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Problem Description
Reactive systems that provide services to an environment typically interact with numerous users
or other components and need to keep track of the conversation with each single one of them. For
this reason, components executing systems often contain arrays of state machines, where each
state machine instance handles a communication session with a certain partner. Once certain
events occur, the system may want to select a specific session based on certain criteria - for
instance the state of a conversation, or if a certain communication partner is available at all. On
the service specification level, expressed as UML collaborations and activities, the Arctis tool uses
special selection operators to express which instance of a state machine should be addressed. On
the level of components and state machines, this corresponds to operations on the addresses of
the individual state machines, and reflection about their properties.

In this thesis, our existing execution platform should be extended to handle components which
contain arrays of state machines. This includes the handling of session in the scheduler, router
and the addressing scheme. The different scenarios of communication among components and
their sessions should be detailed. Furthermore, the work should elaborate which reflection
mechanisms are necessary on the execution level to implement also the high-level session
selection operators in Arctis.
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Summary

Reactive systems that provide services to an environment typically interact with
numerous users or other components. Session multiplicity enables a component
to keep track of these interactions by handling each of them as separate conversa-
tions. Session reflection is the ability to look into the state and properties of these
conversations at run time, and use that for deciding the actions to be taken when
certain events occur. This thesis addresses how to support session multiplicity
and reflection during code generation of executable state machines and a runtime
support system that can execute them. Using code generation, certain UML com-
posite structures and state machines can be transformed to deployable, executable
components automatically.

To support these features, an interface for using them is offered to the com-
ponents that comprise an application and some internal mechanisms have been
added to a runtime support system. The interface includes methods for sending
messages, creating new sessions and session state machines and retrieving infor-
mation about run time state machine instances. The internal mechanisms include
keeping track of components and sessions, giving intra-component messages prio-
rity, creating new session state machine instances and changing the addressing
scheme and routing mechanisms to include session state machines.

To put the thesis’ results into context and to some extent prove that they are
good, a proof of concept, multi-player rock-paper-scissors game has been imple-
mented.
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Chapter1
Introduction

Reactive systems that provide services to an environment typically interact with
numerous users or other components and need to keep track of the conversation
with each single one of them. When certain events occur, the system may want to
perform an action or interact with some user or other component based on specific
criteria, for instance whether some user exists or the state of the conversation with
another component.

An engineering method has been developed at NTNU to facilitate highly au-
tomated systems engineering and re-usability of elements in the form of colla-
borative service specifications. The system specifications can be transformed to
component models which specifies the design of deployable components. Formal
methods can prove the correctness of this transformation. From the component
model, executable components are generated. The method is outlined in Fig. 1.1.

On the service specification and component model levels, the method has
design and modeling capabilities to handle conversations with multiple compo-
nents in parallel and decisions based on the properties of these conversations. The
conversation multiplicity is specified by designating the appropriate behavior as
multi-session, which results in arrays in the component model for holding one
state machine per session. Decisions based on the properties of these sessions
are specified using special selection and existence operators, which specifies the
criteria to evaluate. In this thesis we use the term session reflection for the kind
of session evaluation implied by these operators. An extract from an activity dia-

1
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[1]

Peer
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[0..*]

OtherPeers
s2:

Stream

s1:
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«system»

PeerToPeerMusicStreaming

s1 : Stream

PeerToPeerMusicStreaming

s2 : Stream

Classifier

Behavior

s1 : Stream

[0..*]

s2 : Stream
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Peer : Component

Scheduler

         Router Serializer

Transporter(s)

Components

Collaborate service 

specifications are designed 

by composing building 

blocks, using collaboration 

and activity diagrams.

Service specifications are 

analyzed and automatically 

transformed to component 

models.

public int fire(Object _sender, Object sessionId, 

      String _signalID, Object _data){

    if (_currentState == s_2) {

         if (_signalID.equals("gameStoppedOne")) {

            _currentState = s_2;

            return CONSUME_SIGNAL;

         } else if (_signalID.equals("gameStartedOne")) {

            scheduler.send(this, _sender, "_lobby_LobbyGuest_e42");

            _currentState = s_3;

            return CONSUME_SIGNAL;

         }

    else if (_currentState == s_3) {

Collaborative Service 

Specifications

Component Models

Code Generation and Execution

From the component 

models, code is generated 

automatically that can be 

executed using a runtime 

support system.

Figure 1.1: An outline of the engineering method forming the domain for this
thesis.
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A UML object flow.

[select one : o.orderNo=order]

«multi-session»

o : Tour Order

[     ] orderNo

Figure 1.2: An extract from an activity diagram showing behavior marked as
multi-session and the use of a selection operator.

gram where behavior is marked as multi-session and a selection operator is used
is shown in Fig. 1.2.

This thesis focuses on the code generation and execution level, which is at the
bottom of Fig. 1.1. It continues work where other projects left off [Bje08, Mer08]
by extending the code generation tool and runtime support system to support ses-
sion multiplicity and reflection. The work includes:

– Supporting sessions in the runtime support system:

• Managing execution and the life cycle of session state machines.
• Offering an interface that enables components and state machines to

use sessions.
• Extending the addressing scheme to handle not only components, but

session state machines as well.
• Routing messages using the new extended addresses.

– Providing mechanisms that state machines can use to implement reflection
about the properties of session state machines at runtime.

– Changes to the generated state machine code to support some features re-
quired by session multiplicity and reflection.

The design of collaborative service specifications and their transformation to
component models is not a part of this thesis. This includes the part of the en-
gineering process where it is determined how the components uses the interface
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offered by the runtime support system, both for using sessions and performing
session reflection. However, the thesis presents quite detailed elaborations and
examples to provide a better overall understanding and serve as a reference of
how the interface is intended to be used.

To some extent prove that it is possible to implement a system with the so-
lutions presented in this thesis, a proof of concept system has been implemen-
ted. The system is a multi-player rock-paper-scissors game, and utilizes many of
the concepts and solutions presented. The system is described in some detail in
Chap. 6.



Chapter2
Background

This thesis is part of a larger project within the systems engineering domain, and
some background information helps provide a better view of the big picture and a
better understanding of the thesis. This chapter presents the engineering method
SPACE and UML components and state machines and how they are relevant to
this thesis. It also provides some information on how code is generated from a
UML description to executable Java code and an overview of the runtime support
system used to execute the state machines.

2.1 The Engineering Method SPACE

SPACE is a complete engineering method, including a concrete set of notations,
semantics and algorithms. Its name stands for specification by activities, collabo-

rations and external state machines, and collaborations are the major specifica-
tion units. Formal methods, based on cTLA, in addition to model checking helps
ensure that a specification is correct. The execution model is based on state ma-
chines, and executable components are synthesized from the collaborations by a
model transformation [Kra08a].

5
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stateenablingtostarttheactivityrightinthebeginning.

Thecouplingofthetwocompositionoperatorsisperformedassketchedin
Fig.7.AsoutlinedinSect.3,oneoperatorfacilitatestocoupletwodecisionsin
separateactivitieswitheachotherwheretwobranchesofthedecisionsarelinked
byadashedline.InourcTLA-basedformalmodel,weexpressthisbycoupling
theactionsdescribingthebranchesofthetwodecisions.First,wecouplethe
twocTLAactionsmodelingthelinkedbranches.Forinstance,inthecoupling
infragmentβinFig.5thiscausesthatthebranches[cond]and[...]are
onlycarriedoutjointly.Likewise,wecouplethetwocTLAactionsmodelingthe
otherbranchesofthedecisions,enforcingthatthetwo[else]branchesareonly
executedtogetheraswell.Sincedecisionontherightsideofβmustnothave
anadditionallocalcondition,thecouplingcannotcontaindecisionconditions
whichmayblocktheflows.

InFig.5,wealsoshowthatconjoineddecisionsβcanbetransformedto
asingledecisionasdepictedinα.Fig.8showsfragments2αandβintheir
graphicalcTLAformAandBthatwasobtainedthroughatransformation
accordingtoTab.1.Toprovethatthistransformationstepdoesnotspoilthe
correctnessofthesystem,weperformthecTLA-basedrefinementproofA⇒B.
Oneway,toverifyinTLAandcTLAthatamoredetailedsystemAimplies(i.e.,
isarefinementof)amoreabstractsystemB,istosearchaso-calledrefinement
mapping[19].Fortheproofofsafetyproperties,i.e.,that“nothingbadwill
happen”,themappinghastofulfilltwoproperties3:

P1:AninitialstateofAismappedtoaninitialstateofB.
P2:Eachpairofstates(s,s′)fulfillinganactioninAismappedtoapairof

states(t,t′)whichfulfillsanactioninBorastutteringstep(i.e.,t=t′).

2Thefragmentscontaintransitionsthatcanhaveseveralinputandoutputplaces.
Forexample,Bconsistsoftwotransitions,thatcanfireiftherearetokensinboth
b1andb2.Ifoneofthemfires,tokensaremovedtoeitherb3andb4ortob5andb6.

3Furthermore,apropertyconsideringthelivenessofthesystem,i.e.,that“something
goodwilleventuallyhappen”,hastohold.Whilewecanprovethatourtransforma-
tionsfulfillalsotheselivenessproperties,inthispaperwerestrictustosafetyproofs
forthesakeofbrevity.

Figure 2.1: An overview of the SPACE engineering method (taken
from [Kra08a]).

2.1.1 An overview

An overview of the engineering method is shown in Fig. 2.1. It consists of the
following elements:

1. Library of Building Blocks
After the design and analysis of collaboration specifications, they can be
stored in a library for later reuse. The behavior of building blocks is de-
signed by engineers using Unified Modelling Language (UML) activities.
When a building block is reused, the details of its internal behavior are hid-
den, it is sufficient to consider an external description [Kra08a].

2. Composition
The engineer designing a system does so by composing collaborative buil-
ding blocks. The composition is also done using a UML activity, where
the building blocks used become sub-activities.1 The sub-activities must be
connected via activity flows using arbitrary glue logic [Kra08a].

3. Collaborative Service Specifications
A collaborative service specification is the complete composition of buil-
ding blocks and behavior connecting them. Such a specification may be
analyzed formally, both controlling for syntactical errors and more interes-
ting properties using automated model checking [Kra08a].

1Technically these building blocks are UML call behavior actions that refer to other activities.
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4. Transformation
The components of the system are synthesized using an automated model
transformation of the complete, collaborative system specification. This is
possible because the composed collaborations specify the complete beha-
vior of the system. Due to the automated transformation, a change in the
system behavior by changing a collaboration specification is consistently
reflected in the components by redoing the transformation [Kra08a].

5. State Machines and Composite Structures
The components resulting from the transformation are represented as UML 2.0
state machines stereotyped «executable». This stereotype imposes some
constraints ensuring that the state machines are efficiently executable [Kra08a].

6. Code Generation
From the executable UML state machines, code can be generated [Kra08a],
e.g. as described by Merha [Mer08].

7. Execution and Runtime Support
The execution of the generated code is based on a runtime-support sys-
tem [Kra08a]. For instance, for Merha’s code generation there is also a
compatible runtime-support system [Mer08].

2.1.2 Collaboration Specifications

As outlined in the previous section, the work of an engineer is to design and
compose collaborative building blocks. The building blocks are the units of spe-
cifications in the engineering method. They may be designed, analyzed and reu-
sed separately from each other. A building block is described using three dia-
grams [Kra08a]:

– A UML 2.0 collaboration diagram describes the structure.
– A UML activity describes the internal behavior.
– A special UML state machine, a so-called external state machine or ESM,

describes the external behavior.
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player1 player2

c :

Chat

g :

Game

r0 r1

p2p1

«system»

GameSystem

r0 r1

Chat

p1 p2

Game

Figure 2.2: A collaboration diagram describing the structure of a generic two
player game system. The system collaboration is composed from two sub-
collaborations.

The structure of a building block is described using a UML 2.0 collabora-
tion.2 The collaboration diagram defines roles, connections between them and
may also refer to other collaborations between the roles by means of collabora-
tion uses [Kra08a]. An example of such a collaboration is shown in Fig. 2.2.
It defines a generic two player game system with chat functionality. The sys-
tem is composed of two roles, player1 and player2, which interact through two
sub-collaborations, i.e. the collaboration-uses Chat and Game. The roles in the
sub-collaborations are bound to the roles in the system.

The internal behavior of a building block is described using a UML activity.
To connect the behavior to that of sub-activities, activity parameter nodes are
used. Sub-activities can for instance represent collaboration uses or other buil-
ding blocks [Kra08a]. A view of the activity specification of the mentioned game
system is shown in Fig. 2.3.

The external state machine, or ESM, is a special UML state machine used to
described the external behavior of a building block. Its transitions refer to the
activity parameter nodes of the building block’s activity, and by that describing
the allowed sequence of how tokens can be passed to the activity parameter nodes.
Fig. 2.4 illustrates the ESM of the game building block.

2The collaboration diagrams from UML 1.x are in UML 2.0 called communication diagrams.
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c : Chat

RpsSystem

player1 player2

g : Game

close

Game

gameActiongameAction

processAction

processAction

Chat

getMessage getMessage

chatMessagechatMessage

showMessage

showMessage

Figure 2.3: The activity diagrams describing the internal behavior of the game
system. The activities of the collaboration uses are called via activity parameter
nodes.

gameStopped0stopGame

gameStopped1
gameRunning

gameStarted

gameRunning

startGame

Figure 2.4: The ESM describing the external behavior of the game building block.
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2.1.3 Multiplicity in Collaborations

Some systems needs to perform the same collaboration(s) with an arbitrary num-
ber of participants in parallel. This could be in a system employing a client/server-
like pattern, which is described below by an example, or a peer to peer application
where any peer is collaborating with a number of other equal peers. To handle
such cases, collaborations and activities can be modeled with multiplicity.

An example of such a system is the Taxi System illustrated in Fig. 2.5. In the
figure, the multiple layers of taxi and operator partitions illustrate that the control
center has to coordinate collaborations with several other instances of those parti-
tions, also referred to as sessions. On the other hand, each taxi only collaborates
with a single control center, therefore they do not need any additional coordina-
tion. Sessions are represented in UML using sub-activities stereotyped «multi-

session» [Kra08a].

