition A monotone function f is a function from {0, 1}n to {0, 1} where

A ⊆ B ⇒ f(A) ≤ f(B) (3.1)

An access structure Γ defines a monotone function as follows:

fΓ(A) =

{
0, if A /∈ Γ,
1, if A ∈ Γ

Conversely, a monotone function also defines an access structure Γf :

Γf = {A ⊆ P : f(A) = 1}

Definition A Monotone Span Program (MSP) M is a quadruple (F ,M, ǫ, ψ)
where F is a field, M is a d× e matrix (with d rows and e ≤ d columns over
F . ψ is a surjective labelling function that assigns one or more rows of the
matrix M to a player P . ǫ is a chosen target vector of necessary size. The
size of the MSP M is d, the number of rows of M.

Let MA denote a submatrix of M containing only the rows of M which belong
to the members of A ⊆ P, given by the labelling function ψ. An MSP is
said to compute the access structure Γ when ǫ ∈ im(MT

A) iff A ⊆ Γ. In other
words, the MSP M realises the monotone function fΓ by

f(A) = 1 ⇔ ǫ ∈ im(MT
A), A ∈ Γ.

We say that A is accepted by M if A is in Γ; otherwise, A is rejected by M.

For convenience, we will use the target vector ǫ = (1, 0, . . . , 0)T . This is with-
out loss of generality, since a change of the basis will also change the target
vector. That is, given an invertible matrix B with the proper dimensions:

ǫ ∈ im(MT
A) ⇔ Bǫ ∈ im((BMT)A) (3.2)

.

If A ∈ Γ, hence also accepted by M, then M contains a recombination vector
λ such that MT

Aλ = ǫ. Using the recombination vector, the secret can then
be reconstructed by the following relations:

〈λ,MA(s,x)〉 = 〈MT
Aλ, (s,x)T 〉 = 〈ǫ, (s,x)T 〉 = s (3.3)

where s is the secret and x is the dealer’s random input. The example below
illustrates this:

3.3. Monotone Span Programs 20

Example Using the Vandermonde-matrix defined in example A.1.2, Shamir’s
secret sharing scheme reconstruction as an MSP can be computed as follows:
If A ⊆ P and |A| ≥ k (k is the threshold of the scheme, as mentioned in
A.1.2), compute λ ∈ F |A| such that MT

Aλ = ǫ.

So, given our matrix M (mod 17) (illustrated in table 3.1):

Player
1 10 11 12

2 20 21 22

3 30 31 32

4 70 71 72

Table 3.1: A Vandermonde matrix for a threshold sharing scheme.

and A ⊂ P = {1, 2, 4}, the matrix defined by MA is:

MA =




10 11 12

20 21 22

70 71 72


 =




1 1 1
1 2 4
1 7 15


mod 17

And our recombination vector λ from MT
Aλ = ǫ is

λ =




8 2 8
7 5 5
3 10 4






1
0
0


 ≡




8
2
8


mod 17

Given the vector containing the shares held by the participants we can use
the relationship given in Equation 3.3 to reconstruct the secret s = [8, 2, 8]T ·
[13, 0, 13]T = 4.

Theorem [20] Let a secret s be shared by an MSP M and a set of partici-
pants A ⊂ P. If f(A) = 1 the players can correctly determine s. If f(A) = 0
the players learn no information about s.

Proof. As defined by the monotone span program, f(A) = 1 iff ǫ ∈ im(MT
A)

which means there has to exist a recombination vector λ such that MT
Aλ =

ǫ. Given such a vector we can use equation 3.3 to reconstruct the secret.
However, if f(A) = 0 then ǫ /∈ im(MT

A) and there must exist a vector v so
that MT

Av = 0 and 〈ǫ,v〉 6= 0, ie. v1 6= 0. This implies that given MT
Aw = s′

then MT
A (w + jv) = s′, j ∈ F . This means that for the players in A, every

possible share is equiprobable [20].

3.3. Monotone Span Programs 21

3.3.3 Realising General Access Structure with Mono-
tone Span Programs

In the previous section we showed how to realise a threshold access structure
using an MSP. In this section, we will briefly show how to realise a general
access structure with an MSP using an example.

Example Assume we have four players, P = {1, 2, 3, 4}, and an access struc-
ture Γ = {{1, 2}, {2, 3}, {3, 4}}. We want to share one secret bit {0, 1} ∈ S
such that only the sets in Γ can recover the secret. Using a simple secret
sharing scheme, we divide the secret amongst each set in Γ.

Participant Share
1 a
2 s+a, b
3 s+b
4 b

Table 3.2: Secret sharing pieces

As we can see in table 3.2, by partitioning in the manner shown, we have
a simple secret sharing scheme that realises the access structure Γ. We can
describe the secret share belonging to each of the participants as a matrix:

P1 =
(

0 1 0
)
,P2 =

(
1 1 0
0 0 1

)
,P3 =

(
1 0 1

)
,P4 =

(
0 0 1

)

Now we can combine the matrices of the participants to form the matrix M.
We also create the surjective labelling function ψ that assigns one or more
of the rows to the rightful participant:

M =




0 1 0
1 1 0
0 0 1
1 0 1
0 0 1




⇒ P1

⇒ P2

⇒ P2

⇒ P3

⇒ P4

Allowing this matrix to be the matrix M in our MSP M, the dealer can now
split secrets, and the authorised subsets can reconstruct them. In the case

3.3. Monotone Span Programs 22

the target vector ǫ is something other than 1(0), we apply equation 3.2 to
obtain the desired target vector.

Using the MSP M, we can now share a secret.

1. The dealer generates a random column vector x ∈ F subject to the
condition x1 = s (illustrated in Figure A.3.1).

2. The dealer then computes each share si = Mix and transmits si secretly
to the player Pi.




Rows belonging to P1

Rows belonging to P2

...
Rows belonging to Pn







s
r1
...

rn−1


 =




sp1
sp2
...
sn




Figure 3.2: Creation of shares

Reconstruction of the secret is done in the same manner in which we recon-
structed the secret in the example in Subsection 3.3.2.

3.3.4 Multiplicative MSPs

Given two d-vectors, x and y, let x⋄y denote the vector containing all entries
of x and y in the form of xi · yj where ψ(i) = ψ(j)∗ [11]. Thus, if participant
Pi has di rows in x and y, then Pi will have d2

i rows in x ⋄ y.

Example Given two vectors with ψ labelling:

x =




a
b
c
d




P1

P2

P3

P3

,x =




a′

b′

c′

d′




P1

P2

P3

P3

∗ψ is a surjective labelling function of an MSP M as defined in Section 3.3.2.

3.3. Monotone Span Programs 23

then the vector x ⋄ y is:

x ⋄ y =




a · a′

b · b′

c · c′

c · d′

d · c′

d · d′




P1

P2

P3

P3

P3

P3

Definition An MSP is said to be with multiplication (as defined by [11]) if
there exists a recombination vector r such that for any two random vectors
x,x′ where x0 = s and x′0 = s′ it holds that:

s · s′ = 〈r,M(s,x) ⋄M(s′,x′)〉 (3.4)

An MSP M is said to be strongly multiplicative if for any subset A ∈ ∆ of
dishonest players, MĀ is multiplicative.

