
June 2009
Finn Arve Aagesen, ITEM

Master of Science in Communication Technology
Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Telematics

Semantic Web Services in a Network
Management System

Olav Nistad

Problem Description
Semantic Web Services (SWS) combines semantic web and web-services technology.
Semantic Web technology offers meta-data descriptions which are machine-interpretable and that
can be used as a basis for logic reasoning. Web Services technologies both make it possible to
find, locate and interact with services offered by other organizations.

The objectives with this research work is to apply SWS technology for a network management
system (NMS), which can install SNMP managers during run-time
in systems running TAPAS platform.

1.Analyse the potential benefit of using ontology and reasoning applications
in this system.

2.Specify proposed ontology and reasoning applications integrated with the NMS application.
Ontology shall be specified using Protégé-OWL Editor.
3.Specify and implement web-service based applications that makes the reasoning applications
from 2 available as WEB-services

Assignment given: 15. January 2009
Supervisor: Finn Arve Aagesen, ITEM

Abstract

Semantic Web Services (SWS) are a facility towards full automation of

service usage, providing seamless integration of services that are published

and accessible on the Web. Based on Semanic Web technology SWS is

simply a semantic annotation of the functionalitites and interfaces of Web

Services. In the very same way that ontologies and metadata lanaguages

will facilitate the integration of static data on the Web, the annotation of

services wil help to facilitate the automation of service discovery, service

composition, service contracting, and execution.

In this thesis we demonstrate how SWS technology can be applied to a

network management system (NMS), which can install SNMP managers

during run-time in systems running TAPAS platform. Several reasoning

applications are made and integrated with the existing system. In addi-

tion, we specify a set of Semantic Web Services described using OWL-S,

in order to execute these applications.

1

Preface
This paper is the result of the author’s masters thesis carried out at the

Department of Telematics1 at the Norwegian University of Science and

Technology2. The work on this thesis begun in January 2009 and ended

in June the same year.

Acknowledgements

I would like to thank my teaching supervisor Professor Finn Arve Aagesen

for much appreciated guidance in the initial stages of the work. Further-

more, I would like to give my appreciation to the participants of the

MindSwap OWL-S mailing list3, who have been of great service during

the implemenation stages of the thesis.

Oslo, June 16, 2009

Olav Nistad

1http://www.item.ntnu.no/
2http://www.ntnu.no/
3http://lists.mindswap.org/mailman/listinfo/owl-s/

2

Contents

1 Introduction 8

1.1 Motivation . 8

1.2 Reader’s Guide . 9

I Background 11

2 Web Services 12

2.1 HTTP . 12

2.2 SOAP . 13

2.3 Web Service Description Language (WSDL) 14

2.4 Universal Description, Discovery and Integration (UDDI) . 15

3 Semantic Web Technology 17

3.1 Knowledge Representation and Ontologies 18

3.2 How to represent knowledge 19

3.2.1 Types of ontologies 21

3.3 Ontologies in the Semantic Web 21

3.3.1 The Resource Description Framework (RDF) 23

3.3.2 RDF Schema . 24

3.4 The Web Ontology Language: OWL 25

3.5 Components of OWL . 28

3.5.1 Individuals . 28

3.5.2 Properties . 28

3.5.3 Classes . 28

3.6 Rules . 30

3.6.1 Types of rule languages 30

3.7 Protege-OWL . 31

4 Semantic Web Services 32

4.1 Limitations of current Web Services 32

4.2 Key Concepts in Semantic Web Services 34

4.2.1 Service Representation 34

4.2.2 Software agents . 35

4.2.3 Communication . 35

4.2.4 Orchestration and Service Composition 35

4.2.5 Life cycle . 37

3

5 A Semantic Web Service Approach - OWL-S 38

5.1 Atomic and Composite Services 39

5.2 Main Tasks Enabled by OWL-S 39

5.3 OWL-S Description . 40

5.3.1 OWL-S Service . 41

5.3.2 OWL-S Service Profile Model 42

5.3.3 OWL-S Process Model 44

5.3.4 OWL-S Service Grounding 46

5.4 Tools for developing OWL-S based Semantic Web Services . 46

5.4.1 Semantic Web Service tools 47

II SWS applied to a Network Management Sys-
tem 49

6 Introduction 50

7 SNMP-based Monitoring Application By Using TAPAS

Platform 51

7.1 Graphical User Interface . 53

7.2 TAPAS: Telematics Architecture for Plug-and-Play Systems 54

7.2.1 Theatre Metaphore 55

7.2.2 Plug-and-Play (PaP) 55

8 Application improvement using Semantic Web Technol-

ogy 58

8.1 Drawbacks in version 1 . 58

8.1.1 GUI and MainManager must co-exist at the same

device . 59

8.1.2 Object Identifier input 59

8.1.3 Choice of MiniManager 60

9 An SWS Enriched SNMP-Based Monitoring Application 61

9.1 Basic Architecture . 61

9.2 Server side of the system . 61

9.2.1 CreatePlayApplication 63

9.2.2 PluginMainManagerApplication 63

9.2.3 PluginMiniManagerApplication 64

9.2.4 GetMibDefApplicaiton 67

9.2.5 SNMPQueryApplication 72

4

9.2.6 PlugoutMiniManagerApplication 72

9.2.7 PlugoutMainManagerApplicaiton 72

9.2.8 StopPlayApplication 73

9.3 The Semantic Web Services 73

9.4 Client side of the application: MonitorApplication 75

9.4.1 MindSwap OWL-S API 76

9.4.2 InvokeService class 77

9.4.3 ServiceMatchMaker class 78

III Evaluation 80

10 Conclusion 81

10.1 Analyze the potential benefit of using ontology and reason-

ing applications in our NMS system 81

10.2 Specify proposed ontology and reasoning applications inte-

grated with the NMS application. Ontology shall be spec-

ified using Protege-OWL Editor. 82

10.3 Specify and implement web-service based applications that

makes the reasoning applications from 2 available as Web

Services . 83

11 Evaluation and Future Work 83

11.1 Proposals for future work 84

12 Related Work 85

12.1 Semantic Management Meta-Model 85

12.2 The use of Web Services in a Network Management System 85

5

List of Figures

1 Structure of a SOAP Message . 13

2 Web Service interaction . 15

3 A simple is-a hierarchy (taxonomy) 20

4 Semantic Web Stack . 22

5 RDF triple example . 24

6 Example XML serialization . 24

7 An example RDF-S document . 25

8 OWL example using abstract syntax 27

9 Symmetric property . 29

10 Transitive property . 29

11 Screen-shot of Protege-OWL . 31

12 The evolution of the Web . 33

13 OWL-S Upper ontology . 41

14 TAPAS SNMP-Based Monitoring Application version 1 - basic

architecture . 52

15 Main window in GUI of version 1 53

16 Monitor session window in GUI of version 1 54

17 TAPAS Service and Computing Architecture 56

18 TAPAS Theatre Metaphore . 57

19 TAPAS SNMP-Based Monitoring Application version 2 - basic

architecture . 62

20 Asserted MIB ontology model . 68

21 Restrictions of sysUpTime . 69

22 Restrictions of systemuptime . 69

23 Inferred MIB ontology model . 71

24 WSDL2OWL-S Converter . 74

25 Simplified UML class diagram of MonitorApplication 76

26 Pseudo-code for the findService method of the ServiceMatch-

Maker class . 79

6

List of Tables

1 MiniManager individuals and their hasCapacity values 66

2 OWL-S Services and their input/output types 75

7

1 Introduction

Web Service technology and the idea of Service-Oriented Architecture (SOA)

for web-based implementation of distributed software systems has experienced

a tremendous success [24]. In short time, the SOA approach not only received

much praise in the Computer Science research community, but also gained con-

siderable interest by big international players in the IT industry, such as Mi-

crosoft, IBM and SAP.

One vital component of the SOA approach is Web Services, which provides

a platform- and programming language independent way of achieving interop-

erability between different parts of distributed software systems.

Semantic Web technology aims at harmonising semantical discrepancies in

software systems by providing machine-interpretable semantics, making com-

puters “understand” parts of the information it is processing. This can enable

computers to make automated decisions, thus creating more powerful and in-

telligent applications. The approach of combining Web Services with Semantic

Web technology is called Semantic Web Services (SWS). Semantic Web Services

applies semantic annotations to the inputs, outputs, preconditions and effects

of Web Services - expressed in knowledge representation languages, referring to

shared ontological vocabularies. This can enable a higher degree of automation

and produce more precise results than conventional Web Services.

In this work we will investigate the potential benefit of applying Semantic

Web technology to a network management system (NMS). The network man-

agement system was created as part of a project thesis carried out in autumn

2008[17] . The system aims at limiting the amount of computation required by a

central managament station as well as reducing network management traffic, by

installing SNMP managers during run-time in devices running TAPAS platform

[19]. After an investigation of what parts and components of the current NMS

applicaiton may benefit from being applied with SW technology, we will propose

a new version of the application where ontology and reasoning applications is

integrated with the NMS application.

1.1 Motivation

Allthough experiencing a slow start since the idea was first released, the Se-

mantic Web has received increased attention and recognition. Several projects

8

have been researching Semantic Web technology, and multiple promising tools

and framworks based on this technology are under development. Semantic Web

Services is bringing Semantic Web technology in to the field of service-oriented

computing - a field which has become one of the predominant factors in current

IT research and development efforts. Issues such as intelligent service discov-

ery or fully automated service composition are subject to widespread ongoing

research in many labs.

In the autumn of 2008 we carried out a project thesis[17] where we created

a SNMP monitoring application based on the TAPAS Platform4. Using this

application as a starting point, it will be interesting to investigate how Semantic

Web technology can be applied to this system to further improve it.

1.2 Reader’s Guide

This section describes the structure and content of this thesis. The thesis is

divided in three main parts; Part I will give the reader a background on the

different technologies and approaches used in this work. Part II will present our

new NMS application, including it’s architecture and building blocks.

In Part III we will evaluate our work. This includes a discussion of how our

result harmonizes with our objectives, a proposal for future work as well as a

presentation of related works.

Part I: Background

Section 2: Web Services This section will give a brief presentation of

Web Services, including it’s advantages and main building blocks.

Section 3: Semantic Web Technology This section will give the reader

an introduction to Semantic Web technology. This includes a description of

knowledge representation in general as well as different knowledge representa-

tion languages. The latter includes a brief introduction to RDF as well as a

more in-depth description of OWL. In addition the reader will be given a brief

introduction to the Protg-OWL Editor.
4http://tapas.item.ntnu.no/

9

Section 4: Semantic Web Services This section will describe the main

drawbacks of conventional Web Services, and explain how Semantic Web Ser-

vices can help address them. Following this key concepts of Semantic Web

Services will be described.

Section 5: An Semantic Web Service Approach: OWL-S The sec-

tion will give the reader an presentation of the SWS approach that is used in our

NMS application, namely OWL-S. The main components of the approach as well

as different developing tools used to create OWL-S services will be described.

Part II: SWS Applied to a Network Management System

Section 7: SNMP-based Monitoring Application by using TAPAS

Platform This section will give the reader a brief presentation of the current

NMS application created in autumn 2008.

Section 8: Application Improement Using Semantic Web Technol-

ogy This section will pinpoint the different parts of our existing solution that

may benifit from being improved using SW technology.

Section 9: An SW Enriched SNMP-Based Monitoring Applica-

tion Here we will present our new NMS application which is based on the

current application only extended with SW technology. The different ontology-

and reasoning applications will be presented as well as how they are accessed

using OWL-S to semantically annotate Web Services. The different drawbacks

presented in section 8 will be addressed.

Part III: Evaluation

Section 10: Conclusion Here we will discuss whether and how we achieved

our objectives for this thesis.

Section 11: Evaluation and Future Work In section 11 we will give

a more general evaluation of our result as well as present some proposals for

future work.

Section 12: Related Work Here we present some related work.

10

Part I

Background

11

2 Web Services

As distributed software systems are becoming increasingly powerful a wide va-

riety of rich services can be offered. On the other hand such software systems

are also becoming more complex and measures needs to be taken to bridge the

gap betweeen separated heterogeneous areas. An effective solution to achieve

interoperability in such distributed software systems can be realized through the

use of Web Services. Web Services is a standardized architecture for modular

systems, where new functionality can be made from existing building blocks

and where communication can be established between hetereogenous elements.

Other approaches that addresses the same goals such as CORBA or Multi-Agent

Systems, do exist, but these technologies lack some of the great advantages of

the WS approach. Firstly, WS technology is a simple extension of existing Inter-

net standards and based on widely accepted protocols such as HTTP. Secondly,

it is platform independent and allows for easy encapsulation of existing code

and applications

Web Services allow access to a functionality via the Web using a set of open

standards that make the interaction independent of implementation aspects

such as the operating system plaform and the programming language used.

Web service technology build upon four main components:

• An agreed transport protocol: HTTP

• A platform-independent message description format: SOAP

• A language for Web service interface description that describes which op-

erations and messages a service can offer: WSDL

• A registry for publication and discovery of available services: UDDI

2.1 HTTP

The first main component can, in principle, be realized by any of the common

transport protocols such as FTP or SMTP. Because of it’s “robustness” against

firewalls, the most popular protocol in the context of Web services is, however,

HTTP. Also, HTTP is ubiquitously available and its built-in addressing and

error-handling functionalities are fully covering the needs of the Web Services

message description format (SOAP).

12

2.2 SOAP

The second component is realized by SOAP. SOAP is a specification for the

exchange of XML-coded messages and specifies the binding to HTTP as an un-

derlying communication protocol between two addressable endpoints. The most

important advantage over competing technologies, like Java RMI or CORBA,

is thatt SOAP is absolutely independent from a certain operating system, a

programming language or special runtime components. SOAP aims to achieve

maximum acceptance and flexibility by the provision of a sophisticated exten-

sion model in which application-specific information may be conveyed in an

extensible manner, without making any up-front commitment to the semantics

of application-specific data. A SOAP message itself is just a XML document.

Figure 1 depicts the shematic structure of a SOAP message, while the XML

representation is given below the figure..

Figure 1: Structure of a SOAP Message

Within a SOAP envelope, an optional header- and a mandatory body ele-

ment is present. The body-element contains the actual payload of the message.

The SOAP specification does not define any constraints about the data in the

message body, one can include all kinds of XML data here. The used data

format is application specific.

13

<? zml version=1.0 encoding =UTF−8 ?>
<env:Envelope xmlns:env=ht tp : //www.w3 . org /2003/05/ soap−enve lope>

<env:Header>
. . .

</ env:Header>
<env:Body>
. . .