How communication to and from sessions is modeled is illustrated in Fig. 2.6.
The figure illustrates a case similar to the taxi system, the partition in the middle
handles two types of sessions, one at each side. A token arriving from a session
instance [1] simply enters the partition. On the other hand, when a token should
enter a specific session instance [2], exactly which session instance must be de-
termined. UML 2.0 provides no means for such a selection, but Kraemer, Bræk
and Herrman [KBH07] defines a select operator for this purpose which will be
studied in detail later. In addition, an exists operator was also defined with related
functionality [Kra08a].

The select and exists operators allows abstract reflection about multi-session
sub-activities when modeling systems using activity diagrams. They have dif-
ferent functionality and syntax, but are similar in that they both incorporate filters.
The complete Extended Backus-Naur Form (EBNF) definition of the operators is
shown in Fig. 2.7, as given by Kraemer et al. [KBH07]. In short, the syntax of the
operators includes the keywords select or exists followed by a modifier or name
respectively and a sequence of filters [KBH07].



11

control center

select one : id=order

else

select one : s.available

exists s : s.available

c

c

tour or

found t

taxi

tour

canceled

tour

«multi
s: Status

set free

set busy

«multi
p: Posi

request
accept

accept:
Button

push

stop

busy:
Button

push

stop

ready:
Button

push

b

a b

b

a

a:
Alarmstop

«multi-ession»

«multi-ession»

acceptedcanceled

request tour

s: Status Update
set free

set busy

tour
request
accept
tour

acceptedcanceled

operator

no taxi

«multi-ession»

tour order

no taxi found

found taxi

Taxi System

taxi

tour

canceled

tour

«multi
s: Status

set free

set busy

«multi
p: Posi

request
accept

accept:
Button

push

stop

busy:
Button

push

stop

ready:
Button

push

b

a b

b

a

a:
Alarmstop

«multi-ession»

«multi-ession»

acceptedcanceled

request tour
t: Tour Request

s: Status Update
set free

set busy

tour
request
accept
tour

acceptedcanceled

taxi

tour

canceled

tour

«multi
s: Status

set free

set busy

«multi
p: Posi

request
accept

accept:
Button

push

stop

busy:
Button

push

stop

ready:
Button

push

b

a b

b

a

a:
Alarmstop

«multi-ession»

«multi-ession»

«multi-ession»

acceptedcanceled

request tour
t: Tour Request

s: Status Update
set free

set busy

tour
request
accept
tour

acceptedcanceled

taxi

tour

canceled

tour

«multi
s: Status

set free

set busy

«multi
p: Posi

request
accept

accept:
Button

push

stop

busy:
Button

push

stop

ready:
Button

push

b

a b

b

a

a:
Alarmstop

«multi-ession»

«multi-ession»

«multi-ession»

acceptedcanceled

request tour
t: Tour Request

p: Position

s: Status Update
set free

set busy

tour
request
accept
tour

acceptedcanceled

operator

no taxi

«multi-ession»

tour order

no taxi found

found taxi

operator

no taxi

«multi-ession»

tour order

no taxi found

found taxi

operator

no taxi

«multi-ession»

tour order

no taxi found

found taxi

z

x
y

Figure 2.5: A system using session multiplicity. The taxi control center collabo-
rates with many taxies and many operators (taken from [Kra08a]).

z

x
y

select one ...1

2

Figure 2.6: An illustration of token flow in a system with sessions (taken
from [Kra08a]).

select := ‘select’ mod ‘:’ [{filter}] [‘/’{filter}].
exists := ‘exists’ name ‘:’ filter [‘/’{filter}].

mod := ‘one’ | ‘all’.
filter := name | ‘self’ | ‘active’ | ‘id=’ variable.

Figure 2.7: EBNF for select and exists (taken from [KBH07]).
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The select Operator

A select statement can be attached to a token flow entering a multi-session sub-
activity. It makes the token only enter session instances of the sub-activity sa-
tisfying the sequence of filters in the statement. One of the modifiers one or all

must be used in the select statement, specifying whether the token should enter
only one or all of the sessions that matches the filter sequence respectively. By
specifying a single receiver when there are multiple sessions satisfying the filters,
which one of those who is chosen is arbitrary [KBH07].

The exists Operator

The exists operator is boolean and may be used as a guard in a decision node.
Such a statement returns true if there is a session instance in the sub-activity desi-
gnated by the name in the statement satisfying all the filters [KBH07].

2.1.4 From Collaborations to Components

When the model transformation is applied to the collaboration specification, UML
models of the components required to implement the specification are synthesi-
zed automatically. This keeps the components consistent with the collaboration
specification by construction. If a change is applied to the collaboration specifi-
cation, the transformation can be applied again to generate new components that
are consistent with the altered specification [Kra08a].

Figure 2.8 illustrates how each of the collaboration roles (i.e. activity parti-
tions) of the taxi system from Fig. 2.5 are transformed into separate components.
It also shows that sub-activities representing parallel behavior are mapped into
separate state machines in a component, e.g. the Status Update, Position and Tour

Request sub-activities in the control center partition. Separate state machine ins-
tances will be used to represent each collaboration between the control center and
a taxi. On the other hand, sub-activities that are not performed multiple times
in parallel are interleaved into a single state machine together with the rest of
the behavior of the partition. The Status Update, Position and Tour Request sub-
activities in the taxi partition exemplifies this [Kra08a].
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Figure 2.8: An illustration of how the collaboration roles and behavior are mapped
to components and state machines (taken from [Kra08a]).

2.1.5 Formal Analysis and Model Checking of Specifications

Temporal logic and in particular the variant compositional Temporal Logic of
Actions (cTLA) forms the foundation of logical reasoning about specifications.
Collaborations are formalized as cTLA processes with the style cTLA/c, while the
executable models with state machines are formalized with the style cTLA/e. By
having both the collaborations and executable models formalized, reasoning about
refinement ensures the correctness of the model transformation and the proof of
properties in general is available [Kra08a].

Collaborations and their composition is analyzed using model checking based
on temporal logic. The model checking can detect both syntactical and other
issues. The compositional properties guaranteed by the collaboration semantics
in cTLA are used to avoid checking the entire system, instead collaborations can
be checked separately. When collaborations are composed from other ones, only
the external descriptions are used which reduces the state space [Kra08a].
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Figure 2.9: Tool support for SPACE by Arctis and Ramses (taken from [Kra08a]).

2.1.6 Tool Support

Arctis and Ramses are two tools tailored to the SPACE engineering approach.
They are realized as plug-ins to Eclipse [ecl], an integrated development environ-
ment. As illustrated in Fig. 2.9, they have different responsibilities [Kra08a]:

– Arctis supports the construction of collaborative service specifications ba-
sed on building blocks expressed by UML 2.0 collaborations and activities,
as well as the analysis of them and the transformation to the state machine-
based models of Ramses.

– Ramses covers the component-oriented part of the development, facilitating
generation of executable code from models of state machine-based compo-
nents.

Arctis is the tool engineers will face when developing using the SPACE ap-
proach. Both the transformation to a state machine-based model in Ramses and
the generation of executable code are automatic steps, invoked via the user inter-
face of Arctis.

Besides Arctis, any modeling tool compliant with UML 2.0 and capable of
using UML profiles should be able to create the collaborative service specifica-
tions. This is because the method is compliant with UML 2.0, and its extensions
can be covered by UML profiles [Kra08a].

When designing building blocks in Arctis, activity partitions are associated
with a Java action class. Variables and operations declared in the activity are
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mirrored in the action class. This allows detailed design, for instance including
invocation of third party libraries.

2.2 UML Component Models

The component model is based on UML 2.0 composite structures and state ma-

chines. A component is described by a UML class and may contain a number of
state machines. It has one dedicated state machine, describing the so-called clas-

sifier behavior, in this thesis also often referred to as the main state machine of a
component. This state machine typically manages the component’s life cycle, and
may also be responsible for coordinating other state machines in the component.
State machines in a component besides the classifier behavior are contained in
UML parts. The parts are owned by the component and refer to a state machine
type, which is typically also owned by the component. A part may have a mul-
tiplicity greater than one, which means a component can contain any number of
executing state machine instances, divided across the classifier behavior and a
number of parts holding different state machine types [KBH07].

The state machines in the component model are of the stereotype «execu-
table», as described by Kraemer [Kra08b]. In short, the stereotype ensures that the
state machines can be executed efficiently on different platforms. Communication
is performed via signals, and transitions are triggered either by the reception of a
signal or the expiration of a timer. Transitions do not block, so that they can be
executed in one run-to-completion step without waiting [KBH07].

A state machine may contain variables, modeled as UML properties. The
variables refer to a typed element, more specifically a UML primitive that has the
name of an existing Java class or Java primitive type [Kra08b].

A state machine’s transitions may contain actions. Such actions may be, but
are not limited to, sending a signal, starting a timer, operating on local variables of
the state machine or executing application specific code. In the current version of
the tool Arctis, these actions are stored as UML OpaqueActions, containing a body
of Java code that is meaningful either with respect to local variables contained in
the state machine or functionality provided by the runtime support system.
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Figure 2.10: The control center component model, highlighting the classifier be-
havior and the parts.

Figure 2.8 in Sect. 2.1.4, page 13, shows three components, Taxi, Control Cen-

ter and Operator, and their inner classifier behavior and parts. The taxi component
only contains a classifier behavior, but the control center and operator components
contains four and one parts respectively in addition to the classifier behavior. The
Control Center component is illustrated again in Fig. 2.10, highlighting the clas-
sifier behavior and parts.

2.3 Code Generation

The methods used for generating code in this project are similar to that of other
projects within the same domain. Therefore, for more details than are presen-
ted in this section, I refer to Kraemer, Merha and Støyle and their respective
works [Kra03, Mer08, Stø04].

The tools used in the code generation are organized as plug-ins to Eclipse.
This allows access to features provided by Eclipse and other plug-ins, e.g. the
Eclipse Modeling Framework (EMF), which is the basis of the UML models used
in Arctis and Ramses [Mer08].
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The generated code in a project containing an executable component is obtai-
ned in one of four ways:

1. Code Built from Ramses Models Using a Java Syntax Model
Code for the executable state machines are generated based on the models
in Ramses. The source code is assembled using a Java syntax model with
classes that represent different Java constructs and operations. Based on
this model of the source code, the source code itself as a string is generated.

2. Code Copied from Plug-Ins
Static code for the runtime support, i.e. code that does not change depen-
ding on the component being implemented, are stored in a plug-in and co-
pied from there into the project. While some code is required on all target
platforms, some code is platform-specific and are only copied into projects
targeting that platform.

3. Code Generated using Java Emitter Templates
Some code is almost static, depending only on a few variables. For such
code, Java Emitter Templates (JET) may be used. JET is a template system
taking arguments when invoked, interleaving them into a specified template
to form generated code.

4. Code Copied from Source Projects
Code in the source projects that is called during state machine transitions
must also be included in the target projects, this is performed by copying it
between them.

One state machine class is generated for each state machine in the component
model. Basically, a state machine class has methods for firing the initial transition
and transitions triggered by either signals or expired timers. The effect of signals
and timers are dependent of the state machine’s control state, this is controlled by
if-statements in the code. The actions in each transition are taken from the UML
component model [Mer08].

A runtime support system is required for the execution of a component and
its state machines. It is not generated in the same way as the state machine
classes, but developed in advance, stored in a plug-in and copied into the tar-
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get project [Bje08, Mer08]. Various parts of the runtime support system may vary
depending on the target platform, but in general it will include capabilities to:

1. Schedule and execute state machine transitions
2. Route and deliver signals to the correct state machines
3. Handle transport over underlying networks

An executable project also requires some way to start it. On the Sun SPOT
platform for instance, a MIDlet, an application class recognizable by the Mobile
Information Device (MID) profile, is required to launch a component. The parts
required by a MIDlet can be generated using JET, as described by Merha [Mer08].
On the Java Standard Edition (Java SE) platform on the other hand, a class with a
main method can be used to start a component.

2.4 An Overview of the Runtime Support System

The work of this thesis is integrated with a runtime support system based on the
works of Merha [Mer08] and the author [Bje08]. It can be viewed as a three-
layered architecture with four modules, on top of which components can be exe-
cuted, as illustrated in Fig. 2.11. The modules can be replaced by different imple-
mentations as long as they adhere to certain interfaces. Most notably, implemen-
tations may be compatible with different platforms. The different modules have
different responsibilities:

(1) Scheduler
The scheduler is responsible for scheduling the state machines, i.e. delive-
ring messages and firing their transitions, keeping track of timers and is the
state machine’s interface to the runtime system.

(2) Router
The router routes messages between schedulers based on addresses, if the
address points to another device, it uses the serializer to convert the message
into a transportable format and sends it to a transporter. Several schedulers
may use a single router.
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(1) Scheduler

         (2) Router (3) Serializer

(4) Transporter(s)

Components

Figure 2.11: An illustration of the layered runtime support system architecture.

(3) Serializer
The serializer is responsible for serialization and deserialization of mes-
sages, i.e. turning message objects into transportable strings and vice-versa.

(4) Transporter
A transporter handles an underlying network, including sending messages
into it and receiving messages from it. A router may have several transpor-
ters, one for each network it wants to communicate over.

For some more details on the runtime support system, see Appx. A.
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Chapter3
Session Multiplicity and Reflection

Before delving into implementation details, the thesis has a closer look at its main
concepts and why they are interesting. This chapter introduces the necessity of
session multiplicity in the design of systems followed by an explanation of multi-
plicity as it is modeled in the UML component models. It then takes a closer look
at sessions and their meaning in this thesis before describing what reflection is and
why it is an interesting feature. Finally, the relationship between multiplicity, ses-
sions and reflection at the modeling level and functionality required during code
generation and during execution is explained.

3.1 Session Multiplicity, Why We Need It

Session multiplicity is the ability to perform the same task multiple times in pa-
rallel and is a natural and important part of many types of applications. Examples
of these that should be well known are web servers, game servers and instant mes-
saging applications. In general, the server/client client architecture implies the
ability to handle several clients in parallel. Peer-to-Peer applications are another
example, each peer typically requires the ability to handle interaction with several
other equal peers. Finally, applications of any architecture can possibly have the
desire to perform a task multiple times in parallel.