Constructing a Multiplicative MSP

In [11], it was shown that we can construct a multiplicative MSP M from
any MSP with a Q2 (Q3) adversary structure, of a size at most twice the size
of the original MSP.

Lemma [11] Given an MSP M0 = (F ,M0, ψ, ǫ) computing the monotone
function f , we can construct a new multiplicative MSP M computing the
same function.

Example Given an MSP M0 = (F ,M0, ψ, ǫ) construct its dual MSP M⊥
0 =

(F ,M1 = M⊥
0 , ψ, ǫ). A simple and elegant way of constructing the dual

MSP M⊥
0 can be found in [14]. Using M0 and M1, construct the matrix M

consisting of M0 in its upper left corner and M1 in its lower right corner.

M =


 M0

k︷ ︸︸ ︷

0 ∅

∅ M
(1)
1 M

(2...n)
1




Let k be the column in M that passes through the first column of M1.
Add this column to the first column of M and delete k. Using the labelling
functions ψ from MSP M0 and M⊥

0 , we assign each row of M to some player
Pi. The new MSP M = (F ,M, ψ, ǫ) now computes the function f = f ∨ f⊥,
is multiplicative, and twice the size of the original MSP M0.

3.3. Monotone Span Programs 24

3.3.5 Operations on MSPs

Addition

Lemma [26] Given the access structures Γ1 and Γ2 realised with MSP M1

and M2, then the MSP

M =

(
M

(1)
1 M

(2,...,n)
1 0

M
(1)
2 0 M

(2,...,n)
2

)
ψ1

ψ2
(3.5)

realises Γ1 + Γ2. For an example of this operation, see Appendix A.2.1.

This method can also be used to realise any general access structure.

Example For each authorised set A ∈ Γ, construct a (n, n)-threshold MSP
as described in Subsection 3.3.2. The addition of each of these MSPs results
in an MSP computing Γ. The MSP is rather inefficient, though, having a
size of

∑|Γ|
i=1 size(Mi).

Multiplication

Lemma [26] Let M1 and M2 be two MSPs that realise the access structures
Γ1 and Γ2. Then the MSP M, with

M =

(
M

(1)
1 −M

(1)
1 M

(2,...,n)
1 0

0 M
(1)
2 0 M

(2,...,n)
2

)
ψ1

ψ2
(3.6)

realises that access structure Γ1 × Γ2.

Insertion

It is often useful to start with an access structure with small and simple
schemes and, from them, build a larger one by inserting new participants.
Using a construction by Nikov et al. in [26], we can construct a new access
structure from two other structures where we replace a player from the first
access structure with the sets of the second. In other words, given two access
structures Γ1 and Γ2 over P1 and P2 and their corresponding MSPs M1 and
M2, we will construct a new MSP M where a player Pi ∈ Γ1 is substituted
with the sets from Γ2.

3.3. Monotone Span Programs 25

Given M1 = {F ,M1, ψ1, ǫ} and M2 = {F ,M2, ψ2, ǫ} let M1,pi
be the matrix

M1 containing only the rows belonging to Pi and M1,p̄i
be the matrix M1

excluding all the rows belonging to Pi. Let q = size(M1,pi
) be the number

of rows belonging to Pi and the vector uj = (0, . . . , 0, 1, 0, . . . , 0)T ∈ F q be a

column vector with 1 in its j-th position. Let the matrix M̃ = uj ⊗M
(2,...,n)
2

and M̂ = M1,pi
⊗M

(1)
2 . The matrix

M =

(
M̂ M̃
M1,p̄i

0

)
(3.7)

realises the access structure Γ1(Pi → Γ2).

Reduction of an authorised set

We introduce the concept of a reduced access structure, which given an access
structure Γ = {A1, A2, . . . , An} and a player Pi ∈ P results in an access
structure Γ−Pi

= {A1\Pi, . . . , An\Pi}. We present the original structure
as an MSP and show the necessary operations needed to create an MSP
representing the access structure Γ−Pi

.

Theorem Given an MSP M realising an access structure Γ we can create
a new MSP M−Pi

realising the access structure Γ−Pi
= {A1\Pi, . . . , An\Pi}.

Given an MSP M = (F ,M, ψ, ǫ), we construct a new MSP M−Pi
by taking

the rows belonging to Pi and giving them to each participant that share
an authorised set with Pi. For each player Pj we then remove each row
belonging to Pj which is linearly dependent on other rows belonging to Pj iff
the corresponding entry in the recombination vector is 0.

Proof. Assume that Pi ∈ Aj and Aj ∈ Γ, the reduction of Aj on Pi will
result in a set Aj\P ∈ Γ. If all the participants in the set Aj receive Pi’s
shares it is trivial to see that the set A can still reconstruct the secret s. The
sharing of Pi’s shares will also not result in a group of participants gaining
the unintended ability to reconstruct the secret. This is because if a set of
players Pk,...,n, after receiving the shares of Pi, can successfully reconstruct
the secret, then they could have, in collusion with Pi, reconstructed the same
secret before Pi’s shares were shared.

Reducing an MSP may destroy the (strong) multiplication property of an
MSP. Likewise, a reduced MSP from a Q2 (Q3) MSP may not be Q2 (Q3)
any longer, rendering it useless for secure MPC.

3.3. Monotone Span Programs 26

Combination of MSPs

By generalising an example from [31] we will in this section show how to
combine an MSP, which results are shared with several MSPs into a single
MSP.

As the matrix of an MSP corresponds to a linear map from Fd to Fm, given
MSPs M0,M1, . . . ,Mn over F for the boolean functions f0, f1, . . . , fn, where
f0 takes n variables, then there must exist an MSP M computing the function
f0(f1, . . . , fn).

To construct such a MSP, given the MSPs M0,M1, . . . ,Mn, create a new
matrix M (with row labelling) as follows:

M =




M0(1) ⊗M
(1)
1 M

(2,...,n)
1 · · · ∅

...
...

. . .
...

M0(n) ⊗M
(1)
n ∅ · · · M

(2,...,n)
n




ψ1
...
ψn

(3.8)

That is, for each matrix Mi (1 ≤ i ≤ n), create a tensor-matrix from the row

vector i of M0 and the first column vector of Mi, M̃i = M0(i) ⊗M
(1)
i . Let

ci = columns(Mi) − 1. Append M̃i with
∑i−1

j=1 cj 0 columns followed by the

the columns M2,...,n
i and

∑n

j=i+1 cj 0 columns.

The MSP M = (F ,M, ψ, ǫ) is now equivalent to sharing a secret with M1

and resharing each resulting share si with the MSP Mi. In other words, the
MSP M now computes the function f0(f1, . . . , fn).