</env:Body>
</ env:Envelope>

2.3 Web Service Description Language (WSDL)

The third component enabling Web services as an universal middleware tech-

nology is a powerful and well-structured Interface Definition Language (IDL).

The basic task of an IDL is to provide an exact and machine readable definition

of service interfaces. Also, an IDL allows a distinction between the description

of the abstract functionality (operations) that a service provides and the details

of how to access the service. A service requester interprets the IDL description

of a service provider in order to generate service calls that are compatible with

the according service interfaces. The current IDL approach for Web services,

WSDL, is structured in five main sections: documentation, types, interface,

binding and service. The documentation section contains additional textual in-

formation on how to use the described service for humans. Its content is meant

as an endorsement to the other sections of the WSDL document, which are

mainly meant to be interpreted by machines.

In the types section all data types that will be used in the input and output

messages of the service operations are declared. This is typically done using

XML Schema. Unlike other XML grammar description languages XML Schema

provides a very sophisticated type system which can be directly used for speci-

fying basic data types like integers, strings and dates, as well as compund data

types. Furthermore, extensions and restrictions of existing data types can be

described.

The interface section is basically the core component of a WSDL document.

Here each service operation is listed and its inputs and outputs are specified by

referencing the according data type definitions which were specified in the types

section. Up to this point the service description is abstract, i.e. independent

from a certain messaging format or transport mechanism.

In the binding section we are mapping our abstract service operations to

concrete ones. We specify the used messaging format (e.g. SOAP 1.2) and

14

the protocol used for message transport (e.g HTTP 1.1). The according service

operation, declared in the interface section are referenced using the ref attribute.

In the service section we finally define service endpoints. An endpoint ref-

erences a previously defined binding and provides all necessary technical infor-

mation for accessing its service operations. This is typically done by providing

the URL of the Web Service.

2.4 Universal Description, Discovery and Integration (UDDI)

UDDI is a framework that provides means to publish (advertise) Web services

as well as to browse and query existing Web services. UDDI provides a data

model for services and business entities. more concretely, it provides three cat-

egories of information: white, yellow, and green pages. This model provides

related information to a service such as the name, address, telephone number,

and other contact information of a given application; basically, any information

that categorizes applications, and technical information about the Web services

provided by a given application.

To summarize, the four mentioned core components enable a set of basic

interactions required in a Web-service-oriented architecture, as depicted in figure

2

Figure 2: Web Service interaction

15

This figure illustrates the basic building blocks of a Web-service-oriented

architecture. In order for a Web service to be discovered, a service provider

must first publish the service in a UDDI. A service requester is then able to

issue queries to the UDDI in order to obtain a reference to the desired service.

To invoke a service the requester needs to know how to do this (i.e it needs

the interface definition). This information is provided by WSDL (Web Service

Description Language). After interpreting the WSDL document the service

requester can now invoke the service. All communication between the parties

are done over SOAP.

16

3 Semantic Web Technology

Today, most web pages in the current Web is built up by HTML. HTML is a

language with emphasis on visual presentation that describes a body of struc-

tured text interspersed with multimedia objects and interactive forms. The

emphasis has been on publishing and presenting the information to a human

being. HTML has however limited ability to classify the blocks of text on a

page, apart from the roles they play in a typical document’s organization and in

the desired visual layout. In the current Web one has to know where things are

located. For example, the URL http://www.vg.no/ indicates only an address

of a web site, but it does not tell you what exactly it contains. The user needs

to get information up front about what are contained where, e.g from email,

from advertisement, friends etc. The Web contains so much information that

it becomes increasingly difficult to find exactly what you look for. Despite the

successful introduction of powerful search engines, the Web does not usually

function as a content or knowledge management platform. It is difficult to find,

sort and catalog all the information that is out there. Due to the fact that the

Web itself has limited ability to help users answer complex question or perform

many day-to-day tasks, the Web is barely an adequate information retrieval

tool. This limitation is rooted in the inability of computers to understand the

semantics behind the information it is processing. That is, HTML specifies how

information should appear, but ignores the meaning or significance of that in-

formation. Tim Berners-Lee and his colleagues at W3C have been addressing

these limitations of the current Web and they call the next stage the Semantic

Web. While still in the initial stages of development, the project entails adding

an additional layer of Web infrastructure to regular Web technology. The key

idea behind the Semantic Web is augmenting Web documents with meta-data

and rules of logic. The resulting infrastructure helps computers understand Web

data in the same way that humans do. Adding semantics to the current Web

allows computers to make decisions, form interferences and respond to complex

queries. The Semantic Web will enable users to search not only for documents

that contain data, but also for the desired data itself, through semantic identi-

fication and location techniques. It will support software agents that are able

not only to locate data, but also to perform meaningful tasks with data auto-

matically and on the fly that today must be done manually and episodically

17

by computer users. To accomplish this the Semantic Web uses a set of differ-

ent technologies. The most important ones will be described in the following

subsections.

3.1 Knowledge Representation and Ontologies

Common sense for humans is not necessarily, and most often not, common

sense for traditional software systems. For example, a computer have no way

of knowing that the word “empire” can have the same meaning as the word

“realm”, in some contexts. Nor can it know that the word “dog”, found in one

location, refers to the same concept as the word “dog” found in another location.

Real communication can only be achieved between two parties if they both

share a common understanding of how the language refers to concepts prevalent

in the real world, and if both know which constraints and which background

knowledge is typically associated with these concepts. All though knowledge like

this is common-sense for most humans, it is typically not available in a computer

system. For this reason, there is still a need for manual human intervention in

order to interpret the semantics of information residing in software systems.

The aim of the Semantic Web is to harmonize semantical discrepancies in

software systems by providing machine-interpretable semantics, enabling a ma-

chine to understand and reason about the information carried in the data it is

processing. This is realized by creating meta-data for web accessible informa-

tion. This meta-data is expressed in powerful logic-based representation lan-

guages that refer to the controlled vocabulary of shared and quasi standardized

domain knowledge models, also called ontologies.

Long considered as one of the principal elements of Artificial Intelligence,

knowledge representation and reasoning aim at designing computer systems that

are able to reason about a machine-interpretable representation of the world.

A knowledge base is a computational model of some domain of interest which

contains symbolic surrogates, substitutes of real world concepts, such as physical

objects and relationships. In a knowledge-based system these surrogates are

formed as statements about the domain, and reasoning can be achieved by

manipulating these statements.

If the domain of interest is, for instance “Animals”. The knowledge base

can then be filled with statements like: “An animal can either be a predator or

a herbivore. “A predator is an animal that lives by preying on other animals”.

18

“Cheetahs and gazelles are special kinds of animals”. “Cheetah’s favorite food is

gazelles”. From the given statements a knowledge-base system can then deduce

that a cheetah is a predator.

In this way, a knowledge-based system can reason about and be able to de-

duce own conclusions about the domain of animals, similar to what a human

would. After filling in more (a lot more in this case) statements it could for

example deduce that the African and Asian elephant are both elephants be-

longing to the same family, but due to a few genetic differences they cannot be

interbred.

3.2 How to represent knowledge

In an actual knowledge base, the statements can not be written as they appear

above. Instead, for enabling a machine to understand and reason about some

knowledge, one has to represent this knowledge in a machine-interpretable form,

also called an ontology language. The term “ontology” originates from philos-

ophy and has been adopted in the field of Computer Science with a slightly

different meaning. Adopting the definition by [1], ontology can be defined as:

An ontology is a formal explicit specification of a shared conceptualization.

More precisely, an ontology defines a set of representational primitives with

which to model a domain of knowledge or discourse. The representational

primitives are typically concepts (or classes/sets), attributes (or properties),

and individuals (or instances).

Ontologies interweave human and computer understanding of symbols. The

representational primitives or terms can be interpreted by both humans and

machines. The meaning for a human is represented by the term itself, which is

usually a word in natural language, and by the semantics relationships between

terms. An example of such a human-understandable relationship is a super-

concept -sub-concept relationship (often referred to by the term “is-a”). Such

relationship denotes the fact that one concept, the super-concept, is more gen-

eral than another - the sub-concept. For instance, the concept Animal is more

general than the concept Predator. Figure 3 depicts a simple is-a hierarchy

19

Figure 3: A simple is-a hierarchy (taxonomy)

(also known as taxonomy), where the more general concepts are located above

the more specialized concepts.

A concept describe a particular object in the real world. The concept Predator

should capture all existing predators in the real world. Since lions, cheetahs,

snakes and tigers all are predators, they are captured by this concept. These are

called individuals or instances of the concept. In the figure 3 a lion is modeled

as an instance of a predator through the instance-of relation. It is important to

note that since the concept Predator is a sub-concept of the concept Animal.

Any instance of Predator is also an instance of Animal

These relations, which are implicitly known to humans (e.g. a human knows

that every predator is an animal), are encoded in a formally explicitly way so

that they can be understood by a machine. One can say that the understanding

possessed by humans are encoded in a way that ables machines to process it

and draw own conclusions based on logical reasoning.

20

3.2.1 Types of ontologies

There exist different types of ontologies, built for different types of use; and

they vary in both generality and expressiveness. A very general ontology has a

very broad scope, and tries to capture all commonsense knowledge (e.g. space

and time). The expressiveness of an ontology refers to the level of detail given

in the ontology.

Since an ontology is a specification of a shared conceptualization, domain

experts, users and designers need to agree on the knowledge specified in an on-

tology so that the ontology may be shared and reused. Since such an agreement

can be hard to achieve, it is a good idea to layer the knowledge in different

ontologies on the basis of generality. Agreement is then required only between

specific domain and application ontologies and between the higher/level ontolo-

gies that are being used. Hence, a categorization of ontologies can be made

according to their subject of generalization. Top level ontologies, also called

upper ontologies or foundational ontologies, attempt to describe very abstract

and general concepts that can be shared across many domains and applications.

Due to their generality, they are typically not directly used in applications but

for other ontologies to be aligned to. On the other end you have application

ontologies that provide the specific vocabulary required to describe a certain

task enactment in a particular application context. These ontologies are limited

to knowledge about a particular domain of interest. The narrower the scope of

the domain for the ontology, the more an ontology engineer can focus on axiom-

atizing the details in this domain rather than covering a broad range of related

topics. These lower ontologies inherit and specialize concepts and relations from

the upper ones, while the upper ones have a broader potential for reuse.

3.3 Ontologies in the Semantic Web

The idea of the Semantic Web was boosted in the late 1990’s. The general

opinion held by W3C was that the Semantic Web needed an ontology language

compatible with current web standards and that could be expressed in XML.

A much used illustration of the Semantic Web is the Semantic Web Stack,

which is depicted in figure 4. The bottom layers of the stack, Unicode, URI

and XML, is built up by existing web standards which forms the syntactical

foundation for Semantic Web languages. Unicode provides a character-encoding

21

Figure 4: Semantic Web Stack

22

standard, used by XML. The URI (Uniform Resource Identifier) is used to

identify or name a web resource. All concepts and resources used in the above

layers can be specified using Unicode, and uniquely identified using URI’s. RDF

and OWL (Web Ontology Language) are kinds of ontology languages which will

be described in the next section. Placing the logic layer on top of the OWL and

rules layer has been subject to some disagreement since both OWL and rules

are grounded in logic. The proof and trust layers are not well documented, but

they do most likely refer to the application and not to any specific language.

for instance, the application could prove some statement by using deductive

reasoning, and a statement could be trusted if it had been proven and digitally

signed by some trusted third party.

3.3.1 The Resource Description Framework (RDF)

The Resource Description Framework (RDF)[28] is the first language developed

especially for the Semantic Web. RDF was developed as a language, realized in

XML, for adding machine-readable meta-data to existing data on the Web. RDF

Schema extends RDF with basic ontological primitives such as classes, properties

and instances. In addition, the instance-of, subclass-of, and subproperty-of

relationships have been introduced, allowing class- and property hierarchies.

These primitives are used to create statements about resources (specified as

URIs) on the web. Such statements are formed as subject-property-object

triples, also written as P(S,O). For instance, the triple hasAuthor(The Girl

With the Dragon Tattoo, Stieg Larsson) is a statement saying that the

book The Girl With the Dragon Tattoo (subject) has the author (property) Stieg

Larsson (object). An object of a triple can, in turn, function as the subject of

another triple, forming a directed labeled graph, (figure 5) where the subject

and object correspond to nodes, and the edges between correspond to properties.

The corresponding XML serialization is shown in figure 6

23

Figure 5: RDF triple example

<?xml version=1.0 ?>
<rdf:RDF xmlns : rd f=ht tp : //www.w3 . org /1999/02/22− rdf−syntax−ns#
xmlns:book=ht tp : //www. examplebooks ite . com/books/#
xmlns:author=ht tp : //www. examplebooks ite . com/ authors/#
xmlns :base =ht tp : //www. examplebooks ite . com/>

<r d f :D e s c r i p t i o n rd f : about=#The Girl With The Dragon Tattoo>
<book:hasAuthor>

<author : f i r s tName>St i e g</ author : f i r s tName>
<author: lastName>Larsson</ author: lastName>

</book:hasAuthor>
</ r d f :D e s c r i p t i o n>

</rdf:RDF>

Figure 6: Example XML serialization

3.3.2 RDF Schema

While RDF is a language for describing resources with classes, properties and

values, it has no way of defining the class hierarchies, property hierarchies and

property restrictions. RDF Schema is an extension of RDF that provides a

vocabulary for defining the application-specific vocabulary used by RDF. The

resources described in a RDF document can be seen as instantiations of defi-

nitions in a RDF Schema. A document containing a combination of RDF and

RDF Schema is called a RDF-S document. Figure 7show a simple RDF-S doc-

24

ument.

<?xml version=” 1 .0 ”?>
<rdf:RDF xmlns : rd f=” ht tp : //www.w3 . org /1999/02/22− rdf−syntax−ns#”
xmlns : rd f s=” ht tp : //www.w3 . org /2000/01/ rdf−schema#”
xml:base=” ht tp : //www. animals . fake / animals#”>

<r d f :D e s c r i p t i o n rd f : ID=”animal ”>
<r d f : t yp e r d f : r e s o u r c e=” ht tp : //www.w3 . org /2000/01/ rdf−schema#Clas s ”/>

</ r d f :D e s c r i p t i o n>
<r d f :D e s c r i p t i o n rd f : ID=”horse ”>

<r d f : t yp e r d f : r e s o u r c e=” ht tp : //www.w3 . org /2000/01/ rdf−schema#Clas s ”/>
<rd f s : subC la s sO f r d f : r e s o u r c e=”#animal ”/>

</ r d f :D e s c r i p t i o n>
</rdf:RDF>

Figure 7: An example RDF-S document

RDF-S allows only the representation of concepts, concept taxonomies and

binary relations and is therefore lacking expressiveness compared with many

other ontology languages. For example, it has no way of expressing disjointness

between classes, cardinality (e.g. “exactly one”), equality, rich typing of proper-

ties, characteristics of properties (e.g. symmetry) and enumerated classes. Nor

does it provide means to specify rules and policies.

