
June 2009
Danilo Gligoroski, ITEM
Martin Gilje Jaatun, SINTEF

Master of Science in Communication Technology
Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Telematics

Procedures and Tools to Reset or
Recover the Administrator Password on
Popular Operating Systems

Jørgen Wahl Blakstad
Rune Walsø Nergård

Problem Description
It is a fact that a lot of people forget their computers in public places such as airports and taxis. It
may lead to serious consequences, both for business and private persons, if the information ends
up in the wrong hands. Many people think that when a laptop with sensitive or confidential
information is lost, their login password protection is adequate. Although the system is password
protected, this thesis will show that this is not sufficient protection.

This thesis consists of three parts. In the first part we will present an overview of the login
mechanism and password handling in the following operating systems: Windows XP, Windows
Vista, Windows Server 2008, Windows 7, Ubuntu Server Edition 8.10, Fedora 10, FreeBSD 7.1 and
Macintosh OSX 10.5.6.

In the second part we will describe a laboratory environment consisting of eight computers with
the selected operating systems, in which we experimentally will apply different procedures and
tools to reset or recover the administrator password.

The third part presents an empirical password study where we test the strength of 30 passwords,
and see how many we are able to reveal during a period of 8 hours.

Assignment given: 15. January 2009
Supervisor: Danilo Gligoroski, ITEM

Abstract

Unauthorized access to computers and theft of proprietary information are two problems
leading to large economical losses for organizations around the world. Thousands of
laptops often containing vital information are lost at airports every day. Organizations
and people in general often believe that the sensitive information is inaccessible because
of the login mechanism. Even though we demand that our systems should prevent
unauthorized access, we also expect that the access to the operating system can be
restored when a password is lost. We require that authorized persons can regain the
access to the computer, while unauthorized persons are prevented access. A good solution
to reset or recover the Administrator password should exist on all operating systems.

This thesis begins with addressing weaknesses in 8 different operating systems. It
presents a comprehensive step-by-step guide for already existing procedures and tools
that can be used to reset or recover the Administrator password. In total 6 procedures
and 10 tools are presented. Because some procedures required a lot of interaction from
the user, we decided to automate these and include them in our self made tool named
Yet Another Local Password (tool) (YALP).

We were able to reset the passwords on all of the 8 operating systems. On some
of the operating systems only a few passwords were recovered, and based on that, a
more comprehensive password recovery study was desirable. It should be noted that
even though Microsoft has introduced a more secure password handling mechanism on
newer Windows operating system, many persons and corporations still use the outdated
Windows XP operating system. This is partly because Windows Vista has been criticized
for its weak performance. An empirical password study was carried out to see what
percentage of 30 carefully chosen passwords could be revealed. Some disturbing results
were obtained. During a period of 8 hours, 100% of the passwords created on a Windows
XP system were revealed. The results from this study show that the use of password as
an authentication mechanism for operating systems will not offer sufficient protection in
the future, and that other mechanisms have to be considered.

Based on results obtained from this thesis, a paper named All in a day’s work:
Password cracking for the rest of us was submitted to The 14th Nordic Conference on
Secure IT Systems, NordSec 2009, in Oslo, Norway [1]. In addition, a poster named
Generation of Rainbow Tables was presented at The 8th Annual Meeting on High
Performance Computing and Infrastructure, NOTUR2009, in Trondheim, Norway [2].
The poster and the paper are included in Appendix F and Appendix G, respectively.

i

Preface

The work on this thesis has been carried out in the 10th semester of the Master’s
Programme in Communication Technology at The Norwegian University of Science and
Technology (NTNU), Department of Telematics. The topic for this thesis was formed in
cooperation with Danilo Gligoroski at the Department of Telematics, and Martin Gilje
Jaatun from SINTEF ICT. The experimental parts of this thesis were carried out at a
laboratory located at NTNU.

Working on this thesis has been a challenging and informative task. Through
our study on how to reset or recover a lost password the authors of this thesis have
gained a lot of experience with different operating systems and their underlying login
mechanisms. The authors have also gained valuable knowledge regarding the choice of
a secure password.

We would like to thank our supervisor Martin Gilje Jaatun for his enthusiasm and
valuable input throughout this thesis. He has constantly been a driving force and has
devoted much time in order to give us constructive feedback. We would also like to thank
our professor Danilo Gligoroski for his motivating comments and contributing ideas. We
are also grateful for his assistance with the poster presented at NOTUR2009. We also
appreciate their contribution with the scientific paper based on our thesis submitted to
the NordSec 2009 conference.

Additionally, Jørgen would like to thank his beloved Birgitte Blaauw Nordal for her
moral support and understanding during late work hours in the final stage of his master’s
degree.

iii

Contents

Abstract i

Preface iii

List of Figures xi

List of Tables xiii

List of Listings xv

Abbreviations xvii

Definitions xix

1 Introduction 1
1.1 Motivation . 2
1.2 Related Work . 3
1.3 Objectives . 3
1.4 Limitations . 4
1.5 Methodology . 4
1.6 Document Structure . 5
1.7 Conventions . 6

2 Background 9
2.1 Techniques . 9

2.1.1 How to Choose a Password . 9
2.1.2 Password Recovery Techniques . 12

2.1.2.1 Password Guessing . 12
2.1.2.2 Password Cracking . 13
2.1.2.3 Rainbow Tables . 14

2.2 Boot Process . 18

v

CONTENTS

2.2.1 Windows . 18
2.2.2 Linux . 24
2.2.3 BSD . 25

2.2.3.1 FreeBSD . 26
2.2.3.2 Mac OS X . 28

2.3 Password Handling . 29
2.3.1 Windows . 30

2.3.1.1 SAM . 30
2.3.1.2 Hashing of passwords . 31

2.3.2 Linux . 43
2.3.2.1 The passwd file . 43
2.3.2.2 The shadow suite . 44

2.3.3 BSD . 45
2.3.3.1 FreeBSD . 45
2.3.3.2 Mac OS X . 46

2.4 Tools . 49
2.4.1 Password Resetting . 49

2.4.1.1 Offline NT Password & Registry Editor 49
2.4.1.2 Kon-Boot . 50
2.4.1.3 Bart’s Preinstalled Environment (BartPE) 51
2.4.1.4 PCLoginNow 2.1.0 . 53
2.4.1.5 DreamPackPL . 54
2.4.1.6 The passwd Tool . 55

2.4.2 Password Recovery . 55
2.4.2.1 Ophcrack . 55
2.4.2.2 John the Ripper . 57
2.4.2.3 Cain & Abel . 58
2.4.2.4 LCP . 59

2.4.3 Supplementary . 60
2.4.3.1 The fgdump Tool . 60
2.4.3.2 Winrtgen . 60

3 Laboratory 63
3.1 Hardware . 63
3.2 Operating Systems . 64

4 Method 65
4.1 Overview of Procedures and Tools . 67

4.1.1 Password Resetting . 67
4.1.1.1 Procedures for Windows Operating Systems 67
4.1.1.2 Tools for Windows Operating Systems 67
4.1.1.3 Procedures for Unix-based Operating Systems 68
4.1.1.4 Tools for Unix-based Operating Systems 68

4.1.2 Password Recovery . 69

vi

CONTENTS

4.1.2.1 Tools for Windows Operating Systems 69
4.1.2.2 Tools for Unix-based Operating Systems 70

4.2 Overview of Supplementary Procedures and Tools 70
4.2.1 Procedures for Windows Operating Systems 70
4.2.2 Tools for Windows Operating System 71
4.2.3 Procedures for Unix-based Operating Systems 71
4.2.4 Tools for Unix-based Operating System 71

5 Procedures 73
5.1 Procedures for Password Resetting . 73

Procedure 1: Windows XP Repair Backdoor 73
Procedure 2: Edit Shadow File in Unix Systems 76
Procedure 3: Shortcut for Bypassing Regular Login Procedure 77
Procedure 4: Replace a Pre-login Executable File 78
Procedure 5: Use Mac OS X Installation Disk 81
Procedure 6: Windows Password Reset Disk 82

5.2 Supplementary Procedures . 84
Procedure 7: Edit Boot Parameters in Unix Systems 84

Procedure 7.1: Edit Boot Parameter: single 84
Procedure 7.2: Edit Boot Parameter: init=/bin/bash 85

Procedure 8: Reboot and Hold Apple+S 87
Procedure 9: Enter Single-user Mode Through Boot-menu 87
Procedure 10: Using Live CD to Obtain Password File 89
Procedure 11: Using Live CD to Change Root Into the Host Operating

System . 91

6 Tools 95
6.1 Tools for Password Resetting . 95

Tool 1: PCLoginNow 2.0.1 . 95
Tool 2: Offline NT Password & Registry Editor 97
Tool 3: BartPE . 99

Tool 3.1: Password Renew . 100
Tool 3.2: WindowsGate . 102

Tool 4: Kon-Boot . 104
Tool 5: DreamPackPL . 106
Tool 6: passwd . 109

6.2 Tools for Password Recovery . 110
Tool 7: Ophcrack Live CD 2.1.0 . 110
Tool 8: John the Ripper 1.7.2 . 112
Tool 9: Cain & Abel v4.9.30 . 115
Tool 10: LCP 5.04 . 117

6.3 Supplementary Tools . 119
Tool 11: fgdump 2.1.0 . 119
Tool 12: Winrtgen 2.8 . 120

vii

CONTENTS

7 Results 123
7.1 Procedures and Tools . 123

7.1.1 Password Resetting . 124
7.1.2 Password Recovery . 125

7.2 YALP . 126
7.2.1 Description of Yet Another Local Password (tool) (YALP) 126
7.2.2 Contents of YALP . 127

8 Empirical Password Study 133
8.1 Laboratory Environment . 133
8.2 Line of Action . 135

8.2.1 Selection of Passwords . 136
8.2.2 Phase 1: Timing . 138
8.2.3 Phase 2: Password Cracking . 139

8.3 Results of The Study . 140
8.3.1 Phase 1: Timing . 140

8.3.1.1 LM hash . 140
8.3.1.2 NT hash . 144
8.3.1.3 MD5 hash . 147

8.3.2 Phase 2: Password Cracking . 149
8.3.2.1 LM hash . 149
8.3.2.2 NT hash . 156
8.3.2.3 MD5 hash . 162

9 Discussion 167
9.1 Procedures and Tools . 167

9.1.1 Evaluation of Procedures . 168
9.1.2 Evaluation of Tools . 169
9.1.3 General Discussion . 171

9.2 Empirical Password Study . 173
9.2.1 Time Measurements for LM and NT 173
9.2.2 Password Cracking of LM and NT 177
9.2.3 Time Measurements and Password Cracking of MD5 182
9.2.4 Discussion of General Results . 183

9.3 The YALP Tool . 185
9.4 Implications of Poor Login Security . 186

9.4.1 Implications of a Weak Login Mechanism 187
9.4.2 Implications of a Weak Password 187

9.5 Possible Solutions to Prevent Unauthorized Access 188
9.5.1 Choosing a Secure Password . 188
9.5.2 A More Secure Password Handling 190
9.5.3 Protection Mechanisms . 193

9.6 Windows versus Unix . 194
9.7 Lessons Learned . 195

viii

CONTENTS

9.7.1 Laboratory Equipment . 195
9.7.2 Selection of passwords . 196
9.7.3 Time measurements . 196

9.8 Further Work . 196
9.8.1 Disk Encryption . 196
9.8.2 Use of Supercomputers . 197
9.8.3 YALP . 198
9.8.4 Other Hardware and Operating Systems 198
9.8.5 Other Exploitable Weaknesses . 198
9.8.6 Other Authentication Mechanisms 199
9.8.7 Resetting and Recovery of Passwords Over Networks 199

10 Conclusion 201

Bibliography 205

Web References 209

A How to Build YALP 219
A.1 build YALP.sh . 219
A.2 build kernel.sh . 221

B YALP Scripts 223
B.1 startup.sh . 223
B.2 replace startup files.sh . 228
B.3 editshadow.pl . 231
B.4 mountos.sh . 233

C How to Disable LM Hashing 237

D How to Add 30 Users 239
D.1 addusers win.pl . 239
D.2 addusers lin.pl . 240

E Attachments 241
E.1 Attached CD . 241
E.2 Electronic Attachments . 241

F Poster 243

G Paper 247

ix

List of Figures

1.1 The market share of different operating systems. 2

2.1 The lookup process in rainbow tables. 17
2.2 pwdump password entry format. 30
2.3 A simplified overview of DES. 32
2.4 The construction of the LM hash. 34
2.5 The construction of the NT hash. 38
2.6 DES obfuscation of NT hash. 40
2.7 RC4 encryption of the obfuscated NT hash. 42
2.8 Offline NT Password & Registry Editor welcome screen. 49
2.9 Kon-Boot almost finished with the kernel hack. 51
2.10 Password Renew. 53
2.11 Windows Gate. 53
2.12 PCLoginNow’s welcome screen. 54
2.13 DreamPackPL initiated from a Windows XP login screen. 55
2.14 LCP main window. 60

7.1 YALP initial welcome screen. 127
7.2 A flow chart displaying YALP’s startup script. 128
7.3 YALP’s main menu. 128
7.4 Password resetting tools menu. 129
7.5 Password recovery tools menu. 129
7.6 Supplementary tools menu. 130

8.1 Phase 1: Settings used for the dictionary attack (LM hash). 141
8.2 Phase 1: Timing of the dictionary attack on the LM hash. 142
8.3 Phase 1: Timing of the cryptanalysis attack on the LM hash. 143
8.4 Distribution of time between the techniques applied to the LM hash. . . . 144
8.5 Phase 1: Settings used for the dictionary attack (NT hash). 145
8.6 Timing of the cryptanalysis attack on the NT hash. 146

xi

LIST OF FIGURES

8.7 Distribution of time between the techniques applied to the NT hash. . . . 147
8.8 Result from the dictionary attack on the MD5 hash. 148
8.9 Distribution of used time for the dictionary attack on the MD5 hash. . . . 149
8.10 Phase 2: Settings used for the dictionary attack (LM hash). 150
8.11 Passwords revealed from the dictionary attack (LM hash). 151
8.12 Share of revealed passwords. 152
8.13 Passwords revealed from the cryptanalysis attack (LM hash). 153
8.14 Share of revealed passwords. 153
8.15 Phase 2: Timing of the cryptanalysis attack on the LM hashes. 155
8.16 Distribution of time between the techniques applied to the LM hashes. . . 156
8.17 Phase 2: Settings used for the dictionary attack (NT hash). 157
8.18 Passwords revealed from the dictionary attack (NT hash). 158
8.19 Share of revealed passwords. 159
8.20 Passwords revealed from the cryptanalysis attack (NT hash). 159
8.21 Share of revealed passwords. 161
8.22 Distribution of time between the techniques applied to the NT hashes. . . 162
8.23 Passwords revealed from the dictionary attack (MD5 hash). 163
8.24 A list of the revealed passwords sorted by username. 164
8.25 Share of revealed passwords. 165

9.1 Results from the empirical password study. 173

xii

List of Tables

2.1 The different runlevels initiated by init. 26
2.2 Windows operating systems that stores LM hash or/and NT hash by default. 39
2.3 Id values available for the encrypted password in shadow. 45
2.4 Operating systems supported by the Kon-Boot tool. 50

3.1 Computer hardware specifications. 64
3.2 Operating system overview. 64

4.1 The names of the various procedures. 66
4.2 The names of the various tools. 66
4.3 Password resetting procedures for different Windows operating systems. . 67
4.4 Password resetting tools for different Windows operating systems. 68
4.5 Password resetting procedures for Unix-based operating systems. 68
4.6 Password resetting tools for Unix-based operating systems. 69
4.7 Password recovery tools for different Windows operating systems. 69
4.8 Password recovery tools for Unix-based operating systems. 70
4.9 Supplementary procedures for different Windows operating systems. . . . 70
4.10 Supplementary tools different Windows operating systems. 71
4.11 Supplementary procedures for Unix-based operating systems. 71
4.12 Supplementary tools for different Unix-based operating systems. 72

5.1 Procedure 1 Windows XP Repair Backdoor. 73
5.2 Procedure 2 Edit Shadow File in Unix Systems. 76
5.3 Procedure 3 Shortcut for bypassing regular login procedure. 77
5.4 Procedure 4 Replace a pre-login executable file. 78
5.5 Procedure 5 Use Mac OS X Installation Disk. 81
5.6 Procedure 6 Windows Password Reset Disk. 82
5.7 Procedure 7.1 Edit Boot Parameter: single. 84
5.8 Procedure 7.2 Edit Boot Parameter: init=/bin/bash. 85
5.9 Procedure 8: Reboot and hold Apple+S. 87

xiii

LIST OF TABLES

5.10 Procedure 9: Enter Single-user Mode Through Boot-menu. 87
5.11 Procedure 10 Using Live CD to Obtain password file. 89
5.12 Procedure 11 Using Live CD to Change Root Into The Host Operating

System. 91

6.1 Tool 1 PCLoginNow 2.0.1. 95
6.2 Tool 2 Offline NT Password & Registry Editor. 97
6.3 Tool 3.0 BartPE. 99
6.4 Tool 3.1 Password Renew. 100
6.5 Tool 3.2 WindowsGate. 102
6.6 Tool 4 Kon-Boot. 104
6.7 Tool 5 DreamPackPL. 106
6.8 Tool 6 passwd. 109
6.9 Tool 7 Ophcrack Live CD 2.1.0. 110
6.10 Tool 8 John the Ripper 1.7.2. 112
6.11 Tool 9 Cain & Abel v4.9.29. 115
6.12 Tool 10 LCP 5.04. 117
6.13 Tool 11 fgdump 2.1.0. 119
6.14 Tool 12 Winrtgen 2.8. 120

7.1 Key statistics from the password resetting procedures. 124
7.2 Key statistics from the password resetting tools. 124
7.3 Key statistics from the password recovery tools. 125

8.1 The operating systems used in Phase 1 and Phase 2. 134
8.2 Applied techniques corresponding to their type of hash. 136
8.3 An overview of the 30 selected passwords, and their corresponding category.137
8.4 10 mnemonic passwords with their corresponding phrase. 137
8.5 An overview of the tools used in Phase 1 and Phase 2. 139
8.6 Phase 1: Time measurements for the LM hash. 143
8.7 Phase 1: Time measurements for the NT hash. 146
8.8 Time measurement for the MD5 hash. 148
8.9 Revealed passwords. 152
8.10 Revealed passwords. 153
8.11 The results from both the attacks (LM hash). 154
8.12 Phase 2: Time measurements for the LM hashes. 155
8.13 Revealed passwords. 159
8.14 The results from both the attacks (NT hash). 160
8.15 Revealed passwords. 161
8.16 Phase 2: Time measurements for the NT hashes. 162
8.17 Revealed passwords. 165
8.18 The results from the dictionary attack (MD5 hash). 165
8.19 Phase 2: Time measurement for the MD5 hashes. 166

xiv

List of Listings

2.1 The 95 standard printable ASCII characters. 35
2.2 The users nerblak and root presented in the passwd file. 43
2.3 The users nerblak and root presented in the shadow file. 44
2.4 The user root presented in the master.passwd file. 46
2.5 This shows the hash files used in Mac OS X 10.4. 47
2.6 The user nerblak presented in its uid named hash file. 48
2.7 John the Ripper issued as root with wordlist and rules enabled. 57
7.1 How to run lm2ntcrack.pl with a John the Ripper output file. 131
8.1 The character sets used by the Vista special rainbow tables. 136
A.1 Script to build YALP. 219
A.2 Script to build custom kernel of YALP. 221
B.1 YALP startup script. 223
B.2 Replace startup file script. 228
B.3 Edit shadow file script. 231
B.4 Mount operating system script. 233
D.1 Script to add 30 users in a Windows system. 239
D.2 Script to add 30 users in a Unix system. 240

xv

Abbreviations

SAM Security Accounts Manager

DES Data Encryption Standard

MD4 Message-Digest algorithm 4

MD5 Message-Digest algorithm 5

SHA Secure Hash Algorithm

SHA1 Secure Hash Algorithm 1

LM LAN Manager

ASCII American Standard Code for Information Interchange

DES Data Encryption Standard

LILO LInux LOader

GRUB GRand Unified Boot loader

ANSI American National Standards Institute

BSD Berkeley Software Distribution

BIOS Basic Input/Output System

MBR Master Boot Record

SysV Unix System V

ISO International Organization for Standardization

GUI Graphical User Interface

SMB Server Message Block

SSH Secure Shell

FAT32 File Allocation Table 32

xvii

ABBREVIATIONS

NTFS New Technology File System

HFS Hierarchical File System

HFS+ Hierarchical File System Plus

UFS Unix File System

ext2 second extended file system

ext3 third extended file system

TPM Trusted Platform Module

EFI Extensible Firmware Interface

SSH Secure Shell

YALP Yet Another Local Password (tool)

NT New Technology

NTLM New Technology LanMan

WRP Windows Resource Protection

SFC System File Checker

PAM Pluggable Authentication Modules

ROM Read Only Memory

Ntldr NT Loader

SCSI Small Computer System Interface

ATA Advanced Technology Attachment

GINA The Graphical Identification And Authentification

LSASS Local Security Authority Subsystem Service

SCM Service Control Manager

SAS Secure Attention Sequence

SID Security Identifier

Smss Session Manager Subsystem

HAL Hardware Abstraction Layer

BCD Boot Configuration Data

xviii

Definitions

Rainbow Tables Rainbow tables are tables consisting of pre-computed hash values
used in the process of cracking passwords.

ASCII characters ASCII characters are a set of codes that is used by the computer to
convert letters and other characters to and from numbers.

Unicode Unicode is an universal character encoding standard used for representation
of text for computer processing.

Parity bit A parity bit is a bit added to ensure that the number of bits set to 1 is
always even or odd. The parity bit is normally used as an error-detecting code.

Live CD A live CD is a bootable CD with an operating system that is pre-installed on
the CD. This operating system does not need to be installed on the host system, it
can boot directly from the CD.

Host operating system A host operating system is the operating system that is
pre-installed on the computer.

Guest operating system A guest operating system is an operating system that is
booted on top of the host operating system.

Password cracking Password cracking involves retrieving the encrypted password
representation and trying to recover the original clear text password using an
automated tool.

Mangling Mangling is for example used in dictionary attacks, and means that
variations of each word listed in a wordlist is tried in order to reveal a password.

Runlevel A runlevel is a preset operating state on a Unix-like operating system.

xix

Chapter 1
Introduction

According to a Dell-sponsored study [pon08], conducted by Ponemon Institute, business
travelers lose more than 12,000 laptops per week in U.S airports. This shows that
business travelers are putting sensitive information of their organizations at risk when
they travel through airports. In the study, over 53% of the business travelers say that
their laptops contain confidential or sensitive information.

In a computer crime and security survey carried out by CSI/FBI in 2006 [GLLR06],
616 computer security practitioners in U.S. corporations, government agencies, financial
institutions, medical institutions and universities were questioned about the security
in their organization. The survey reveals that the top four categories of losses are (1)
viruses, (2) unauthorized access, (3) laptop or mobile hardware theft and (4) theft of
proprietary information. A weak login mechanism can lead to both unauthorized access
and theft of proprietary information. This shows the importance of highlighting these
weaknesses.

When performing a quick search on Google for methods how to reset the password
on a Windows machine, Microsoft presents a web page containing their advice when the
password is lost [3]. Microsoft claims the following:

If you do not have a reset disk or cannot log on as an administrator,
unfortunately, you may have to reinstall Windows XP and all other programs
that were installed on the computer before you can use the computer again.

As Microsoft claims Windows XP may have to be reinstalled, this thesis will among
other things look further into other possible solutions available.

The market share of different operating systems is presented in Figure 1.1. This figure
is based on data obtained from [4], and among other things illustrates that Windows
have the biggest market share, with Windows XP as the most widely used operating
system (63.76%). The figure also demonstrates how Windows Vista has not become as
generally accepted as Microsoft may have wished for. The data presented in Figure 1.1
shows the popularity of operating systems, and supports our choice of operating systems
selected for the experiments described in this thesis.

1

2 CHAPTER 1. INTRODUCTION

Figure 1.1: The market share of different operating systems.

1.1 Motivation

A system should not allow unauthorized persons to access the information stored on
the computer. We think it is necessary to investigate different operating systems to
give a description of how the systems are handling the login procedure when passwords
are used as authentication token. The thesis will also present an evaluation regarding
the degree of difficulty when it comes to resetting and/or recovering the administrator
password. Even though there are procedures and tools already available on the Internet,
no overview of these procedures and tools exists as far as we know. These procedures
and tools are mostly described on different forums on the Internet, and a gathering of
this information may be seen as a valuable contribution. The procedures and tools are
often surprisingly easy to use, requiring no expertise from the user. It is also a fact
that people forget their password and need to either reset or recover their passwords.
The challenge is to allow authorized users to recover and/or reset their password, and
prevent unauthorized users from exploiting these techniques to their advantage.

By evaluating the degree of difficulty to perform this task a conclusion can be made
whether this is too simple and if there are ways to make it harder, but still possible, for
the user to get access to the system after he has lost the password.

A study showing the strength of using passwords as an authentication token for
accessing the operating system would be desirable. Will passwords offer sufficient
protection in the future?

1.2. RELATED WORK 3

1.2 Related Work

Even though there already exists work related to password recovery and password
resetting, this mostly consist of forum posts and unpublished notes and articles. As
far as we know, no comprehensive collection describing procedures and tools regarding
password resetting and recovery has yet been published.

Many security distributions can be found on the Internet, such as BackTrack [5],
Protech [6] and Damn Vulnerable Linux [7]. None of these security distributions have
their main focus on password resetting and recovery, and are thus containing a large
amount of unnecessary tools, when the goal is to get access to a system where the
password is lost. A distribution called Trinity Rescue Kit [8] has specialized on providing
many different solutions when access to the system is needed. The disadvantage with
this distribution is that it lacks some tools and implementations of procedures that are
useful for a password resetting and recovery. This distribution is also large in size and
quite complicated.

Several studies have been carried out to evaluate different aspects of password
security. Klein presents in his article, “Foiling the Cracker”: A Survey of, and
Improvements to, Password Security [Kle91], some problems of the current password
security. Various techniques used by crackers are presented and a proactive password
checker is proposed.

Yan et al. [YBAG04] presents a survey containing some empirical results regarding
the memorability and security of passwords. This survey highlights that mnemonic
phrases are just as hard to crack as random passwords, yet just as easy to remember as
naive user selections.

1.3 Objectives

This thesis consists of three main parts. First a thorough theoretical background study
of the login procedure and password handling in the different operating systems is given.
Secondly we will set up a testbed consisting of eight computers with different operating
systems. In the second part we present a description on how to reset or recover the
administrator or root password by applying different procedures and tools. The last
part presents an empirical password study, where we test the strength of 30 passwords
on different operating systems. We aspire to achieve the following objectives:

• Make an overview of procedures and tools used to reset or recover the Adminis-
trator password on the selected systems.

• Make a comparison of the procedures and tools regarding their characteristics when
it comes to quickness and simplicity.

• Perform a study to test the strength of different passwords.

• Compare the security related to the login procedure on the selected operating
systems.

4 CHAPTER 1. INTRODUCTION

• Try to give suggestions on how to improve the login security and/or the protection
of files.

1.4 Limitations

As we shall see from this thesis there are a number of ways to get around a login
procedure to get access to the files stored on the system. Although it is possible to just
use a live CD of a different operating system, for example the Ubuntu live CD [9], to get
access to the files stored on a system running for example Windows XP, this is not the
focus in this thesis as we concentrate on password resetting and recovery. Even though
file access is not the focus, we will describe how to use a live CD to obtain the password
file stored on the operating systems, as this is relevant when it comes to recovery and
resetting of passwords.

Although we describe some hashing techniques, for example in connection with
Windows password handling, it is not the intention to go into detail about all the hashing
techniques mentioned in this thesis. We have nevertheless, decided to look closer into
the hashing techniques used by windows, as these techniques seem to have large security
flaws.

In this thesis we have chosen not to look closer into encryption of file systems. It is
discussed whether this is a solution to prevent unauthorized access or not, but this is
not experimented with. This thesis also omits describing other login mechanisms with
other authentication tokens than passwords.

The experiments carried out in this thesis require physical access to the computer.
This means that the thesis will not cover password resetting and password recovery over
networks.

1.5 Methodology

This section will outline the methodology used in this thesis. First the weaknesses of the
login mechanisms in popular operating systems are identified. For each operating system
the password handling and boot process is presented. A short introduction of some
tools and techniques are also given. Then procedures and tools that exploit some of the
weaknesses found are described. Each procedure and tool is structured in the same way.
First the procedure or tool number with its corresponding name is given. Then a table
containing key properties of the specific procedure or tool is displayed. Each procedure
and tool is then presented with a short description, necessary prerequisites and a step-
by-step approach. At last some possible variations of the approach are highlighted. It
should be noted that an overview of all these procedures and tools are given in Chapter
4.

A tool created by the authors, described in the Chapter 7, was created as a reaction
to the results received when the approaches for the procedures and tools were carried
out. In the end of this thesis an empirical password study is presented. As this was a
comprehensive study, both the approach and the results from the study were placed in a

1.6. DOCUMENT STRUCTURE 5

separate chapter, Chapter 8. The specific methodology used by the empirical password
study is outlined in this chapter.

1.6 Document Structure

The remainder of this thesis is organized as follows:

Chapter 2: Background presents theory related to password handling and the login
procedure in Windows-, Linux- and BSD based operating systems. A short presentation
of some techniques and tools are also given in this chapter.

Chapter 3: Laboratory Environment describes the laboratory setup. The chosen
hardware and operating systems is also specified.

Chapter 4: Method gives an overview of all the procedures and tools used to reset or
recover the Administrator password.

Chapter 5: Procedure presents a step-by-step description of how to perform the
selected procedures. It should be noted that this chapter does not necessarily have to be
read in its entirety, and should instead be used as a reference work that presents various
password resetting procedures.

Chapter 6: Tools presents a step-by-step description of how to perform the selected
tools. This chapter as well does not necessarily have to be read in its entirety, it should be
used as a reference work that is presenting various password resetting and recovery tools.

Chapter 7: Results presents the main findings of the experiments which are further
evaluated in Chapter 9. Our self-made tool is also described in this chapter.

Chapter 8: Empirical Password Study gives a thorough evaluation of the strength
of 30 carefully selected passwords. The purpose of this study is to find out how many
of the passwords we were able to reveal during 8 hours, with the use of a dictionary
attack and a cryptanalysis attack. Results regarding this study are also presented in
this chapter.

Chapter 9: Discussion evaluates the achieved results from both Chapter 7 and 8.
Finally, some ideas for future work are presented.

Chapter 10: Conclusion summarizes the major results and findings.

6 CHAPTER 1. INTRODUCTION

Additionally, the following appendices are included:

Appendix A: How to Build YALP shows the instructions needed to build YALP
and its kernel, using two distinctive scripts.

Appendix B: YALP Scripts presents the different self-made scripts included in YALP.

Appendix C: How to Disable LM Hashing describes a possible way to disable
the storing of the LM hash on a computer running Windows XP.

Appendix D: How to Add 30 Users presents the scripts made to easily add 30
users in Windows and Unix systems. These scripts were used in the Empirical Password
Study.

Appendix E Attachments: presents the content of the attached CD and the files
submitted to DAIM [10].

Appendix F Poster: includes the poster Generation of Rainbow Tables, which is based
on findings from this thesis. The poster was presented at The 8th Annual Meeting on
High Performance Computing and Infrastructure, NOTUR2009.

Appendix G Paper: includes the scientific article All in a day’s work: Password
cracking for the rest of us, which is based on this thesis and submitted to The 14th
Nordic Conference on Secure IT Systems, NordSec 2009.

1.7 Conventions

Through the thesis we will use the terms procedures, tools and techniques.

Procedures are walkthroughs to reset a password.

Tools are already available programs that can recover and/or reset passwords.

Techniques There are many password recovery and resetting techniques used by
procedures and tools, such as Ophcrack using the technique password cracking
with rainbow tables to recover the lost password.

Even though some people [11] may argue that it is more correct to write GNU/Linux
instead of Linux we have chosen to write Linux throughout this thesis.

We are differentiating between a host operating system and a guest operating
system. A host operating system is the operating system that is already installed on

1.7. CONVENTIONS 7

the computer, while a guest operating system is an operating system that is booted on
top of the host operating system. An example may be a computer with Windows Vista
already installed as the host operating system. If for example an Ubuntu live CD is
booted to access the files stored on the Windows Vista computer, Ubuntu is the guest
operating system. It should be noted that even though the guest operating system does
not fit on a CD and has to be saved on other media, such as DVD or USB, we still call
it a live CD.

Chapter 2
Background

This chapter will first present some important techniques used in later chapters. It will
then present theory related to the login procedure and password handling in Windows-,
Linux- and BSD-based operating systems. In the end this chapter will also describe in
detail the different tools used to reset and/or recover the administrator or root password
to be able to log on to the different operating systems without knowing the password in
advance.

2.1 Techniques

The techniques described in this section should not be confused with the procedures
described in Chapter 4. The procedures used in Chapter 4 use one of the two main
techniques password resetting or password recovery, and may use some of the tools
described in Section 2.4. The two main techniques may again use other techniques.
In password recovery we can for instance use rainbow tables as a technique to crack
passwords. There are no well known techniques to reset a password, such as for password
recovery, but some forum posts gives suggestions on how this can be accomplished for
specific systems. Procedures that realize password resetting are described in Section 5.1
in Chapter 5. Many tools implement their own solution to reset a password. Although
one may argue that the procedures and tools to reset or recover the password are only
meant for the legitimate purposes, this is not always how it works. The tools are getting
more and more advanced and exploits using new weaknesses are revealed every day.
Choosing a good password is therefore very important.

2.1.1 How to Choose a Password

It is common to have a login process asking for a user name and a password to protect
a system from unauthorized persons. If this process is secure it should create a barrier
that prevents the intruder from entering the system, thus protecting the system from

9

10 CHAPTER 2. BACKGROUND

being compromised. The problem with this process is that the system is dependent on
the user selecting a good password.

In Schneier’s article Choosing Secure Passwords [12] it is discussed how a password is
built up. A typical password consists of a root plus an appendage. A root is something
pronounceable, not necessarily a word from a dictionary. The appendage is in 90 percent
of the time a suffix and 10 percent of the time a prefix. Ola83 is an example of a weak
password having Ola as a root and 83 as appendage.

Usually the ignorant user selects a weak password thinking that the password is
secure enough. According to Klein [Kle91] a user tends to select a password with one or
more of the following properties:

• Passwords based on the user’s account name.

• Passwords based on the user’s initials or given name.

• Passwords which exactly match a word in a dictionary.

• Passwords which match a word in the dictionary with some or all letters capitalized.

• Passwords which match a reversed word in the dictionary.

• Passwords which match a reversed word in the dictionary with some or all letters
capitalized.

• Passwords which match a word in a dictionary with an arbitrary letter turned into
a control character.

• Passwords which match a dictionary word with numbers such as ‘0’ and ‘1’
substituted for the letters ‘o’ and ‘l’.

• Passwords which are simple conjugations of a dictionary word (i.e., plurals, adding
“ing” or “ed” to the end of the word, etc.).

• Passwords which are patterns from the keyboard (i.e., “aaaaaa” or “qwerty”).

• Passwords which are shorter than advised.

• Passwords which consist solely of numeric characters (i.e., Social Security numbers,
telephone numbers, house addresses or office numbers).

• Passwords which do not contain mixed upper and lower case, or mixed letters and
numbers, or mixed letters and punctuation.

• Passwords which look like a state issued license plate number.

Most users also tend to prioritize an easy to remember password instead of a secure one.
In a whitepaper published by AccessData [13] some simple facts, considering what users
usually base their password on to remember them, are presented:

2.1. TECHNIQUES 11

• The password will usually be in a language familiar to the owner.

• The password will usually be an aspect of the owner’s life.

• New passwords might be a modification of old passwords.

As many studies show [14], [15] and [16], the most popular passwords selected by users
across the world are common words, often with tiny changes. As presented later in this
thesis, these passwords are easily revealed with the right tools.

The problem with selecting passwords with the properties presented in both of the
lists above is that this can easily be exploited by unauthorized persons with the goal to
reveal the password. When a person is trying to reveal a password, the first password
guessed are the passwords containing the properties mentioned above. The next sections
present the processes of guessing and cracking passwords more in detail.

A good question to ask is then; what passwords should be chosen? A good password
is one that is easily remembered, yet difficult to guess. Bruce Schneier presented in his
blog [17] after going through data retrieved from MySpace, that 65% of the MySpace
passwords contain 8 characters or less. Most of the passwords (25%) had a length of
8 characters. According to Schneier [12] you should choose a password not containing
a root or an appendage already listed in any dictionaries. You should mix upper and
lower case letters in the middle of your root. You should add numbers and symbols in
the middle of your root, not as common substitutions. You can also drop the appendage
in the middle of your root, or just use two roots with an appendage in the middle.

So how would you choose a secure password? It is clear that passwords should be
of some certain length to be secure. Microsoft suggests using a password that has 8
characters or more, ideally 14 characters or longer [18]. One may wonder if this has
something to do with Microsoft’s own password handling (further described in Section
2.3.1.2). The best password should appear as a random string of characters. Randomness
makes passwords harder to guess, but also harder to remember. Schneier [Sch96] suggests
using an entire phrase instead of a word, and to convert that into a key. These phrases
are called pass phrases. He recommends choosing phrases that are unique and easy to
remember, but advises not to use phrases from the literature. One of the problems with
Schneier’s approach is that some password schemes might not support such long phrases.

A good way to remember a password that looks random is to use so called mnemonic
phrases. For example, take the first letter of each word in a phrase, then add or
replace a few special characters or numbers. An example of such a phrase can be:
Fifth Grade Comm Tech waiting for their Graduation at NTNU. This can be reduced to
5GCTw4tG@N. Using mnemonic password phrases is a good technique, but you might
need some patience to come up with different phrases every time the password needs to
be changed. Kuo et al. [KRC06] hypothesize that users will select mnemonic phrases
that are commonly available on the Internet, and that it is possible to build a dictionary
to crack mnemonic phrase-based passwords.

Another way to choose a secure password might be to let a password manager do it
for you. Of course you would have to trust this password manager to be secure, and the

12 CHAPTER 2. BACKGROUND

password might not be easy to remember anyway. When remembering the password is
the worst thing about having a good and secure password, some security experts such
as Schneier [19] suggest writing the password down.

2.1.2 Password Recovery Techniques

A password can be retrieved in many ways. Passwords can be recovered locally on
the system or remotely through a network. It is common to separate between two
main password recovery techniques, password guessing and password cracking. This
thesis focuses mostly on the latter technique. Passwords can also be retrieved using
other techniques such as through social engineering, phishing, and click fraud, but
these techniques are not presented in this thesis. This thesis will focus on recovering
the password locally. The password guessing will then either be performed locally on
the system where the password is lost, or on a system that has already retrieved the
passwords or password files on beforehand.

2.1.2.1 Password Guessing

When a password is lost, a common method to recover the password is to try and
guess what the password was. The user identification is known and password guessing
is usually performed on the computer subject to the lost password. The user inserts
the user identification and a likely password, and then waits for a responding message
from the system. If the system prompts that the login was successful the password was
correct, or if the login went unsuccessfully the user tries another password using the same
user identification. This technique is very simple and many tools exist to automate the
guessing process. The tool can then interact directly with the login interface running
locally on the machine or through a network. Popular password-guessing tools freely
available on the Internet are Brutus [20] and THC Hydra [21]. In many systems default
passwords are often left unchanged, and these are well known to people with criminal
intentions. Many default passwords are listed on web pages such as [22]. When guessing
passwords a dictionary can be used. The dictionary can be created to suit the guessing
process with default passwords and common words, so that if the original password
is a word in the dictionary, it will be guessed. Appended random characters and
permutations of the words in the dictionary, often called mangling is another clever
way to eventually guess the correct password. The mangling process will be described
in more details later in this chapter.

There are some severe limitations using the password guessing technique [SL05]. The
first limitation is that most login procedures include a maximum set of login attempts
allowed. The user usually then has to wait a certain amount of time before another
attempt to login is possible again. Some systems even lockout the account until the user
securely can confirm his/her identity. This can result in that the process of guessing
the password could take days, months or even years to perform. Additionally if the
password is strong the process can seem endless. Another limitation of this technique is
that the process of guessing a password often takes place remotely through a network.

2.1. TECHNIQUES 13

The process will generate traffic not normally expected and intrusion detection systems
and/or intrusion prevention systems might detect the anomaly from ordinary traffic.

The password guessing technique often never works because administrators and
regular users change the default password. The tools that provide these techniques
commonly use to much time. Thus, a much more powerful technique to recover the
password is presented in the section below called password cracking.

2.1.2.2 Password Cracking

When passwords are used, a way to check if the user has typed in the correct password
is necessary. Most systems store the password in some kind of form locally on the
system or on a centralized server. To protect the passwords they are often stored in files
meant to be inaccessible for others than administrators. These password files are also
often obfuscated so that they become hard to interpret. An example of this is described
more in detail in Section 2.3.1.2. If the password files risk ending up in wrong hands,
additional steps are performed to protect the passwords. It is common to represent
the password as a hash value located inside the password files. Some systems use hash
algorithms based on encryption algorithms such as Data Encryption Standard (DES),
while others use pure hash algorithms, such as Message-Digest algorithm 5 (MD5) and
Secure Hash Algorithm 1 (SHA1), a one-way algorithm transforming the password. To
verify that the user is the correct one, the password prompted is first transformed with
an algorithm as mentioned above and then compared with the already stored copy of this
transformation. If a match is present, the user has been authenticated and the correct
password was typed.

Skoudis and Liston define password cracking in their book [SL05] the following way:

Password cracking involves stealing the encrypted password representation
and trying to recover the original clear text password using an automated
tool.

This thesis has chosen to widen the definition provided above, in such a way that
password cracking not only is a technique used for criminal purposes. In this thesis
recovering the password by using this technique, is often necessary for the legitimate
user/administrator. It is then better to replace the word stealing by retrieving. The
definition used in this thesis is therefore as following:

Password cracking involves retrieving the encrypted password representation
and trying to recover the original clear text password using an automated
tool.

When the password file already is retrieved in advance, none of the limitations
mentioned in the password guessing section applies. The password cracking process can
be presented through a loop consisting of three steps. These three steps are; first guessing
a password, second generating a hash of the guessed password and third comparing the
newly generated hash with the original hash. If the compared hash values match, a valid

14 CHAPTER 2. BACKGROUND

password is found. Depending on the computer hardware and software used, thousands
of passwords per second can be guessed and matched.

When the password files, or passwords, are fed to the password cracking tool it can
perform various techniques to increase the chance of guessing the right password in a
shorter period of time. The most popular techniques to form the password guesses is
either by using a dictionary or just by brute forcing all possible passwords.

By using a dictionary, also called wordlist, a collection of words is guessed. A large
number of dictionaries are available on the Internet, in many different languages and
forms. The wordlists can be found many places on the Internet for instance at The
A.R.G.O.N. web page [23].

When the brute-force technique is used, the password recovery tool guesses every
possible combination of characters to determine the password. The tool can then create
guesses of combinations of all alphanumerical and special characters/symbols. The
brute-force guessing technique can take an enormous amount of time, ranging from
hours to centuries.

Many password recovery tools offer a hybrid of the dictionary and brute force
techniques, called mangling, mixing or just hybrid mode. A tool using a hybrid technique
starts with guessing every word in the dictionary. When this is done it creates other
guesses by using so called mixing or mangling rules. The mixing/mangling rules tell the
tool to change a portion of every word in the dictionary. These rules can for instance be
appending or prepending characters to the dictionary words, or adding the dictionary
word to itself of number of times creating a new word. The rules vary from tool to tool.

A last technique, which can be used in combination with the techniques mentioned
above, is the use of rainbow tables. By using rainbow tables a time-memory trade-off is
accomplished. The password recovery tool will check in the rainbow tables for a match
with the target hash value to find the desired password. This is described in detail below.

By using the techniques mentioned above four password cracking attacks can be
performed. These four attacks are often referred to as dictionary-, brute-force-,
hybrid- and cryptanalysis-attack. The cryptanalysis-attack utilizes already precomputed
rainbow tables. In advance a charset is defined and rainbow tables are created based
on this charset. A charset can for instance be alpha-numeric-symbol32-space meaning
all alpha characters, all numbers, 32 different symbols and space. The charset can
be represented in a text file containing for instance this line (the last character is the
whitespace):

alpha-numeric-symbol32-space = [ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789
!@#$%ˆ&*()- +=∼‘[]{}|\:;”’<>,.?/].

2.1.2.3 Rainbow Tables

Using precomputed rainbow tables can reduce the password cracking time drastically.
The rainbow tables contain a connection between a hash and its password. By having

2.1. TECHNIQUES 15

this connection already available for all possible hash values, a quick search through
the tables for a desired hash value can reveal its password. To reduce the size of the
precomputed tables reduction functions and chains are used. The original concept of
hash tables, chains, reduction functions, rainbow chains and rainbow tables are described
more in detail below.

A password becomes hard to guess if three properties are fulfilled. The first property
is that no common words are used; the second is that the password is of a certain length,
thus making the set of passwords very large. The third property is that characters
should vary between numbers, lower and uppercase letters and special symbols. The
usual approach for cryptanalytic attacks on hashed password involves a function of
three steps, as mentioned in the previous section, repeated until the correct password is
guessed. When a password is found it can either be the original password or a password
that generates the same hash value as original one. When two different passwords
produce the same hash value, it is called a collision.

Instead of performing the four steps mentioned above innumerable times demanding a
lot of computing power and lot of time to complete, it has been suggested to precompute
step one and two for all possible passwords. Then only step three remains each time a
cryptanalytic attack is performed. This approach is not practicable for long passwords
because of the large amount of memory needed to store all possible hashes.

In 1980 Hellman introduced a time-memory trade-off when applying a cryptanalytic
attack. According to [Hel80] this method cryptanalyzes any N key cryptosystem in N2/3

operations with N2/3 words of memory (average value) after a precomputation which
requires N operations. Using Hellman’s method the time-memory trade-off applies for
the recovery of a key when the plaintext and the ciphertext are known. The method
works for password hashes when the hashing scheme is poorly designed, the plaintext
and the encryption method will be the same for all passwords [Oec03].

Hellman [Hel80] defines the formula C0 = Sk(P0), where P0 is indicated as a fixed
given plaintext, C0 as the corresponding ciphertext (in this thesis usually a hash), S
as the given encryption algorithm and k ∈ N as the key. As an example used in the
real world, the formula can be compared to the LM hash mentioned in 2.3.1.2 on page
31, where the fixed plaintext input of the LM hash encryption scheme is P0. C0 is the
corresponding LM hash and k is the password being hashed.

Hellman used something called hash chains to decrease the memory requirements
mentioned above. Instead of storing all the hashes in memory, the hashes are organized
in chains. Only the first and the last element of the chain are stored in the memory,
saving memory at the cost of cryptanalysis time [Oec03]. According to Hellman [Hel80]
the cryptanalyst choose m starting points, each an independent random variable drawn
uniformly from a keys space {1,2,...,N}. This means that there is no connection between
the endpoint of one chain and the starting point of another chain. A reduction function
R is used to reduce the length of the hashes. The reduction function performs the reverse
of what the hash function does, meaning that it maps hash values (ciphertext) to keys.
It is a one-way function such as the hash function, but is not an inverse of the hash

16 CHAPTER 2. BACKGROUND

function. The chain process can be understood through the following formula:

ki
Ski (P0)
−−−−−→ Ci

R(Ci)−−−→ ki+1 (2.1)

An example of such a chain can be viewed below where the hash is represented with
uppercase letters and the key with lowercase letters (P0 is fixed as 1234):

abcd
Sabcd(1234)−−−−−−−→ KJWN R(KJWN)−−−−−−−→ qwdp

Sqwdp(1234)
−−−−−−−→ ASDK R(ASDK)−−−−−−→

oier
Soier(1234)−−−−−−−→ DFGA R(DFGA)−−−−−−→ idso Sidso(1234)−−−−−−−→ RPFU R(RPFU)−−−−−−→ plsr

(2.2)

Often the reduction function R(Sk(P0)) is written as f(k) leading to a chain of keys
presented in the formula below [Oec03]:

ki
f−→ ki+1

f−→ ki+2 −→ ... (2.3)

The example above can then be written as:

abcd
f−→ qwdp f−→ oier f−→ idso f−→ plsr (2.4)

A set of initial passwords is chosen and m chains of length t are computed with the first
key (starting point) and last key (endpoint) stored in a table. From the example above
abcd and plsr will be stored in the table. When the table is fully generated the cracking
process can be initiated. Given ciphertext C (in this thesis a hash), a key used to create
C can be found using the table mentioned above. First a chain X of keys starting with
R(C) up to the length t is generated. If the ciphertext was generated with a key also
used while creating the table, a key in X will match one of the endpoints stored in
one of the chains in the precomputed table. Using the starting point corresponding to
the matched endpoint, the chain with keys from the starting point up to R(C) can be
computed. The key before R(C) is then the key used to generate C [Oec03]. For instance
if the hash DFGA is given as C, the X chain is generated as follows:

DFGA
R(DFGA)−−−−−−→ idso Sidso(1234)−−−−−−−→ RPFU R(RPFU)−−−−−−→ plsr (2.5)

The key plsr match with the last key in a chain stored in the table, and the key used
to create C can easily be found by using the first key abcd, corresponding to plsr in the
table. The final chain is generated and the correct key oier is found. The key oier is
marked boldface below:

abcd
Sabcd(1234)−−−−−−−→ KJWN R(KJWN)−−−−−−−→ qwdp

Sqwdp(1234)
−−−−−−−→ ASDK

R(ASDK)−−−−−−→ oier Soier(1234)−−−−−−−→ DFGA
(2.6)

Hellman’s hash chains have serious flaws. They can often generate false alarms when
chains merge and ciphertext not included in one of the chains in the table lead to the
same endpoint. If this is the case the chainX ignores the match and continues to expand.

2.1. TECHNIQUES 17

A collision between the precomputed chains can also occur where the same values are
produced by the reduction function. These chains will also merge. Fewer passwords
covered by a table will be the consequence of these merges.

To avoid these merges, at the cost of increasing the key lookup time, Oechslin [Oec03]
proposed a method in 2003 which he called rainbow tables. Instead of using a single
reduction function R, Oechslin suggest using a sequence of related reduction functions
R1 up to Rt−1. The chains generated are called rainbow chains. According to Oechslin,
if two chains collide, they merge only if the collision appears at the same position on both
chains. If the collision does not appear at the same position, both chains will continue
with a different reduction function and thus will not merge. This decreases the set of
chain merges drastically.