21
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Figure 3.1: A simple house monitoring system collaboration, modeled without
multiplicity.

It is possible to model multiplicity into some systems without support for ses-
sion multiplicity. However, session multiplicity may improve the design of those
systems and extend their capabilities. Below are two examples this.

The first example is a house monitoring system. It can be modeled with fixed
multiplicity, i.e. deciding at design time how many sensors it should support. Such
a system modeled with support for three sensors, one each in the kitchen, bedroom
and bathroom, is illustrated as a collaboration diagram in Fig. 3.1. However, if the
system was to be expanded by for instance including a sensor for the living room,
the design of the system would require change and new components would have
to be generated and deployed.

The house monitoring system could be more generally designed using session
multiplicity. As illustrated in Fig. 3.2, it could be designed once and support an
arbitrary number of sensors. More general models also means that the potential
for re-use is higher, which should be considered a good thing.

The second example is the Light Piano system, described by the author in a
previous report [Bje08]. The system could include an arbitrary number of Sun
SPOTs, even without good modeling support for it. Each Sun SPOT registered
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«system»

HouseMonitorSystemV2
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StatusUpdate
observer observed

Figure 3.2: A simple house monitoring system collaboration, modeled with mul-
tiplicity.

itself with a server and was then assigned a note. When a Sun SPOT detected a
shadow through their light sensor, they would notify the server which played the
associated note on its speakers. By blocking off the light from the Sun SPOTs it
was then possible to play notes, hence the name: Light Piano.

The multiplicity in the Light Piano system is possible because of its simplicity.
In short, the system is modeled as if it consists only of the server and a single
Sun SPOT. The server never signals a Sun SPOT unless it is a direct reply to a
previous signal, therefore it does not need to have any further knowledge of the
components it collaborates with. When playing, the server only reacts to signals
it receives, basing the note on a string contained in the incoming signal. The Sun
SPOT component design ensured that each component supplies different strings.

The Light Piano system could be evolved using session multiplicity. For ins-
tance, with the ability to send messages to the various Sun SPOTs, the server could
light up Sun SPOTs to help the player play a particular song.

It should not be hard to come up with more examples of systems that require
or can benefit from session multiplicity as the concept is well established in other
software. Therefore, let us instead move on to how multiplicity is realized in the
component models.

3.2 Multiplicity in the UML Component Model

As mentioned in Sect. 2.2, components in the UML model may contain parts,
and in each part there may be multiple state machines. To better understand the
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Figure 3.3: An illustration of how the collaboration roles and behavior are mapped
to components and state machines (taken from [Kra08a]).

typical component models, this chapter looks at how Arctis would transform some
specifications into component models.

The taxi system introduced in Sects. 2.1.3 and 2.1.4 is an example of a server/-
client architecture, with clients both with and without parallel behavior on their
behalves. The control center plays the role of the server, while the taxis and opera-
tors act as clients. The transformation from activity to component specification is
shown again in Fig. 3.3. A taxi performs three different types of sessions with the
control center, but because it does not perform any of these types multiple times
in parallel it does not need parts with session state machines to handle them. Ins-
tead, all its behavior is integrated into the taxi component’s main state machine.
The operator on the other hand can have several active tour orders with the control
center at the same time. Therefore, the operator component gets a part for tour
order session state machines. The control center have to handle all the types of
sessions in parallel, and the control center therefore gets one part for each of them.

A peer-to-peer system where a number of equal peers collaborate to supply a
service can also require multiplicity. A simplified peer-to-peer system for strea-
ming music between the peers is illustrated in Fig. 3.4. The music streaming



25

«multi-

s2 : St

«multi-

s1 : St

Peer

session»

ream

«environment»

OtherPeers [0..*]

session»

ream

«system»

PeerToPeerMusicStreaming

Peer

Classifier

Behavior

s1 : Stream

[0..*]

s2 : Stream

[0..*]

Figure 3.4: An illustration of how a peer-to-peer system specification can be trans-
formed to a component.

service Spotify for instance, uses peer-to-peer streaming in addition to streaming
from music servers to supply its service [Spo]. The system is modeled by focusing
on a peer collaborating with a number of other peers. The other peers are stereo-
typed «environment», which means they will not be synthesized into components.
To enable streaming both to and from other peers, a building block for streaming
has been used twice, binding the roles of the sender and receiver in opposite di-
rections (not visible in the figure). The component is generated with two parts,
once for each time the streaming building block is used. This component can then
be deployed multiple times, collaborate with other of its own kind and form the
peer-to-peer streaming service.

From the examples above we can see that there is no difference in the com-
ponent model depending on how the other parties in a session handles their par-
ticipation, whether it is with or without session state machines. In short, if a
component should be able to handle several sessions of the same type in parallel,
it uses a part with session state machines, regardless of the how the other parties
in the sessions are implemented.
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s : Server

c1 : Client c2 : Client
Part: C

Session X
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Figure 3.5: A server is involved in sessions with two different clients. On the
server, each session is handled by a separate session state machine.

3.3 Sessions and Session IDs

This section first explains the concept of sessions in this context, i.e. what they are
and how they can be composed, before discussing session IDs which is a way to
identify sessions across components.

3.3.1 Sessions, What They Are

A session is comparable to a conversation about a specific subject, or in more
technical terms a collaboration. The participants in sessions are state machines.
However, not all collaborations are considered sessions in this thesis. For a colla-
boration to be considered a session it must involve at least one session state ma-
chine. Fig. 3.5 illustrates a server involved in sessions with two different clients,
color coded in red (Session X) and blue (Session Y). The server handles the ses-
sions with session state machines in a part, the clients are only required to handle a
single session each, and therefore have the behavior integrated in their main state
machines.

Session state machines may only be involved in a single session each, but main
state machines can be involved in several. For instance, some types of clients
can maintain sessions with two different servers, as illustrated in Fig. 3.6. The
client needs to maintain knowledge about each session, so that it can communicate
consistently with the correct session state machine in each server.

A single session can also involve more than two parties. For instance a game
server could implement each ongoing game as a separate session, each game in-
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Figure 3.6: A client is involved in sessions with two different servers.
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Figure 3.7: A game server handles a session involving two players.

volving two players. This requires a three-way sessions, but the concept is the
same for sessions involving more than three parties. Fig. 3.7 illustrates such an
example. Note that also the clients could handle several game sessions by imple-
menting session state machines and parts in their component, i.e. either one, some
or all involved parties of a session may use session state machines.

3.3.2 Session IDs

A session ID is a unique identifier that establishes a relation between all involved
parties of a session. It also serves to identify a session state machine within a
component’s part. Within each part of a component there may be any number of
session state machines. Since the session ID is unique for every session, it can
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identify which session state machine that is involved in which session. Messages
sent within a session can be marked with the session ID to identify the relation
between the message and the session.

A new session ID should be created whenever one of the participants of a
session initiates it. This can be generalized as two scenarios:

– When a session state machine is created by the main state machine of a
component. The session state machine can then be assigned a session ID
that is valid for the session it will participate in.

– When a main state machine of a component participating in a session sends
the first message that is a part of the session collaboration.

We assume in the following that any session will follow a given communi-
cation pattern where one of the involved parties initiates it, and as messages are
sent, the other parties become involved. This means that a single session will
not be initiated by more than one of its participants, i.e. except for the initiating
participant all other participants become involved in a session as they receive a
message from another session participant. Such properties can be ensured using
the analysis tools in Arctis [Kra08a].

While session IDs are a way to identify sessions, it is also possible to dis-
tinguish or identify sessions using application specific properties. Kraemer et
al. [KBH07] discussed session IDs in the context of activity diagrams and sub-
activities stereotyped «multi-session» with regard to the taxi system example pre-
sented briefly in Sect. 2.1.3. They proposed a session ID that fulfilled two func-
tionalities:

– The unique order no. of a tour order could serve as a session ID to distin-
guish the tour order sessions.

– By assigning a taxi ID as a session ID to the three collaborations status up-
date, position and tour request, selecting a tour request session by evaluating
the status update session with the same session ID was feasible.

In this thesis, session IDs are considered general, i.e. they are not application
specific. However, the functionalities described above can be implemented re-
gardless of session IDs by using application specific properties. By declaring the
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order number as a property of the tour order sub-activity, the application can en-
sure it is unique and it may still be used to identify the session. Besides changing
the sub-activity by adding the order number property, the select statement would
require a small change. Instead of selecting a session based on its ID, select one

: id=order, it could be selected by evaluating a session property, select one :

o.orderNo=order, where the “o” is a reference to the sessions. For the three
sessions status update, position and tour request, those that communicate with the
same taxi are naturally correlated by that fact, and it may be implemented by en-
suring that each session knows their collaboration partner. Therefore, the session
ID is not required for the second purpose listed either.

3.4 Reflecting Over Sessions

Reflection is the ability to look into and reason about something. Within the
SPACE method, reflection mechanisms exists on both modeling levels:

– In the context of activity diagrams, the operators select and exists are de-
fined that allows reflection about sub-activity sessions. They can find ins-
tances that satisfies a sequence of filters. This requires the ability to look
into each session, and decide whether that instance passes those filters or
not.

– In the context of components, parts and state machines, reflection is the
ability to see into the parts of the component and their state machines and
evaluate their state. The state includes both the control state of the state
machine and any of its properties and their values.

Reflection in the activity diagrams are abstract design mechanisms allowing
the designed system to address its multi-session sub-activities. This abstract me-
chanism must be possible to map onto mechanisms in the component model and
runtime support system so that a system can be executed according to its specifi-
cation. Recalling how the token flow was modeled using a select statement from
Fig. 2.6, p. 11, it must be possible during execution to perform the same kind of
logic, as illustrated in Fig. 3.8.
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Figure 3.8: How reflection in the activity diagrams needs corresponding logic in
the components, illustrated by a select statement.

Recalling the syntax for the select and exists operators from Sect. 2.1.3 they
both use filters to evaluate sessions. Each filter represents a property that should
be evaluated.1 They can evaluate variables, operations or external state.

It is also possible for filters to evaluate properties of other session instances
than those targeted by the statements for selection or existence. This implicitly
means that you are examining an instance of another type of session involving the
same collaboration partner as the session instance currently being evaluated for
selection or existence. An illustration is given in Fig. 3.9, showing by color and
pattern (blue grid, green diagonals) how different types of sessions are correlated.

select and exists statements may contain both positive and negative filters.
In order for a session to satisfy an entire expression, it must match all the positive
filters and none of the negative filters. If negative filters are present, they are
preceded by a “/”.

3.5 Supporting Session Multiplicity and Reflection
Throughout Execution

Recalling the overview of the SPACE engineering method shown again in Fig. 3.10,
the focus of this thesis is to provide the necessary support at code generation and
in the execution and runtime support, marked [6] and [7] in the figure respectively.

1A general property that is, not necessarily a declared UML property.
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Figure 3.9: How sub-activities correlate based on their collaboration partner in a
select statement. The blue tour request instance can be selected if the blue status
update instance passes the filter available(), and the same applies to green.
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Fig.8.Graphsfromactivities(A,C)refinethoseobtainedviacTLA(B,D)

actionisactivemuststayintheplaceofthecallbehavioractionaslongas
thecalledactivityisexecuting.Whenanoutputisavailable,thecorresponding
outgoingarcofthecallbehavioractioncanfire.Foractivitieswithaninitial
token,weassumethatthecorrespondinginputpincontainsatokenintheinitial
stateenablingtostarttheactivityrightinthebeginning.

Thecouplingofthetwocompositionoperatorsisperformedassketchedin
Fig.7.AsoutlinedinSect.3,oneoperatorfacilitatestocoupletwodecisionsin
separateactivitieswitheachotherwheretwobranchesofthedecisionsarelinked
byadashedline.InourcTLA-basedformalmodel,weexpressthisbycoupling
theactionsdescribingthebranchesofthetwodecisions.First,wecouplethe
twocTLAactionsmodelingthelinkedbranches.Forinstance,inthecoupling
infragmentβinFig.5thiscausesthatthebranches[cond]and[...]are
onlycarriedoutjointly.Likewise,wecouplethetwocTLAactionsmodelingthe
otherbranchesofthedecisions,enforcingthatthetwo[else]branchesareonly
executedtogetheraswell.Sincedecisionontherightsideofβmustnothave
anadditionallocalcondition,thecouplingcannotcontaindecisionconditions
whichmayblocktheflows.

InFig.5,wealsoshowthatconjoineddecisionsβcanbetransformedto
asingledecisionasdepictedinα.Fig.8showsfragments2αandβintheir
graphicalcTLAformAandBthatwasobtainedthroughatransformation
accordingtoTab.1.Toprovethatthistransformationstepdoesnotspoilthe
correctnessofthesystem,weperformthecTLA-basedrefinementproofA⇒B.
Oneway,toverifyinTLAandcTLAthatamoredetailedsystemAimplies(i.e.,
isarefinementof)amoreabstractsystemB,istosearchaso-calledrefinement
mapping[19].Fortheproofofsafetyproperties,i.e.,that“nothingbadwill
happen”,themappinghastofulfilltwoproperties3:

P1:AninitialstateofAismappedtoaninitialstateofB.
P2:Eachpairofstates(s,s′)fulfillinganactioninAismappedtoapairof

states(t,t′)whichfulfillsanactioninBorastutteringstep(i.e.,t=t′).

2Thefragmentscontaintransitionsthatcanhaveseveralinputandoutputplaces.
Forexample,Bconsistsoftwotransitions,thatcanfireiftherearetokensinboth
b1andb2.Ifoneofthemfires,tokensaremovedtoeitherb3andb4ortob5andb6.

3Furthermore,apropertyconsideringthelivenessofthesystem,i.e.,that“something
goodwilleventuallyhappen”,hastohold.Whilewecanprovethatourtransforma-
tionsfulfillalsotheselivenessproperties,inthispaperwerestrictustosafetyproofs
forthesakeofbrevity.

Figure 3.10: An overview of the SPACE engineering method (taken
from [Kra08a]).
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Multiplicity, sessions and reflection are supported on the level of collabora-
tions and activity diagrams by role multiplicity, «multi-session» sub-activities and
the select and exists operators. In the code generation for the executable state
machines and runtime support system inherited for this thesis, support for any of
these were not implemented [Mer08]. Because these functions are closely linked,
focus has been given in this thesis on the implementation of both.