This limitation of RDF-S was the major motivation for developing more

expressive languages for the Semantic Web. The next subsection will describe

the ontology and rules components residing on top of the RDF-S layer in the

Semantic Web Stack.

3.4 The Web Ontology Language: OWL

OWL [30] is an expressive ontology language which addresses the limitations of

pure RDF-S. OWL serves as an extension of RDF-S and adds more vocabulary

for describing properties and classes.

The language provides three increasingly expressive sublanguages designed

for use by specific communities of implementers and users:

• OWL Lite supports those users primarily needing a classification hierarchy

and simple constraints. Compared with RDF-S it adds local range restric-

tions, existential restrictions, simple cardinality restrictions (only 0 or 1),

equality, and property characteristics (symmetric, transitive, inverse).

• OWL DL supports those users who want the maximum expressiveness

while retaining computational completeness (all conclusions are guaran-

25

teed to be computable) and decidability (all computations will finish in

finite time). OWL DL adds full support for negation, disjunction, cardi-

nality restrictions enumerations, and value restrictions.

• OWL Full is meant for users who want maximum expressiveness and the

syntactic freedom of RDF with no computational guarantees. For example

a class can be treated simultaneously as a collection of individuals and as

an individual in its own right. It is unlikely that any reasoning software

will be able to support complete reasoning for every feature of OWL Full

Each of these sub-languages is an extension of its simpler predecessor, both

in what can be legally expressed and in what can be validly concluded. The

following set of relations hold. Their inverses do not.

• Every legal OWL Lite ontology is a legal OWL DL ontology

• Every legal OWL DL ontology is a legal OWL Full ontology

• Every valid OWL Lite conclusion is a valid OWL DL conclusion

• Every valid OWL DL conclusion is a valid OWL Full conclusion

Ontology developers using OWL have to consider what sub-language that best

fit their needs. The choice between OWL Lite and OWL DL depends on the

expressiveness of the ontology to be developed. The choice between OWL DL

and OWL Full mainly depends on the extent to which users require the meta-

modeling facilities of RDF Schema (e.g. defining classes of classes, or attaching

properties to classes). One also have to consider the fact that the syntactic

freedom allowed be OWL full may cause unpredictable reasoning.

OWL Full can be viewed as an extension of RDF, while OWL Lite and

OWL DL can be viewed as extensions of a restricted view of RDF. Every OWL

document is an RDF document, and every RDF document is an OWL Full

document, but only some RDF documents will be a valid OWL Lite or OWL

DL document. For this reason, some care has to be taken when one wants

to migrate an RDF document to OWL. When the expressiveness of OWL DL

or OWL Lite is regarded as appropriate, some precautions have to be taken to

ensure that the original RDF document complies with the additional constraints

imposed by OWL DL and OWL Lite. One such constraint is that every URI

that is used as a class name must e explicitly asserted to be of type owl:Class.

26

Class (Margher itaPizza p a r t i a l
Pizza
r e s t r i c t i o n (hasTopping

someValuesFrom (Mozzare l la))
r e s t r i c t i o n (hasTopping

someValuesFromTomato)))

Class (CheesyPizza complete
Pizza
r e s t r i c t i o n (hasTopping

someValuesFrom (Cheese)))

Figure 8: OWL example using abstract syntax

This is also the case for properties. Also, every individual must be asserted to

belong to at least one class, the URI|s used for classes, properties and individuals

must be mutually disjoint. These and other constraints can be found in [3]

OWL DL provides maximum support for expressiveness while simultaneously

guaranteeing decidability. Because the latter property means that reasoning can

be applied, OWL DL has become a popular choice in ontology based applica-

tions. In the remainder of this section, we shall focus on this sub-language.

Similar to RDF-S, OWL DL also consist of statements about resources. But

whereas RDF-S statements are triples, OWL DL statements are either axioms

or assertions. An axiom is either a class definition, a class axiom or a prop-

erty axiom. Class definitions can be used to define subclass relationships, as

well as property restrictions which hold for a particular class. With class and

property axioms, one can express more complex relationships between classes

and between properties such as boolean combinations of class descriptions and

functional, inverse and transitive properties. Individual assertions can be used

to express class membership, property values and equality of individuals.

OWL DL is defined in terms of an abstract syntax. However, since OWL is

syntactically embedded into RDF, all of the RDF serializations can be used.

RDF/XML is the normative syntax and should be used to exchange informa-

tion between systems. The RDF representation of an OWL DL ontology can be

obtained through a mapping from the abstract syntax. Figure shows a simple

OWL DL ontology defining the classes MargheritaPizza and CheesyPizza.

This can be interpreted as: ’All Margherita pizzas have, amongst other

things, some mozzarella topping and also some tomato topping’. And ’a cheesy

pizza is any pizza that has, amongst other things, some cheese topping’. An

in-depth definition of the axioms used in OWL is provided in [4].

27

3.5 Components of OWL

An OWL ontology is built up by three components; Classes, Properties and In-

dividuals. Referring to section3.2, these components are analogous to concepts,

relations and instances, respectively. These will be described in more detail in

the following subsections.

3.5.1 Individuals

Individuals represent objects in the domain we are interested in and can also

referred to as instances of classes. It is important to note that OWL does

not use the Unique Name Assumption (UNA). This means that two different

names could actually refer to the same individual. In OWL one therefore has to

explicitly state whether two individuals are the same, or not the same as each

other. Or else they might be the same, or they might not be the same.

3.5.2 Properties

Properties are the relation between two individuals, that is a property links an

individual to another. For example, the property hasBrother can link the two

individuals David and Jonas together. A property may be functional, symmetric

or transitive. If a property is functional there can be at most one individual

that is related to the individual via the property. For example the property

hasBirthMother is a functional property (you can only have one mother).

A symmetric property can be defined as follows: If individual A is related to

individual B via property P, then, if P is symmetric, B is also related to A via

P. An example of an symmetric property is the property hasSibling; if David

has a sibling called Jonas, then Jonas also has a sibling, called David.

A transitive property can be defined as follows: If individual A is related to

individual B via property P, and B related to individual C via P - then, if P is

transitive, A is related to C via property P. The property hasAncestor can be

characterized as transitive; if David has the ancestor Gary, and Gary has the

ancestor Kate - then we can infer that David is has the ancestor Kate.

3.5.3 Classes

OWL classes can be interpreted as sets containing individuals. They are de-

scribed using conditions that states precisely what requirements needs to be in

28

Figure 9: Symmetric property

Figure 10: Transitive property

29

place in order for an individual to be a member of the class. Classes may be

organized in a superclass-subclass hierarchy, known as a taxonomy. Using a

reasoner, this taxonomy can be computed automatically.

3.6 Rules

All though in it’s infancy, rules are considered to be a major issue in the further

development of the Semantic Web. They can be used in ontology languages,

either in conjunction with or as an alternative to description logic’s, to draw

inferences, to express constraints, to specify policies and/or to react to even-

t/changes. With rules one can express knowledge in the form “if A then B”.

An example, written in a human readable syntax of the form

antecedent (body) ⇒ consequent (head), is given below.

parent(?x, ?y) ∧ brother(?y, ?z)⇒ uncle(?x, ?z)

This example says that if y is the parent of x, and z is the brother of y ,

then z is the uncle of x.

3.6.1 Types of rule languages

SWRL [6] is an extension of OWL DL which adds the expressive power of rules

to OWL. The example above can be expressed in SWRL.

SWRL enables Horn-like rules [5] to be combined with an OWL knowledge

base. However, whereas Horn rules have a conjunction of atomic formulas in

the antecedent of the rule and a single atomic formula in the consequent of the

rule, SWRL allows any OWL class description, property or individual assertion

in both parts. Since SWRL combines the full expressive power of function-free

Horn logic with an expressive description logic language, the key inferences tasks

(e.g. satisfiability and entailment) are in general undecidable for SWRL.

Another proposal for a rule language for the Semantic Web is F-Logic [7]. Rules

in F-Logic are similar to Horn rules, with the distinction that besides atomic

formulas, F-Logic rules also allow molecules in place of atomic formulas.

The main difference between SWRL and F-Logic is that in SWRL, the rule

language is seen as an extension of the ontology language OWL DL, whereas in

the F-Logic proposal, ontologies are modeled using rules.

30

3.7 Protege-OWL

Writing an OWL directly can be hard and is indeed error prone. Protege-

OWL is an open source tool created to support ontology development for the

Semantic Web. The tool allows users to edit ontologies in OWL and to use

description logic classifiers to maintain consistency of their ontologies. Protege-

OWL enables OWL developers to load existing ontologies or to create new ones

from scratch using an intuitive user interface where one can visualize classes,

properties, individuals as well as SWRL Rules. In addition, the tool is tightly

integrated with Jena and has an open-source Java API in which developers can

use to create their own Semantic Web applications.

Figure 11 shows a screen-shot of the tool.

Figure 11: Screen-shot of Protege-OWL

31

4 Semantic Web Services

As we have seen from the last section, the technologies provided by the Semantic

Web are working towards a Web where machine-interpretable information is

added to enable computers to reason about information and take automated

actions. Web Services, on the other hand, are working towards a situation

where organizations can make some of their abilities available and accessible via

the Internet. This is done by wrapping some computational capability with a

Web Service interface and allowing other organization to access it either directly

or via some discovery agency (e.g. UDDI). Web Services provides a standard

and widely accepted way of defining these interfaces.

Semantic Web Services is an extension of the conventional WS technology

where Semantic Web technology combined with traditional Web Services. As

we will see in the next subsections such an combination can help provide more

precise results as well as a higher degree of automation.

4.1 Limitations of current Web Services

Web Service technology has, as earlier mentioned, experienced great success.

It is however naive to believe that this is the solution for all problems related

to interoperability in heterogeneous systems. All though it provide a commu-

nication medium for distributed systems, it have now way of ensuring that all

communicating parties “speak the same language” - a feature that is necessary

in fully automated system interoperation. As illustrated in figure 12 ,Web Ser-

vices make use of accepted standards for structure, syntax and vocabulary, but

it does not offer the semantics and the pragmatics of the used vocabulary. Nor

does it say anything about (in a machine-interpretable form) what the software

system does, or what sequence of messages is used to interact with it.

32

Figure 12: The evolution of the Web

We can overcome this lack by using Semantic Web technology. The term

Semantic Web Services, stands for the automation of service usage tasks such as

discovery, selection composition and enactment of suitable services. This task

is accomplished by making the services themselves machine-interpretable. Just

like the way in which the Semantic Web promises to make the static content

of the Web machine-processable via semantic annotation, the idea of applying

similar techniques to Web Services is very appealing. Using Semantic Web Ser-

vices (SWS) we can annotate software being offered via Web Service interfaces

with machine-interpretable descriptions describing what the software does and

how it does it. Also, with ontologies able to describe and annotate the vari-

ous aspects of a Web Service, we are able to automate the tasks of discovering

services, composing them, executing them and enabling seamless interoperation

between them - thus enabling intelligent Web Services.

Combining these technologies enables many new things to be done. ’Services’

as varied as protein analysis, DVD-selling, translation and animation rendering

could be advertised and discovered automatically on the Web. A company need-

ing a service could locate a provider they were previously unaware of, set up a

short-term business relationship and receive the service in return for a payment.

All this could be done automatically and at high speed. Furthermore, several

services could be combined into a more complex service, possibly automatically.

If one of the component services is unavailable, a replacement could be rapidly

33

found and inserted, so the complex service can still be provided.

4.2 Key Concepts in Semantic Web Services

In the following sub sections, we will describe key concepts used to enable Se-

mantic Web Services, and show how they are related.

4.2.1 Service Representation

Before going into the details about Semantic Web Services it is important to

have a clear definition of what service is. A service can be defined as a something

one party has to provide to another when the first party does something for the

benefit for the second. For example; a house cleaner may perform the service of

doing your home cleaning; a flight attendant may perform the service of bringing

you coffee while aboard an aircraft. Formally, one can say that a service is the

performance of some actions by one party to provide some value to another

party. We call the party which provides the service the service provider and the

party which is provided the value of the service the service requester.

One aim of Semantic Web Services is to carry about a machine-interpretable

representation of the service. This representation is referred to as the service

description. To describe services with semantic annotation, one uses techniques

based on knowledge representation. This means that the service has to described

in a way which permits reasoning with it. In this regard, we first has to decide

what formal language we will use. Should we use horn clause logic, description

logic, non-monotonic logic or some other approach? Secondly, what specific

concepts and relations should be used to describe the different concepts of the

service, what is the meaning of these? This involves the creation of an ontology

which provides us with a structured ontological vocabulary, as described in

section 3. It is important that the ontology provide a specification of the types

of inputs and outputs of the service, as well as the actions the service consists

of.

Two parties describing a service may make different choices with regard to the

language and ontology used. As a consequence, if one party should reason with

a description produced by a different party, then some additional reasoning will

be necessary in order to translate between the two approaches. This additional

reasoning is called mediation.

34

4.2.2 Software agents

It is also important to describe the online representation of a service- provider

and requester. If the providing and receiving operations of a service is to be au-

tomated, then the two representative parties need some online software compo-

nent to take care of this. These types of components are called agents: a service

provider agent will represent the provider, while a service requester agent will

represent the requester. It is important to note that the behavior of an agent

does not need to be static; the software component can act as a requester agent

at one time, and a provider agent at another.

4.2.3 Communication

When a service is published and accessible via the Internet, there must be some

interaction between the provider and the requester. Such an interaction requires

some exchange of messages which follow certain constraints if they are to make

sense to both parties. Hence, the message exchange must take place according

to some known communication protocol. In this thesis, we follow the definition

of the W3C Choreography Working Group [9] and refer to this communication

protocol as a choreography.

Exchange of messages between two parties according to a certain choreog-

raphy is referred to as a conversation. Furthermore, when two parties engage

in a conversation, they must both have one or more communication endpoints

to send and receive the messages according to some transport protocol. This is

referred to as the grounding of the choreography.

4.2.4 Orchestration and Service Composition

Choreography puts constraints on the order of messages sent between the re-

quester and the provider. This however is not alone to determine exactly what

message is sent when. This responsibility is assigned to the orchestration, which

is a specification within an agent, of which message should be sent when. In

other words, the choreography decides what is permitted of messages, while the

orchestration decides what each party will actually do.