Figure 2.1 demonstrates how a hash is found using rainbow tables. The rectangular
boxes contain keys, and the oval circle contains the hash. Rx indicates the reduction
functions where x is the reduction function number. S is the hash function used. On
the left side of the figure a box containing a rainbow table is displayed. This table
contains rows with the first key, the starting point, and the last key, the endpoint, used
in a rainbow chain. In the figure the process begins with the hash DFGA. A key idso is
retrieved from the reduction function R3 and the hash. The key idso does not match any
of the endpoints in the table, and S and R4 has to be applied. The key plsr generates a
match with the endpoint plsr in the rainbow table and a chain with starting point abcd
can be generated. The key oier is detected as the key corresponding to the initial hash
DFGA.

Figure 2.1: The lookup process in rainbow tables.

As presented in [24] the best defense against the use of rainbow tables is a salt. The
salt is a random string added to the password before the password is hashed. This salt
can safely be stored unencrypted with the hash of the password. Rainbow tables have to
be created for each salt, making the set of rainbow tables extremely large. Many systems
use a salt in their hashes, and even though a salt solves the problems to some extent,
popular operating systems such as Windows omit this security feature. Popular hash
algorithms and their salts are presented in more detail in Section 2.3.2.2 and 2.3.1.2.

18 CHAPTER 2. BACKGROUND

2.2 Boot Process

In this section the boot processes for Windows-, Linux- and BSD-based systems are
presented. This section will highlight important programs and sub-processes initiated
during a system boot, programs and processes dealing with user login and system startup.
It is important to know that this section does not present remote login mechanisms from
a remote location using for instance Secure Shell (SSH) or remote desktop. The login
mechanisms presented in this section only handles the local logins, where the users are
physically interfering with the system and the systems are physically started.

All of the systems boot into similar or different file systems. Some of the systems
have support for mounting other file systems than their primary file system, after the
boot process has finished. Windows operating systems use the File Allocation Table
32 (FAT32) and New Technology File System (NTFS) file system, while Linux systems
(Ubuntu and Fedora, used in the experiments) use mostly the second extended file system
(ext2) and the third extended file system (ext3). Hierarchical File System (HFS) and
Hierarchical File System Plus (HFS+) are the primary file systems used by Mac OS
X. The Unix File System (UFS) file system originating from Version 7 Unix is used by
FreeBSD. As NTFS seems to be the preferred file system for Windows systems, support
for mounting read and write on NTFS from a Linux system is possible through programs
such as NTFS-3G. Many other file system types exist, but they are not relevant for this
thesis.

This section contains specific details concerning the boot process of various operating
systems. These details are relevant to get a basic understanding of some of the procedures
and tools presented later in this thesis.

2.2.1 Windows

The Windows boot process, or startup process, is the process where the Windows
operating systems are initialized. It should be noted that there are some differences
between the so called Windows NT boot process, which includes Windows NT, Windows
2000, Windows XP and Windows Server 2003, and the boot process of newer operating
systems, including Windows Vista and Windows Server 2008. The differences between
these boot processes will be highlighted. Note that this section only explains the boot
process for x86 operating systems. The intention with this section is to highlight some
of the important processes that are invoked during the boot process.

Already when Windows is installed on a computer, preparations for subsequent
Windows boot processes is carried out. During the Windows setup process the system’s
primary hard disk is prepared with code that takes part in the boot process. Windows
operating systems split hard disks into discrete areas known as partitions, and use file
systems such as FAT and NTFS to format each partition into a volume. It may be added
that a hard disk can contain up to four primary partitions [RS04].

Physical disks are addressed in units known as sectors. The MS-DOS Fdisk utility
and the Windows Setup program are utilities that prepare hard disks for the definition of
volumes. These utilities write a sector of data that is called a Master Boot Record (MBR)

2.2. BOOT PROCESS 19

to the first sector on a hard disk. The MBR includes a fixed amount of space that contains
boot code, which is executable instructions, and a partition table. The partition table
contains four entries that define the locations of the primary partitions on the disk.
When a computer boots, the first code it executes is called the Basic Input/Output
System (BIOS). The BIOS is encoded into the computer’s Read Only Memory (ROM).
The BIOS then selects a boot device, reads that device’s MBR into memory, and transfer
control to the code in the MBR [RS04].

The code included in the MBR first scans the primary partition table until it locates
a partition that contains a flag that signals that the partition is bootable. And when the
MBR finds at least one such flag, it reads the first sector from the flagged partition into
memory. Then the MBR transfer control to the code within the partition. This type
of partition is called a boot partition, and the first sector of the boot partition is called
a boot sector. The volume defined for the boot partitions is called the system volume
[RS04].

It should also be added that operating systems write boot sectors to disk without
the involvement from the user. An example is when Windows Setup writes the MBR to
a disk, it also writes a boot sector to the first bootable partition of the disk. But before
writing to the boot sector of a partition, Windows Setup ensures that the partition is
formatted with a file system that is supported by Windows. This is done by formatting
the boot partition with a file system type specified by the user. FAT, FAT32 and NTFS
are file systems supported by Windows [RS04].

Windows Setup is also responsible for creating a boot menu file in the root directory
of the system volume. This boot menu file is named Boot.ini. This file contains options
for starting existing Windows installations, and the Boot.ini file therefore needs to specify
the path to the particular Windows partition. This path is specified in a special syntax
that conforms a to the Advanced RISC Computing (ARC) naming convention [RS04].

As mentioned above, the Windows Setup must know the partition format before it
writes a boot sector because the contents of the boot sector may vary depending on
the format. For example if the partition is a NTFS format, Windows writes NTFS-
capable code. The role of the boot-sector code is to give Windows information about
the structure and format of a volume and to read in the NT Loader (Ntldr) from the
root directory of the volume. The boot sector code therefore contains just enough read-
only file system code to accomplish this task. The Ntldr is the boot loader used by all
releases of Microsoft’s Windows NT operating system, up to and including Windows
XP and Windows Server 2003. The Ntldr file among other things reads the Boot.ini
and presents the boot menu. After the boot sector code has loaded the Ntldr file into
memory, it transfers control to Ntldr’s entry point. If the boot sector code is unable
to find Ntldr in the root directory of the specific volume it displays an error message
[RS04].

Ntldr begins its existence while the system is executing in an x86 operating mode
called real mode. x86 is the generic term which refers to the most commercially
successful instruction set architecture. Real mode is a mode where no virtual-to-
physical translation of memory addresses occurs. This means that programs that use

20 CHAPTER 2. BACKGROUND

the memory addresses interpret them as physical addresses and that only the first MB of
the computer’s physical memory is accessible. Simple MS-DOS programs do for example
execute in a real-mode environment. The first action that Ntldr takes is to switch the
system to protected mode. Still no virtual-to-physical translation occurs, but a full 32
bits of memory becomes accessible. After the system is in protected mode, Ntldr can
access all of the physical memory. After creating a sufficient amount of page tables,
Ntldr enables paging. Paging is a memory-management scheme where the operating
system retrieves data from secondary storage in the same size blocks that are called
pages. Paging is an important part of virtual memory implementation in most operating
systems, which allows the physical address space of a process to be noncontiguous.
Protected mode with paging enabled is the mode in which Windows executes in normal
operation [RS04].

After the paging is enabled, Ntldr is fully operational, but still relies on functions
supplied by the boot code to access IDE-based system and boot disks as well as the
display. The boot code functions briefly switch off paging and switch the processor
back to a mode in which services provided by the BIOS can be executed. If the disk is
containing the boot volume is Small Computer System Interface (SCSI) based, and is
not accessible using BIOS firmware support, Ntldr loads a file named Ntbootdd.sys and
uses this instead of the boot code functions for disk access. Ntbootdd.sys is a device
driver used for disk I/O on SCSI and Advanced Technology Attachment (ATA) systems
where the BIOS is not used. SCSI is a set of standards that allow personal computers
to communicate with peripheral hardware such as disk drives. Next, Ntldr reads the
Boot.ini form the root directory using built-in file system code. The Ntldr contains
read-only NTFS and FAT code, and the Ntldr’s file system can read subdirectories.
Then Ntldr clears the screen. If there are a valid Hiberfil.sys file in the root of the
system volume, it shortcuts the boot process by reading the contents of the file into
memory and transfers control to code in the kernel that resumes a hibernated system.
That code is restarting the drivers that were active when the system was hibernated.
The Hiberfil.sys is valid if the computer was hibernated last time the computer was shut
down.

If the Boot.ini file, which is read by Ntldr, contains more than one boot-selection
entry, it presents the boot-selection menu to the user, and the user may choose which
partition to boot. If the user does not select an entry from the selection menu within
the timeout period which is specified by Boot.ini, Ntldr chooses the default selection.
The default selection is the top-most entry in the Boot.ini file. The selection entries in
the Boot.ini file direct Ntldr to the partition on which the Windows system directory
of the selected installation resides. If there is only one entry in the Boot.ini file,
Ntldr skips the boot-selection menu. The chosen partition can either be the same
as the boot partition, or another primary partition. The entries in the Boot.ini file
can include optional arguments that Ntldr and other components in the boot process
interpret. These arguments will not be described, but an overview can be found in
[RS04]. Any options that are included in the Boot.ini file is saved to the Registry
value HKLM\System\CurrentControlSet\Control\SystemStartOptions. HKLM stands

2.2. BOOT PROCESS 21

for HKEY LOCAL MACHINE. When the boot selection is made, Ntldr loads and
executed Ntdetect.com. Ntdetect.com is a real-mode program that uses a system’s BIOS
to query the computer for basic device and configuration information. This information is
stored under the HKLM\HARDWARE\DESCRIPTION registry key later in the boot.
On Windows 2000, Ntldr then clears the screen and displays the Starting Windows
progress bar, which remains empty until Ntldr begins to load the boot drivers. On
Windows XP and Windows Server 2003, Ntldr presents a logo splash screen instead of
a progress bar [RS04].

Even though this explanation is concentrated towards the x86 operating systems, it
may be added that if it was an x64 version of Windows that was booted, the CPU would
now be switched into long mode, which enables 64-bit addressing [RS04].

Next, Ntldr start to load the files from the boot volume that are needed to start the
kernel initialization. The boot volume is the volume that corresponds to the partition
on which the system directory (usually \Windows) of the installation that is booted is
located. To load these files from the boot volume, Ntldr follows several steps. First it
loads the Windows kernel (Ntoskml.exe) and a file named Hal.dll. Hal.dll is the core
of Windows’ Hardware Abstraction Layer. The function of the Hardware Abstraction
Layer is to hide differences in hardware from most of the operating system kernel, so
that most of the kernel-mode code does not need to be changed to run on systems
with different hardware. If Ntldr fails to load either of these files (Ntoskml.exe or
Hal.dll), an error message appears and the boot process halts. Then Ntldr reads in the
SYSTEM registry hive, \Windows\System32\Config\System, so that it can determine
which device drivers that need to be loaded to accomplish the boot. It may be added
that a hive is a file that contains a registry subtree. Then Ntldr scans the in-memory
SYSTEM registry hive and locates all the boot device drivers, which are drivers that
are necessary to boot the system. These drivers are indicated in the registry with
the following value: SERVICE BOOT START (0). Every device driver has a registry
subkey under HKLM\SYSTEM\CurrentControlSet\Services. Now Ntldr calls the main
function in Ntoskrnl.exe to perform the rest of the system initialization [RS04].

When Ntldr calls Ntoskrnl, it passes a data structure that contains a copy of the
line in Boot.ini that represents the selected menu option for this boot, a pointer to the
memory tables generated by Ntldr to describe the physical memory on the system, a
pointer to the in-memory copy of the HARDWARE and SYSTEM registry hives, and
a pointer to the list of boot drivers that Ntldr loaded. Ntoskrnl then begins the first
phase of its two-phase initialization process. These phases are referred to as phase 0 and
phase 1. During phase 0, basic internal memory structures are created, and each CPU’s
interrupt controller is initialized. The memory manager is also initialized, crating areas
for the file system cache. Phase 1 consists of several steps that are performed during
the boot splash screen. These steps will not be presented in detail, but the steps involve
initializing the device drivers which were identified by Ntldr as system drivers [RS04].

Once the boot and system drivers have been loaded, the kernel starts the smss.exe.
Session Manager Subsystem (Smss) (smss.exe) is almost like any other user-mode
process. But there are two differences, and the first difference is that Smss is considered

22 CHAPTER 2. BACKGROUND

a trusted part of the operating system. The second difference is that Ntldr is a native
application. Because it is a trusted operating system component, Smss can perform
actions that few other processes can perform. An example is that Smss can create
security tokens. And because Smss is a native application it does not use Windows
APIs, but instead uses only core executive APIs known as Windows native API. The
reason why Smss does not use the Windows APIs is because the Windows subsystem is
not executing when Smss is launched. Actually, one of the first tasks performed by Smss
is to start the Windows subsystem. Then the Smss calls the configuration manager
executive subsystem to finish initializing the registry. The configuration manager is
programmed to know where the core registry hives are stored on disk, and it records the
paths to the hives it loads in the HKLM\SYSTEM\CurrentControlSet\Control\hivelist
key [RS04].

The Session Manager Subsystem performs a number of actions. Smss among other
things creates environment variables, starts the kernel-mode part of the Windows
subsystem (win32k.sys) which allows Windows to switch into graphical mode, starts the
user-mode part of the Windows subsystem (csrss.exe) which makes Win32 available to
user-mode applications, creates virtual memory paging files, performs rename operations
that might have queued up and starts the Windows Logon Manager (winlogon.exe). One
of the actions mentioned above pointed out that Smss performed renaming operations
that might have queued up. This is the reason why previously in-use files can be replaced
as part of a reboot. Before any files are opened, Smss also starts Autochk, which mounts
all drives and checks them one by one whether they have had a clean shut down or not.
If the disk was not shut down cleanly, Smss will automatically start chkdsk. This disk
check may be skipped by pressing any key within 10 seconds [RS04].

Winlogon, which is one of the processes started by Smss, is responsible for handling
interactive logins to a Windows system, both locally and remotely. Winlogon again starts
the Local Security Authority Subsystem Service (LSASS) (LSASS.EXE) and Service
Control Manager (SCM), which in turn will start all the Windows services that are
set to auto-start. Winlogon is also responsible for responding to the Secure Attention
Sequence (SAS), loading the user profile, and optionally locking the computer when a
screensaver is running. It may be added that SAS is a special key combination that
might be required to enter before a login screen is presented [RS04].

The login process begins when a user presses the SAS (Ctrl+Alt+Delete), if this
is activated. After the SAS is pressed, Winlogon calls The Graphical Identification
And Authentification (GINA) to obtain a username and a password with use of the
login display. The GINA library is a component of some Microsoft Windows operating
systems that provides secure authentication and interactive login services. When GINA
has loaded a few programs can be initiated. These are programs that Microsoft has
included for people with physical disabilities. One of these programs is the Sticky Keys
program which is a feature that makes it possible to press a modifier key. A modifier key
is for example SHIFT or CTRL, and if the Sticky Keys program is running the modifier
key remains active until another key is pressed. When the username and password is
entered, GINA passes the credentials back to Winlogon. Then, Winlogon in addition

2.2. BOOT PROCESS 23

creates a unique local logon Security Identifier (SID) for this user that it assigns to this
instance of the desktop. Winlogon passes this SID to Lsass as part of the LsaLogonUSer
call. If the user is successfully logged in, the SID will be included in the logon process
token. When the username and password have been entered, Winlogon calls the Lsass
function LsaLookupAuthenticationPackage. Authentication packages are listed in the
Registry under HKLM\SYSTEM\CurrentControlSet\Control\Lsa. Winlogon passes
logon information to the authentication package via LsaLogonUser. Once a package
authenticates a user, Winlogon continues the logon process for that user. Winlogon
loads the registry hive from the profile of the user that is logging in, and maps it to
HKEY CURRENT USER (HKCU). It then sets the user’s environment variables, and
startup programs are run from different locations. If none of the authentication packages
indicates a successful login, the login process is aborted. It may be added that it is the
Lsass that determines which account database to be used; local SAM, domain SAM or
Active Directory. This thesis concentrates on the local SAM. It is also the Lsass that
enforces the local security policy, for example checking the user permissions. A user
can have regular user privileges, administrator privileges or system privileges. A user
with system privileges is even more powerful than an administrator user, and may be
compared to the root or super-user (su) in Unix [RS04].

As already mentioned, the Windows Vista boot process differs from the Windows NT
boot process, and some of the differences will now be highlighted. Also for the Windows
Vista boot process the BIOS reads the master boot record (MBR) and transfers control
to the MBR’s code. Then the MBR transfers control to the code that loads the operating
system. For the Windows NT boot process the primary application that is responsible for
loading Windows has been Ntldr. Windows Vista instead introduced winload.exe, which
is the Windows operating system loader. Each version of Windows Vista and Windows
Server 2008 that is installed on a computer has its own instance of winload.exe. The
operating system loader creates the execution environment for the operating system
and also loads the Windows Vista kernel, Hardware Abstraction Layer (HAL) and boot
drivers into memory [25].

Windows Vista also introduces Boot Configuration Data (BCD). This new data
store serves essentially the same purpose as boot.ini. However, BCD abstracts the
underlying firmware and provides a common programming interface to manipulate
the boot environment for all Windows-supported computer platforms. In addition to
the BCD, Windows Vista introduces Windows Boot Manager (Bootmgr), which is an
application that controls boot flow. With a multi boot system, the boot manager
displays an operating system selection menu. Actually the Windows Boot Manager
reads the BCD and displays the operating system selection menu. The Windows Vista
operating system loader (winload.exe), which is already mentioned above, is invoked by
the Windows Boot Manager. Another application is the winresume.exe, which is the
Windows Vista resume loader. Each version of Windows Vista and Windows Server
2008 that is installed on a computer has its own instance of winresume.exe. The resume
loader restores Windows to its running state when a computer resumes from hibernation
[25].

24 CHAPTER 2. BACKGROUND

At last, it may be added that you may enter the Windows Registry be entering regedit
in the Windows Command Console (cmd.exe)

2.2.2 Linux

When a Linux system boots up, usually a boot loader such as LInux LOader (LILO)
or GRand Unified Boot loader (GRUB) starts the kernel. The Linux kernel locates and
mounts the root file system, and then initiates a program called /sbin/init. Init will
start the rest of the system. The init process, becoming process number one, determines
which runlevel and processes to start by looking into a file called /etc/inittab [26]. A
runlevel is defined by [27] as:

A runlevel is a preset operating state on a Unix-like operating system.

This approach is inherited from the famous Unix System V (SysV) both acting as an
operating system and as an Unix Standard with the goal of uniting the many Unix
derivatives. SysV is also known as Unix version 7. In many Linux distributions the
runlevel can be changed in the boot loader. This is done either through a menu or, by
appending specific arguments, such as single, in the kernel line of the boot loader.

An event handling mechanism listens for events such as control-alt-delete typed with
the keyboard, initiating a shutdown, or the change of runlevels. An rcx file, where x
is a number from 0 to 6 or the character S, is initiated with the corresponding default
or user chosen runlevel. As shown in Figure 2.1, Fedora has runlevel 5 as default, and
Ubuntu has 2 as default.

If for instance a system is booting at runlevel 2, /etc/event.d/rc2 initiates a program
called /etc/init.d/rc with parameter 2, referring to the user’s runlevel. The location of rc
varies from one Linux system to another, but the functionality is usually the same. The
rc program runs scripts located in the directory /etc/rc.d/rcx.d where x corresponds to
the runlevel. Mark Allen [26] describes the program rc’s main tasks as follows:

1. It gets the previous and current system runlevels.
2. If the word confirm is in the file /proc/cmdline it sets up to run the scripts
below in user confirmation mode.
3. All kill files (files whose first letter is K) in the subdirectory /etc/rc.d/rc3.d
(assuming the previous runlevel was 3) are run. The parameter stop is usually
passed on the command line to the kill script.
4. All startup files (files whose first letter is S) in the subdirectory
/etc/rc.d/rc5.d (assuming the current runlevel is 5) are run. The parameter
start is usually passed on the command line to the kill script.

In a Linux system, 8 runlevels are used as default. It is possible to add more runlevels,
but in most distributions 8 are sufficient. These runlevels are 0-6 and S or s. Runlevel
S is usually not meant to be used directly by a user, but more for the scripts that
are executed when entering runlevel 1. Each of the runlevels has different purposes,
initiating different scripts and processes. The init process can only run one of these

2.2. BOOT PROCESS 25

levels at a time. Runlevel 0,1 and 6 are reserved and identical in most distributions [26].
The runlevels are often configured differently in various operating systems. In Table 2.1,
the different runlevels, except from S, are described for Ubuntu, Fedora and standard
Linux (generic).

As shown Table 2.1, single-user and multi-user mode are mentioned. Single-user
mode is much like a rescue, or trouble-shooting mode. In this mode no daemons/services
are started. This mode is included to allow users to fix whatever made the transition to
rescue mode necessary [28].

To authenticate users a login program is used. When the system has booted and the
some of the init processes have finished, a process called getty invokes the login program.
Mark Allen [26] identifies the 3 important functions performed by getty:

1. Open tty (Terminal Type - Unix terminal interface) lines and set their
modes
2. Print the login prompt and get the user’s name
3. Begin a login process for the user

The process getty initiates a login process with the username prompted by the user
as an argument. In the manual of login [29] two security features are described: Firstly,
echoing is disabled to prevent revealing the password. Secondly, only a small number
of password failures are permitted before login exits and the communications link is
severed.

Fedora and Ubuntu Server are both popular Linux distributions. Fedora boots as
described above, and Ubuntu Server has some minor differences. The scripts listed above,
located in /etc/rc.d/rcx.d/, were mentioned as Linux’s initial startup scripts. On the
other hand, the program rc and the directories rcx.d are located directly under the folder
/etc in Ubuntu Server 8.10. In newer versions of Ubuntu the file inittab is replaced by a
file called /etc/event.d/rc-default. This file contains a script that first checks if the word
single exists in /proc/cmdline, a file containing parameters provided at boot. These
parameters can be edited in the boot loader menu. If the word single is present, the
program telinit with parameter S will run changing the runlevel to Single-user mode as
described earlier. If the word single is not added during boot, the script rc-default will
look for an inittab file and if it exists change the runlevel to what it contains. If the
inittab file is non-existing, telinit will be initiated with parameter 2, Ubuntu’s default
runlevel.

2.2.3 BSD

Both Berkeley Software Distribution (BSD) and Linux originate from the late 1960’s
operating system Unix, developed by a group of AT&T employees at Bell Labs [RT74].
A more detailed view of the originating of Linux and BSD is shown in Lévénez’s excellent
Unix time line [31]. Although BSD and Linux evolved in different directions, many
similarities can be identified.

26 CHAPTER 2. BACKGROUND

Run-
level

Generic Fedora Ubuntu

0 System Halt System Halt System Halt
1 Single-user mode Single-user mode Single-user mode
2 Basic multi-user mode

(without networking)
User definable (Unused) Full multi-user mode

(Default)
3 Full (text based) multi-

user mode
Multi-user mode Same as runlevel 2

4 Not used Not used Same as runlevel 2
5 Full (GUI based) multi-

user mode
Full multi-user mode
(with an X-based login
screen) (Default)

Same as runlevel 2

6 System Reboot System Reboot System Reboot

Table 2.1: The different runlevels initiated by init [28] [30].

The process of booting a BSD system varies from one BSD system to another. While
the two Linux distributions mentioned in Section 2.2.2 both use the same kernel, Mac
OS X and FreeBSD use their own kernel. Mac OS X and FreeBSD have related kernels
but they are not identical. Their kernels are unrelated to the Linux kernel. The systems
might look the same mainly because they often have the same application level programs
such as vi and Emacs, and use bash and X11 window systems.

Although FreeBSD and Mac OS X have different kernels, much of the boot process
looks the same. As with Linux, the boot process of BSD utilizes a boot loader to start
the kernel. According to Smith [Smi03], when the kernel has loaded, no programs can
bypass the kernel to directly address the computer’s hardware.

Smith [Smi03] presents two startup schemes. One scheme is the BSD startup method
used by most BSD systems and the other is the SysV startup scripts used by Linux
systems. The BSD approach uses a few large scripts, whereas the SysV approach uses
many smaller scripts. SysV also supports runlevels described in more details in Section
2.2.2.

The boot processes of Mac OS X and FreeBSD have some similar, but also many
different steps. The process of booting FreeBSD and Mac OS X is thus described in
more details in the separate sections below.

2.2.3.1 FreeBSD

Boeger and Tominaga [BT04] present a three-phase bootstrap process. This three-phase
bootstrap process consists of three programs boot0, boot1 and boot2, often also referred
to as Stage 1 boot loader, Stage 2 boot loader and Stage 3 boot loader. After the BIOS
has completed its system tests, the first track from disk0 is loaded into the memory. This
track is the MBR and is the boot0 program. Boot0 is the first program to be loaded and
executed by the computer, and it loads and executes the boot1 program which knows

2.2. BOOT PROCESS 27

enough to read disk slice information and load boot2. When the computer has loaded
the boot2 program, the computer has the ability to either boot the system directly or
load a loader program. The loader program gives the user the ability to interact with
the boot process to perform system recovery and maintenance, and to load and unload
the kernel or kernel modules.

As with Linux, FreeBSD’s kernel executes first a program called /sbin/init. During
the boot, parameters can be specified to be passed to the /sbin/init program. The
program init use these values to determine whether it should bring up the system to
single-user or to multiuser operation. In single-user operation, /sbin/init forks a process
that invokes the standard shell, /bin/sh [MKM04]. In Linux and System V systems
scripts corresponding to their runlevel are initiated. This is handled much easier in
FreeBSD according to [BT04]. FreeBSD executes the following rc scripts found in /etc:

• /etc/rc - main script and first to be called. Mounts the file system and then runs
all the needed rc scripts.

• /etc/rc.atm - used to configure ATM networking

• /etc/rc.devfs - set up /dev/ permissions and links

• /etc/rc.diskless1 - first diskless client script

• /etc/rc.diskless2 - second diskless client script

• /etc/rc.firewall - used for firewall rules

• /etc/rc.firewall6 - used for ipv6 firewall rules

• /etc/rc.i386 - Intel system specific needs

• /etc/rc.isdn - ISDN network settings

• /etc/rc.network - IPv4 network settings

• /etc/rc.network6 - IPv6 network settings

• /etc/rc.pccard - for laptop pc card controllers

• /etc/rc.serial - set up serial devices

• /etc/rc.sysctl - used to set sysctl options at boot time

• /usr/local/etc/rc.d/ - general directory with custom start up scripts

Two files, /etc/rc.conf and /etc/defaults/rc.conf, where the first is usually edited by
system administrators, control which user-level services are started at boot time. Each
of these files is loaded by the system startup scripts when they execute [MKM04]. An
administrator can for instance enable SSH at login by appending sshd enable=“yes” in
the /etc/rc.conf file.

28 CHAPTER 2. BACKGROUND

When these scripts are completed successfully, /sbin/init invoke other system
programs such as /usr/libexec/getty handling the login procedure, also mentioned in
Section 2.2.2. The getty program reads the login name and invokes the /usr/bin/login
program to complete the login process. The login program interacts with password files
and databases to authenticate the user. This is described more in detail in Section 2.3.3.

In FreeBSD several login methods are supported. The methods are presented and
accessed in many ways, both graphical and text-based, remotely and locally, but most
use the same authentication tools at their core (/usr/bin/login).

2.2.3.2 Mac OS X

This section will look closer into the boot process of Mac OS X v10.5 Leopard. A few
important boot changes occurred from Mac OS X v10.3 Panther to Mac OS X v10.4
Tiger. These changes will also be addressed below.

The Mac OS X boot process is quite unique and differs from traditional Linux systems
with /etc/inittab, presented in Section 2.2.2, by using BSD-like startup sequences
sandwiched between a Mach foundation and the Aqua user interface [RJR08]. Mach
is a microkernel operating system also descended from Unix. The Mac OS X kernel,
xnu, is a hybrid of Mach and BSD.

When a machine is booted, the firmware BootROM is activated. BootROM, a part
of the computer’s hardware, has two primary responsibilities: it initializes the system
hardware and it selects an operating system to run. Open Firmware on PowerPC Macs
and Extensible Firmware Interface (EFI) on Intel Macs are loaded by the BootROM.
According to [33], Intel designed EFI to modernize firmware technology in today’s
computers in order to move past the limitations of a legacy BIOS which is found in
most computers running Windows systems.

The EFI or Open Firmware initiates the rest of the hardware and hands off control to
the boot loader. Two boot loaders are common in Mac OS X, the BootX for PowerPCs
and boot.efi for Intel based machines, both located in /System/Library/CoreServices.
The boot loader looks for an up-to-date kernel that has been pre-linked to all required
kernel extensions (drivers, also known as kexts). When the kernel extensions are
successfully loaded, the boot loader hands off the full control to the kernel (xnu located
at /mach kernel). Before any processes can be initiated, xnu initializes all the data
structures needed to support Mach and BSD. The kernel initiates an I/O Kit, a device
driver framework, which connects the kernel with the set of extensions that correspond
to the machine’s hardware configuration. After the hardware is configured correctly, the
kernel finds and mounts the root file system [RJR08].

At this point of the boot process a few important changes were made from Mac OS X
v10.3 to v10.4. In Panther (v10.3) and earlier the first process loaded by the kernel was
mach init. The mach init process launched the BSD init process determining runlevels
and initiating /etc/rc* scripts as described in Section 2.2.3.1. Beginning with Tiger
(v10.4) both of these processes were replaced by /sbins/launchd. The manual for the
startup process rc still exists with the following message [34]:

2.2. BOOT PROCESS 29

Prior to Mac OS X 10.5, the rc script was used to bootstrap the OS. As
of Leopard, the system is self-bootstrapped via launchd(8) which uses the
launchctl(1) bootstrap subcommand to read in launchd jobs from the standard
locations. For compatibility reasons, the rc.local script still continues to work.

The program launchd manages two types of services, launch daemons and launch agents.
The launch daemons are services that can run even when no user is logged in, and
launch agents are services which can run on behalf of a logged-in user and access
files in that user’s home directory. The service type launch daemons cannot connect
to the window server, thus cannot display any Graphical User Interface (GUI). The
program launchd also initiates SystemStarter, a program used to start programs located
in /System/Library/StartupItems and the /Library/StartupItems. Although /etc/rc*
scripts are no longer used, as described above, SystemStarter runs every command in
/etc/rc.local at system startup and /etc/rc.shutdown.local at system shutdown.

When SystemStarter has completed its initial scripts, a program called loginwindow
is initiated. This program starts the login process which authenticates users and sets up
their user sessions [RJR08]. The loginwindow program displays a login panel containing
fields where the user can provide the login information. When the login credentials have
been submitted, loginwindow authenticates the user. If a user types >sleep, >restart or
>shutdown as username in the graphical user interface the system will sleep, restart or
shutdown. If the user types >console the user will be turned over to a text-based login
prompt. This text-based login prompt uses the program /usr/libexec/getty to handle the
login process. The program getty can be identified in other systems such as FreeBSD,
Ubuntu and Fedora, as mentioned in Section 2.2.2 and 2.2.3.1. Standard shells csh
and sh, do not fork before executing the login utility. Thus, when getty handles the
login process it first initiates the program /usr/bin/login. This program then prompts
for username and password and interact with several files described more in detail in
Section 2.3.3.2.

When the new releases of Mac OS X with support for EFI came, more and more
reports of successful installations of Mac OS X on non-Apple Intel-based computers
appeared. The Intel-based versions of Mac OS X is released with a built in interaction
with Trusted Platform Module (TPM), a computer chip embedded inside all Intel-based
Macs to prevent the Intel-based versions of Mac OS X from running on non-Apple
hardware [35]. During the installation of Mac OS X, Mac OS X interact with the TPM.
If Mac OS X finds out that the TPM does not exist, Mac OS X refuses to install or
run. Hacks have been released on the Internet to bypass this TPM requirement. The
hacks are either embedded into the Mac OS X installation disk or loaded before the
installation process is initiated. The latter case will allow the user to use a retail version
of the Mac OS X installation disk. The installed Mac OS X system is then led to believe
that a TPM exists.

30 CHAPTER 2. BACKGROUND

2.3 Password Handling

In this section we will highlight the password handling related to the login procedure for
Windows-, Linux- and BSD based systems.

2.3.1 Windows

This section will present what happens to a password from when it is created to when
the corresponding password hash value is stored in the password file on a Windows
operating system. Explanations of different hashing techniques that are used for this
password handling will be given.

2.3.1.1 SAM

When a password is created in order to protect an user account on a Windows operating
system, the Security Accounts Manager (SAM) file is where the password hash is
stored. When users enter their password to log into a system, the password is hashed
and the result is compared to the hash value already stored in the SAM file on the
computer. SAM is a database stored as a registry file in Windows and is located at
\Windows\System32\config\SAM or \WINDOWS\system32\config\SAM, depending
on which Windows operating system that is used. However, this folder is locked to all
accounts including the Administrator while the computer is running. The only account
that can access the SAM file during operation is the System account, which is the
account with the highest level of privileges in a Windows operating system [Tod07]. It
may be added that the Windows registry is a database which stores settings and options
for Windows operating systems. It for example contains information and settings for
hardware, operating system software and per-user settings.

As will be described below, the password hashes included in the SAM file is
obfuscated. The other fields such as username and account description appear in
plaintext and Unicode format. As a result of this obfuscation, there exist tools that
are able to dump the content of the SAM file. Figure 2.2 shows how the tool pwdump
[36] represents the dumped content, and this format is often used by similar utilities.
Figure 2.2 is based on a figure in [Tod07]. From the figure it can be seen that username,
user RID, the LM hash and the NT hash may be included in the entry. The RID
(Relative ID) is a part of the SID (Security identifier). SID is a string of alphanumerical
characters that is for example assigned to each user. In other words, the SID is a unique
ID number that a computer uses to identify the user. The operating system uses the
SID to determine the access privileges of users and groups. The RID, which is a part of
this unique ID number, indicates which computer or network that created it, whether
the user is a normal user, a guest or an administrator, and also in what order the user’s
account was created [Tod07] [37].

2.3. PASSWORD HANDLING 31

Figure 2.2: pwdump password entry format.

2.3.1.2 Hashing of passwords

Microsoft does not give detailed information on how these hashing techniques are carried
out but due to reverse engineering people have been able to find out how these techniques
work, and an explanation will be presented here.

In the late 80’s Microsoft designed what they have called LAN Manager (LM) hashing
that should prevent the passwords from being stored on the computer in plain text. As
already described above, the hash of the passwords is stored in the SAM file. Although
LM hashing was considered sufficiently secure when it was introduced, this is not the case
today. Actually Microsoft addressed this problem already in the early 90’s by coming
up with a new and more secure hash algorithm called NT (New Technology) hashing.
We will give a description of these two hash algorithms below. The problem was that
Microsoft decided to continue with LM hashing to preserve the backward compatibility.
The user account password on a machine running for example Windows XP is hashed
using both the insecure LM algorithm and the more secure NT algorithm. In Windows
XP both the LM hash and the NT hash is stored together on the computer. This is a
big advantage for the hacker since he will propably ignore the NT hash and focus on the
insecure LM hash [38].

Before we go into detail about the different hashing techniques some clarification has
to be done. Both LM hash and NT hash are hash values that are stored locally on the
computer, more specific in the SAM file. NT hash is also called NTLM (New Technology
LanMan) hash or Unicode hash. There also exist acLM, NTLMv1 and NTLMv2
authentication protocols used with the Server Message Block (SMB) protocol that is
a typical challenge-response authentication protocol. These authentication protocols
use the LM and NT hash that is described in this section, for authentication procedures.
These authentication protocols are out of scope for this thesis and the focus has been
on the locally stored LM and NT hash values.

LM hashing As an introduction to how LM hashing works, a brief explanation of
American Standard Code for Information Interchange (ASCII) will be given. ASCII is
a standard 7-bit code, representing 128 different characters with values ranging from 0
to 127, which was proposed by American National Standards Institute (ANSI) in 1963.
Out of these 128 different characters only 95 characters are printable, as will be described
later. The standard printable ASCII characters can be seen in Listing 2.1. As computers
operate on numbers, 1s and 0s to be specific, a way to convert characters to and from
numbers is needed. This is made possible by the use of the ASCII codes where each
character is assigned a unique code or value [39].

The number of written symbols used may exceed the limited range of the ASCII code.
All Norwegian characters are for example not defined in the standard ASCII chart. As

32 CHAPTER 2. BACKGROUND

a result an extra bit can be added as the leftmost bit, the most significant bit. In this
way the ASCII code can be stored in an 8-bit byte which is a very common data unit
for computers to operate on. So, if the extra bit is needed to represent a character it
is set to 1, and when it is not in use it is set to 0. It is important to emphasize that
this is an extension to the standard ASCII chart and not a new encoding. As already
mentioned, the extra bit may be used to represent additional special, mathematical,
graphical and foreign characters. When this extra bit is used, it extends the character
set with 128 characters, ranging from 128 to 255. This extra set of characters is referred
to as The Extended ASCII Character Set and is not defined by ASCII. This means that
Windows for example have their own extension to the ASCII table that may not exist in
other operating systems. There exist various extensions to the ASCII codes but giving
a description of these is out of scope of this thesis [40] [39].

The LM hash construction is based on the block cipher named DES. As can be seen
from the simplified illustration of DES in Figure 2.3 the inputs are a 56 bit key and a 64
bit plaintext. We are not going into detail about how DES is working but it produces a
64 bit ciphertext.

Figure 2.3: A simplified overview of DES.

Now we will give an explanation of how the LM hash, which is based on the block
cipher named DES, is constructed. The DES algorithm is typically used for encryption,
and not for generating hashes. However, in this case, DES is used with a fixed-length
string to generate a fixed-length result that depends on the secret user password. Hence,
it can be considered as similar to hash functions, and both Microsoft and the security
community have adopted the name LM hash. As Figure 2.4, which is based on a figure
in [41] and a figure in [Jaa00], illustrates you start out with a password of 14 characters.
If the password is less than 14 characters long the password is padded or extended with
null characters to get 14 characters (14 bytes) in length. Then the password is split into
two 7 character (7 bytes) segments and the characters in the two segments are converted
to uppercase. The conversion of the characters to uppercase is labeled UpCase in Figure
2.4. Then each 7-byte segment is converted to a bit stream consisting of 56 bit (7 byte)
each. And instead of 7 blocks with 8 bit each we now turn it into 8 blocks with 7 bit.

2.3. PASSWORD HANDLING 33

Then, as can be seen from the figure, a parity bit is added after every 7 bit. This parity
bit must not be confused with the extra bit used for the Extended ASCII Character Set
mentioned above. A parity bit is a bit added to ensure that the number of bits set to 1
is always even or odd. The parity bit is normally used as an error-detecting code. In the
construction of LM hash an odd-parity bit is used, meaning that the parity bit is set to
1 if there are even numbers of bits set to the value 1 and thus making the number of 1’s
an odd number. If there are already an odd number of bits set to 1 then the parity bit
remains 0. This extra bit results in 8 blocks with 8 bit in each block, as illustrated in
Figure 2.4 and we have now two DES keys, one from each 7 character segment, consisting
of 64 bits each.

Although the input key for DES is 64 bits, the actual key used by DES is 56 bits.
The least significant bit or the right-most bit in each byte is, as explained above, a parity
bit. These parity bits are ignored and only the 7 most significant bits, the 7 left-most
bits, in each byte is used. This results in two keys consisting of 56 bits. The parity is,
as already explained, used as error-detecting code during transmission and is therefore
not included when constructing the LM hash [42] [43]. This 56 bit key is together with
the fixed 8 character plaintext ASCII string KGS!@#$% used as input to DES, which
is shown as a black-box labeled DES in Figure 2.4. Note that there are two separate
DES black-boxes for each of the two 7 character segments. DES then produces a 64 bit
ciphertext and the ciphertext from each of the two DES black-boxes are concatenated
into a 128 bit (16 bytes) LM hash [Jaa00].
This sums up the process of constructing the LM hash [42]:

• If the password is less than 14 characters long the password is padded with null
characters to get 14 characters (14 bytes) in length.

• The password is split into two 7 character segments (7 bytes).

• Lowercase letters in each of the segments are converted to uppercase. Other
characters remain unchanged.

• These two 7 character segments are used to create two DES keys. This process is
explained above.

• Each of these keys is together with the fixed ASCII string KGS!@#$% used as
input to DES. The result is two 64 bit (8 bytes) ciphertext values.

• The two 64 bit ciphertext values are concatenated to form the LM hash, which
then consists of 128 bits (16 bytes).

The first weakness with the construction of the LM hash is that the user’s password
is converted to uppercase. This is obviously not as strong as using mixed-case letters
because it decreases the number of permutations available when a password is created
and then makes it easier for a hacker to crack the password. In other words, the LM
hash is case-insensitive, which means that is does not matter if the created password
is entered with uppercase or lowercase letters. For example, if the password is written

34 CHAPTER 2. BACKGROUND

password when it is created, permission will be granted for subsequent login attempts
regardless of that you are writing password or PASSWORD. The authors of this thesis
experimented with this on a computer running Windows 98. A further investigation of
the case-insensitivity is carried out below.

Figure 2.4: The construction of the LM hash.

Another weakness with the LM hash construction is that the password is split into

2.3. PASSWORD HANDLING 35

two 7 character segments, still with the use of uppercase. As an example the password
LMisNotPeRfeCt would turn into LMISNOT and PERFECT. A password that is shorter
than 14 characters will, as already described, be padded with null characters to obtain
a length of 14 characters. A general rule is that the longer a password becomes, the
more secure it gets. In this case it does not matter if you have a long password since it
is split into two 7 character segments. As discussed in Section 9.5.1 and in Section 9.2,
a seven character password is not very secure. As a consequence, the hacker now just
needs to concentrate on cracking two separate 7 character passwords and with today’s
computer power this can be done by brute-force or by a dictionary attack in a relatively
short time. This is also explained below.

Brute-force is when you try every possible combination to guess the correct password
and a dictionary attack is when a precomputed list of possible solutions is used to reveal
the correct password. An example is to use so called rainbow tables which exploit the
weakness of LM hashes. In this case the rainbow tables will consist of precomputed keys
of LM hashes for every possible combination of seven uppercase characters arranged in
chains. A tool that uses rainbow tables to recover passwords is Ophcrack [44], which is
described in Section 2.4.2.1. These kinds of tools use rainbow tables to try to crack the
weak LM hash. A more detailed explanation of rainbow tables can be found in Section
2.1.2.3.

A reason why it is possible to use rainbow tables to crack the password is that the
LM hash does not include a salt. A salt should consist of random bits to increase the
randomness of the hash values. Salting a password complicates an attack because a
given password should then produce different hashes every time if a different salt is
used when producing the hash value [38] [41]. This highlights another weakness with
the construction of the LM hash, which uses the same fixed and known ASCII string
as input for every LM hash that is produced. This means that two matching plaintext
passwords will have matching hash values and the LM hash is therefore susceptible to
known-plaintext cryptanalysis. Instead of making the task of cracking the password
easier for the hacker by using this fixed string, a solution could have been to change this
string for each LM hash that is constructed, e.g. use it as a salt. By doing this it would
be very hard to for example use rainbow tables to crack the password. It should be
noted that the construction of the LM hash, which do not include a salt, makes it easy
to crack the password using rainbow tables but the task is not that easy if a hacker wants
to guess the password. This is because the login procedure for the operating system is
not restricted to uppercase. The UpCase process, as shown in Figure 2.4, is only carried
out when the LM hash is constructed [Tod07].

As mentioned above, standard ASCII represents each character with seven bits which
results in a total of 128 different characters (27 bits = 128 possible values). The first 33
characters do not carry printable information as they are only used as control characters.
This leaves us with 95 characters where 94 of them are printable and 1 of them is the
space-character. From now on we include the space-character in the printable characters
such that there are 95 usable ASCII characters, which are listed in Listing 2.1. Listing
2.1 shows the standard ASCII characters defined by ANSI and therefore exclude all

36 CHAPTER 2. BACKGROUND

existing ASCII extensions. Listing 2.1 is based on the ASCII character overview given
in [45].

space ! " # $ % & ’ () * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ? @
ABCDEFGHIJKLMNOPQRSTUVWXYZ [“] ˆ { } _ ‘ abcdefghijklmnopqrstuvwxyz {
| } ˜

Listing 2.1: The 95 standard printable ASCII characters.

As already mentioned, when the LM hash is constructed, the password is divided into
two 7 character segments. These segments are hashed separately, and may then also be
attacked individually. While there are

9514 = 4876749791155298590087890625 (2.7)

different passwords available when using one segment consisting of all the 14 characters
there are only

957 = 69833729609375 (2.8)

different passwords available when splitting the password into two 7 character segments.
Instead of finding the password among 9514 different passwords the hacker just need to
find two passwords, one for each segment, among a total of

2 ∗ (957) = 139667459218750 (2.9)

different passwords. This shows that splitting the password into two segments makes
the task much easier for a hacker to launch a brute-force attack as the set of possible
passwords is much smaller [41].

In addition, each segment is converted to uppercase. This means that instead of 95
possible ASCII characters there are only 95-26 = 69 possible ASCII characters left, as
there are 26 lowercase characters. This result in

697 = 7446353252589 (2.10)

different passwords for each segment. The total amount of possible passwords for the
two segments is then reduced to

2 ∗ (697) = 14892706505178 (2.11)

Equation (2.11) shows that a hacker, in worst case, needs to check less than 1.5 ∗ 1013

different passwords or hashes because the password is split into two segments, and
therefore with today’s computer power it should be a quick task to crack the LM hash. It
is important to emphasize the fact that these calculations are based on the 95 standard
printable ASCII characters and does not take into account various ASCII extensions
that increases the number of characters available [41].

As already mentioned above, the more characters a password contains the more
secure is the password. At least this is the common sense. But by using LM hash this

2.3. PASSWORD HANDLING 37

may not actually be true. Consider that we increase our password length from seven to
eight characters to increase the strength of the password and that we continue to use LM
hashing. Now the first segment will consist of the seven first characters and the second
segment will consist of the eighth character padded with six null characters. The hash of
the second segment is now actually the hash of a single character password and is quite
fast to brute-force. Now you know that the original password is eight characters long
and you know the last character. This may ease the process of guessing the password.
It may also help if you can find out what language is used [38].

A simple way to avoid the generation of a LM hash is to use passwords that are
longer than 14 characters. Under these circumstances Windows XP does not generate a
LM hash at all but only stores the more secure NT hash. There is also a possibility to
manually disable the LM hashing on for example Windows XP machines. An overview
on how to disable the LM hashing is presented in Appendix C. This is done by default
in Windows Vista [38].

NT hashing Before we start giving an explanation of how the NT hash works, it is
necessary to give a brief introduction to Unicode, which is a universal character encoding
standard used for representation of text for computer processing. As already described,
the standard ASCII character set, also an encoding standard, consists of 128 different
characters. Each character is represented with a 7-bit code. This is not sufficient to
include all the characters used in existing languages. This is why there exist 80 ASCII
extensions. Unicode, developed by ISO and the Unicode Consortium, is a successor to
ASCII and other ASCII extensions in an attempt to define codes for characters used
in all the major languages written today, no matter what platform or program that is
used. The Unicode Standard Version 5.1, which was released in March 2008, provides
codes for in all 100,713 characters and symbols. This shows that the Unicode Standard
covers more characters than the ASCII Standard does. We do not intend to go into
more details about the Unicode Standard as this is not the focus of this thesis, but it
should be mentioned that the Unicode Standard defines three encoding forms and that
the Unicode Standard includes the standard ASCII codes [46]. As already mentioned,
the NT hash is also known as Unicode hash, and this is because it supports the full
Unicode character set.

NT hashing is considered more secure than LM hashing. The reason is that the
password can be up to 128 Unicode characters when producing the NT hash, as opposed
to the LM hash where only passwords up to 14 ASCII characters are possible. In addition,
the password is not split into two segments which is the case when constructing the LM
hash. In both cases, the result is a 128 bit hash value, but the difference is that the
whole NT hash depends on all the 128 characters instead of being a concatenation of
two hashes that depend on 7 characters each. This makes the NT hash harder to crack
than the LM hash since you have to find a password of 128 characters instead of two
passwords of 7 characters each. With NT hashing the password is also case sensitive
which leads to an increased number of possible hash values compared to LM hashing

38 CHAPTER 2. BACKGROUND

[Tod07]. It should be added that when both LM and the NT hash are enabled, only the
NT hash is used when authenticating users at login. This means that it is not the same
if the user enters password or PASSWORD which was the case for the LM hash, as the
NT hash is case sensitive. When both the LM hash and the NT hash are enabled, the
LM hash is only used to support backward capabilities. An attacker would of course
exploit the weakest link, which in this case is the LM hash.

Figure 2.5 illustrates the construction process of the NT hash, and as can be seen
from this figure, the NT hash is generated using the MD4 algorithm. First, the user
password that may contain up to 128 characters is converted to zero terminated Unicode.
Zero terminated Unicode is a Unicode string that has NULL (0x00) as the last character
to indicate the end of the string. The Unicode string is then used as input to the MD4
algorithm, which then produces the 128-bit NT hash [Tod07].

Figure 2.5: The construction of the NT hash.

This sums up the process of constructing the NT hash [Tod07]:

• The password is converted to a zero-terminated Unicode string.

• The Message-Digest algorithm 4 (MD4) algorithm is used to create a hash of the
Unicode password. This results in a 128-bit hash value, which is called the NT
hash.

Even though NT hashing is considered more secure than LM hashing the MD4 algorithm,
which NT hashing is based on, has been analyzed by cryptographic researchers and has

2.3. PASSWORD HANDLING 39

been proven to have a number of security weaknesses. MD4 is for example not collision
free, which means that two or more plaintext messages can generate the same hash.
This makes the NT hash susceptible to brute-force and dictionary attacks. There exist
some MD4 specific attacks as well. As for LM hashing, the generation of the NT hash
also lacks the use of a salt. This contributes to the exposure of attacks on the NT hash
algorithm [Tod07].

Table 2.2 shows which of our Windows versions that store an LM hash, an NT hash
or both by default.

Operating System LM hash NT hash
Windows XP Yes Yes
Windows Vista No Yes
Windows Server 2008 No Yes
Windows 7 No Yes

Table 2.2: Windows operating systems that stores LM hash or/and NT hash by default.

Password Hash Obfuscation To additionally protect password hashes while being
stored in the SAM file, Windows applies additional obfuscation. The obfuscation is
done by the use of an additional round of DES encryption and the keys that are used
are derived from the user RID (Relative Identifier). A description of RID can be found
in Section 2.3.1.1. The password hash obfuscation, together with the LM and NT hash
creation, have not been published in detail by Microsoft, but security researchers have
been able to do some reverse engineering to get an understanding of what is happening.
Note that this obfuscation is applied to both the LM hash and the NT hash, which are
both described in details above. An illustration, which is based on a figure in [Tod07],
of how the password hash obfuscation is done can be seen from Figure 2.6.