New functionality in the runtime support may require a change in the actions
performed by a state machine during a transition. As the actions are generated du-
ring the transformation from a collaborative service specification to a component
model, marked [4] in Fig. 3.10, such changes are outside the scope of this thesis.
However, this thesis will describe how new functionality is intended to be used,
providing examples of code to show that the intended goals, for instance reflection
compatible with the select operator, are attainable.



Chapter4
Runtime Support for
Session Multiplicity

During the execution of a system, session multiplicity is handled by arrays of state
machines, and each session involves some instances of these. To coordinate them,
the runtime support system needs some internal mechanisms and the state ma-
chines also require an interface that enables them to use sessions, and in that way
utilize these mechanisms. This section uses a top-down approach, first explai-
ning the interface available to the the state machines, i.e. for initiating sessions,
creating session state machines and sending messages between them. Then it in-
troduces the internal mechanisms added to the runtime support system to enable
session multiplicity. New additions to the generation of state machine code from
the UML component models are also described.

4.1 How State Machines Can Use Sessions

There are multiple tasks involved when using sessions:

– Initiating sessions and creating session state machines.
– Messaging other parties within a session.
– Messaging between session state machines and a component’s main state

machine.

33
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1 public void send(Object sender, Object receiver, String signalId,
2 Object data);

Listing 4.1: The signature of the method for sending a message to a known ad-
dress: send.

This section first introduces how to send a regular message using an address object
before explaining how to initiate new sessions, sending messages within sessions
and messaging the main state machine from a session state machine in a com-
ponent. Initiating new sessions may also involve creating session state machines.

Sending messages from a main state machine to an existing session state ma-
chine in one of its parts is a process involving reflection to find the appropriate
receiver and is elaborated further in the next chapter, Chap. 5.

4.1.1 Regular Sending of Messages

For sending a message from a state machine to another of which the address is
known the scheduler offers the method send, which signature is given in List. 4.1.
A message is defined as a routable piece of information that is exchanged between
state machines, consisting of the addresses of the sender and receiver, a signal ID
and optionally a data object [Mer08]. These are also the parameters of the send

method.1

The invocation of the method send requires the address of the recipient. There
are several ways to obtain such addresses. Sometimes they should be configured
at deployment, which perhaps is typical in server/client architectures where the
server can be found on a known address. An alternative can be to use some kind
of discovery mechanism. Also, as messages are passed around within a colla-
boration they will include the addresses of the senders of those messages which
may be used when replying. In this thesis, except for when some of the methods
mentioned later in this chapter are appropriate, it is assumed that the application
knows the addresses it should use.

1Since the data object is optional, all message sending methods have a corresponding method
where the parameter data is omitted, which is equivalent to setting it to null.



35

1 public void sendToNewLocalSession(Object sender, String partName,
2 String signalId, Object data, Hashtable properties);

Listing 4.2: The signature of the method to create a new session state machine
and send it its first signal: sendToNewLocalSession.

4.1.2 Initiating a New Session

Initiating a new session essentially includes assigning it a session ID and having
the state machine that is the initiating participant of the session ready to send
a message. With regards to the structure of the initiating component, that state
machine will either be a session state machine or the main state machine of the
component. This results in two possible ways to initiate a new session:

1. Initiating a session by creating a session state machine.
2. Initiating a session without using a session state machine.

Alternative 1: Creating a Session State Machine

The method sendToNewLocalSession is offered by the scheduler to create a ses-
sion state machine from a component’s main state machine, and the method will
also send a message to the newly created machine. The method’s signature is gi-
ven in List. 4.2. Besides the sender address, signal ID and data object parameters,
the method also takes the name of the part in which the session state machine
should be created and a map of properties that should be set in the session state
machine when it is created. The map is an optional parameter and may be null.

Sending a message with this method will cause several things to happen. This
is illustrated by a UML communication diagram in Fig. 4.1, which includes the
following steps:

1. The main state machine of a component sends a message using sendTo-

NewLocalSession.

1.1 A session state machine is created in the given part of the component
and assigned a new session ID.

1.2 If the properties map contains any values, those properties will be set
in the session state machine.
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: Main State 

Machine
: Scheduler

: Session State 

Machine

1 : sendToNewLocalSession(msg, part, properties) 1.1 : «new » (sessionId)

1.2 : setProperty(id, value)

1.3 : addToQueue(msg)

Done for all 

values in the 

parameter 

properties

Figure 4.1: A UML communication diagram illustrating the steps performed when
creating a session state machine within a component.

1 public Object getFreshSessionId();

Listing 4.3: The signature of the method to obtain a new, unique session ID from
the scheduler: getFreshSessionId.

1.3 The message is added to the session state machine’s message queue,
and will be delivered the next time the new machine is scheduled.

An example of a property to set in a new session state machine is the address
of another component that is involved in the session. It will be needed when the
session state machine is going to send a message to that component. The scheduler
uses a method named setProperty in the state machines to set the properties. This
method is explained in more detail in Sect. 4.2.5.

Alternative 2: Initiating a Session Without Using a Session State Machine

As mentioned in Sect. 3.3, main state machines of components can also be invol-
ved in sessions, therefore it is also natural that they can initiate them. To do so,
it needs to obtain a session ID and store it for further interaction with the session.
The session ID is used to identify any session state machines that later become
involved in the session. To obtain a new session ID the state machine should ask
the scheduler, using a method named getFreshSessionId. The method has no pa-
rameters and returns an object representing the session ID. The method signature
is given in List. 4.3.

Once a session ID is obtained, the state machine is ready to send messages to
other parties in that session, which is discussed further in the next session.
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c : Client

Part: C

Classifier Behavior

Classifier Behavior

1. Messaging a session 

state machine of which the 

address is not yet 
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2. Messaging a main state 

machine involved in a 

session.

Figure 4.2: An illustration of the two special scenarios when sending messages
within a session.

4.1.3 Sending Messages Within a Session

For sending messages within a session, i.e. between two state machines involved
in the same session, there are two special scenarios:

1. Sending a message to a session state machine of which the address is not
yet obtained.

2. Sending a message to a main state machine involved in the session.

The scenarios are illustrated in Fig. 4.2. They differ by the information required to
properly address the message. Both require the address of the targeted component
and the session ID, but the first scenario also require the name of the part that
contains the session state machine.

Scenario 1: Messaging a Remote Session State Machine When Not Knowing
Its Address

To message a remote session state machine, i.e. one residing in another com-
ponent, without knowing its address, it is possible to use its component’s address,
the name of its part and a session ID to address it. It is clear that the session state
machine is located in a component, within one of its parts. And, by definition,
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1 public Object sendToNewRemoteSession(Object sender,
2 Object outerComponent, String partName, Object sessionId,
3 String signalId, Object data);

Listing 4.4: The signature of the method to message, and possibly create, a remote
session state machine: sendToNewRemoteSession.

the session state machine involved in a specific session must have the appropriate
session ID.

The method sendToNewRemoteSession takes the address of a component,
name of a part and a session ID as parameters and use it to address a session state
machine, the signature of the method is given in List. 4.4. The sender, signal ID
and data object parameters are also present in the method. In addition, the method
returns an address object pointing to the session state machine, which should be
used when sending more messages to it. Note that this is the only message sending
method that has a return value.

As illustrated in Fig. 4.3, sending a message using this method causes several
steps to be performed:

1. A state machine, whether a classifier behavior or session state machine,
sends a message using the method sendToNewRemoteSession, supplying
the address of a component, a part name and the session ID.

1.1 A component is reached via the component address.
1.2 A part is identified via the part name.
1.3 The runtime support system looks for a session state machine in the

part associated with the supplied session ID.

1.3.a An appropriate session state machine was found and the message
is put in its message queue.
Or:

1.3.b No appropriate session state machine was found. One is instead
created, assigned the supplied session ID and the message is put
in its message queue.

2. An address pointing to the session state machine is returned by the method
for future use.
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Figure 4.3: An illustration of the steps performed when sending a message with
the method sendToNewRemoteSession.

Note that because of the asynchronous handling of messages, steps 1 and 2 happen
immediately after each other, without blocking.

Due to the nature of state machines and asynchronous transfer of messages, it
is important to be aware of race conditions that may occur and lead to interlea-
ving of messages. This has implications on the semantics and use of the method
sendToNewRemoteSession. The method will only create a new session state
machine if none exists that is associated with the given session ID. This allows
the method to be used whenever a state machine does not know the address of
the session state machine. Messages sent with the address returned by the method
will on the other hand never cause a session state machine to be created.

Figure 4.4 illustrates an example of how a race condition can occur because of
asynchronous message transfer. It illustrates the following:

1. State machine Alpha sends a message, b, to state machine Beta.
2. Immediately afterwards, Alpha also sends a message, c1, to state machine

Charlie.
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Alpha

Bravo

Charlie
(1)

(2)

(3)

(4)

b

c1

c2

Figure 4.4: An illustration of how a race condition can occur with asynchronous
signals.

3. Message b arrives to Beta, this causes Beta to send a message, c2, to Char-
lie.

4. Both messages c1 and c2 are now in transit to Charlie, there is a race condi-
tion as to which message will arrive first.

This also has implications on the design of state machines. For instance a message
should not be sent with the address returned from the method sendToNewRemo-

teSession immediately afterwards, as it may overtake the first message. Also,
messages that can possibly overtake other messages should be deferred so that
they can be handled correctly. Implications such as these should be possible to
identify and handle during the transformation of a specification to a component
model, and should therefore not have to worry an engineer designing systems.

Scenario 2: Messaging a Main State Machine Within a Session

As session messages are passed around, the recipients become involved in the
session. The involved state machines should always be aware of the session ID
in case they need if for subsequent messaging. Therefore, as session messages
are sent to involved main state machines they should carry the session ID. The
scheduler offers a method to append the session ID to the address for this purpose.
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1 public Object getAddressWithSessionId(Object address, Object sessionId);

Listing 4.5: The signature of the method to append a session ID to an address:
getAddressWithSessionId.

Using this combined address, a message is still routed in the same way as without
the session ID, but the recipient will have the session ID available. The method
to append the session ID to the address is named getAddressWithSessionId, its
signature is given in List. 4.5. It takes the address of the component main state
machine and the session ID, and returns a new address object that combines the
two.

Once an address is obtained that includes the session ID, a message may be
sent using the regular send method, send, introduced in Sect. 4.1.1.

Obtaining the Session ID

As explained, the session ID must be known by the application to use the methods
in this section. There are three possible scenarios for how the session ID can be
obtained:

1. A session state machine
A session state machine is bound to a session ID in the runtime support
system. Therefore they can request it from the scheduler if needed, the
method for this is called getMySessionId.

2. A main machine initiating the session
When a main state machine initiates a session it should request a new ses-
sion ID from the scheduler, as described in Sect. 4.1.2.

3. A main state machine not initiating the session
Since all session messages contain the session ID and only the state ma-
chine initiating a session should send a message without first receiving one
(covered in points 1 and 2), a main state machine that does not initiate the
session will obtain the session ID when it receives its first session message.

For the main state machines, once a session ID has been obtained, they should
store it for future use as there is no guarantee it will be available the next time
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1 public Object getMySessionId(Object sessionStateMachine);

Listing 4.6: The signature of the method to obtain the session ID associated with
a session state machine: getMySessionId.

1 public void sendToComponentMainStateMachine(Object sender,
2 String signalId, Object data);

Listing 4.7: The signature of the method to message a component’s main state
machine from a session state machine in the same component: sendToCompo-
nentMainStateMachine.

they need it. For instance, they may interact with the session as a reaction to an
external signal or a timer which do not carry the session ID, hence they will not
currently be processing a message which has the session ID appended to it.

The session state machines can use the method getMySessionId to obtain the
session ID they are associated with. The method signature is shown in List. 4.6, it
takes the session state machine object as parameter, i.e. the session state machines
should use the keyword this as parameter to the method.

4.1.4 Messaging a Main State Machine From a Session
State Machine

For messaging a component’s main state machine from a session state machine
in that component, there is a method named sendToComponentMainStateMa-

chine. Its signature is given in List. 4.7 and the operation is illustrated by the
arrow in Fig. 4.5. The method takes no additional parameters besides the regular
message related parameters, i.e. the sender, signal ID and data object. The reci-
pient is found by the runtime support system, as the the session state machine’s
component only has one main state machine and the component is executed lo-
cally.
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c : Component

Part: C

Classifier Behavior

Figure 4.5: The arrow (red) illustrates messaging the main state machine from a
sessions state machine within a component.

4.2 Runtime Mechanisms to Support Sessions

This section will explain how the runtime support system keeps track of sessions,
delegates session creation, assigns session IDs, implements signal priority and,
finally, the changes made to addressing and the routing mechanism.

4.2.1 The Component Registry

The scheduler needs to keep track of state machines in components and their rela-
tionships. For this, it uses a component registry, a class keeping track of compo-
nents and their state machines executed by one scheduler. It is essentially a data
structure, mirroring the structural parts of the UML component model described
in Sect. 2.2, also described by a UML diagram in Fig. 4.6. Besides the structu-
ral information, it also associates session state machines with their session IDs.
Since the relationship between a component and its main state machine is one-to-
one, the component registry identifies a component by this state machine. Besides
the main state machine, a component can have an arbitrary number of parts. The
parts are identified within a component by the part name, as given in the UML
component model. Each part can contain an arbitrary number of sessions, i.e.
session state machines and their session IDs.

Through the component registry, the scheduler knows which component state
machines belong to. It also knows the main state machine and parts of a com-
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Figure 4.6: A UML diagram of the component registry.

ponent, and within each part it also knows the session state machines and can
look them up by their session ID.

4.2.2 Signal Priority Within Components

In order to reduce the possible interleaving of signals and help components com-
plete internal jobs before accepting external input, internal signals, i.e. signals
between state machines in the same component, should be given higher priority
than external signals [KBH07]. The scheduler uses the component manager to de-
termine if the sender and receiver of a message belongs to the same component. If
they do, the message is given higher priority, and are placed in a separate message
queue. Prior to support for multiplicity, each component only had a main state
machine and therefore only signals from a state machine to itself was considered
internal [Mer08].