The real power of orchestration becomes evident when we look at multiple

simultaneous interactions between agents. Instead of a single relationship with

one agent acting as a service provider and another agent as a service requester

35

it is clear that in some circumstances an agent will be involved in several re-

lationships. One service requester can for instance communicate with several

service providers and combine and coordinate the different services to produce

a larger complex service. The task of composing such a service is called service

composition.

When a requester have simultaneous conversations with several providers,

the orchestration can specify the sequencing of messages with all of these, in-

cluding appropriate dependencies. Such an specification can be done in several

ways. One way is to hard code the integration logic as well as what service

providers one wants to use. A more flexible way is to use a workflow lan-

guage to describe the process of integrating the interaction with the chosen

service providers. This approach is used in Business Process Execution Lan-

guage (BPEL) [10]. The main drawback with this approach is that it depends

on reliable and stable service providers. If one of the chosen providers should

fail, the overall service orchestration will also fail.

A more failure robust approach, taken by WSMF [11], is not to select the

service providers up front, but instead include descriptions of their required

functionality. When the orchestration is executed suitable service providers are

dynamically discovered and selected at run-time.

Having a explicit definition of a service orchestration means that the orches-

tration can exist independently of specific service requester, and passed between

agents as a data structure. Instead of requiring that only the service requester

is responsible for generating an orchestration, this can be done by any party.

In particular, in the case where a single provider is hosting several services, it

is more convenient that the provider take responsibility for showing how these

services can be combined to produce a more complex one. If this is done ac-

cording some some standard process language, and a service requester is able to

interpret that process language, then any such service requester can make use

of the complex service. This latter approach is taken by OWL-S [12]. Using

OWL-S a service provider can specify how several services can be combined to

produce a more complex service. An execution environment constituting an

OWL-S Virtual Machine [13, 14] can then be used by the service requester to

interpret the process language and interact correctly with the service provider.

36

4.2.5 Life cycle

The life cycle of the relationship between the service provider and service re-

quester can be divided in five different phases: modeling, discovery, service

definition and service delivery.

Service Modeling Phase Before a service requester can discover a service,

it has to create a description of the service it is interested in. Since it is un-

likely that the service provider and the specifics of the service is known, only

an abstract description will be made. This abstract description specifies the

requester’s capability requirements of the service. Similarly, service providers

create an abstract service capability description representing the service it is

able to provide.

Service Discovery Phase After a service provider and service requester have

created their respective service descriptions, the former has to publish it’s de-

scription in some registry where the latter can locate (“discover”) it. In current

Web Service technology, this task is carried through by use of UDDI. All though

a powerful service registry tool, the standard version only supports keyword

search. In the context of Semantic Web Services, we need a registry which sup-

ports semantic annotations of service capabilities via decentralized ontologies,

interconnected via logical axioms. In such a registry a service discovery match

could be determined through the use of logical inference. The service descrip-

tions could also involve more fine-grained notions such as formal descriptions of

preconditions and postconditions, and of the inputs and outputs of the service,

using terms specified in an ontology. In addition a service discovery match can

be based on non-functional properties [31]

Service Negotiation Phase During discovery, a service requester may find

several services from several service providers that meets it’s needs. From the set

of providers found, the requester needs to analyze their service descriptions and

somehow decide which one is the “best”. To decide this a provider has to refine

it’s abstract service description into a more concrete one. One can think of it as

instantiating the abstract descriptions attributes. When a suitable provider has

been determined to serve a needed goal, it is necessary to negotiate a service

instance from the possibly many services a provider can offer. This may include

37

establishment of trust policies, determination of payment modalities, selection

of offers, etc. where corresponding semantic annotations are required. For

the purpose of automating this task, it is important that a semantic service

description not only specifies the functional properties of the service, but also

the non-functional properties, such as supported policies, and security protocols.

Service Composition Phase In cases where a particular goal cannot be

achieved by a single service, semantic description can help to determine a com-

position of several services that combined achieves the goals of a service re-

quester. Composition requires not only the semantic annotations of the overall

capabilities of a service, but also a behavioral description of how to interact

with the service, in order to achieve a certain functionality.

Service Invocation Phase After a - either composed or single - service has

been selected, the next and final step is the execution. To this end, possible input

and output values need to be extracted from the semantic capability description

and adapted to the negotiated message formats and communication protocols.

The full power of Semantic Web Services is achieved when the steps above

can not only be fulfilled, but also be (as much as possibly) automated. All

though several different approaches exist for achieving this, they all aim at

the annotation of Web Service description per service, by extending or comple-

menting current technologies around WSDL, SOAP, UDDI etc with semantic

annotation. In the next sub section the approach used in the implementation

part of this thesis will be described.

5 A Semantic Web Service Approach - OWL-S

OWL-S [12] is an effort by BBN Technologies, Carnegie Mellon University,

Nokia, Stanford University, Yale University and SRI International to define an

ontology for semantic markup of Web Services. As an OWL-based Web Service

ontology it supplies Web Service providers with a core set of markup language

constructs for describing the properties and capabilities of their Web Services

in an unambiguous, computer-interpretable form.

38

5.1 Atomic and Composite Services

OWL-S is supposed to cover both “atomic” and “composite” services. An

atomic service is an indivisible software component that executes small and

non-complex operations. Most executions only consist of a single operation in

order to respond to the service requester. Examples of atomic services are a

service returning the temperature given a zip code, and a service returning the

account balance given a bank account number.

An composite service is an software entity that combines several “smaller”

operations in order to respond to the service requester. For example, a ser-

vice which returns both the checking account balance and the savings account

balance given a persons ID number, can be defined as a composite service.

5.2 Main Tasks Enabled by OWL-S

In the development process of OWL-S, three main tasks have been given special

attention :

1. Automatic Web Service discovery

Automatic Web Service discovery is the automated process of locating a

service that can provide the needed service capabilities needed by a ser-

vice requester, while adhering to some client-specified constraints. For

example, the user may want to find a service that sells airline tickets be-

tween two given cities and accepts a particular credit card. Currently,

this task must be accomplished by a human who might use a search en-

gine to find a service, read the Web page, and then execute the service

manually to determine if it satisfies his or hers constraints. With OWL-S

markup of services, the information necessary for Web Service discovery

could be specified as machine-interpretable semantic markup at the ser-

vice provider’s Web site. Also the service can be advertise itself in OWL-S

with a service registry, so that requesters can find it when they query the

registry. Thus, OWL-S enables declarative advertisements of service prop-

erties and capabilities that can be used for automatic service discovery.

2. Automatic Web Service Invocation

Automatic Web Service Invocation is the automated process of invoking

a service given only a declarative description of that service. This is in

39

contrast to the situation where the service requester agent has been pre-

programmed to call that particular service. This enables the possibility

of not only locating a service which offer cheap airline tickets, but also to

carry out the purchase of that ticket. OWL-S markup of Web Services pro-

vides a declarative, machine-interpretable API that includes the semantics

of the arguments to be specified when executing these calls, and the se-

mantics of the output which is returned after execution of the service. The

service requester agent should be able to interpret this markup to under-

stand what input is necessary to invoke the service, and what information

will be returned. OWL-S, in conjunction with domain ontologies specified

in OWL, provides standard means of specifying declarative APIs for Web

services that enable this kind of automated Web Service execution.

3. Automatic Web Service composition and interoperation

This task involves the automatic selection, composition and interoperation

of Web Services to perform some complex task, given a high-level descrip-

tion of an objective. For example, the user may want to make all the

travel arrangements for a trip to a conference. Currently, the user must

select the Web Services, specify the composition manually, and make sure

that any software needed for the interoperation of services that must share

information is custom-create. With OWl-S markup of Web Services, the

information necessary to select and compose services will be encoded at

the service Web sites. Software can be written to manipulate these rep-

resentations, together with a specification of the objectives of the task, to

achieve the task automatically. To support this, OWL-S provides declar-

ative specifications of the prerequisites and consequences of application

of individual services, and a language for describing service compositions

and data flow interactions.

5.3 OWL-S Description

The structuring of OWL-S services is motivated by the need to address three

aspects of a service:

• What does the service provide for prospective clients?

• How is it used?

40

• How does one interact with it?

To address these questions OWL-S defines an upper ontology for services with

four major elements:

1. Service: This concept serves as an organizational point of reference for

declaring Web Services; every service is declared by creating an instance

of the Service concept

2. Service Profile Model: The profile provides an abstract description of

what the service does, describing its functionality and other non-functional

properties that are used for locating services based on their semantic de-

scription

3. Service Process Model: The process model describes how the service

achieves its functionality, including the detailed description of its con-

stituent processes.

4. Service Grounding: The grounding describes how to use the service, that

is how a client can actually invoke the service.

Figure 13: OWL-S Upper ontology

5.3.1 OWL-S Service

The Service concept in OWL-S links the profile model, process model and

grounding of a given service through the properties: presents, describedBy and

supports, respectively. Below is an example of the Service concept of a Zip Code

Finder service which task is to return the zip code for a given city/state.

41

Example 5.1. ZipCodeFinder - Service description

<rd f :RDF xml : base=http ://www. example s i t e . com/ ZipCodeFinder . owl>

<s e r v i c e : S e r v i c e rd f : ID=ZipCodeFinderService>

<s e r v i c e : p r e s en t s rd f : r e s ou r c e=#ZipCodeFinderPro f i l e/>

<s e r v i c e : descr ibedBy rd f : r e s ou r c e=#ZipCodeFinderProcess/>

<s e r v i c e : supports rd f : r e s ou r c e=#ZipCodeFinderGrounding/>

</ s e r v i c e : Serv i ce >

[. . .]

</rd f :RDF>

5.3.2 OWL-S Service Profile Model

The profile model describes the intended purpose of the service, both describing

the service offered by the provider, and the service desired by the requester. It

is thus this description that is used in the publish/discovery phase described in

earlier. The profile model gives an abstract description of both non-functional

and functional properties.

Non-functional properties The non-functional properties includes human-

readable information, contained in the properties serviceName (of type string;

maximum one), textDescription (type string, maximum one) and contactInfor-

mation (of class Actor), including information such as name, phone, fax and/or

e-mail. A service categorisation is also given, although the classification schemas

are not fixed and, therefore, the range of this property is not specified. There

are no cardinality restrictions for the categorization, that is, a service can be

assigned to none or multiple categories in different categorization schemes. The

profile model of the ZipCodeFinder service is defined as follows (service catego-

rization omitted) :

Example 5.2. Non-functional properties

<p r o f i l e : s e r v i c e N a m e>Find ZipCode</ p r o f i l e : s e r v i c e N a m e>

<p r o f i l e : t e x t D e s c r i p t i o n>

Returns the z ip code f o r the g iven c i t y and s t a t e .

I f s e v e r a l z ip codes are a s s o c i a t e d with the z ip code ,

the f i r s t one w i l l be returned

</ p r o f i l e : t e x t D e s c r i p t i o n>

<p r o f i l e : c o n t a c t I n f o r m a t i o n>

<ac to r :Ac to r rd f : ID=ZipCode S e r v i c e>

42

<actor :name>ZipCodeService department</ actor :name>

<actor :phone>61177393</ actor :phone>

<a c t o r : e m a i l>z ipcode@supe r s e rv i c e s . com</ emai l>

[. . .]

</ ac to r :Ac to r>

</ p r o f i l e : c o n t a c t I n f o r m a t i o n>

Functional properties The OWL-S profile also specifies what functionality

the service provides. The functional properties is split into the information

transformation performed by the service and the state change as a consequence

of the service execution. The former is captured by defining the inputs and

outputs of the service, and the latter is defined in terms of preconditions and

effects. Inputs, outputs, preconditions and effects are commonly referred to

as IOPEs. Effects are defined as part of a result. The schema for describing

IOPEs is not defined in the profile, but in the OWL-S process model. Instances

of IOPEs are created in the process and referenced from the profile, and it is

envisioned that the IOPEs of the profile are a subset of those published by the

process [12].

The inputs and outputs describes what information is required to execute the

service, and what will be returned. The two types are modeled as subclasses of

parameter, which is in turn a subclass of a SWRL variable [6] with a property

indicating the class or datatype the values of the parameter belong to. Local

variables may also be used, and they are modeled as subclasses of parameter.

Inputs, outputs, local variables have as scope the process where they appear.

The inputs and outputs defined in the service process model are referenced from

the profile via the hasInput and hasOutput properties.

In the ZipCodeFinder service, the inputs and outputs are declared as follows:

Example 5.3. Functional properties

<p r o f i l e : hasInput rd f : r e s ou r c e=#City />

<p r o f i l e : hasInput rd f : r e s ou r c e=#State />

<p r o f i l e : hasOutput rd f : r e s ou r c e=#ZipCode />

[. . .]

The inputs and outputs referenced from the profile are defined in the process

as part of the different atomic processes where they appear:

<proce s s : Input rd f : ID=City>

43

<proce s s : parameterType rd f : datatype=”http ://www. w3 . org /2001/XMLSchema#anyURI>

http ://www. w3 . org /2001/XMLSchema#st r i ng </proce s s : parameterType>

</proce s s : Input>

<proce s s : Input rd f : ID=State>

<proce s s : parameterType rd f : datatype=”http ://www. w3 . org /2001/XMLSchema#anyURI>

http ://www. w3 . org /2001/XMLSchema#st r i ng </proce s s : parameterType>

</proce s s : Input>

<proce s s : Output rd f : ID=ZipCode>

<proce s s : parameterType rd f : datatype=http ://www. w3 . org /2001/XMLSchema#anyURI>

http ://www. daml . org /2001/10/ html/ zipcode−ont#ZipCode

</proce s s : parameterType>

</proce s s : Output>

[. . .]

Preconditions are conditions on the state of the world that has to be true for

successfully executing the service. That is, if the preconditions are not met,

the service will not execute. They are modeled as conditions, a subclass of ex-

pression. Expressions in OWL-S specify the language in which the expression

is described (most commonly this is either SWRL[6] or SPARQL [16].) and the

expression itself is encoded as a literal. Effects describe conditions on the state

of the world that are true after the service execution. They are modeled as part

of a result. A result has an inCondition, a ResultVar, an OutputBinding and

Effect. The inCondition specifies the condition for the delivery of the result.

The OutputBinding binds the declared output to the appropriate type or value

depending on the inCondition. The effects describe the state of the world re-

sulting from the execution of the service. The ResultVars play the role of local

variables for describing results. Conditions, i.e. preconditions defined in the

service model, are referenced from the profile via the hasPrecondition property

and results via the hasResult property.