The DES encryption used for password hashes requires two 56-bit (7 bytes) keys, k1
and k2, that are calculated individually for each user. These two keys are both functions
of the 4 byte RID value. The first 4 bytes of k1 are equivalent to the 4 bytes of the user
RID, and the last 3 bytes (byte 5-7) of k1 are the same as the first 3 bytes of k1, and
therefore also equal to the first 3 bytes of the RID. The first 4 bytes of k2 consist of
the fourth, the first, the second and then the third byte of the user RID, and the last 3
bytes (byte 5-7) are the same as the first 3 bytes of k2 (therefore also the same as the
fourth, the first, and the second byte of the user RID). The keys k1 and k2 are included
in Figure 2.6 [Tod07].

As already described, both the LM hash and the NT hash are 128-bit (16 bytes)
values. Even though Figure 2.6 only shows the obfuscation process of the NT hash, the
same scheme applies if the LM hash is used. The only difference is that the result is an
obfuscated LM hash instead of an obfuscated NT hash, as a LM hash is used instead
of a NT hash. In Figure 2.6 the 128-bit NT hash is first divided into two halves of 64
bits (8 bytes) each. Each of the two halves is then encrypted separately. The first half
is encrypted using DES with k1 as the key, and the second half is encrypted using DES

40 CHAPTER 2. BACKGROUND

Figure 2.6: DES obfuscation of NT hash.

with k2 as the key. The two results from the DES encryption are then concatenated
to produce the obfuscated NT hash value of 128 bits. The obfuscated NT hash is then
stored in the registry in the respective password hash fields [Tod07].

Because the encryption keys are known, as they are derived from the user RID, and
also the encryption algorithm (DES) is known, the encryption process described above
is for obfuscation purposes only. It does not provide true protection as an attacker who
has access to the SAM file can easily eliminate the obfuscation as a result of that both
the keys and the encryption algorithm is well know, and thus obtain the initial password
hash. Note that the plaintext of the password is not revealed. Because the user RID
is used to generate the DES obfuscation key, and because the user RIDs are different
for every user, the obfuscated hash will be different for all users, even though they use
the same password. This should not be confused with salt that is random bits unknown
to the users. The salt is added to provide protection. But since the user RIDs are
well-known they do not provide sufficient protection, and they can be used to decrypt
the obfuscated hash [Tod07].

As a consequence of that the DES obfuscation only provides additional steps before

2.3. PASSWORD HANDLING 41

access to the password hash values are gained, Microsoft invented the SYSKEY utility
to mitigate the risk of attacks on the password hashes, as a result of direct access to the
SAM file. The SYSKEY utility consists of a password encryption key (PEK) and the
RID, which is already described. Windows 2000 and later Windows operating systems
use SYSKEY encryption by default. The SYSKEY encryption is not used instead of the
obfuscation encryption described above but rather adds an additional layer of encryption
for the password hashes and other system secrets, such as LSA secrets. LSA (Local
Security Authority) is a protected subsystem that authenticates and logs users onto
the local system. LSA also maintains information about all aspects of local security
on a system, and this information is referred to as LSA secrets [47]. The purpose
with SYSKEY is to additionally encrypt password hashes and LSA secrets in order to
protect them from attackers who may try to copy the SAM file from a computer. To
accomplish this protection, SYSKEY uses a system-generated password encryption key
(PEK), which is used to encrypt only the password-related fields in the SAM file, as for
example the LM hash and the NT hash. As a consequence of that, a person that wants
to reveal a password stored in the SAM file first have to gain access to the PEK and then
decrypt the password field. Then the obfuscation, which is already described above, must
be removed, and still only the password hash will be revealed, not the password itself.
The PEK key material, which is randomly generated and used to calculate the PEK,
is generated for every single Windows system when SYSKEY is enabled for the first
time. The generation of the PEK key material will not be explained in further details
in this thesis. The PEK is used to protect the local user accounts on the machine. The
operating system needs to know the PEK material to be able to calculate the PEK, and
then decrypt the information in the SAM to obtain the password hashes. As a result of
this the PEK key material is stored in the Windows registry. To protect the PEK from
attackers, the operating system generates the PEK using the random PEK key material
and a system key. The system key is the reason why it is called SYSKEY utility. The
system key is also called the boot key or the startup key. This is because the system
key, which is stored in the Windows registry by default, is read from this registry when
the operating system boots. Every time the operating system or authorized applications
need access to SYSKEY encrypted data, LSASS.EXE, which is a process in Windows
operating systems that is responsible for enforcing the security policy on the system, will
use the system key stored in the registry to decrypt the data and provide the data to
the application or service. This implies that the system key is for example not effective
against attacks carried out from applications with administrative privileges running on
the same computer as LSASS.EXE, as this process will provide the data when requested.
It may be added that the LSASS.EXE process, among other things verifies users logging
on to a Windows computer or server, handles passwords changes and creates access
tokens [Tod07].

Even though Microsoft does not provide details regarding the use of the SYSKEY, the
security researchers believe that the SYSKEY information is stored in the following loca-
tion in the registry: HKEY LOCAL MACHINE\System\CurrentControlSet\Control\LSA.
The keys JD, Skew1, GBG and Data, in that order, each contain 4 bytes of the system key.

42 CHAPTER 2. BACKGROUND

To obtain the system key, these 4 bytes are concatenated, and the bytes are reordered
as follows: [8th, 10th, 3rd, 7th, 2nd, 1st, 9th, 15th, 0th, 5th, 13th, 4th, 11th, 6th, 12th,
14th]. The result is the system key, and together with the PEK key material, it is used
by the operating system to calculate the PEK. The PEK that is used to encrypt the NT
hash is obtained by calculating the MD5 hash of the PEK key material, concatenated
with the user RID, concatenated with the string NTPASSWORD. The result is named
key in Figure 2.7. The PEK that is used to encrypt the LM hash, on the other hand,
is obtained by calculating the MD5 hash of the PEK key material, concatenated with
the user RID, concatenated with the string LMPASSWORD. The obfuscated password
hash is then encrypted with the RC4 algorithm using the respective PEK as the key.
The RC4 encryption of the obfuscated NT hash is shown in Figure 2.7. As illustrated by
the same figure, the result is then stored in the SAM file. In an earlier implementation
of SYSKEY was both the LM hash and the NT hash encrypted using the same PEK.
Microsoft then experienced that the password hashes were vulnerable to relatively simple
cryptanalysis attack, and therefore introduced the use of different PEKs for the LM hash
and the NT hash [Tod07].

Figure 2.7: RC4 encryption of the obfuscated NT hash.

It should be highlighted that all the components used to protect the SAM file are
available from the Windows registry, including the system key, which is stored in the
registry by default. In other words, all the information that is used in the protection of
the SAM file is stored on the hard disk, and is therefore used for obfuscation purposes
only. The obfuscation process only results in that it takes longer time to reveal the
password hashes. Because the system file is stored in a separate file in the registry called
SYSTEM, both the SAM file and the SYSTEM file will be necessary in order to reveal
the password hashes. These will not be a problem to obtain as they are both available in
the registry. Before SYSKEY was invented, some older password hash dumping utilities
tried to access password hashes directly, instead of trying to decrypt them first using
the PEK. However, as will be shown later in this thesis, newer tools will be able to

2.3. PASSWORD HANDLING 43

compute the PEK and will use it to decrypt the password field and obtain the hash. In
this sense, the SYSKEY utility protect against older tools. It is important to note that
SYSKEY encryption is only effective for passwords when they are stored in the SAM
file. Applications that are able to dump password hashes will see DES obfuscated LM
and NT hashes, and not SYSKEY encrypted hashes.

This section has now illustrated the process from a password is created until the
obfuscated password hash is encrypted and stored in the SAM file.

2.3.2 Linux

Most Linux systems save the user information in two important files /etc/passwd and
/etc/shadow. In earlier Linux systems the username and password hashes were stored
together in the /etc/passwd file, and the /etc/shadow file did not exist. To increase the
security a shadow suite (Section 2.3.2.2) with a /etc/shadow file was introduced. This
file is only readable by root. The /etc/shadow file is used frequently to authenticate
users, especially during the login procedure. The etc/passwd file is world readable but
both of the files are accessible through the root account or can be accessed through
another operating system, presented in more details in Procedure 10. The files are
human readable, thus not obfuscated as other operating systems tend to do (Section
2.3.1.2). The Linux distributions presented in this thesis, utilize the same types of files.

2.3.2.1 The passwd file

The login process interacts with a file called /etc/passwd. This file contains relevant
information about the users, one user per line. An example of a user presented in the
passwd file can be viewed in Listing 2.2:

nerblak:x:500:500:nerblak:/home/nerblak:/bin/bash
root:x:0:0:root:/root:/bin/bash

Listing 2.2: The users nerblak and root presented in the passwd file.

The fields separated by : are the following [48]:

• login name

• optional encrypted password

• numerical user ID

• numerical group ID

• user name or comment field

• user home directory

• optional user command interpreter

44 CHAPTER 2. BACKGROUND

If the optional encrypted password field is left blank, no password is prompted [48]. Many
early Linux distributions store the user passwords in /etc/passwd. This is unsafe because
/etc/passwd is (and must be) world readable [Ano99], because the group IDs, user IDs
and home directory information must be accessible for other users and processes. To
avoid exposing the encrypted passwords most modern distributions have included or
have support for implementing password shadowing.

2.3.2.2 The shadow suite

If the encrypted password field in /etc/passwd is replaced by an x the encrypted password
is stored in the /etc/shadow file. This shadow file is only accessible by root. The shadow
file contains the encrypted password for all the users and some optional password aging
information. An example of the users nerblak and root is presented in Listing 2.3 below:

nerblak:1w8UNkyLw$P5Y4MqGOmKeog1eFeXjn90:14270:0:99999:7:::
root:6n2rIb6KV$zkgUHQjBZsR34MRknmeHK/zzamjgV04Rc5XP3JHM0jZfFbJVy889H2R
LA6PCx2FUFCWt.i/TSDCp9SrhcCZJJ.:14284:0:99999:7:::

Listing 2.3: The users nerblak and root presented in the shadow file.

The fields separated by : are the following [49]:

• Login name.

• Encrypted password.

• Days since Jan 1, 1970 that the password was last changed.

• Days before the password may be changed.

• Days after which the password must be changed.

• Days before the user is warned about the expiration of the password.

• Days after the password expires that account is disabled.

• Days since Jan 1, 1970 that the account is disabled.

• A reserved field.

The encrypted password field consists of minimum 13 characters from the 64 character
alphabet a through z, A through Z, 0 through 9, . and /. This encrypted password is
generated by the crypt() function. The crypt() function is based on the DES algorithm,
but also includes variations mentioned below. A 56 bit key is generated using the lowest
7 bits of each of the first eight characters of the user typed password. This key is then
used to encrypt repeatedly a constant string (usually a string consisting of all zeros)
[50]. For the DES-based algorithm the return value of crypt() is the encrypted password
represented in 13 printable ASCII characters, of which the two last characters comprise
the salt. When the user enters their password for the first time, the salt should be set

2.3. PASSWORD HANDLING 45

to a new string which is reasonably random [51]. When the crypt() function encrypts
with DES, the salt consist of two characters from the alphabet mentioned above. The
encrypted password field is separated into three fields in the form of idsalt$encrypted
when DES is not used. The salt is actually a combination of the two first fields, thus a
character string starting with the characters id, where id represents the values shown
in Table 2.3. This is followed by a string, referred to as salt, which is terminated by
$ [50]. The reason for including a salt when generating the hash value is because this
ensures that two identical passwords not necessarily generate the same password hash.
This is a desired feature to increase the set of password hashes possible per password. It
is nevertheless important that the same salt is used when the hash value used to verify
the password is generated. The id field can contain one of the four values presented in
Table 2.3 below:

ID Method Length
1 MD5 22 characters
2a Blowfish (not in mainline glibc; added in some

Linux distributions and BSD)
md5 Sun MD5
5 SHA-256 (since glibc 2.7) 43 characters
6 SHA-512 (since glibc 2.7) 86 characters

Table 2.3: Id values available for the encrypted password in shadow [50] and [52].

The id field determines the encryption method and how the rest of the password string
is interpreted. The two users presented in Listing 2.3 use id 1 and 6, meaning that
their passwords are hashed with MD5 and Secure Hash Algorithm (SHA)-512. As you
can see in this table, a shadow file can contain hash values produced by different hash
algorithms.To configure the shadow password suite a file /etc/login.defs is used [53].
This file has many configuration items with many different parameters available. One
of the most interesting configuration items is ENCRYPT METHOD(string). In Ubuntu
this item can take one of the following values: DES(default), MD5, SHA256 or SHA512
[53]. These values correspond to the id value in the shadow file.

2.3.3 BSD

The files presented in this section vary from one operating system to another. The
two operating systems, FreeBSD and Mac OS X, presented in this section are therefore
separated. The FreeBSD system use password files much like in various Linux systems,
but with different names. Mac OS X stores the password in a different way, but the
password files are human readable.

2.3.3.1 FreeBSD

The way FreeBSD handles the user’s passwords is very similar to Linux. As in most Linux
systems, FreeBSD uses a /etc/passwd file. This file does not contain the passwords and is

46 CHAPTER 2. BACKGROUND

presented in more detail in Section 2.3.2.1. FreeBSD use a file called /etc/master.passwd
as storage for the password hash values and the username. The /etc/master.passwd file
is almost identical to the /etc/shadow file mentioned in Section 2.3.2.2, but some of the
fields contain different values and the file is structured a little bit different.

An example of the user root is presented in Listing 2.4:

root:$1$0cB4EA3Q$2v8tSjqlabQU19FYpKG541:0:0::0:0:Charlie &:/root:/bin/
csh

Listing 2.4: The user root presented in the master.passwd file.

The fields separated by : are the following [Leh03]:

• User name.

• Encrypted password.

• User number.

• Group number.

• Login class, which describes a number of parameters for the user. (In the table
above empty, for the user nerblak)

• Password change time. If non-0, it is the time in seconds after which the password
must be changed.

• Account expiration time. If non-0, it is the time in seconds after which the user
expires.

• The so-called gecos field, which describes the user. This field is used by a number
of programs, in particular mail readers, to extract the real name of the user.

• The name of the home directory.

• The shell to be started when the user logs in.

While the password handling and the password files in FreeBSD are almost identical
to the ones in Linux, there is one noticeable difference. FreeBSD has also introduced two
files for performance reasons. These files are the database versions of /etc/passwd and
/etc/master.passwd, /etc/pwd.db and /etc/spwd.db, respectively. None of these database
files are user-readable. If the passwords are changed in the /etc/master.passwd file, a
program called pwd mkdb can rebuild the passwords files /etc/passwd, /etc/pwd.db and
/etc/spwd.db [Leh03].

2.3. PASSWORD HANDLING 47

2.3.3.2 Mac OS X

The password handling in Mac OS X has changed a lot since Mac OS X 10.0 ‘Puma’
was released. The operating system versions 10.0, 10.1 and 10.2, the latter released in
2002 used the Unix DES Crypt(3) function to hash the passwords. The hash values
of the password were stored in a database called NetInfo. The hash values were not
shadowed, as mentioned for Linux systems and FreeBSD, thus stored directly in the
NetInfo database. This was different from the traditional way Unix systems implement
their user information in flat files such as /etc/passwd. All the users had access to
the NetInfo database, allowing all users to read the hash values. According to Dribin
[54], DES hashed password could easily be dumped in standard Unix format with the
command nidump. Although DES was effectively proven weak in 1997 and shadowing
of password was introduced by AT&T in 1987, Mac OS X had no intention of learning
from the past.

In Mac OS X 10.3 released in 2003 some big changes were applied to the password
handling. The passwords were now shadowed and stored outside the NetInfo database.
Instead of using the standard /etc/shadow file to store the hash values, they are stored
files in the /var/db/shadow/hash/ directory. Each user’s password was stored in its
own flat file. The files had names originating from the users generateduid NetInfo field.
Like /etc/shadow, these files are readable only by root. The passwords were no longer
hashed with standard Unix DES. According to [54], the password was hashed twice in
a string of 104 characters. The first 64 characters of the string containing the first hash
value hashed with the Windows LM hash and the second part consisting of 40 characters
containing a hash value hashed with SHA1. The LM hash is described in detail in Section
2.3.1.2. The Windows LM hash was included to among other things support Windows
file sharing.

NT000000000000
000000000000000000000000000000000000SHA1SHA1SHA1SHA1SHA1SHA1SHA1SHA1SHA1SHA1
0000000000000000SaSHA1SaSHA1SaSHA1SaSHA1SaSHA1SaSHA1SaSHA1SaSHA1000000000000
00
00
00
00
00
00
00
00
00
00
00
00
00
000000000000000000000000

Listing 2.5: This shows the hash files used in Mac OS X 10.4.

48 CHAPTER 2. BACKGROUND

The worst problem with Mac OS X version 10.3’s password handling was that no salt
was included and that the weak LM hash was included in the flat password file.

Dribin [54] mentions some vital changes that were applied when Mac OS X 10.4 was
released in 2005. The passwords are still hashed with SHA1 and shadowed in the same file
as described above. The LM hash is replaced with the more secure NT hash produced
by Windows. The NT hash, described further in Section 2.3.1.2, is only generated if
Windows sharing is enabled, and Mac OS X gives a warning that the password are being
stored in a less secure manner. In 10.4 the SHA1 hash also uses salt.

Listing 2.5 above shows an example [55] of how the hash file is represented in Mac
OS X 10.4 Tiger. It contains different fields where the NT, SHA1 and SaSHA1 field
represents the legend of where the corresponding hash values are stored in a hash file.
The NT field is included to support Windows file share, as mentioned above, and the
SHA1 field is included to have backward compatibility with earlier versions of Mac OS X.
The SaSHA1 (salted SHA1) field is saved for the SHA1 used in current versions of Mac
OS X with their corresponding salt appended as the first part of the field. Why Apple
has chosen to append the file with additional zeros, is probably for future compatibility
in newer versions of Mac OS X.

The hash files in Mac OS X 10.5 Leopard all looks the same, and an example hash
file with name B90BA604-CAE1-4A69-9D3D-953F8CD7E422 corresponding to the user
nerblak is presented in Listing 2.6 below:
00
00
0000000000000000533F07A2833EEB8107B2DA9F81A3AF08F744378651A57C5C000000000000
00
00
00
00
00
00
00
00
00
00
00
00
00
000000000000000000000000

Listing 2.6: The user nerblak presented in its uid named hash file.

For the two listings above it should be noted that these originally contains no new lines.
These are just included to make the file more readable.

The salted SHA1 hash begins at character 169 and is 48 characters long. The first 8
characters are the hex value. In Mac OS X 10.5.6 Leopard described in this thesis, it is
verified that this version of the operating system also use SHA1 with salt and the same
shadow technique as mentioned above.

2.4. TOOLS 49

2.4 Tools

This section will describe the tools used in the experiments presented in Chapter 5 , 6
and 8. This section separate between tools used for password resetting and tools used
for password recovery.

2.4.1 Password Resetting

Below we present the tools used for password resetting.

2.4.1.1 Offline NT Password & Registry Editor

Offline NT Password & Registry Editor [56] is a password resetting tool created by
Petter Nordahl-Hagen. The tool can either be downloaded as a bootable live CD or
floppy disk image, which includes the chntpw tool, or as plain source code. Some Linux
distributions such as Debian have included the chntpw tool in their package repositories,
providing a simple way to install the tool locally. Offline NT Password & Registry Editor
can reset/set the password of any user that has a valid (local) account on a Windows
NT/2k/XP/Vista etc system. Like most of the other tools described in this thesis,
this tool works offline, meaning that the tool is initiated locally on the system subject to
password resetting. The tool will automatically detect accounts and offer various options
to modify the account. It can set or reset the password, unlock accounts or act as a
registry editor. Offline NT Password & Registry Editor contains among other tools the
password tool chntpw. Nordahl-Hagen gives a good explanation of how the tool works
[56]:

NT stores its user information, including crypted versions of the passwords,
in a file called ’sam’, usually found in \windows\system32\config. This file
is a part of the registry, in a binary format previously undocumented, and
not easily accessible. But thanks to a German(?) named B.D, I’ve now made
a program that understands the registry.

Figure 2.8: Offline NT Password & Registry Editor welcome screen.

50 CHAPTER 2. BACKGROUND

A screen shot of the initial welcome screen is displayed in Figure 2.8. It should be
mentioned that there exists many rescue CDs and other tools for resetting passwords,
which uses the chntpw tool, and therefore do not contribute with a new tool but is rather
a collection of different tools. The chntpw tool is for instance included in Trinity Rescue
Kit [8].

2.4.1.2 Kon-Boot

Kon-Boot is tool to bypass the password authentication process on different operating
systems. It is produced by Piotr Bania [57] who states that it has been tested to work
correctly on the following Windows operating systems and Linux distributions with the
following GRUB versions:

Windows Operating Systems
Windows Server 2008 Standard SP2 (v.275)
Windows Vista Business SP0
Windows Vista Ultimate SP1
Windows Vista Ultimate SP0
Windows Server 2003 Enterprise
Windows XP
Windows XP SP1
Windows XP SP2
Windows XP SP3
Windows 7

(a) Windows operating systems.

Linux kernels GRUB
versions

Gentoo 2.6.24-gentoo-r5 GRUB
0.97

Ubuntu 2.6.24.3-debug GRUB
0.97

Debian 2.6.18-6-6861 GRUB
0.97

Fedora 2.6.25.9-76.fc9.i6862 GRUB
0.97

(b) Linux Distributions.

Table 2.4: Operating systems supported by the Kon-Boot tool.

Please note that Table 2.4(a) and Table 2.4(b) list system that the Kon-Boot tool has
been tested to work correctly on by Piotr Bania, and that the tool also may work on
other systems.

Kon-Boot is a tool, written in x86 assembly, which allows to change contents of a
Linux and Windows kernel on the fly, while booting. It allows you to log in to an
Administrator account without typing the correct password or to elevate privileges on
regular user accounts. It should be noted that everything is done virtually, without any
interferences with physical system changes [57].

According to information received through email contact with Piotr Bania, the
general concept of Kon-Boot is the following:

1. The computer boots up from the CD/Floppy with Kon-Boot.

2. Kon-Boot allocates necessary amount of memory in the BIOS and marks it as
unavailable to avoid overwriting it by the operating system loader.

3. Then Kon-Boot copies itself to the allocated memory.

4. Kon-Boot hooks some of the BIOS interrupts responsible for disk-access meaning
that it tries to monitor all the data read from the disk and then looks for signatures.

2.4. TOOLS 51

5. Depending on the signature that is found, Kon-Boot begins to make necessary
changes to the operating system loader and then the real kernel.

Piotr Bania claims that the last point described above actually is the hard part. In some
cases like for example in Windows Server 2003 both the operating system loaded and
the kernel itself use checksum algorithms to prevent modification. Although this seems
like a hard thing to circumvent, Kon-Boot takes care of such situations too.

When it comes to the case that Kon-Boot works on so many operating systems, one
may wonder if the approach mentioned is the same for all operating systems, especially
because of the large differences between the different Windows and Linux operating
systems. According to Piotr Bania, the initial concepts are the same, but changes are
required when placing a “password-bypass-backdoor”. This varies depending on the
kernel.

A screen shot of Kon-Boot is displayed in Figure 2.9 below:

Figure 2.9: Kon-Boot almost finished with the kernel hack.

2.4.1.3 Bart’s Preinstalled Environment (BartPE)

In many of the procedures described in Chapter 5, it is mentioned that a guest operating
system is used to configure a host operating system. A Linux live CD is often thought
of as the only solution that has the possibility to boot on top of the host system. This is
not entirely correct. Bart’s Preinstalled Environment (BartPE) [58] is a Windows Live
CD solution build using a program called Bart’s PE Builder and an original Windows
XP or Windows Server 2003 installation/setup CD. This CD will according to [58] give
the user a complete Win32 environment with network support, a graphical user interface

52 CHAPTER 2. BACKGROUND

(800x600) and FAT/NTFS/CDFS file system support. It has the look of Windows, and
it has many of the most important Windows tools available. There are also many other
solutions to get a Windows like guest operating system, such as VistaPE [59], NTFSDOS
[60] and NTFS4DOS [61].

There are many variants of Linux that may be used as a guest operating system,
which may have support for many file systems. In this thesis Ubuntu 8.10 and 9.04
[9] has been used frequently. The tool YALP, described in detail in Section 7.2, was
produced as a result of the lack of a live CD with desired password resetting and recovery
capabilities.

Password Renew Together with BartPE a tool called Password Renew [62] can be
used to reset an Administrator password. According to the creator, sala, the plug-in
Password Renew has the following features:

• (Re)Set the passwords of any user that has a valid local account.

• Create a new local user with administrator rights.

• Set administrator rights to existing user on your NT system.

• Reset the local administrator password on a computer that is in a domain, using
NULL Administrator password feature.

WindowsGate 1.1 Another password resetting plug-in for BartPE is WindowsGate.
According to [63], the author of WindowsGate is the same author as the author of
DreamPackPL described later in this chapter. WindowsGate bear resemblance in
DreamPackPL and is embedded with many password handling mechanisms. Both plug-
ins can only operate on the Windows password handling mechanism.

According to Damian [63], WindowsGate has the following features (note that the
two latter features are Windows weaknesses exploited by WindowsGate):

• Unlock/Lock functions (enabling/disabling login password validation)

• Existing passwords remains untouched (without password reset or overwrite
operations)

• Windows registry remains untouched.

• Without password (hash) cracking.

• Windows System File Checker (SFC) and Windows Resource Protection (WRP)
remain active.

• Support for all NT version: 2000/XP/2003/Vista/2008

• Include support for msv1 0.dll patch.

2.4. TOOLS 53

• Run any process with system privileges from WindowsGate (utilman.exe replace-
ment (WinKey+U shortcut)).

Figure 2.10 and Figure 2.11 presented below show Password Renew and Windows
gate, respectively. The figures are presented side by side, because both are plug-ins to
Bart’s Preinstalled Environment.

Figure 2.10: Password Renew. Figure 2.11: Windows Gate.

2.4.1.4 PCLoginNow 2.1.0

PCLoginNow is one of many password resetting tools that are mentioned in this thesis.
The tool is according to PCLoginNow’s web page [64] an easy-to-use tool to reset local
administrator and other account’s passwords on Windows operating systems. The tool,
shipped as a bootable live CD, works on all Windows systems and is controlled through
a graphical interface. In addition to resetting the password, this tool is can perform
some other vital user account changes. It can change any account to administrator level,
lock/disable accounts and set accounts to never expire. The tool supports circumvention
of the SYSKEY protection embedded in most of the newer versions of Windows.

54 CHAPTER 2. BACKGROUND

Figure 2.12 shows a screen shot of PCLoginNow right after it has booted.

Figure 2.12: PCLoginNow’s welcome screen.

2.4.1.5 DreamPackPL

A tool that has many password handling features is DreamPackPL. The tool is currently
only supporting Windows 2000 and XP. When configured and installed correctly it is
accessed directly from the login prompt of the operating system and provides a menu
containing various tools. In this thesis we describe how to reset the administrator
password by using this tool at page 106. The author, said to be Damian Bakowski,
does not longer seem to provide a homepage for this tool, but it can be found on various
web pages across the Internet, for instance [65]. The tool also exists as a plug-in for
BartPE mentioned in Section 2.4.1.3. This plug-in can be found at this web page [66],
but is not described any further in this thesis.

The screen shot in Figure 2.13 shows DreamPackPL booted on top of a Windows XP
operating system. The main menu displays the users, and the Command Settings window
has been started on the right side of the figure. In this window you can see textitdreamon
as activated, making DreamPackPL possible to start from the login prompt, with the
password dreamon.

2.4. TOOLS 55

Figure 2.13: DreamPackPL initiated from a Windows XP login screen.

2.4.1.6 The passwd Tool

The passwd tool is a password resetting tool included in most Unix-based systems. It can
reset the password for any account residing on the system, as long as it is initiated with
root/Administrator privileges. As the tool requires these privileges some may say that it
is useless as a password resetting tool when the Administrator password is lost, and you
have to be an administrator to initiate this tool The reason why this tool has its own
approach presented in this thesis is because this tool is very useful in combination with
other procedures. This thesis will present various ways to grant administrator access on
all of the Unix-based operating systems used in this thesis. When this access is granted,
passwd serves as an excellent tool to reset the password on any desirable account. An
approach showing how to use this tool is presented at page 108.

2.4.2 Password Recovery

In the following pages we present tools that can be used for password recovery.

2.4.2.1 Ophcrack

Ophcrack [44] is a Windows password cracker based on rainbow tables. The tool is
created by the inventor of rainbow tables, and offer a fast and effective way to disclosure
a password hidden from a hash value (Section 2.1.2.3). The tool have both a graphical
and a text-based interface, and support various operating systems. Ophcrack’s web page
presents a small list of features that the tool provides:

• Runs on Windows, Linux/Unix and Mac OS X

• Cracks LM and NT hashes.

56 CHAPTER 2. BACKGROUND

• Free tables available for Windows XP and Vista.

• Brute-force module for simple passwords.

• Audit mode and CSV export.

• Real-time graphs to analyze the passwords.

• Live CD available to simplify the cracking.

• Loads hashes from encrypted SAM recovered from a Windows partition, Vista
included.

• Free and open source software (GPL) [44].

The tool can be downloaded in four different variants. The first variant is a Windows
installable version, where Windows 2000, XP and Vista are supported. The second
variant is the source, providing a possibility to install the tool on most Unix-, Linux- and
Mac based operating systems. The third and fourth variants are live CD’s independent
of an installation. Ophcrack delivers an Ophcrack Vista Live CD and an Ophcrack XP
Live CD. The main difference is that the first includes Vista free rainbow tables and the
latter includes XP free small rainbow tables. These rainbow tables take up a big portion
of the Live-CD, thus only one of them can be included in the CD. The free XP rainbow
tables are specially designed to crack the LM hash used in Windows XP, and the Vista
free tables are designed to crack the NT hash used in both Windows XP and Vista.
Due to the weaknesses of the LM hash, if Windows XP is the operating system where
the password recovery is desired, rainbow tables meant for LM hash cracking should be
used.

It is nevertheless possible to use the Ophcrack Vista Live CD on Windows XP, but
it is better to use the Ophcrack XP Live CD on a Windows XP machine because of the
properties of the rainbow tables. It is not possible to crack a Windows Vista password
with the use of the Ophcrack XP Live CD, as XP uses the LM hash and Vista only uses
the more secure NT hash. Screen shots of this tool can be found in Chapter 8.

As mentioned above, Ophcrack is also shipped as an installable version, and the
support for including external rainbow tables is embedded in the program. From
Ophcrack’s web page [44] various rainbow tables can be downloaded. Some of them
are free and some can be purchased and downloaded directly from the Internet.

Another famous password cracker using rainbow tables is Rainbowcrack [67]. This
cracker is also an implementation of the theory presented in [Oec03], described in Section
2.1.2.3. With this cracker another tool called rtgen is included. The rtgen tool serves
the possibility of creating rainbow tables. By using rtgen large collections of rainbow
tables for many different hash algorithms can be created. The thesis will not present
rtgen in detail.

2.4. TOOLS 57

2.4.2.2 John the Ripper

John the Ripper [68] often referred to as jtr or just John, is another famous password
cracker compatible with most operating systems. According to the John the Ripper’s web
page, the tool’s primary purpose is to detect weak Unix passwords. The tool supports
many popular hash types used by various operating systems. John the Ripper can reveal
passwords from hash values created by crypt, and John the Ripper has out of the box
support for Kerberos/AFS and Windows LM Hashes.

In the experiments described in Chapter 6 and 8 the command line version of John the
Ripper was used. The command line version of John the Ripper supports four different
cracking modes [69]. The four primary modes are fully customizable and capable of
running sequentially. The simplest cracking mode is called Wordlist mode. This mode
allows the user to specify a default or customized wordlist. By using wordlist mode John
the Ripper is used to perform a dictionary attack against the specified hash values. In
the wordlist mode word mangling rules can be enabled. This is an option to modify
or “mangle” words in the wordlist, thus enabling the testing of other likely passwords.
By enabling rules a set of rules will be applied on every word in the wordlist. On
Openwall’s web page [70], a good description on how to disable specific rules is presented.
A wordlist can be created manually [71], downloaded from the Internet as a single file
[23] or purchased directly from Openwall’s web page. Many of the rules available are
very similar to those presented in Section 2.4.2.3.

To run John the Ripper on a password file (mypasswd) by using an external wordlist
(Wordlist.lst) and all the rules enabled, the following command can be typed in a Unix
shell with root permission:

john --wordlist=Wordlist.lst --rules mypasswd

Listing 2.7: John the Ripper issued as root with wordlist and rules enabled.

Another mode supported by John the Ripper is Single crack mode. It will for instance
use the user’s login name and home directory name as password candidates with a large
set of mangling rules applied. According to Openwall, this is the best mode to begin
with:

Since the information is only used against passwords for the accounts it was
taken from (and against password hashes which happened to be assigned
the same salt),“single crack” mode is much faster than wordlist mode.
Successfully guessed passwords are also tried against all loaded password
hashes just in case more users have the same password.

The third mode supported by John the Ripper is called Incremental mode. This is
according to Openwall the most powerful cracking mode; it will try all possible character
combinations as passwords. This mode is John the Ripper’s brute-force attack and it
is assumed that cracking with this mode will never terminate because of the number
of combinations being too large. This mode can be configured in John the Ripper’s
configuration file to specifically suit one type of hash algorithm.

58 CHAPTER 2. BACKGROUND

The last mode John the Ripper supports, External mode, will not be described here
as it is not used in the experiments described later in this thesis. Screen shots of John
the Ripper can be found in Chapter 8.

2.4.2.3 Cain & Abel

Cain & Abel [72] is a password recovery tool for Microsoft Windows operating systems.
It has support for many recovery techniques, and the techniques used in the experiments
described later are cracking encrypted passwords using Dictionary, Brute-Force and
Cryptanalysis attacks.

Cain & Abel can be divided into two main parts. Cain, the first part of the program
is a graphical interface with the purpose of concentrating several hacking techniques and
proof of concepts. It provides a simplified tool with focus on the recovery of passwords
and authentication credentials from various sources. The second part of the program,
which is called Abel, is designed as a Windows NT service consisting of an Abel.exe
executable and a dynamic link library Abel.dll. The service runs, according to Montoro
[72], using the local System account and provides some interesting features like the
Remote NT Hashes Dumper, the Remote LSA Secrets Dumper and the Remote Console.
More information on these features can be found on Cain & Abel’s web page. Abel can
be installed without the first part of the program Cain, through Cain locally or remotely.

Cain & Abel supports a large set of different hash types created by many popular
hash algorithms. In Chapter 6 and 8 Cain & Abel is used to crack the LM and NT hash
used by various Windows operating systems. Cain & Abel’s graphical interface is simple
and intuitive to use, and also other features can be added and activated. Screen shots
of this tool can also be found in Chapter 8.

As mentioned with John the Ripper, Cain & Abel has different modes/crackers to
reveal the password. One of the crackers supported by Cain & Abel is the Dictionary
Password Cracker. This cracker works the same way as the wordlist mode described
in John the Ripper. The tool Cain & Abel also has support for external wordlists and
string manipulation (mangling of the words in a wordlist). Using multiple wordlists at
the same time is a feature possible in both John the Ripper and Cain & Abel. Included
with the Cain & Abel installation is a wordlist file. This file contains a list of words that
can be used when performing a dictionary attack. Through Cain & Abel’s graphical
interface, in the dictionary attack menu, the following mangling rules can be selected
[73]:

• As Is: -> the password id checked as written in the dictionary file.

• Reverse -> the reverse form of the password is tried (password -> drowssap).

• Double -> double the tried password (Pass -> PassPass)

• Lowercase -> the lowercase form of the password is tried (Password -> password).

• Uppercase -> the uppercase password is tried (Password -> PASSWORD).

2.4. TOOLS 59

• Numbers substitution permutations -> replace certain letters with numbers (Pass,
P4ss, Pa5s, P45s,P455).

• Case Perms -> all case permutation of the password are checked (password,
Password, pAssword, PAssword, PASSWORD).

• Two numbers Hybrid-Brute -> appends a maximum of two digits after each word
(Password0, Password1,...Password9, Password00, Password01, Password99).

Another mode/cracker supported by Cain & Abel is Cryptanalysis. This mode allows
for the use of rainbow tables as described in 2.1.2.3 to crack hash values created by various
hash algorithms. Cain & Abel supports rainbow tables generated by rtgen and Winrtgen
and Ophcrack rainbow tables mentioned in Section 2.4.2.1. This cracker can be selected
from the Cain & Abel menu with a corresponding charset defining which character
set the rainbow tables support. Winrtgen is a graphical rainbow table generator that
supports many hash algorithms. We describe Winrtgen in more details as Tool 12 at
page 120 and in Section 2.4.3.2.

Brute-force Password Cracker is also a mode/cracker implemented in Cain & Abel.
How brute-force works is described more in detail in Section 2.1.2.2. This thesis will
not present how Cain & Abel works with this feature, but a description can be found at
Cain & Abel’s web page [72].

2.4.2.4 LCP

The last password cracker used in the experiments presented in Chapter 6 is called
LCP [74]. The main purpose of LCP is to recover or audit a user account password
in Windows NT/2000/XP/2003. The tool supports various methods to import account
information, through a SAM-, .LC-, .LCS-, PwDump- or a Sniff- file, or just directly
through a remote or local computer. The tool is delivered with three main password
recovery attacks. These attacks are dictionary attack, brute-force attack and a hybrid
of brute-force and dictionary attacks.

Figure 2.14 shows the LCP main window where three user accounts are under attack.
LCP has revealed the user nerblak’s password, simply just password.

There are many other password recovery tools that are similar to LCP such as
Lophtcrack (LC5), MDcrack and lm2ntcrack freely available on the Internet. Some
password recovery tools can also be purchased such as PasswordsPro and SAMInside.
This thesis will not describe these tools as many of them offer the same features as the
tools described in this chapter. A good comparison of LCP and LC5 can be found at
LCP’s web page [74].

60 CHAPTER 2. BACKGROUND

Figure 2.14: LCP main window.

2.4.3 Supplementary

In this section we will look closer into some of the supplementary tools that are presented
in this thesis.

2.4.3.1 The fgdump Tool

The fgdump tool is one of the tools that has an approach presented in this thesis. Many
tools use this tool to fetch the hash values out of the obfuscated password file (SAM).
On fgdump’s web page [75], fgdump is described as a utility for dumping passwords
on Windows NT/2000/XP/2003 machines. At this web page it is also stated that this
tool can avoid all anti-virus programs, which is a problem that many of the password
resetting/recovery tools we have tested suffer from. The anti-virus programs react to
these tools, because they are often used with criminal purposes.

The fgdump tool has neat features such as fetching the password hashes through a
network, although this is out of scope for this thesis. Many other similar tools that can
dump and edit password files also exist. Some popular tools that will not be described
in this thesis are pwdump [36], samdump2 [76], bkhive [76] and creddump [77].

2.4.3.2 Winrtgen

Winrtgen is a very simple rainbow table generator for Windows systems. It has a
nice little graphical interface, needs no installation, and can be easily configured. At
Winrtgen’s web page [77] the tool is described as a Graphical Rainbow Tables Generator

2.4. TOOLS 61

that supports many different hash algorithms such as LM, NT and MD5. The tool is
said to be a graphical implementation of the popular rainbow table tools rtgen.exe and
rtsort.exe. Both of the latter tools can be found in the RainbowCrack software presented
at this web page [67].

We present an approach for this tool as Tool 12 at page 115. At this page the tool is
described in more details. We presented a poster at the NOTUR2009 (The Norwegian
Metacenter For Computational Science 2009) conference [2] held at NTNU, containing
information about the generation of rainbow tables using for instance Winrtgen. This
poster is included in Appendix F.

Chapter 3
Laboratory

In this chapter we will present the different computers used in our experiments described
in Chapter 5, 6 and 8. The experiments were carried out at NTNU in Trondheim, with
equipment provided by NTNU. Most of the procedures and tools used in the experiments
did not require any network connection. We decided to update the computers with the
latest software updates, in case of new important security updates. The lab consisted of
8 computers, each with a different operating system.

We chose to name the computers after 8 famous Norwegian fortresses/castles;
Fredriksholm, Hegra, Akershus, Sion, Kristiansten, Steinviksholmen, Tunsberghus and
Oscarsborg. We used names of fortresses/castles to symbolize the login mechanism on
the operating systems installed on these computers. An operating system should be like
a fortress, it should be hard for an unauthorized person to get access.

In the next sections we will present tables showing the hardware specifications and
operating systems used for each computer. In addition to the operating systems we use
tools already described in Section 2.4.

3.1 Hardware

The computers used in this lab contained relatively old hardware, but this was not a
problem with the experiments presented in Chapter 5 and 6. It could have been desirable
to have stronger computers for the Empirical Password Study presented in Chapter 8,
but we decided to make the study possible to carry out by everyone, and came to a
conclusion that the hardware were suitable. To carry out the experiments we could have
chosen to use virtual machines instead of physical machines when installing the different
operating system, with for instance VirtualBox [78]. We chose to use separate physical
computers and not virtual computers to give the experiments a real-life aspect.

It should be noted that there are minor variations when it comes to entering the
boot menu on different systems. As an example, some systems require the use of F12
to enter the boot menu, while on other systems F9 is required.

The hardware specifications for the 7 computers are presented in Table 3.1.

63

64 CHAPTER 3. LABORATORY

Computer name System type Processor RAM
Fredriksholm Dell OptiPlex GX270 Intel Pentium 4 2.60 GHz 1 GB
Hegra Hewlett-Packard (HP)

Compaq dc7700 Con-
vertible Minitower

Intel Core 2 CPU 2.40 GHz 2 GB

Akershus Dell OptiPlex GX280 Intel Pentium 4 3.00 GHz 2 GB
Sion Dell OptiPlex GX280 Intel Pentium 4 3.00 GHz 2 GB
Kristiansten Dell OptiPlex GX270 Intel Pentium 4 2.60 GHz 1 GB
Steinvikholmen Dell OptiPlex GX270 Intel Pentium 4 2.60 GHz 1 GB
Tunsberghus Dell OptiPlex GX270 Intel Pentium 4 2.60 GHz 1 GB
Oscarsborg Apple Power Mac G5 Dual 2.3 GHz PowerPC G5 512 MB

Table 3.1: Computer hardware specifications.

3.2 Operating Systems

As mentioned above, all of the operating systems installed on these computers were
updated with the latest Service Packs and updates. During the testing, a new release
of Ubuntu Server was released, but we did not perform the procedures and tools on the
new release. All of the operating systems installed are 32 bit versions, thus no 64 bit
versions were experimented with in this thesis. Some may argue that Fedora 10 and
Ubuntu Server 8.10 are just distributions of the Linux operating system. This is right,
but these systems, use different kernel versions and have different ways of handling the
passwords and the login mechanisms. To not create any confusion, we have chosen to
name distributions as if they were operating systems.

We chose these operating systems, because they are popular and easy to handle.
All of the operating systems work on the computers we have experimented with, and
can be used for servers or desktop computers. The operating systems provide a login
mechanism that is created to prevent unauthorized persons access to the system. In this
thesis the login mechanism is tested.

The operating systems installed on the 7 computers are displayed in Table 3.2.

Computer name Operating system
Fredriksholm Windows XP Professional 5.1.2600 Service Pack 3
Hegra Windows Vista Enterprise 6.0.6001 Service Pack 1
Akershus Windows Server 2008 Standard 6.0.6002 Service Pack 2
Sion Windows 7 Ultimate 6.1.7100 (Release Candidate)
Kristiansten Ubuntu Server 8.10 Intrepid Ibex
Steinvikholmen Fedora 10 Cambridge
Tunsberghus FreeBSD 7.1-RELEASE
Oscarsborg Mac OS X 10.5.6 Leopard

Table 3.2: Operating system overview.

Chapter 4
Method

First, this chapter outlines in which order the remaining studies of this thesis are
performed. Then different overviews of the procedures and tools presented in this thesis
are displayed in various tables. These overviews give an indication of which procedure
and tool to use and where to use it.

In this thesis we have chosen to divide the part that describes approaches for the
different procedures and tools into two chapters. Chapter 5 Procedures, presents all the
procedures that were successfully carried out when trying to reset a lost Administrator
password. Chapter 6 Tools, presents the tools that were successfully applied to reset or
recover a lost Administrator password. In these chapters we are distinguishing between
a host operating system and a guest operating system. A host operating system is the
operating system that is already installed on the computer, while a guest operating
system is an operating system that is booted on top of the host operating system. This
is also described in Section 1.7. Both Chapter 5 and 6 present step-by-step approaches
on how to reset or recover an administrator password. These chapters should be used
as a reference and need not necessarily be read in its entirety.

In Chapter 7 Results, we will first present the results obtained from the experiments
presented in Chapter 5 and 6. As a response to the results gained from these chapters,
we decided to produce a tool called YALP, which also is further described in Chapter
7. A description of how to build YALP and a presentation of its tools are presented in
Appendix A and Appendix B, respectively.

One of the main parts in this thesis is the Empirical Password Study. This study is
presented in Chapter 8. As this study was pretty comprehensive, we decided to separate
the results of this study from other results presented in this thesis. The results of the
Empirical Password Study are thus also presented in Chapter 8.

In the overview sections presented next, all of the procedures and tools with at least
one successful approach are presented. In each section a table is included, and all of
the procedures or tools are listed. The tables give an overview of whether or not the
procedure or tool works for the specific operating system. This means that the tables can
be used as a reference to check which procedure or tool to use. Some of the procedures

65

66 CHAPTER 4. METHOD

and tools might also be dependent on specific hardware, giving a successful result with
our hardware, but an unsuccessful result on other occurrences. It is important to notice
that the support of different operating systems presented in the tables below corresponds
to which host system the procedure or tool work on, not which guest system it can run
on. The tables in the sections below are only containing operating systems we have
experimented with. The procedures and tools may support additional operating systems
than the ones we experimented with. The operating systems we experimented with are
listed in Table 3.2 Chapter 3.

Procedures Name
Procedure: 1 Windows XP Repair Backdoor
Procedure: 2 Edit Shadow File in Unix Systems
Procedure: 3 Shortcut for Bypassing Regular Login Procedure
Procedure: 4 Replace a Pre-login Executable File
Procedure: 5 Use Mac OS X Installation Disk
Procedure: 6 Windows Password Reset Disk
Procedure: 7.1 Edit Boot Parameter: single
Procedure: 7.2 Edit Boot Parameter: init=/bin/bash
Procedure: 8 Reboot and Hold Apple+S
Procedure: 9 Enter Single-user Mode Through Boot-menu
Procedure: 10 Using Live CD to Obtain Password File
Procedure: 11 Using Live CD to Change Root Into the Host Operating System

Table 4.1: The names of the various procedures.

Procedures Name
Tool: 1 PCLoginNow 2.0.1
Tool: 2 Offine NT Password & Registry Editor
Tool: 3.1 Password Renew
Tool: 3.2 WindowsGate
Tool: 4 Kon-Boot
Tool: 5 DreamPackPL
Tool: 6 passwd
Tool: 7 Ophcrack Live CD 2.1.0
Tool: 8 John the Ripper
Tool: 9 Cain & Abel v4.9.30
Tool: 10 LCP 5.04
Tool: 11 fgdump 2.1.0
Tool: 12 Winrtgen 2.8

Table 4.2: The names of the various tools.

4.1. OVERVIEW OF PROCEDURES AND TOOLS 67

4.1 Overview of Procedures and Tools

In this section an overview of the different procedures and tools that are used in our
experiments is given. This is to give an indication of which procedures and tools that
have been focused on, and what can be achieved by using them. We have first separated
between whether the procedures and tools are used to reset or recover a password. Table
4.1 and Table 4.2 above show the names of the various procedures and tools.

4.1.1 Password Resetting

The tables presented in this section will quickly identify if a procedure or tool described
in Section 5.1 and 6.1, can be used to reset an Administrator password. We have chosen
to both separate between procedures and tools, and between Windows and Unix-based
systems.

4.1.1.1 Procedures for Windows Operating Systems

In Table 4.3 below all procedures for password resetting described in this thesis are
presented. This table will give an answer to whether the procedure works for any of the
Windows operating systems focused on in this thesis.

Procedures Windows
XP

Windows
Vista

Windows
Server 2008

Windows 7
RC

Procedure: 1 Yes No No No
Procedure: 2 No No No No
Procedure: 3 Yes No No No
Procedure: 4 Yes Yes Yes Yes
Procedure: 5 No No No No
Procedure: 6 Yes Yes Yes Yes

Table 4.3: Password resetting procedures for different Windows operating systems.

4.1.1.2 Tools for Windows Operating Systems

In Table 4.4 all the tools for password resetting described in this thesis are displayed.
The table will present whether the tool works for any of the Windows operating systems
focused on in this thesis.

68 CHAPTER 4. METHOD

Tools Windows
XP

Windows
Vista

Windows
Server 2008

Windows 7
RC

Tool: 1 Yes Yes Yes Yes
Tool: 2 Yes Yes Yes Yes
Tool: 3.1 Yes Yes No Yes
Tool: 3.2 Yes Yes Yes Yes
Tool: 4 Yes Yes Yes No
Tool: 5 Yes No No No
Tool: 6 No No No No

Table 4.4: Password resetting tools for different Windows operating systems.

4.1.1.3 Procedures for Unix-based Operating Systems

In Table 4.5 all procedures for password resetting described in this thesis are presented.
This table will give an answer to whether the procedure works for any of the Unix-based
operating systems focused on in this thesis.

Procedures Ubuntu
Server 8.10

Fedora 10 FreeBSD 7.1 Mac OS X
Leopard

Procedure: 1 No No No No
Procedure: 2 Yes No No No
Procedure: 3 No No No No
Procedure: 4 No No No No
Procedure: 5 No No No Yes
Procedure: 6 No No No No

Table 4.5: Password resetting procedures for Unix-based operating systems.

4.1.1.4 Tools for Unix-based Operating Systems

Table 4.6 presents the tools used for password resetting. The table will give an answer
to whether the tool works for any of the Unix-based operating systems focused on
throughout this thesis.

4.1. OVERVIEW OF PROCEDURES AND TOOLS 69

Tools Ubuntu
Server 8.10

Fedora 10 FreeBSD 7.1 Mac OS X
Leopard

Tool: 1 No No No No
Tool: 2 No No No No
Tool: 3.1 No No No No
Tool: 3.2 No No No No
Tool: 4 Yes No No No
Tool: 5 No No No No
Tool: 6 Yes Yes Yes Yes

Table 4.6: Password resetting tools for Unix-based operating systems.

4.1.2 Password Recovery

The tables presented in this section will quickly identify if a tool described in Section
6.2 in Chapter 6 can be used to recover an Administrator password. We did not
experiment with all of the tools presented in this thesis on all the selected operating
systems. Nevertheless, the tables below present which operating system the specific
tool supports, according to the tool’s web page. We present no procedures that can be
used to recover the Administrator password, thus tables for these are omitted. If the
word patch is included in a table entry, there exist one or more patches that can enable
the support for this operating system. Often the tools presented are said to support
password recovery from a hash value created with a specific hash algorithm, instead of
the support for the whole operating system. A normal person has usually no knowledge
of the type of hash algorithm being used by his/her operating system, thus we chose to
indicate which operating system is supported instead of supported hash algorithm.