An example of this procedure using four threshold MSPs is provided in Ap-
pendix A.2.2.

3.3.6 Known Results and Open Problems on MSPs

• It has been shown that we can create a multiplicative MSP from any
MSP with a Q2 adversary structure. However, it is still not known
whether the same result holds for strongly multiplicative MSPs with Q3

adversary structures.

• Another method of constructing multiplicative MSPs was presented by
Nikov et al. in [27]. They define the concept of a resulting MSP that is
the result of local multiplication of shares distributed by two different
MSPs. To compute a multiplicative resulting MSP, an MSP is created

3.4. Dynamic Graphs and Access Structures 27

for Γ1 and its dual access structure Γ2. This was shown to be a more
efficient method of constructing a multiplicative MSP. But, similar to
the results of Cramer et al. [11], it is still not known which initial
access structures yield a strongly multiplicative MSP.

• As we have illustrated, MSPs are an elegant construction to realise a
monotone function. A lot of ongoing research is focused on proving
lower and upper bounds of an MSP. As each row of the matrix in an
MSP corresponds to a share in a LSSS, a lower bound on an MSP
implies a lower bound on the number of shares in an LSSS. This is of
great importance in the practial applications of linear secret sharing and
secure multi-party computation. The best lower bound for a monotone
span program computing a boolean function with n-inputs variables
over any field is nΩ(logn) [17]).

• Serge Fehr ([13]) introduced the concept of an extended span program.
Unlike the monotone span program, which is defined over a field, the
extended span program is a generalisation allowing it to be defined over
rings. These programs share the same problems as MSPs.

3.4 Dynamic Graphs and Access Structures

Definition Given a graph G = (V,E), the local complementation (LC) on
a vertex v ∈ V is the graph Gv where the subgraph of the neighbourhood of
v is complemented. The complementation of Gv is G = (Gv)v.

As stated earlier, Shamir schemes are ideal schemes. An interesting observa-
tion is that the local complementation of any vertex in a graph representing
the Shamir scheme (a complete graph) yields a complete bi-partite graph
(see Figure 3.3), which can also be represented with an ideal scheme using
the Brickell Vector Space Construction [8].

In fact, it turns out that local complementation of a vertex v belonging to
an independent set of any complete bi-partite graph can be realised with
an ideal scheme provided that each member of the independent set I where
v ∈ I holds the same share of the secret. This result does not seem to apply
to local complementation on a vertex in complete multi-partite graphs, even
though these graphs can also be realised with an ideal scheme [8].

When investigating complete multi-partite graphs we did however stumble
upon, as far as we know, a seemingly unknown attribute of LC on complete

3.4. Dynamic Graphs and Access Structures 28

P2

P1

P4

P5

P3 P2

P1

P3 P4 P5

Figure 3.3: Local Complementation on the vertex labelled P1

multi-partite graphs. Running LC on a vertex v in a complete multi-partite
graph yields a different graph where all independent sets Ii where v /∈ Ii have
been inverted with respect to itself and all other independent sets Ij where
v /∈ Ij, see figure 3.4 for an illustration of this. It seems however, in addition
to LC on the original vertex v, LC on any other vertex u where u, v ∈ Ia
results in the same graph as LC on v.

Theorem Given a complete multi-partite graph, LC on any vertex from an
independent set corresponds exactly to LC on any other vertex in the same
independent set, that is, Gu = Gv ∀ u, v ∈ I.

Proof. Let Adj(G) be an adjacency matrix (as defined in Appendix A.4.2)
that represents the graph G. LC on a vertex v corresponds to adding (modulo
2) the row i ∈ Adj(G), belonging to v, to all other rows j where ij 6= 0,
ignoring additions along the matrix diagonal.

Clearly, all rows within the same independent set are identical, hence LC
on one of them is equivalent to LC on a different one, which means that
Gu = Gv ∀ u, v ∈ Ij .

Corollary AsGu = Gv ∀ u, v ∈ I, provided thatG is complete multi-partite,
then (Gu)v = G ∀ u, v ∈ I.

3.4. Dynamic Graphs and Access Structures 29

(a) Complete Multi-partite Graph, independent sets are within the
dotted ovals

(b) LC on Vertex 1. Independent set is within the dotted oval.

Figure 3.4: Complete Multi-partite Graph and Local Complementation

Chapter 4

Secure Multi-party
Computation

4.1 Introduction

First introduced by Yao [34], the term secure multi-party computation usually
refers to the situation where a group of people wishes to compute the value of
a public function F on set of data S = {s1, s2, . . . , sn}, but with the restriction
that none of the participants can learn more about the global result than what
they could learn from their own input and the public information. This was
nicely exemplified by Yao in a problem that is known as the Millionaire
problem:

Two millionaires wish to know who is richer; however, they do not
want to find out inadvertently any additional information about
each others wealth. How can they carry out such a conversation?

Generally, we divide secure multi-party computation into two groups, compu-
tationally secure MPC and information theoretically secure multi-party com-
putation. The former is based on unproven cryptographic primitives that are
assumed computationally infeasible, while the latter is unconditionally secure
even if the adversary has unlimited computing power. In the latter, we also
make the somewhat impractical, but not impossible, assumption that there
exists an unconditionally secure channel between each of the participants.

As you may recall, linear secret sharing offers an unconditionally secure
method of sharing information among a group of players. This important
attribute is the reason why LSSSes are a cornerstone in secure multi-party

30

4.2. Preliminaries 31

a b c d

+ +

×

c + da+ b

(a+ b) × (c+ d)

Figure 4.1: Illustration of an arithmetic circuit.

computation.

4.2 Preliminaries

Corrupt players in multi-party computation are generally divided into the
following groups:

• A passive adversary is a group of participants in an adversary structure
where the players follow the protocol correctly, but collaborate in in-
formation gathering and sharing with the goal of violating the privacy
of other players.

• An active adversary is a set of players that, in coordination with each
other, intentionally violate the protocol with the intent to disrupt the
computation, in order to produce incorrect results and/or violate the
privacy of the other players.

Both types of adversary can be static or adaptive. A static adversary is an
adversary who chooses a set of players to corrupt before the execution of the
protocol. An adaptive adversary can choose which players to corrupt during
the execution of the protocol.

An arithmetic circuit C simply describes the input gates, intermediate cal-
culations and resulting output. An example is illustrated in figure 4.2.

4.3. Commitment Scheme 32

It is also useful to discuss MPC in terms of the adversary structure instead of
the access structure. Therefore, when we give a threshold t of an adversary
structure, the secret sharing polynomial used will be of degree t and we will
require t+ 1 shares in order to correctly reconstruct the secret.

4.3 Commitment Scheme

Definition A commitment scheme, for an adversary structure ∆, is a scheme
that allows a player Pi to commit to a value a while keeping the value hidden
in the presence of an ∆-adversary and also binding Pi to the value in such a
way that when he in a later stage decides to reveal the value, only the value
a will be accepted among the other players.