5.3.3 OWL-S Process Model

The Process Model of a OWL-S description represents how the service works,

that is, how to interoperate with the service. It describes the functional prop-

erties of the service, together with details of its constituent processes (if the

service is a composite service), describing how to interact with the service.

Atomic Processes OWL-S distinguishes between atomic, and composite pro-

cesses. Atomic Processes can be invoked, have no subprocesses and are executed

44

in a single step from the requester’s point of view. They are a subclass of process,

and therefore, they specify their inputs, outputs, preconditions and effects. All

though the ZipCodeFinder service only defines one atomic process, there are no

restrictions on the number of atomic processes inside one OWL-S description.

Example 5.4. Atomic Process

<proce s s : AtomicProcess rd f : ID=”ZipCodeFinderProcess”>

<proce s s : hasInput rd f : r e s ou r c e=”#City”/>

<proce s s : hasInput rd f : r e s ou r c e=”#State”/>

<proce s s : hasOutput rd f : r e s ou r c e=”#ZipCode”/>

</proce s s : AtomicProcess>

Composite Processes OWL-S composites are decomposable into other pro-

cesses. OWL-S provides a set of control constructs such as sequence or split

which are used to define the control flow inside the composite process. Pro-

cesses are annotated using the binding class. A binding is declared as a process

which consumes data from other processes which declares what other process

and which concrete process parameter the data comes from. Since the Zip-

CodeFinder service only has an atomic process, and not any composite, the

example below is taken from a service called BravoAirService5, an imaginary

flight booking service.

In the example we se a definition of the composite process of BravoAir for

booking a flight. It is a sequence of processes, from which the first one is to

perform a log-in, and the second one is to complete a reservation. The process

for completing the reservation takes data from the parent process, and uses it

as the input for its own ChosenFlight input.

Example 5.5. Composite Process

<proce s s : CompositeProcess rd f : ID=BookFlight>

<proce s s : composedOf>

<proce s s : Sequence>

<proce s s : components>

<proce s s : Contro lConstructList>

< l i s t : f i r s t >

<proce s s : Perform rd f : ID=PerformLogin>

<proce s s : p roce s s rd f : r e s ou r c e=#LogIn/>

</proce s s : Perform>

</ l i s t : f i r s t >

5http://www.daml.org/services/owl-s/1.1/BravoAirService.owl

45

< l i s t : r e s t >

<proce s s : Contro lConstructLis t>

< l i s t : f i r s t >

<proce s s : Perform>

<proce s s : p roce s s rd f : r e s ou r c e=#CompleteReservation/>

<proce s s : hasDataFrom>

<proce s s : Binding>

<proce s s : toParam rd f : r e s ou r c e=#ChosenFlight/>

<proce s s : valueSource>

<proce s s : valueOf>

<proce s s : theVar rd f : r e s ou r c e=#ChosenFlight/>

<proce s s : f romProcess rd f : r e s ou r c e=Process . owl#TheParentPerform/>

[. .]

5.3.4 OWL-S Service Grounding

The grounding in a OWL-S description provides the details of how to access the

service, mapping from abstract to a concrete specification of the service. OWL-

S links a Web Service to its grounding by using the property supports. A Web

Service can have multiple groundings, but a grounding must be associated with

exactly one service. These groundings are associated with the atomic processes

defined in the Process Model, although this association is not described in the

model but only in the grounding. Therefore, the groundings for the atomic

processes of the model can be located only by navigating from the Process

Model to the service (via the describes property), and from there to the service

grounding (via the supports property).

OWL-S does not dictate the grounding mechanism to be used. However, the

current version of OWL-S provides a predefined grounding for WSDL, mapping

the different elements of the Web Service to a WSDL interface. An OWL-S

atomic process is mapped to a WSDL operation, and inputs and outputs to the

WSDL input and output message parts, respectively.

5.4 Tools for developing OWL-S based Semantic Web Ser-

vices

Development and deployment of Semantic Web Services is a quite complex task,

and its adoption within the industry has been relatively slow. An important

reason for this is the significant human effort required to create semantic ser-

vice offer- and request descriptions and then to monitor the invocation and

execution of the Web Services. A number of tools and systems have therefore

46

been developed within the Semantic Web Services community to provide the

developer with support for semantic annotation o Web Services as well as their

deployment.

In this sub section we will present some of these tools.

5.4.1 Semantic Web Service tools

Semantic Web Services is essentially only about adding semantic annotations

to Web Services. For this reason, many of the tools for creating Semantic Web

Services are extensions on existing and established Web Services tools. In most

cases, they are ’tool-lets’ rather than tools, being small programs that perform

a narrowly defined task, such as automatically generating WSDL descriptions

from Java classes. In the following, we will go through some of these tools in

detail.

Java2WSDL and WSDL2Java Java2WSDL generates WSDL descriptions

from Java classes. It is part of the Apache Axis SOAP toolkit [20], an Apache

open source software development project. The same toolkit also provides

WSDL2Java, which generates Java stubs and skeletons for the Web Service.

To create a Web Service, the developer can first create a Java interface of the

Web Service, which can then be used to develop WSDL descriptions for the

Web Service using Java2WSDL. The resulting WSDL description can then be

used to create stubs, skeletons and bindings using the WSDL2Java tool.

WSDL to OWL-S tool There exists different implementations 6 7of a tool

for transforming a WSDL description to an OWL-S description. They all have

in common that they convert a WSDL descriptions into OWL-S descriptions by

generating a complete OWL-S Grounding, a partial OWL-S Process model and

Profile for the WSDL service. The generated Grounding is clearly complete,

since the WSDL file contains all the information necessary to invoke the Web

Service. However, the WSDL file is only a partial description of the Web Service,

so the generated Process Model and Profile are thus only partial and need to be

manually enriched with semantic information. This includes defining composite

processes in the Process Model, describing the service capability descriptions
6http://www.daml.ri.cmu.edu/wsdl2owls/
7http://www.mindswap.org/2004/owl-s/api/doc/javadoc/examples/WSDL2OWLS.html

47

within the Profile and XSLT transformations from the WSDL XSD types to

OWL ontologies.

Java to OWL-S tool There also exists a tool8 for a direct conversion from

a Java class to a OWL-S description. This tool combines the Axis Java2WSDL

converter and a WSDL-to-OWL-S converter to provide a complete OWL-S

Grounding as well as partial OWL-S Process Model and Profile.

OWL-S API In addition to these tools, several Semantic Web Service envi-

ronments also make use of an OWL-S API which provides programmatic access

to OWL-S service descriptions. Two such API’s has been developed indepen-

dently by both CMU 9 and University of Maryland 10. These APIs provides

Java classes and methods to extract information from an OWL-S description or

to generate an OWL-S description. They also contain a execution environment

in order to invoke OWL-S described services.

8http://projects.semwebcentral.org/projects/java2owl-s/
9http://www.daml.ri.cmu.edu/owlsapi/

10http://www.mindswap.org/2004/owl-s/api/

48

Part II

SWS applied to a Network

Management System

49

6 Introduction

In large communication networks there is a need for a Network Management

System (NMS) to handle the tasks of monitoring and managing network devices.

Typical management facilities in such systems are fault management, configu-

ration management, performance management and security management. In

order to perform these management tasks, the system needs to monitor each

device on the network. Unfortunately, several of these monitoring schemes have

some crucial drawbacks that leads to unsatisfactory performance. The main

drawback is rooted in the fact that these systems are typically designed in a

way that puts all management computation tasks on a centralized server. This

puts large demands on the performance of this one server, and also causes it

to be a singel point of failure. Furthermore, as the network grows in size, huge

amount of raw data is transfered to the this management station, causing huge

traffic on the network.

To accomodate this problem, several efforts have been made to relieve the

centralized server from some of the work, and instead delegate some of the

management tasks to other computers in the network. [18]. This approach

is refered to as the Management by Delegation (MdB) model and is today

widely accepted and recognized by the network management community. One

of the main features of this decentralized approach is the ability to transfer and

remotely control management scripts located on remote entities, which leads to

the ability to delegate management functions along the management system,

therefore decentralizing the management operations.

The sections in this part are divided as follows:

• Section 7 will present the specification of our network monitoring system.

• The following section will describe discuss which parts of this system may

benefit from being applied with SW technology.

• Eventually, section 9 will specify a remake of the system described in

section 7 applied with ontologies and SWS technology.

50

7 SNMP-based Monitoring Application By Us-

ing TAPAS Platform

In a project thesis [17] carried out during the fall of 2008, we presented an

specification for a decentralized Network Monitoring System. An SNMP-based

monitoring application was implemented that run on a TAPAS platform [19].

This system is comprised by two main components; a MainManager and a Min-

iManager. The former component is deployed at a central location - in a device

functioning as the management station. When a user wants to monitor on a

device, a request is sent to the MainManager which then spawns a MiniManager

component which is deployed at another device functioning as a delegated man-

agement station, from now on abbreviated as DMS. What DMS a MiniManager

will be deployed to is based on how “close” the DMS is to the device to be mon-

itored. The system will try to pick a DMS that is located as close to the device

to be monitored as possible. Close in this context is determined by the number

of hops between the DMS and the device. Most preferably the device to be

monitored should only reside one hop away from the DMS. The MiniManager

works as an independent “micro-NMS”, that is, it is able to spawn agents at

the devices to be monitored, initiate SNMP requests and analyse the following

responses. Only when certain tresholds and/or a pre-set time period is reached,

it notifies the MainManager about SNMP query results. If a new device is to

be monitored, the MainManager can choose to add a new monitor session to

an existing MiniManager, or deploy a new MiniManager at a different DMS.

Figure 14 shows the basic architecture of the system. The rationale behind this

system scheme is that by deploying MiniManagers at DMSs, monitoring intelli-

gence is distributed to other devices in the network, releaving a central station

from all the work. Analyzing and reasoning about management information can

be done by the MiniManagers, instead of putting all the responsibility on the

central management station. This relieves the management station for much of

the computation responsibility, as well as reducing the amount of network trafic

caused by management information.

51

Figure 14: TAPAS SNMP-Based Monitoring Application version 1 - basic ar-
chitecture

52

Figure 15: Main window in GUI of version 1

7.1 Graphical User Interface

In the curent version of the application the user who launches the application

is presented to a simple graphical user interface (fig. 15) which gives him/her

several options:

• Select or input what node to monitor

• Select what information to monitor. This information is represented by

an Object Identifier (OID) which can be typed either numerical or named.

• Select the time period for monitor feedback

The feedback of a monitor session is presented to the user in an additional

GUI window (fig. 16) that pops up when the user initiates a monitor session.

For every new monitor session, a new window is opened. Closing one such

window is equivalent to ending the corresponding monitor session.

53

Figure 16: Monitor session window in GUI of version 1

7.2 TAPAS: Telematics Architecture for Plug-and-Play

Systems

The monitoring system involves running a MiniManager at specific devices. This

means that there is a need for easy and automatic deployment and instantiation

of this component at the nodes. There exists several different network-based ser-

vice systems that can handle this task more or less automaticly, and we have

54

selected TAPAS (Telematics Architecture for Plug-and-Play Systems) for this

purpose. TAPAS is a research project where the goal is to develop an archi-

tecture for network-based service systems where the main object is to enable

dynamic configuration of network components and network-based service func-

tionality. This task is achieved by enhancing flexibility, efficiency and simplicity

of system installation, deployment, operation, management and maintenance.

The TAPAS architecture is built up by two main architectures; a computing ar-

chitecture and a service functionality architecture. While the latter architecture

has focus on the service functionality and shows the structure of services and

service components, the former is a generic architecture for the specification and

execution of any service. The TAPAS architecture involves support for dynamic

service instantiation that is denoted as the TAPAS platform. The TAPAS plat-

form comprises service creation, deployment, executio and management. [19].

7.2.1 Theatre Metaphore

The computing architecture of TAPAS is based on a theatre metaphore: actors

play roles according to predefined manuscripts. The actor is a software compo-

nent that will be part of the TAPAS platform that runs in every node in the

networked system. The actor itself does nothing before it is assigned a role. A

role is defined by a manuscript and describes a specific behavior that the actor

should behave according to. Once an actor has been assigned a role, it becomes

a role figure. A play consists of one or more actors playing different roles. Two

different role figures can exchange information through a dialogue. A service

system can therefore be seen as several actors each implementing a role figure

that constitutes a particular service component.

Our application is therefore designed as a TAPAS play, consisting of the two

roles MainManagerRole and MiniManagerRole. The behavior of these com-

ponents is described through two manuscripts that is placed in a repository

available to all devices running the TAPAS platform.

7.2.2 Plug-and-Play (PaP)

A service system in the TAPAS context consists of several service components

which is designed as roles according to a manuscript. A manuscript will, together

with other manuscripts part of the same play, reside inside a Play-repository that

is located in a web server available to all nodes in the network. In the network

55

Figure 17: TAPAS Service and Computing Architecture

56

Figure 18: TAPAS Theatre Metaphore

there is also a dedicated server called the Tapas Main Server. This server runs

the Tapas Platform as well as an director. The director is a special type of

actor that is instantiated and when the Tapas Main Server is launched. The

director is responsible for supervising other actors and managing a play. The

operations of launching the monitor application and deploying the MainManager

and MiniManager are both dependent on the director. That is, the requests to

perform these operations are sent to the director which eventually carries out

the operations (if they are valid).

In the TAPAS terminology, the process of launching an service system is

analogous to launching a “play”, or more precisely, to “plug-in” a play. There-

after, the service system is executed by “playing” it. The task of plugging in

a play is as mentioned carried out by the director. A play must consist of at

least one manuscript providing a behavior description of a system component

(i.e. a TAPAS Role). If specified in the manuscript the director can plug-in and

execute the roles at plug-in time. Other roles that are part of the play may be

plugged in and executed at later time, but during runtime.

57

In our SNMP application, the launching of the application causes the Main-

ManagerRole to be plugged-in and executed at launch-time. The component

will always be deployed at the device where the plug-in request originated from.

The MiniManagerRole(s) will not be plugged in before the MainManagerRole

requests it. At any time, the MiniManagerRole(s) can be plugged in and out

during runtime. A request to plug-out the MainManagerRole is analogous to

plug-out the play (i.e. to terminate the SNMP Application). This is pretty

obvious since the application will have no purpose without the MainManager

component.