4.1.2.1 Tools for Windows Operating Systems

In the table below, Table 4.7, all tools for password recovery described in this thesis are
given. This table will give an answer to whether the tool works for any of the Windows
operating systems concentrated on in this thesis.

Tools Windows
XP

Windows
Vista

Windows
Server 2008

Windows 7
RC

Tool: 7 Yes Yes Yes Yes
Tool: 8 Yes Yes (patch) Yes (patch) Yes (patch)
Tool: 9 Yes Yes Yes Yes
Tool: 10 Yes Yes Yes Yes

Table 4.7: Password recovery tools for different Windows operating systems.

70 CHAPTER 4. METHOD

4.1.2.2 Tools for Unix-based Operating Systems

In Table 4.8 all tools for password recovery described in this thesis are presented. The
table will give an answer to if the tool works for any of the Unix-based operating systems
focused on in this thesis. Cain & Abel has support for MD5, SHA1 and SHA2 hash
values. We could not find any support for salt, and crypt() used by most Unix systems
have their own implementation of these hash algorithms. We have therefore chosen the
answer No for this password recovery tool as shown below, even though there might be
patches for crypt() and salt support residing on the Internet.

Tools Ubuntu
Server 8.10

Fedora 10 FreeBSD 7.1 Mac OS X
Leopard

Tool: 7 No No No No
Tool: 8 Yes Yes (patch) Yes Yes
Tool: 9 No No No No
Tool: 10 No No No No

Table 4.8: Password recovery tools for Unix-based operating systems.

4.2 Overview of Supplementary Procedures and Tools

In this section an overview of the different supplementary procedures and tools that are
used in our experiment is given. The overview will give an indication of which procedure
and tool that works on what operating system.

4.2.1 Procedures for Windows Operating Systems

Table 4.9 presents all supplementary procedures described in this thesis. The table will
present whether the tool works for any of the Windows operating systems concentrated
on in this thesis.

Procedures Windows
XP

Windows
Vista

Windows
Server 2008

Windows 7
RC

Procedure: 7.1 No No No No
Procedure: 7.2 No No No No
Procedure: 8 No No No No
Procedure: 9 No No No No
Procedure: 10 Yes Yes Yes Yes
Procedure: 11 No No No No

Table 4.9: Supplementary procedures for different Windows operating systems.

4.2. OVERVIEW OF SUPPLEMENTARY PROCEDURES AND TOOLS 71

4.2.2 Tools for Windows Operating System

In Table 4.10 below all supplementary tools described in this thesis are introduced. This
table will present an answer to whether the tool works for any of the Windows operating
systems focused on in this thesis.

Tools Windows
XP

Windows
Vista

Windows
Server 2008

Windows 7
RC

Tool: 11 Yes Yes Yes Yes
Tool: 12 Yes Yes Yes Yes

Table 4.10: Supplementary tools different Windows operating systems.

4.2.3 Procedures for Unix-based Operating Systems

All supplementary procedures described in this thesis are presented in table 4.11. This
table will give an answer to whether or not the tool works for any of the Unix-based
operating systems focused on in this thesis. In Procedure 11 a success is highly dependent
on the guest operating system used. If the guest operating system, the live CD, use the
same file system as the host operating system, this procedure will probably succeed.
With the guest operating system used in the approach of Procedure 11 at page 90, a
success is only verified on the operating systems containing a Yes in the table below.

Procedures Ubuntu
Server 8.10

Fedora 10 FreeBSD 7.1 Mac OS X
Leopard

Procedure: 7.1 No Yes No No
Procedure: 7.2 Yes Yes No No
Procedure: 8 No No No Yes
Procedure: 9 No No Yes No
Procedure: 10 Yes Yes Yes Yes
Procedure: 11 Yes Yes No No

Table 4.11: Supplementary procedures for Unix-based operating systems.

4.2.4 Tools for Unix-based Operating System

In Table 4.12 all supplementary tools described in this thesis are presented. The table
will give an answer to whether the tool works for any of the Unix-based operating
systems focused on in this thesis. As all of the Unix-based system use salt in their hash
generation, Tool 12 does not support generation of tables if hash algorithms use salt.

72 CHAPTER 4. METHOD

Tools Ubuntu
Server 8.10

Fedora 10 FreeBSD 7.1 Mac OS X
Leopard

Tool: 11 No No No No
Tool: 12 No No No No

Table 4.12: Supplementary tools for different Unix-based operating systems.

Chapter 5
Procedures

In this chapter we present step-by-step approaches to reset an Administrator password
by using various procedures. It should be noted that this chapter does not necessarily
have to be read in its entirety, and should instead be used as a reference work when
password resetting is needed. We also present some supplementary procedures that can
be used together with other procedures and tools to reset or recover the Administrator
password. Most of the approaches to recover a lost password are based on the password
recovery techniques described in Section 2.1.2. As password recovery techniques are
generally realized through automated tools, no procedures have been presented in this
thesis that can carry out password recovery.

5.1 Procedures for Password Resetting

In this section the different password resetting procedures are presented.

Procedure 1: Windows XP Repair Backdoor

Procedure Short description Operating
System

Objective Prerequisites

Procedure 1 Windows XP Repair
Backdoor

Windows XP Password
resetting

Windows XP
installation
CD and the
corresponding
product key

Table 5.1: Procedure 1 Windows XP Repair Backdoor.

73

74 CHAPTER 5. PROCEDURES

Description
This procedure exploits a backdoor in Windows XP repair mode to reset the adminis-
trator password. We found this procedure at the Tweaking with Vishal v2 forum at [79].
This is carried out by inserting the Windows XP installation CD and entering repair
mode, as described in detail below. By pressing SHIFT+F10 during the repair process
you are able to enter Windows User Accounts menu and reset the password from there.
In addition, the User Accounts menu offers other features regarding the login procedure
as well.

Prerequisites
To be able to perform this procedure you must have the Windows XP installation CD and
the corresponding product key available. It should be noted that, among the operating
systems involved in this experiment, this procedure is only applicable to Windows XP.

Approach
This approach is a step-by-step description on how to exploit the Windows XP repair
backdoor:

1. Boot the host system and press F12 to enter the boot menu.

2. Insert the Windows XP installation CD and select IDE CD-ROM Device to boot
the CD.

3. Press a key when Press any key to boot from CD appears on the screen.

4. When you get to the Welcome to Setup screen press ENTER to continue. Do not
enter repair mode at this stage.

5. Press F8 to agree to the Windows XP Licensing Agreement

6. At the Setup screen, highlight the desired operating system by using the arrows
and then press R to repair.

7. Let the repair process run without any interaction. This may take a while.

8. After the Copying Files stage, a reboot is required. This will happen automatically.

9. During the reboot, do not press any key to boot from CD when the Press any key
to boot from CD message appears.

10. When the host system starts the Installing Windows screen will be presented.

11. Keep your eyes on the lower left hand side of the screen, and when you see the
Installing Devices progress bar, press SHIFT+F10.

12. A Windows command console (cmd.exe) will now appear.

13. At the prompt, type NUSRMGR.CPL and press ENTER.

5.1. PROCEDURES FOR PASSWORD RESETTING 75

14. You have now gained access to the User Accounts menu in the Control Panel
without typing any password.

15. Pick the desired account and choose Change the password.

16. Now, change the password and close the User Accounts window.

17. Exit the command box by writing exit and pressing ENTER.

18. Continue on with the repair process (have your product key ready).

19. Once the repair is done, you are now able to log in with your new password.

Variations

• When the User Accounts menu is displayed, it is also possible to create a new
administrator account. This will not reset your originally account but this account
may be used to reset the original password at a later point in time.

• When you have selected the desired account in the User Accounts menu, you may
also choose to remove the password instead.

• Instead of writing NUSRMGR.CPL in the Windows command console, you can
type control userpasswords2 to enter a different User Accounts menu. In this menu
you can add or remove user accounts, reset the password and disable the Users
must enter a user name and password to use this computer field. There are also
other features available through this User Accounts menu, but these will not be
described.

• Another possibility is to use the net user command in the Windows command
console to reset the password. Instead of writing NUSRMGR.CPL or control
userpasswords2, as described above, you can write net user username password in
the Windows command console, where username is the username of the desired
account and password is the new password you want to set. Then you can exit the
command console and continue on with the repair process. When the repair process
is done you should be able to log on with the new password. More details about
the net user command can be found in [80]. It should be noted that Microsoft has
not included Windows XP on the Applies to list for the net user command found
at this web page.

76 CHAPTER 5. PROCEDURES

Procedure 2: Edit Shadow File in Unix Systems

Procedure Short description Operating
System

Objective Prerequisites

Procedure 2 Edit shadow file in
Unix systems

Ubuntu Server
8.10

Password
resetting

None

Table 5.2: Procedure 2 Edit Shadow File in Unix Systems.

Description
As mentioned in the Section 2.3.2.2 the shadow file located at /etc/shadow in a Unix
system contains user’s passwords hashed. Revealing the hashed password can be a time
consuming process. This procedure involves resetting the password. By replacing the
encryption field with a new encryption field in the shadow file, the password can be
changed. This field contains information about which hash algorithm and salt were used
to create the hash value. The shadow file can contain hash values from many different
hash algorithms, as already described in Section 2.3.2.2. When this procedure is carried
out, it is important to replace the whole encryption filed, namely the hash value, the salt
and the hash algorithm id. It is also important to replace the original encryption field
with an encryption field created with same hash algorithm as the original encryption
field. If the hash value is produced by a different hash algorithm or the hash value does
not correspond to the algorithm or salt, the system may be locked and unable to use.
We got the idea for this approach from a user with nickname phirleon at this web page
[81].

Prerequisites
This procedure requires access to the shadow file, and a precomputed hash values
originating from the same hash algorithm and the desired password.

Approach
We use a precomputed hash value to replace the hash value for a specific user in the
shadow file. The precomputed hash can for example be obtained from another operating
system capable of creating the same hash type. The hash value we use is the same as in
Listing 2.3 for user nerblak, where the hash value corresponds to the password Hax0R.
The list below shows an example on how this is accomplished:

1. Obtain access to the shadow file using Procedure 10 or Procedure 7.

2. Open the file using a text editor, for instance nano.

3. Locate the encrypted password field for the desired user as described in Section
2.3.2.2.

4. Edit the shadow file by replacing the encrypted password field with the precom-
puted hash value mentioned above.

5.1. PROCEDURES FOR PASSWORD RESETTING 77

5. Save and reboot.

6. The password should now be changed.

Variations

• No variations.

Procedure 3: Shortcut for Bypassing Regular Login Procedure

Procedure Short description Operating
System

Objective Prerequisites

Procedure 3 Bypass the regular
login procedure

Windows XP Password
resetting

No password
set for
the hidden
Administrator
account

Table 5.3: Procedure 3 Shortcut for bypassing regular login procedure.

Description
This procedure serves the objective of bypassing the regular login procedure in Windows
XP, providing the possibility to reset the login password for user accounts. We found
this procedure at the Tweaking with Vishal v2 forum at [79]. When Windows XP is
installed, it automatically creates an account named Administrator, which is not shown
at the regular login screen. When installing Windows XP you have the choice to enable
a password for this administrator account, but this is not done by default. The user is
not given a warning if a password is not set. For this reason many users will continue
the installation process without setting a password. The hidden administrator account
may then be used to reset the password for a regular user account, which may also be
an administrator account.

Prerequisites
This procedure only works if no password for the Administrator account is set during
the installation process of Windows XP. It is also an assumption that the regular user
account is password protected.

Approach
This is how you get access to the hidden Administrator account and then can reset the
password on different user accounts:

1. Boot system.

2. When the Windows XP login screen is loaded, press CTRL+ALT+DEL twice.

78 CHAPTER 5. PROCEDURES

3. You should now have entered the classic Windows login screen.

4. Write Administrator in the User name field.

5. Leave the password field blank and press Enter.

6. You have now accessed the hidden administrator account.

7. Go to Start -> Control Panel -> User Accounts.

8. Click on the user account of interest and then click the Remove the password link.

9. Select the Remove Password button and then the password is reset.

10. You may now log on to the respective user account with a blank password.

Variations

• There are no variations of this procedure as it apparently does not work on the
other operating systems included in this experiment.

Procedure 4: Replace a Pre-login Executable File

Procedure Short description Operating
System

Objective Prerequisites

Procedure 4 Replace a pre-login
executable file

Windows XP,
Windows
Vista,
Windows
Server 2008,
Windows 7 RC

Password
resetting

A guest oper-
ating system

Table 5.4: Procedure 4 Replace a pre-login executable file.

Description
We got the idea of this procedure from a user with nickname rearthur2003 at [82]. This
procedure serves the objective of replacing an executable file on the host operating system
using a live CD containing a guest operating system. The replaced file is executable
before a user has logged in. By replacing this file, System access to the host system
is acquired. System access is described in further details in 2.2.1. In this procedure
we replace the Sticky Keys program (Windows/System32/sethc.exe), with the Windows
command console (Windows/System32/cmd.exe). The Sticky Keys program is created
by Microsoft to help people with physical disabilities. Sticky Keys is a feature that makes
it possible to press a modifier key, such as the SHIFT-, CTRL-, ALT- or the Windows
Logo keys, and have them remain active until another key is pressed. The Windows

5.1. PROCEDURES FOR PASSWORD RESETTING 79

command console with System account privileges is used to reset the Administrator
password.

Prerequisites
For this procedure to be successful you need a guest operating system that is able to
mount the file system of the host operating system with write access.

Approach
For this approach we are using Ubuntu 8.10 as the guest operating system. As already
mentioned, this guest operating system is used to get access to the host operating
system’s file system.

1. First you have to perform Procedure 10 up to and including step 11, without
inserting the USB device as described in step 4 in the same procedure. Procedure
10 explains how to burn and boot a live CD.

2. You should now have mounted the file system at /mnt/os.

3. Write cp /mnt/os/Windows/System32/sethc.exe
/mnt/os/Windows/System32/sethc.exe.bak to backup the file we are going to
replace. In our case, this is the Sticky Keys program. To retrieve the system
as it was before applying this procedure, you have to copy the sethc.exe.bak to
sethc.exe by writing cp /mnt/os/Windows/System32/sethc.exe.bak /mnt/os/Win-
dows/System32/sethc.exe. Now you can delete the sethc.exe.bak by writing rm
/mnt/os/Windows/System32/sethc.exe.bak.

4. Type cp /mnt/os/Windows/System32/cmd.exe
/mnt/os/Windows/System32/sethc.exe to replace the Sticky Keys program with
the Windows command console.

5. Write shutdown -r now to reboot.

6. During reboot you will be asked to remove the live CD.

7. When the host system has booted and the login screen appears press the SHIFT
key 5 times quickly or until the Windows command console window appears. As
you can see at the top of the window, the running program is Windows command
console with the name sethc.exe.

8. Type control userpasswords2 to enter the User Accounts menu.

9. From this menu you have full control over the system’s users. You can for example
add, remove and activate user accounts and reset their password.

10. To activate the Administrator account, click Advanced at the top menu and then
Advanced under the Advanced user management menu. You should now have
entered the Local Users and Groups program. This program can also be reached
by directly typing lusrmgr from the Windows command console in step 8.

80 CHAPTER 5. PROCEDURES

11. Double-click on Users, right click on Administrator and select Properties. Uncheck
the Account is disabled box and press OK. This has to be done to enable the
account and make it visible at the login screen.

12. Right click again on the Administrator account and chose Set Password.... Proceed
when a warning is prompted.

13. Enter a new password and press OK. You have now reset the administrator
password.

14. Close all the windows and reboot the machine.

15. You should now be able to log in as Administrator with your new password.

Variations

• We have chosen to replace the Sticky Keys program with the Windows Command
Console, but it is possible to replace other programs with the Windows Command
Console as well. Other programs that are available from the login screen are
Narrator.exe, Magnify.exe and osk.exe. Narrator and Magnify are, as Sticky
Keys, programs created by Microsoft to help people with physical disabilities while
osk.exe is an on-screen keyboard. It is also said that it is possible to replace the
Windows/System32/LOGON.SCR.

• Another variation is regarding the path to reach the programs mentioned above.
In some systems the path is /Windows/System32 and for others, such as Windows
XP, the path is /WINDOWS/system32/.

• Even though we are using Ubuntu 8.10 as guest operating system in this approach,
you may use other operating systems to obtain file access to the host system as
well. One possibility is to use the YALP tool described in Section ??.

• If you are unfamiliar with Linux, a Windows installation CD can also be used.
When the installation CD has loaded, enter the repair mode and select the desired
host operating system. Then select to enter Command Prompt, and enter the letter
assigned to the drive the host system is located on. When the drive is accessed you
can use the copy command to overwrite the sethc.exe file. In our case sethc.exe
was located at D:\Windows\System32\sethc.exe and after entering the directory
D:\Windows\System32 the file was overwritten with the command copy cmd.exe
sethc.exe. This variation worked with Windows 7 RC.

5.1. PROCEDURES FOR PASSWORD RESETTING 81

Procedure 5: Use Mac OS X Installation Disk

Procedure Short description Operating
System

Objective Prerequisites

Procedure 5 Use Mac OS X In-
stallation Disk

Mac OS X
Leopard

Password
resetting

Mac OS X In-
stallation Disk

Table 5.5: Procedure 5 Use Mac OS X Installation Disk.

Description
This approach is based on a tutorial you can find on this web page [83]. The goal of
this procedure is to reset the Administrator password on a machine running Mac OS X
Leopard without having to type the old, and unknown, password.

Prerequisites
To perform this procedure you need the Mac OS X Installation disk closest to the version
of Mac OS X installed on the computer.

Approach
In this approach we are trying to reset the Administrator password on Oscarsborg, the
computer running Mac OS X Leopard.

1. Insert the Mac OS X Installation disk and boot the system while holding the C
key. This will tell the computer to boot from the CD-ROM.

2. When the Mac OS X Installation disk system launches, select the desired language.
We chose Use English for the main language. Press Enter to confirm.

3. Ignore the Welcome screen and go to Utilities -> Reset Password in the top menu.

4. Select your Mac OS X hard disk volume.

5. Then select the System Administrator (root) account, enter a new password and
click Save.

6. You will now get a confirmation that the password is saved. Click OK.

7. Close the windows by pressing the red button in the upper left corner.

8. Then press cmd+q to quit, where cmd is the Apple Command key found at the
bottom left of the keyboard. Click on Restart in the next window to reboot the
computer.

9. You should be able to log in to the System Administrator (root) account. When
the login screen appears, select Other. Then write root in the Name field and use
the newly created password.

82 CHAPTER 5. PROCEDURES

Variations

• No variations.

Procedure 6: Windows Password Reset Disk

Procedure Short description Operating
System

Objective Prerequisites

Procedure 6 Windows Password
Reset Disk

Windows XP,
Windows
Vista,
Windows
Server 2008,
Windows 7 RC

Password
resetting

Already
created a
Windows
Password Disk
(USB flash
drive).

Table 5.6: Procedure 6 Windows Password Reset Disk.

Description
This procedure is Microsoft’s solution to reset a lost user- or Administrator password.
This means that Microsoft has built this solution into their operating system. The big
disadvantage with this solution is that it requires that the user has created the password
reset disk before the password is lost. All of the Windows operating systems we are
experimenting with in this thesis have a built in function to create this password reset
disk. Although the password reset disk can be called a prerequisite because it has to be
created in advance (before the password is lost), we will give a short description on how
this disk is created in Windows Vista and how it is used. Microsoft has a great tutorial
on how to create a Windows Vista Password Reset Disk at this page [84]. The approach
below is based on this. Tutorials also exist for other Windows operating systems, such
as [85]. The Password Reset Disk will only work on the system where it has been created.

Prerequisites
The procedure requires a password reset disk, thus you need a USB flash disk or a
floppy disk. The disk has to be made in advance, before the password is lost. This disk
is specific to the operating system it was created on, meaning that you cannot use it on
another Windows operating system, even though it is the same version. The removable
media will be dedicated for this purpose, and information already located on the media
may be lost. The disk will work for the account you created the disk on.

Approach
In this approach we will describe how to create a Windows Vista Password Reset Disk
and how it is applied to reset the Administrator password when it is lost. The approach
is therefore divided into two enumerating lists, one describing how to create the Windows

5.1. PROCEDURES FOR PASSWORD RESETTING 83

Password Reset Disk and the other describing how to use the newly created reset disk.

How to create a Windows Vista Password Reset Disk using a USB flash drive:

1. Boot Windows Vista and log in as Administrator or a user with Administrator
privileges.

2. Click Start in the bottom left corner of the screen, and type control userpasswords
in the Start Search box.

3. Click on control userpasswords in the Programs list.

4. Insert the USB flash drive. Wait a few seconds for the USB flash drive to load.
Press Esc if the AutoPlay message appears on the screen.

5. In the Task list on the left-hand side, click on Create a password reset disk.

6. The Forgotten Password Wizard will appear on the screen, click Next to continue.

7. Then you need to specify on which drive you want to create the password reset
disk. This will probably be recognized automatically. Click Next to continue.

8. Now you have to enter the Current user account password for the account you are
logged in with. Click Next to create the disk.

9. The Password Reset Disk will now be created. Wait for the progress to complete
and press Next to continue.

10. Press Finish to complete the Forgotten Password Wizard.

11. Your Windows Vista Password Reset Disk should now have been created.

How to use the Windows Vista Password Reset Disk:

1. Boot the Windows Vista machine, where the password is lost.

2. Insert the Windows Vista Password Reset USB flash disk created earlier.

3. When the login window appears, click on Reset Password located right under the
username field.

4. If the Reset Password link is not visible, click the arrow at the right side of
the password field without typing any password. The username or password is
incorrect will appear, click OK and the Reset Password link should now be visible.

5. Click Next when the Password Reset Wizard appears on the screen.

6. Chose where the Password Reset disk is located, usually the default option, and
click Next.

84 CHAPTER 5. PROCEDURES

7. In the new window, type a new password and a new password hint. Leave them
blank if no passwords are desired. Click Next to continue.

8. Click Finish to end the wizard.

9. Your password should now have been reset.

10. You can use the same Password Reset disk to reset the password in the feature.
You do not need to update this disk.

Variations

• The approach describes how to create a Password Reset disk for a Windows Vista
operating system. It is also possible to create a Password Reset disk for other
Windows operating systems, but then the procedure might be different. This will
not be described in this thesis.

5.2 Supplementary Procedures

In this section supplementary procedures that are used in addition to other procedures
and tools to reset or recover a lost password are presented.

In this section supplementary procedures used in the process of password resetting
or/and recovery, are presented. These essential procedures are important to present as
many of the earlier mentioned password resetting and recovery procedures and tools
depend on them.

Procedure 7: Edit Boot Parameters in Unix Systems

Both of the subprocedures presented below were found at [86].

Procedure 7.1: Edit Boot Parameter: single

Procedure Short description Operating
System

Objective Prerequisites

Procedure
7.1

Edit Boot Parame-
ter: single

Fedora 10 End up in
single-user
mode

boot loader

Table 5.7: Procedure 7.1 Edit Boot Parameter: single.

Description
This procedure serves the objective of entering single-user mode by changing the boot
parameters. If the boot parameters can be changed, it is desirable to end up in single-
user mode. From this mode various procedures and tools can be applied to change the

5.2. SUPPLEMENTARY PROCEDURES 85

administrator/root password.

Prerequisites
In this procedure a possibility to change the boot parameters had to be present. The
boot loader has this capability. As mentioned in Section 2.2.2 Fedora 10 uses the GRUB
boot loader.

Approach
The list below shows how to edit the GRUB boot loader boot parameters in Fedora 10.

1. Boot system.

2. When GRUB starts loading press ESC to enter the menu.

3. Highlight the desired Operating System by using the arrows.

4. Press e to edit the commands before booting.

5. Mark the line that begins with Kernel.

6. Press e to edit the line.

7. On the end of the line append the word single.

8. Press enter.

9. Press b to boot the edited line.

10. You should now have entered the single-user mode.
Variations

• Instead of writing single in the command prompt, as described in the approach
above, you can enter 1. You end up in the same mode when writing 1 as when
you write single.

• When trying this procedure in Ubuntu Server 8.10 you enter a Recovery Menu
which requires a password. This is the reason why this procedure is not successful
in Ubuntu Server 8.10.

Procedure 7.2: Edit Boot Parameter: init=/bin/bash

Procedure Short description Operating
System

Objective Prerequisites

Procedure
7.2

Edit Boot Parame-
ter: init=/bin/bash

Fedora 10,
Ubuntu Server
8.10

Password
resetting

boot loader

Table 5.8: Procedure 7.2 Edit Boot Parameter: init=/bin/bash.

86 CHAPTER 5. PROCEDURES

Description
As mentioned in Section 2.2.2 the program /sbins/init determines the runlevel and
many different startup programs are initiated by the /etc/init.d/rc program. By setting
init=/bin/bash at startup, init will start the Bourne shell. [87] defines the Bourne shell as
command execution program, often called a command interpreter. It is the original Unix
shell developed by AT&T. When this shell is booted, root commands can be executed
and the passwords can be changed.

Prerequisites
To easily change the boot parameter, a boot loader such as GRUB is preferable.

Approach
The systems we perform this procedure on use a boot loader called GRUB. The procedure
is performed as follows on Ubuntu Server 8.10:

1. Boot the system

2. Press ESC to enter the GRUB boot loader menu.

3. When the GRUB boot loader appears on the screen highlight the preferred
operating system and press e to edit the line.

4. Highlight the line beginning with kernel and press e to edit.

5. Append init=/bin/bash on the end of the line and press enter.

6. Press b to boot the changes.

7. The Bourne shell will now appear, and root access is granted without typing any
password.

Variations

• In Fedora the approach is the same as for Ubuntu Server 8.10, described above.
It should be noted that Fedora 10 does not display the GRUB loading screen in
verbose mode so ESC have to be pressed rapidly while the system boots. The
only difference we experienced with Fedora 10 was that the mounting did not go
as planned after the system had booted. At step 7 in this approach, we had to
type mount -o remount, rw /.

5.2. SUPPLEMENTARY PROCEDURES 87

Procedure 8: Reboot and Hold Apple+S

Procedure Short description Operating
System

Objective Prerequisites

Procedure 8 Reboot and hold Ap-
ple+S

Mac OS X
Leopard

End up in
single-user
mode

None

Table 5.9: Procedure 8: Reboot and hold Apple+S.

Description
This procedure will demonstrate how to end up in single-user mode in Mac OS X
Leopard. We found this procedure described at [88].When this mode is entered a few
more steps will give the user the ability to act as root. To reset the password other
procedures and tools described above can be applied.

Prerequisites
This procedure has no prerequisites.

Approach
The procedure of putting the Mac OS X system into single-user mode is described below:

1. Boot system.

2. While booting the system hold Apple+s.

3. After a few seconds single-user mode is entered.

4. Type mount -uw / to enable read and write on an already mounted file system.

Variations

• No variations found.

Procedure 9: Enter Single-user Mode Through Boot-menu

Procedure Short description Operating
System

Objective Prerequisites

Procedure 9 Enter Single-user
Mode Through
Boot-menu

FreeBSD End up in
single-user
mode and
reset password

None

Table 5.10: Procedure 9: Enter Single-user Mode Through Boot-menu.

88 CHAPTER 5. PROCEDURES

Description
The purpose of this procedure is to end up in single-user mode when the system
boots. This will give you Administrator rights and then also the possibility to reset
the Administrator password. We identified parts of this procedure in [89].

Prerequisites
This procedure has no prerequisites.

Approach
This approach is specific to FreeBSD and this approach is tested on FreeBSD 7.1 Release:

1. Boot the host system. Press enter or wait for the system to start when the first
screen appears.

2. When the FreeBSD boot menu appears, type 4 to Boot FreeBSD in single user
mode.

3. You are then asked to Enter full pathname of shell. Press Enter to choose the
default location (/bin/sh). We chose the default location.

4. Type fsck -y. fsck is a file system consistency check and interactive repair of the
disks.

5. Write mount -a to mount all file systems not marked as noauto. Type man mount
or man fsck to get more information about these command. This has to be done
after the mount -a command has been issued.

6. You are now ready to reset the Administrator password, and there are a number
of procedures to use to perform this action.

7. It can for example be done by entering /usr/bin/passwd root or passwd, which is
also mentioned in Procedure 6.

8. Type a new password and confirm by re-typing the password again.

9. The Administrator password has now been changed.

Variations

• When the FreeBSD boot menu appears, as described in stage 2 above, an
alternative is to type 6 Escape to loader prompt and then type boot -s. You can
now continue from stage 3.

5.2. SUPPLEMENTARY PROCEDURES 89

Procedure 10: Using Live CD to Obtain Password File

Tool/
Procedure

Short description Operating
System

Objective Prerequisites

Procedure
10

Using Live CD to
Obtain password file

All Password
resetting and
recovery

Live CD able
to mount file
system

Table 5.11: Procedure 10 Using Live CD to Obtain password file.

Description
A live CD is a bootable CD with an operating system pre-installed on the CD. This
operating system does not need to be installed on the host system, it can boot directly
from the CD. Many Linux distributions have a live CD publicly available on the Internet.
In this procedure the goal is to obtain the password file of the operating system. When
the admin password is lost and the system is locked, the password file is inaccessible
from the system itself, except for the case described in 1. To get access to the password
file, the file containing the hash value of the password, a live CD can be used. A user can
then just use the live CD to copy the file to an external location, or begin the password
resetting or password recovery directly. To perform the latter, reset and recovery tools
have to be already included in the live CD or some other procedures mentioned below,
e.g. 2, have to be carried out.

Prerequisites
This procedure requires a live CD. The live CD must be able to mount the host file system
containing the password file. Ubuntu 8.10 has already installed a program called mount,
capable of mounting the most common file systems. When you are using a bootable CD,
the host system must be able to boot from a CD drive. To copy the password file to
e.g. a USB device this device has to be mounted. This is done automatically in Ubuntu
8.10.

Approach
In this procedure we use Ubuntu 8.10 as the guest operating system and Windows XP
as the host operating system. We used the host computer called Fredriksholm. In this
system, F12 is pressed during boot to enter the boot menu. This can vary from system
to system. A live CD can be obtained from the Ubuntu web page [9]. To accomplish
this procedure the following steps can be performed:

1. Download ubuntu-8.10-desktop-i386.iso from [9] choosing a location near you.

2. Burn the image file (ubuntu-8.10-desktop-i386.iso) on an empty writable CD using
e.g. ImgBurn [90].

3. Boot the host system and enter the boot menu by pressing F12.

90 CHAPTER 5. PROCEDURES

4. Insert the USB device and live CD, and select IDE CD-ROM Device.

5. Select preferred language.

6. Select Try Ubuntu without any change to your computer.

7. Open a terminal by selecting Applications->Accessories->Terminal.

8. Write sudo -i to become root (Administrator user).

9. Write fdisk -l to find out which device the desired partition is recognized on and
what file system is used. E.g. in our case the device is recognized as /dev/sda1
and the file system is HPFS/NTFS. The USB will also be present in this list.

10. Make directories by writing mkdir /mnt/os, to use for the partition.

11. Write mount -t ntfs-3g /dev/sda1 /mnt/os.

12. The password file is now located in /mnt/os/WINDOWS/system32/config/SAM.

13. The system key is also required with some password crackers; this is located at
/mnt/os/WINDOWS/system32/config/system.

14. Write cp /mnt/os/WINDOWS/system32/config/SAM /mnt/os/WINDOWS/sys-
tem32/config/system /media/disk/.

15. The password file SAM and the system key system are now copied to the USB
stick.

Variations

• In this procedure many different guest operating systems could have been used.
There are many variants of live CDs available on the Internet. The live CD can
be easy and intuitive to use, or can be advanced and more difficult to use. Some
live CDs have better hardware support than others, and some may contain more
security tools than others. The capacity and functionality of the live CD can be
compared to the size of the operating system. Some live CDs are even so big that
they only fit on DVDs.

• This procedure also applies to many different host operating systems such as
Windows XP and Mac OS X Leopard. The limitations are whether or not the
guest operating system is capable of mounting the file system. Guest operating
systems, for instance Ubuntu 8.10, can mount various file system types such as
ntfs, fat32 and ext3.

5.2. SUPPLEMENTARY PROCEDURES 91

Procedure 11: Using Live CD to Change Root Into the Host Operating
System

Procedure Short description Operating
System

Objective Prerequisites

Procedure
11

Using Live CD to
Change Root Into
Host Operating Sys-
tem

Fedora 10,
Ubuntu Server
8.10, FreeBSD
7.1, Mac OS X
Leopard

Change root
directory

Empty
writable
CD, same
guest and
host operating
system

Table 5.12: Procedure 11 Using Live CD to Change Root Into The Host Operating
System.

Description
To easily change the password through a live CD, a user can first mount the file system of
the host operating system using a tool called mount and then change the root directory
using a tool called chroot. By running chroot from the guest operating system to the
host operating system we will be able to interact with files on the host system through
programs located on the host system. By changing the root into the host system, the
terminal window will act as the host system, and changes to the passwords can be
made. For instance Tool 6, can after a chroot be issued from the guest operating system
towards the host operating system and interact with its password files. It should be
noted that, according to our observations, the guest operating system should be of the
same operating system type as the underlying host system. We choose to use Fedora 10
both as guest operating system and as host operating system, but it should also work
if you use for example Ubuntu as both guest and host operating system. Be aware that
the approach then may differ from the approach described below. The approach below
is partly based on the tutorial found in [91].

Prerequisites
This procedure requires a live CD. The live CD must be able to mount the host file
system containing the password file. Fedora 10 have already installed a program called
mount, capable of mounting the most common file systems. It also includes a program
chroot to change the root directory. The guest operating system used should be of the
same operating system type as the host system. When you are using a bootable CD,
the host operating system must be able to boot from a CD drive.

Approach
In this approach we will describe how to use the chroot command from a Fedora 10 live
CD, which functions as a guest operating system, to a host system also running Fedora
10. Steinvikholmen is the computer running Fedora 10 in our experiments.

92 CHAPTER 5. PROCEDURES

1. Download F10-i686-Live.iso from [92].

2. Burn the image file (F10-i686-Live.iso) on an empty writable CD using e.g.
ImgBurn [90].

3. Boot the host system and enter the boot menu by pressing F12.

4. Insert live CD, and select IDE CD-ROM Device.

5. Fedora live CD will now boot.

6. Select preferred language and keyboard layout at the bottom menu. Then click
Log In.

7. Select Application->System Tools->Terminal to open a terminal window.

8. Write su to become root (Administrator user).

9. Type mkdir /mnt/os to create a mount directory.

10. Now, type fdisk -l to list the Fedora partitions that are available.

11. The guest operating system is now ready to mount the file system of the host
operating system Fedora 10 in the /mnt/os directory.

12. When the fdisk -l was issued the Fedora live CD listed the Fedora partitions. The
partition we want to mount is a Linux LVM (Logical Volume Manager) partition.

13. To scan your system for LVM volumes and identify the volume name that has your
Fedora volume, write: vgscan. Our LVM volume was VolGroup00.

14. Activate the volume by typing vgchange -ay.

15. Now, write lvs to find the logical volume that has your Fedora root file system. In
our case the logical volume was LogVol00.

16. Mount the file system with mount /dev/VolGroup00/LogVol00 /mnt/os.

17. Write chroot /mnt/os to change the root directory from the guest operating system
to the host operating system.

18. Other procedures such as Procedure 2 and tools such as Tool 8 and 6 can be utilized
to reset or recover the passwords.

19. To exit the environment you changed the root directory to type exit and press
Enter to exit.

20. Unmount the host operating system by writing umount /mnt/os.

21. Type reboot to reboot the system

5.2. SUPPLEMENTARY PROCEDURES 93

Variations

• It may be sufficient, when for example using Ubuntu as both guest and host
operating system, to just mount the partition device with the corresponding
partition type that is listed when running the fdisk -l command. So, if you are not
running a Fedora system or a Linux system using LVM, the approach is slightly
different from the one above.

• In this procedure a variation can appear when the user tries to mount file system
of the host operating system. The file system type and partition placement can
vary from host operating system to host operating system.

Chapter 6
Tools

In this chapter we present step-by-step approaches to reset and recover an Administrator
password by using various tools. It should be noted that this chapter as well, does not
necessarily have to be read in its entirety, and should instead be used as a reference work
when password resetting or recovery is needed. We also present some supplementary
tools that can be used together with other procedures and tools to reset or recover the
Administrator password.

6.1 Tools for Password Resetting

In this section the different password resetting tools are presented.

Tool 1: PCLoginNow 2.0.1

Tool Short description Operating
System

Objective Prerequisites

Tool 1 PCLoginNow 2.0.1 Windows XP,
Windows
Vista,
Windows
Server 2008,
Windows 7

Password
resetting

Empty
writable CD

Table 6.1: Tool 1 PCLoginNow 2.0.1.

Description
This tool also serves the ability to reset the Administrator password. Using this tool it
is not possible to set a new password but to set the desired user’s password blank.

95

96 CHAPTER 6. TOOLS

Prerequisites
To use this tool, it has to be burned on an empty writable CD. The tool PC Login Now
2.0.1 can be downloaded from [93].

Approach
This tool was tested on Windows Vista with the following approach:

1. Download the tool from [93].

2. Burn the image on an empty writable CD using for instance ImgBurn available
from [90]

3. Boot the system and press F9 to enter the boot menu. Insert the boot CD into
the CD-ROM and select to boot from CD.

4. When the system has booted, a window displaying the program PC Login Now 2.0
appears.

5. Press Next to continue.

6. Highlight the preferred operating system and click Next.

7. Select the desired user, and check the box labeled password is empty. Make sure
that the is disabled box is unchecked to make the account enabled.

8. Click on Next.

9. A window confirming the reset will appear. Select no to exit.

10. On the next window, press OK to reboot the computer.

11. The Administrator password should now be cleared and the account should be
visible in the login window.

12. Remove the CD from the CD-ROM drive when rebooting.

13. If the computer needs to run a disk check, let it complete or press any key to skip
and continue.

14. You should now be able to log in with the Administrator account without typing
any password.

Variations

• On PCLoginNow’s web page [64] a newer version of this software is available. The
web page claims that the software is free, but when trying to download, a page
displaying Only PC Disk Tools Customers who has ever purchased any of PC Disk
Tools products can download any of the freeware issued by PC Disk Tools appears.

6.1. TOOLS FOR PASSWORD RESETTING 97

Tool 2: Offline NT Password & Registry Editor

Tool Short description Operating
System

Objective Prerequisites

Tool 2 Offline NT Password
& Registry Editor

Windows XP,
Windows
Vista,
Windows
Server 2008,
Windows 7 RC

Password
resetting

Empty
writable CD

Table 6.2: Tool 2 Offline NT Password & Registry Editor.

Description
We chose to use the boot disk available from the Offline NT Password & Registry Editor
web page [56]. As described in Section 2.4.1.1 at page 49 this tool can reset the password
on various Windows operating systems. On the web page the tool is said to be tested
on NT 3.51, NT 4 (all versions and SPs), Windows 2000 (all versions & SPs), Windows
XP (all versions, also SP2 and SP3), Windows Server 2003 (all SPs), Windows Vista
32 and 64 bit [56]. We will test the tool on operating systems mentioned in table 6.2
mentioned above.

Prerequisites
To use this tool, it has to be burned on an empty writable CD. The tool is also available
in a floppy disk version, but this will not be tested in this thesis. The procedure is the
same for the CD and the floppy disk version. The tool was downloaded from Offline NT
Password & Registry Editor web page [56].

Approach
This approach shows how to apply the tool on a machine running Windows Vista, in
our case the Hegra machine listed in Table 3.2 on page 64. The approach is very similar
and applicable for the other operating systems mentioned in the table above.

1. Download the tool from [56].

2. Unzip the cd080802.zip file with for instance WinZip available from [94].

3. Burn the image cd080802.iso on the empty writable CD using for instance ImgBurn
[90].

4. Boot the host system and press F9 to enter the boot menu.

5. Insert the boot disk into the CD-ROM drive.

6. Select to boot from CD-ROM.

98 CHAPTER 6. TOOLS

7. A menu will appear on the screen, press enter or just wait for the system to boot.

8. A partition table will show the partitions on the machine. Select the correct
partition by typing the corresponding number. Usually the default value is the
desired value.

9. Other options are also available, but these will not be described.

10. Select the path to the registry directory, again the default value Windows/sys-
tem32/config, is usually the correct one.

11. Select which part of registry to load, in our case choose Password Reset, also listed
as the default value.

12. You should now have entered the chntpw Main Interactive Menu.

13. Select 1 to edit the user data and passwords, which are also listed as default.

14. The user accounts are now listed. Enter the desired username or select the default
value Administrator by pressing enter.

15. The User Edit Menu is now displayed and two choices for resetting the password
are available.

16. The choices are to either clear or edit the password. Choose Clear (blank) user
password by pressing 1 and then enter.

17. The password should now be cleared.

18. Even though the password is cleared, the administrator account may additionally
have to be enabled.

19. Press enter to edit the Administrator account again.

20. Select 4 Unlock and enable user account [probably locked now]. If the user account
is already enabled this stage is unnecessary and instead of [probably locked now]
the menu will display [seems unlocked already].

21. The Administrator account should now be enabled.

22. Select ! and press enter to return to the chntpw Main Interactive Menu.

23. Select q and press enter to quit.

24. The last step is the Writing back changes stage. Type y and press enter to save
the changes.

25. The edit is now complete. Select the default value n by pressing enter when asked
for a New run? .

6.1. TOOLS FOR PASSWORD RESETTING 99

26. Remove the CD from the CD-drive and press CTRL-ALT-DELETE to reboot.

27. You should now be able to log in to the Administrator account without typing any
password.

Variations

• As already mentioned above, there are two possible options to reset the adminis-
trator password when using this tool. You can either clear or edit the password.
We chose to clear the password as it appears that editing the administrator
password does not work on Windows XP, Windows Vista, Windows Server 2008
and Windows 7. Even though editing the administrator password did not work
for the operating systems included in the experiment, this may not be the case for
other Windows operating systems.

• There are also minor variations when it comes to enabling the administrator
account, as described in the approach above.

• Some operating systems have the administrator account enabled by default while
other operating systems require you to manually enable it. This can be done by
using the scripts already included in the Offline NT Password & Registry Editor
tool. The account has to be enabled to be displayed on the login screen.

Tool 3: BartPE

Tool Short description Operating
System

Objective Prerequisites

Tool 3.0 BartPE All Windows
systems

System access An empty
writable CD

Table 6.3: Tool 3.0 BartPE.

Description
BartPE (Bart Preinstalled Environment) [58] is a bootable CD-ROM based on the
Windows XP installation CD. Even though the BartPE CD is based on the installation
files of Windows XP it has shown effective on Windows Vista as well. It should be noted
that BartPE is not a Microsoft product. To reset the password a plug-in to BartPE
has to be included when producing the BartPE CD and the CD is produced with a tool
called PE-Builder [58]. Password Renew [62] and WindowsGate [63], which are both
described below, are plug-ins that makes password resetting possible with the use of
BartPE.

100 CHAPTER 6. TOOLS

Prerequisites
The tool must be burned on an empty writable CD before it can be used. Bart’s PE
Builder, Windows XP Installation CD and Password Renew are used to build the BartPE
bootable CD.

Approach
To prepare the BartPE bootable CD, included in the approach below, we used another
machine than the one that is subject to the password resetting. The following approach
partly shows how BartPE is constructed. This approach must then be followed by either
Tool 1 or Tool 2 to be able to reset a password.

1. Download PE-Builder from Bart Lagerweij’s web page [58].

2. Run the pebuilder3110a.exe to install PE-Builder. Follow the default installation
settings.

3. Insert the Windows XP Installation CD and alternatively copy it to a folder on
the hard drive.

4. Start PE Builder and agree to the PE Builder license by pressing I agree.

5. The program will automatically prompt Search for Windows installation files?
Select Yes.

6. Hopefully an installation location will be found and press OK.

7. Now proceed with Tool 3.1 or Tool 3.2. It should be noted that it is possible
to include both of the plug-ins Password Renew and WindowsGate, which are
described in those two tools respectively, on the same BartPE CD.

Variations

• No variations.

Tool 3.1: Password Renew

Tool Short description Operating
System

Objective Prerequisites

Tool 3.1 Password Renew Windows XP,
Windows
Vista,
Windows 7
RC

Password
resetting

Included on
for example
the BartPE
CD

Table 6.4: Tool 3.1 Password Renew.

6.1. TOOLS FOR PASSWORD RESETTING 101

Description
Password Renew is a tool which in this approach is included as a plug-in on the BartPE
CD. The tool has a lot of different features to configure user accounts, which is described
in Section 2.4.1.3. In this approach we will concentrate on the password resetting feature.
BartPE with Password Renew serves the ability to reset the administrator password.
There are also other tools included on the BartPE boot CD that are able to perform
other useful tasks.

Prerequisites
Password Renew is a tool that in our case is included as a plug-in on the BartPE CD,
so the construction of the BartPE CD is required in this approach.

Approach
This approach shows how Password Renew can be included as a plug-in on the BartPE
CD and afterwards this approach describes how to reset the password on a Windows XP
operating system. We performed the approach on Fredriksholm.

1. First you have to perform the steps described in Tool 3.

2. Then, download Password Renew from sala’s web page [62].

3. Press Plug-ins and then Add to add Password Renew as a plug-in.

4. Locate the renew 1.1-BETA.cab file and open it by pressing Open.

5. Select the default plug-in folder name and press OK.

6. Press Close. The plug-in should now be installed.

7. If the Windows XP Installation CD files were copied to a folder, as mentioned in
step 3 in the approach for Tool 3, you can use PE-Builder to burn the BartPE CD
directly by selecting Burn to CD/DVD and pressing Build. If the Windows XP
Installation CD was used directly choose Create ISO image and select Build.

8. If the latter option was selected press yes to automatically create the destination
folders.

9. Agree to the license again and the build process should start.

10. An image file located at the destination folder should now have been created.

11. Burn the image with for example ImgBurn available from [90].

12. Boot the newly created BartPE CD on the system with the desired administrator
account, and press F12 to enter the boot menu.

13. Select to boot from IDE CD-ROM Device.

14. Press No when asked to start network support.

102 CHAPTER 6. TOOLS

15. From the GO menu at the bottom left chose Programs -> Password Renew.

16. In the Password Renew program, click on Select a target in the Startup window.
The target is the path to where the host system is installed. In our case,
C:\WINDOWS.

17. Press OK when the correct path is chosen.

18. Now, click on Renew existing user password in the left hand menu.

19. In the Renew existing user password menu, select a user with administrator
privileges as the account and chose a password. Note that the account has to
be enabled. This is not automatically done with the Administrator account, and
cannot, as far as we know, be done with Password Renew.

20. Select Install in the left hand menu.

21. A window telling that the password renew is successfully done. Press OK.

22. Then press Quit in the left hand menu.

23. Press GO -> Shut down -> Restart to restart the system.

24. Remove the BartPE CD during reboot.

25. If the computer needs to run a disk check, let it complete or press any key to skip
and continue.

26. You should now be able to log in to the host system with the Administrator account
and the password you selected.

Variations

• This tool is said to work on Windows 2000 and 2003 as well, but this will not be
tested in this thesis.

Tool 3.2: WindowsGate

Tool Short description Operating
System

Objective Prerequisites

Tool 3.2 WindowsGate Windows XP,
Windows
Vista,
Windows
Server 2008,
Windows 7 RC

Password
resetting

Included on
for example
the BartPE
CD

Table 6.5: Tool 3.2 WindowsGate.

6.1. TOOLS FOR PASSWORD RESETTING 103

Description
WindowsGate is a tool which in this approach is included as a plug-in on the BartPE
CD. When using this tool you can either start the Windows User Accounts menu at the
login screen, to for example reset the password of the desired account, or you can make
WindowsGate disable the logon password validation.

Prerequisites
WindowsGate is a tool that in our case is included as a plug-in on the BartPE CD, so
the construction of the BartPE CD is required in this approach.

Approach
This approach shows how WindowsGate can be included as a plug-in on the BartPE CD
and afterwards this approach describes how to reset the password on a Windows XP
operating system. We performed the approach on Fredriksholm.

1. First you have to perform the steps described in Tool 3.

2. Then, download WindowsGate from [63].

3. Press Plug-ins and then Add to add WindowsGate as a plug-in.

4. Locate the windowsgate.cab file and open it by pressing Open.

5. Select the default plug-in folder name and press OK.

6. Press Close. The plug-in should now be installed.

7. If the Windows XP Installation CD files were copied to a folder, as mentioned in
step 3 in the approach for Tool 3, you can use PE-Builder to burn the BartPE CD
directly by selecting Burn to CD/DVD and pressing Build. If the Windows XP
Installation CD was used directly choose Create ISO image and select Build.

8. If the latter option was selected press yes to automatically create the destination
folders.

9. Agree to the license again and the build process should start.

10. An image file located at the destination folder should now have been created.

11. Burn the image with for example ImgBurn available from [90].

12. Boot the newly created BartPE CD on the system with the desired administrator
account, and press F12 to enter the boot menu.

13. Select to boot from IDE CD-ROM Device.

14. Press No when asked to start network support.

15. From the GO menu at the bottom left chose Programs -> WindowsGate.

104 CHAPTER 6. TOOLS

16. In the WindowsGate program, highlight the desired host operating system.

17. Check the Utilman.exe box to see WindowsGate at logon when pressing WinKey+U.

18. Press OK to confirm. Then, close the WindowsGate window.

19. Press GO -> Shut down -> Restart to restart the system.

20. At the logon screen press WinKey+U to start WindowsGate. From this program
you can for instance start the Windows User Accounts menu by typing Control
UserPasswords2 in the Run process with system privileges field. Press Open to
start the process. What you can do from the Windows User Accounts menu is
already described in for example Procedure 4 from step 9 and beyond.

Variations

• There is also a possibility to check the msv1 0.dll patch box, found in the
WindowsGate menu, to disable logon password validation. When the msv1 0.dll
patch box is checked you should be able to log in to the account without typing
any password. When you are logged in it is now possible to run the control
userpasswords2 command, and from there for instance enable the administrator
account and/or set a new password on the administrator account.

• To redo the changes performed by WindowsGate you have to start WindowsGate
again. You can either access the WindowsGate program by booting the BartPE
CD or by using the WinKey+U shortcut, if this is enabled. Now, uncheck the
options listed and close the window. After a restart the login procedure should be
back to normal.

Tool 4: Kon-Boot

Tool Short description Operating
System

Objective Prerequisites

Tool 4 Kon-Boot Windows XP,
Windows
Vista,
Windows
Server 2008,
Ubuntu Server
8.10

Bypass
password
authentication

Empty
writable CD

Table 6.6: Tool 4 Kon-Boot.

