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Functionality provided by VIFF

I Input
I Shamir secret sharing

I Output
I Reconstruct shares

I Addition
I Local addition
I No communication

I Multiplication
I Local multiplication
I Resharing

I Comparison
I Two protocols
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Functionality provided by VIFF

I Input
I Shamir secret sharing

I Output
I Reconstruct shares

I Addition
I Local addition
I No communication

I Multiplication
I Local multiplication
I Resharing

I Comparison
I Two protocols

All over arbitrary finite fields.

Ideal World

P1 P2

P3

F

4 / 25



Related Projects
I FairPlay project (Haifa, Israel)

I Yao-garbled circuits for 2 players
I Java implementation
I Working on multiparty computation

I SCET project (Aarhus, Denmark)
I General multiparty computations
I C# implementation

I SIMAP project (Aarhus, Denmark)
I General multiparty computations
I Java implementation
I Some work done on a domain specific language

5 / 25



Related Projects
I FairPlay project (Haifa, Israel)

I Yao-garbled circuits for 2 players
I Java implementation
I Working on multiparty computation

I SCET project (Aarhus, Denmark)
I General multiparty computations
I C# implementation

I SIMAP project (Aarhus, Denmark)
I General multiparty computations
I Java implementation
I Some work done on a domain specific language

5 / 25



Related Projects
I FairPlay project (Haifa, Israel)

I Yao-garbled circuits for 2 players
I Java implementation
I Working on multiparty computation

I SCET project (Aarhus, Denmark)
I General multiparty computations
I C# implementation

I SIMAP project (Aarhus, Denmark)
I General multiparty computations
I Java implementation
I Some work done on a domain specific language

5 / 25



Outline
Background

Setting
Related Projects

Design Goals
Automatic Parallel Execution
Program Counters

Benchmark Results
Multiplications
Comparisons

Possible Improvements
Program Counters
Memory Overheads
Debugging

Conclusion

6 / 25



VIFF Goals
I Easy to use for the programmer:

x = 2 ∗ a − b ∗ c

I Automatically run things in parallel:

x = a ∗ b
y = c ∗ d
z = e ∗ f

I Extensible with new operations:

def max(a, b):
c = a > b
return c ∗ a + (1 − c) ∗ b
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Parallel Execution
I Networks have significant latency
I Want to run many operations in parallel
I Including primitive and compound operations
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Example: Hamming Distance

def xor(a, b):
assert a.field is b.field
if a.field is GF256:

return a + b
else:

return a + b − 2 ∗ a ∗ b

I Straight-forward exclusive-or
I Fast for GF (28) elements
I Slower for Zp elements
I (Already part of VIFF)

def hamming(s, t):
assert len(s) == len(t)
distance = 0
for i in range(len(s)):

distance += xor(s[i], t[i])
return distance

I Hamming distance
I xor calls should run in parallel
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Hamming Distance Execution Tree

hamming(s, t) translates to:
+

+

+

0

xor

s[0] t[0]

xor

s[1] t[1]

xor

s[2] t[2]

xor(a, b) translates to:
−

+

a b

∗

2 ∗

a b

10 / 25



Hamming Distance Execution Tree

hamming(s, t) translates to:
+

+

+

0

xor

s[0] t[0]

xor

s[1] t[1]

xor

s[2] t[2]

xor(a, b) translates to:
−

+

a b

∗

2 ∗

a b

10 / 25



VIFF Execution Strategy
I Create execution tree as we go along
I Destroy execution tree from bottom up

I Each node waits on nodes below
I Bottom nodes wait on network traffic

I Composable: just plug new operations into tree!
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Program Counters

−

+

a b

∗

2 ∗

a b

I No parsing — execution tree
never fully constructed

I No fixed evaluation order
I But we must identify results
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Program Counters Implementation
I First attempt:

I Each player increments a global counter
I Fails because of asynchronous execution

I Working solution:
I Manually “weave” a program counter through program
I Tedious, easy to forget to increment program counter

I Current solution:
I Runtime methods wrapped by a decorator
I Calculated automatically based on call stack
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Performance Results
I Tested on 3 machines: USA, Norway, and Denmark
I Results for VIFF 0.4 (VIFF 0.6 is similar or better)
I Tested multiplications and comparisons

I Tested parallel and serial multiplications

Idle
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Parallel Multiplications
Multiplying random 65-bit numbers:
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Serial Multiplications
Multiplying random 65-bit numbers:
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Parallel Comparisons
Comparing random 32-bit numbers, 65-bit field modulus:
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Program Counter Overheads
I They work, but it’s a bit magic. . .
I Exactly when must the program counter be updated?
I Excessive wrapping slows down method calls
I Program counter size depends on stack depth
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Memory Overheads
I Python objects have a large memory overhead:

I Reference count (4 bytes)
I Object attribute dictionary (144 bytes)
I Allocation overhead (>8 bytes)
I . . .

I 100,000 field elements with 65-bit prime:
I Optimal: ≈800 KB
I VIFF: ≈40 MB (expanded 50 times)
I More memory needed for execution tree

21 / 25



Memory Overheads
I Python objects have a large memory overhead:

I Reference count (4 bytes)
I Object attribute dictionary (144 bytes)
I Allocation overhead (>8 bytes)
I . . .

I 100,000 field elements with 65-bit prime:
I Optimal: ≈800 KB
I VIFF: ≈40 MB (expanded 50 times)
I More memory needed for execution tree

21 / 25



Debugging
I Something went wrong! What now?
I Debugging asynchronous programs can be hard

I Need better
I Logging infrastructure
I Handling of exceptions
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Type Safety
I Python is a strongly typed language

I "12" ∗ 3 == "121212" but 12 ∗ 3 == 36
I "1" + 12 raises TypeError

I Types are only checked at runtime

I Unit tests help here
I Better input validation
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Conclusion
I VIFF provides a general framework for MPC
I Automatic parallel execution
I Free Software: LGPL
I Please see http://viff.dk/

I Source code
I Documentation
I Mailing list
I Bibliography

Thank you! Questions?
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