4.2.3 Delegation of Session Creation

For each part in a component, there belongs one type of state machines. Recal-
ling Sect. 2.2, this relationship is given in the UML component model. Based on
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Figure 4.7: A UML sequence diagram showing how a scheduler uses the main
state machine of a component to create a new session state machine.

messages sent using the appropriate methods described in Sect. 4.1, the scheduler
decides when a new session state machine should be created. The responsibi-
lity for the actual creation of the machines are then delegated to each component,
represented by their main state machines. The scheduler tells the main state ma-
chine to create a session state machine for a given part with a given session ID.
Based on the part name, the main state machine knows which type of session state
machine it should create. This process is illustrated by a UML sequence diagram
in Fig. 4.7. When creating the session state machine, the main state machine gives
it a reference to the scheduler itself is executing on. This ensures that entire com-
ponents are executed within the same scheduler, as assumed in the UML profile
for executable state machines [Kra08b].

The method in a component that creates the session state machines are gene-
rated based on information available in the UML component model. In the model,
each part references a state machine type. When the state machines from the com-
ponent are generated, the name of each part is mapped to the class representing
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Figure 4.8: An illustration of how a createSession-method can be generated
from the UML model

1 public IStateMachine createSession(String partName, Object sessionId);

Listing 4.8: The signature of the method in a main state machine that is called
when a new session state machine should be created: createSession.

the referenced state machine type. This transformation is illustrated in Fig. 4.8,
which also gives an example of the the method named createSession. The me-
thod signature is shown in List. 4.8. It takes the part name and the session ID that
will be assigned to the session state machine as parameters.

4.2.4 Changes to Addressing and Routing

The structural changes to the components when introducing multiplicity and spe-
cial semantics of some messages, i.e. those sent with some of the methods men-
tioned in Sect. 4.1, requires an expansion of the addressing scheme. As the ad-
dressing changes, the routing mechanisms also have to adapt.

Changes To the Addressing Scheme

The ITEM addressing scheme previously defined a Uniform Resource Identifier
(URI) suitable for addressing components, i.e. their main state machines. It was
of the form shown in Fig. 4.9, defining an endpoint, via a host name and possibly
a port and IEEE address, and a component being executed on that endpoint.
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item://<hostname>[:port]/ ..

.. [IEEE address/]<local component instance ID>

Figure 4.9: The original ITEM addressing scheme, designed to address compo-
nents running on various endpoints (taken from [Bje08]).

The addressing scheme can be extended to support multiplicity and sessions
by by incorporating the concept of part names, and session IDs, which will allow
addressing of session state machines as well. The part name can be considered
a hierarchical element, as it always will be contained within a component. In a
URI, the path component contains the hierarchical elements, and comes after the
hostname and port. The elements are separated by a “/”. The session ID is required
when addressing a component’s part to identify the exact session state machine.
It should also be included in session messages sent to main state machines, to
inform the recipient of which session the message is associated with. The session
ID seems suited as a query in the URI, as non-hierarchical data that along with the
path component serves to identify a resource. The query is indicated by a question
mark, “?”, at the end of the path component, and is often used to carry information
in “key=value” pairs [BLFM].

The query component contains non-hierarchical data that, along with

data in the path component (Section 3.3), serves to identify a re-

source within the scope of the URI’s scheme and naming authority

(if any). [BLFM]

In addition to the part name and session ID, not all messages should be allowed
to cause the creation of a new session state machine. Therefore, messages that
may cause the creation of a session state machine should have the key-value pair
“create=true” added to the query in their destination address. Key-value pairs
in a query are separated by an ampersand, i.e. the character “&”.

The extended addressing scheme is then of the form illustrated in Fig. 4.10. It
allows the addition of a part name to be appended to the path after the component
identifier and a query at the end of any ITEM URI. The query should hold infor-
mation in key-value pairs, of which two are defined: sessionId=<sessionId>

and create=true. The default value of the key create is false. Note that an
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item://<hostname>[:port]/ ..
.. [IEEE address/]<local component instance ID>[/<part name>] ..

.. [?sessionId=<session ID>[&create=true]]

Figure 4.10: The extended ITEM addressing scheme, supporting multiplicity and
sessions.

address pointing to a part, without an appended session ID is ambiguous and the-
refore invalid.

Examples of Addresses

To better illustrate what addresses may look like, examples of addresses for the
following categories of state machines are presented here:

– A normal address of a component’s main state machine.
– An address of a component’s main state machine with a session ID.
– An address of a session state machine.

These examples are derived from the taxi system introduced in Sect. 2.1.3.
First we have a taxi, which is assigned the IP address 10.0.0.102. It runs a taxi
component, which has been given the ID “Taxi42”. The address of that com-
ponent’s main state is then:

item://10.0.0.102/Taxi42

Now, the taxi component is also involved in a status update session. This
session is assigned the session ID “5551234”. Messages sent to the taxi belonging
to that session should then use the address:

item://10.0.0.102/Taxi42?sessionId=5551234

The taxi communicates with a control center. The control center component is
located on an endpoint with IP address 10.0.0.2 and is assigned the ID “Control-
Center0”. It holds the status update session state machines in a part named “s”.
The address of the status update session state machine that handles the above
mentioned taxi’s session is then:

item://10.0.0.2/ControlCenter0/s?sessionId=5551234
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Routing the New Addresses

The routing of messages with the extended ITEM address can be split into two
parts: Inter-router routing, routing of messages between different endpoints, and
intra-scheduler routing, routing and parsing an address inside the scheduler.

The inter-router routing has the responsibility of getting messages to the cor-
rect endpoint and then to the scheduler executing the addressed component. The
decision process is illustrated in Fig 4.11. When the router receives a message it
must first decide if the message is addressed to a scheduler using this router. If not,
the message should be passed on to its next hop on the route to its destination. If
yes, the router must find the scheduler that executes the addressed component and
deliver the message there. If the addressed component is not found, the message
is dropped.

The intra-scheduler primary routing goal is to deliver the message to the cor-
rect state machine, including possibly creating a session state machine. If the
addressed component is not found executing on the scheduler, the message is de-
livered to the router. The decision process is illustrated in Fig. 4.12. The scheduler
will first try to find the addressed component. If it can not find it, the message is
delivered to the router. If it did find it, the scheduler checks if there is a part name
present. If there is no part name, the message is delivered to the addressed com-
ponent’s main state machine. If a part name was present, the scheduler will see if
a session state machine is being executed within that part bound to the session ID
in the address. If so, the session state machine will be delivered the message. If it
does not exist, it will create it if the address allows it, otherwise the message will
have to be dropped.

4.2.5 The Method setProperty

When a new session state machine is created locally, the scheduler can use the
method setProperty in the state machine to set the value of properties, as explai-
ned in Sect. 4.1.2. This method is a new addition to the generated state machines.
It takes two parameters, an ID and a value, its signature is given in List. 4.9. The
mapping from ID to a variable is taken from the UML component model. The me-
thod maps the name of each variable declared inside a state machine in the UML
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Figure 4.11: An inter-router routing decision chart, illustrating the decisions made
in the router when routing a message.
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Figure 4.12: An intra-scheduler routing decision chart, illustrating the decisions
made in the scheduler when processing an incoming message.
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1 public void setProperty(String id, Object property);

Listing 4.9: The signature of the method that sets a property in the state machine:
setProperty.

model and maps it to a Java variable. This allows the scheduler to set the pro-
perties of a state machine through an interface common to all the state machines,
without having to know further details about them.
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Chapter5
Support for Session Reflection

Recalling Sect. 3.4, session reflection at the component level is the ability to see
into the parts of a component with their state machines and evaluate their runtime
state. The runtime support system offers a basic reflection interface to state ma-
chines. Using the interface and information available in the models, it is possible
to implement more advanced reflection.

This chapter first discusses the general mapping from reflection at the acti-
vity level to the component level, before presenting some different types of filters
available in select and exists statements, covering the reflection functionality this
thesis focuses on. Then the reflection interface in the runtime support system is
presented. Example implementations of how some statements using the different
types of filters can be implemented in a state machine are presented, including
code listings.

5.1 Mapping of Reflection From Activity Diagrams
to Component Models

By using a reflection statement in an activity diagram, its logic must be implemen-
ted in a component model and performed during execution. This was illustrated
in in Sect. 3.4, the figure is shown again in Fig. 5.1.
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[ select … ]

Component

Part: P

?

Service Specifications

(UML Activities)

Design Models

(UML Composite Structures + State Machines)

Figure 5.1: How reflection in the activity diagrams, e.g. performed with a select
statement, needs corresponding logic in the components.

The functionality of a select statement is to make the modeled token flow
enter one or more sessions. At the component level, this corresponds to sending
a message to one or more state machines. During execution it corresponds to
finding the addresses of one or more state machines so that messages can be sent
to them using the available methods.

Similar reasoning can be made about an exists statement. At the activity level
it is a guard at a decision node. At the component level, this corresponds to a
transition from a decision pseudo-state. During execution, the logic is performed
by if-statements and appropriate expressions or boolean operations.

With this in mind, the following sections takes a closer look at filters available
at the activity level, and how these can be implemented during execution.

5.2 Filters in Reflection

The reflection operators, select and exists use filters to evaluate sessions. Each
filter represents some condition to be evaluated. This thesis focuses on three types
of filters, each evaluating a different type of criterion:

Variables or operations declared in the sub-activity
Declared variables and operations in the sub-activity may be evaluated. A
boolean variable or operation may be evaluated directly, while object values
can be tested for equality against an object in a UML object flow.
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The external state of a session
All sub-activity collaborations have a specified external state, i.e. the state
as seen from the outside via input and output signals. A filter should be able
to evaluate if a session is in a specific external state.

Variables or operations in other, correlated, sub-activities
Sessions may be correlated by their collaboration partner as explained in
Sect. 3.4. Variables and operations in correlated sessions can be evaluated
in a filter in the same way as those inside the targeted session.

The first and last types of filters have already been discussed in Sect. 3.3.2,
with regard to the taxi system. For instance, when processing a tour order, the
tour order sessions can be distinguished by an order number declared inside the
session. For selecting tour requests on the other hand, it was necessary to evaluate
a property in defined in another session collaborating with the relevant taxi.

The external state of a sub-activity is the state as seen from the outside, which
is why it is interesting in the context of filters. As mentioned briefly in Sect. 2.1.1,
the external state description can hide the internal details of the sub-activity and
each external state can be mapped to multiple internal control states in a session
state machine during the transformation to a UML component model. Therefore
an external state filter may need to check for several internal control states in a
session state machine.

5.3 The Runtime Support System’s
Reflection Interface

The reflection interface offered by the runtime support system consists of two
methods in the scheduler and an interface. The two methods are getSessions

and getActionClass. The interface is named IFilterableSession and contains
two methods that the session objects implement. With this, and some knowledge
of the system available in the models, it is possible to implement the types of
filters described in the previous section.

The method getSessions returns an array of objects representing the session
state machines in a part, its signature is shown in List. 5.1. The main state machine
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1 public IFilterableSession[] getSessions(Object mainStateMachine,
2 String partName);

Listing 5.1: The signature of the method to get objects representing the sessions
in a part: getSessions.

1 package no.ntnu.item.arctis.runtime;
2

3 public interface IFilterableSession {
4

5 public Object getProperty(String propertyId);
6

7 public boolean matchOneOfControlStates(String[] allowedStates);
8 }

Listing 5.2: The Java interface that is implemented by the session objects returned
by the method getSessions: IFilterableSession.

should supply itself and which of its parts it is interested in as parameters. Since
a component should only be allowed to reflect over its own sessions, only parts
within the supplied component will be returned. The session objects implement
the interface IFilterableSession, shown in List. 5.2, which defines two methods:

getProperty
The method getProperty returns the state machine property identified by
the property ID given as a parameter to the method. These properties are
defined in the state machines in the UML component model.

matchOneOfControlStates
The method matchOneOfControlStates returns true if the session’s cur-
rent control state matches any of the states in the string array parameter,
allowedStates. The states should be given by the names of the states as
defined in the UML component model.

The objects of type IFilterableSession can be used as address objects locally
within a scheduler. For instance, to send a message with signal ID “Hi all” to
all sessions in a part named “p”, the main state machine only have to ask for the
sessions in that part using the method getSessions and then send a message to all
of the objects in the returned array using the method send, which was described
in Sect. 4.1.1. The code for this is shown in List. 5.3.
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1 IFilterableSession[] sessions = scheduler.getSessions(this, "p");
2 for (int i = 0; i < sessions.length; i++) {
3 scheduler.send(this, sessions[i], "Hi all");
4 }

Listing 5.3: A code example showing how to message all session state machines
in the part “p” from the component’s main state machine. Note that the objects of
type IFilterableSession can be used as addresses locally within a scheduler.

1 public Object getActionClass(IFilterableSession session,
2 String actionClassFqn);

Listing 5.4: The signature of the method to get an action class of a session: ge-
tActionClass.

The second method offered by the scheduler is named getActionClass, its
signature is shown in List. 5.4. It will return the action class for a session of the
fully qualified type given by the parameter actionClassFqn. As mentioned in
Sect. 2.1.6, activity diagrams can refer to operations and variables in an action
class. Activity diagrams may also refer to sub-activities that have their own ac-
tion class, and during transformation several of these activities can be integrated
into a single state machine which then can use several action classes. It is there-
fore necessary to classify which action class the method getActionClass should
return.

Behind the scenes the methods in the scheduler use the component mana-
ger, described in Sect. 4.2.1, and a table of action classes for each state machine
to implement the methods getSessions and getActionClass respectively. The
interface IFilterableSession are implemented by the generated state machines,
using the information available in the UML component model.

5.4 Filter Implementation Examples

This section gives three filter implementation examples. One for each type of filter
mentioned in Sect. 5.2, evaluating:
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A UML object flow.

[select one : o.orderNo=order]

«multi-session»

o : Tour Order

[     ] orderNo

Figure 5.2: The selection of a tour order used as an example, as it is modeled in
an activity diagram.