6.1. TOOLS FOR PASSWORD RESETTING 105

Description
Kon-Boot is a tool used to bypass the login procedure. It may look like this tool reset
your password automatically but in fact it disables the password authentication instead.
In Windows systems, when the Kon-Boot CD is removed from the CD-ROM and the
system is rebooted, you will need to type in a password again.

Prerequisites
To use this tool it must be burned on an empty writable CD. Kon-Boot can be
downloaded from [57].

Approach
This approach shows Kon-Boot tested on Hegra, which has Windows Vista installed.
The approach for Linux systems is presented below this list.

1. Download the tool from [57]. We chose the Kon-Boot Windows & Linux version
1.1-2in1.

2. Burn the image on an empty writable CD using for instance ImgBurn available
from [90]

3. Boot the system and press F9 to enter the boot menu. Insert the boot CD into
the CD-ROM and select to boot from CD.

4. A kryptos logic security software splash screen appears. Press Enter to continue.

5. Then Kon-Boot loads and the login screen appears. If the computer has more than
one account, it is possible to select the desired account during start-up.

6. Leave the password field blank, press Enter

7. Now you should be logged in as the default user.

8. Click the Windows button and R simultaneously to enter the Run menu.

9. Then type control userpasswords2 and press Enter to enter the User Accounts
menu.

10. You can now follow Procedure 4 from step 9 to reset the Administrator password,
create a new account and also enable an account.

The Linux approach is a little bit different than the Windows approach above. The
approach below shows Kon-Boot tested on Kristiansten, which has Ubuntu Server 8.10
installed.

1. Perform the four first steps presented in the approach above. Press F12 instead
of F9 to boot the CD.

106 CHAPTER 6. TOOLS

2. After Kon-Boot has loaded; make sure that the text-based login appears, usually by
pressing Alt + F1 or Alt + Ctrl + F2. On Kristiansten no graphical interface loads
at boot, and text-based login appears automatically, this is because no graphical
interface is installed on this machine.

3. Type kon-usr as username and press enter. You are now automatically logged in
as root. This can be verified by typing whoami.

4. You can for instance use Tool 6 and write passwd to change the root password.

5. Type exit and press enter to exit the user.

6. To restore the system type kon-fix as a username and leave the password field
blank.

7. The system will probably prompt Login incorrect, just ignore this message.

8. The Administrator (root) account password should now be reset.

Variations

• As you can see in the approaches presented above, this tool is used differently on
Windows and Linux systems.

• When you try to change the password with the passwd command, there might be
some variations on how to run this command. These differences are presented in
more detail in Tool 6.

Tool 5: DreamPackPL

Tool Short description Operating
System

Objective Prerequisites

Tool 5 DreamPackPL Windows XP Password
resetting

Empty
writable CD,
Windows XP
Installation
CD

Table 6.7: Tool 5 DreamPackPL.

Description
This tool is based on an approach found in [65]. When the tool is properly configured
according to the approach presented below, a menu with a lot of options will be accessible
from the login screen. The tool will provide many possibilities to reset the Administrator
password.

6.1. TOOLS FOR PASSWORD RESETTING 107

Prerequisites
To use this tool it must be burned on an empty writable CD. DreamPackPL can be
downloaded from [65]. You must also keep the Windows XP Installation CD handy,
since we are performing this procedure on a computer running Windows XP.

Approach
DreamPackPL was tested on Fredriksholm, which has Windows XP installed.

1. Download the tool from [65]. Use the link labeled DreamPackPL v2004.06.10.

2. Unzip the dreampackpl 20040610.zip file with for instance WinZip available from
[94].

3. Enter the unzipped dreampackpl 20040610 folder and run the DreamPackPL
program. Click on Run if you are asked Are you sure you want to run this software?

4. A DreamPackPL Installation window will now appear. Insert the Windows XP
Installation CD and click on Create CD to create a bootable CD containing
DreamPackPL.

5. A new window, DreamPackPL CD Creator, will appear.

6. Select the correct CD-ROM drive and click on Make ISO CD image.

7. Then select a name for the image file (.iso file) and specify where you want to save
it.

8. Wait for the process that creates the image file to finish.

9. A new window telling you that the image file is ready will appear. You may now
close all windows related to DreamPackPL.

10. Burn the image file on an empty writable CD using for instance ImgBurn available
from [90]

11. Boot the system and press F12 to enter the boot menu. Insert the boot CD into
the CD-ROM and select to boot from CD.

12. Press a key when the Press any key to boot from CD message displays on the
screen.

13. Then wait while Windows is loading setup files.

14. You should now have entered the Windows XP Professional Setup menu.

15. Press R to repair a Windows XP installation using the recovery console.

108 CHAPTER 6. TOOLS

16. Microsoft Windows XP Recovery Console is now loaded and the Windows
installations are listed. Write the number corresponding to the Windows
installation you would like to log in to. We wrote 1 : (C:\WINDOWS), which
is quite common for systems with only one Windows installation. Press Enter to
continue.

17. Type in a password of your choice when asked to Type the Administrator password.
This is not the password to use when logging in when this process is done, but still
this is a required step.

18. Now you have to make a backup of the original sfcfiles.dll file by using the following
command: ren C:\Windows\System32\sfcfiles.dll sfcfiles.lld

19. Overwrite the sfcfiles.dll file located in \Windows\System32 folder on the com-
puter with the pinball.ex from the CD to the by writing: copy D:\i386\pinball.ex
C:\Windows\System32\sfcfiles.dll, where D in our case is the CD drive.

20. Type exit and press Enter to exit the Recovery Console.

21. The computer will now restart. Make sure that Windows boot normally. Remove
the CD during reboot if necessary.

22. At the Windows login window, write dreamon, which is a DreamPackPL command,
in the user name or password field. This will display the DreamPackPL menu.

23. Click on the top graphic, and another menu will appear.

24. Select Commands -> Commands settings.

25. In the Commands Settings menu, make sure that the Good-Password box is checked
with for instance god as keyword. Now close all DreamPackPL windows. In
Figure 2.13 at page 55 the Command Settings menu and the DreamPackPL menu
is displayed.

26. Now, type god in the password field in the Windows login screen. This will work
for all existing user accounts.

27. You should now be entering the account.

28. When the account is entered, press Win+R and enter control userpasswords2 to
enter the User Accounts menu. You can follow from step 4 in Procedure 4 to enable
the Administrator account and change the password.

29. If you want DreamPackPL removed, just enter the menu mentioned in step 22 and
select Uninstall DreamPackPL.

Variations

• DreamPackPL has a lot of different features and some of them can make changes
to the user accounts. These will not be presented in this thesis.

6.1. TOOLS FOR PASSWORD RESETTING 109

Tool 6: passwd

Tool Short description Operating
System

Objective Prerequisites

Tool 6 passwd Ubuntu
Server, Fedora,
FreeBSD, Mac
OS X

Password
resetting

Already
entered single-
user mode or
after a chroot
command.

Table 6.8: Tool 6 passwd.

Description
This tool serves the objective of resetting the Administrator password on a Unix system.
The passwd tool can also change other user’s passwords by applying the username as an
argument.

Prerequisites
This procedure requires the use of other procedures in advance. You have to be an
Administrator to be able to enter the passwd command successfully. The command has
to be issued on the host system and the system can for example be booted through single-
user mode, as described in Procedure 7.1, Procedure 7.2, Procedure 8 and Procedure
9. You can also use the chroot command, as described in procedure 11, to enable root
privileges on the host system. In that way you can change the root directory of the guest
operating system to the directory where you mounted the host operating system.

Approach
This is how you can reset the Administrator password when the user has already entered
single-user mode. See Prerequisites if you wonder how to enter single-user mode.

1. Enter single-user mode by applying either Procedure 7.1, Procedure 7.2, Procedure
8 or Procedure 9 depending on which host operating system used.

2. Write passwd to change the Administrator password. You do not need to specify
an account because you are already logged in as root.

3. Type a new password and confirm by re-typing the password again.

4. The Administrator password has now been changed.

5. Type shutdown -r now to reboot the machine.

Variations

• A variation is that you can enter /usr/bin/passwd root instead of passwd when
resetting the Administrator password, as also mentioned in Procedure 9.

110 CHAPTER 6. TOOLS

6.2 Tools for Password Recovery

In this section the different password recovery tools are presented.

Tool 7: Ophcrack Live CD 2.1.0

Tool Short description Operating
System

Objective Prerequisites

Tool 7 Ophcrack Live CD
2.1.0

Windows XP,
Windows
Vista,
Windows
Server 2008,
Windows 7 RC

Password
recovery

Empty
writable CD
and optional
rainbow tables

Table 6.9: Tool 7 Ophcrack Live CD 2.1.0.

Description
At Ophcrack’s web pages there are two different live CDs available for download,
Ophcrack XP Livecd 2.1.0 and Ophcrack Vista Live CD 2.1.0. We experimented with
the Vista live CD version of Ophcrack available from [44]. As described earlier in Section
2.4.2.1, this tool can be used to recover a lost administrator password. It has the ability
to use rainbow tables, which is explained in Section 2.1.2.3, to recover a password from
a hash value. The tool is applicable for both LM and NT hash values. LM and NT
hashes are described in detail in Section 2.3.1.2. The live CD we use is designed for
Windows Vista, mainly because it contains some free rainbow tables designed to crack
the NT hash used in Windows Vista. This means that this tool is also applicable to
other Windows operating systems utilizing the NT hash. For this procedure we used
two administrator accounts, Administrator and nerblak, to see if Ophcrack managed to
retrieve the passwords.

Prerequisites
The tool has to be burned on an empty writable CD. The tool can be extended with
additional rainbow tables. The tool and additional rainbow tables can be found on
Ophcrack’s web page [44].

Approach
This approach demonstrates how Ophcrack’s Vista Live CD can be used on a machine
running Windows Vista to recover a lost password. In this approach Hegra was the
machine we experimented with. Presently Ophcrack delivers two variants of their live
CDs. The Vista Live CD may also work on other systems utilizing NT hash, like
Windows Server 2008 and Windows 7.

1. Download the tool from [44].

6.2. TOOLS FOR PASSWORD RECOVERY 111

2. Burn the image (iso file) on the empty writable CD using for instance ImgBurn
[90].

3. Boot the host system and press F9 (this may vary from system to system) to enter
the boot menu.

4. Insert the boot disk into the CD-ROM drive.

5. Select to boot from CD-ROM.

6. You should now have entered the Ophcrack Live CD boot menu.

7. Select Ophcrack Graphic mode and press enter, or wait for it to launch automati-
cally. If you prefer to use the text-based version of Ophcrack, this can be selected
instead. The text-based version will not be explained in further details.

8. A graphical environment called Fluxbox will appear and you are asked to select
which partition to crack. In our case 0 (/mnt/sda1/Windows/System32/config)
was the correct partition to choose. If only one partition exists, Ophcrack will
choose this partition automatically, and no interaction is required at this point.

9. A window presenting the users and their corresponding LM- and/or NT hash are
now listed. The same window shows the progress bar for the cracking process.

10. The Vista free rainbow tables, which can be found at [44] and that are already
included on the Ophcrack Vista Live CD, are then loaded into RAM, before the
cracking process begins.

11. Additional rainbow tables can be included by pressing Stop in the menu at the top
of the window and then pressing the Tables button, also in the top menu. Click
Install to find the location of the preferred rainbow tables, highlight the directory
containing the rainbow tables and press Choose. Then enable the rainbow table
by highlighting the corresponding name, for example Vista special, and press the
green button located at the bottom left of the window, which will enable the tables.
Then press OK and you will be back in the original window. The new tables will
appear in the Table overview, and to start the cracking process press Crack in the
top menu.

12. Wait for the cracking process to finish.

13. If the password fulfill the requirements of the rainbow tables used, such as for
example the maximum password length possible, the password will be displayed.
As already described in Section 2.3.1.2 on page 31, Windows Vista use only NT
hash as default, and the password should therefore be displayed in the column
labeled NT Pwd, with the assumption that Ophcrack was able to crack the
password. If Ophcrack did not recover the password, not found will appear in
the NT Pwd column. If no password is set for the account the NT Pwd column
will display empty.

112 CHAPTER 6. TOOLS

14. To exit Ophcrack press Exit at the top menu and then press any key when the
Press a key to exit appears. Then you should be prompted with a question asking
if you want to shutdown, type y to shutdown.

15. You should now be able to log in to the administrator account on the host system
by using the retrieved password.

Variations

• We did also download and run the Ophcrack XP Live CD 2.1.0. This live CD is
very similar to the Ophcrack Vista Live CD 2.1.0 described above. The tool serve
the same purpose, but this live CD is designed for Windows XP, mainly because it
contains some free rainbow tables designed to crack the LM hash used in Windows
XP. The procedure is therefore the same for the Ophcrack XP Live CD as for the
Ophcrack Vista Live CD; the only difference is that the Ophcrack XP Live CD
includes the XP free small tables instead of the Vista free tables, which can be
found at Ophcrack’s web pages [44]. Another difference is that the password, if
Ophcrack was able to crack it, will be displayed in the LM Pwd 1 and LM Pwd
2 columns when using the Ophcrack XP Live CD. The password will then be the
concatenation of the content in LM Pwd 1 and LM Pwd 2 columns for the desired
user. The same is the case when using the Ophcrack Vista Live CD on a Windows
operating system that uses LM hash, such as Windows XP. We used Fredriksholm,
the machine with Windows XP installed, when running the Ophcrack XP Live
CD.

Tool 8: John the Ripper 1.7.2

Tool Short description Operating
System

Objective Prerequisites

Tool 8 John the Ripper
1.7.2

Windows
XP, Linux
systems with
hash values
generated
with crypt
(only some
algorithms)

Password
recovery

Empty
writable CD

Table 6.10: Tool 8 John the Ripper 1.7.2.

6.2. TOOLS FOR PASSWORD RECOVERY 113

Description
We used John the Ripper 1.7.2 [68], which is a password cracking tool, to recover the
password of two different Administrator accounts. The two different Administrator
accounts have passwords of different strength. This was carried out on two different
systems, as will be described below. In the first approach we choose to use Ubuntu
8.10 live CD as a guest operating system and Fredriksholm, which has Windows XP
installed, as a host system. In the second approach we choose to use Ubuntu 8.10 live
CD as guest operating system and Kristiansten, which has Ubuntu Server 8.10 installed,
as host system. This is to demonstrate both a Windows- and a Linux system. This will
require that the necessary password files are fetched and that John the Ripper is installed
through the Ubuntu live CD. This means that John the Ripper has to be installed again
if you reboot and the password files must be re-located.

Prerequisites
This approach requires an empty writable CD and that you have Internet connection.
Internet connection is important because you are required to download a couple of
software packages and wordlists in this approach.

Approach
We have included two approaches for John the Ripper, one approach using a Windows
XP as the host operating system and one approach using Ubuntu Server 8.10 as the host
operating system. In both cases we are using an Ubuntu live CD as a guest operating
system.

The first approach describes how John the Ripper is used through an Ubuntu live CD
on a computer running Windows XP (Fredriksholm).

1. Apply the first 12 steps described in Procedure 10 without inserting the USB drive
mentioned in step 4.

2. Type mkdir john to create a working directory.

3. Go to System -> Administration -> Software Sources in the top menu of Ubuntu.
This will open a window where you now should enable Community-maintained
Open Source software (universe) by checking the corresponding box. Then press
Close.

4. Click Reload to update the newly selected sources.

5. Write aptitude install john bkhive to install John the Ripper and bkhive on the
guest operating system and press Y and Enter to confirm. bkhive dumps the
syskey/bootkey from a Windows NT/2K/XP/Vista system hive.

6. Enter the directory you created by writing cd john/.

7. Write bkhive /mnt/os/WINDOWS/system32/config/system key to dump the
syskey to a file named key.

114 CHAPTER 6. TOOLS

8. Enter samdump2 /mnt/os/WINDOWS/system32/config/SAM key >hashes.txt to
dump the Windows password hashes to a file called hashes.txt. samdump2 is the
program performing this action.

9. To start the cracking process type john hashes.txt. This will make John the Ripper
try all the cracking modes. These modes are described in Section 2.4.2.2. It is also
possible to use more specific commands, for example commands to only use one of
the modes, and these commands are also described in 2.4.2.2.

10. The passwords for the user accounts should now have been cracked, depending on
the strength of the password. The stronger the password is, the longer it may take
to crack it, if it is possible to crack at all.

11. To see the cracked passwords in another format you can type john –show hashes.txt.

This second approach describes how John the Ripper is used through the Ubuntu live
CD on a machine running Ubuntu Server 8.10 (Kristiansten).

1. Apply the first 10 steps described in Procedure 10 without inserting the USB drive
mentioned in step 4.

2. Write mount /dev/sda1 /mnt/os to mount the ext3 file system used in Kristiansten.
ext3 and sda1 was recognized in step 9 in Procedure 10.

3. Type mkdir john to create a working directory.

4. Write aptitude install john to install John the Ripper on the guest operating system
and press Y and Enter to confirm.

5. Enter the directory you created by writing cd john/.

6. Write umask 077 to set the default permission mode on newly created files and
directories.

7. Then write unshadow /mnt/os/etc/passwd /mnt/os/etc/shadow > mypasswd to
combine the information found in the passwd file and the shadow file and dump it
to the newly created mypasswd file.

8. To start the cracking process type john mypasswd. This will make John the Ripper
try all the cracking modes. These modes are described in Section 2.4.2.2. It is also
possible to use more specific commands, for example commands to only use one of
the modes, and these commands are also described in 2.4.2.2.

9. The passwords for the user accounts should now have been cracked, depending on
the strength of the password. The stronger the password is, the longer it may take
to crack it, if it is possible to crack at all.

6.2. TOOLS FOR PASSWORD RECOVERY 115

10. We experienced that the hash values created by the MD5 hash algorithm was
tested by john but the hash values created with SHA-512 was never tested by
John the Ripper. On John the Ripper’s web site [68], it is only specified that
several crypt(3) password hash types are supported, but we suspect that SHA-512
is not supported yet.

11. To see the cracked passwords in another format you can type john –show hashes.txt.

Variations

• There are three modes and several options available together with the john
command. You can find an overview of these modes and options by writing man
john.

Tool 9: Cain & Abel v4.9.30

Tool Short description Operating
System

Objective Prerequisites

Tool 9 Cain & Abel v4.9.30 Windows XP,
Windows
Vista,
Windows
Server 2008,
Windows 7 RC

Password
recovery

Password and
system file,
rainbow tables

Table 6.11: Tool 9 Cain & Abel v4.9.29.

Description
Cain & Abel is a password recovery tool with the support of cracking hash values created
by many different hash algorithms. The tool is created to run on Windows systems
but can crack hash values created on many other systems as well. The tool supports
dictionary, brute-force and cryptanalytic attacks, as described in 2.1.2.2.

Prerequisites
In this approach, you first need to obtain the password file that you want to crack
with Cain & Abel. We are going to show how to perform a cryptanalytic attack and
therefore we need rainbow tables. We downloaded free rainbow tables from [95]. It is
recommended that you download the rainbow tables before you start on this approach,
since it may take quite a long time. The same rainbow tables can also be generated
using Tool 12 described at page 120.

116 CHAPTER 6. TOOLS

Approach
This approach is carried out on a different machine than the machine containing the
target password files. We obtained the password files (SAM and system) that we want
to crack from Fredriksholm, which is running Windows XP. We have chosen to import
additional rainbow tables which can crack LM hashes.

1. Download and install the tool from [72] on the machine you are going to use for
the cracking process. We are using Cain & Abel version 4.9.30.

2. Fetch the Windows password files (SAM and system file) that you want to crack.
See Procedure 10. We obtained the password files (SAM and system file) from
Fredriksholm.

3. Download the rainbow tables from [95]. The rainbow tables are distributed with
the BitTorrent protocol and the tracker can be found at [96]. We suggest that
you download these rainbow tables in advance because it takes quite a long time.
When we downloaded the files they were packed as lzma. See this page [95] for a
more detailed description.

4. Run the Cain & Abel program as Administrator. You can do that by right-clicking
on the Cain & Abel program and select Run as administrator.

5. Click on the Cracker tab in the top menu. Then click on the white sheet in the
main window to activate it, and press the Insert button on your keyboard to import
the password and system file.

6. Select Import Hashes from a SAM database.

7. In the SAM Filename field, locate the SAM file that you want to crack by using
the button to the right of the field.

8. In the Boot Key (HEX) field you need to locate the system file. When the button
next to the field is pressed a Syskey Decoder window appears. From this you need
to locate where the desired system file is saved. When you have opened the system
file, and have returned to the Syskey Decoder window you need to copy (CTRL+C)
the HEX value.

9. Then press Exit to return to the Add NT Hashes from window.

10. Now, paste (CTRL+V) the HEX value in the Boot Key (HEX) field in the Add
NT Hashes from window.

11. Click on Next. The available user accounts and their corresponding hash values
should now have been loaded.

12. Mark the user accounts that you want to crack the password for. Then right-click
and select Cryptanalysis Attack->LM Hashes->via RainbowTables (RainbowCrack.

6.2. TOOLS FOR PASSWORD RECOVERY 117

13. To be able to use the rainbow tables that we downloaded earlier, a charset file has to
be specified. This file is closely connected to the rainbow tables and it describes to
the cracking program which set of characters to perform password cracking with.
In our case we created a charset.txt file with the following line: alpha-numeric-
symbol32-space = [ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789!@#$%ˆ&*()-
+=∼‘[]{}|\:;”’< >,.?/ whitespace]

14. From the LM Hashes cryptanalysis window click on the Charsets button on the
right hand menu to import the charset.txt file.

15. Click on the Add Table button in the right hand menu and locate the rainbow
tables. Open all the tables by using the CTRL+A command and press Open.

16. Click on the Start button located in the bottom right to start the cracking process.

17. If the cracking process succeeds, the user accounts and their corresponding
passwords will be displayed in clear text which means that the password has been
recovered.

Variations

• In this tool other types of attacks can be used. We chose to use the cryptanalysis
attack, but there also exists dictionary and brute-force attacks.

• We used rainbow tables designed to crack LM hashes, but other types of rainbow
tables can also be used.

• There exist also different rainbow table distributors. We chose to download free
LM tables from the Shmoo Group [95].

• This tool can also crack hash values produced by many other hash algorithms than
the one presented in this approach.

Tool 10: LCP 5.04

Tool Short description Operating
System

Objective Prerequisites

Tool 10 LCP 5.04 Windows XP,
Windows
Vista,
Windows
2008 server,
Windows 7 RC

Password
recovery

Password file

Table 6.12: Tool 10 LCP 5.04.

118 CHAPTER 6. TOOLS

Description
LCP 5.04 [74] is also a popular password cracker with the support of cracking hash
values produced by various hash algorithms. The tool is also created to run on Windows
systems. The tool supports dictionary, brute-force and hybrid attacks.

Prerequisites
In this approach, you first need to obtain the password and the corresponding system
file that you want to crack with LCP.

Approach
This approach is carried out on a different machine than the machine containing the
target password files. We obtained the password files (SAM and system) that we want
to crack from Hegra, which is running Windows Vista.

1. Download and install the tool from [74] on the machine you are going to use for
the cracking process. When we downloaded the tool version 5.04 was the latest.

2. Fetch the Windows password files (SAM and system file) that you want to crack.
See Procedure 10. We obtained the password file (SAM and system file) from
Hegra.

3. Run the LCP program.

4. Click Import->Import from SAM file in the top menu of the program.

5. Select the desired SAM file, in our case Hegra’s SAM file. Select Hegra’s system
file as Startup key in a registry.

6. Press OK to import the hash values. Select Yes if a window is prompted.

7. To start the cracking process press F4. This may take quite a long time since a
brute-force approach will begin if not the dictionary and the hybrid approach are
able to crack the password.

8. In this approach password and Hax0R was used as passwords. The approach
revealed password very fast but Hax0R took too long time to crack so we canceled
after a while. To be sure to crack the passwords within a reasonable time, we
recommend using Tool 9 with rainbow tables.

Variations

• Hash values produced by other hash algorithms can also be cracked with this tool.

6.3. SUPPLEMENTARY TOOLS 119

6.3 Supplementary Tools

In this section supplementary tools that are used in addition to other procedures and
tools to reset or recover a lost password are presented.

In this section supplementary tools used in the process of password resetting or/and
recovery, are presented.

Tool 11: fgdump 2.1.0

Tool Short description Operating
System

Objective Prerequisites

Tool 11 fgdump 2.1.0 Windows XP,
Windows
Vista,
Windows
2008 server,
Windows 7

Dump SAM
file

None

Table 6.13: Tool 11 fgdump 2.1.0.

Description
A tool called fgdump 2.1.0 can be used to retrieve information obfuscated in a SAM file.
It is a program executable from most windows system. It also has support for dumping
hash information through a network.

Prerequisites
In this approach no prerequisites were required.

Approach
We will in this approach show how to dump the windows SAM file, when the user has
access to the system.

1. Download the tool from [75] on the machine you are going to dump the password
file. When we downloaded the tool version 2.1.0 was the latest.

2. Unzip the downloaded file to a folder on your desktop.

3. Double click on the fgdump.exe file and it will fetch the necessary information and
dump it on a file placed in the same folder as the executable file (fgdump.exe).

4. A file called 127.0.0.1.pwdump containing the revealed SAM file is available. This
can for instance be interpreted with WordPad.

120 CHAPTER 6. TOOLS

Variations

• This tool has many options available. These can be found on the official fgdump
web page [75] or by running the tool in Windows Command Console with the
following command: fgdump.exe -h.

Tool 12: Winrtgen 2.8

Tool Short description Operating
System

Objective Prerequisites

Tool 12 Winrtgen 2.8 Windows XP,
Windows
Vista,
Windows
2008 server,
Windows 7

Generate
Rainbow
tables

None

Table 6.14: Tool 12 Winrtgen 2.8.

Description
This tool is a graphical version of rtgen.exe and rtsort.exe from the software called
RainbowCrack [67]. The tool can generate rainbow tables for many different hash
algorithms. In this thesis under Tool 9 we use tables that are generated from either
Winrtgen or rtgen.exe. When we used the rainbow tables, we did not create them,
as this is very time consuming, but using this tool the same tables can be generated.
Winrtgen can be executed on any Windows system, and if large tables are to be generated
sufficient amount of storage capacity is needed. A charset file is already included with
the tool, but if specific characters are needed, this file should be edited.

Prerequisites
In this approach no prerequisites were required.

Approach
In this approach we will demonstrate how to generate the rainbow tables that was used
in Tool 9.

1. Download the tool from [77].

2. Unzip the tool using for instance Winzip [94].

3. Execute the newly extracted winrtgen.exe.

4. When the graphical interface opens click on add table, and various options can
then be changed.

6.3. SUPPLEMENTARY TOOLS 121

5. To acquire the same tables as described in Tool 9 the following options should be
chosen:

• Hash: lm
• Min Len: 1
• Max Len: 7
• Index: 0
• Chain Len: 15200
• Chain Count: 67108864
• N◦ of tables: 64
• Charset: all-space-DG

6. If the same name is desirable for each of the tables press Edit and make the
necessary changes in the charset file.

7. When the correct properties have been chosen, click benchmark to measure factors
such as Table precomputation time and Max cryptanalysis time.

8. To start the generation of tables, press OK. When the next window appears, press
OK again.

9. This process can take a large amount of time depending on the computer the tables
are being generated on.

Variations

• Tables for other hashes can be made, such as NT and MD5.

• The tables can be specified to have different properties, so that the overall process
of revealing the password can be optimized for the computer handling the password
cracking process. If for instance a computer with for instance a slow CPU is used
for the cracking process, a large set of tables with short chains is preferable, thus
requiring more physical storage capacity. If the cracking process is performed on
a supercomputer, it might be clever to trade some of the physical space with time
required for cryptanalysis.

• Distributing the generation of tables on many computers, can be smart in terms
of saving time.

Chapter 7
Results

This chapter will present the general results found, and includes results regarding the
procedures and tools that have already been described and the production of our self
made tool named YALP. The results obtained from the empirical password study are
presented in Chapter 8, as we have chosen to separate this study from the other results.
Note that the results presented in Chapter 7 and Chapter 8 will be further discussed in
Chapter 9.

7.1 Procedures and Tools

This section serves the purpose of presenting the results related to the procedures and
tools described in Chapter 5 and Chapter 6 respectively. We have separated between
procedures and tools used to reset the administrator password and procedures and tools
used to recover the administrator password.

The results are presented in tables below, and in the tables we have included a
column labeled Time. These times are influenced by the hardware specifications of the
computers used in this experiment and these specifications can be found in Section 3.1
in Chapter 3. The execution times are supposed to give an indication of the scope of
the specific procedure or tool, and based on that a comparison between the procedures
and tools can be made. Note that the times given do not include downloading of files,
burning of CDs or other preparations, only from the system is booted to you are logged
in as Administrator. For instance in Procedure 6, we will not include the time it takes
to create the Windows Password Reset Disk. We have also defined an ease of use field
to give an indication of how difficult the procedure is to perform on a scale from 1 to 3,
where 1 is easy and 3 is hard. The last column lists which operating systems that the
procedure or tool is applicable to.

In the tables below, under the field Operating System, we have chosen to present the
operating system tested on in the approach for the specific procedure or tool which was
subject to password resetting or password recovering. The procedure or tool may run
on other operating systems, and can possibly perform password resetting or password

123

124 CHAPTER 7. RESULTS

recovering of passwords originating from many other operating systems than the ones
presented in the table below. The supported operating system for the specific procedure
or tool is described more in detail in Chapter 6 and 5, and in Section 2.4. An overview
of operating systems supported by procedures and tools can also be found in Chapter 4.

7.1.1 Password Resetting

In this section two tables are presented. The first table (Table 7.1) contains some results
we gained when the procedures related to password resetting, presented in Chapter 5,
were carried out.

Procedures Time Ease
of use

Operating System

Procedure 1: XP Repair Backdoor 23.05 min 3 Windows XP
Procedure 2: Edit Shadow File in
Unix Systems

6.43 min 3 Ubuntu Server 8.10

Procedure 3: Shortcut for Bypass-
ing Regular Login Procedure

0.5 min 1 Windows XP

Procedure 4: Replace a Pre-login
Executable File

8.03 min 2 Windows Vista

Procedure 5: Use Mac OS X
Installation Disk

3.58 min 1 Mac OS X Leopard

Procedure 6: Windows Password
Reset Disk

1.5 min 2 Windows Vista

Table 7.1: Key statistics from the password resetting procedures.

Tools Time Ease
of use

Operating System

Tool 1: PC Login Now 2.0.1 4.53 min 1 Windows Vista
Tool 2: Offline NT Password &
Registry Editor

2.14 min 1 Windows Vista

Tool 3.1: BartPE with Password
Renew

4.58 min 2 Windows XP

Tool 3.2: BartPE with Windows
Gate

5.30 min 2 Windows XP

Tool 4: Kon-Boot 4.18 min 1 Windows Vista
Tool 5: DreamPackPL 7.93 min 3 Windows XP
Tool 6: passwd 2.95 min 2 Ubuntu Server 8.10

Table 7.2: Key statistics from the password resetting tools.

7.1. PROCEDURES AND TOOLS 125

The second table (Table 7.2) presents the results we achieved with password resetting
tools presented in Chapter 6. The Time field only yield for the operating system
and hardware mentioned under the approach of each procedure or tool as presented
in Chapter 5 and Chapter 6. This means that if another supported operating system or
hardware is experimented with in a recreation of our experiments, the time may vary.

7.1.2 Password Recovery

In this section results we got from the various tools used for password recovery is
presented in a table. We described no procedures to recover the passwords, thus no
results for this are presented. In Table 7.3 below you may also notice that John the
Ripper is mentioned two times. The reason for this is that we described two approaches in
Section 8 at page 112. In all of the approaches described in Section 6.2 we experimented
with two different passwords, password and Hax0R. For each password recovery tool we
have included a field denoting which of the passwords that were revealed. On the last
tool, Tool 10 we chose to stop the cracking process after 15 minutes. This was because
the tool began with an exhaustive brute-force search looking for the password Hax0R,
which could take a very long time.

Tools Time Ease
of use

Operating System Password
revealed

Tool 7: Ophcrack Vista
Live CD 2.1.0

11.77 min 1 Windows Vista password

Tool 8: John the Ripper 1.52 min 2 Windows XP password,
Hax0R

Tool 8: John the Ripper 1.5 min 2 Ubuntu Server 8.10 password
Tool 9: Cain & Abel 41.62 min 2 Windows XP password,

Hax0R
Tool 10: LCP 5.05 15 min 1 Windows Vista password

Table 7.3: Key statistics from the password recovery tools.

126 CHAPTER 7. RESULTS

7.2 YALP

In Chapter 5 we identified various procedures which demanded that the users had a lot
of patience and some technical skills. Some procedures had requirements that were hard
to fulfill and some procedures demanded a lot of time. Many of the procedures were
very cumbersome and required a lot of interaction from the users.

As a result of this, we decided to contribute with a tool that simplifies the problems
mentioned above. Our contribution resulted in a tool called Yet Another Local Password
(tool) (YALP). YALP is actually a bootable live CD containing some tools created by
the authors of this thesis, and some other open source tools available on the Internet. We
have chosen to refer to YALP as a tool instead of a distribution containing many tools.
The main tools included in YALP have the common purpose of handling passwords in
various ways. By handling passwords, we mean to set, reset, recover or protect the
administrator/user password that is used when the user logs in to an operating system.

The first section below will give a more thoroughly description of YALP. The last
section will then describe the structure of the tool and its features.

7.2.1 Description of YALP

YALP is a collection of tools mainly designed to handle passwords in various ways. The
tool handles only passwords accessed locally and is not designed to handle passwords
through a network. Handling passwords through the network may be supported in the
future. YALP is based on the operating system Debian Linux [97] using the standard
Linux kernel [98] as the underlying kernel. To describe the tool more precisely, you can
say that YALP is a collection of tools embedded into a Debian Live distribution (Lenny)
[99] created with a program called live-helper [100]. A more detailed description on how
to create YALP is presented in Appendix A. Most of the tools created for YALP are
implemented as either perl or bash scripts. The scripts are included in Appendix B.

In YALP we have added support to mount most of the operating systems described
in this thesis. We had to build our own kernel to support mounting of the UFS file
system used by FreeBSD 7.1. This means that we did not use the pre-compiled kernel
that is included by default in live-helper. YALP is a text-based tool, thus no graphical
interface is included. A graphical environment can easily be included; however this will
make the tool much larger in size. YALP includes the default tools recognizable in
most Linux distribution, and because YALP is based on a Debian distribution it has
inherited most of the standard Debian/Linux tools. The tool YALP will boot on most
x86 architectures, and support for more systems can be realized with customizations
during the build of YALP as described in Appendix A.

In the configuration we chose to set the keyboard language to Norwegian, because this
is the keyboard language the authors of this thesis use. Some other minor configurations
were also applied, and these can be found in the appendix mentioned above.

Figure 7.1 shows YALP booted on top of a Windows Vista operating system, installed
in VirtualBox [78].

7.2. YALP 127

Figure 7.1: YALP initial welcome screen.

In Figure 7.1 the Syslinux boot loader menu used by YALP is displayed. The menu
enables the possibility to boot YALP in fail-safe mode, perform a memory test, display
some help, or boot YALP normally (Start YALP). The Syslinux menu will timeout in
10 seconds, and if no interaction has been done, the default option (Start YALP) will
be automatically selected.

7.2.2 Contents of YALP

As mentioned in last section, YALP contains various tools to handle passwords in
different ways. All of the scripts created by the authors of this thesis are text based
and interacts with the user. The user types in an answer to a question with his/her
keyboard and send the answer to the script by pressing enter.

The most important script created specifically for YALP is the startup script,
startup.sh. This script is initiated when all the boot processes have completed. The
script is included in Appendix B.1 and is presented in a flow diagram in Figure 7.2.

128 CHAPTER 7. RESULTS

Figure 7.2: A flow chart displaying YALP’s startup script.

Figure 7.3: YALP’s main menu.

7.2. YALP 129

At first startup.sh presents a license agreement, if the user types anything else than
yes, the system will be shut down. If the user types yes, the user will be presented with
the main menu. From this menu various choices can be made as shown in Figure 7.3.

Figure 7.4: Password resetting tools menu.

Figure 7.5: Password recovery tools menu.

130 CHAPTER 7. RESULTS

The user can type in a number corresponding to the next level of the script. This is
presented in the flow diagram where the arrows have the number corresponding to its
menu/program. If for instance the user press 1 and enter the user will be directed to a
new menu. This menu shown in Figure 7.4 displays the various password resetting tools.
On the other hand, if the user types 2 from the main menu, the user will be directed to
the password recovery tools menu. This menu is presented in Figure 7.5.

The last menu available in the startup script is the supplementary tools menu. This
menu will link to programs that do not fall under the menus previously mentioned. The
supplementary tools menu is displayed in Figure 7.6.

Figure 7.6: Supplementary tools menu.

As you can see from Figure 7.3, YALP can be divided into three subcategories of
tools; Password resetting tools, Password recovery tools and Supplementary tools. Under
the category Password resetting tools, we have created three scripts. The first script can
replace the password hash value (MD5) in the shadow file in Ubuntu 8.10. This script is
an implementation of Procedure 2 described at page 75. This script worked as planned,
and is included in Appendix B.3. We also created a similar script for the master.passwd
file used by FreeBSD, but have not yet succeeded to update the password database files
in FreeBSD and this is left to further work. Although the database files are not updated,
the script to replace the MD5 hash in master.passwd (FreeBSD) is working. This is why
we have included this script in YALP.

In the category Password resetting tools we also included a script that would ease
Procedure 4 described at page 78. This bash script is called replace startup files.sh and
can be viewed in Appendix B.2. The script will replace the sethc.exe file with cmd.exe
and take a backup of sethc.exe named sethc.exe.bak. After applying this tool changes to
the underlying host operating system has been made. When the host system is booted,

7.2. YALP 131

right before login, the user can press shift key five times and instead of the sticky keys
program the user will be presented with the Windows command console. The user can
then easily reset a password for any account in the User Accounts menu by typing control
userpasswords2. The user is granted system privileges before he is logged in. We tested
our script on Windows Vista and it worked as planned, the sticky keys program was
replaced. The revert function, which restores the sticky keys program that we took a
backup of (sethc.exe.bak), also worked as planned.

In the category Password resetting tools we also included the tool Offline NT
Password & Registry Editor made by Petter Nordahl-Hagen [56]. This tool is described
more in detail in Section 2.4.1.1 and Section 2.

Under the category Password recovery tools we included two excellent password
recovery tools, Ophcrack [44] and John The Ripper [68]. Since YALP for the time being
is text based; only the command line version of Ophcrack is included. The wordlist that
is used for the empirical password study, which is presented in the next chapter, is also
included in YALP in the same folder as where the scripts are located /home/user. When
John the Ripper is used to crack a LM hash, the password is only revealed in uppercase.
This is as mentioned in Section 2.3.1.2, the password is converted to uppercase before
it is hashed. With all of the Windows systems we are experimenting with, either just
a NT hash is used or both the NT and LM hash is used. The LM hash is included for
backward compatibilities with earlier systems. Because of the weaknesses that arrive
with the LM hash, John the Ripper attacks this hash. The problem arise when the
password is a mixture of upper and lower case letters. Since the output of John the
Ripper is uppercase, using the included tool lm2ntcrack.pl will quickly reveal the correct
case for each letter. It is much smarter to first crack the LM hash and then use lm2ntcrack
to reveal the password than trying to crack the NT hash. The set of possible passwords
for NT are much larger than the set for LM. When the password is revealed from the
LM hash the set of possible password permutations made of different letter cases are not
very large. The lm2ntcrack.pl script will quickly reveal the correct password with for
instance the command displayed in Listing 7.1:

sudo perl lm2ntcrack.pl -v -f="<JOHN-THE-RIPPER OUTPUT FILE>"

Listing 7.1: How to run lm2ntcrack.pl with a John the Ripper output file.

In category Supplementary tools we included a script called mountos.sh. This script
helps the user to mount the correct file system, and as can be reviewed in Appendix B.1
(method ismounted()), this script is also used before some of the other scripts mentioned
above are initiated. The mountos.sh can be found in Appendix B.4. In this category we
also included the tool TrueCrypt [101], giving the user a possibility to encrypt/decrypt
part of the host system. This tool can provide a protection against many of the tools
and procedures presented in this thesis.

Chapter 8
Empirical Password Study

In this section we present an empirical study of the strength of different types of
passwords using various tools. We chose to use the already described tools Ophcrack,
Cain & Abel and John the Ripper for this experiment. The reason why we wanted to
perform a password study was to find out how easily passwords can be cracked. We chose
30 passwords of different strengths and wanted to see how many of these that we were
able to crack during a period of 1 working day (8 hours). In this experiment, dictionary
attacks and cryptanalysis attacks, which are both password cracking techniques, were
applied. Note that since the tools used in this experiment are described earlier in this
thesis, a detailed description of how to use these tools will not be given here. This
chapter will describe how the experiment was carried out, and also present the results
we obtained. A discussion of our findings will be presented in Chapter 9.

This experiment is divided into two phases, Phase 1 and Phase 2. Phase 1 is a time
measurement phase with the use of only one strong password, while in Phase 2 all of
the 30 selected passwords were used (Table 8.3). Phase 2 is the phase where the actual
password cracking process was carried out. These two phases are described in detail
below. We have included three different types of hash values in this experiment, LM
hash, NT hash and MD5 hash, and the two phases are applied to each of the three types
of hashes. Recall that LM hash is the type of hash used in for example Windows XP, NT
hash is the more secure successor of the LM hash used in for example Windows Vista
and Windows 7 RC, and the MD5 hash is used in many Unix systems.

8.1 Laboratory Environment

For this experiment, we used the same laboratory presented in Chapter 3 but we did
not use all of the computers. We chose to use only two of them as we wanted to
run the cracking processes in parallel but still have computers with the same hardware
specifications. The reason for this was to be able to make some comparisons between
the cracking processes for the different types of hashes. We chose to use Fredriksholm
and Kristiansten because they were the two computers with the best, and identical,

133

134 CHAPTER 8. EMPIRICAL PASSWORD STUDY

specifications. Frediksholm and Kristiansten originally had Windows XP and Ubuntu
Server 8.10 installed respectively, as can be seen from Table 3.2 in Chapter 3, but
instead Windows Vista and Ubuntu 9.04 were installed on these systems for this specific
experiment. As mentioned, we have divided this experiment into two phases, and in
Table 8.1 you can see which operating systems that were installed on Fredriksholm and
Kristiansten in Phase 1 and Phase 2. Note that the whole disk on each of the two
computers was dedicated to the operating system installed. This means that we did
not use several partitions. In Phase 1 none of the time-measuring attacks were run
in parallel, but in Phase 2 both the dictionary- and the cryptanalysis attacks on the
LM- and NT hashes were run in parallel. This was done on the two Windows Vista
systems. The dictionary attack that was run on the MD5 hashes in Phase 2 was not
run in parallel with any of the other attacks. The MD5 dictionary attack was run on
Ubuntu 9.04, which was installed on Kristiansten before we instead installed Windows
Vista to run the attacks against the LM- and NT hashes in parallel. Note that we have
included Ubuntu 9.04 for this experiment, as this version of Ubuntu was released just
before we started the experiment.

As already mentioned, we use three types of hashes in this experiment. The reason
why we chose LM is that it is still in use and that we wanted to demonstrate its weak
properties, which is described in detail in Section 2.3.1.2. The rainbow tables used to
crack the LM hash is much smaller than those for other hashes because these weak
properties lead to less combinations to try. Oechslin [Oec03] also used the LM hash as
an example when he introduced the concept of rainbow tables. We chose to include the
NT hash because this is the new hash type included by Microsoft on newer Windows
versions. The NT hash is supposed to solve many of the weaknesses of the LM hash, but
still no salt is included. This is why the NT hash also is susceptible to the rainbow table
attacks. The MD5 hash was chosen because it is a common type of hash used in Unix
systems. Earlier in this thesis we identified that both Ubuntu Server 8.10 and FreeBSD
7.1 utilize the MD5 hash in their password files. MD5 hashes are supported by John the
Ripper, which is the tool that we used for the MD5 hashes in this experiment, and they
may be cracked with the use of a dictionary attack. At RainbowCrack’s web pages [67]
rainbow tables for MD5 are available but we did not include these in the experiment
due to time constraints. Some of the operating systems described earlier, as for example
Fedora 10, use the SHA-512 hash. The reason why we did not include SHA-512 was that
the version of John the Ripper used in this experiment did not support it.

Computer name Operating system in
Phase 1

Operating system in
Phase 2

Fredriksholm Windows Vista Windows Vista
Kristiansten Ubuntu 9.04 Windows Vista, Ubuntu 9.04

Table 8.1: The operating systems used in Phase 1 and Phase 2.

8.2. LINE OF ACTION 135

8.2 Line of Action

In this section we will describe how this experiment was carried out. As already
mentioned, we have chosen to divide the experiment into two phases, Phase 1 and
Phase 2. Phase 1 is a timing phase and tends to say whether it is profitable to run a
dictionary attack before we start to use rainbow tables to crack the passwords. Phase 2
is the phase where the actual cracking process was carried out. Be aware of that these
two phases were carried out on each of the three different types of hashes chosen for
this experiment (LM hash, NT hash and MD5 hash). Table 8.2 gives an overview of
which techniques (dictionary attack and/or cryptanalysis attack) that were applied to
what type of hash in the two phases. The techniques listed were used in both Phase 1
and Phase 2 for the corresponding hash type. For all the dictionary attacks performed
we used a wordlist that is already included in the Cain & Abel tool. In the case where
John the Ripper was used for the dictionary attack the same wordlist was imported.
When it comes to the rainbow tables, which were only used for the LM and NT hashes,
we used two different types of rainbow tables. For the LM hashes we used rainbow
tables specifically designed to crack LM hashes and these tables, which in all consists
of 64 subtables, were in total 64GB in size. It may be added that we installed an
extra hard disk to be able to store these rainbow tables. The LM rainbow tables
were downloaded for free from [95]. The LM hashes were imported into Cain & Abel,
and for Cain & Abel to understand which characters these rainbow tables support we
had to include a charset (character set). The charset used is named alpha-numeric-
symbol32-space, can be found on RainbowCrack’s web pages [102] and includes the fol-
lowing characters: [ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789!@#$%ˆ&*()-
+=∼‘[]{}|\:;”’< >,.?/ whitespace].

For the NT hashes we used rainbow tables that were specifically designed to crack
NT hashes, but the tables we used for this purpose were not free. It is possible to
obtain free NT rainbow tables from Ophcrack’s web pages [44], such as the one named
Vista free, but these do not include as many characters as the versions you have to pay
for. And because we managed to get financial support for these tables we wanted to test
them in this experiment. The NT rainbow tables that we bought are called Vista special,
are 8GB in size and were obtained from Ophcrack’s web page as well. An overview of
the character sets that is included by the Vista special tables is given in Listing 8.1 [44].
Note that there are three different character sets, and which of them to consider depends
on how many characters the password consist of. The Vista special tables are said to
have a success rate of 99%, which means that they are supposed to reveal 99% of the
passwords that consist of characters that are within the character set that is used.

136 CHAPTER 8. EMPIRICAL PASSWORD STUDY

Passwords of length 6 or less
Charset: 0123456789
abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ
!"#$%&’()*+,-./:;<=>?@[“]ˆ_‘{|}˜ (including the space character)

Passwords of length 7
Charset: 0123456789
abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ

Passwords of length 8
Charset: 0123456789abcdefghijklmnopqrstuvwxyz

Listing 8.1: The character sets used by the Vista special rainbow tables.

The Vista special rainbow tables in all consist of 4 rainbow tables. Since the Ophcrack
tool manages to understand what characters the rainbow tables support we did not have
to make an extra effort to include the charset for the NT rainbow tables. It should be
noted that the rainbow tables used were downloaded before we started the experiment.
Before we go into detail of the two phases we will mention which passwords we have
chosen to use in this experiment, and explain the reason for our choice.

Type of hash Techniques
LM hash Dictionary attack and cryptanalysis attack
NT hash Dictionary attack and cryptanalysis attack
MD5 Dictionary attack

Table 8.2: Applied techniques corresponding to their type of hash.

8.2.1 Selection of Passwords

In this experiment we wanted to test passwords of different strength. That is why we
created three different password groups, and then added 10 passwords to each group.
Most Popular, Mnemonic Passwords and Random Passwords are the names of these
groups. The ten passwords added to the Most Popular group are taken from Bruce
Schneier’s web page [16], 8 of the Mnemonic Passwords are taken from a mnemonic
password generator [103] while 2 are created by us. The Random Passwords are collected
from a random password generator [104] found on the Internet. The group labeled Most
Popular contains some of the most common passwords used, and as we can see from Table
8.3, these passwords do not seem very secure. As a contrast, the Random Passwords are
considered very secure because they are randomly generated with both lowercase- and
uppercase letters, numbers and special characters. One disadvantage with the randomly
generated passwords is that they are hard to remember, and that is why we have included
some mnemonic passwords. A mnemonic password is a password where a user for
example chooses a phrase that is easy to remember (mnemonic) and uses a character to
represent each word in the phrase. Mnemonic passwords are therefore passwords that

8.2. LINE OF ACTION 137

seem like random generated passwords but are easier to remember because they are
generated from phrases that are easy to remember. As already mentioned, we chose to
create two of the mnemonic passwords ourselves (5GCTw4tG@N and tcC!tW84s), and
this was to also include mnemonic passwords of nine and ten characters in length. It was
desirable to test passwords with different characteristics. As an example of a mnemonic
password we can take a look at one of our self-created password: 5GCTw4tG@N -
Fifth Grade Comm Tech waiting for their Graduation at NTNU. An overview of the 30
different passwords and to which group they belong is given in Table 8.3.

Most Popular Mnemonic Passwords Random Passwords
password1 hm71li qaSt4@
abc123 k0fzug vANe$a
myspace1 fp6jar !aFu9ut
password msi89a0 C7e++AV
blink182 %l41pc w2U$atHe
qwerty1 m.f0vgk $ Ch6cU5
fuckyou v*qbt4un Ke42A2Pe*
123abc qtdra# rA3$ ey*c
baseball1 5GCTw4tG@N b*#D9*7yEG
football1 tcC!tW84s 8rA* pHa$8

Table 8.3: An overview of the 30 selected passwords, and their corresponding category.

Table 8.4 below lists all the selected Mnemonic Passwords and their corresponding
phrase.

Mnemonic
Passwords

Phrase

hm71li Hefin manages Sven’s first lugubrious identity
k0fzug Kath’s nothing frazzles Zoe’s unexpected gadget
fp6jar Frank promotes Zach’s jocular absentminded rabbit
msi89a0 Morgan seizes if eighth Nina argues nothings
%l41pc Percy liberates Fourier’s first priceless cabbage
m.f0vgk Morgan stops for only Vivian glamorizes kilns
v*qbt4un Victor’s handy quarter boosts Tim’s fourth unknown number
qtdra# Quentin traps Dave’s reputable aloof hash
5GCTw4tG@N Fifth Grade Comm Tech waiting for their Graduation at NTNU
tcC!tW84s The current crisis in the world fights for survival

Table 8.4: 10 mnemonic passwords with their corresponding phrase.