For computationally secure MPC, we can use a VSS scheme like the ones
mentioned in Section 2.4, but for unconditionally or perfectly secure MPC
information, we will use a commitment scheme devised by Cramer et al. in
[11].

Commitment scheme
COMMIT(s) Commitment allows a player to commit to a value s.
CTP(s,j) Commitment transfer protocol allows a player Pi to transfer a

commitment of s to player Pj.
CSP(s) Commitment sharing protocol allows a player Pi to convert a

commitment to s into a set of commitments on the shares of s
(s1, s2, . . . , sn). In other words, each player Pj will be committed to
his share sj.

CMP Commitment multiplication protocol allows a player Pi who is com-
mitted to a, b and c = ab to prove to the other players that c is indeed
equal to a · b.

OPEN(s) Open reveals a commitment, i.e., the value is revealed to all par-
ticipants. Only the correct value, the one D commited to, is accepted
by the honest players.

The commitment scheme is also homomorphic, that is given two commit-
ments Ca and Cb each player can compute non-interactively the commitment
Ca+b and Cab.

Commitment In order for a dealer D to commit to a value s, he could sim-
ply share s among the players. This would work if we could guarentee
that D was honest, but if D was corrupt, he could send inconsistent
shares to the different players. To avoid this, we must force D to dis-

4.3. Commitment Scheme 33

tribute consistent shares:

1. D chooses a symmetric e × e matrix R at random and sets R1,1

to s. For each row vi belonging to Pi in M , D sends the vector
ui = RvT

i to Pi. The first element of ui is si, Pi’s share in s.

2. Pi sends to each Pj the value sij = 〈vj,ui〉. Pj compares the
received value with 〈vi,uj〉 and broadcasts∗ the message fail(i,j)
if they are not equal †.

3. If a fail(i,j) is received, D broadcasts the value sij . If any of the
players fail to agree that the value sij is correct, they broadcast
an accusation that D is corrupt.

4. Say Pj accuses D of corruption. D can disprove the accusation by
broadcasting the information sent to Pj in step 1.

5. Each player checks the values broadcasted by D to see if they are
consistent with the values they have received. If they are not he
sends an accusation that D is corrupt. By the Q2 (Q3) property
of the adversary structure, the protocol will only be rejected if at
least one of the honest players sends an accusation. Likewise, the
protocol will be accepted if all the accusing players are in ∆.

An example of a commitment check is given in appendix A.3.2.

Commitment Transfer Protocol A commitment transfer protocol allows
a player Pi, who has a commitment to s to transfer the commitment to
a player Pj . If Pj and Pi are honest, the protocol leaks no information
to the adversary. Pj learns the value s in the process.

1. Pi securely sends Pj all the information he used to create a com-
mitment C to s. This includes s.

2. Pj creates a new commitment C ′ to s using the information re-
ceived in step 1 and checks whether or not C ′ − C = 0.

If any of the above steps fail, Pi or Pj must be corrupt. To disprove
his corruption, Pi can open s.

Commitment Sharing Protocol A commitment sharing protocol is a pro-
tocol that allows a player Pi committed to a value s to secret share

∗
Fitzi et al. [16] shows how to create a perfectly secure broadcast channel for any Q3

adversary structures.
†As 〈vj,ui〉 = 〈vjR,vi

T 〉 = 〈vi, Rvj
T 〉 = 〈vi,uj〉 Pi and Pj can check the consistency

of their shares.

4.3. Commitment Scheme 34

s⇒ s1, . . . , sn so that each player Pj is committed to the share sj .

To accomplish this, Pi, already committed to s, generates a random
vector R of size e− 1 and commits to each value in R. Using CTP, Pi
transfers the commitment of sj to Pj and hence Pj also learns sj. Since
sj is a result of linear operation on the previously committed values,
Pj can check that sj is indeed a share of s.

Commitment Multiplication Protocol A commitment multiplication pro-
tocol allows a player committed to the values a, b and c = ab to convince
the other players that ab = c. If the scheme is strongly multiplicative,
the CMP will be perfectly secure. Otherwise it will have a negligible
error probability ε.

CMP with negligible error:

1. Pi has already committed to the values a, b and c = ab. We’ll
denote those commitments Ca, Cb and Cc. In order to convince
the other players that c is indeed equal to a·b, Pi chooses a random
β and creates the commitment Cβ and another commitment for
the value βb, we will call it Cβb.

2. The other players generate a random challenge r ∈ {0, 1} using
the appropriate protocols.

3. Pi opens the commitment rCa +Cβ, which reveals the value r1 =
ra + β, and he also opens a commitment to r1Cb − Cβb − rCc,
which should reveal 0 as

r1Cb − Cβb − rCc =

(ra+ β)Cb − Cβb − rCc =

ra · Cb + β · Cb − Cβb − rCc =

rCab + Cβb − Cβb − rCc = (By homomorphism)

rCc − rCc + Cβb − Cβb =

= 0

If Pi is honest, then all the opened values are either random or 0. If Pi
can answer two different random challenges correctly, then ab = c with
an error probability of 1

2
. This probability can be reduced by iterating

the process until the desired probability ε is reached [9].

CMP with zero error:

1. Pi has committed to three values a, b and c.

4.4. Unconditionally Secure Multi-party Computation 35

2. Using CSP, Pi creates and distributes shares of a, b and c. Each
player Pj receives the shares aj , bj and cj = aj ·bj and is committed
to them.

3. Since Pi is committed, we know that the shares of a, b and c
are consistent and fa(0) = a, fb(0) = b and fc(0) = c where
deg(fa) = t, deg(fb) = t, and deg(fc) = 2t. Each player checks
whether or not his shares compute ci = ai · bi and broadcasts an
accusation if this fails.

In order to have a CMP with zero error the secret sharing schemes must
be strongly multiplicative. That is, t < n/3. That means that there are
at least n− t honest players in the scheme. And since n− t > 2t, where
2t is also the maximum degree of fc, the honest players can always
correctly reconstruct the polynomial if c = ab. If c 6= ab, at least one
honest player, in addition to the corrupt players, would have to accuse
Pi.

This protocol can also be generalised to work for any secret sharing
scheme with a Q3 adversary structure, provided that the scheme is
realised with a strongly multiplicative MSP [11].

Open reveals a commitment. To open a commitment on s, the dealer D
broadcasts s and all the shares of s = {s1, . . . , sn}. If the number of
players that agree to the broadcasted values of s and si is greater than
the set of players from the adversary structure ∆, then the opening of
s is accepted.

4.4 Unconditionally Secure Multi-party Com-

putation

Using the linear secret sharing schemes we introduced the previous chapters,
we can construct a secure multi-party computation scheme. First, we define
the necessary arithmetic operations for computation in a passive adversary
case. Computations in an active adversary setting will be addressed later in
this section.