– Variables or operations declared in the session
– The external state of a session
– Variables or operations in other, correlated, sessions

5.4.1 Evaluating a Session Variable

This example is derived from the taxi system presented in Sect. 2.1.3, and the
selection of a tour order session. However, as explained in Sect. 3.3, the order no.
is here assumed to be implemented as a variable inside the tour order sessions,
instead of as the session ID. As illustrated in Fig. 5.2, the statement is then select

one : o.orderNo=order, where order references the object in the object flow.

An example of code that implements the statement is shown in List. 5.5. It
does the following:

Line 1: The tour order session state machines are obtained from the part “o”.
Line 2: An iteration over all the sessions is started using a for-loop.
Lines 4-5: The action class of a tour order session is obtained.
Line 6: The order number in the session’s action class is checked for a match

with the object flow.
Lines 7-8: If an appropriate session is found, it is sent a message using the send

method. Because the select statement specifies a single receiver, a break

statement terminates the for-loop once a message has been sent.
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1 IFilterableSession[] tourOrders = scheduler.getSessions(this, "o");
2 for (int i = 0; i < tourOrders.length; i++) {
3 IFilterableSession session = tourOrders[i];
4 TourOrder t = (TourOrder)scheduler.getActionClass(session,
5 "TourOrder");
6 if (t.orderNo.equals(order)) {
7 scheduler.send(this, session, "found taxi");
8 break;
9 }

10 }

Listing 5.5: An example of the tour order messaging from the taxi system presen-
ted in Sect. 2.1.3, the tour order with an order number matching the object flow
should be selected.

5.4.2 Evaluating a Session’s External State

Since an ESM describes a collaboration from the outside, it typically has less
states than the state machine implementing it. That means, one ESM state may
map to several control states. As an activity specification is transformed to a
component model, the transformation tool, e.g. Arctis, has knowledge of the map-
ping from external state to internal control states. Using that knowledge, it can
also transform ESM filters to state machine actions that check for all the internal
control states.

In this example, assume there are session state machines in a part “w” which
had an external state “waiting” mapped to two internal control states “waiting_0”
and “waiting_1” when they were transformed from the activity specification. In
the activity specification, a select statement is used to send a message “msg” to all
sessions that are in the external state called “waiting”: select all : ESM=waiting.1

To implement the statement and send the messages, the state machine first needs
to get the session state machines from the part, then send a message to those who
are in one of the desired control states. An example of code to do this is shown in
List. 5.6. The control states to check for are defined in line 1, and lines 2-5 obtains
the sessions, iterates through them and checks for macthing control states using

1The syntax for a filter evaluating an external state is not defined yet, this statement is therefore
only illustrative.
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1 String[] states = new String[] { "waiting_0", "waiting_1" };
2 IFilterableSession[] sessions = scheduler.getSessions(this, "w");
3 for (int i = 0; i < sessions.length; i++) {
4 IFilterableSession session = sessions[i];
5 if (session.matchOneOfControlStates(states)) {
6 scheduler.send(this, session, "SignalId");
7 }
8 }

Listing 5.6: An example implementation of how to message all sessions in the
part “w” that are in the external state “waiting” which is mapped to two internal
states, “waiting_0” and “waiting_1”.

«multi-session»

s : StatusUpdate

«multi-session»

t : TourRequest

available() : boolean

[select one : s.available()]

Figure 5.3: The selection of a tour request used as an example, as it is modeled in
an activity diagram.

the method matchOneOfControlStates. The message is sent to each session in
an appropriate state in line 6.

5.4.3 Evaluating an Operation in Another Session

Once again the example is derived from the taxi system. It covers the selection
of a tour request session in the control center for an available taxi. The select

statement is select one : s.available(), targeting the tour request sessions in “t”.
The statement is illustrated, as in its activity, in Fig. 5.3.
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To implement the selection statement, the state machine requires a way to cor-
relate status update and tour request sessions. In this example, the addresses of
the taxis the sessions collaborate with is stored in each session in a property called
taxi, and the sessions can be correlated by comparing these properties with each
other.2 This way, correlation like the one described in Sect. 3.4 can be imple-
mented. The correlation is illustrated again in Fig. 5.4. An example of code that
implements the statement is shown in List. 5.7, it does the following:

Line 1: Since the statement specifies a single receiver, an initially false boolean
sent is declared.

Lines 2-3: The tour request and status update sessions are obtained from the parts
“t” and “s” respectively.

Line 4: An iteration over all the tour requests sessions is started using a for-loop.
Line 6: The property taxi is retrieved from the tour request session, using the

method getProperty.
Line 7: For each tour request session, an iteration over all the status update ses-

sions is started using a for-loop, to search for correlation.
Line 9: The property taxi is retrieved from the status update session.
Line 10: By comparing the taxi properties of the tour request and status update

session, correlated sessions is found.
Lines 11-12: If a status update session correlated with the tour request session is

found, its action class is retrieved.
Line 13: The operation available in the action class is evaluated.
Lines 14-16: If the operation returned true, a message is sent to the tour request

session, the variable sent is set to true and the iteration from line 7 is ter-
minated.

Line 18: If a message was sent, the iteration from line 4 is terminated.

2Note that the application must compare the addresses without an appended session ID, which
should be included in the address they use to send session messages.
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s : StatusUpdate

t : TourRequest

[ select one : s.available() ]

ControlCenter

Taxi

Figure 5.4: How sessions correlate based on their collaboration partner. The blue
(grid pattern) tour request session can be selected if the blue status update session
passes the filter available(). The same applies to green (diagonal pattern).

1 boolean sent = false;
2 IFilterableSession[] tourRequests = scheduler.getSessions(this, "t");
3 IFilterableSession[] statusUpdates = scheduler.getSessions(this, "s");
4 for (int i = 0; i < tourRequests.length; i++) {
5 IFilterableSession tourRequest = tourRequests[i];
6 Object tTaxi = tourRequest.getProperty("taxi");
7 for (int j = 0; j < statusUpdates.length; j++) {
8 IFilterableSession statusUpdate = statusUpdates[j];
9 Object sTaxi = statusUpdate.getProperty("taxi");

10 if (tTaxi.equals(sTaxi)) {
11 StatusUpdate s = (StatusUpdate)scheduler.getActionClass(
12 statusUpdate, "StatusUpdate");
13 if (s.available()) {
14 scheduler.send(this, statusUpdate, "request tour");
15 sent = true;
16 break;
17 } } }
18 if (sent) break;
19 }

Listing 5.7: An example of the tour request messaging from the taxi system pre-
sented in Sect. 2.1.3, a tour request session with a taxi which status is available
should be selected.



Chapter6
Proof of Concept:
The Rock-Paper-Scissors Game

To show that the concepts introduced in this thesis can be used to implement a
system, a multi-player rock-paper-scissors game has been developed as a proof of
concept. This chapter presents the game basics and the graphical user interface
(GUI) presented to players, the general design and architecture of the system and
also highlight the details of the design where the concepts from this thesis have
been employed.

The executable components that make up the game and their source code are
appended to the thesis electronically, for more details on these, see Appx. B.

6.1 The Rock-Paper-Scissors Game Basics and User
Interface

Rock-paper-scissors is a game involving two contestants, usually played out face
to face using hand gestures. This example system takes the game to the computer,
exchanging hand gestures for mouse clicking on buttons.

A game of rock-paper-scissors can consist of several rounds. For each round,
the contestants pick a weapon from the three: Rock, paper or scissors. The winner
of the round is then determined. Rock beats scissors, scissors beat paper and paper
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Figure 6.1: The nickname input dialog of the rock-paper-scissors game client.

Figure 6.2: The view of the rock-paper-scissors game lobby.

beats rock, forming a game where no weapon is dominant and a contestant’s best
shot at winning is either guessing the opponents next move or perhaps pure luck
if your opponent is hard to read.

In this implementation of the game, there is no limit on the number of rounds
played per game. The scores are kept on a per-game basis, counting the number
of wins, losses and draws for the players.

As a player starts the client application, it is first prompted with an input dialog
for a nickname, shown in Fig. 6.1. After the nickname is supplied, the player will
be presented with a view of the lobby, shown in Fig. 6.2. From the lobby, it is
possible to chat with the other players, or alternatively only those that the player
shares an active game with. It is also possible to challenge the other players to a
game of rock-paper-scissors. If a challenge is accepted, the players are presented
with a game window, which is shown in Fig. 6.3. The game window presents the
current score for that game, the weapon options for the next round, and after each
round which weapons each player chose.
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Figure 6.3: The game window, where the game of rock-paper-scissors is played.

6.2 The Game Architecture and General Design

The game is implemented using a server/client architecture. The server controls
the game lobby, where players can enter using their clients, see other players, chat
with them and challenge them for a game of rock-paper-scissors.

The system collaboration design is composed from two collaboration uses,
as shown in Fig. 6.4. To enter the lobby, see the other players, chat with and
challenge them, each client performs a lobby guest collaboration with the server,
named LobbyGuest. As two people agree to play, the actual game is handled by
a separate game collaboration, named RpsGame. A game collaboration involves
three roles, the server acts as a host which mediates the game between two players.

An outline of the activity diagram that specifies the behavior of the system is
shown in Fig. 6.5. The figure outlines the control flow of four typical scenarios
occuring in the system:

(1) A player enters the lobby (red)
The first operation performed by a client is to contact the server and enter
the lobby. To do this, it initiates a new LobbyGuest-session with the server
and sends it the player’s nickname. The server adds the player to the lobby
and sends a confirmation back to the client. On the server, the lobby is
implemented in its own building block.

(2) A player chats with other players (blue)
Once in the lobby, a player may send chat messages to other players. It
is possible to chat with either all the other players or only those that the
player is currently playing with. Chat messages are sent to the server, which
forwards them to the lobby sessions of the message recipients.
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server
[0..*]

player

lg :

LobbyGuest

g :

RpsGame

lobby guest

host

playerOne

playerTwo

«system»

RpsGameSystem

host

playerOne

RpsGame

playerOne

lobby guest

LobbyGuest

Figure 6.4: The collaboration specification for the rock-paper-scissors game sys-
tem. The system collaboration uses two sub-collaborations.
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g : RpsGame
g : RpsGame

g : RpsGame

lg : LobbyGuestl : Lobby

1

2

3

4

RpsSystem

server player [0..*]

Figure 6.5: An outline of the activity diagram for the rock-paper-scissor system,
illustrating four typical control flows for: (1) player logon, (2) chat, (3) game
challenge and (4) a game.
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(3) A player challenges another player to a game (green)
When a player challenges another player to a game, a challenge request is
sent to the server. The server forwards this request to the lobby session of
the challenged player, which may choose to accept or reject the challenge.
The arrow in the figure includes how an accepted challenge makes the server
initiate a game for the two players.

(4) A game of rock-paper-scissors is played (orange)
Once a game is started, messages are passed between the server and the two
players. The game is played in rounds, and a message pattern repeats itself
for each round.

The dashed token flows in Fig. 6.5 indicate that they are in separate player com-
ponent instances from the non-dashed flows. For the game flow (4), the two dif-
ferent dashed lines also illustrate separate session instances.

Figure 6.5 also shows that the sub-activity for LobbyGuest has been marked
as multi-session in the server partition, and that the sub-activity for RpsGame is
marked multi-session in both partitions. This is illustrated by the stacks below
the sub-activities. Since LobbyGuest is not marked multi-session in the player’s
partition, each player component will only have one session of that type with the
server. They may however participate in many game sessions.

After designing the structural and behavioral specification of the system, it
can be transformed to UML component models. The transformation of the rock-
paper-scissors system is illustrated in Fig. 6.6. Note that because the player par-
tition is bound to the roles of both player one and player two in the RpsGame
collaboration, as was shown in Fig. 6.4, the component gets two parts, each hand-
ling the sessions for separate roles. The parts are given the names g_playerOne

and g_playerTwo as there cannot be two parts with the same name in a com-
ponent. The server also gets two parts, one for the lobby guest sessions and the
other for the game sessions. The building block for handling the lobby in the ser-
ver and the handling of the lobby guest session in the player are integrated into
their component’s main state machine, as they do not have multiplicity.
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l : Lobby

server

byGuest

player [0..*]

GameGameGame
g : Rpsg : Rpsg : Rps

lg : Loblg : Loblg : Lob

Server

Classifier

Behavior
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(Lobby)

[0..*]

g :

RpsGame

(host)

[0..*]

Player

Classifier

Behavior

g_playerOne :

RpsGame

(playerOne)

[0..*]

g_playerTwo :

RpsGame

(playerTwo)

[0..*]

Figure 6.6: An illustration of the transformation from activities to components for
the rock-paper-scissors system.
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6.3 Session Multiplicity and Reflection
Design Details

This section explains how the concepts of this thesis are used during the four
scenarios outlined in Fig. 6.5 from the previous section:

1. A player enters the lobby
2. A player chats with other players
3. A player challenges another player to a game
4. A game of rock-paper-scissors is played

For each scenario, illustrations will highlight elements from the activity specifica-
tion and code implementing some of those elements will be shown. The illustra-
tions are not formally correct UML, they are rather meant to illustrate the interes-
ting parts of the specification.

6.3.1 Scenario 1: A Player Enters the Lobby

As the client component is launched, the player will be prompted to supply a nick-
name. This nickname is then delivered to the server, which responds with either
a confirmation that the player has entered the lobby successfully or a rejection
with a message explaining the reason. This process is illustrated in Fig. 6.7. The
elements in the activity relevant for session multiplicity and reflection are marked
(1)-(5):

(1) Starting a new lobby guest session with the server
As the player supplies a nickname the client application initiates a new
lobby guest session with the server. The code that does this in the player
state machine is shown in List. 6.1. The code first obtains a new session ID
using the method getFreshSessionId and stores it in the variable lgSes-

sionId. It then sends a message containing the nickname using the method
sendToNewRemoteSession with the new session ID. As the session ID is
fresh, the server will not have a session state machine to handle the session
yet, and one will be created when the message arrives. The address to the
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set nickname

[     ] userName : String

s : String

enter : String

enterDenied : String

guestDenied : DeniedMsg

s : String

getMsgFromDeniedMsg

s : String

d : DeniedMsg

newGuest : String

lg : LobbyGuest

enterAccepted

guestAccepted

[ select one : 

lg.nickname=flow.nickname ]

[ select one : 

lg.nickname=flow ]

nicknameInput

showLobby

1
2

3

4

5

Figure 6.7: An illustration of the activity for entering the lobby.