138 CHAPTER 8. EMPIRICAL PASSWORD STUDY

8.2.2 Phase 1: Timing

In Phase 1 the idea was to figure out how long time the dictionary attack and the
cryptanalysis attack with the use of rainbow tables took on one strong password for each
of the three different hashes. The password chosen for this purpose was 8rA* pHa$8.
The SAM file with the LM hash value of the password was obtained from a Windows
XP machine, the SAM file with the NT hash value of the password from a Windows
Vista machine and the shadow file with the MD5 hash value of the password from an
Ubuntu 9.04 machine. As the selected password did not exist in the wordlist used for the
dictionary attack, the dictionary attack would complete without finding the password.
This means that the whole wordlist and its possible character combinations, defined by
the mangling rules that may be chosen in the tool that is used, will be traversed without
a hit. This will therefore give us an indication of how long time the dictionary attack
will take when it is not successful.

One of the ideas with Phase 1 was to find out of how much time we would have to
invest in this worst case scenario. For the LM and NT hashes we thought it would be
desirable to use a dictionary attack to reveal possible weak passwords before we start
using rainbow tables in a cryptanalysis attack, and then reduce the running time for the
rainbow tables. On the other hand we did not want to spend too much time running
the dictionary attack as the idea with this experiment was to see how many of the 30
selected passwords we were able to crack during 1 working day (8 hours). Even though
the dictionary attack was the only attack applied to the MD5 hashes, we wanted to
get an idea of how long time we could expect this attack to take for all the passwords
in Phase 2. For the cryptanalysis attacks we came up with an estimate of how long
time the process would take. In contrast to the dictionary attacks we did not run the
process to completion for the selected password used in this phase, but rather just ran
the cryptanalysis attack with the use of one and two rainbow tables. For the LM hash
we assumed that the password (8rA* pHa$8) would not be revealed when using these
two rainbow tables. If the password were revealed in any of these tables, other rainbow
tables would have to be selected. Because of the limitations of the charset and the
restrictions on the password length supported by the rainbow tables used for the NT
hash, the password would not be found. Based on these results we calculated how long
time it would take in total with the use of all the rainbow tables. These calculations
will be explained in more detail. This was done for both the LM hash and the NT hash.
The difference was that we used the tool named Cain & Abel for the LM hash and the
tool named Ophcrack for the NT hash when using the rainbow tables. Table 8.5 gives
an overview of which tools that were used for the different types of hashes. For the LM
hash we used Cain & Abel for both the dictionary attacks and the cryptanalysis attacks,
for the NT hash we used Cain & Abel for the dictionary attacks and Ophcrack for the
cryptanalysis attacks, and for the MD5 hash we used John the Ripper for the dictionary
attacks.

The point of Phase 1 was, for the LM and NT hash, to measure how long time both
the dictionary attack and the cryptanalysis attack would take on the selected password,
and then compare the results to indicate how much time the dictionary attack took

8.2. LINE OF ACTION 139

Type of hash Tools
LM hash Cain & Abel
NT hash Cain & Abel, Ophcrack
MD5 John the Ripper

Table 8.5: An overview of the tools used in Phase 1 and Phase 2.

compared to when we used the rainbow tables. We wanted to find out how much time
we had to use to be able to exclude the weakest passwords by using a dictionary attack
before using the rainbow tables. For the MD5 hash we wanted to measure how long
time the dictionary attack took on the selected password. It should also be added that
we used the built-in timing function in both Cain & Abel and Ophcrack to measure the
time for the cryptanalysis attacks on both the LM hash and the NT hash. John the
Ripper also displays the elapsed time when you press Enter during the dictionary attack.
The only case where the running time was not displayed by the tool used, was when the
dictionary attack on the LM hash and the NT hash was run with Cain & Abel. Then
we had to use the CPU Time, which is displayed in the Windows Task Manager, for the
specific process. We made sure that no other unnecessary processes were running at the
same time as the cracking processes to make the processor use all its available resources
on this task. It should be noted that this timing function may not be completely precise
as other necessary processes will probably influence the counting when these processes
need the processor. The time measurements are used to just give an indication of how
long time the attacks may take. It should be added that we also used an external timing
function to be able to check manually if the CPU timing result was reasonable. This
was done for each of the hash types.

8.2.3 Phase 2: Password Cracking

Phase 2 is the actual password cracking phase where we first, for the LM and NT hashes,
applied a dictionary attack to hopefully exclude some of the weakest passwords before
we started to crack the rest of the passwords with the use of rainbow tables. For the
MD5 hashes we only applied a dictionary attack. It should be noted that in Phase 1
we only concentrated on one password but in Phase 2 we attacked all the 30 selected
passwords given in Table 8.3. We created 30 users on a Windows XP machine, 30 users
on a Windows Vista machine and 30 users on an Ubuntu 9.04 machine to be able to
attack all of the three different types of hashes. It is also worth mentioning that we also
created 30 users on a Windows 7 RC (Release Candidate) machine, which also utilizes
the NT hash, as an experiment on the side. This was because Windows 7 RC was
released during our experiments, and we wanted to find out if Windows had changed
the way it handles the NT hash values stored in a Windows 7 RC SAM file. Possible
differences between the NT hashes generated on the Windows Vista and the Windows
7 RC machine will be highlighted. The user accounts, and thus also the corresponding
password files, were created on virtual machines using a program called VirtualBox [78].

140 CHAPTER 8. EMPIRICAL PASSWORD STUDY

We used VirtualBox because the actions on a virtual machine are easy to revert. To
create this many users we made scripts to automate this process, and these scripts can
be found in Appendix D. The script for adding users in a Unix system adds 30 users
with their passwords hashed with MD5. The result was a shadow file created in Ubuntu
9.04 containing 30 MD5 hash values. The MD5 algorithm is utilized for the user that is
added when installing Ubuntu 8.10.

As already mentioned, the cracking processes was done on different computers than
the target machines, and instead the password files were imported to the machine running
the cracking process. When we planned this experiment, and before we knew how long
time the dictionary and the cryptanalysis attack would take, we agreed to stop the
dictionary attacks on the LM hashes and the NT hashes after maximum 2 hours and
then use the remaining 6 hours for the rainbow tables (8 hours in total). The reason why
we planned with such time constraints was that we did not expect all the passwords to
be revealed and that we therefore had to cancel the jobs before completion, as the idea
was to only use 1 working day. We also wanted the cryptanalysis attack to get most
of the available time as we thought that the chances were bigger that the cryptanalysis
attack would crack the more difficult passwords. When it comes to the MD5 hashes the
dictionary attack was supposed to run for 8 hours continuously, and then be aborted
if it had not completed by then. Note that even though the case with the Windows 7
RC machine was an experiment on the side, we also performed a full dictionary attack
and a full cryptanalysis attack on the SAM file that originated from the Windows 7 RC
machine.

8.3 Results of The Study

In this section the achieved results regarding the empirical password study will be
presented. The results presented here will be further discussed in Section 9.2 in Chapter
9. Keep in mind that this experiment was supposed to reveal how many of the 30 selected
passwords that were possible to disclose during 1 working day (8 hours).

8.3.1 Phase 1: Timing

Phase 1 of this experiment was a timing phase. We used this phase to measure how
long time the dictionary attacks and the cryptanalysis attacks would take when trying
to crack the LM hash and NT hash of the selected password. This phase also measured
the time of the dictionary attack on the MD5 hash. The results from this timing phase
are presented below.

8.3.1.1 LM hash

First the dictionary attack on the LM hash will be considered. As can be seen in the
upper part of the window shown in Figure 8.1 we used a wordlist (Wordlist.txt) for the
dictionary attack. This wordlist is included by default in the Cain & Abel tool. The
screen shot was taken after the dictionary attack on the selected password had finished,

8.3. RESULTS OF THE STUDY 141

and as can be seen from the figure the password was not revealed. The figure also shows
which options, or mangling rules, that could be selected for the dictionary attack. We
used the default options shown in the figure. Also note the line saying 0 of 2 hashes
cracked in the lower half of the window. Even though we only used one password,
Cain & Abel says that it has found 2 hash values. This is, as described in detail in
Section 2.3.1.2, a consequence of the properties of the construction of the LM hash.
When the LM hash is constructed, the password is first divided into two segments with
maximum 7 characters in each segment. The two segments are then hashed separately.
The password used in this phase consists of 10 characters and therefore 2 LM hash values
are constructed, one for the first 7 characters and one for the remaining 3 characters. As
expected, none of these two hash values was cracked after running the dictionary attack,
and thus the password was not revealed.

Figure 8.1: Phase 1: Settings used for the dictionary attack (LM hash).

For the dictionary attack we had to open the Windows Task Manager and use the
CPU Time for the dictionary attack to measure the time. As already mentioned, this is
because the Cain & Abel tool does not show the elapsed time for the dictionary attack.
If we take a look at the CPU Time column for the Cain.exe process in Figure 8.2, it says
that the dictionary attack took 1 minute and 14 seconds. This is not entirely true as
the time starts to run when you start the Cain & Abel program and not from when you
start the dictionary attack. This is why we deduct 6 seconds from this time, as this was
the time Cain & Abel used to start up, making the total time for the dictionary attack
1 minute and 8 seconds (68 seconds). This time measurements show how long time it
may take if the password is not found during the dictionary attack.

142 CHAPTER 8. EMPIRICAL PASSWORD STUDY

Figure 8.2: Phase 1: Timing of the dictionary attack on the LM hash.

Now let us take a look at the timing of the cryptanalysis attack on the LM hash.
Figure 8.3 shows the result of the cryptanalysis attack on the selected password for the
created testuser account, using the first two tables of the downloaded rainbow tables.
We used only two tables to be able to create an estimate instead of running the whole
attack. It should be added that we in addition ran the cryptanalysis attack using just
one rainbow table. We had to run both to be able to estimate how long time the
cryptanalysis attack would take when using all the rainbow tables. The reason why
we had to use both the first and the second rainbow table was because it takes longer
time to run the first rainbow table than the following tables. Rainbow chains and all its
intermediate values are calculated for the first table, and then reused for the succeeding
tables. The use of the first rainbow table may be considered as an initial process. That
is why we needed to consider the second table, and then multiply the time it took to
run this table with the total amount of tables minus the initial table. The result is the
time it would take to run the last 63 rainbow tables. Then we had to add the time it
took to complete the first table (initial process).

As can be seen from Figure 8.3, using the first two tables took 294.99 + 97.39 =
392.38 seconds = 6 minutes 32 seconds when the password was not revealed. These
numbers can be found in the middle section named Statistics in Figure 8.3. When
calculating the total time we included Total disk access time and Total cryptanalysis
time. As already mentioned, we also measured the time when only the first rainbow
table was used to be able to estimate the total time. It took 282.81 + 56.83 = 339.64
seconds = 5 minutes 39 seconds to complete the first rainbow table. This means that
it took only 392.38 - 339.64 = 52.74 seconds to run the second table. Now it is time

8.3. RESULTS OF THE STUDY 143

to make an estimate for the maximum time the cryptanalysis attack might take when
including all the 64 rainbow tables: 339.64 seconds + (52.74 seconds * 63 tables) = 1
hour 1 minute 2 seconds (3662.26 seconds).

Figure 8.3: Phase 1: Timing of the cryptanalysis attack on the LM hash.

Table 8.6 gives an overview of the timing results from the dictionary attack and from
the estimate of the cryptanalysis attack. The latter is based on the accomplishment of
two of the 64 rainbow tables. Both these attacks were performed on one password.

Technique Time
Dictionary attack 1 minute 8 seconds (68 seconds)
Cryptanalysis attack 1 hour 1 minute 2 seconds (3662.26 seconds)
Total 1 hour 2 minutes 10 seconds (3730 seconds)

Table 8.6: Phase 1: Time measurements for the LM hash.

The idea with the timing phase was to find out how long time the dictionary attack
and the cryptanalysis attack might take, and if it would be advantageous to include a
dictionary attack to reveal the easiest passwords before running the cryptanalysis attack
with the rainbow tables. Table 8.6 gives an indication of how much time the different
attacks might take, and Figure 8.4 gives an overview of how much time this constitute
of the 8 hours period available. The dictionary attack is labeled Dictionary attack and
the cryptanalysis attack where the rainbow tables were used is labeled Cryptanalysis
attack. The unused time is named Remaining time. As can be seen from the figure,
the dictionary attack only constitutes 0.24% of the available time and the cryptanalysis

144 CHAPTER 8. EMPIRICAL PASSWORD STUDY

attack is estimated to constitute 12.72% of the time. This leave us with as much as
87.04% unused time.

Figure 8.4: Distribution of time between the techniques applied to the LM hash.

8.3.1.2 NT hash

The screen shot in Figure 8.5, which is almost identical as the screen shot shown in
Figure 8.1 for the LM hash, shows the default settings, or mangling rules, that were
used for the dictionary attack on the NT hash. It can also be verified that we used
the same wordlist (Wordlist.txt) as for the LM hash. The only difference between those
figures is that only one hash value is found by Cain & Abel when cracking an NT hash
in contrast to the two hash values found when cracking the LM hash. In Figure 8.5 this
can be verified from the line saying 0 out of 1 hashes cracked. The reason is that when
the NT hash value is constructed, the password used is not divided into two segments
before the hash is generated, as is the case when generating the LM hash. As a result
of this, the password has only one corresponding hash value.

For the NT hash we also had to open the Windows Task Manager and use the CPU
Time to measure the time for the dictionary attack, due to the lack of timing capabilities
in Cain & Abel. The dictionary attack was measured to take 54 seconds, but from this
we had to deduct 5 seconds as this was the time it took to start Cain & Abel. The
reason why had to deduct less time when considering the NT hash compared to the LM
hash, was because the processor took longer time to start Cain & Abel in the first case.
This makes the total time for the dictionary attack 49 seconds. This gives an indication
of how long time it might take if the password is not found during the dictionary attack.

8.3. RESULTS OF THE STUDY 145

Figure 8.5: Phase 1: Settings used for the dictionary attack (NT hash).

Now let us consider the timing of the cryptanalysis attack for the NT hash. Figure
8.6 shows the result of the cryptanalysis attack on the selected password for the user
called testuser. As for the LM hash, only two of the rainbow tables that normally
belong together were used in this phase to get an estimate of how long time the whole
cryptanalysis attack might take when the password is not found. Also in this case we
additionally ran the cryptanalysis attack using just one rainbow table to be able to
estimate the time it would take when using all the rainbow tables. To estimate the total
time we need to multiply the time it took to run the second table with the total amount
of tables minus the first table (63 tables all together). The time it takes for the first
rainbow table is then added.

As can be seen from the bottom right corner of Figure 8.6 the cryptanalysis attack
on the NT hash, using two of the tables, took 12 minutes 38 seconds (758 seconds). The
field displaying the time is labeled Time elapsed. Now we have to make an estimate
of how long time it might take when all the 4 rainbow tables are included. The 4 NT
rainbow tables mentioned here are the tables that together form the non-free Vista special
tables. It should be added that it took 7 minutes and 38 seconds (458 seconds) when
we only used the first rainbow table. This means that it took 758 - 458 = 300 seconds
= 5 minutes to run the second rainbow table. The total estimate for the use of rainbow
tables on the NT hash is then: 458 seconds + (300 seconds * 3 tables) = 22 minutes
38 seconds (1358 seconds). This illustrates the maximum time the cryptanalysis attack

146 CHAPTER 8. EMPIRICAL PASSWORD STUDY

Figure 8.6: Timing of the cryptanalysis attack on the NT hash.

might take when including all the 4 rainbow tables. What can also be seen from Figure
8.6 is that one NT hash value has been loaded, and is listed in the NT Hash column.
The corresponding password has, as expected, not been revealed as it says not found in
the NT Pwd column or 0/1 in the Pwd found field at the bottom menu of the window.
From the Table column you can also see that both table0 and table1, which are both
part of the Vista special rainbow tables, were loaded.

Table 8.7 gives an overview of the timing results from the dictionary attack and from
the estimate of the cryptanalysis attack performed on the NT hash value. Both these
attacks were performed on one password.

Technique Time
Dictionary attack 49 seconds
Cryptanalysis attack 22 minutes 38 seconds (1358 seconds)
Total 23 minutes 27 seconds (1407 seconds)

Table 8.7: Phase 1: Time measurements for the NT hash.

Figure 8.7 gives, based on the result given in Table 8.7, an overview of how much
these results constitute of the 8 hours period available. The dictionary attack constitute
only 0.17% of the available time and the cryptanalysis attack constitute 4.72%. As much
as 95.11% of the available time is unused.

8.3. RESULTS OF THE STUDY 147

Figure 8.7: Distribution of time between the techniques applied to the NT hash.

8.3.1.3 MD5 hash

For the MD5 hash we only performed a dictionary attack, and we used John the Ripper
to find out how long time the dictionary attack would take on the selected password
(8rA* pHa$8). To start the dictionary attack we had to run a couple of commands:

1. umask 077

2. sudo unshadow /etc/passwd /etc/shadow > mypasswd

3. sudo john −−wordlist=Wordlist.lst −−rules mypasswd

First, the umask command was used to set adequate permission rights. Next we used
the unshadow command to obtain the content of the passwd file and the shadow file, and
then store the content in a new file named mypasswd in this case. The third command,
john, was used to actually start the dictionary attack using John the Ripper. As can be
seen from the third command we used the same wordlist as for both the LM hash and
the NT hash. By using −−rules in the same command we also specified that we wanted
to use certain mangling rules for the dictionary attack. Cain & Abel, which was used for
the dictionary attack on both the LM and NT hash, also used certain mangling rules.
The sudo command was used to get administrator privileges. Note that these commands
also have to be applied in Phase 2 to run the dictionary attack on the MD5 hashes of
all the 30 passwords.

The result from the dictionary attack is shown in Figure 8.8. We used the timing
function included in the John the Ripper tool, and the figure shows that the dictionary
attack, including the word mangling, took 51 minutes and 48 seconds (3108 seconds)
to complete on the selected password. Note the line in Figure 8.8 that, just before the
password guessing begins, displays Loaded 1 password hash. This confirms that we only

148 CHAPTER 8. EMPIRICAL PASSWORD STUDY

used one password, as there are not any division of the password before the hash is
generated when using MD5. As expected, even though the dictionary completed the
password was not revealed.

Figure 8.8: Result from the dictionary attack on the MD5 hash.

Table 8.8 gives an overview of the timing results from the dictionary attack performed
on the MD5 hash value.

Technique Time
Dictionary attack 51 minutes 48 seconds (3108 seconds)

Table 8.8: Time measurement for the MD5 hash.

Based on the result given in Table 8.8, Figure 8.9 gives an overview of how much
this result would constitute of the 8 hours period available. The dictionary constitutes
10.79% of the available time and as much as 89.21% of the available time is unused.

8.3. RESULTS OF THE STUDY 149

Figure 8.9: Distribution of used time for the dictionary attack on the MD5 hash.

8.3.2 Phase 2: Password Cracking

Phase 2 is where the actual cracking process was carried out. We added 30 users with
different passwords and wanted to examine how many of the 30 passwords we managed
to crack during a period of 1 working day (8 hours). This was done for each of the
three different types of hashes (LM hash, NT hash, and MD5 hash). Recall that we
performed an experiment on the side for the NT hashes, with the use of a machine
running the newly released Windows 7 RC operating system. This was to be able to
highlight possible improvements that Microsoft had done regarding the handling of the
login password. A full outline of the selected passwords can either be found in Table 8.3
or from the results presented below. After the completion of Phase 2 it would be possible
to compare Phase 1 and Phase 2 to see how long time the cracking process would take
for all the 30 passwords compared to when just one password was used, which is an
important difference between Phase 1 and Phase 2. Another difference is that the full
set of rainbow tables were used for both the LM hash and the NT hash in Phase 2.

8.3.2.1 LM hash

As for the LM hash in Phase 1, we also applied a dictionary attack and a cryptanalysis
attack with rainbow tables in this phase. The only difference is that this time the
password file contained 30 LM hash values instead of one LM hash value.

In Figure 8.10 you can verify that the same wordlist (Wordlist.txt) was also used
in Phase 2, and that also the same options, or mangling rules, used in Phase 1 are
applied. The screen shot is taken after the dictionary has completed, and in the bottom
of the window it says 19 of 44 hashes cracked. This does not mean that 19 passwords
are revealed. Recall that the password is split into two segments when the LM hash is
generated. It could mean that the whole password is found but it is also possible that
only one of the two possible hash values that constitute the password is cracked. The

150 CHAPTER 8. EMPIRICAL PASSWORD STUDY

latter case will reveal only parts of the password. Note that a password consisting of 7
characters or less will only have one LM hash value.

Figure 8.10: Phase 2: Settings used for the dictionary attack (LM hash).

Even though some of the revealed passwords can be seen in Figure 8.10, a complete list
of all the 30 users and their possible revealed password are listed in Figure 8.11. From
the overview is it also possible to see what type of hash that is used. This can be seen
from which column the hash value itself is listed in. The columns are labeled LM Hash
and NT hash in the top menu. Since the password file used at this point originate from
a Windows XP machine, both the LM hash and NT hash values are listed. Also note the
column labeled <8, where the passwords that contain less than 8 characters are marked.

Figure 8.11 shows that 9 passwords were revealed from the dictionary attack. The
entry with the revealed passwords is marked with a key symbol in the beginning of the
column labeled User Name, while the ones that are not cracked are marked with a red
cross. The 9 passwords that were revealed during this dictionary attack are listed in
Table 8.9, and how much these passwords constitute of all the selected passwords are
illustrated in Figure 8.12. Note that the numbering used in Table 8.9 are not universal for
this experiment, and are just included to point out that there are 9 revealed passwords at
this point. If you take a closer look at Figure 8.11 you will see that some of the passwords
are partly cracked, but since not the whole password is revealed they could obviously
not be included in the list of revealed passwords. Another observation is that some of

8.3. RESULTS OF THE STUDY 151

Figure 8.11: Passwords revealed from the dictionary attack (LM hash).

the users listed in Figure 8.11 have question marks written in their corresponding LM
Password field, and some do not. The users without question marks have passwords that
are longer than 7 characters, meaning that their password consist of two hash values,
and the dictionary attack has not been able to find any of the hash values. The users
with question marks written in their password field are either less than 8 characters
long, meaning that the password consist of only one hash value, or that the password
is longer than 7 characters and that one of the hash values is found. The passwords
that are not revealed or just partly revealed will be a subject to the cryptanalysis attack
applied next. As Figure 8.12 illustrates, 30% of the passwords were revealed from the
dictionary attack, while 70% of them will be a subject for the cryptanalysis attack.

152 CHAPTER 8. EMPIRICAL PASSWORD STUDY

Number User name Password
1 user1 password1
2 user2 abc123
3 user4 password
4 user5 blink182
5 user6 qwerty1
6 user7 fuckyou
7 user8 123abc
8 user9 baseball1
9 user10 football1

Table 8.9: Revealed passwords. Figure 8.12: Share of revealed passwords.

In Phase 1 we estimated the time for the dictionary attack on the selected password
to be 1 minute and 8 seconds. The dictionary attack carried out in this phase with all
the 30 selected passwords was measured to take 1 minute and 9 seconds. But also in
this case we had to deduct the time it took for Cain & Abel to start as we used the CPU
Time displayed in Windows Task Manager. After deducting the 6 seconds that Cain
& Abel used to start, the dictionary attack was estimated to take 1 minute 3 seconds.
This shows that it does not take longer time to run a dictionary attack on a password
file containing several LM hashes than a password file containing just one LM hash.
In fact, the estimate indicates that the case with several LM hashes takes shorter time
than cracking just one LM hash, but be aware of that minor inaccuracy with the timing
measurements may influence the result.

Now let us consider the cryptanalysis attack with the use of the LM rainbow
tables. It should be noted that the users with a password that was revealed during the
dictionary attack were removed from the list of passwords we wanted to reveal during
the cryptanalysis attack. This can be verified in Figure 8.13 were all the users listed in
Table 8.9 are omitted. As Figure 8.13 gives the result of the cryptanalysis attack, we
can see that all the remaining 21 passwords were revealed.

As both the dictionary attack and the cryptanalysis attack now are presented it is
time to sum up the results from the cracking process on the LM hashes. All the 21
passwords that were revealed during the cryptanalysis attack can be found in Table
8.11. The 9 passwords that were revealed during the dictionary attack are also included
in this table but they have italic font. The table also includes the user name, length of
the password, to which category the password belongs, and whether the password was
revealed or not.

8.3. RESULTS OF THE STUDY 153

Figure 8.13: Passwords revealed from the cryptanalysis attack (LM hash).

Technique Passwords
Revealed

Dictionary attack 9
Cryptanalysis attack 21
Total 30

Table 8.10: Revealed passwords. Figure 8.14: Share of revealed passwords.

154 CHAPTER 8. EMPIRICAL PASSWORD STUDY

Number User
name

Password Length Category Revealed?

1 user1 password1 9 Most Popular Yes
2 user2 abc123 6 Most Popular Yes
3 user3 myspace1 8 Most Popular Yes
4 user4 password 8 Most Popular Yes
5 user5 blink182 8 Most Popular Yes
6 user6 qwerty1 7 Most Popular Yes
7 user7 fuckyou 7 Most Popular Yes
8 user8 123abc 6 Most Popular Yes
9 user9 baseball1 9 Most Popular Yes
10 user10 football1 9 Most Popular Yes
11 user11 hm71li 6 Mnemonic Passwords Yes
12 user12 k0fzug 6 Mnemonic Passwords Yes
13 user13 fp6jar 6 Mnemonic Passwords Yes
14 user14 msi89a0 7 Mnemonic Passwords Yes
15 user15 %l41pc 6 Mnemonic Passwords Yes
16 user16 m.f0vgk 7 Mnemonic Passwords Yes
17 user17 v*qbt4un 8 Mnemonic Passwords Yes
18 user18 qtdra# 6 Mnemonic Passwords Yes
19 user19 5GCTw4tG@N 10 Mnemonic Passwords Yes
20 user20 tcC!tW84s 9 Mnemonic Passwords Yes
21 user21 qaSt4@ 6 Random Passwords Yes
22 user22 vANe$a 6 Random Passwords Yes
23 user23 !aFu9ut 7 Random Passwords Yes
24 user24 C7e++AV 7 Random Passwords Yes
25 user25 w2U$atHe 8 Random Passwords Yes
26 user26 $ Ch6cU5 8 Random Passwords Yes
27 user27 Ke42A2Pe* 9 Random Passwords Yes
28 user28 rA3$ ey*c 9 Random Passwords Yes
29 user29 b*#D9*7yEG 10 Random Passwords Yes
30 user30 8rA* pHa$8 10 Random Passwords Yes

Table 8.11: The results from both the attacks (LM hash).

This means that we have revealed all the 30 selected passwords by using both a
dictionary attack and a cryptanalysis attack on the LM hashes, and this is illustrated
in Table 8.10 and Figure 8.14 above. 30% of the passwords were revealed during the
dictionary attack and 70% during the cryptanalysis attack.

Even though we managed to reveal the 21 remaining passwords we still have to
calculate how much time the cryptanalysis attack took to complete. To calculate the
time we included Total disk access time and Total cryptanalysis time found in the middle
section called Statistics in Figure 8.15. As can be seen from the figure the cryptanalysis

8.3. RESULTS OF THE STUDY 155

attack, using all the rainbow tables, took 1724.58 + 6369.71 = 8094.29 seconds = 2
hours 14 minutes 54 seconds. From the same figure we can also see some of the revealed
passwords, which are already presented, and from the Plaintext found field it is confirmed
that 100% of the LM hashes are found.

Figure 8.15: Phase 2: Timing of the cryptanalysis attack on the LM hashes.

Table 8.12 gives an overview of the timing results from the dictionary attack and from
the cryptanalysis attack. The dictionary attack performed in this phase was carried out
on all the 30 selected passwords, while the remaining 21 hash values were subject to the
cryptanalysis attack.

Technique Time
Dictionary attack 1 minute 3 seconds (63 seconds)
Cryptanalysis attack 2 hours 14 minutes 54 seconds (8094 seconds)
Total 2 hours 15 minutes 57 seconds (8157 seconds)

Table 8.12: Phase 2: Time measurements for the LM hashes.

Based on the results given in Table 8.12, Figure 8.16 gives an overview of how much
time the different attacks constitute of the 8 hours period available. This shows that
we are far within the time limit. As can be seen from the figure, the dictionary attack
constitutes 0.22% of the available time and the cryptanalysis attack constitutes 28.10%
of the time. This leaves us with 71.68% unused time.

156 CHAPTER 8. EMPIRICAL PASSWORD STUDY

Figure 8.16: Distribution of time between the techniques applied to the LM hashes.

8.3.2.2 NT hash

Like we did for the NT hash in Phase 1, we also applied a dictionary attack and a
cryptanalysis attack in this phase. The only difference was that this time the password
file contained 30 NT hash values instead of one NT hash value.

First the dictionary attack was performed, and from Figure 8.17 it can be seen that
the same wordlist (Wordlist.txt) and the same settings are still being used. The screen
shot in the figure was taken after the dictionary attack on the NT hashes had completed,
and at the bottom left of the window a message saying 8 out of 30 hashes cracked is
displayed. This message implied that 8 passwords had been revealed, and as we shall see
below this was correct. For the LM hashes these numbers did not match the passwords
that really had been revealed. The reason why these numbers made sense in this case
was because the NT does not split the password into segments before the NT hash is
generated. This results in just one hash value for each password.

Some of the passwords that were revealed through the dictionary attack can be seen
in Figure 8.17, but a complete list of all the revealed passwords from the dictionary
attack is given in Figure 8.18. The window shown in Figure 8.18 is explained earlier,
when we presented the results from the cracking of the LM hashes (Figure 8.11). We
are still going to point out some differences from the case with the LM hashes. Firstly,
note that 8 passwords were revealed from the dictionary attack. Also be aware that
the LM Password column is empty and that the whole LM Hash column contains the
same hash values. The reason is that the password file used in this case is obtained from
a system running Windows Vista, and therefore only contains NT hash values, as LM
hash is disabled by default in Windows Vista. This is also the case for Windows 7 RC.
The characters used in the LM Hash column are just the value used when there does
not exist a hash value. This means that the NT hashes are the only possible target.

8.3. RESULTS OF THE STUDY 157

Figure 8.17: Phase 2: Settings used for the dictionary attack (NT hash).

At this point we experienced a minor difference between the SAM file obtained from
the Windows Vista machine and the SAM file from the machine running Windows 7 RC.
When we imported the SAM file that originated from Windows 7 RC we noticed that the
loaded NT hash values were different than those loaded when using the Windows Vista
SAM file, even though the same user account passwords were utilized. And when we
tried to run the dictionary attack no passwords were revealed. As we can see from Figure
8.18, the dictionary attack revealed 8 passwords from the Windows Vista SAM file. At
this point we wondered if Microsoft had improved their password handling for Windows
7 RC by for instance including a salt when generating the NT hash value. This turned
out to not be the case. We tried to import the Windows 7 RC SAM file into Ophcrack to
see if the hash values still were different from the hash values in the Windows Vista SAM
file, and in Ophcrack they were the same. This set aside our theory about improved
password security, and just shows that Cain & Abel had problems reading the Windows
7 RC SAM file. When we had loaded the Windows 7 RC SAM file in Ophcrack we chose
Save from the top menu and then Save to file. The saved file was then imported into
Cain & Abel, which was the tool used for the dictionary attacks. Now, the hash values
were the same for both the Windows 7 RC SAM file and Windows Vista SAM file. The
only difference was the window shown in Figure 8.18. The LM Password column was
still empty, as it was when using the Windows Vista SAM file, but the LM hash column
did not contain any values, in contrast to the Windows Vista case.

158 CHAPTER 8. EMPIRICAL PASSWORD STUDY

Figure 8.18: Passwords revealed from the dictionary attack (NT hash).

The 8 passwords that were revealed during this dictionary attack are listed in Table
8.13. And as can be seen from Figure 8.19 these 8 passwords constitute 27% of all the
selected passwords. This leaves us with 22 remaining passwords (73%) which will be a
subject to the cryptanalysis attack performed next. Note that the numbering used in
Table 8.13 are just included to point out that there are 8 revealed passwords at this
point. We got the same results when using the SAM file obtained from the machine
running Windows 7 RC.

In Phase 1 we estimated the time for the dictionary attack on the NT hash for the
selected password to be 49 seconds. The dictionary attack carried out in this phase
with all the 30 selected passwords was measured to take 58 seconds. After deducting
the 5 seconds it took for Cain & Abel to start, as we used the CPU Time displayed
in Windows Task Manager to measure the time, the dictionary attack was measured
to take 53 seconds. As for the LM hashes, this shows that it does not necessarily take
significant longer time to run a dictionary attack on a password file containing several
NT hash values than it does with a password file containing just one NT hash value.

8.3. RESULTS OF THE STUDY 159

Number User name Password
1 user1 password1
2 user2 abc123
3 user4 password
4 user6 qwerty1
5 user7 fuckyou
6 user8 123abc
7 user9 baseball1
8 user10 football1

Table 8.13: Revealed passwords. Figure 8.19: Share of revealed passwords.

Figure 8.20: Passwords revealed from the cryptanalysis attack (NT hash).

Let us now consider the cryptanalysis attack with the use of the NT rainbow tables.
The users with a password that was revealed during the dictionary attack were moved
from the list of passwords we wanted to reveal during the cryptanalysis attack. This can
be seen from Figure 8.20 as the users listed in Table 8.13, which lists the users with an

160 CHAPTER 8. EMPIRICAL PASSWORD STUDY

already revealed password, are omitted. As can be seen from the bottom menu in Figure
8.20 10 passwords of the 22 remaining passwords were revealed from the cryptanalysis
attack. In other words, the cryptanalysis attack with the NT rainbow tables was able
to reveal 45.5% of the 22 passwords that were subject to the cryptanalysis attack. From
the same figure it can be verified that we used the tables named Vista special. The NT
hashes that were not cracked during the attack are marked with not found in the NT
Pwd column.

Number User
name

Password Length Category Revealed?

1 user1 password1 9 Most Popular Yes
2 user2 abc123 6 Most Popular Yes
3 user3 myspace1 8 Most Popular Yes
4 user4 password 8 Most Popular Yes
5 user5 blink182 8 Most Popular Yes
6 user6 qwerty1 7 Most Popular Yes
7 user7 fuckyou 7 Most Popular Yes
8 user8 123abc 6 Most Popular Yes
9 user9 baseball1 9 Most Popular Yes
10 user10 football1 9 Most Popular Yes
11 user11 hm71li 6 Mnemonic Passwords Yes
12 user12 k0fzug 6 Mnemonic Passwords Yes
13 user13 fp6jar 6 Mnemonic Passwords Yes
14 user14 msi89a0 7 Mnemonic Passwords Yes
15 user15 %l41pc 6 Mnemonic Passwords Yes
16 user16 m.f0vgk 7 Mnemonic Passwords No
17 user17 v*qbt4un 8 Mnemonic Passwords No
18 user18 qtdra# 6 Mnemonic Passwords Yes
19 user19 5GCTw4tG@N 10 Mnemonic Passwords No
20 user20 tcC!tW84s 9 Mnemonic Passwords No
21 user21 qaSt4@ 6 Random Passwords Yes
22 user22 vANe$a 6 Random Passwords Yes
23 user23 !aFu9ut 7 Random Passwords No
24 user24 C7e++AV 7 Random Passwords No
25 user25 w2U$atHe 8 Random Passwords No
26 user26 $ Ch6cU5 8 Random Passwords No
27 user27 Ke42A2Pe* 9 Random Passwords No
28 user28 rA3$ ey*c 9 Random Passwords No
29 user29 b*#D9*7yEG 10 Random Passwords No
30 user30 8rA* pHa$8 10 Random Passwords No

Table 8.14: The results from both the attacks (NT hash).

8.3. RESULTS OF THE STUDY 161

The results presented above show that 8 passwords were revealed during the
dictionary attack and 10 passwords were revealed during the cryptanalysis attack,
meaning that 18 of the 30 selected passwords were revealed in total. Table 8.14 lists
all the 30 passwords that were revealed. The user name, length of the password and to
which category the password belongs is also included in the table. The 18 passwords
that were found are listed with Yes in the Revealed? column. Note that each row in the
table containing a password revealed during the dictionary attack has italic fonts. This
means that the passwords revealed during the cryptanalysis attack is marked with a Yes
in the Revealed? column but do not have their font in italic. 12 of the 30 passwords
were not revealed.

Table 8.15 and Figure 8.21 illustrate the share of revealed passwords in the dictionary
attack and the cryptanalysis attack. Figure 8.21 shows that 27% of the 30 selected
passwords were revealed during the dictionary attack while 33% of the passwords were
revealed during the cryptanalysis attack. This means that 40% of the NT hash values
were not cracked.

Technique Passwords
Revealed

Dictionary attack 8
Cryptanalysis attack 10
Total 18

Table 8.15: Revealed passwords. Figure 8.21: Share of revealed passwords.

To figure out how long time the cryptanalysis took to complete we had to take a
look at the bottom right corner of Figure 8.20. According the Time elapsed field, the
cryptanalysis attack took 4 hours 26 minutes. Recall from Phase 1 that the cryptanalysis
attack using the NT rainbow tables was estimated to take 22 minutes and 38 seconds.
Table 8.16 gives an overview of the timing results from the dictionary attack and from
the cryptanalysis attack. The dictionary attack performed in this phase was carried out
on all the 30 selected passwords, while the remaining 22 hash values were subject to the
cryptanalysis attack.

162 CHAPTER 8. EMPIRICAL PASSWORD STUDY

Technique Time
Dictionary attack 53 seconds
Cryptanalysis attack 4 hours 26 minutes (15960 seconds)
Total 4 hour 26 minutes 53 seconds (16013 seconds)

Table 8.16: Phase 2: Time measurements for the NT hashes.

An illustrative overview of how much time the different attacks constitute of the
8 hours period available is given in Figure 8.22. As can be seen from the figure, the
dictionary attack constitutes 0.18% of the available time and the cryptanalysis attack
constitutes 55.42% of the time. This leave us with 44.40% unused time. This shows that
we are within the time limit of 8 hours.

Figure 8.22: Distribution of time between the techniques applied to the NT hashes.

It should be added that we got almost the same results when using the Windows 7
RC SAM file as we did when we used the Windows Vista SAM file. The results from the
dictionary attack was identical, and the only difference was that the cryptanalysis attack
performed on the Windows 7 RC SAM file took 5 hours 15 minutes and 28 seconds to
complete while, as already presented, the same attack took 4hours and 26 minutes on
the Windows Vista SAM file. The exact same passwords were revealed in both cases.
This means that the NT hash values stored in the Windows Vista SAM file and the
Windows 7 RC file are identical, and that Microsoft has not increased the security to
the newly released Windows 7 RC operating system regarding the login passwords that
are hashed and stored in the SAM file. Microsoft has for example still not included a
salt when generating the NT hash values.

8.3.2.3 MD5 hash

For the MD5 hash a dictionary attack was the only attack that was applied. The only
difference between the dictionary attack performed in Phase 1 and in this phase is that

8.3. RESULTS OF THE STUDY 163

the password file contained 30 MD5 hash values in this phase instead of one MD5 hash
value, which was the case in Phase 1. John the Ripper was the tool used for the dictionary
attack, and the dictionary attack was carried out during the whole 8 hours period.

Figure 8.23: Passwords revealed from the dictionary attack (MD5 hash).

From Figure 8.23 it can be seen which of the 30 selected passwords that were revealed
during the dictionary attack, and also in which order they were found. From the john
command in the third line in the figure it can be seen that the same wordlist (Wordlist.lst)

164 CHAPTER 8. EMPIRICAL PASSWORD STUDY

is still used, and that mangling rules are applied (−−rules). As John the Ripper has
a built-in timing function, it can also be verified that the attack was stopped after 8
hours as planned. The line saying Session aborted confirms that the attack was aborted
before it was able to complete, and as we can see from the same figure, about 40% of
the dictionary attack completed. During the 8 hours the dictionary attack revealed 8
passwords in total. From line 5 in the figure saying Loaded 30 password hashes with 30
different salts, it can be seen that all the 30 password hashes were loaded and that each
of the 30 MD5 hash values were generated by using different salt values. And if you take
a look at the first 3 lines of the figure you will also recognize the umask, the unshadow
and the john command which is already described. The field named c/s in the figure
gives the number of combinations of usernames and passwords per second.

Another overview of the revealed passwords has been included in Figure 8.24. It
presents the same findings as found in Figure 8.23 but in a more easy-to-follow way.
You can get this overview by writing sudo john −−show mypasswd, where mypasswd
is the name of the file containing the content of both the passwd and the shadow file.
The command has to be run after the dictionary attack has completed or been aborted.
In addition, the figure explicitly informs us about the number of passwords found: 8
password hashes cracked, 22 left.

Figure 8.24: A list of the revealed passwords sorted by username.

The 8 passwords that were revealed during the dictionary attack are listed in Table
8.17. Note that the passwords are sorted on the user name, meaning they are not listed
in the order they were revealed, and the numbering in the left column shows that there
are 8 revealed passwords. As Figure 8.25 points out, these 8 passwords constitute 27%
of all the 30 selected passwords. This means that the remaining 22 passwords, which
constitute the remaining 73%, was not found since the dictionary attack was the only
attack performed on the MD5 hash values.

Table 8.18 lists all the 30 passwords to give an overview of which of the selected
passwords that were revealed, and which did not. This can be seen from the column
labeled Revealed?

8.3. RESULTS OF THE STUDY 165

Number User name Password
1 user1 password1
2 user2 abc123
3 user4 password
4 user6 qwerty1
5 user7 fuckyou
6 user8 123abc
7 user9 baseball1
8 user10 football1

Table 8.17: Revealed passwords. Figure 8.25: Share of revealed passwords.

Number User
name

Password Length Category Revealed?

1 user1 password1 9 Most Popular Yes
2 user2 abc123 6 Most Popular Yes
3 user3 myspace1 8 Most Popular No
4 user4 password 8 Most Popular Yes
5 user5 blink182 8 Most Popular No
6 user6 qwerty1 7 Most Popular Yes
7 user7 fuckyou 7 Most Popular Yes
8 user8 123abc 6 Most Popular Yes
9 user9 baseball1 9 Most Popular Yes
10 user10 football1 9 Most Popular Yes
11 user11 hm71li 6 Mnemonic Passwords No
12 user12 k0fzug 6 Mnemonic Passwords No
13 user13 fp6jar 6 Mnemonic Passwords No
14 user14 msi89a0 7 Mnemonic Passwords No
15 user15 %l41pc 6 Mnemonic Passwords No
16 user16 m.f0vgk 7 Mnemonic Passwords No
17 user17 v*qbt4un 8 Mnemonic Passwords No
18 user18 qtdra# 6 Mnemonic Passwords No
19 user19 5GCTw4tG@N 10 Mnemonic Passwords No
20 user20 tcC!tW84s 9 Mnemonic Passwords No
21 user21 qaSt4@ 6 Random Passwords No
22 user22 vANe$a 6 Random Passwords No
23 user23 !aFu9ut 7 Random Passwords No
24 user24 C7e++AV 7 Random Passwords No
25 user25 w2U$atHe 8 Random Passwords No
26 user26 $ Ch6cU5 8 Random Passwords No
27 user27 Ke42A2Pe* 9 Random Passwords No
28 user28 rA3$ ey*c 9 Random Passwords No
29 user29 b*#D9*7yEG 10 Random Passwords No
30 user30 8rA* pHa$8 10 Random Passwords No

Table 8.18: The results from the dictionary attack (MD5 hash).

166 CHAPTER 8. EMPIRICAL PASSWORD STUDY

In Phase 1 we estimated the time for the dictionary attack on the MD5 hash for the
selected password to be 51 minutes and 48 seconds. The dictionary attack carried out in
this phase with all the 30 selected passwords was aborted after 8 hours, as this was the
time limit set for the experiment. This means that the attack did not complete. Table
8.19 gives an overview of the time measurement for the dictionary attack on the MD5
hash values. In other words, the dictionary attack took 100% of the available time.

Technique Time
Dictionary attack 8 hours (28800 seconds)

Table 8.19: Phase 2: Time measurement for the MD5 hashes.

Chapter 9
Discussion

In this thesis we have presented various procedures and tools to reset or recover an
administrator’s login password. We also performed an empirical password study to test
if a set of passwords, retrieved in hidden form (hashed) from various operating systems,
were possible to recover. In this thesis we also created a tool based on the experience
we gained through all of the previously mentioned experiments. We have tested and
experimented with our tool and other procedures and tools on many popular operating
systems and have accomplished results we never expected before we began writing this
thesis.

9.1 Procedures and Tools

In this thesis we have presented 6 procedures in Chapter 5, and 10 tools in Chapter
6 that can be used to reset or recover the login password for Administrator accounts
on various Windows and Unix-based operating system. Some of the procedures and
tools were easier to use than others, and in Table 7.1, 7.2 and 7.3 in Section 7.1 we
presented an ease of use field where we gave the procedure or tool a score representing
how easy it was to use. A procedure or a tool had three factors that we observed when
the experiments were carried out. These factors were how much technical skills that
were needed to carry out the procedure or tool, how many prerequisites were needed,
and how much time the procedure or tool used. The basis of the easy to use score was
generated from a combination of these three factors. To be mentioned in this thesis, the
procedure or tool had to have at least one successful approach on at least one operating
system.

During our research and during the experiments we only found procedures concerning
password resetting. Because all of the operating systems we tested with hide their login
passwords, usually as a hash value, no procedure could easily reveal these passwords.
If the passwords had been stored in clear text, or if the hash algorithm would have
been easily reversible, a simple procedure could be to find these passwords using for
instance a live CD. Fortunately the passwords were stored much more securely with

167

168 CHAPTER 9. DISCUSSION

hash algorithms that were hard to reverse. On the other hand, a big problem with some
of the hash algorithms had weaknesses exploitable by well known password cracking
tools. You could manually compute a hash value and compare it with the stored one,
although this might be very time consuming and inefficient. The tools we presented in
Chapter 6 and 8 automate this process and utilize the power of a computer. The tools
have various password cracking techniques, as described in Section 2.1.2.2 and presented
in Section 2.4.2.

In Table 7.1, 7.2 and 7.3 found on page 124 the result of the experiments with
procedures and tools to reset or recover a password was presented. In these tables we
included a field called Operating System. This field presented what operating systems
worked for the specific procedure or tool when the approach was carried out. What
operating systems the particular procedure or tool supported is listed in Chapter 4.
The tables presented in Chapter 4 may be considered a result in itself, describing where
each procedure and tool can be accomplished successfully. We performed two different
approaches with Tool 8, John the Ripper as presented in Table 7.3, which is the reason
why the tool is displayed twice.

9.1.1 Evaluation of Procedures

The first procedure presented in this thesis, Procedure 1: Windows XP Repair Backdoor,
we gave the score 3. This procedure was very time consuming and required a lot of
intervention from the user. The procedure also required that the user had an installation
CD present. The procedure only worked for that specific operating system (Windows
XP) and was therefore not very flexible. As there are many other procedures to choose
for this operating system, we would advice the user to rather use one of these.

Procedure 2 Edit Shadow File in Unix Systems also got the score 3. The reason
for this was that this procedure had some prerequisites that were hard to fulfill. The
procedure required that the user had a precomputed hash, and this had to be in the
same format as the hash value being replaced. Procedure 2 was also quite difficult to
perform. The positive thing with this procedure was that it was not as time consuming
as the first procedure mentioned. Procedure 3, Shortcut for Bypassing Regular Login
Procedure, on the other hand was a very practical and simple procedure to perform. If
Windows XP is the operating system where the password is lost, this procedure should
be the first choice for the user trying to get access. The procedure had no prerequisites
and was performed in less than a minute. The only problem with this procedure was that
it only worked on Windows XP. In addition it is very common to set the Administrator
password, and then the procedure is useless. The procedure is worth a try if you do not
know if the Administrator password is set.

Procedure 4, Replace a Pre-login Executable File, had the big advantage that it
worked on every Windows version we tested it on, even the new release candidate of
Windows 7. The procedure required a bit technical skills, but if the approach described at
page 78 were to be followed perfectly, it should not be that hard to complete successfully.
This procedure had a prerequisite, but this was not a very difficult task to obtain. The
only requirement was that the user had write access to the file system of the operating

9.1. PROCEDURES AND TOOLS 169

system subject to the password resetting. Getting file access can be done with almost
every live CD that is able to mount the NTFS partition the operating system is installed
on. The procedure can also be performed with a Windows installation CD. Based on
this we gave this procedure the score 2.

Procedure 5, Use Mac OS X Installation Disk, was specific to Mac OS X. The
procedure was easily accomplished as long as the prerequisite, having a Mac OS X
installation disk, was fulfilled. The procedure is also suggested procedure by Apple, and
as a result of this we gave the procedure the score 1.

The last resetting procedure described in this thesis was Procedure 6, Windows
Password Reset Disk. This procedure is Microsoft’s own answer to the problem when
a user has lost the login password. When we tested the procedure it worked for all the
Windows operating systems described in our thesis, and was very easily carried out as
long as the prerequisite were met. In Procedure 6 the user had to create the password
reset disk before the password was lost. The problem with this was that users will
usually not create this disk, and when the disk is needed it is too late. The prerequisite
required for this procedure was the reason why we gave this procedure score 2. Note
that the Windows Password Reset Disk only works for the specific operating system it
is created on.

9.1.2 Evaluation of Tools

The first tool we presented in this thesis was Tool 1, PCLoginNow 2.0.1. This tool was
a very good tool if the goal was to set the Administrator password to blank (password
resetting). Although setting the password to blank was the only option concerning
password handling that this tool could offer, we chose to give this tool score 1 because
it was so simple and worked on all Windows systems we experimented with. If the goal
was to set a new password, this could have easily been done afterwards, when the user
had logged in as Administrator with a blank password. The tool was quick and had
a simple interface that among other things gave the user the possibility to enable the
Administrator account if this was disabled. Enabling the Administrator account is an
important feature because this account is often disabled by default.

Tool 2, Offline NT Password & Registry Editor, was one of the best tools we
experimented with in this thesis. It had the possibility reset or blank the password
on any account on all of the Windows systems we experimented with. It booted the
system very fast, but to some people it might be a bit difficult to understand. The
tool did not have a graphical interface such as Tool 1 but had support for enabling
the Administrator account. We chose to give the tool score 1 because of its speed and
functionality.

Tool 3 consists of two possible approaches, and both Tool 3.1 and Tool 3.2 had much
similarities and the prerequisites were the nearly same. Tool 3.1, Password Renew, was a
bit quicker than Tool 3.2, Windows Gate. For some reason we experienced that Password
Renew did not work for Windows Server 2008 when we tested it. Windows Gate had
some more features than Password Renew, but none of relevance for the topic in this
thesis. We chose to give both of the tools score 2 because of the prerequisites needed for

170 CHAPTER 9. DISCUSSION

these tools. The process of creating the BartPE bootable CD with these tools was very
time consuming and required a Windows XP installation disk.