Threshold schemes used to securely compute a function f with a passive
static or adaptive adversary can only compute a function securely if t < n/2.
For a static or adaptive active adversary where a broadcast channel does not
exist, the bound is t < n/3. Upon closer inspection, we see that a (strongly)

4.4. Unconditionally Secure Multi-party Computation 36

multiplicative threshold function is Q2 (Q3). This leads us to a more general
protocol for multi-party computation:

Lemma [11]

• We can compute any function with a passive adversary structure pro-
vided that our secret sharing scheme is resilient to a Q2 adversary
structure.

• To compute a function f in the presence of an active adversary our
adversary structure must be Q3.

4.4.1 Secure MPC with a Passive Adversary

Given two instances of Shamir’s secret sharing scheme, the participants can
compute the addition of the secret simply by adding the shares of one in-
stance to their corresponding shares in the other instance.

f1 + f2 = (s1,1 + s2,1) + (s1,2 + s2,2) + . . .+ (s1,n + s2,n) = s1 + s2 (4.1)

Multiplication of a constant c can be computed by having each partici-
pant Pi compute ci = s1 · c. The resulting shares c1, . . . , cn determine s · c.

Multiplication is a bit more complicated as the multiplication of two poly-
nomials would result in a new polynomial with degree of at most deg(f1) +
deg(f2) = 2t and the coefficients of the new polynomial would not be ran-
domly distributed. To solve this problem, we perform a sanity operation, a
reshare, after every multiplication that reduces the degree of f1 · f2 and adds
uniformly random values to all coefficients in f1 · f2, except for first coeffi-
cients of each polynomial, ie, the secret. We will illustrate how to perform
multiplication of two polynomials generated using Shamir’s secret sharing
scheme with an example.

Example Given two values a and b, we can securely compute the value
c = ab with a passive adversary by executing the following steps:

1. Share a ⇒ a1, a2, . . . , an and b ⇒ b1, b2, . . . , bn such that Pi receives
shares ai and bi

2. Each player Pi then computes the product of his two shares, ci = ai · bi

3. Each player Pi then shares ci ⇒ ci,1, ci,2, . . . ci,n and sends the shares to
their respective players.

4.4. Unconditionally Secure Multi-party Computation 37

4. Each player Pj can now compute the value c̃j using the values received
and the recombination vector.




c1,1 c2,1 · · · cn,1
c1,2 c2,2 · · · cn,2
...

...
. . .

...
c1,n c2,n · · · cn,n







r1
r2
...
rn


 =




c̃1
c̃2
...
c̃n




5. The shares c̃1, c̃2, . . . , c̃n determine c = ab completing the multiplica-
tion.

A practical example of this procedure is given in Appendix A.3.1.

Using these primitives, we can now evaluate an arithmetic circuit C over a
field F computing a function f such that when the circuit completes, each
player will have a share of the resulting computation.

Theorem There exists functions that cannot be securely computed with a
passive adversary if the adversary structure is not at least Q2 [4].

Proof. Consider for example the OR-function between two players. It is easy
to see that this function can never be computed by the two participants, each
providing one bit, without one of them leaking information.

Conversely, we can compute any function f securely with a passive adversary
provided that the adversary structure is at least Q2. To prove this, it is
sufficient to show that given three values a, b, c ∈ F , we can always securely
compute a+ b, c · a, and a · b [4]. This was shown in the above example.

4.4.2 Secure MPC with an Active Adversary

In order to safely compute a function f on a set of values where we have
a static or adaptive active adversary we require a method that allows the
participants to check whether a player is executing the protocol correctly
and providing valid shares. In other words, we need a stronger primitive
that allows players to commit to a value. To achieve this, we will use the
commitment scheme described in Section 4.4.2.

Using this scheme, we can now construct a information theoretic secure MPC
protocol resilient against an active adaptive adversary Q3 structure.

Assume two committed input values a and b shared with CSP so that each
player Pj holds a commitment to that share aj and bj .

4.5. Conclusions 38

Scenario Adversary Broadcast Structure
Information theoretic Passive No Q2

Information theoretic Active & adaptive Yes Q2

Information theoretic Active & adaptive No Q3

Computational secure Active & adaptive No Q2

Table 4.1: Security of secure multi-party computation

To compute the addition of a and b, each player Pi adds his two shares
ci = ai + bi and computes a commitment for ai + bi.

Multiplication of the values a and b:

1. Each player Pi multiplies his shares c̃i = ai · bi and commits to the
result. Each Pi then performs CMP(Ca, Cb, Cc̃i) where Ca, Cb, and Cc̃i
are the commitments to ai, bi and c̃i.

2. Each player then shares his commitment to c̃i using the CSP protocol.

3. Every player now computes the value cj =
∑n

i=1 λicij and a com-
mitment Ccj for it. Players can check if the value is correct because
Ccj =

∑n

i=1 λiCij =
∑n

i=1 λiCji.

If a participant fails in any of the above steps, he is disqualified, and if the
adversary structure is Q3, his input can be ignored, i.e., we remove corrupt
players from the recombination vector. The reconstruction is still possible,
because the number of honest players is sufficient enough to reconstruct the
missing local multiplication. To illustrate this, recall that for a Q3 threshold
scheme the adversary threshold is t < n/3. Given this requirement, the
number of honest players is at least n− t > 2t, which means that there exist
enough honest players to reconstruct the missing local multiplication, which
would be a polynomial of degree 2t [11].

If we allow for a negligible error and assume a broadcast channel, then n/2 >
t ≥ n/3 is sufficient for secure multi-party computation [9]. [11] showed
that we can construct a general secure multi-party computation scheme from
any linear secret sharing scheme provided that the access structure allows
MPC and VSS. That is, we can construct a secure multi-party computation
protocol from any M with a Q2 (Q3) adversary structure.

4.5. Conclusions 39

4.5 Conclusions

As we have seen, unconditionally secure MPC is a very useful and applicable
cryptographic problem, but rather expensive. Especially multiplication and
commitments come with a rather large overhead in communication. Using
a computationally secure commitment scheme reduces the overhead, but at
the expense of unconditional provable security.

If we are willing to sacrifice unconditional security, we can create stronger
protocols, tolerating larger adversary structures [18] [23]. Table 4.1 lists the
known results for the different secure MPC models.

Chapter 5

Summary and Conclusion

5.1 Summary

In this thesis, we have seen the different secret sharing schemes developed
from the 1970s and to the 1990s until they were finally generalised as mono-
tone span programs in 1993. We have also covered the versatility of this
generalisation, by showing different operations on it and seeing how this af-
fects the access structures they realise.

In addition, we have studied how we can use monotone span programs to
implement verifiable secret sharing as well as information theoretically secure
multi-party computation.

5.2 Conclusion

Even though secret sharing is a field of research which has been explored
significantly since it was first discovered, much still remains unexplored. The
relationship between access structures and graphs looks interesting, but we
did not encounter many papers discussing this during our research. [26] ded-
icated a subsection to access structures with forbidden sets as star-topologies
and [3] proved a lower-bound for MSPs computing a 6-clique function, but
beyond this, little seems to be explored.