1 lgSessionId = scheduler.getFreshSessionId();
2 lgAddress =
3 scheduler.sendToNewRemoteSession(this, serverAddress, "lg",
4 lgSessionId, "enter", nickname);

Listing 6.1: A lobby guest session is initiated and a message sent using the method
sendToNewRemoteSession which creates a new session state machine in the
receiving component.

lobby guest session state machine on the server is returned by the method
and stored in a variable lgAddress.

(2) Forwarding the flow from the lobby guest session to the server partition
As the object flow enters the lobby guest session, it is forwarded out of the
session to the server partition. On the component level, this corresponds to
sending a message from the session state machine to the main state machine
in the server component. The code that does this is shown in List. 6.2, it only
consists of using the method sendToComponentMainStateMachine.
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1 scheduler.sendToComponentMainStateMachine(this, "newGuest",
2 nickname);

Listing 6.2: A message is sent from a lobby guest session to the server’s main
state machine.

(3) Session selection when a player is rejected
If a guest is denied entrance to the lobby by the server, an object flow with
a denial message object is passed to the session. Which session the object
flow enters is decided using the statement: select one : lg.nickname=

flow.nickname, i.e. comparing the nickname stored in the session to that
contained within the denial message object. The code that performs this
selection and sends the message to the session state machine is shown in
List. 6.3, it does the following:

Line 1: The lobby guest sessions are obtained from the part “lg”.
Line 2: An iteration over the session objects is started using a for-loop.
Lines 4-6: The action class of the session which contains the nickname

variable for the session state machine is retrieved from the scheduler.
Line 7: The nickname in the action class is compared to the nickname at-

tribute in the denial message object from the object flow.
Lines 8-9: If the nicknames matched, the session is sent the denial mes-

sage using the send method and the for-loop is terminated since the
select statement specified that only a single session should receive the
message.

(4) Session selection when a player is accepted
The object flow indicating that a player has been accepted into the lobby
must have a session selected in the same way as the rejection object flow
in (3). This object flow only carries the nickname as a string, and therefore
the nickname in the session is compared to the entire object in the object
flow using the statement: select one : lg.nickname=flow. Code that
performs this selection and message passing is very similar to the code for
(3), but line 7 in List. 6.3 is changed to compare the nickname in the session
to the entire flow object instead of an attribute in it.
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1 IFilterableSession[] sessions = scheduler.getSessions(this, "lg");
2 for (int i = 0; i < sessions.length; i++) {
3 IFilterableSession session = sessions[i];
4 Lobby l =
5 (Lobby)scheduler.getActionClass(session,
6 "no.ntnu.item.arctis.mariubje.rps.lobbyguest.lobby.Lobby");
7 if (l.nickname.equals(deniedMsg.nickname)) {
8 scheduler.send(this, session, "guestDenied", deniedMsg);
9 break;

10 }
11 }

Listing 6.3: A lobby guest session is selected by comparing a variable to an attri-
bute in the object flow using a select statement.

1 Object playerAddressTemp =
2 scheduler.getAddressWithSessionId(playerAddress, sessionId);
3 scheduler.send(this, playerAddressTemp, "guestAccepted");

Listing 6.4: Code that sends the message from a lobby guest session state machine
on the server to the player component.

(5) Returning the control flow to the player partition’s session
After the control flow from (4) has entered the appropriate lobby guest ses-
sion, it is forwarded to the guest role of the sub-activity bound to the player’s
partition. On the component level, this corresponds to sending a message to
the main state machine of the player component. As the message belongs to
a session, the session ID should be appended to the address as described in
Sect. 4.1.3. The code that appends the session ID to the player component
address and sends the message is shown in List. 6.4. The session state ma-
chine uses the method getAddressWithSessionId to combine the address
and the session ID, and stores the combined address in a temporary variable.
A temporary variable is used in case the clean player address might be used
for other purposes, and it should therefore not contain the session ID. Using
the combined address, a message is sent to the player component’s main
state machine using the method send.
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6.3.2 Scenario 2: A Player Chats With Other Players

A chat operation starts when a chat message is delivered to the player component
from the GUI. A chat message has three attributes:

– The nickname of the sender.
– A boolean value toAll. If true, the message is directed at all the players

in the lobby. If false, it is only directed at the players which are currently
sharing an active game session with the sender of the message, a so called
private chat message.

– The message contents.

The chat message is delivered to the server via the lobby guest session, and the
server forwards it to the intended recipients’ lobby guest sessions. The recipients
then update their chat window with the message. This is illustrated in Fig. 6.8.

The new relevant parts of this operation are the session selections performed
when delivering the chat message to its recipients. For a chat message to all
players, marked (1) in the figure, the ESM state of the sessions is evaluated to
ensure the message is only delivered to players that have successfully entered the
lobby. For private chat messages however, marked (2) in the figure, in addition
to evaluating the ESM state of the sessions, the statement also evaluates ongoing
game sessions. The select statement attached to the object flow entering the
private chat streaming input pin of the lobby guest session is as follows:

select all : lg.ESM=inLobby g.isParticipant(flow.from)

The keyword all signals that the flow should enter all sessions that match the fil-
ters. The first filter says that a selected session must be in the ESM state inLobby.
The second filter requires that the operation isParticipant in a correlated game
session must return true when passed the sender of the chat message as argument.
Recalling from Sect. 3.4, a lobby guest session and a game session are correlated
if they collaborate with the same component. Therefore, if a game session colla-
borates with a state machine in the same component as the collaboration partner
of the lobby guest session examined for selection, and if the sender of a message
is also a participant in that game session, then the lobby guest session will receive
the private message.
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lg : LobbyGuest

[     ] nickname : String

chatMessage

c : ChatMessage
chatOut : ChatMessage

player [0..*]server

updateChat

chatIn : ChatMessage

privChatIn : ChatMessage

Decision guard: [ flow.toAll==true ]

Session selection: [ select all : lg.ESM=inLobby ]

Decision guard: [ else ]

Session selection: [ select all : lg.ESM=inLobby g.isParticipant(flow.from) ]

c : ChatMessage

1

2

1

2

Figure 6.8: An illustration of the activity for chat functionality. On the left of
the figure, for both outgoing flows from the decision node, a guard and a select
statement is attached. For presentation reasons, these are shown at the bottom of
the figure.
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The code from the executable component performing the select statement is
shown in List. 6.5. The state machine does the following:

Lines 1-2: It retrieves both the lobby guest sessions and the game sessions from
parts lg and g respectively.

Line 3: It starts to iterate through all the lobby guest sessions.
Lines 5-6: During the transformation, the ESM state inLobby was mapped to two

internal control states named s_2 and s_201. Therefore all the lobby guest
sessions are checked for these internal states.

Line 8: The first filter is passed, and the state machine starts iterating through all
the game sessions to find one that is correlated with the lobby guest session
currently being evaluated.

Lines 10-13: Each game session is checked for correlation by checking if the
address of the components of either player one or player two matches the
component address from the lobby guest session.

Lines 15-17: For each correlated game session, its action class is obtained.
Lines 18-21: The operation isParticipant is passed the sender of the chat mes-

sage and evaluated. If true, the chat message is sent to the lobby guest ses-
sion. There is no need to look for more correlated game sessions, therefore
the break statement terminates the iteration from line 8.

The implementation of the select statement for non-private messages is evens
simpler. The entire second iteration (lines 8-21) can be replaced by the message
sending statement (line 20), as there is no second filter.

6.3.3 Scenario 3: A Player Challenges Another Player to
a Game

A challenge consists of a player issuing a challenge, the challenged player respon-
ding and if the response is positive, a game session is initiated. The challenge
is initiated by message from the GUI containing a challenge object. The chal-
lenge object has two attributes: The nicknames of the challenging and challenged
players. The challenge message is delivered to the server via the lobby guest ses-
sion and the server forwards it to the challenged player’s lobby guest session. As
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1 IFilterableSession[] sessionsLg = scheduler.getSessions(this, "lg");
2 IFilterableSession[] sessionsG = scheduler.getSessions(this, "g");
3 for (int i = 0; i < sessionsLg.length; i++) {
4 IFilterableSession sessionLg = sessionsLg[i];
5 String[] esmStates = new String[] { "s_2", "s_201" };
6 if (sessionLg.matchOneOfControlStates(esmStates)) {
7 // Lobby guest session matches first filter
8 for (int j = 0; j < sessionsG.length; j++) {
9 IFilterableSession sessionG = sessionsG[j];

10 if (sessionLg.getProperty("playerOneComponentAddress").equals(
11 sessionLg.getProperty("playerAddress"))
12 || sessionLg.getProperty("playerTwoComponentAddress").equals(
13 sessionLg.getProperty("playerAddress"))) {
14 // Rps game is correlated with the lobby guest session
15 Host h =
16 (Host)scheduler.getActionClass(sessionG,
17 "no.ntnu.item.arctis.mariubje.rps.rpsgame.host.Host");
18 if (h.isParticipant(privChatIn.sender)) {
19 // Lobby-session matches both filters
20 scheduler.send(this, sessionLg, "privChatIn", privChatIn);
21 break;
22 } } } } }

Listing 6.5: Code that performs the selection of lobby guest sessions to receive a
private chat message.
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1 private boolean exists(Challenge flow) {
2 IFilterableSession[] sessions = scheduler.getSessions(this, "lg");
3 for (int i = 0; i < sessions.length; i++) {
4 IFilterableSession session = sessions[i];
5 Lobby l =
6 (Lobby)scheduler.getActionClass(session,
7 "no.ntnu.item.arctis.mariubje.rps.lobbyguest.lobby.Lobby");
8 if (l.nickname.equals(flow.challenged)) {
9 if (l.challengePending == null) {

10 return true;
11 } } }
12 return false;
13 }

Listing 6.6: Code for a method that implements an exists statement.

the challenged player receives the challenge, it can respond. If the response is po-
sitive, the server sets up a game session involving the two players. In this system,
a player may not receive a second challenge if the first one is not yet responded
to.1 The challenging process is illustrated in Fig. 6.9. The figure contains two
new elements relevant to session multiplicity and reflection. One is the use of an
exists statement as a guard, marked (1) in the figure, and the other is the initiation
of a new game session, marked (2).

When the server receives a challenge, it uses an exists statement to check if
the challenged player is available and not already processing another challenge
request. If the statement is true, the same filter sequence is used in a select

statement to select the appropriate session. The code for a method that implements
the exists statement is shown in List. 6.6. The method does the following:

Line 2: The lobby guest sessions are obtained from the part “lg”.
Line 3: An iteration over all the sessions is started.
Lines 5-7: The action class of the session under evaluation is obtained.
Lines 8-10: The filters are tested, and if both are passed the method returns true.
Line 12: If no session passes both the filters, the method returns false.

1A challenging player does not receive any feedback if a challenge is not accepted or the
challenged player has another request pending, but this would not be hard to implement in an
improved game application.
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[     ] pendingChallenge : Challenge

challenge

c : Challenge

player [0..*]server

Decision guard: [ exists lg : lg.nickname=flow.challenged lg.pendingchallenge=null ]

Session selection: [ select one : lg.nickname=flow.challenged lg.pendingChallenge=null ]
1

set pendingChallenge challengeReceived

b : boolean

c : Challenge

c : Challenge

challenges : Challenge

challenged : Challenge

accepted : Challenge

denied

1

[ else ]

c : Challenge

c : Challenge

g : RpsGame

startGame : Challenge

[ select roles :

g.playerOne.parent=[select one from lg : lg.nickname=flow.challenger].guest.parent

g.playerTwo.parent=[select one from lg : lg.nickname=flow.challenged].guest.parent ]

(lg : LobbyGuest)

 challengeResponseclear pendingChallenge

get and clear

pendingChallenge

2

Figure 6.9: An illustration of the activity for the challenge functionality.
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If a challenge is accepted, the server initiates a new game session for the two
players in the challenge. For this to work, the new session needs knowledge of
which components it should include in the game. Recalling Sect. 4.1.2, the me-
thod sendToNewLocalSession in the runtime support system provides support
for setting properties in a new session state machine. However, there is no support
for this in the activity diagrams used in the tool Arctis at the time of writing this
thesis. I have therefore come up with a first draft proposal to model this, a new
type of select statement:

select roles :

g.playerOne.parent=[select one from lg : lg.nickname=flow.challenger].guest.parent

g.playerTwo.parent=[select one from lg : lg.nickname=flow.challenged].guest.parent

In the first line, the keyword “roles” is used, instead of “one” or “all”, to indicate
that this select statement should be used to set properties in a new session the
flow enters. The two following lines sets the parents of the roles of player one
and player two in the game session. In the context of the activity diagram, the
parent of a role in a sub-activity is the partition it is bound to. To define the values
of the properties to set in the new session, select statements are used inside the
role select statement to find the lobby guest sessions from which the properties
are taken.2 The “.guest.parent” indicates that the parent of the guest role, i.e. the
player partition in the activity diagram, of the selected lobby guest sessions should
be put as parents to the roles of player one and two. Remember that this is only
a proposal and a way to illustrate a necessary feature for the rock-paper-scissors
system to work as it is designed.

The code that creates a new game session in the executable server component
is shown in List. 6.7. It does the following:

Line 1: A variable rpsGamePlayerOne is declared to hold the session from
which the property of player one will be taken.

Lines 2-12: A select statement is executed in similar fashion to other examples,
matching the nickname in a lobby guest session to the attribute challenger

of the object from the object flow. The selected session is stored in the
variable rpsGamePlayerOne.

2As these select statements are not attached to a token or object flow, they have “from lg”
added to them, explicitly signaling which sessions they are selecting from.
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Lines 14-25: The same as in lines 1-12, but a session is matched to the attribute
challenged of the object from the object flow and stored in a variable rps-

GamePlayerTwo.
Line 27: A hashtable properties map is created.
Lines 28-31: The addresses of the player components from the sessions stored in

the variables rpsGamePlayerOne and rpsGamePlayerTwo are put in the
properties map, using appropriate property IDs.

Lines 33-34: A game session state machine is created, sent a message with the
challenge and passed the properties map using the method sendToNewLo-

calSession of the scheduler.

With the game session in place, a game of rock-paper-scissors is ready to be
played.