Tool 4, Kon-Boot, was one of the best tools we tested in this thesis. It was very
small in size and only required the user to press any key for it to work. It worked on
both Windows and Unix-based systems but of some reason it did not work on the latest
release candidate of Windows 7. There can be many possible reasons for this, one might
be that Windows has fixed the backdoor utilized by Kon-Boot. Because of the simplicity
and because the tool worked on many different operating systems we chose to give this
tool score 1. Tool 5, DreamPackPL, on the other hand, we chose to give the score 3. This
was because it was one of the most difficult tools to handle, and we only got it to work
on Windows XP. The positive thing about this tool was that it had much functionality
once it was installed.

The last password resetting tool we presented in this thesis was the built in Unix
tool passwd. This tool, Tool 6 passwd, required no preparation in itself as it was already
installed on the system. In other words, the tool had no prerequisites, and could be
initiated without any physical media such as a CD. The problem was that the user had
to have root or Administrator access to use it. This was nevertheless easily acquired by
performing some of the supplementary procedures; 7.1, 7.2, 8 or 9. We chose to give
this tool score 2 and not 1, because of its dependency of the supplementary procedures
mentioned.

In addition we presented 4 password recovery tools in this thesis. In all of the
approaches described in Section 7.1.2 (Password Recovery) the goal was to reveal two
passwords, password and Hax0R. The first password recovery tool, Tool 7 Ophcrack, was
in our opinion a very good tool, exploiting the weakness of hash algorithms that lack
the use of salt. We gave the tool score 1. This tool worked for both LM and NT hash
values, thus capable of recovering passwords on all the Windows operating systems we
experimented with. Tool 7 had a nice graphical interface, and started immediately when
the system had booted. It was very easy to use, but yet very powerful when it came to
password cracking. The results of the approach described at page 110 would have been
much better if we had used supplementary rainbow tables. With the free rainbow tables
that were included on Ophcrack Vista Live CD 2.1.0 we were able to reveal password but
not Hax0R. This was because the character set for the rainbow tables included did not
cover the characters of the latter password, leading to a password cracking process with
rainbow tables that was completed in less than 12 minutes. In Chapter 8 we demonstrate
the real power of Ophcrack using larger rainbow tables.

With Tool 8, John The Ripper, we carried out two approaches. When we used the
tool in the first approach with Windows XP as the host operating system, we managed
to reveal both of the passwords. Because of the structure of the LM hash, the passwords
were revealed in only uppercase letters by John the Ripper. With patches of Tool 8, the
correct lower and uppercase password can be revealed. In the tool YALP, described in
Section 7.2, which the authors of this thesis created, we included a tool called lm2ntcrack.
This tool is able to try all combinations of the revealed LM password in such a way that
when the correct mix of uppercase and lowercase letters generates the correct NT hash

9.1. PROCEDURES AND TOOLS 171

value, the correct password is found. In the second approach we used John the Ripper
with Ubuntu server 8.10 as the host operating system. Ubuntu Server 8.10 used the
hash algorithm MD5 to hide password and SHA-512 hash algorithm to hide Hax0R. As
the password cracking tool did not support SHA-512, this password was not revealed. It
is said that patches can be found for John the Ripper to support both NT and SHA-512
algorithms, but this was out of scope for this thesis. Tool 8 is a text based tool, and
may therefore seem deterrent to some people. The tool supports many different hashes
from various operating systems. It has powerful cracking modes, and is one of the most
popular password recovery tools available. We chose to give this tool a score 2 because
carrying out both of the approaches may be a bit difficult, yet the tool revealed both of
the passwords on one of the approaches very fast.

Tool 9, Cain & Abel, was in our opinion an excellent password recovery tool. It had
support for many password cracking techniques and support for many different types of
rainbow tables. The tool could reveal passwords from many different operating systems.
In the approach described in detail on page 115, we use rainbow tables that are capable
of revealing every password consisting of less 15 characters in Windows XP. By using
rainbow tables the approach was harder to carry out as the tables had to be downloaded
in advance. The tool was easy to use, but because of the prerequisites (rainbow tables)
we gave this tool a score 2. By using this tool and this approach, we managed to reveal
both of the passwords. This approach was the only approach that revealed the passwords
correctly, even with mixed-case letters.

The last tool we presented at page 117 was Tool 10, LCP 5.05. This tool was a
simple password recovery tool, with the support of revealing most Windows operating
system passwords. When the approach for this tool was carried out we chose to stop the
password recovery process after 15 minutes. This was because the tool did not find the
password Hax0R in any dictionaries, and began using brute-force as password cracking
technique. Because of the simplicity of the tool and the support for revealing both LM
and NT hashed passwords, we chose to give the tool score 1. Tool 10 revealed password
but not Hax0R. As with some of the other tools mentioned, this password was revealed
easily because it was present in the dictionary used by the tool.

9.1.3 General Discussion

We experienced that some of the procedures was hard to carry out and that each tool
often support separate systems. We identified that a live CD containing many of the
tools and an implementation of some of the procedures were desirable. As a reaction
to this we began creating a tool called YALP described more in detail in Section 7.2
and 9.3. By collecting many well known tools and implementing some of the procedures
mentioned earlier, YALP is able to reset or recover most of the passwords on most of
the systems presented in this thesis.

At first glance, one may think that it is much better to recover the password than to
reset it. Both of the approaches have their pros and cons. A big problem with password
recovery is that you usually do not know much about the strength of the password. Since
the recovery process can take a large amount of time, resetting is often performed in just

172 CHAPTER 9. DISCUSSION

minutes. A negative side of revealing a lost password is that this will often not require
changes to the system, and attackers may reveal the password unnoticed to the owner
of the system. Another negative side of an attacker revealing a users password, is that
users tend to use the same passwords on many different systems or services and if one
is revealed, the attacker might try this password on other systems as well. A revealed
password may lead to a disaster for both private persons and enterprises.

In this thesis we describe both procedures and tools. People may argue that a
procedure is better than using a tool or the other way around. Both have their positive
and negative sides. Using a tool may simplify the resetting of passwords, and make
recovery of passwords possible. On the other hand, some of the resetting procedures
might be clever to check before a tool is used, because they usually require little
prerequisites and some are very quickly carried out. If it was our choice we would
first identify the operating system subject to password recovery or resetting. If the
system was Windows XP, choosing Procedure 3 (Shortcut for Bypassing Regular Login
Procedure) taking only half a minute, would be a good start. If this procedure did not
work but the system was a Windows system, of course checking for a password reset disk
described in Procedure 6 could be a simple solution to the problem. If it was desirable
that the system should be unchanged, using a password recovery tool such as Tool 7, 8,
9 and 10 would be a good idea. When it comes to the Unix-based systems, using either
Procedure 5 or one of the supplementary procedures 7, 8 or 9 in a combination with
Tool 6, the password could easily be reset. A weak password may also be revealed using
for instance Tool 8 (John the Ripper). If the resetting of the password was desirable,
Tool 1 or 2 would be a wise choice. One of the tools that came as the biggest surprises
to the authors of this thesis was Tool 4, Kon-Boot. This tool is very simple, and when
loaded there is no need for a login password. You can log in in with any accounts
available without typing a password, and make the necessary changes, such as changing
the password.

If a person is in possession of a super computer or a large set of distributed computers
for instance via a botnet, much time can be saved on rainbow table generation or
password cracking. Even if the password is hashed with a salt, the rainbow tables
could be generated in real time, and at the same time password cracking could take
place. The use of salt will then just be a small hindrance in revealing the password.

In the poster mentioned in Section 2.4.3.2, and included as Appendix F, we present
an approach on generating NT hash rainbow tables with the use of Winrtgen. In the
approach we performed a benchmark using Fredriksholm. The hardware specifications
can be found in Section 3.1. The approach presented in this poster is unfeasible to
carry out because of the time it will take to generate the rainbow tables (5670 years).
We therefore propose that the use of one or more supercomputers would drastically
reduce both the time used for the generation of rainbow tables and the time used for
cryptanalysis to reveal the password.

To sum up, choosing what procedure or tool to use depends on how much time that
is available, what kind of system that is used and how much technical skill a person has
and is willing to involve in the process.

9.2. EMPIRICAL PASSWORD STUDY 173

9.2 Empirical Password Study

This section serves the purpose of discussing what can be extracted from the results
presented in Section 8.3 in the preceding chapter, regarding the empirical password study.
We will try to answer some of the questions asked, for example if it was advantageous
to run a dictionary attack before the cryptanalysis attack. Comments on how many and
which of the passwords that were revealed will also be given, as well as a comparison
of the time measurements that were performed. We have chosen to divide this section
into four parts. The first part discusses results related to the time measurements for the
cracking of both the LM and NT hash, and the second part discuss the results regarding
the password cracking of the LM and NT hash. The third part concentrate on both
the time measurements and password cracking related to the MD5 hashes. The reason
why we chose to separate the MD5 hash from the LM and NT hashes in this discussion
was that no cryptanalysis attack was performed on the MD5 hashes. The LM and NT
hashes are much more related to each other. The last part discusses other general results
obtained in this study.

Figure 9.1 presents the main results from the password cracking phase in the
Empirical Password Study. As can be seen, 100% of the LM hashes were cracked during
a working day (8 hours). This is a disturbing result because the LM hash, which is
used in Windows XP, is still widely in use. From Figure 9.1 in Chapter 1 it can be seen
that Windows XP constitute about 64% of the operating system market share. When it
comes to the NT hashes, 60% were cracked during the same period. The NT hash is the
successor of the LM hash and is used in for instance Windows Vista. 27% of the MD5
hashes were cracked, but it should be noted that the MD5 hashes were only exposed to
dictionary attacks.

Figure 9.1: Results from the empirical password study.

9.2.1 Time Measurements for LM and NT

In Phase 1 the dictionary attack on the LM hash of the selected password (8rA* pHa$8)
was measured to take 1 minute and 8 seconds, and the cryptanalysis attack was estimated
to take 1 hour 1 minute and 2 seconds. This can be seen from Figure 8.6 in Section
8.3.1.1. In other words, the dictionary attack constituted 0.24% and the cryptanalysis
attack constituted 12.72% of the available time. The time measurements from Phase 2

174 CHAPTER 9. DISCUSSION

showed that the dictionary attack on the LM hash took 1 minute and 3 seconds (0.22%)
and the cryptanalysis attack took 2 hours and 14 minutes (28.10%) when using all the
30 hash values. This shows that the timing result for the dictionary attack in Phase 1
was about the same as the result obtained from the dictionary attack in Phase 2, even
though we only used one hash value in Phase 1 and 30 hash values in Phase 2. Thus it
does not necessarily take longer time when performing a dictionary attack on a password
file containing many hash values than it does if the password file contains only one hash
value. The reason is that the dictionary attack performs parallel operations on several
of the 30 hash values. This implies that if you shall crack several password hashes, you
should make a password file containing all the hash values instead of running repeatedly
attacks on different password files, each containing one password hash. At least our
experience was that cracking multiple hash values simultaneously was much more time-
saving than cracking each hash value one at the time. Additionally we experienced that
it was more practical to store all the password hashes in one file instead of having a
lot of passwords files containing one hash value each. These timing results also show
that the dictionary attack constitute just a small portion of the total time used in our
experiment when trying to crack the LM hash. As will be discussed below, the timing
results of a dictionary attack depends on factors as how comprehensive mangling rules
you use and also the size of the wordlist. This is regardless of what type of hash you
run the dictionary attack on.

The dictionary attack performed on the NT hash of the selected password in Phase
1 was measured to take 49 seconds, and the cryptanalysis attack was estimated to take
22 minutes and 38 seconds. These results can be seen from Figure 8.7 in Section 8.3.1.2.
This shows that the dictionary attack constituted 0.17% of the 8 hours available, and
the cryptanalysis attack constituted 4.72%. To be able to do some comparison, we need
to consider the actual results obtained on all the 30 password hashes in Phase 2. In
Phase 2 the dictionary attack took 53 seconds (0.18%), which shows that the estimate
(49 seconds) was quite good, even though the estimate in Phase 1 was based on the use
of only one NT hash value. This was also the case for the LM hash, as described above,
and the same reasoning apply to the NT hash as for the LM hash.

For the cryptanalysis attack on the other hand, there was quite big difference between
the estimate and the actual result for both the LM hash and the NT hash. As mentioned,
for the LM hash we estimated the cryptanalysis attack to constitute 12.72% of the
available time, but instead it constituted 28.10%. For the cryptanalysis attack on the
NT hash the difference between the estimated time and the actual result was even bigger.
In Phase 1 the estimated time for the cryptanalysis attack was 22 minutes and 38 seconds
(4.72%), while the actual result showed that it took 4 hours and 26 minutes (55.42%).
Recall that for the cryptanalysis attack in Phase 1 we did not use all of the rainbow
tables, but instead calculated an estimate based on the result we got when using just
parts of them. Together with the fact that Phase 2 considered all of the 30 hash values,
this could be the reason for the big difference between the estimate from Phase 1 and
the actual result from Phase 2. This concerns both the LM and the NT hash.

To be able to give a good explanation of the differences mentioned above, we need

9.2. EMPIRICAL PASSWORD STUDY 175

to take a look at how the rainbow tables work again. For the first table a rainbow chain
with its intermediate values are generated. And if not a match is found when using
the first table, the chain may be reused when the other tables are loaded into memory
gradually. The size of the rainbow tables used is among other aspects dependent on the
length of the rainbow chains. Short chains give larger rainbow tables as more starting
points and endpoints need to be stored. This again leads to frequent lookups in the
rainbow tables. Larger chains give smaller tables, as fewer starting points and endpoints
need to be stored in the rainbow tables. The case with small chains requires a lot of
storage capacity, frequent lookups and fewer processing resources for the chains, while the
case with large chains requires less storage capacity, less lookups but a lot of processing
resources for the chain generation. If we take a look at the LM rainbow tables they
consist of 64 rainbow tables with a total size of 64GB, thus a lot of storage capacity.
The results presented above showed that it took much longer time to complete the
cryptanalysis attack on the NT hashes than it did on the LM hashes. This is because
the larger LM rainbow tables requires a lot of rainbow table lookups as shorter chains are
used, and the lookup process is less time consuming than the rainbow chain generation.
The NT rainbow tables on the other hand consist of 4 tables with a total size of 8GB,
thus less storage requirements but longer chains. And as already mentioned, long chains
require more processing resources, which is more time consuming than frequent rainbow
tables lockup. This is the reason why it took much longer to complete the cryptanalysis
attack on the NT hashes than it did on the LM hashes.

The reason why we got a difference between the estimation and the actual result
for each of the hash types at all was because we only used one hash value for the
estimation while we used 30 hashes when performing the cracking process in Phase 2.
Both the lookup process and the chain generation take longer time when we consider
30 passwords than it takes for just the single password. But why was the difference
between the estimate and the actual result so much bigger for the NT hashes than it
was for the LM hashes? The main reason is that it is required to generate more chains
when considering a lot of passwords than when considering only one password as was
the case in Phase 1. This influence both the cracking process of the LM hashes and
the NT hashes. But as the rainbow chain generation takes longer time than the lookup
process, and the chains are longer for the NT rainbow tables than for the LM rainbow
tables, the difference will be greater for the NT hashes than for the LM hashes. In other
words, this implies that the LM rainbow tables are more effective than the NT rainbow
tables when considering many passwords. It may be added that even though we start
out with 30 password hashes, this number will decrease as the cracking process reveals
passwords. The cryptanalysis will therefore perform faster as passwords are revealed,
but still the chain generation will be time consuming because of the big amount of
passwords. The passwords will not be revealed simultaneously even though the cracking
process considers all the password hashes in parallel, and not one by one. And because
the cracking process is not a sequential process where only one password is considered at
the time, you cannot multiply 22 minutes and 38 seconds with 30 passwords. 22 minutes
and 38 seconds was the estimated time for the cryptanalysis attack on the NT hash for

176 CHAPTER 9. DISCUSSION

the single password in Phase 1.

It may be argued that it was also 30 password hashes to consider for the dictionary
attacks, but still there was almost no difference between the estimate and the actual
result. This is because there is for example no computation of rainbow chains for the
dictionary attack, and therefore it will not be much difference whether you use several
passwords or just one password.

Recall that we chose to use two rainbow tables when we estimated the time for the
cryptanalysis attack on both the LM hash and the NT hash. The reason why we chose to
use two rainbow tables in Phase 1 was, as already mentioned, that the completion of the
first table would take longer time than the following tables. This is because the rainbow
chains with its intermediate values are calculated and then reused for the following
rainbow tables. This was learned from our own experience as we tried to estimate with
the use of only one table the first time, but then became aware of that the use of the
first rainbow table was more time consuming than the others. We still had to use the
timing results obtained from the use of only the first table when we estimated how long
time the second table would take to complete. These calculations are described earlier,
in Section 8.3 in Chapter 8. These calculations showed that for the LM hash it took
only about 53 seconds to complete the second rainbow table. When we used the first
two LM rainbow tables it took 6 minutes and 32 seconds. This confirms the theory that
running the first rainbow table is more time consuming than the second rainbow table.

The unused time for the LM hash cracking was estimated to about 87% in Phase 1,
while the actual unused time turned out to be about 72%. For the NT hash the unused
time was estimated to about 95%, while in Phase 2 it turned out to be about 44%. It
should be noted that even though Figure 8.4 in Section 8.3.1.1 indicates that for the
LM hash about 87% of the available time was unused after we had performed both the
dictionary attack and the cryptanalysis attack, it should be highlighted that the attacks
in Phase 1 were only carried out on one password hash. The idea with the 8 hour
limit was to reveal as many passwords of the 30 selected passwords as possible. And as
already discussed, the cryptanalysis attack for both the LM hashes and the NT hashes
took longer time than estimated because that we used more passwords in Phase 2 than
we did when performing the estimate in Phase 1. This is the reason why the estimated
unused time is larger than the actual unused time for both the LM and the NT hash.
The difference is smaller between the estimated unused time and the actual unused time
for the LM hash than for the NT hash. This is the result of what have already been
discussed, that the NT rainbow tables uses smaller tables but larger chains than the LM
rainbow tables. The main idea with Figure 8.4 was to illustrate how much the different
techniques might constitute of the available time using only a single password hash, and
then be able to compare this result with how much the same techniques constituted when
we used all the 30 password hashes in Phase 2. It was not much difference between the
dictionary attacks, but quite big difference for the cryptanalysis attacks.

9.2. EMPIRICAL PASSWORD STUDY 177

9.2.2 Password Cracking of LM and NT

We have now considered the timing measurements for both the LM hash and the NT
hash. Now it is time to consider how many passwords and also which of the 30 passwords
that were revealed during the dictionary and the cryptanalysis attacks. The results from
the dictionary attack on the LM hash in Phase 2, which can be seen in Table 8.9 in
Section 8.3.2.1, shows that 9 of the 30 passwords (30%) were revealed. And if we take
a closer look at Table 8.11 in the same section, it can be seen that all the 9 revealed
passwords belong to the category named Most Popular, which is considered the weakest
passwords included in this experiment. The only password from this category that the
dictionary attack was not able to reveal was myspace1. Actually, as can be seen from the
LM Password column in Figure 8.11 in Section 8.3.2.1, the dictionary attack was able
to find the last character, which is the number 1. This is because myspace1 consists of 8
characters, and 1 is therefore the only character that the second hash value is generated
from. The reason why the rest of the password was not revealed is that myspace, which
the first hash value is generated from, is a fairly new word because myspace has become
popular in recent years. The word myspace was therefore not included in the wordlist
used in the dictionary attack. And as also can be seen from Figure 8.11 is that the
dictionary attack revealed passwords consisting of 6, 7, 8 and 9 characters. It should
be noted that for the dictionary attack on the LM hashes the length of the password
does not matter as long as the password length is 14 characters or less. This is because
passwords that consist of more than 7 characters and less than 15 characters are divided
in two segments, as seen in the case with the myspace1 password. What matters is that
the password represented by the specific hash value is either listed in the wordlist that is
being used, or that some parts of that password is listed and that the whole password is
found by the use of the mangling rules. An example of a mangling rule that is included
in this experiment is the Two numbers Hybrid Brute which append the numbers ranging
from 0 to 99 to every word in the wordlist to see if the hash of it match the hash of
the password that is used. The use of this mangling rule can for example be verified
from Figure 8.10 in Section 8.3.2.1. And since the LM password may generate two LM
hashes, it is no guarantee that both the LM hashes are revealed since both the hashes
must be cracked to find the whole password. This is why only the second part of some
of the passwords that consist of more than 7 characters in Figure 8.11 is shown. The
21 password hashes (70%) that were not cracked during the dictionary attack became
subject to the cryptanalysis attack.

The results from the cryptanalysis attack on the LM hash, which can be seen both
in Figure 8.13 and in Table 8.11 in Section 8.3.2.1, show that all the remaining 21
passwords (70%) were revealed during the cryptanalysis attack. The reason why all
the remaining passwords were revealed, regardless of which category they belonged to,
was that the character set used for the cryptanalysis included the characters that the
remaining passwords consisted of. It should be noted that the cryptanalysis attack
revealed passwords that consist of 6, 7, 8, 9 and 10 characters. The LM rainbow tables
that were used for this cryptanalysis attack supported passwords with length up to and
including 7 characters. A complete list of all the supported characters (the charset) is

178 CHAPTER 9. DISCUSSION

listed in Section 8.2. So why did the cryptanalysis attack reveal passwords of more than
7 characters in length? The reason is the weaknesses when constructing the LM hash.
Because passwords that consist of more than 7 characters are divided into two segments
with at most 7 characters in each segment, and in that case produce two hashes that
represent that single password, it is sufficient to use rainbow tables that covers passwords
up to and including 7 characters.

These results show that in this case it did not matter to which category the password
belongs because all the passwords were revealed after the completion of both attacks.
According to our intention, almost all of the weakest passwords were revealed during
the dictionary attack. As this was the purpose of running the dictionary attack, this
part of the experiment has to be considered successful. Despite the fact the dictionary
attack fulfilled our expectations, it is important to add that in this case it was not
really necessary to run the dictionary attack at all since the character set used for the
cryptanalysis attack included every character that is possible to employ in the password.
It is possible to include so many characters in the character set and still be able to
reveal the password in relatively short time because of the weaknesses related to the
construction of the LM hash, like that the password is converted to uppercase and split
into two segments before it is hashed. This reduces the number of combinations that
has to be tried to reveal the password. In other words, this means that the cryptanalysis
attack would have revealed all the 30 passwords.

The results from the dictionary attack on the NT hash in Phase 2, which can be seen
in Table 8.13 in Section 8.3.2.2, shows that 8 of the 30 passwords (27%) were revealed
from the dictionary attack. This is one password less than the dictionary attack on the
LM hash was able to reveal, which revealed 9 passwords. The password that was not
found by the dictionary attack on the NT hash but found by the dictionary attack on
the LM hash was blink182. The reason for this is again the differences in how the LM
hash and the NT hash is constructed. When constructing the LM hash you would get
two hash values, where the first hash value is generated from blink18 and the second
value is generated from 2. The mangling rule named Two numbers Hybrid Brute, which
is mentioned earlier, will append the numbers ranging from 0 to 99 to every word in
the wordlist to see if the LM hash of this variant will match the LM hash value of the
password that is used. As an example, when the dictionary attack reach the word blink
in the wordlist, the LM hash of this word will be constructed and compared to the hash
value of the real password. This will not give a match, since the password to be found
for the first LM hash value is blink18. Then blink0 will be tried and so it continues until
it match is found or until blink99 is reached, since 99 is the last value supported by this
specific mangling rule. In this case we will get a match for blink18. As the number 2
exist in the wordlist, the second LM hash value will also be cracked.

When constructing the NT hash, the password is not split into segments, and this
is the reason why blink182 will not be found during the dictionary attack on the NT
hash. Since the password is not divided into two segments, the whole blink182 have to
match, and not just blink18 and then 2, as was the case for the LM hash. Since the
Two numbers Hybrid Brute mangling rule only supports numbers up to and including

9.2. EMPIRICAL PASSWORD STUDY 179

99, blink99 will be the last variant of blink that is tried before the dictionary attack
moves on to test the next word. As a consequence of that, blink182 will not be found
during the dictionary attack on the NT hashes. This highlights that the NT hash is
more secure than the LM hash. Since the whole password is used when the NT hash is
generated, the whole password must match a word tried by the dictionary attack, and
not just parts of it. Other than the blink182 password, the dictionary attack on the NT
hashes found the same passwords as when running the dictionary attack on the LM hash.
For the same reasons as for the LM hashes, the myspace1 password was neither found
during the dictionary attack on the NT hashes. The only difference is that while the
dictionary attack on the LM hash of the myspace1 password revealed the last character
which is 1, the dictionary attack on the NT hash of the same password did not reveal
anything of the password. This supports what already have been discussed. All the
revealed passwords did also in this case belong to the category named Most Popular.
The remaining 22 passwords (73%) became subject to the cryptanalysis attack.

The results from the cryptanalysis attack on the NT hash, which can both be seen
in Figure 8.20 and in Table 8.14 in Section 8.3.2.2, show that 10 passwords (33%) were
revealed during the cryptanalysis attack. After the completion of both the dictionary
attack and the cryptanalysis attack 18 passwords (60%) were revealed in total. This left
us with 12 unrevealed passwords (40%). If we take a closer look at Table 8.14, it can be
seen that most of the 10 passwords that were revealed through the cryptanalysis attack
on the NT hash belongs to the category named Mnemonic Passwords. Actually 6 of
the 10 mnemonic passwords were revealed, and in addition also one password from the
Most Popular category and two passwords from Random Passwords. The 4 remaining
password from the Mnemonic Passwords category that were not revealed is m.f0vgk (7
characters), v*qbt4un (8 characters), 5GCTw4tG@N (10 characters) and tcC!tW84s (9
characters). The last two are the passwords that were produced by us, and both of them
have corresponding phrases that are easy for us to remember even though they consist
of many characters. As can be seen from Listing 8.1 in Section 8.2, the maximum
password length that are supported by the Vista special tables is 8 characters, and
the corresponding character set are quite limited as only numbers from 0 to 9 and
lowercase letters are supported. As 5GCTw4tG@N is 10 characters long it was expected
that this password was not revealed during the cryptanalysis attack. The tcC!tW84s
password consists of 9 characters. This is also too long for the Vista special tables to
crack. But at Ophcrack’s web page there are other tables as well, and if we take a
look at the rainbow tables that is named Vista eight, which is 134.6GB in size, they
support passwords that are 8 characters in length. The corresponding character set
is: 0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!*.
This shows that if the tcC!tW84s password had been one character shorter it would be
revealed by the Vista eight rainbow tables. This shows that it may be wisely to choose
a password consisting of more than 8 characters, even though it consists of both lower-
and uppercase letters and a special character. The other two passwords (m.f0vgk and
v*qbt4un) that were not revealed by the Vista special rainbow tables are both within the
supported password length of the Vista special tables, but they have different character

180 CHAPTER 9. DISCUSSION

sets because they have different length. Both of these passwords consist of lowercase
letters, one number and one special character. The only thing that prevents both of
them from being revealed by the rainbow tables is the special characters. We have now
considered the only four passwords from the Mnemonic Passwords category that were
not revealed by the cryptanalytic attack. This was to highlight that the characters that
these passwords consisted of were not included in the character set. All the revealed
passwords consist of characters that are included in the character set.

If we take a look at the Random Passwords category there was only two passwords
(qaSt4@ and vANe$a) that were revealed by the cryptanalysis attack. The reason why
these two passwords were revealed is because they both consist of only 6 characters. And
if we take a look at the character set for passwords that are 6 characters or less in Listing
8.1, we can see that it covers a lot of characters, including special characters. That is
why these two passwords were revealed. If they had been one character longer, they
would not have been revealed because the character set for passwords of 7 characters
in length do not include special characters. Both of the passwords contain a special
character. They are also the only passwords in the Random Passwords category that are
just 6 characters in length, and the other passwords are not revealed by the cryptanalysis
attack.

In the category called Most Popular there was also two passwords (myspace1 and
blink182) that were revealed by the cryptanalysis attack. The reason why these
passwords were not revealed during the dictionary attack has already been explained.
As can be seen, both myspace1 and blink182 consist of 8 characters, which is the longest
password length that is supported by the Vista special tables. And from Listing 8.1
it can be seen that the corresponding character set are quite limited. The reason why
both these passwords were revealed is because they only consist of lowercase letters in
addition to numbers. If for example only one of the characters had been an uppercase
letter the passwords would not have been revealed. It has now been shown that it might
be small differences that determine if a password is going to be revealed or not.

We have now considered the password length of the revealed passwords from the
cryptanalysis attack on the NT hashes, and all the revealed passwords consist of 8
characters or less. This result are according to what could be expected from studying
the different character sets for the different password length for the Vista special rainbow
tables. Based on these results, and by studying the character sets that are available at
Ophcrack’s web page [44], it seems that for the time being your password should be
hard to crack with the rainbow tables at Ophcrack’s web pages if you select a password
that is more than 8 characters in length, contain both uppercase- and lowercase letters,
and also special characters. It seems that numbers are included by all the character
sets that are used for the different rainbow tables available at Ophcrack’s web pages. It
should be noted that it is also possible to use a password consisting of for example 8
characters as long as not all the characters that the password consists of is supported
by the character set. The password should also belong to the Mnemonic Password
category as the password may be easier to remember, but still appear as a random
string of characters. This is described in more details in Section 2.1.1 in Chapter 2. It

9.2. EMPIRICAL PASSWORD STUDY 181

should be noted that the password requirements mentioned above might change quickly
as the character sets grow larger and also longer passwords are being supported by the
character set. At this time it seems to be a trade-off between the number of password
characters that are supported, and the number and variety of characters in a character
set. This may change as the processors are becoming more powerful and as there are
more or less no storage limitations any more.

Earlier in this discussion we claimed that most of the passwords that were revealed by
the cryptanalysis on the NT hashes belonged to the Mnemonic Passwords category. Even
though this is true it needs a closer explanation. Recall that the hash values that were
cracked during the dictionary attack were removed from the list before the cryptanalysis
attack was performed on remaining hash values. If the passwords that belong to the Most
Popular category had been included in the cryptanalysis attack, another 5 passwords
(abc123, password, qwerty1, fuckyou, 123abc) would probably have been revealed as
they have all characters that are included by their corresponding character set. This
would have made the total of revealed passwords from the Most Popular category as
much as 7 passwords, and would then have been the category with the most revealed
passwords instead of the Mnemonic Passwords category. Another aspect to point out
is that the Mnemonic Password category, which is said to be the category containing
most of the passwords that were revealed during the cryptanalysis attack, is the category
with the largest number of passwords that are 8 or less in size. To be exact, 8 of the 10
passwords in the Mnemonic Passwords category consist of 8 characters or less. A length
of 8 characters is the maximum password length that is supported by the Vista special
rainbow tables. This shows that uneven distribution of passwords with different lengths
among the three password categories have probably influenced this result.

We have now seen that the dictionary attack performed on the NT hashes revealed
8 passwords while the cryptanalysis attack revealed 10 passwords. What can be said
about whether it was advantageous to run a dictionary attack on the NT hashes before
the cryptanalysis attack or not? Recall that all of the 8 passwords that were revealed
during the dictionary attack belonged to the Most Popular category. And the purpose
with the dictionary attack was to reveal as many as possible of the weakest passwords.
As already pointed out, the 2 passwords from the Most Popular category that were
not revealed during the dictionary attack were revealed during the cryptanalysis. From
the discussion above we found out that if the passwords that were revealed during the
dictionary attack had been included in the cryptanalysis attack, probably as many as 7 of
the 10 passwords that is included in the Most Popular category would have been revealed
by the cryptanalysis attack. But the biggest advantageous with the dictionary attack,
which has not been pointed out yet, is that the dictionary attack revealed three passwords
that would not have been revealed if only the cryptanalysis attack had been performed.
These passwords are password1, baseball1 and football1, and are all 9 characters long.
And because the Vista special rainbow tables do not support passwords of this length
they would not have been found. And if we can spend 53 seconds, which was the time
it took to complete the dictionary attack, to reveal three extra passwords, we would
say that it was advantageous to run the dictionary attack. In other words, our hybrid

182 CHAPTER 9. DISCUSSION

solution which consists of both a dictionary attack and a cryptanalysis attack, made sure
that all the passwords that are included in the Most Popular category were revealed.
This would not have been the case if the dictionary attack had been omitted.

Before we move on to the MD5 hashes, it should be highlighted that the same results
were obtained when the dictionary attack and the cryptanalysis attack were performed
on the SAM file that originated from the Windows 7 RC operating system. This means
that also the same discussions applies for the NT hashes stored in the Windows 7 RC
SAM file.

9.2.3 Time Measurements and Password Cracking of MD5

The last type of hash value that was used is the MD5 hash. In Phase 1 the dictionary
attack on the MD5 hash of the selected password (8rA* pHa$8) was measured to take
maximum 51 minutes and 48 seconds, which constitute 10.79% of the available time.
This leaves us with 89.21% unused time, but remember that only one password was used.
A cryptanalysis attack was not performed for the MD5 hash, and since the dictionary
attack was the only attack that was carried out, the idea was to let it run for the whole
period of 8 hours. As the maximum time it might take for one password was measured
to 51 minutes and 48 seconds, it was expected that we had to abort the dictionary attack
manually after 8 hours. Even though we are using 30 passwords in Phase 2, the time
estimate for the maximum time it might take for all the 30 passwords will not be 30 * (51
minutes 48 seconds). This is because the dictionary attack considers many passwords in
parallel and not the passwords one by one. This is confirmed by Figure 8.23 in Section
8.3.2.3 as the revealed passwords are found in random order. The password related to
user8 is for example the first password that is revealed, while the password related to
user1 is one of the last passwords that are revealed. When we aborted the dictionary
attack after 8 hours it had revealed 8 passwords (27%), which can be seen in Table
8.17. As for the dictionary attack on both the LM and the NT hashes, all the revealed
passwords during the dictionary attack on the MD5 hashes belonged to the Most Popular
category. It may be added that this result is the exact same result that we got from the
dictionary attack on the NT hashes. In this case, the only two passwords that were not
found from the Most Popular category were also myspace1 and blink182. These were
not found for the same reasons during the dictionary attack on the MD5 hashes as for
the case with the NT hashes. The dictionary attack on the LM hashes revealed one more
password (blink182) compared to the dictionary attack on the NT and MD5 hashes. In
other words, this means that the cryptanalysis attack on the MD5 hashes would have
had the same basis as the cryptanalysis attack on the NT hashes because 73% of the 30
passwords were still not revealed after the dictionary attack. But as no cryptanalysis
attack was carried out on the remaining MD5 hashes, the remaining 22 passwords (73%)
stayed unrevealed. It is important to highlight that the attacks performed is attacking
the actual password that is hashed, and not the weaknesses of the MD5 algorithm.

It would only be possible to say if the dictionary attack was advantageous to perform
in addition to the cryptanalysis attack if the cryptanalysis attack actually had been
carried out. But since most of the weakest passwords were revealed, and the result was

9.2. EMPIRICAL PASSWORD STUDY 183

exactly the same as for the dictionary attack on NT hashes, it is a reason to believe that
it would be advantageous to perform the dictionary attack. If a cryptanalysis attack was
supposed to be carried out after the dictionary attack, the dictionary attack would of
course not be run for 8 hours. Actually this is not necessary as all the revealed passwords
were revealed when the dictionary attack had run for 1-2 hours. This can be verified in
Figure 8.23. And because our upper limitation for the dictionary attack was set to 2
hours, this would not have been a problem. The remaining hours could have been used
for the cryptanalysis attack. As already pointed out, the cryptanalysis attack on the
MD5 hashes was omitted due to lack of MD5 rainbow tables and due to time constraints.

9.2.4 Discussion of General Results

When it comes to the results in general, it may be added that the reason why we used
the same wordlist for all the dictionary attacks was to make the attacks as equal as
possible for the different types of hashes. It would be hard to make a comparison if we
used a more comprehensive wordlist for one of the attacks. Then some may argue that
the conditions for the cryptanalysis attack were not the same since they used different
kinds of rainbow tables. The reason for this is that the different types of hashes are
constructed in different ways, and therefore need rainbow tables which are produced for
that specific hash type.

It may be discussed that since it was unused time after the dictionary attacks and
the cryptanalysis attacks had completed, we may have used a larger wordlist or more
comprehensive mangling rules for the dictionary attack, and also a larger character set for
the cryptanalysis attacks. This is possible, but we claim that since such a big portion of
the passwords were revealed based on the choices made for this particular experiment, the
trade-off between cracking time and revealed password was adequate. A small increase
of the wordlist, the character set or more comprehensive mangling rules may result in
an unexpected large increase in the time it takes to complete the attack. We had taken
this into consideration by introducing a limitation of the time available for both the
dictionary attack (2 hours) and the cryptanalysis attack (6 hours). The cryptanalysis
attack was dedicated most of the time as the dictionary attack was included to reveal the
weakest passwords before running the cryptanalysis attack. The chance of revealing the
more secure passwords was considered greater when running the cryptanalysis attack as
the more secure passwords would not be included in the wordlist used for the dictionary
attack. These limitations were set in advance, before we actually knew how long time
each of the attacks would take. This was to prevent the attacks from taking too much
time, as we wanted to find out how many of the 30 selected passwords we were able to
reveal during a working day (8 hours). The results show that both the dictionary attacks
and the cryptanalysis attacks were completed or aborted within these limitations.

If we were supposed to compare the use of a dictionary attack with a cryptanalysis
attack we would highlight that while the dictionary attack requires a relatively small
wordlist, even though there exist different types of wordlist were some of them are
bigger than others, the rainbow tables used in a cryptanalysis are a lot bigger. This
requires a quite large storage capacity. Another aspect with the rainbow tables is that

184 CHAPTER 9. DISCUSSION

they must either be downloaded or generated in advance of the attack, and this may
take quite a long time depending on your download speed and the system you are using.
It is important to be aware that people that have lost their password or attackers with
criminal purposes probably would invest a big effort in the action of recovering the
password. It should also be mentioned that, as have been seen from the results of the
empirical password study, a dictionary attack will probably take shorter time to complete
than a cryptanalysis attack. This will of course depend on how comprehensive mangling
rules you have included and also on the size of the wordlist and the rainbow tables.
But as already mentioned, a hybrid solution like the one used in this study with first
running a dictionary attack and then performing a cryptanalysis attack, seems like a
good solution to recover passwords.

Another observation is that when it comes to cracking passwords with the use of
rainbow tables, it does not matter if the password is strong or weak as long as the
password is within the requirements sat for the particular rainbow tables. In other
words, if the character set for the rainbow table covers all the characters used in the
password, the password will be revealed no matter if it is strong or weak. An example of
this is myspace1, which is one of the weak passwords used in this study as it is included
in the Most Popular category. As can be seen from Table 8.11 in Section 8.3.2.1, which
shows the results obtained from both the attacks carried out on the LM hashes, the
myspace1 password was revealed during the cryptanalysis attack (as the table entry is
not in italic). Then, take a look at Figure 8.15 from the same section which shows some
of the passwords revealed during the cryptanalysis attack. The revealed passwords that
are shown are listed in the order they were found. As we can see, the myspace1 (user3)
password is not listed in the view shown in the figure. Note that the figure does not
show all the revealed passwords. This may be verified by the scroll bar to the right in
the figure. The myspace1 password is actually found as one of the last passwords. From
Figure 8.15 you can see that there are a lot of passwords that seem a lot more secure
than the myspace1 password, which has been revealed before the myspace1 password.
An example is the qaSt4@ (user21) password, which is the first password that is revealed.
This password even includes a special character. The idea with this example is to show
that to select a secure password the password needs to contain characters that are not
included in the character set used for the cryptanalysis attack. And usually you don’t
know what character set or rainbow tables an attacker use. This makes it harder to
choose a secure password, but this will be discussed in later sections.

The results obtained from the empirical password study shows that even though
it is important to choose a strong password, this may not be sufficient alone. The
underlying system does also influence how easy the password can be recovered. A good
example of this is Windows XP, which utilizes the LM hash together with the NT
hash. Because of the weaknesses with the construction of the LM hash, which is already
pointed out several times, the rainbow tables can support a character set consisting of
all the characters necessary to reveal all the passwords. The results obtained from our
study, showing that all the 30 selected passwords may be revealed using rainbow tables,
confirms this statement. It may also be confirmed by investigating the character set

9.3. THE YALP TOOL 185

as well. To avoid the case illustrated in this example you should either disable the use
of LM hash or you should use a password longer than 14 characters if you are using
Windows XP. When the password is 15 characters or longer an operating system that
uses both LM hash and NT hash will not store the LM hash, only the NT hash. One
way to disable the use of LM hash is given in Appendix C.

This study shows that a big portion of the selected passwords were revealed, even
with computers that are not particularly powerful. As computers are rapidly getting
more powerful, with more storage capacity and processor power, a lot of passwords will
probably be revealed in the future. This increase in computer power will lead to that
more computations can be done in a shorter amount of time. Even though the use of
salt in the generation of the password hash will probably offer sufficient protection from
password recovery for a while, this will not offer sufficient protection in the future because
of the aspects pointed out above. As a result of this, the use of password will probably
not be a good authentication mechanism in future systems and other mechanisms may
have to be considered.

9.3 The YALP Tool

When we performed the experiments presented in Chapter 5 and Chapter 6, we
experienced that some of the procedures and tools were hard to carry out. As a reaction
to this we decided that a tool realizing some of the procedures was desirable. We also
urged for a tool that could handle many different operating systems, was able to both
reset and recover the login password, and that was easy to use. There are many different
password handling solutions residing on the Internet, and there are multiple live CDs
available offering a lot of tools, not just password handling tools. We could not find any
live CD that had a primary focus of collecting password resetting and password recovery
tools. We found a lot of security distributions containing a lot of security tools, but
none of them were plain and simple, and they did not have the main focus on password
handling. Because of this, we decided that a tool which could fulfill our demands was
desirable. Therefore we ended up with creating a tool called YALP (Yet Another Local
Password (tool)).

YALP is embedded with some of the most used password resetting and password
recovery tools. This tool, or more precisely security distribution, also includes our own
tools/scripts realizing some of the procedures described in Chapter 5. The tool serve
as a good alternative to other security live CDs/distributions because it supports many
different file systems, is easily configurable, does not require any specific hardware and
is small and efficient. Although YALP is small it is build upon a basic Linux system,
originating from the very popular Linux distribution Debian. Because YALP is based
on Debian, it will support the same packages and software meant for Debian. The
underlying system also has the same basic tools as many other Linux distributions such as
Fedora [92] and Ubuntu [9], making YALP very easy to use. The menus and scripts that
we have included in YALP ease the use of some of the often unfamiliar tools included in
most Linux distributions. The script mountos.sh which automates the mounting process,

186 CHAPTER 9. DISCUSSION

and is presented in Appendix B.4 is a good example. A normal user might be grateful
when it comes to having a script that automates this process. The mounting process of
a host system is usually necessary to perform, because files have to be changed on the
host system. We have chosen to initiate the mounting script automatically whenever the
user needs to mount the host system, if the host system not already is mounted. One of
the advantages with the scripts we have created is that the user needs no insight in how
to accomplish the procedures that is implemented.

Procedure 2 (Edit Shadow File in Unix Systems) is an example of a procedure to
reset the password in Ubuntu Server 8.10, which is pretty difficult to carry out. The
procedure has some prerequisites demanding that the user has knowledge of how to
create the correct hash value (MD5) for the new password to use. One of the scripts
we have included in YALP, editshadow.pl, automates this process for the user, and only
interfere with the user when necessary, for instance prompting the user for the desired
password. The editshadow.pl script is presented in Appendix B.3. This script and all the
other scripts included in YALP need improvements, and for instance support for other
systems and hash algorithms. This is left for further work and is therefore mentioned in
Section 9.8.3.

None of the tools included in YALP cost money, but some are nevertheless considered
as the best tools available to recover and reset passwords.

9.4 Implications of Poor Login Security

A poor login security can lead to many unwanted situations. This thesis demonstrates
that most operating systems have by default a poor login security, either through
backdoors or through weak password handling. Enforcing the user to choose a secure
password might be crucial to avoid the passwords from being revealed by unwanted
persons. Yet systems need to have some sort of recovery mechanism so that authorized
persons can regain access to their data. One may say that the purpose of a login
mechanism is lost when it can easily be circumvented. Why should a person have to
remember a difficult password when the underlying login security is poor? A common
expression is that when the computer is lost, so is the files inside the computer. This
is not a good excuse to have a poor login security. It should be the case that if the
computer is lost or stolen, nobody should easily able to steal the data residing inside
the computer. At least, the login security should stop the unwanted person when the
login screen appears. An unwanted person should not be able to use the system as an
implication of a poor login security.

It should not be the case that a person can quickly bypass the login mechanism on
every computer he or she is presented with. This makes the whole purpose of having a
login mechanism unnecessary. Some login mechanisms can be circumvented in less than
a minute, as presented in Section 7.1. This makes leaving your computer unattended for
only a short period of time a bad choice.

So what are then the implications of a poor login security? Although the list of
implications is endless, we have chosen to present some of the implications to highlight

9.4. IMPLICATIONS OF POOR LOGIN SECURITY 187

the importance of a good login security. In this section we have chosen to separate
between the implications of a weak login mechanism and the implications of a bad choice
of password. The reason why we separate between these two implications is because the
login mechanism is something a user usually trusts and is unable to change, while the
choice of password is something a user can affect.

In the next sections we present some implications that arise when a weak login
mechanism is used or a weak login password is chosen. A combination of these will of
course be even worse.

9.4.1 Implications of a Weak Login Mechanism

Having a weak login mechanism on a system can make the process of resetting or
recovering the password an easy task. This will then lead to unwanted persons being
able to easily reveal the password. If a system gets compromised, the attacker can harm
not only the owner or user of the system, but also an entire enterprise. A step into
an enterprise might be through an employee’s computer. This step can lead to that
new networks become available and new barriers can be exploited. Important personal
information or information vital for an enterprise can be stolen, often leading to large
costs for the enterprise. Loss of personal information might even damage a person’s
reputation or life. Some people might say that their computer do not contain important
information, but an attacker can easily insert unwanted information on your computer
that may harm you in the future. This unwanted information can for instance be child
pornography or just a virus waiting for the user to perform an important task on his
computer. If your computer is a subject to a malicious code attack, your computer can
be used in all sorts of criminal and harmful ways.

A weak login mechanism can lead the user of the system into believing that since the
chosen password is secure, so is the login mechanism. For instance as we experienced
with Windows XP, a usually secure password containing 10 characters is not secure
since the underlying login mechanism is not secure. Then again one may wonder why
windows have chosen to enhance their security with a security mechanism that is proven
to be insecure. Microsoft’s choice of replacing the weak LM hash with the NT hash
that is based on MD4, comes as a big surprise to the authors of this thesis, as the MD4
algorithm is proven insecure. A more scary thought is that the new Windows operating
system Windows RC 7 still uses the same weak NT hash algorithm. Windows also seems
to ignore the fact that salt is a good prevention of cryptanalysis attacks with rainbow
tables. In Windows 7 RC we do not see any indications of that the hash value protected
with a salt.

9.4.2 Implications of a Weak Password

By choosing a weak password, it can easily be revealed through password cracking or
password guessing. If the password ends up in wrong hands, the same unwanted events as
described in previous chapter can happen. What is even worse with revealing a password
to an unwanted person is that a clever attacker knows that it is very common to use

188 CHAPTER 9. DISCUSSION

the same password, or nearly the same password, other places. The attacker then has
access to other services, and harm can be done on these places as well. If the attacker
manage to reveal your password, he might come unnoticed from the attack, leaving the
compromised machine and user unaware of what have happened. The attacker can then
strike his attack in a later moment without the user’s knowledge.

As mentioned before, choosing a strong or secure password is very hard, because
it is dependent on the underlying password mechanism. The user generally needs to
know how the system the password is going to be used on is working, in order to decide
the strength of the password. This substantiates the importance of a good and secure
underlying password handling mechanism.

It is important to choose a strong/secure password. As we identified in the
experiments presented in Chapter 8, systems that has a good enough password handling
mechanism is also dependent on a strong/secure password to not be compromised. It
is not sufficient enough to rely on the underlying password mechanisms, because most
attackers try common passwords, dictionary attack with mangling rules (described in
Section 2.1.2.2), before eventually a brute-force attack is performed. The brute-force
attack might take very long time if the set of characters is large, but the password will
probably be revealed if the password originates from a dictionary. If this is the case and
the attacker is in possession of the password file, a good password hash algorithm will
not stop the attacker from revealing the password.

9.5 Possible Solutions to Prevent Unauthorized Access

In this thesis, we have identified many procedures and tools that can give authorized
persons access to the system even though the login password is lost. The problem with
these procedures and tools is that unwanted persons might also get access to the system.
A good system is capable of providing access to authorized persons, while unauthorized
persons are denied access. An even better system is able to help and provide alternatives
to authorized persons, but still deny access to unwanted persons, if the password is lost.
In this section we present some possible solutions to prevent access for unauthorized
persons.

9.5.1 Choosing a Secure Password

A good and secure password is often referred to as a word or phrase which is easy to
remember yet hard to guess. With tons of password guessing tools residing on the
Internet, creating a secure password becomes more and more difficult. During the
experiments with passwords in our empirical password study, described in Chapter 8,
we experienced that the importance of choosing a secure password will highly depend
on the system the password is created on. It is very sad to say that in some systems, for
instance in Windows XP (described in Section 8.3.2.1), choosing a secure password will
not largely impact the overall process of guessing the password, because the underlying
password handling can be exploited. This means that the user has to know how secure the

9.5. POSSIBLE SOLUTIONS TO PREVENT UNAUTHORIZED ACCESS 189

underlying system is, to choose password that is sufficiently secure. We experienced that
for Windows XP the password is not secure unless it is 15 characters or longer, resulting
in the system using a more secure password handling mechanism (NT hashing), not
storing the password as a LM hash. This is of course not the case if LM hash is disabled,
something that is not done by default. By not doing this by default, the ignorant user
will not be aware of the security risk when using Windows XP. On the other hand, if
a user for instance uses Fedora 10 the passwords are stored in a more secure way, and
secure passwords do not have to be longer than for instance 10 characters.

We also experienced that if the password handling used by the underlying system
is weak, such as with Windows XP and the LM hash, a password that seems stronger
that another may not be more secure after all, because all passwords with a length less
than 15 characters will be found anyway. If the password is subject to a cryptanalytic
attack using rainbow tables, and the characters that the password consists of resides in
the charset, the password will be revealed regardless of its strength.

If you disregard the fact that a password may be secure on one system and not
on the other, there are some basic rules on how to produce secure passwords. The
rules/properties mentioned in Section 2.1.1 presented by Klein [Kle91] and AccessData
[13] will make the password harder to guess when a dictionary attack is performed.
To protect against cryptographic attacks the password handling mechanism has to be
sufficiently secure and the password has to be of a certain length.