40

5.3. Open Problems 41

5.3 Open Problems

• The following conjecture was given by A. Beimel [2] and to this day
has still not been proven or disproven:

Conjecture There exits a ε > 0 such that for every positive integer
n there is an access structure over n participants to which their exists
secret sharing scheme which distribute shares of a length exponential
to the number of parties.

• It was shown by [10] how to construct a multiplicative MSP for any
MSP realizing a Q2 adversary structure. A method of constructing
a strongly multiplicative MSP for an MSP realizing a Q3 is still not
known even though it has been proved that such an MSP does indeed
exist.

• In this thesis we showed that all bi-partite graphs have a local comple-
mentation which can be realised with an ideal scheme. An interesting
question is, does there exist other graph structures which have similar
properties. If so, operations such as LC may assist the creation of effi-
cient schemes for relatively complex graphs by altering simpler graphs
which are known to contain certain properties.

5.3.1 Secure MPC on Distributed Networks

Secure multi-party computation is inherently distributed, yet MPC on a dis-
tributed or mobile network presents many difficulties that do not seem to
have simple solutions. Earlier issues are still present, such as share distribu-
tion and secure reconstruction, but many are vastly more complex now that
a direct link to every other player does not exist any longer.

We can surely assume that some participants will have to pass their keys via
other participants to reach the dealer and vice-versa. This opens for man-in-
the-middle type attacks for active adversaries and simplified eavesdropping
for passive adversaries. Figure 5.1a illustrates this problem. In this scenario,
all communication between participant P4 and the dealer D must go via
participants P2 or P3.

As illustrated with red-coloured nodes in figure 5.1b, we can surely assume
that the members of the unauthorised structure ∆ are able to cooperate in
order to corrupt the protocol.

5.3. Open Problems 42

Dealer

Participant #4

Participant #2

Participant #3

Participant #3

(a) Network distribution and cov-
erage

D

P1

P2

P3

P4

(b) Network visualized as a graph

Figure 5.1: Distributed network

The problem of a passive adversary can be solved by having pre-shared keys.
It can even be solved with computational security using public key cryptogra-
phy, since a passive adversary will execute the protocol correctly. However,
the bigger challenge is handling active adversaries. As they may retain a
transmission or act as a man-in-the-middle, no communication via them can
be trusted, defeating the purpose of the protocol.

Little work seems to have been done on the area of secure MPC on distributed
networks.

Appendix A

Appendix

A.1 Methods to reconstruct a Shamir secret

A.1.1 The Chinese Remainder Theorem

Using the primes generated by the ideal (x−xj), where xj is the value x from
the tuple (x, q(x)) held by the participants, we can reconstruct our secret as
follows:

M(x) = (x− xj1) · (x− xj2) · · · (x− xjk) (A.1)

mt(x) =
M(x)

(m− xjt)
(A.2)

q(x) =
k∑

t=1

st
〈
m−1
t (x)

〉
(x−xjt

)
mt(x) mod F (A.3)

Example To illustrate this, we use the values found in the example in sub-
section 2.3.1, S1 = 13, S2 = 0, S3 = 16, S7 = 13. Since our threshold is 3, we
can use any three distinct shares to reconstruct the secret. For this example,
we will use S1, S2 and S7, thus M = (x− 1) · (x− 2) · (x− 7).

43

A.1. Methods to reconstruct a Shamir secret 44

Using equations A.1 and A.2, all modulo our prime p = 17, we find the values

m1(x) =
M

(x− 1)
= (x− 2) · (x− 7)

〈M1(x)〉(x−1) = (1 − 2) · (1 − 7) = 6
〈
M1(x)

−1
〉
(x−1)

= 6−1 = 3

m2(x) =
M

(x− 2)
= (x− 1) · (x− 7)

〈M2(x)〉(x−2) = (2 − 1) · (2 − 7) = −5 = 12
〈
M2(x)

−1
〉
(x−2)

= 12−1 = 10

m3(x) =
M

(x− 7)
= (x− 1) · (x− 2)

〈M3(x)〉(x−7) = (7 − 1) · (7 − 2) = 30 = 13
〈
M3(x)

−1
〉
(x−7)

= 13−1 = 4

which we then use in Equation A.3:

q(x) = 13 · 3 · (x− 2)(x− 7) +

0 · 12 · (x− 1)(x− 7) +

13 · 4 · (x− 1)(x− 2) mod 17

= 5 · (x2 − 9x+ 14) +

1 · (x2 − 3x+ 2)

= 5x2 + 6x+ 2 + x2 + 14x+ 2

= 6x2 + 3x+ 4

This gives us the same polynomial that was used to construct the shares in
the example in subsection 2.3.1.

A.1.2 Linearity in Ideal Threshold Secret Sharing Schemes

It is also possible to express the shares as a system of linear equations. Each
of the original coefficients can be expressed as a linear equation:

Sx = M + α1 · x
1
j + α2 · x

2
j + · · ·+ αk−1 · x

k−1
j mod F , 1 ≤ j ≤ k

A.2. MSP Examples 45

This can be expressed in matrix form Ax = b mod F where

A =




1 x1 x2
1 · · · xk−1

1

1 x2 x2
2 · · · xk−1

2
...

...
...

. . .
...

1 xk x2
k · · · xk−1

k


 , x =




M
α1
...
αk


 , b =




S1

S2
...
Sk


mod F

The above matrix A is a Vandermonde matrix and therefore its determinant
can easily be found using the well-known formula

detA =
∏

1≤i<j≤k

(xi − xj) mod F

This eases the creation of an inverse matrix A−1, which can be used to find
the solution to the system of linear equations.

Example Given the polynomial and the shares from the example in Sub-
section 2.3.1, we construct the following matrix and vectors.

A =




10 11 12

20 21 22

70 71 72


 , x =




α0

α1

α2


 , b =




13
0
13


mod 17

A solution A−1b = x is then:



8 2 8
7 5 5
3 10 4






13
0
13


 ≡




4
3
6


mod 17

where the resulting x-vector contains the exact same coefficients used to
construct the original polynomial.

A.2 MSP Examples

A.2.1 Addition of MSPs

Given two access structures Γ1 = {{P1, P2, P3}} and Γ2 = {{P2, P4, P5}},
realised with the MSPs M1 = (F ,M1, ψ1, ǫ) and M2 = (F ,M2, ψ2, ǫ), where

A.2. MSP Examples 46

F is GF(7) and

M1 =




1 1 1
1 2 4
1 3 2




ψ1︷︸︸︷
P1

P2

P3

,M2 =




1 1 1
1 2 4
1 3 2




ψ2︷︸︸︷
P2

P4

P5

.

Using Equation 3.5, we create a new MSP M = (F ,M, ψ, ǫ) where

M =




1 1 1 0 0
1 2 4 0 0
1 3 2 0 0
1 0 0 1 1
1 0 0 2 4
1 0 0 3 2




ψ︷︸︸︷
P1

P2

P3

P2

P4

P5

.