To summarize, our SNMP application consists of two main components -

the MainManager and the MiniManager, which again are comprised by several

subcomponents. Both of them includes a subcomponent designed as a TAPAS

Role. The TAPAS Platform includes plug-and-play functionality meaning that

any software component designed as a TAPAS Role is able to be plugged-in

(deployed) and plugged-out (un-deployed) - in runtime - at any device in the

network running the TAPAS Platform. The TAPAS Platform also includes

support for messaging (dialogue) between roles. As you can see from figure 14

the communication between the MainManager and it’s deployed MiniManager’s

are carried out using TAPAS messaging.

8 Application improvement using Semantic Web

Technology

In this section we will investigate how the current version of the SNMP appli-

cation can be further improved be using Semantic Web Technology.

From now on, the current version of the SNMP application will be referred

to as version 1, and the improved version, which will be described shortly, will

be referred to as version 2.

8.1 Drawbacks in version 1

Before we can improve the application we first have to locate the areas which

can be improved. Of course, version 1 of the application is a fairly simple mon-

itoring application that is far from complete, and several aspects can be further

58

developed to make the application more powerful. However, for this thesis we

have located three specific aspects that will be presented in the following sub-

sections.

8.1.1 GUI and MainManager must co-exist at the same device

As depicted in figure 14, the GUI and MainManager is both existing in the same

device (management station). In fact, when the user launches the application,

the MainManager is first deployed to the device the launch request came from

- the first thing the MainManager does is then to create this GUI and make

it visible for the user. This was regarded as a smart feature at the time since

having both components at the same device, enabled communication between

them to take place based on simple and java object invocations. This does,

however, impose a severe limitation since it requires the user to be sitting at

a fairly powerful computer. In version 2 of the application we have moved the

GUI out of the management station and made all communication between the

GUI and the MainManager to take place remotely. This enables the user to

use any type of computer he wants - in theory he could even use a cellular

phone to communicate with the MainManager. Communication between the

GUI and the rest of the system will be carried out through invoking Semantic

Web Services.

8.1.2 Object Identifier input

As one can see from the main window GUI (fig. 15), the application requires

the user to know the exact OID for the MIB object to be monitored. For

example, if the user would like to monitor disk capacity, he has to enter the OID

hrDiskStorageCapacity.11 (named) or .1.3.6.1.2.1.25.3.6.1.4.11 (numerical)11.

Or if he wants to monitor the number of received TCP segments he has to enter

the OID tcpInSegs.0 (named) or .1.3.6.1.2.1.6.10.0 (numerical). If these OID’s

are not entered exactly as they are defined in their corresponding MIB-files, a

SNMP-query may not be performed successfully. Clearly, it is alot to ask of

a user to know all these OID’s. No matter how much knowledge the user has

about SNMP - knowing OID’s by heart is an unreasonable requirement in a

monitoring application.
11The number after the last dot may vary on different machines. Also, this number helps

seperate different disks from each other if the machine contains multiple disks.

59

In version 2 we have tried to remove this requirement; instead of entering the

OID’s exactly as they are defined, the user may enter inputs like ’diskcapacity’

or ’tcpinputsegments’ and let the system itself interpret and translate these

inputs to the correct OID’s. This approach is accomplished by using Semantic

Web Services and will be described in more detail in section 9.

8.1.3 Choice of MiniManager

As described earlier, when a user wants to monitor a device for the first time, a

MiniManager is deployed to a DMS. Subsequent monitor sessions is realised by

adding a monitor session to an existing MiniManager, or locating a new DMS

and deploy a new MiniManager. In the version 1 there only exist one type of

MiniManager, that is, the same MiniManager component will be deployed in

every DMS. This means that the same analyzing operations will be performed

regardless of the resource capabilities of the DMS. A network is, however, often

very heterogeneous in that it is composed by different types of devices with

different resource capabilities. The execution of the monitor session should

most preferably as little as possible interfere with other processing taking place

at the DMS. At the same time, if the DMS is a powerful device, with a good

CPU-power and a alot of free main memory, the MiniManager should be able

to take advantage of this and perform more advanced analyzing mechanisms.

For this reason one should make different types of MiniManagers designed for

different types of DMSs. By recognizing the difference in resource availability of

the different network devices, the MiniManager may enforce flexible and efficient

use of resources. For devices with a lot of resources when it comes to memory and

CPU, the MiniManager can be developed to handle alot of concurrent monitor

sessions with powerful analyzing mechanisms. Therby making full use of local

computation. For other devices with fewer resources, simpler MiniManager’s

may be a better alternative.

The problem in version 1 is not that it isn’t possible to create different

MiniManager’s, the problem is that there doesn’t exist any rule one which one

to choose. The application could be extended to let the user choose the type

of MiniManager to deploy, but it is somewhat unreasonable to require that the

user knows the resource-specifics of every DMS in the network and hence what

MiniManager to select. A much better approach, that is taken in version 2,

is therefore to make the system make this choice. Based on a match between

60

the MiniManagers capabilities and the DMSs capabilities, the system itself can

locate and deploy the “best” MiniManager.

The above mentioned drawbacks has led us to conclude that the application

would indeed benifit from being enriched with Semantic Web technology. The

next sections we will present the architecture and specifics of our improved

application.

9 An SWS Enriched SNMP-Based Monitoring

Application

Our SNMP Application version 2 is an extension of version 1 in which ontology

and semantic information is added to the application. All interaction between

the user and the NMS will take place by invoking a set of semantic web services.

The following sub-sections will describe version 2 in more detail.

9.1 Basic Architecture

Because of the introduction of Semantic Web Services, the architecture shown

in figure 14 has been restructured. In version 2 the GUI component has been

moved out of the TAPAS network and rather added as part of a component

called MonitorApplication. This component can in principle be located in

any type of device as long as the device has Internet connectivity and runs a Java

Virtual Machine. A set of applications is defined in a web server that is accessible

to the user by executing Semantic Web Services. The TAPAS Main Server is

deployed in the same device as the web server. The MainManager component

can be located in any node inside the Tapas network, and will communicate with

it’s MiniManagers through TAPAS messaging. In the following subsections the

different components will be described in more detail.

9.2 Server side of the system

The server side of our system consists of a main server in which a web server

and the TAPAS Main Server is running. The web server, a Tomcat 5.5 instal-

lation, has got several different web applications which are accessible to the

client through web services. Some of the web applications are semantic, that is,

61

Figure 19: TAPAS SNMP-Based Monitoring Application version 2 - basic ar-
chitecture

62

they include logic reasoning using an ontology language. This reasoning, and

programmatic access to ontology descriptions is done using Protg-OWL API12.

The other web applications are plain Java beans with no knowledge reasoning.

In the next subsections we will describe our various web applications in more

detail.

9.2.1 CreatePlayApplication

Since the NMS system is designed as as a TAPAS Play. the play has to be

“plugged in” in order to plug-in any roles. The play is bundled as a jar-file

that comprises the MainManager and MiniManager roles as well as their sup-

port classes. The CreatePlayApplication will send a pluginPlay-message to the

director actor residing in the TAPAS Main Server. The TAPAS Main Server

may be any TAPAS node, but in our system it will always reside in the same

node as the web server. The message contains the following parameters: <play-

name>,<playversion>,<playlocation>. The <playname> is the name of the

play, that is, the name of our application. If there exists several versions of

the same play, the <playversion> parameter specifies what version we want to

plugin. The last parameter, <playlocation> specifies where the director can

find the play. Below is an example of such a pluginPlay message:

pluginP lay(monitorP lay, 1.4, http : //129.241.200.232/tapas/monitorP lay/mPlay.jar)

9.2.2 PluginMainManagerApplication

Before any monitoring can take place a MainManager must be plugged in. The

PluginMainManagerApplication takes a string as input that specifies the node

in which to plugin the MainManager. After invocation the application will

send a pluginActor message to the director actor which contains the follow-

ing parameters: <node>, <rolename>, <playname>. The <node> parameter

corresponds to the node parameter provided in the input of the PluginMain-

ManagerApplication, prefixed with ’tapas://’, and specifies in which node to

deploy the MainManager. The <rolename> specifies what TAPAS role to plu-

gin, which in this case is “mainmanager”. The last two parameters specifies the
12http://protege.stanford.edu/plugins/owl/api/

63

what play role should be plugged into. To plugin the MainManager on a node

with IP address 129.241.200.226, we will have to send a pluginActor message

looking like this:

pluginActor(tapas : //129.241.200.226, mainmanager,monitorP lay)

9.2.3 PluginMiniManagerApplication

When the MainManager is plugged in, a monitor session may be initiated. As

described earlier this will cause a DMS to be identified and a MiniManager to

be plugged in. One of the drawbacks in version 1 was that the same type of

MiniManager was deployed in the DMS regardless of the capabilities that DMS.

In version 2, we have therefore developed a set of three different MiniManagers

designed for different DMSs. The different MiniManagers do all have diffent

analyzing mechanisms, some more powerful and hence more resource demanding

than others. What type of MiniManager that will be chosen is a mentioned

determined by the capabilities of the DMS. A TAPAS node’s capabilities is

revealed for other TAPAS nodes when the node connects to the TAPAS network.

An actor called capabilitymanager residing in the TAPAS Main Server is keeping

track of the capabilities of all TAPAS nodes. By sending the capabilitymanager

a request, it is possible to receive these node-capabilities. The actual capability

attributes registered involves screen resolution, main memory size, disk space

and CPU-clock. Of course there are different kinds of capability attributes one

may consider when selecting a MiniManager to deploy, but we have chosen to

only consider the CPU-clock attribute as this gives a fairly good indication on

a device’s ability to execute a program.

MiniManager ontology The different MiniManager’s are not registered by

the capabilitymanager as these are only part of our application (the TAPAS

play), and not the TAPAS Platform. We have therfore created an ontology

over the domain of MiniManagers, called MiniManager.owl (Appendix B). The

ontology language is OWL and is defined as follows:

<?xml ve r s i on =”1.0”?>

<!DOCTYPE rd f :RDF [

<!ENTITY owl ”http ://www.w3 . org /2002/07/ owl#” >

<!ENTITY swr l ” http ://www.w3 . org /2003/11/ swr l#” >

64

<!ENTITY swrlb ”http ://www.w3 . org /2003/11/ swrlb#” >

<!ENTITY xsd ”http ://www.w3 . org /2001/XMLSchema#” >

<!ENTITY rd f s ” http ://www.w3 . org /2000/01/ rdf−schema#” >

<!ENTITY rd f ”http ://www.w3 . org /1999/02/22− rdf−syntax−ns#” >

<!ENTITY protege ”http :// protege . s t an fo rd . edu/ p lug in s /owl/ protege#” >

<!ENTITY xsp ”http ://www. owl−on t o l o g i e s . com/2005/08/07/ xsp . owl#” >

<!ENTITY swrla ”http :// swr l . s t an fo rd . edu/ on t o l o g i e s /3 .3/ swr la . owl#” >

<!ENTITY abox ”http :// swr l . s t an fo rd . edu/ on t o l o g i e s / bu i l t−i n s /3 .3/ abox . owl#” >

<!ENTITY tbox ”http :// swr l . s t an fo rd . edu/ on t o l o g i e s / bu i l t−i n s /3 .3/ tbox . owl#” >

<!ENTITY swrlx ”http :// swr l . s t an fo rd . edu/ on t o l o g i e s / bu i l t−i n s /3 .3/ swrlx . owl#” >

<!ENTITY swrlm ”http :// swr l . s t an fo rd . edu/ on t o l o g i e s / bu i l t−i n s /3 .4/ swrlm . owl#” >

<!ENTITY sqwrl ” http :// sqwrl . s t an fo rd . edu/ on t o l o g i e s / bu i l t−i n s /3 .4/ sqwrl . owl#” >

<!ENTITY temporal ” http :// swr l . s t an fo rd . edu/ on t o l o g i e s / bu i l t−i n s /3 .3/ temporal . owl#” >

]>

<rd f :RDF xmlns=”http :// l o c a l h o s t :8080/ Axis2WSTest/ axis2−web/MiniManager . owl#”

xml : base=”http :// l o c a l h o s t :8080/ Axis2WSTest/ axis2−web/MiniManager . owl”

xmlns : sqwrl=”http :// sqwrl . s t an fo rd . edu/ on t o l o g i e s / bu i l t−i n s /3 .4/ sqwrl . owl#”

xmlns : xsd=”http ://www.w3 . org /2001/XMLSchema#”

xmlns : protege=”http :// protege . s t an fo rd . edu/ p lug in s /owl/ protege#”

xmlns : swrlb=”http ://www.w3 . org /2003/11/ swrlb#”

xmlns : r d f s=”http ://www.w3 . org /2000/01/ rdf−schema#”

xmlns : temporal=”http :// swr l . s t an fo rd . edu/ on t o l o g i e s / bu i l t−i n s /3 .3/ temporal . owl#”

xmlns : owl=”http ://www.w3 . org /2002/07/ owl#”

xmlns : swr lx=”http :// swr l . s t an fo rd . edu/ on t o l o g i e s / bu i l t−i n s /3 .3/ swrlx . owl#”

xmlns : abox=”http :// swr l . s t an fo rd . edu/ on t o l o g i e s / bu i l t−i n s /3 .3/ abox . owl#”

xmlns : swr la=”http :// swr l . s t an fo rd . edu/ on t o l o g i e s /3 .3/ swr la . owl#”

xmlns : tbox=”http :// swr l . s t an fo rd . edu/ on t o l o g i e s / bu i l t−i n s /3 .3/ tbox . owl#”

xmlns : xsp=”http ://www. owl−on t o l o g i e s . com/2005/08/07/ xsp . owl#”

xmlns : swr l=”http ://www.w3 . org /2003/11/ swr l#”

xmlns : rd f=”http ://www.w3 . org /1999/02/22− rdf−syntax−ns#”

xmlns : swrlm=”http :// swr l . s t an fo rd . edu/ on t o l o g i e s / bu i l t−i n s /3 .4/ swrlm . owl#”>

<owl : Ontology rd f : about=””>

<owl : imports rd f : r e s ou r c e=”http :// swr l . s t an fo rd . edu/ on t o l o g i e s /3 .3/ swr la . owl”/>

<owl : imports rd f : r e s ou r c e=”http :// swr l . s t an fo rd . edu/ on t o l o g i e s / bu i l t−i n s /3 .3/ swrlx . owl”/>

<owl : imports rd f : r e s ou r c e=”http :// swr l . s t an fo rd . edu/ on t o l o g i e s / bu i l t−i n s /3 .3/ tbox . owl”/>

<owl : imports rd f : r e s ou r c e=”http :// swr l . s t an fo rd . edu/ on t o l o g i e s / bu i l t−i n s /3 .3/ abox . owl”/>

<owl : imports rd f : r e s ou r c e=”http :// swr l . s t an fo rd . edu/ on t o l o g i e s / bu i l t−i n s /3 .4/ swrlm . owl”/>

<owl : imports rd f : r e s ou r c e=”http :// swr l . s t an fo rd . edu/ on t o l o g i e s / bu i l t−i n s /3 .3/ temporal . owl”/>

<owl : imports rd f : r e s ou r c e=”http :// sqwrl . s t an fo rd . edu/ on t o l o g i e s / bu i l t−i n s /3 .4/ sqwrl . owl”/>

</owl : Ontology>

<swr l : Var iab le rd f : ID=”m”/>

<owl : DatatypeProperty rd f : ID=”hasCapacity”>

<r d f s : domain rd f : r e s ou r c e=”#MiniManager”/>

<r d f s : range rd f : r e s ou r c e=”&xsd ; i n t ”/>

</owl : DatatypeProperty>

<owl : Class rd f : ID=”MiniManager”/>

<MiniManager rd f : ID=”MiniManager 1”>

<hasCapacity rd f : datatype=”&xsd ; i n t ”>1000</hasCapacity>

</MiniManager>

<MiniManager rd f : ID=”MiniManager 2”>

65

<hasCapacity rd f : datatype=”&xsd ; i n t ”>2000</hasCapacity>

</MiniManager>

<MiniManager rd f : ID=”MiniManager 3”>

<hasCapacity rd f : datatype=”&xsd ; i n t ”>3000</hasCapacity>

</MiniManager>

</rd f :RDF>

As one can see, the ontology defines one class, namely the MiniManager class.