6.3.4 Scenario 4: A Game of Rock-Paper-Scissors Is Played

The rock-paper-scissors game is played in rounds. For each round, the host asks
each player for their weapon of choice. They return this to the host which calcu-
lates the result and send it to the players. The next round has then begun, and the
players can choose weapons once more. The basics of the activity specifying this
is shown in Fig. 6.10.

With respect to session multiplicity, the first message sent to the players is
what requires special attention. This is marked (1) and (2) in the figure. When the
game session was created, it received knowledge of the component’s that should
participate as players one and two. The session state machines has however not
been created yet, and the host can not have knowledge of the addresses to them.
Therefore, the host must use the knowledge of the players’ components and the
method sendToNewRemoteSession, described in Sect. 4.1.3, to send those first
messages. It should also store the addresses returned by the method for future
use. This is similar to when the player component started a lobby guest session in
Sect. 6.3.1.

The code from the host session state machine that sends the first message to
player one is shown in List. 6.8. It is a single statement, using the method send-

ToNewRemoteSession and storing the return value. The variable holding the
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1 IFilterableSession rpsGamePlayerOne;
2 IFilterableSession[] sessions1 = scheduler.getSessions(this, "lg");
3 for (int i = 0; i < sessions1.length; i++) {
4 IFilterableSession session = sessions1[i];
5 Lobby l =
6 (Lobby)scheduler.getActionClass(session,
7 "no.ntnu.item.arctis.mariubje.rps.lobbyguest.lobby.Lobby");
8 if (l.nickname.equals(flow.challenger)) {
9 rpsGamePlayerOne = session;

10 break;
11 }
12 }
13

14 IFilterableSession rpsGamePlayerTwo;
15 IFilterableSession[] sessions2 = scheduler.getSessions(this, "lg");
16 for (int i = 0; i < sessions2.length; i++) {
17 IFilterableSession session = sessions2[i];
18 Lobby l =
19 (Lobby)scheduler.getActionClass(session,
20 "no.ntnu.item.arctis.mariubje.rps.lobbyguest.lobby.Lobby");
21 if (l.nickname.equals(flow.challenged)) {
22 rpsGamePlayerTwo = session;
23 break;
24 }
25 }
26

27 Hashtable properties = new Hashtable();
28 properties.put("playerOneParentAddress",
29 rpsGamePlayerOne.getProperty("playerAddress"));
30 properties.put("playerTwoParentAddress",
31 rpsGamePlayerTwo.getProperty("playerAddress"));
32

33 scheduler.sendToNewLocalSession(this, "g", "startGame", flow,
34 properties);

Listing 6.7: Code that finds two desired lobby guest sessions and creates a new
game session with properties found in the lobby guest sessions.
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g : RpsGame

calculate

result

gameAction

gameAction

startGame

oneAction : String

twoAction : String

twoAction : String

oneAction : String

processResult

r : RpsResult

processResult

r : RpsResult

r : RpsResult

1

2

host playerOne

playerTwo

Figure 6.10: An illustration of the activity for a game of rock-paper-scissors.
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1 playerOneAddress =
2 scheduler.sendToNewRemoteSession(this, playerOneParentAddress,
3 "g_playerOne", scheduler.getMySessionId(this), "startGame");

Listing 6.8: Code that sends the first message from the host to player one in a
game of rock-paper-scissors.

address to player one’s component, playerOneParentAddress, can be recogni-
zed from List. 6.7 in the previous section, its name was used as key in the proper-
ties map when the game session was created. Recalling the transformation from
activity to component model in Sect. 6.2, the part name in a player component for
session state machines acting as player one was named “g_playerOne”. The ses-
sion ID is obtained from the scheduler using the method getMySessionId. Since
the message represents a token flow, without an object, the data parameter of the
method is omitted.



Chapter7
Discussion of the Results

Throughout the thesis, decisions have been made as to what logic should be put
in the runtime support system, what interface should be offered to the state ma-
chines and what can be assumed regarding the state machines’ behavior. All in all,
the decisions made have been geared towards a simpler, more easy-to-understand
runtime support system and instead assume more of the application, i.e. the state
machines in the UML component model, such as:

– The application should know the addresses of collaboration partners or store
it once it is obtained.

– The main state machines in the application should remember the session
IDs of the sessions they are involved in.

– The components should know the names of parts in other components in-
volved in sessions it itself is involved in.

– The application applies the logic during reflection, using only a few reflec-
tion primitives offered by the runtime support system.

These decisions have been made knowing the transformation of a specification
consisting of collaboration and activity diagrams to the UML component model
is quite powerful, including analytical capabilities. For instance, it will know the
names of the parts in all the components it generates and making state machines
that remember addresses and session IDs should not be difficult.

Another reason for keeping logic in the component model instead of inclu-
ding it in the runtime support system, is that it probably will be easier for others
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to make an alternative runtime support system. For them, less hidden informa-
tion and complexity in the runtime support system is a good thing. Also, for
integration with other solutions, things like the addressing should be as clear and
unambiguous as possible.

Support for session reflection has been implemented so that logic has to be ap-
plied during the transformation from an activity specification to component mo-
dels. This decision was made with knowledge of that the transformation is the
only step of the process with extensive knowledge of both the information in the
activity specification and the generated component models. The aim was then to
supply tools that could enable reflection over different kinds of runtime informa-
tion, and impose as few restrictions as possible. By allowing access to the state
machines in all parts of a component and their properties, control state and action
classes, that aim can possibly be considered achieved.

Care and thought has also been put into keeping a clear separation of logic
between the tools used in the method. An engineer working with the tool Arctis
should not have to know about anything that is specific to the component models
in Ramses or further below, for instance state machine variables. This is also
the reason why the component models treat addresses and session IDs as generic
objects, and if they need to manipulate them the runtime support system should
offer the necessary methods to do so. In this way, the component models can be
runtime support system independent. As long as the runtime support system offers
a certain predefined interface, it can implement the session IDs and addresses as
it wishes.

Creation of session state machines have been integrated with messaging me-
thods, i.e. there is no separate method to create a session state machine without
also sending it a message. It could have been possible to offer this as a separate
method when creating them locally. However, the decision keeps interaction bet-
ween state machines to one dimension, i.e. sending of messages. This solution
also matches the modeling semantics in UML activity diagrams, where sessions
are started by directing a token or object flow at a starting pin. The flow is trans-
formed to a message sending action in the component models.

By using the method sendToNewRemoteSession, a session state machine
will be created if the session ID is new, without giving the targeted component



87

anything to say in the matter. The idea was that such a negotiation perhaps was
better implemented as a building-block on the application level, and that if the
runtime support system provided the necessary means, an application can decide
how to best use them. However, whether some sort of mechanism is needed on
the lower level to possibly block the remote creation of a session state machine,
e.g. for security reasons, has not been considered in this thesis.

A proposal was made in the description of the prototype rock-paper-scissors
system for a new type of select statement in the activity diagrams. While this
definition is outside the scope of this thesis, it seems clear to the author that the
functionality it expresses is required to model systems with sessions. When ini-
tiating a new session, it seems necessary that it is possible to explicitly specify
whom the session should involve, which might not be clear when collaboration
roles and activity partitions are specified with a multiplicity greater than one.
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Chapter8
Conclusions and Future Work

This report has presented solutions for code generation and the runtime support
system that enables an application to use session multiplicity and session reflec-
tion. The code generation part allows the application to be specified as a UML
component model, which in turn are generated by the tool Arctis. It has also pre-
sented a prototype rock-paper-scissors system that use sessions and is executed
using the described runtime support system. The prototype proves that at least
some types of applications can be implemented using the described solutions.

An interface is offered to components for using session multiplicity and re-
flection. It consists of methods for sending messages, which can also lead to the
creation of session state machines, and some methods for retrieving runtime infor-
mation from the runtime support system. By elaborating various message sending
and session state machine creation scenarios, one can feel confident that the inter-
face provides the necessary capabilities. Detailed examples of session reflection
have also shown that it is possible to perform session reflection using the informa-
tion from the runtime support system and the methods implemented by the session
objects from the IFilterableSession interface.

To support session multiplicity and runtime reflection, some new mechanisms
have been implemented in the runtime support system. This includes keeping
track of components and sessions meta information through a component regis-
try, intra-component message priority, delegation of session creation to the com-
ponent’s main state machines and changes to addressing and routing. The ad-
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dressing scheme has been extended to accommodate session state machines and
semantics for allowing messages to create new state machines or not. The rou-
ting mechanisms have also been adapted to interpret the new information in the
addresses.

The fact that component models are transformed automatically from higher
level specifications allows assumptions to be made about the usage patterns of the
solution that can be automatically analyzed, e.g. by the tool Arctis. The result of
this should be that compatible component models are designed consistently and
correct. As a general concept within the domain of this thesis, this fact should be
considered and can be of help when making design choices.

For the future, work can probably be put into making generic re-usable buil-
ding blocks related to creation of session state machines. Such building blocks
could for instance ensure that a component is not overloaded or grant different
session types based on the wishes and capabilities of the component wanting a
session. Within the same area, it can also be worth looking into whether the way
session state machines can always be granted to an external message can pose a
threat to the security of the system. Perhaps a mechanism is required in the run-
time support system that prevents this, or if the potential risk can be better avoided
in another way.



Technical Terms and Abbreviations

Arctis
A tool, tailored to the SPACE engineering approach, supporting the construc-
tion of collaborative service specifications.

cTLA
compositional Temporal Logic of Actions.

EBNF
Extended Backus-Naur Form.

EMF
Eclipse Modeling Framework.

GUI
graphical user interface.

Java
Sun Microsystems’ Java technology.

Java SE
Java Standard Edition.

JET
Java Emitter Templates.
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MIDlet
An application compatible with the Mobile Information Device (MID) pro-
file.

Ramses
A tool, tailored to the SPACE engineering approach, covering the component-
oriented part of the development and facilitating the implementation of state
machine-based models.

SPACE
A complete engineering method including notations, semantics and algo-
rithms. It stands for specification by activities, collaborations and external
state machines.

Sun SPOT
The Sun Small Programmable Object Technology, Sun SPOT, is an experi-
mental sensor technology from Sun Microsystems Laboratories capable of
running Java.

UML
Unified Modelling Language.

URI
Uniform Resource Identifier.
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AppendixA
Runtime Support System Details

The figure on the last page of this appendix tries to illustrate with some detail
the main control flow of the runtime support system when it is executing state
machines. The functionality can basically be split into:

The scheduler fires state machine transitions
The run method in the scheduler is a loop, for each loop it does the follo-
wing:

1. Fire transitions for any expired timers.
2. Fire the initial transition of any newly created state machines in their

initial state.
3. Fire a transition based on a message for the next state machine in the

round-robin queue.
4. If the scheduler has nothing more to do, it waits untill the next timer

expires or there is an external incoming event.

Messages sent from state machines are prepared for delivery
When a state machine uses a method in the scheduler to send a message,
the sending methods sanitize the parameters and deliver the message to the
method deliver in the scheduler for further processing.

Messages are processed in the scheduler
The method deliver in the scheduler interprets addresses of messages. It
looks for the addressed component, perhaps the appropriate session state
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machine and is also responsible for initiating the creation of new session
state machines if required. Messages adressed for components executing
on the scheduler are in the end put in the correct state machine’s message
queue, while other messages are forwarded to the router.

The router routes messages
The method routeMessage in the router is responsible for routing a mes-
sage to the appropriate scheduler, or if the message is addressed to another
endpoint, it is sent to the method routeOutgoingExternalMessage.

Messages are serialized before transported on the network
The method routeOutgoingExternalMessage uses the serializer to seria-
lize messages, and then forwards the serialized messages to the transporter.
The transporter handles the transfer of the message over the appropriate
network.

Messages arrive from an external source
The transporter receives messages from other endpoints. These messages
are given to the method routeIncomingExternalMessages, which dese-
rializes them using the serializer before giving it to the method routeMes-

sage.
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AppendixB
The Rock-Paper-Scissors System

The rock-paper-scissors system consists of two executable components:

– The game server
– The game client

These are appended electronically to the thesis, and can also be retrieved
from the author’s web site: http://folk.ntnu.no/mariubje/rps for as long as
the student account is kept alive by the university.

The executable components are packaged as .jar-files, i.e. Java archives that
contains the compiled classes. They require Java SE version 5 or later to run, and
can be run on most systems by double-clicking the files.

The game server

The game server must always be running before clients are started. Besides
double-clicking the file, it can also be started from the command line by typing
the following when in the same directory as the file:

java -jar rps-server.jar

The server will display a window where connected players will be listed.
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The game client

Once a server is running, a client can be started to enter the server’s lobby, and
from there chat with other players or play rock-paper-scissors. To launch the client
from the command line, type the following when in the same directory as the file:

java -jar rps-client.jar

The client will first ask for the IP address of a server. If the server is running
on the same machine as the client, the dialog can be left empty while pressing
OK. Otherwise an IP of the server must be entered for the client to work. Once
the server IP dialog has been completed, the player will be asked for a username
which is used to enter the lobby.

Note 1! The server or the client may not be using a NAT unless they are on the
same LAN. This will cause messages that do not reach their destination.

Note 2! Two clients may not run on the same port on the same machine. To
start a client on an alternative port, supply the port as an argument when starting
the client from the command line. Avoid using port 52000 on the same machine as
the server, port 12345 if another client is running on the default port and otherwise
any known used ports. The command to use an alternative port is:

java -jar rps-client.jar <portNo>

The source code

The Java source code for the executable components are provided in two com-
pressed .zip files, rps-server-src.zip and rps-client-src.zip. The notable Java
packages are:

no.ntnu.item.ramses.runtime.* Contains the source code for the runtime sup-
port system for the Java standard platform.

no.ntnu.item.arctis.mariubje.rps.* Contains the source code for the executable
state machines, action classes and data objects used in the system.
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org.* Included source code from the open source projects kSOAP2 and XML-RPC

for Java ME which is used by the runtime support system.1 2

The class with the main method that launches the components are for both of
them no.ntnu.item.arctis.mariubje.rps.rpssystem.Start

Any questions? → marius.bjerke@gmail.com

1http://sourceforge.net/projects/ksoap2
2http://sourceforge.net/projects/kxmlrpc
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