The new MSP M realises that access structure Γ = {{P1, P2, P3}, {{P2, P4, P5}}.

A.2.2 Combination of MSPs

Given the MSPs M0,M1,M2,M3 where F is GF (7), ǫ = (1, 0, . . . , 0)T and

M0 =




1 1 1
1 2 4
1 3 2




M1

M2

M3

,M1 =




1 1 1
1 2 4
1 3 2
1 4 2




P1

P2

P3

P4

M2 =




1 1 1
1 2 4
1 4 2




P1

P2

P4

,M3 =




1 3 2
1 4 2
1 5 4




P3

P4

P5

Let the secret s = 6. Let the random vectors for each sharing be

R0 =

(
3
5

)
,R1 =

(
1
4

)
,R2 =

(
2
1

)
,R3 =

(
6
4

)

Let M be the resulting matrix after applying Equation 3.8:

A.3. Secure Multi-party Computation Examples 47

M =




1 1 1 1 1 0 0 0 0
1 1 1 2 4 0 0 0 0
1 1 1 3 2 0 0 0 0
1 1 1 4 2 0 0 0 0
1 2 4 0 0 1 1 0 0
1 2 4 0 0 2 4 0 0
1 2 4 0 0 4 2 0 0
1 3 2 0 0 0 0 3 2
1 3 2 0 0 0 0 4 2
1 3 2 0 0 0 0 5 4




P1

P2

P3

P4

P1

P2

P4

P3

P4

P5

Multiplying this matrix with the vector v = (s,RT
0 ,R

T
1 ,R

T
2 ,R

T
3)T gives us

Mv = (5, 4, 4, 5, 0, 5, 0, 2, 1, 1)T

This is exactly equal to the result we would achieve by first sharing s with
MSP M0 and resharing each resulting share by Mi:

M0




6
3
5


 =




0
4
4




Setting s1 = 0, s2 = 4, s3 = 4, we get

M1




s1

1
4


 =




5
4
4
5


 ,M2




s2

2
1


 =




0
5
0


 ,M3




s3

6
4


 =




2
1
1




which combined to one vector is

Mv = (5, 4, 4, 5, 0, 5, 0, 2, 1, 1)T

A.3 Secure Multi-party Computation Exam-

ples

A.3.1 Passive Threshold MPC

Let M be the MSP M = (F ,M, ψ, ǫ) where F = 7, ǫ is the vector (1, 0, . . . , 0)T

and

A.3. Secure Multi-party Computation Examples 48

M =




1 1
1 2
1 3
1 4




P1

P2

P3

P4

The recombination vector of M is λ = (4, 1, 4, 6)T .

Given input a = 3 and b = 5, we wish to securely compute c = ab. To share
a and b, we create two random vectors Ra = (4)T and Rb = (1)T and set
the first element of Ra to a and the first element of Rb to b. The computed
shares are then:




1 1
1 2
1 3
1 4



(

3
4

)
=

Shares of a︷ ︸︸ ︷


0
4
1
5


 and




1 1
1 2
1 3
1 4



(

5
1

)
=

Shares of b︷ ︸︸ ︷


6
0
1
2




For each player Pi, we compute ci = aibi. That gives us c1 = 0, c2 = 0, c3 = 1
and c4 = 3. which we reshare to reduce its degree and add randomness. To
do this, each player creates a random vector:

Rp1 = (5)T , Rp2 = (1)T , Rp3 = (4)T , Rp4 = (2)T

and, like before, we add the share ci belonging to pi as the first element of
Rpi

and, using M , we create the new shares:

M ·

(
0
5

)
=

Shares of c1︷ ︸︸ ︷


5
3
1
6


 ,M ·

(
0
1

)
=

Shares of c2︷ ︸︸ ︷


1
2
3
4




M ·

(
1
4

)
=

Shares of c3︷ ︸︸ ︷


5
2
6
3


 ,M ·

(
3
2

)
=

Shares of c4︷ ︸︸ ︷


5
0
2
4




A.3. Secure Multi-party Computation Examples 49

p1 p2 p3 p4

p1 5 1 5 5
p2 3 2 2 0
p3 1 3 6 2
p4 6 4 3 4

Table A.1: Shares of cij

Pi then sends Pj his respective share of cij. Table A.3.1 illustrates which
players have which shares after this step completes.

Each player can then compute

c̃j =
n∑

i=1

λicij

which gives us

c̃1 = 〈λ, [5, 1, 5, 5]T 〉 = 71 mod 7 = 1

c̃2 = 〈λ, [3, 2, 2, 0]T 〉 = 22 mod 7 = 1

c̃3 = 〈λ, [1, 3, 6, 2]T 〉 = 43 mod 7 = 1

c̃4 = 〈λ, [6, 4, 3, 4]T 〉 = 64 mod 7 = 1

The shares c̃1 determine c

〈λ, [1, 1, 1, 1]T 〉 = 15 mod 7 = 1

completing the computation.

A.3.2 Commitment Example

Suppose the dealer D wants to commit to a value s = 5. Given the MSP
M = (F ,M, ψ, (1, 0, . . . , 0)T) where F is GF (7) and M is a d× e matrix:

M =




1 1 1
1 2 4
1 3 2




ψ︷︸︸︷
P1

P2

P3

A.4. Definitions 50

Create a random symmetric e× e matrix R and set the first element of R to
s:

R =




s 1 1
1 2 5
1 5 1




Let vi denote the row in M belonging Pi. For each player Pi, D sends the
vector ui = Rvi to Pi.

R

v1︷ ︸︸ ︷


1
1
1


 =

u1︷ ︸︸ ︷


0
1
0


, R

v2︷ ︸︸ ︷


1
2
4


 =

u2︷ ︸︸ ︷


4
4
1


, R

v3︷ ︸︸ ︷


1
3
2


 =

u3︷ ︸︸ ︷


3
3
4




Now suppose player P1 and P3 wish to check the consistency of their shares.
First P1 calculates the value:

〈v3,u1〉 = 〈(1, 3, 2), (0, 1, 0)〉 = 3

and sends it to P3. P3 calculates the value:

〈v1,u3〉 = 〈(1, 1, 1), (3, 3, 4)〉 = 3

and sends it to P3. They then compare the values and see if they match,
confirming whether or not their shares are consistent.

A.4 Definitions

A.4.1 The Kronecker product

The Kronecker product, or tensor product, denoted ⊗, is an operation on
two arbitrarily sized matrices that results in a third block matrix.

Definition Given an m× n matrix A and a p× q matrix B, the Kronecker
product is an mp× nq matrix:

A⊗ B =




A1,1B · · · A1,nB
...

. . .
...

Am,1B · · · Am,nB


 (A.4)

A.4. Definitions 51

A.4.2 Adjacency Matrix

Definition An adjacency matrixM , for an unweighted and undirected graph
G = (V,E), is a |V | × |V | symmetrical matrix where:

Mu,v =

{
0 if (u, v) /∈ E,

1 if (u, v) ∈ E.