It also defines one datatype-property13, called hasCapacity. Three individuals

of the MiniManager class are also defined, that have different values for the

hasCapacity property. The individuals and their hasCapacity properties are

shown in table 1.

Individual name hasCapacity property value
MiniManager 1 1000
MiniManager 2 2000
MiniManager 3 3000

Table 1: MiniManager individuals and their hasCapacity values

When the PluginMiniManagerApplication is executed, the user also provides

the IP-address of node to be monitored as parameter. Using this IP-address our

system then requests the node’s capability attributes by sending a message to

the capabilitymanager. When the CPU-clock attribute is extracted from the rest

of the attributes, the application is ready to find the MiniManager best suitable

for this node. This is done by comparing the MiniManagers hasCapacity values

with the node’s CPU-clock value.

SWRL to find MiniManager To compare the MiniManager’s hasCapacity

value with the node’s CPU-clock value, we use Semantic Web Rule Language

(SWRL). The reason we use this language instead of other rule languages is that

this language is based on OWL and therefore enables us use it directly with our

OWL description without any need for conversion. Protg-OWL API comes with

well documented and easy-to-use SWRL support as well as support for the for

the Pellet reasoner. With Protg-OWL API we are able to write SWRL rules

programmatically, which enables us to create rules and queries on the fly. Our

SWRL query for finding a MiniManager looks like follows:
13A datatype property links an individual to an XML Schema Datatype value or an RDF

literal. This is in contrast to an object property which links an individual to an individual.

66

MiniManager(?m)∧hasCapacity(?m, ?c)∧swrlb : lessThanOrEqual(?c, nodeCPUcapacity)→
sqwrl : select(?m, ?c)

The query asks for all MiniManager individuals that have capacities equal

or less than nodeCPUcapacity, which is the CPU-clock value of the node to be

monitored. If more than one is returned, only the first will be selected. If none

is returned, it means that the CPU-clock of the node is so limited that none

of the defined MiniManagers would be able to execute without degrading the

node’s performance.

After a MiniManager is chosen, the web application sends a message to the

already deployed MainManager and tells it to plug-in this MiniManager at the

DMS. This will cause the MainManager to send a pluginActor message to the

director of the form:

pluginActor(tapas : //129.241.200.226, minimanagerNO1, monitorP lay)

9.2.4 GetMibDefApplicaiton

When a MiniManager is deployed, the user is able to get monitor (SNMP) -

values from the node. As stated in 8.1.2, one of the drawbacks in version 1 is

that the user has to know the exact OID of the MIB object he wants to monitor.

To relieve the user from having to know this, we have in version 2 allowed the

user to enter more intuitive input values, and let the system convert this to the

corresponding OID. For example, if the user wants to monitor on the MIB object

tcpInSegs, he can enter tcpinputsegments, and the system will recognize this

string as an alias to tcpInSegs. To enable this, we have used Protg-OWL Editor

to create an ontology over the domain of MIBObjects, called MIB.owl (appendix

A) Since the total number of MIB objects is pretty large, we have only included

six MIBObject classes in our ontology. In addition to the class MIBObject ,

the ontology also defines the classes Alias, MIBDefs, and Syntax , as well

as the two object properties hasSyntax and isPartOfMibDef . Furthermore,

each of these classes have several subclasses, as one can see in figure 20.

67

Figure 20: Asserted MIB ontology model

68

For each of the subclasses of the MibObject class, we have defined a couple of

restrictions. Restrictions are used in OWL to restrict the members that belong

to a class. For example, we would like to make the Alias subclass systemup-

time a member of the MIBObject sysUpTime. To do that we must restrict all

other members of the ontology, such that systemuptime is the only one “letting

in”. Using Protg, we have therefore created the following restrictions:

sysUpTime

Figure 21: Restrictions of sysUpTime

systemuptime

Figure 22: Restrictions of systemuptime

As one can see from the screen shots, both systemuptime and sysUpTime

have restrictions on the values of the object properties. Since syUpTime has

69

defined the restrictions as Necessary and Sufficient, we are saying that not

only are the defined conditions necessary for membership of the class sysUp-

Time, they are also sufficient to determine that any (random) individual that

satisfies them must be a member of the class sysUpTime. This means that,

since we have said that members of systemuptime must have Syntax equal

to Timeticks and also be part of DISMAN-EVENT-MIB , all members of

systemuptime are also members of sysUpTime.

In the same way, we define restrictions of the other subclasses of the MibOb-

ject class and Alias class. When having a reasoner classifying our taxonomy,

we end up with the following inferred ontology model:

70

Figure 23: Inferred MIB ontology model

As we see in figure 23, all subclasses of the Alias class have also been in-

ferred as subclasses of their corresponding subclasses of the MIBObject class.

That is, tcpinputsegments has been inferred as subclass of tcpInSegs, ipde-

faulttimetolive as subclass of ipDefaultTTL, and so forth.

In our application we are using the Protg-OWL API to programmatically

71

access this inferred knowledge. Provided with a string representing an Alias

as argument the application uses the inferred ontology model to locate the

superclass of this Alias, and - if the Alias exists in the ontology - return the

name of it’s superclass. For example, executing the application with with the

argument ’systemuptime’, will return ’sysUpTime’. If the argument can not be

cast to an existing Alias, the application will return an error message.

9.2.5 SNMPQueryApplication

This is the application that is responsible for returning SNMP values in an

ongoing monitor session.

The application does not include any reasoning and will only forward the

request to the MainManager by sending a TAPAS message. The MainManager

will then contact the MiniManager responsible for monitoring on the provided

IP-address and ask for the SNMP value for the given OID. The value is returned

to the MainManager which in turn returns the value to the application.

9.2.6 PlugoutMiniManagerApplication

When the user wants to plugout a MiniManager from a node, the MonitorAp-

plication will invoke this service. The corresponding web application will send a

TAPAS message to the MainManager, forwarding the request. The MainMan-

ager will then send a plugoutActor request to the director asking it to plugout

the MiniManager on the given node. An example of such a message looks like

this:

plugoutActor(tapas : //129.241.200.226)

This will cause the MiniManager at node ’tapas://192.241.200.226’ to be plugged

out.

9.2.7 PlugoutMainManagerApplicaiton

When the user wants to plugout the MainManager, the PlugoutMainMan-

agerService application will do as in the PlugoutMiniManagerService and for-

ward the request to the MainManager. The latter then checks whether there

are any active MiniManager’s “out there”. If it is, it first plugs them out, before

pluggin out itself.

72

9.2.8 StopPlayApplication

Our last service, will send a plugoutPlay message to the director, requesting to

plugout our play - analogous to ending the application. Below is an example of

a plugoutPlay message:

plugoutP lay(monitorP lay, 1.4)

9.3 The Semantic Web Services

To make the web applications accessible for our client application a set of Web

Services have been created. Using the Java2WSDL14 tool by Axis, we created a

Web Service out of every web application. Using the WSDL descriptions from

the created Web Services we further created OWL-S descriptions for each of the

services. The tool enabling this is called WSDL2OWL-S Converter, and is part

of the Mindswap OWL-S API 15.
14http://ws.apache.org/axis/java/ant/axis-java2wsdl.html
15http://www.mindswap.org/2004/owl-s/api/

73

Figure 24: WSDL2OWL-S Converter

Before these services could be invoked we had to do some manual editing

of the resulting OWL-S descriptions. This includes editing of the input and

output types. Additionally, in cases where the output type of the service is

an OWL type, XSL Transformations (XSLT) [23] have been applied as part of

the service grounding to transform the output from an OWL type to an XML

Schema datatype. This transformation is applied automatically in the execution

of the service and is necessary in order for our MonitorApplication to interpret

the return values appropriately.

Our resulting OWL-S service descriptions (Appendix C - K) contains one

atomic process each, responsible for invoking their respective web applicions.

In 2, we have listed our services as well as the input- and output types of their

atomic processes.

To make the OWL-S service accessible from our client application they were

74

Service Input type Output type
CreatePlayService N/A http://www.w3.org/2001/XMLSchema#String

PluginMainManagerService http://www.w3.org/2001/XMLSchema#String http://www.w3.org/2001/XMLSchema#String

PluginMiniManagerService http://www.w3.org/2001/XMLSchema#String http://www.w3.org/2001/XMLSchema#String

GetMibDefService MIB.owl#Alias MIB.owl#MibObject

SNMPQueryService 1. MIB.owl#MibObject 2. http://www.w3.org/2001/XMLSchema#String http://www.w3.org/2001/XMLSchema#String

PlugoutMiniManagerService http://www.w3.org/2001/XMLSchema#String http://www.w3.org/2001/XMLSchema#String

PlugoutMainManagerService N/A http://www.w3.org/2001/XMLSchema#String

StopPlayService N/A http://www.w3.org/2001/XMLSchema#

Table 2: OWL-S Services and their input/output types

all deployed at the web server.

9.4 Client side of the application: MonitorApplication

Due to the introduction of Semantic Web Services, the client application is now

not only a simple GUI, but rather enriched with a OWL-S facilities in order to

invoke the OWL-S services described in the previous section. We have therefore

created a new client application, called MonitorApplication. A simplified UML

class diagram of this application is depicted below.

75

Figure 25: Simplified UML class diagram of MonitorApplication

In the following the different subcomponents of the MonitorApplication will

be described.

9.4.1 MindSwap OWL-S API

After testing both the OWL-S API’s mentioned in 5.4.1, we have found that none

of them fulfills all the requirements of this application. The main benefits of the

CMU OWL-S API is it’s support for embedding OWL-S Profile descriptions as

UDDI advertisements. In addition a matchmaker facility is available from their

website which enables a client to locate a OWL-S service by searching for OWL

typed inputs and/or outputs. However, the execution environment supported

by the CMU OWL-S API, namely OWL-S VM, provided us with some problems

that we were unable to solve. Nor could we find any proper documentation for

this component enabling us to locate the problems.

Similar to the CMU OWL-S API, the Mindswap OWL-S API provides pro-

grammatic access to read and write OWL-S service descriptions. In addition a

fully functioning execution engine is included in the API. This execution engine

enables us to directly invoke our Semantic Web Services, without any need to

76

create stubs and skeletons. Jena [21] provides the OWL and RDF base for the

API, and Pellet is used for reasoning. Contrary to the CMU OWL-S API, the

Mindswap API is well documented and also have an active mailing list available

from the Mindswap web site. This, in addition to a fully functioning execution

environment, made us choose this API for our application.

9.4.2 InvokeService class

The execution environment of the Mindswap OWL-S API is reachable through

the InvokeService class. This class contains methods for invoking all the defined

OWL-S services. Below is the code snippet for invoking the CreatePlayService:

pub l i c S t r ing runCreatePlay () throws Exception{

OWLKnowledgeBase kb = OWLFactory . createKB () ;

kb . setReasoner (” P e l l e t ”) ;

s e r v i c e=kb . r eadSe rv i c e (” http :// l o c a l h o s t :8080/ Axis2WSTest/ axis2−web/ CreatePlayServ ice . owl ”) ;

p roce s s = s e r v i c e . ge tProce s s () ;

va lues = new ValueMap () ;

// Allthough t h i s s e r v i c e does not need an input ,

//we have to inc lude one f o r the s e r v i c e to execute

va lues . setDataValue (p roce s s . get Input (” someInput ”) , ”dummyInput ”) ;

// execute the s e r v i c e

va lues = exec . execute (process , va lues) ;

// get the r e s u l t o f the execut ion

OWLDataValue out = va lues . getDataValue (p roce s s . getOutput ()) ;

r e turn out . t oS t r i ng () ;

}

As one can see, by providing the URI of the OWL-S description file, we have

programmatic access to the service. This enables us to set the input(s) of the

service, execute the service and catch the result (output) of the execution. Most

of the operations a user want to perform can be carried out by invoking one of the

services listed in table 2, in the manner described above. However, in order to get

a SNMP query value, one first has to execute the GetMibDefService (in order to

get a Mib.owl#MibObject value), and then execute the SNMPQueryService

to get the actual SNMP response value. Instead of having the user to make two

separate calls this can be done automatically by creating a composed OWL-S

service out the two services (GetMibDefService and SNMPQueryService)

77

Our new composed service will do the following:

1. Take a MIB.owl#Alias as input,

2. Invoke the GetMibDefService

3. Temporarily store the output (of type MIB.owl#MibObject) of GetMib-

DefService

4. Invoke the SNMPQueryService using the output from 3. as input

5. Return the final output to the user.

The full OWL-S description of this composed service can be seen in appendix

K.

9.4.3 ServiceMatchMaker class

A drawback with the Mindswap OWL-S API is that it does not include facil-

ities for creating UDDI advertisements of OWL-S Profile descriptions. In our

application, however, this is not regarded as fatal drawback since the system

will only offer a fairly limited amount of web services, enabling us to load all

service descriptions in the computer’s cache at start-up - without any signifi-

cant performance impacts. A simple matchmaker component, realized in the

ServiceMatchMaker class, is created for searching and locating the existing ser-

vices. The search algorithm in the ServiceMatchMaker class requires an OWL

typed input/output pair as parameter. If the algorithm locates a service with

exactly this input/output pair, the URI of this service is returned. If not, the

algorithm will try to create a list of services from the set of existing services

where the input of the first service of the list is equal to the provided input, and

the output of the last service of the list is equal to the provided output. The

pseudo-code for this algorithm is depicted below.