We assume that vertices of G are never connected to themselves, so Mi,i =
0 ∀ i.

A.4.3 Homomorphic Encryption

Definition Homomorphic encryption is an encryption scheme that allows
operations, such as multiplication and addition, to be performed on cipher-
text values, resulting in a ciphertext that is equal to performing identical
operations on the plaintext and then encrypting it.

Bibliography

[1] C. Asmuth and J. Bloom. A modular approach to key safeguarding.
IEEE Transactions on Information Theory, 29(2):208–210, 1983.

[2] Amos Beimel. Secure Schemes for Secret Sharing and Key Distribution.
PhD thesis, Dept. of Computer Science, Technion, 1996.

[3] Amos Beimel, Anna Gal, and Michael S. Paterson. Lower bounds for
monotone span programs. In IEEE Symposium on Foundations of Com-
puter Science, pages 674–681, 1995.

[4] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness
theorems for non-cryptographic fault-tolerant distributed computation.
In STOC ’88: Proceedings of the twentieth annual ACM symposium on
Theory of computing, pages 1–10, New York, NY, USA, 1988. ACM
Press.

[5] J. Benaloh and J. Leichter. Generalized secret sharing and monotone
functions. In CRYPTO ’88: Proceedings on Advances in cryptology,
pages 27–35, New York, NY, USA, 1990. Springer-Verlag New York,
Inc.

[6] G.R. Blakley. Safeguarding cryptographic keys. AFIPS Conference Pro-
ceedings, 48:313–317, 1979.

[7] Ernest F. Brickell. Some ideal secret sharing schemes. In EUROCRYPT
’89: Proceedings of the workshop on the theory and application of crypto-
graphic techniques on Advances in cryptology, pages 468–475, New York,
NY, USA, 1990. Springer-Verlag New York, Inc.

[8] Ernest F. Brickell and Daniel M. Davenport. On the classification of
ideal secret sharing schemes (extended abstract). In CRYPTO ’89: Pro-
ceedings on Advances in cryptology, pages 278–285, New York, NY, USA,
1989. Springer-Verlag New York, Inc.

52

BIBLIOGRAPHY 53

[9] R. Cramer and I. Damgard. Multiparty computation - an introduction.
2002.

[10] R. Cramer, I. Damgard, and U. Maurer. Span programs and general
secure multi-party computation, 1998.

[11] Ronald Cramer, Ivan Damg̊ard, and Ueli Maurer. General secure multi-
party computation from any linear secret sharing scheme. Cryptology
ePrint Archive, Report 2000/037, 2000.

[12] Paolo D’Arco and Douglas R. Stinson. On unconditionally secure robust
distributed key distribution centers. In ASIACRYPT ’02: Proceedings
of the 8th International Conference on the Theory and Application of
Cryptology and Information Security, pages 346–363, London, UK, 2002.
Springer-Verlag.

[13] Serge Fehr. Span programs over rings and how to share a secret from
a module. Master’s thesis, ETH Zurich, Institute for Theoretical Com-
puter Science, 1998.

[14] Serge Fehr. Efficient construction of the dual span program. Manuscript,
May 1999.

[15] P. Feldman. A practical scheme for non-interactive verifiable secret shar-
ing. In Proc. 28th IEEE Symposium on Foundations of Computer Sci-
ence (FOCS), pages 427–437, 1987.

[16] Matthias Fitzi, Martin Hirt, and Ueli M. Maurer. General adversaries
in unconditional multi-party computation. In ASIACRYPT, pages 232–
246, 1999.

[17] Anna Gal. A characterization of span program size and improved lower
bounds for monotone span programs. In ACM Symposium on Theory of
Computing, pages 429–437, 1998.

[18] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any
mental game or a completeness theorem for protocols with honest ma-
jority. In STOC, pages 218–229, 1987.

[19] M. Ito, A. Saito, and T. Nishizeki. Secret sharing scheme realizing
general access structure. In Proceedings IEEE Globecom ’87, pages 99–
102. IEEE, 1987.

[20] Mauricio Karchmer and Avi Wigderson. On span programs. In Proceed-
ings of the 8th Structures in Complexity, pages 102–111, 1993.

BIBLIOGRAPHY 54

[21] S C Kothari. Generalized linear threshold scheme. In Proceedings of
CRYPTO 84 on Advances in cryptology, pages 231–241, New York, NY,
USA, 1985. Springer-Verlag New York, Inc.

[22] C. L. Liu. Introduction to Combinatorial Mathematics. McGraw-Hill,
New York, 1968.

[23] Ueli Maurer. Secure multi-party computation made simple. Discrete
Appl. Math., 154(2):370–381, 2006.

[24] M. Mignotte. How to share a secret? In Thomas Beth, editor, Cryptog-
raphy - Proceedings of the Workshop on Cryptography, Burg Feuerstein,
Germany, pages 371–375, Berlin, 1983. Springer-Verlag. Lecture Notes
in Computer Science Volume 149.

[25] C. Andrew Neff. A verifiable secret shuffle and its application to e-voting.
In CCS ’01: Proceedings of the 8th ACM conference on Computer and
Communications Security, pages 116–125, New York, NY, USA, 2001.
ACM Press.

[26] Ventzislav Nikov and Svetla Nikova. New monotone span programs from
old. Cryptology ePrint Archive, Report 2004/282, 2004.

[27] Ventzislav Nikov, Svetla Nikova, and Bart Preneel. On multiplicative
linear secret sharing schemes. In INDOCRYPT, pages 135–147, 2003.

[28] Ventzislav Nikov, Svetla Nikova, Bart Preneel, and Joos Vandewalle. Ap-
plying general access structure to metering schemes. Cryptology ePrint
Archive, Report 2002/102, 2002.

[29] Ventzislav Nikov, Svetla Nikova, Bart Preneel, and Joos Vandewalle. On
distributed key distribution centers and unconditionally secure proactive
verifiable secret sharing schemes based on general access structure. In
INDOCRYPT ’02: Proceedings of the Third International Conference
on Cryptology, pages 422–436, London, UK, 2002. Springer-Verlag.

[30] Torben P. Pedersen. Non-interactive and information-theoretic secure
verifiable secret sharing. In CRYPTO ’91: Proceedings of the 11th An-
nual International Cryptology Conference on Advances in Cryptology,
pages 129–140, London, UK, 1992. Springer-Verlag.

[31] S. Radomirovi. Investigations into span programs with multiplica-
tion. Master’s thesis, Institute for Theoretical Computer Science, ETH
Zurich, 1998.

BIBLIOGRAPHY 55

[32] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613,
November 1979.

[33] Douglas R. Stinson. Cryptography: Theory and Practice (Discrete Math-
ematics and Its Applications). CRC Press, March 1995.

[34] Andrew C. Yao. Protocols for secure computations. In Proceedings of
the 23rd IEEE Symposium on Foundations of Computer Science (FOCS
’82), pages 160–164, 1982.