78

f i n d S e r v i c e (input A , output A , L i s t)
i f L i s t == n u l l

L i s t = new L i s t
f i n d s e r v i c e in g l o b a l s e r v i c e l i s t where input == input A ;
i f s e r v i c e found

add t h i s s e r v i c e to L i s t
i f t h i s s e r v i c e has output == output A

return L i s t
e l s e

output B = t h i s s e r v i c e ’ s output
c a l l f i n d S e r v i c e (output B , output A , L i s t)

e l s e i f no s e r v i c e i s found : re turn n u l l

Figure 26: Pseudo-code for the findService method of the ServiceMatchMaker
class

If a match is found, and the returned list contains more than one service,

the MindSwap OWL-S API is used to create a composed OWL-S service of the

services in the list. The URI of this composed service will then be returned.

Please note that this matchmaker is currently not used in our solution. Since

we only have a limited amount of services in our system we do not have a need

to “discover” them using the search algorithm. Instead the URIs of the services

used are hard coded in our client application. However, the number of services

may increase in the future, it may at some point not be clear what service to

use. Also, in our solution we only have one service provider. Hypothetically,

there may be several different service providers offering services in the domain

of network management. For this reason, we have included the service discovery

possibility for future use.

79

Part III

Evaluation

80

10 Conclusion

As a result of this work, we have extended our previous network management

system with Semantic Web technology. A new MonitorApplication is created,

that includes a graphical user interface that a system administrator can use to

perform a set of management operations. These operations are carried out using

Semantic Web Services that invokes a set of web applications implemented in a

web server. These web applications in turn, communicates with the management

system using the TAPAS Platform.

In the following subsections we will address each of our objectives of this

thesis, and try to discuss whether we achieved our goals.

10.1 Analyze the potential benefit of using ontology and

reasoning applications in our NMS system

After investigating our previous solution we located three aspects that we could

improve using Semantic Web Services together with ontology- and reasoning

applications. These were presented in section 8.1, and included:

Problem 1: GUI and MainManager in same device This is regarded

as a problem since it places restrictions on the user on what type of device

he is using to access and run the NMS application. A better approach would

therefore be to separate the GUI from the system itself. The GUI could access

the system by invoking (Semantic) Web Services.

Problem 2: User must know OID by heart In the version 1 of our

application the user had to enter the exact OID for the MIB object he wanted

to monitor. A better approach would be to let the user enter intuitive values

like “systemuptime” or “mainmemorysize”, and let the system interpret these

input values and translate them to their corresponding OIDs. This can be

accomplished by creating an ontology of MIB objects and corresponding aliases.

A reasoning application can then be used to link an alias to a MIB Object in

order to determine the OID to monitor.

Problem 3: Choice of MiniManager In the current solution the same

type of MiniManager was deployed regardless of the capabilities of the DMS.

81

A better approach would be to create different types of MiniManagers with

different capabilities, each designed for a special set of devices. In this way

one can - before a MiniManager is deployed - perform a matching between the

MiniManager’s capabilities and the DMS’s capabilities in order to locate the

MiniManager that is best suited for the device to be monitored. This can be

accomplished using an ontology over MiniManagers and their capabilities. An

reasoning application can then be used to perform the matching.

10.2 Specify proposed ontology and reasoning applications

integrated with the NMS application. Ontology shall

be specified using Protege-OWL Editor.

The first problem was addressed creating a new application called MonitorAp-

plication with an embedded GUI. This MonitorApplication serves as our service

requester and can be executed independently of the NMS system and only re-

quires it’s host to be JVM compatible and with Internet connectivity. The

MonitorApplication communicates with the NMS system using Semantic Web

Services.

In order to address the second problem , we first used the Protg-OWL Editor

to create a domain ontology, called MIB.owl. This ontology defines the OWL

classes Alias, MibObject, MibDefinition and Syntax. Furthermore, we created

a web application called GetMibDefApplication that accesses this ontology and

it’s defined classes and properties programmatically. Using the Pellet reasoner

to access the inferred ontology model, we are able to locate what MibObject

corresponds to the given Alias. That is, when the user enters the argument

“systemuptime”, our application is able to infer that this alias corresponds to

the MibObject sysUpTime.

The third problem was solved by creating three different MiniManager TAPAS

Roles, each with different analyzing mechanisms, designed for different types of

devices. In addition we created an ontology called MiniManager.owl where

we defined the class MiniManager as well has the property hasCapacity. The

hasCapacity property ranges from the domain of MiniManager to an integer

specifying a CPU-clock capability. Three different individuals of the class Mini-

Manager were created, with different values for the hasCapacity property. Each

of these individuals corresponds to one of the MiniManager TAPAS Roles. The

82

web application PluginMiniManagerApplication, accesses this ontology to find

what MiniManager individual - and thus what MiniManager Role - to plug in at

a specific node. In this way we can be certain that no MiniManager will require

more resources than the node it is deployed to can offer.

We also created some other web applications that do no perform any reason-

ing, but are necessary in order to perform the other operations required for the

network management system to operate properly. This includes applications to

plugin / plugout the the TAPAS Play, to plugin /plugout the MainManager as

well as performing SNMP queries.

10.3 Specify and implement web-service based applica-

tions that makes the reasoning applications from 2

available as Web Services

For every web application we created an OWL-S service description. These

OWL-S services are invoked from our client application called MonitorApplica-

tion through the MindSwap OWL-S API. Most of the operations the user can

perform are carried out by invoking one of the defined services through the In-

vokeService class. The operation of performing a specific SNMP query, however,

required two of the services to be executed, namely the GetMibDefService and

SNMPQueryService. Instead of requiring two separate calls from the user, we

created a composed service out of the two which could be invoked once.

11 Evaluation and Future Work

The result of our work is a light-weight management system applied with SW-

technology. We have proven that the use of formal ontologies to provide our

system with knowledge about the management system enables the system to

make “intelligent” and automatic decisions. Since we have created an ontology

over MIB objects and corresponding aliases we allow a system administrator to

input intuitive arguments to the application, and thereafter make the system

translate these arguments to an actual MIB Object. In the current ontology, we

have only created one alias per MIB Object, but since these are described in a

OWL file - and not in code - new aliases could be added to the ontology at any

time, without having to rewrite any code. In the same way new MIB Objects

83

could be added to the ontology enabling more MIB objects to be monitored.

By creating an ontology over MiniManagers and their capabilities, as well as

taking advantage of the facilities provided by the TAPAS Platform to request

a TAPAS node’s capability attributes - we can compare the MiniManagers ca-

pabilities against the nodes capability in order to find the MiniManager that is

best suited for the selected DMS. In this way we have created an effective way

of recognizing the difference in resource availability of different network devices,

and thus enforcing an flexible and efficient use of their resources. Nodes with a

high CPU-power, will be granted a MiniManager capable of having a large num-

ber of concurrent monitor sessions as well as powerful analyzing mechanisms. In

other nodes with less resource capability when comes to CPU-power, a simpler

version of the MiniManager will be chosen.

As the network infrastructure changes and devices are removed or replaced,

more powerful devices may become available. These changes can easily be ac-

commodated for by creating new MiniManager Roles and creating new Mini-

Manager individuals in the ontology. This can easily be accomplished without

bringing the system down.

11.1 Proposals for future work

All though the system uses ontology and reasoning applications in order to

perform “intelligent” decisions, there are several areas that may be further im-

proved. First, our method for finding the “best” MiniManager to deploy at a

node is only based on a comparison of CPU-power. In a future version, this

method could be further improved by comparing other capability attributes as

well, for example main memory usage. Also as, we mentioned in 9.4.3, our

MonitorApplication contains an unused class, namely the ServiceMatchMaker

class. As discussed there, we do only consider one service provider in our ap-

plication, which consists in the same organization as our service requester. For

this reason the idea of discovering the services to use have no real purpose in

our system, as we can hard code the service URIs in the client application. Re-

ferring to section 4.2, this does not exactly harmonize with the idea of Semantic

Web Services. Hypothetically, there may be other organizations with a better

service for locating a MIB Object given an alias as argument. A future version

of our MonitorApplication could accommodate for this by including other ser-

vice providers in the search and discovery of an “Alias2MIBObject-converter”.

84

In order to realize this discovery, our discovery-algorithm probably needs to be

rewritten as one in this case cannot compare the service’s inputs and outputs,

but rather non-functional properties like the number of defined Aliases the ser-

vice can convert. In this way the discovery algorithm can locate the service with

the highest number of defined Aliases before the MonitorApplication invokes the

service. If it turns out that the chosen service cannot convert the provided ar-

gument, the MonitorApplication will choose the service with the second most

Aliases defined, and so forth.

12 Related Work

All though we have failed to find any work that relates directly to our work,

there are several projects that relates to our work in some way or another. In

the following subsections we will describe some of them.

12.1 Semantic Management Meta-Model

The article Semantic Management: Advantages of using an ontology based man-

agement information meta-model [25] is discussing a way of realizing interop-

erability between different management domains described in different informa-

tion models. Interoperability between the different information models (SNMP,

CMIP, DMI, WBEM...) have usually been carried out with syntactical trans-

lations that do not include the semantic aspects of the defined information.

This article shows a way to define a management information meta-model that

integrates all the information, that currently belongs to different management

domains, in the same model. This is achieved using formal ontology techniques.

Having one one such model, network managers can work and reason with an

abstract view of the management information, independent of the specific man-

agement model used.

12.2 The use of Web Services in a Network Management

System

The idea of decentralizing network management systems has been around for

quite a while, and there have been several proposals of how to achieve this. As

with our management system, several of these proposals adopt the management

85

by delegation (MbD) model [18], which enables one to delegate management

functions along the management system, to decentralize the management oper-

ations. The work carried out in [26] demonstrates a way of using Web Services

in order to delegate these management functions. They base their work on stud-

ies showing that Web Services can consume less bandwith than SNMP when a

large number of management objects needs to be retrieved from a management

entity. The paper specifies a prototype of a WS-based MbD system developed

to allow the observations of WS against SNMP.

Continuing with approaches that uses Web service technology to implement

management interfaces of managed resources, the paper [27] shows a way to

combine several web services to perform composite processes. The composite

processes are defined using OWL-S, which allows their formal description. In

contrast to our work, where we use a execution engine present in the MindSwap

OWL-S API, this paper chooses the Web Services Business Process Execution

Language (WSBPEL), in order to execute the services. This requires a mech-

anism to translate the OWL-S composite processes to WSBPEL before the

execution can take place.

86

References

[1] Tom Gruber, “Ontology” 2008: http://tomgruber.org/writing/ontology-

definition-2007.htm

[2] Princeton University Cognitive Science Laboratory, WordNet,

http://wordnet.princeton.edu/

[3] OWL Web Ontology Language Reference, W3C,

http://www.w3.org/TR/owl-ref/

[4] OWL DL Class Axioms, W3C, http://www.w3.org/TR/owl-

semantics/syntax.html#2.3.2.1

[5] Horn Rule Semantics, W3C, http://www.w3.org/2005/rules/wg/wiki/Horn Rules Semantics

[6] SWRL: A Semantic Web Rule Language Combining OWL and RuleML,

W3C, http://www.w3.org/Submission/SWRL/

[7] Logical Foundations of Object-Oriented and Frame-Based Languages,

Kifer, Lausen, Wu, http://www.cs.umbc.edu/771/papers/flogic.pdf

[8] Semantic Web Services. IEEE Intelligent Systems, Special Issue on the

Semantic Web, S. McIlraith, T.Son and H. Zeng. 16(2):46–53, March/April,

2001.

[9] W3C Web services Choreography Working Group: Charter:

http://www.w3.org/2003/01/wscwg-charter

[10] Web Services Business Process Execution Language Version 2.0, OASIS

2007, http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf

[11] The Web Service Modeling Framework WSMF, D.Fensel, C.Bussler,

http://www.wsmo.org/papers/publications/wsmf.paper.pdf

[12] OWL-S: Semantic Markup for Web Services, W3C Member Submission

2004, http://www.w3.org/Submission/OWL-S/

[13] OWL-S Virtual Machine, SemWebCentral,

http://www.semwebcentral.org/projects/owl-s-vm/

87

[14] Mindswap OWL-S API, Maryland Information and Network Dynamics

Lab Semantic Web Agents Project ,http://www.mindswap.org/2004/owl-

s/api/

[15] OWL-S: Some Motivating Tasks: http://www.w3.org/Submission/OWL-

S/#2

[16] SPARQL Query Language for RDF, W3C Recommendation 15. January

2009, http://www.w3.org/TR/rdf-sparql-query/

[17] SNMP-based Monitoring Application By Using TAPAS Platform, O.

Nistad, F. A. Aagesen, 2008, Department of Telematics, Norwegian Uni-

versity of Science and Technology

[18] Y. Yemini, G. Goldszmidt, and S. Yemini. Network Management by Del-

egation. In International Symposium on Integrated Network Management,

pages 95–107, 1991.

[19] TAPAS Website: http://tapas.item.ntnu.no/wiki/index.php/Main Page

[20] Apache Axis, Java platform for creating and deploying web services appli-

cations, http://ws.apache.org/axis/

[21] Jena - A Semantic Web Framework for Java, http://jena.sourceforge.net/

[22] Pellet - The Open Source OWL DL Reasoner,

http://clarkparsia.com/pellet/

[23] XSL Transformations (XSLT), http://www.w3.org/TR/xslt

[24] D Krafzig, K. Banke, D. Slama, Enterprise SOA: Service Oriented Archi-

tecture Best Practices. Prentice Hall PTR, 2004

[25] Jlopez, Villagra, Berrocal, Semantic Management: Advantages of using an

ontology based management information meta-model

[26] T. Fioreze, L. Z. Granville, M. J. Almeida, L. R. Taruco, Comparing Web

Services with SNMP in a Management by Delegation Environment

[27] J. Fuentes, J.Lopez, P.Castells, An Ontology-Based Approach to the De-

scription and Execution of Composite Network Management process for

Network Monitoring

88

[28] W3C; RDF: http://www.w3.org/RDF/

[29] W3C; RDF-S: http://www.w3.org/TR/rdf-schema/

[30] W3C; Web Ontology Language: OWL; http://www.w3.org/2004/OWL/

[31] S. Jiang, F.A Aagesen; An Approach to Integrated Semantic Service Dis-

covery

89

	Title Page
	Problem Description
	masteroppgave.pdf