In Section 2.1.1 at page 9, we describe various ways to create secure passwords. The
password has to appear be as random as possible, and the length of the password has to
be above a certain length. The problem with randomness is that it makes the password
harder to remember, and of course the creation of a random password with the correct
properties is a study in itself. Some security experts advice the user to write down the
password, but we mean that this is not a good advice. The user can then easily lose their
password, the attacker might be able to steal the password, or the user may become a
subject to social engineering.

To remember the password it is suggested to choose a random password which has
a tone that is easy to remember. It can be hard to come up with such passwords, so
another method is using so called mnemonic phrases. They are built in a way that makes
the corresponding passwords easy to remember but also looks random. This makes it
easier to remember password that is very long.

We suggest to change the password as often as possible, where the new password
does not bear any resemblance to the old. This is can stop the attacker if the password
is lost or gets stolen. Using the same password for many services is not a good idea,
because some services might have weaknesses in the security.

What we realized from the studies was that a secure password will not necessarily stop
successful attempts to reset the password; it will only hinder the attacker from revealing
the password. To stop an attacker from resetting the password, additional security in
the password handling must be enabled. A solution to this might be to encrypt the
password files in such a way that the attacker will fail to change the password hashes.
An integrity check to see if the password files have been modified after boot might also

190 CHAPTER 9. DISCUSSION

be desirable.
In our opinion, generating a password that is based on a mnemonic phrase, has a

length longer than 14 characters and without any of the weak properties mentioned
earlier, is the only option to get a secure password. This is of course without changing
the built in password handling. This password has to be changed regularly and has to
be created without any connection with the owner of the password or famous phrases
residing on the Internet. A password of 14 characters in length can of course be reduced
to 10 characters if the LM hash is not used. As far as we know, no rainbow tables have
so far been created to crack hashes containing passwords of this length, which is not
hashed with the LM algorithm.

This, may not yield in the future as new weaknesses are revealed all the time and
computers are becoming more powerful. As we speak, distributed generation of rainbow
tables take place on web pages such as [106]. This page also claims to be able to perform
distributed cryptanalysis attack using rainbow tables.

As discussed in the beginning of Section 9.5 a system should be able to provide a
password resetting mechanism in such a way that only authorized persons can reset their
lost password. Microsoft’s solution to this, which is described in Procedure 6, is very
good. We think that this solution should be an enforced requirement when the user is
installing the operating system. The password reset disk must of course be kept in safe
place, so that unauthorized persons are unable to steal this together with the computer.

9.5.2 A More Secure Password Handling

In this thesis we have given approaches for accessing a password protected system even
though the password is lost. Many of the procedures and tools used in these approaches
utilize the weaknesses in a password handling mechanism in an operating system. Some
of the weaknesses were already identified in the background chapter, and some were
identified when different resetting and recovery approaches were carried out. Some
weaknesses tend to be fixed as new versions of an operating system is produced, but still
remain unchanged in older operating systems, even though these systems are still being
used all over the world. Many people and enterprises avoid updating their computers,
because of the large readjustments to the new system. The new systems have often not
been tested to be stable enough, or lack the required backward compatibility. One may
also wonder why some systems seem to ignore well known weaknesses year after year.

In Windows XP, which is still widely used by enterprises and end-users, we identified
multiple weaknesses with the password handling. Windows XP implemented backward
compatibility with earlier Windows systems by including the LM hash. In Section 2.3.1.2
we presented these weaknesses. Many of the tools that we described earlier, such as John
the Ripper and Cain and Abel, utilize these weaknesses by adding support for cracking
this hash. Even though the password additionally is stored as an NT hash, the wise
attacker knows that attacking the weakest link is the most effective, thus the attacker
focus on the LM hash. A solution to Windows XP’s backward compatibility may be to
disable the LM hash by default, and rather compute it if needed. An improvement to the
weak LM hash came with the NT hash. In Windows Vista, the LM hash is not enabled

9.5. POSSIBLE SOLUTIONS TO PREVENT UNAUTHORIZED ACCESS 191

by default, leading to the procedures and tools that attack the LM hash not longer being
feasible to use. In both Windows Vista and Windows 7 RC, LM hash can be enabled
by setting the register value NoLmHash from 1 to 0. In our opinion, the possibility to
manually enable the LM hash should not be available. The results we got in Section 8.3
are proof enough that the LM hash should not be used. If it has to be used, this is a
process we mean the operating system should handle without the intervention from the
user. The operating system could for instance temporarily generate the LM hash when
needed, and then delete it afterwards. Some may say that making it impossible for the
user to activate the LM hash is too strict, and letting users have the possibility to make
changes is one of the strengths with systems such as Linux. We agree that it is good
for users to have options, but because the LM hash is tremendously bad and users may
be given false expectations of security, we rather support that users are enforced not
to use LM hash in their systems. We would also advice them to upgrade their existing
operating systems, so that they only support the more secure NT hash.

Another discussion may arise with the statements that NT hash is secure enough. It
is very strange that even in the newest systems of Windows operating systems the same
NT hash, which is generated by the use of the proven insecure MD4 hash algorithm,
is being used. In our opinion Microsoft should update the NT hash’s underlying hash
algorithm to a more secure hash algorithm. This hash algorithm should always be kept
up to date, and replaced if a better algorithm is introduced. A reason why Microsoft
neglects preforming these steps, might be because the MD4 hash algorithm is a very fast
hash algorithm.

The lack of using salt when generating the LM and NT hash is in our opinion the
worst weakness in the password handling mechanism used by all of the different Windows
systems. We suggest that Microsoft update their hash generation to use salt. This would
hinder many of the tools presented in this thesis from revealing the passwords. A good
example is presented in Chapter 8. Both the LM and NT hash were attacked with
rainbow tables because of the lack of salt and many passwords were revealed. The MD5
hash was attacked only with a dictionary attack because salt had been used, thus only
about one third of the passwords were revealed. The reason why the passwords were
revealed in this attack was because the passwords suffered from many weaknesses. If
the LM and NT hashes had been generated with the use of salt a cryptanalytic attack
would have been difficult to perform, and much less passwords would probably have
been revealed. It is of course a necessity that the salt is random and of a certain length,
making the set of rainbow tables to generate much larger. As mentioned earlier in this
thesis, in possession of a supercomputer or a large distributed network of computers,
generating the rainbow tables after the salt is known might be possible.

Some of the Unix-based operating systems we experimented with, such as Ubuntu
Server 8.10 and FreeBSD, use the MD5 hash algorithm together with the crypt() function
to produce some of their hash values for the passwords. MD5 is also proven to be weak
[WY05], but these weaknesses were never exploited by us in the experiments presented
in this thesis. It is however advisable to use a hash algorithm with no proven weaknesses
to hide the passwords.

192 CHAPTER 9. DISCUSSION

When it comes to the password resetting approaches presented in this thesis, we also
presented weaknesses with the password handling mechanism that could be utilized to
perform password resetting. An obfuscation of the file(s) containing the hash values of
the passwords is desirable. The obfuscation should not be easily reversible in such a
way that the user could read the password file unless he is authorized. One of the more
positive things about the password handling mechanism provided in Windows systems,
is that they at least try to obfuscate the hashes in the SAM file. This obfuscation is
easily reversible with multiple tools available on the Internet. Tool 7 (Ophcrack) is one
of many tools mentioned in this thesis that has this ability. In the Unix-based systems
presented in this thesis, no obfuscation of the password files is present. The password
files are only readable by root, or users with Administrator privileges. The files are
also easily accessed using a live CD or through single-user mode that often requires
no authentication. Introducing a good enough obfuscation of the password files, could
prevent the procedures and tools that directly edit the password files from succeeding.
Password resetting would then be hard to perform and the hash values of the password
hard to crack. The unauthorized user would then first have to crack the obfuscation of the
password file. This would prevent many of the simple and fast resetting procedures and
tools. Confidentiality and integrity would be desirable to provide for the password files,
for instance through encryption and integrity checks. As this would require a password,
a Trusted Platform Module (TPM) could be a good solution. If this hardware device
had the property of being unreadable and not writable by others than the operating
system, the password handling mechanism would be much more secure. In the newest
computers released by Apple such a device is included, although Mac OS X 10.5.6 does
not encrypt the hash file. Using a TPM would be much wiser than hiding the password
file, like Microsoft has done in their systems. More about this can be found in Section
2.3.1.2 at page 39.

Many systems could improve the process where a user chooses a password, either
during the installation, when a password is changed or when a new user is added. First
of all the password should not be accepted until all requirements for a secure password
is fulfilled. The operating system should not enforce a simple “password hint”. The
question has to be hard for the attacker to answer, thus not a question such as What is
your mother’s maiden name?, or What’s the name of your first pet? By having such an
easy question, as Schneier claims in [107], this will result in the normal security protocol
(passwords) falling back to a much less secure protocol (secret question).

As mentioned above it is desired that access to the system can be recovered by
an authorized person, yet prevented for an unauthorized person. The authorized user
should in our opinion only have one solution to reset or recover the password instead
of many different solutions that all can be exploited. Throughout this thesis we have
identified many procedures and tools for various operating systems that can be used by
both authorized and unauthorized persons.

We desire one solution that has to be as secure as possible at all times. If a fix
to a weakness is published, no unauthorized persons should have time to exploit the
weakness because an enforced update has patched the system. The solution has to be

9.5. POSSIBLE SOLUTIONS TO PREVENT UNAUTHORIZED ACCESS 193

simple to use, and should provide sufficient protection. This solution should of course
prevent the use of all procedures and tools presented in this thesis. A possible solution
could be to enforce the user to create one, and only one, password reset disk during
installation. This is a solution that is already implemented by Microsoft (Procedure 6),
but the solution is only optional. The password reset disk should then be kept in a safe
place, not together with the system. If the user loses his/her password, only this disk
can recover the password. The user has to be made aware of the importance of this disk,
and that if the disk is lost a new disk should be created immediately. Because only one
disk is prevailing, the old disk is then useless. It is important to make the user aware
of that if both the password reset disk and the password are lost, the system becomes
useless. It is of course important that the password reset disk only works for the system
it was created on. This means that if a user has two identical systems with the same
username, a password reset disk will only work on the system where it was created.

9.5.3 Protection Mechanisms

To prevent unauthorized access to a system, it is common to use a login mechanism
where you type in a username and a login password. In the two latter sections we have
indicated that choosing a secure password and using a system with a secure password
protection mechanism can prevent unauthorized access to the system. In this thesis we
have presented procedures and tools to circumvent the login procedure and obtain full
access to the system. When the login procedure has been circumvented, we have even
presented ways to reset the password with system built-in tools. In all of the Unix-based
systems we have experimented with we have accomplished full access through single-
user mode. From single-user mode we have been able to reset the password manually
by editing the password files, or through the build-in Unix tool passwd (Tool 6 at page
108). In our opinion it seems very insecure to let anyone that has physical access to
the computer have the possibility to boot into single-user mode. No authentication is
needed to get full administrator access. We think that booting into single-user mode
should be disabled, thus making it harder to get access to the system without the use of
any prerequisites.

In Windows systems we have also demonstrated ways to accomplish full access to
the system and then be able to edit the password files using various tools. In all
of the Windows systems we have managed to replace an executable file, which we
were possible to execute before logging into the system, giving us full System access.
Procedure 4 presents an approach to replace the sethc.exe file. A minimum requirement
should be that the files that possible to execute before a user has logged in, have been
integrity checked. By performing an integrity check on these files, they cannot easily be
customized to provide full access for unauthorized persons.

Another solution to the problems presented above was to enable encryption of the
entire file system. This would probably prevent unauthorized access to the password
files as well, thus preventing resetting or recovery attacks on these password files from
being carried out successfully. In this thesis we have left encryption of files, partitions or
even entire disks to further work. To prevent unauthorized persons from accessing the

194 CHAPTER 9. DISCUSSION

system, we suggest that the operating system enables encryption by default, as many
people ignore messages to enable features, thinking that the login mechanism will stop
an unwanted person.

One of the tools, Kon-Boot, presented at page 50, exploit a weakness in the kernel,
and a “password-bypass-backdoor” is opened. To prevent such attacks, it is important
that the kernel becomes patched and updated in such a way that the backdoor is closed.
We could not get Kon-Boot to work on Windows 7 RC. There can be many different
reasons to this; one of them may be that Microsoft has patched the weakness Kon-Boot
is trying to exploit.

A protection mechanism that might be suggested is a login procedure loaded as part
of the BIOS or for instance the boot loader GRUB. Schemes for this are already available
on the Internet. As far as we know, most of the schemes can easily be circumvented,
and have therefore not been proposed as good solutions to prevent wrong persons from
getting access to the system. Authentication schemes concerning BIOS and GRUB is
considered as out of scope for this thesis, thus left to further work.

A possible solution to authenticate users, which is not focused on in this thesis, is the
use of a domain login scheme implemented with for instance FreeTDS [108]. Another
popular technology developed by Microsoft, Active Directory, also offer this solution.
The passwords are then securely stored on a centralized server. No local access will
reveal any password files or password hash values. Biometrics can also be implemented
to be used instead of password to authenticate users.

9.6 Windows versus Unix

When it comes to login security, some of the operating systems presented in this thesis
may appear better than others. Some systems might have a security feature that another
system lacks, and vice versa. This could be because they have focused on different
security aspects. In this section we will put the two main families of systems, Windows
and Unix, up against each other.

When we looked at login security we focused on two aspects concerning password
handling, password resetting and password recovery. The goal was to get access to
the system, not only the system files, but also to be logged in to the system as an
Administrator. As we have discussed before, most of the password resetting procedures
and tools, and the password recovery tools can be utilized by both authorized and
unauthorized persons. In this section we will try to compare the login security of
Windows operating systems and Unix-based operating systems. We will take into
consideration how many of the procedures and tools that were successfully carried out
on each of these systems.

Based on our experience, resetting was easier to carry out on all of the Unix-based
operating systems. There are two reasons for this. First of all, to enter single-user mode
none of the Unix-based system had any prerequisites, such as a live CD or rainbow
tables. As described in Procedure 7, 9 and 9, just by editing some boot-parameters or
pressing some buttons at boot, full file system access was granted. The password files

9.7. LESSONS LEARNED 195

were then editable and Tool 6 (passwd) could be used to reset the password. The other
reason why most of the passwords from a Unix-based system were easy to reset, was
that the password files were not obfuscated. In principle the password files are always
only readable by root, but when we entered single-user mode root access was granted.
Root access to the files was also easily granted through a live CD. As we demonstrated
with the script editshadow.pl, presented in Appendix B.3, which was an implementation
of Procedure 2, the password was reset by editing the password files. With Windows
on the other hand, the password file is obfuscated. Even though the obfuscated file
can be reversed by decrypting it with the SYSKEY as described in 2.3.1.2, this file is
not easily editable unless you use a tool. Tool 1 (PCLoginNow) and Tool 2 (Offline
NT Password & Registry Editor) were able to reset passwords in Windows operating
systems by uncovering the obfuscated SAM file after the SYSKEY was revealed.

When it comes to password recovery, all of the Unix-based systems used salt when
generating the hash values. This is a very important step, because the cryptanalytic
attack using rainbow tables is harder to accomplish when the hash is created this way.
Separate rainbow tables for each salt then have to be produced. In all of the Windows
systems salt was not used when generating hash values. We experienced that many
passwords were revealed as a consequence of the lack of this security feature. A very
weak hash algorithm was also included in Windows XP. Even though the theory of a
trade-off in time and memory using tables generated in advance has been known since
1980 [Hel80], Microsoft released their new operating system Windows 7 RC without the
use of salt.

A combination of the positive things with both Unix-based systems and Windows
system would be the best solution. It is hard to say which one is better than the other
as both had their weaknesses. We have found more procedures and tools for Windows
systems, than with Unix-based systems, but this could be the case because Windows
systems are much more popular as desktop and laptop operating systems than any of
the other Unix-based systems presented in this thesis.

An important fact is that none of the systems were bulletproof and we even found
a tool, Tool 4 (Kon-Boot), which worked on both Windows and Unix-based operating
systems. it is hard to point out which of the operating systems presented in this thesis
that are the best, but by following the advices we gave in Section 9.5, a lot of security
weaknesses can be fixed.

9.7 Lessons Learned

The intention with this section is to point out some lessons learned and some key aspects
that might have been carried out in a different manner.

9.7.1 Laboratory Equipment

It became clear that the computers used in our laboratory environment were not as
powerful as we might have wanted. During the empirical password study it would have

196 CHAPTER 9. DISCUSSION

been advantageous to have more powerful computers available, and this could probably
have enhanced the results obtained from the study. This may have led to that more
comprehensive attacks could have been carried out, for example with more mangling rules
for the dictionary attacks, and also that the current attacks could have been completed
in a less amount of time.

9.7.2 Selection of passwords

When it comes to the selection of passwords for our empirical password study, this may
have been done differently. We selected 30 passwords that were distributed among three
distinct categories. The three categories were Most Popular, Mnemonic Passwords and
Random Passwords. The Mnemonic Passwords were obtained by using a generator
on the Internet, and the generator produced both mnemonic passwords and their
corresponding mnemonic password phrase. Instead of using a generator, we could have
asked different people to come up with a mnemonic password that we could have used
in the study. The passwords should then have fulfilled certain requirements in order
to make the passwords vary in strength. Another option could be to increase the total
number of passwords included in the empirical password study.

9.7.3 Time measurements

As already pointed out, the amount of unused time in the empirical password study
turned out to constitute a big portion of the available time. As a result of this, we
could have decreased the amount of time that we wanted to use on the attacks. Another
possible solution could be to expand the wordlist for the dictionary attack, or to use
a bigger character set and/or rainbow tables when running the cryptanalysis attack on
the NT hashes. Note that it would not be any point in extending the character set for
the LM hash as all possible characters a password may contain was already included.

9.8 Further Work

In this section we suggest some topics that can be further investigated. These topics are
either out of scope of this thesis or omitted due to time constraints.

9.8.1 Disk Encryption

As a proactive solution to unauthorized access, many corporations use disk encryption.
This can protect vital information of an organization from being stolen, if for instance
your computer is lost.

Many of the systems used in the experiments have a possibility to enable encryption
using different solutions. There exist both encryption solutions that are already
embedded in the operating system and third-party solutions. The third-party solutions
can operate beneath the operating system, and some can be used on top of the operating
system, initiated from within the system.

9.8. FURTHER WORK 197

For Windows operating systems, EFS and BitLocker are two possible encryption
solutions. According to Microsoft, BitLocker protects both personal and system files on
the drive that Windows is installed on. This will prevent files stored on your computer
from being stolen if unauthorized users try to access the computer. EFS on the other
hand, is used to help protect individual files on any drive on a per-user basis [109].
BitLocker works before Windows boots up and seamlessly operates beneath the operating
system, while the EFS mechanism works after Windows has started [110].

A feature included in Ubuntu 8.10 Desktop and Server edition is the encrypted
filestore feature. This filestore is mounted in the Private folder in the /home directory
and is automatically unlocked and locked as the user logs in and out respectively [111].

Some of the other systems we have experimented with may also have embedded
encryption solutions available. There exist many other third-party encryption solutions
such as TrueCrypt [101] and SafeGuard Easy [112].

A possible study could be to investigate whether it is feasible to reset or recover
the Administrator password when encryption is enabled, and if successfully carried out,
check if files are readable. It could be the case that only some of the files become
readable.

9.8.2 Use of Supercomputers

When we carried out the Empirical Password Study described in Chapter 8, we identified
that the use of supercomputers could enhance the speed of the password cracking process.
A possible study could therefore be to use one or more supercomputers to perform the
attacks presented in the study. If for instance the workload could be distributed among
several supercomputers this could enhance the results. In a study performed by Bengtson
[Ben07], a scheme using password crackers on several computers in parallel is suggested.
Testing the passwords in our study using the clustering technique that Bengtson presents,
could be desirable.

Originally we wanted to generate our own rainbow tables by using the supercomputer
available at The Norwegian University of Science and Technology (NTNU), but due to
time constraints this idea have led to a possible master thesis next year instead. By using
rtgen, which is mentioned in Section 2.4.2.1, or Winrtgen (Tool 12), large rainbow tables
for many different hash algorithms can be generated. Based on these ideas, a poster
named Generation of Rainbow Tables was produced. The poster was presented at The
8th Annual Meeting on High Performance Computing and Infrastructure, NOTUR2009,
in Trondheim, Norway [2]. The poster is included in Appendix F.

In this thesis we omitted the use of MD5 rainbow tables due to the lack of rainbow
tables and due to time constraints. The generation of or the use of MD5 rainbow tables
could therefore be a topic to investigate further. Note that for the MD5 rainbow tables
the use of salt has to be considered.

Creating rainbow tables and performing cryptanalysis simultaneously might also be
a possible solution. When for instance a hash value and salt is known, the rainbow tables
corresponding to the actual hash value and salt could be generated on the fly.

198 CHAPTER 9. DISCUSSION

If there is not enough time available to generate the rainbow tables on the
supercomputer, only a benchmark giving an estimate for how long time the desired
process would take, could be desirable. Due to time restrictions given for the use of a
supercomputer, the generation may not be possible to carry out.

9.8.3 YALP

The tool YALP needs a lot of improvements. New scripts could be generated for other
procedures, and also our existing scripts can be extended to include more features, such
as support for more operating systems. It would be beneficial to for instance expand the
editshadow.pl script to support hash values created by other hash algorithms than the
ones already included. In addition, other already existing tools could be added.

A graphical interface for YALP will improve the user experience. People that are
not familiar with text-based interfaces will benefit of a graphical interface that will help
them understand the features of YALP, and ease the usage of the tool.

The instructions on how to built YALP is included in Appendix A. For an advanced
user these instructions can easily be modified to support more features, or to customize
the tool in a preferred way. The scripts we created for YALP are included in Appendix
B.

9.8.4 Other Hardware and Operating Systems

Although we have made a selection among different operating systems, the presented
procedures and tools might also work for other operating systems. It could be desirable
to test whether these procedures and tools work on systems running with other hardware
specification as well. It cannot be guaranteed that the procedures and tools work on
systems with other hardware specifications and operating systems than the ones included
in this thesis.

9.8.5 Other Exploitable Weaknesses

Weaknesses other than the ones that are already pointed out in this thesis may also
exist. Also these weaknesses could probably be exploited. One example is the Windows
memory management. Windows operating systems’ memory management leaves data
all over the memory in the normal course of operations. When you for example enter
your password at the login screen, it will be stored somewhere in memory in some form.
According to Bruce Schneier, Windows then swaps the page out to disk, and it becomes
the tail end of some file. The data is then moved to some far out portion of the hard disk,
and remain there. It is said that Linux and Mac OS do not offer any better solutions
regarding this problem [12].

If encryption of the hard disk is enabled, there already exist methods that tries to
obtain the password used for the encryption. One such method is to cool down the
memory to try to get hold of the password that is already in memory for some time after
the computer is shut down.

9.8. FURTHER WORK 199

Another interesting study could be to investigate where and how the password hint,
which is required when the user creates a password, is stored on the computer.

9.8.6 Other Authentication Mechanisms

In this thesis experiments on passwords and login mechanisms have been evaluated.
It has been revealed that passwords may not be sufficient enough for authentication
purposes in the future, as computers become more and more powerful. As further
work it could be desirable to look closer into other authentication mechanisms, such
as using fingerprint scanners or mobile phones. It might be interesting to implement
new mechanisms and then evaluate what kind of recovery solutions they can provide.
An evaluation of other already existing authentication mechanisms and their recovery
solutions might also be interesting to look further into.

9.8.7 Resetting and Recovery of Passwords Over Networks

This thesis has focused on how to reset or recover a password when a person has physical
access to a computer. Further studies can be done on how to reset or recover a password
over a network. Some network resetting and recovery solutions exist, such as services
that require password hints. In these kinds of services the password is either directly
reset or recovered through mail when the correct answer to the password hint is given. In
this thesis the password hint has been described as a feature that degrades the security
level of the system. A secure network resetting or recovery solution should therefore be
investigated.

Chapter 10
Conclusion

This thesis concentrates on how to reset or recover an administrator password on
various operating systems. It should be highlighted that even though this topic may
be considered as a task with malicious intentions, this thesis has nothing but good
intention. The intention is to help authorized users who have lost their password get
access to the current operating system. All of the procedures and tools described in this
thesis require physical access to the computer containing the operating system where the
password is lost. Some may say that when the security of a system is defined, the first
to be considered is the physical security of your computer. In other words, this means
that if an unauthorized person acquires physical access to your system, the files on the
system are characterized as lost. These statements should not be an excuse to have a
poor login security.

The first part of this thesis had the purpose of giving a basic understanding of
the login mechanism and password handling of the selected operating systems. This
highlights existing weaknesses of the login mechanism, and may motivate the operating
system vendors to improve the password handling security in their systems. The second
part gives a comprehensive step-by-step description of various existing procedures and
tools. These can be used by a forgetful person to reset or recover the lost Administrator
password. The last part presents an empirical password study that was carried out to
test the strength of 30 different passwords.

In this thesis 6 procedures and 10 tools used to reset or recover the Administrator
password were presented. All of the procedures and tools had at least one successful
attempt to reset or recover an administrator password. The obtained results show that
there exist several ways to both reset and recover an administrator password. It should be
added that the procedures and tools had different properties. Some of the procedures and
tools supported families of operating systems (for example Windows), some supported
multiple operating systems (but not all in the family), and others had only support
for one operating system. One of our experiences was that the procedures and tools
varied in their degree of difficulty, and that some were more time-consuming than others.
It quickly became clear that tools were needed to automate some of the procedures

201

202 CHAPTER 10. CONCLUSION

that were hard to carry out, thus making them easier to accomplish. Based on these
conclusions, the authors of this thesis decided to create a tool called Yet Another Local
Password (tool) (YALP). The tool is a collection of implemented procedures, and already
public available tools. Our experience is that with the use of our tool the procedures
could be completed in a lesser amount of time, and also with less effort. In other words,
YALP has quite good characteristics when it comes to quickness and simplicity.

It is hard to tell which procedure and tool to use because they have different
features, and do not necessarily work on the same operating systems. Despite this,
there are procedures and tools that were favored by the authors as a result of their
versatility, quickness and simplicity. One of these is the Kon-Boot tool which works on
both Windows and Unix systems, and requires almost no intervention from the user.
Procedure 4, which replaces a program that can be initiated before login, has a nice
feature that works on all the Windows operating systems used in this thesis, including
the new Windows 7 RC operating system. An implemented version of this procedure is
contained within YALP.

The empirical password study was carried out to emphasize two important aspects.
First of all the study shows that it is important to chose a secure password, and secondly
it shows that the underlying password handling mechanism of the operating system
influence the password strength. In other words, if the underlying password handling
mechanism is poor, the strength of the password is irrelevant. This is confirmed by the
result obtained from the case when the LM hashes were evaluated. The weaknesses in
the generation of the LM hash led to all of the 30 passwords being disclosed in 2 hours
15 minutes 57 seconds, which is far within the time limit of 8 hours. Microsoft improved
the password handling used on for example Windows XP by disabling the LM hash, and
introducing the more secure NT hash in newer operating systems. Despite this, the NT
hash should not be considered secure enough as it still lacks the use of salt. This can be
substantiated by the results presented in the empirical password study regarding the NT
hashes, where 60% (18 passwords) of the passwords were revealed. With the NT hash,
choosing a sufficiently secure password could prevent the password from being revealed.
A secure password is a password that is easy to remember yet hard to guess. Based
on the tools and rainbow tables used for the NT hashes, a mnemonic password with
more than 8 characters in length should be selected. The password should also contain
both uppercase- and lowercase letters, and special characters. It should be noted that
the password requirements mentioned above might change quickly as processors are
becoming more powerful, and as storage limitations is no longer an issue.

For the MD5 hashes, only a dictionary attack was performed. The cryptanalysis
attack was omitted due to lack of rainbow tables and due to time constraints. The
dictionary attack was aborted after 8 hours, which was the time limit for this study.
During this attack 8 passwords had been revealed, and all of these passwords had a root
that can be found in a dictionary.

The empirical password study demonstrates that the use of an initial dictionary
attack might be advantageous. This is because the dictionary attack is quick to perform,
and also may reveal passwords that the cryptanalysis attack fails to reveal, as was the

203

case with the NT hashes. This of course depends on the size of the wordlist and the
mangling rules that are used.

Even though Microsoft has introduced a more secure password handling by utilizing
the NT hash, still many persons and corporations stick with Windows XP. This is partly
because Windows Vista has been criticized for offering weak performance. From the
results obtained from the empirical password study regarding the LM hash it is shown
that as long as the password is less than 15 characters, every password is revealed no
matter how secure the password might be. This is alarming because it may lead to losses
for both individuals and corporations, both economically and personally. [pon08] pointed
out that a lot of people lose their laptops at U.S airports, but it is also sufficient that
the computer is left unattended for a while. It should be highlighted that if Windows
XP is used, the use of LM hash should be disabled or a password consisting of more
than 14 characters should be selected. When the password is 15 characters or longer, an
operating system that utilizes both LM hash and NT hash, such as Windows XP, will
only store the NT hash and not the LM hash. The results obtained from the empirical
password study therefore show that the use of password should not be considered as a
good authentication mechanism for future operating systems, and other solutions should
be considered.

Every operating system should have a password resetting or recovery mechanism. If
a password is lost only authorized persons should be able to recover the administrator
password. The authorized user should only have one solution to reset or recover the
password, instead of many different solutions. A good and already implemented solution
is Microsoft’s Windows Recovery Disk. It is desirable that the user is enforced to create
the disk during the installation of the operating system. The user needs to be aware that
this is the only solution to reset the password, and the disk should therefore not be lost. If
all the other procedures and tools presented in this thesis have been prevented, the person
with the Windows Recovery Disk is the only person that can reset the administrator
password.

All of the operating systems included in the experiments presented in this thesis were
subject to password resetting or recovery. Some of these systems had better solutions
than others when it came to the obfuscation of the password file. The Windows operating
systems have tried to obfuscate the SAM file, while the shadow file used by Linux systems
are world readable. The systems also use different hash algorithms and some are more
secure than others. In all of the Unix systems a salt is used when creating a hash value
of the password, this is unexpectedly not the used in Windows systems. Even though
the hash algorithm has been improved in newer Windows systems, it is the opinion of
the authors of this thesis that the lack of salt serves as the greatest weakness in the hash
construction.

In an operating system a good confidentiality and access control policy can prevent
unauthorized access to the file system. On the other hand, none of the systems in this
thesis enforce encryption. The problem with giving the ignorant user an option is that
he/she will often choose the default option. A user should be enforced to enable disk
encryption. This will prevent many of the procedures and tools described in this thesis

204 CHAPTER 10. CONCLUSION

from being carried out. It is also desirable that the operating system requires a user to
select a good password, and prevents the user from continuing the installation process
if certain requirements are not fulfilled. This also has to yield when a new user is added
to the system. In addition, the system should not enforce a password hint, as this will
probably downgrade the security.

Bibliography

[Ano99] Anonymous. Maximum Linux Security: A Hacker’s Guide to Protecting
Your Linux Server and Workstation with CD-ROM. SAMS, Indianapolis,
IN, USA, 1999.

[Ben07] Johnny Bengtsson. Parallel Password Cracker: A Feasibility Study of Using
Linux Clustering Technique in Computer Forensics. Workshop on Digital
Forensics and Incident Analysis, International, 0:75–82, 2007. Available
from: http://doi.ieeecomputersociety.org/10.1109/WDFIA.2007.10.

[BT04] Nathan Boeger and Mana Tominaga. FreeBSD system programming. GNU
Free Documentation License, 2004. Available from: http://www.khmere.
com/freebsd_book/.

[GLLR06] Lawrence A. Gordon, Martin P. Loeb, William Lucyshyn, and Robert
Richardson. Csi/Fbi Computer Crime and Security Survey. 2006. Available
from: http://i.cmpnet.com/gocsi/db_area/pdfs/fbi/FBI2006.pdf.

[Hel80] Martin E. Hellman. A Cryptanalytic Time - Memory Trade-off. IEEE
TRANSACTIONS ON INFORMATION THEORY, IT-26:401–406, 1980.
Available from: http://www-ee.stanford.edu/˜hellman/publications/
36.pdf.

[Jaa00] Martin G. Jaatun. LMHASH SPOOFING VHA SAMBA KLIENT. FFI
note, 2000.

[Kle91] Daniel V. Klein. Foiling the Cracker: A Survey of, and Improvements to
Password Security, (revised paper with new data). In 14th DoE Computer
Security Group, May 1991. Available from: http://www.klein.com/dvk/
publications/passwd.pdf.

[KRC06] Cynthia Kuo, Sasha Romanosky, and Lorrie Faith Cranor. Human Selection
of Mnemonic Phrase-based Passwords. In SOUPS ’06: Proceedings of the
second symposium on Usable privacy and security, pages 67–78, New York,

205

http://doi.ieeecomputersociety.org/10.1109/WDFIA.2007.10
http://www.khmere.com/freebsd_book/
http://www.khmere.com/freebsd_book/
http://i.cmpnet.com/gocsi/db_area/pdfs/fbi/FBI2006.pdf
http://www-ee.stanford.edu/~hellman/publications/36.pdf
http://www-ee.stanford.edu/~hellman/publications/36.pdf
http://www.klein.com/dvk/publications/passwd.pdf
http://www.klein.com/dvk/publications/passwd.pdf

206 CHAPTER 10. BIBLIOGRAPHY

NY, USA, 2006. ACM. Available from: http://doi.acm.org/10.1145/
1143120.1143129.

[Leh03] Greg Lehley. The Complete FreeBSD: Documentation from the Source 4th
Edition. O’REILLY COMMUNITY PRESS, 2003.

[MKM04] George V. Neville-Neil Marshall Kirk McKusick. The Design and
Implementation of the FreeBSD Operating System. Addison Wesley, 2004.

[Oec03] Philippe Oechslin. Making a Faster Cryptanalytic Time-Memory Trade-
Off. In The 23rd Annual International Cryptology Conference, CRYPTO
’03, volume 2729 of Lecture Notes in Computer Science, pages 617–630,
2003. Available from: http://infoscience.epfl.ch/getfile.py?recid=
99512&mode=best.

[pon08] Airport Insecurity: The Case of Missing & Lost Laptops. Ponemon Institute,
June 30, 2008. Available from: http://www.dell.com/downloads/global/
services/dell_lost_laptop_study.pdf.

[RJR08] Ernest Rothman, Brian Jepson, and Rich Rosen. Mac OS X For Unix Geeks.
O’Reilly Media, Inc., 2008.

[RS04] Mark E. Russinovich and David A. Solomon. Microsoft Windows Internals,
Fourth Edition: Microsoft Windows Server 2003, Windows XP, and
Windows 2000. 2004.

[RT74] D. M. Ritchie and K. Thompson. The UNIX Time-Sharing System.
Communications of the ACM, 17:365–375, 1974.

[Sch96] Bruce Schneier. Applied Cryptography: Protocols, Algorithms and Source
Code in C (Second Edition). John Wiley & Sons, 1996.

[SL05] Edward Skoudis and Tom Liston. Counter Hack Reloaded : A Step-by-Step
Guide to Computer Attacks and Effective Defenses (2nd Edition) (Prentice
Hall Series in Computer Networking and Distributed Systems). Prentice
Hall PTR, December 2005. Available from: http://www.amazon.ca/exec/
obidos/redirect?tag=citeulike09-20“&path=ASIN/0131481045.

[Smi03] Roderick W. Smith. FreeBSD: The Complete Reference. McGraw-
Hill/Osbourne, Berkley, CA, 2003.

[Tod07] Dobromir Todorov. Mechanics of User Identification and Authentication -
Fundamentals of Identity Management. Auerbach Publications, 2007.

[WY05] Xiaoyun Wang and Hongbo Yu. How to Break MD5 and Other Hash
Functions. In EUROCRYPT, pages 19–35, 2005. Available from: http:
//dx.doi.org/10.1007/11426639_2.

http://doi.acm.org/10.1145/1143120.1143129
http://doi.acm.org/10.1145/1143120.1143129
http://infoscience.epfl.ch/getfile.py?recid=99512&mode=best
http://infoscience.epfl.ch/getfile.py?recid=99512&mode=best
http://www.dell.com/downloads/global/services/dell_lost_laptop_study.pdf
http://www.dell.com/downloads/global/services/dell_lost_laptop_study.pdf
http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20\&path=ASIN/0131481045
http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20\&path=ASIN/0131481045
http://dx.doi.org/10.1007/11426639_2
http://dx.doi.org/10.1007/11426639_2

BIBLIOGRAPHY 207

[YBAG04] J. Yan, A. Blackwell, R. Anderson, and A. Grant. Password Memorability
and Security: Empirical Results. Security & Privacy Magazine, IEEE,
2(5):25–31, 2004. Available from: http://dx.doi.org/10.1109/MSP.2004.
81, doi:10.1109/MSP.2004.81.

http://dx.doi.org/10.1109/MSP.2004.81
http://dx.doi.org/10.1109/MSP.2004.81
http://dx.doi.org/10.1109/MSP.2004.81

Web References

[1] NordSec 2009. The 14th Nordic Conference on Secure IT Systems; 2009. Available
from: http://nordsec2009.unik.no/.

[2] NOTUR2009. The 8th Annual Meeting on High Performance Computing
and Infrastructure in Norway; 2009. Available from: http://www.notur.no/
notur2009/.

[3] Microsoft. How to log on to your Windows XP-based computer if you forget your
password or if your password expires; 2008. Help and Support. Available from:
http://support.microsoft.com/kb/321305.

[4] Net Applications. Operating System Market Share; 2009.
marketshare.hitslink.com. Available from: http://marketshare.hitslink.
com/report.aspx?qprid=10&qpmr=24&qpdt=1&qpct=3&qpcal=1&qptimeframe=
M&qpsp=120&qpnp=1.

[5] remote exploit. BackTrack 4 beta release; 2009. Available from: http://www.
remote-exploit.org/backtrack.html.

[6] techm4sters. Protech ONE; 2007. Available from: http://www.techm4sters.
org/.

[7] IITAC International Institute; Cognitive Core UG (haftungsbeschränkt). Damn
Vulnerable Linux; 2009. Available from: http://www.damnvulnerablelinux.
org/.

[8] harakiri. Trinity Rescue Kit, CPR for your computer; 2008. trinityhome.org.
Available from: http://trinityhome.org/Home/index.php?wpid=1&front_id=
12.

[9] Ubuntu. Download an Ubuntu CD. Canonical Ltd; 2009. Available from: http:
//www.ubuntu.com/getubuntu/download.

209

http://nordsec2009.unik.no/
http://www.notur.no/notur2009/
http://www.notur.no/notur2009/
http://support.microsoft.com/kb/321305
http://marketshare.hitslink.com/report.aspx?qprid=10&qpmr=24&qpdt=1&qpct=3&qpcal=1&qptimeframe=M&qpsp=120&qpnp=1
http://marketshare.hitslink.com/report.aspx?qprid=10&qpmr=24&qpdt=1&qpct=3&qpcal=1&qptimeframe=M&qpsp=120&qpnp=1
http://marketshare.hitslink.com/report.aspx?qprid=10&qpmr=24&qpdt=1&qpct=3&qpcal=1&qptimeframe=M&qpsp=120&qpnp=1
http://www.remote-exploit.org/backtrack.html
http://www.remote-exploit.org/backtrack.html
http://www.techm4sters.org/
http://www.techm4sters.org/
http://www.damnvulnerablelinux.org/
http://www.damnvulnerablelinux.org/
http://trinityhome.org/Home/index.php?wpid=1&front_id=12
http://trinityhome.org/Home/index.php?wpid=1&front_id=12
http://www.ubuntu.com/getubuntu/download
http://www.ubuntu.com/getubuntu/download

210 CHAPTER 10. WEB REFERENCES

[10] IDI NTNU. DAIM - Digital Arkivering og Innlevering av Masteroppgaver; 2009.
Available from: http://daim.idi.ntnu.no/.

[11] Stallman R. Linux and the GNU Project; 2009. www.gnu.org. Available from:
http://www.gnu.org/gnu/linux-and-gnu.html.

[12] Schneier B. Choosing Secure Passwords; January 11, 2007. schneier.com. Available
from: http://www.schneier.com/blog/archives/2007/01/choosing_secure.
html.

[13] AccessData. Password Recovery with PRTK/DNA; 2006. whitepaper.
Available from: http://www.accessdata.com/media/en_US/print/papers/wp.
PRTK-DNA_Password_Recovery.en_us.pdf.

[14] Brown S. Top 10 Most Common Passwords; 26 May, 2006. modernl.com. Available
from: http://modernl.com/article/top-10-most-common-passwords.

[15] Naylor D. Top 10 passwords 2008; 10 April 2008. davidnaylor.co.uk. Available
from: http://www.davidnaylor.co.uk/top-10-passwords-2008.html.

[16] Schneier B. MySpace Passwords Aren’t So Dumb; 2006. schneier.com. Available
from: http://www.schneier.com/essay-144.html.

[17] Schneier B. Real-World Passwords; 2006. schneier.com. Available from: http:
//www.schneier.com/blog/archives/2006/12/realworld_passw.html.

[18] Microsoft. What makes a strong password; 2006. microsoft.com. Available from:
http://www.microsoft.com/protect/yourself/password/create.mspx.

[19] Schneier B. Write Down Your Password; June 17, 2005. schneier.com. Available
from: http://www.schneier.com/blog/archives/2005/06/write_down_your.
html.

[20] HooBie Inc. Brutus; 2009. hoobie.net. Available from: http://www.hoobie.net/
brutus.

[21] Freeworld. THC Releases; 2007. freeworld.thc.org. Available from: http://
freeworld.thc.org/releases.php.

[22] phenoelit. Default Password List; 2008. phenoelit-us.org. Available from: http:
//www.phenoelit-us.org/dpl/dpl.html.

[23] The A.R.G.O.N. Index of /achilles/wordlists; 07. theargon.com. Available from:
http://www.theargon.com/achilles/wordlists/.

[24] Edge J. Rainbow tables for password cracking. 2006;Available from: http://lwn.
net/Articles/208418/.

http://daim.idi.ntnu.no/
http://www.gnu.org/gnu/linux-and-gnu.html
http://www.schneier.com/blog/archives/2007/01/choosing_secure.html
http://www.schneier.com/blog/archives/2007/01/choosing_secure.html
http://www.accessdata.com/media/en_US/print/papers/wp.PRTK-DNA_Password_Recovery.en_us.pdf
http://www.accessdata.com/media/en_US/print/papers/wp.PRTK-DNA_Password_Recovery.en_us.pdf
http://modernl.com/article/top-10-most-common-passwords
http://www.davidnaylor.co.uk/top-10-passwords-2008.html
http://www.schneier.com/essay-144.html
http://www.schneier.com/blog/archives/2006/12/realworld_passw.html
http://www.schneier.com/blog/archives/2006/12/realworld_passw.html
http://www.microsoft.com/protect/yourself/password/create.mspx
http://www.schneier.com/blog/archives/2005/06/write_down_your.html
http://www.schneier.com/blog/archives/2005/06/write_down_your.html
http://www.hoobie.net/brutus
http://www.hoobie.net/brutus
http://freeworld.thc.org/releases.php
http://freeworld.thc.org/releases.php
http://www.phenoelit-us.org/dpl/dpl.html
http://www.phenoelit-us.org/dpl/dpl.html
http://www.theargon.com/achilles/wordlists/
http://lwn.net/Articles/208418/
http://lwn.net/Articles/208418/

WEB REFERENCES 211

[25] Microsoft. Boot Configuration Data in Windows Vista; 2008. A paper
named BCD.docx. Available from: http://www.microsoft.com/whdc/system/
platform/firmware/bcd.mspx.

[26] Allen M. How Linux Works CTDP Guide Version 0.6.0; June 1, 2000.
The Computer Technology Documentation Project. Available from: http://
comptechdoc.org/os/linux/howlinuxworks/.

[27] The Linux Information Project. Runlevel Definition; 2007. Available from: http:
//www.linfo.org/runlevel_def.html.

[28] tsstahl(nickname). An introduction to run-levels. System Administration Tips
and Resources. 2005;Available from: http://www.debian-administration.org/
articles/212.

[29] Ubuntu. login - begin session on the system; 2008. Ubuntu manuals. Available from:
http://manpages.ubuntu.com/manpages/intrepid/en/man1/login.1.html.

[30] Linux.com. An introduction to services, runlevels, and rc.d scripts. Feature.
2006;Available from: http://www.linux.com/articles/114107.

[31] Éric Lévénez. Unix History; 2009. levenez.com. Available from: http://www.
levenez.com/unix/.

[32] Boeger N, Tominaga M. FreeBSD system programming. GNU Free Documentation
License; 2004. Available from: http://www.khmere.com/freebsd_book/.

[33] OSx86 Project. EFI; 2009. wiki.osx86project.org. Available from: http://wiki.
osx86project.org/wiki/index.php/EFI.

[34] Apple. rc – command script for boot; 2006. Mac OS X Man
Pages. Available from: http://developer.apple.com/documentation/Darwin/
Reference/ManPages/man8/rc.8.html.

[35] OSx86 Project. FAQ; 2009. wiki.osx86project.org. Available from:
http://wiki.osx86project.org/wiki/index.php/FAQ#Do_I_need_Apple_
hardware_to_run_Mac_OS_X.3F.

[36] fizzgig. pwdump6; 2009. foofus.net. Available from: http://foofus.net/
fizzgig/pwdump/.

[37] Indiana University. In Windows 2000, XP, and Vista, what is the SID (security
identifier)?; 2009. Knowledge Base. Available from: http://kb.iu.edu/data/
aotl.html.

[38] Rubens P. Use Ophcrack to Defuse Windows’ Security Timebomb;
November 5, 2008. Enterprise Networking Planet. Available from:
http://www.enterprisenetworkingplanet.com/netsecur/article.php/
3783156/Use-Ophcrack-to-Defuse-Windows-Security-Timebomb.htm.

http://www.microsoft.com/whdc/system/platform/firmware/bcd.mspx
http://www.microsoft.com/whdc/system/platform/firmware/bcd.mspx
http://comptechdoc.org/os/linux/howlinuxworks/
http://comptechdoc.org/os/linux/howlinuxworks/
http://www.linfo.org/runlevel_def.html
http://www.linfo.org/runlevel_def.html
http://www.debian-administration.org/articles/212
http://www.debian-administration.org/articles/212
http://manpages.ubuntu.com/manpages/intrepid/en/man1/login.1.html
http://www.linux.com/articles/114107
http://www.levenez.com/unix/
http://www.levenez.com/unix/
http://www.khmere.com/freebsd_book/
http://wiki.osx86project.org/wiki/index.php/EFI
http://wiki.osx86project.org/wiki/index.php/EFI
http://developer.apple.com/documentation/Darwin/Reference/ManPages/man8/rc.8.html
http://developer.apple.com/documentation/Darwin/Reference/ManPages/man8/rc.8.html
http://wiki.osx86project.org/wiki/index.php/FAQ#Do_I_need_Apple_hardware_to_run_Mac_OS_X.3F
http://wiki.osx86project.org/wiki/index.php/FAQ#Do_I_need_Apple_hardware_to_run_Mac_OS_X.3F
http://foofus.net/fizzgig/pwdump/
http://foofus.net/fizzgig/pwdump/
http://kb.iu.edu/data/aotl.html
http://kb.iu.edu/data/aotl.html
http://www.enterprisenetworkingplanet.com/netsecur/article.php/3783156/Use-Ophcrack-to-Defuse-Windows-Security-Timebomb.htm
http://www.enterprisenetworkingplanet.com/netsecur/article.php/3783156/Use-Ophcrack-to-Defuse-Windows-Security-Timebomb.htm

212 CHAPTER 10. WEB REFERENCES

[39] Price J. ASCII Chart; 2009. JimPrice.Com. Available from: http://www.
jimprice.com/jim-asc.shtml.

[40] Fairhurst G. Characters and Strings, & ASCII; 2001. University of
Aberdeen. Available from: http://www.erg.abdn.ac.uk/users/gorry/eg2069/
ascii.html.

[41] Tsang T. Brute Force Search of a DES Keyspace; 2008. Cornell
University. Available from: http://instruct1.cit.cornell.edu/courses/
ece576/FinalProjects/f2008/tt236/tt236/high_level_design.html.

[42] Glass E. The NTLM Authentication Protocol and Security Support Provider;
2006. sourceforge.net. Available from: http://davenport.sourceforge.net/
ntlm.html#theLmResponse.

[43] Tropical Software. DES Encryption; 2007. tropsoft.com. Available from: http:
//www.tropsoft.com/strongenc/des.htm.

[44] Ophcrack. What is ophcrack?; 2009. sourceforge.net. Available from: http:
//ophcrack.sourceforge.net/.

[45] Microsoft. ASCII character chart (ASCII printing characters). 2007;Available from:
http://office.microsoft.com/en-us/project/HA011331361033.aspx.

[46] The Unicode Consortium. The Unicode Standard: A Technocal Introduction; 2008.
unicode.org. Available from: http://www.unicode.org/standard/principles.
html.

[47] Microsoft. Local Security Authority; 2009. msdn.microsoft.com. Available from:
http://msdn.microsoft.com/en-us/library/ms721592(VS.85).aspx.

[48] Ubuntu. passwd - the password file; 2008. Ubuntu manuals. Available from:
http://manpages.ubuntu.com/manpages/intrepid/en/man5/passwd.5.html.

[49] Ubuntu. shadow - encrypted password file; 2008. Ubuntu manuals. Available from:
http://manpages.ubuntu.com/manpages/intrepid/en/man5/shadow.5.html.

[50] kernel.org. crypt, crypt r - password and data encryption; 2008. Linux Pro-
grammer’s Manual. Available from: http://www.kernel.org/doc/man-pages/
online/pages/man3/crypt.3.html.

[51] GNU. 32.3 Encrypting Passwords; 2008. GNU Libtool Manual. Available from:
http://www.gnu.org/software/libtool/manual/libc/crypt.html.

[52] Drepper U. Unix crypt using SHA-256 and SHA-512; 2008. people.redhat.com.
Available from: http://people.redhat.com/drepper/SHA-crypt.txt.

http://www.jimprice.com/jim-asc.shtml
http://www.jimprice.com/jim-asc.shtml
http://www.erg.abdn.ac.uk/users/gorry/eg2069/ascii.html
http://www.erg.abdn.ac.uk/users/gorry/eg2069/ascii.html
http://instruct1.cit.cornell.edu/courses/ece576/FinalProjects/f2008/tt236/tt236/high_level_design.html
http://instruct1.cit.cornell.edu/courses/ece576/FinalProjects/f2008/tt236/tt236/high_level_design.html
http://davenport.sourceforge.net/ntlm.html#theLmResponse
http://davenport.sourceforge.net/ntlm.html#theLmResponse
http://www.tropsoft.com/strongenc/des.htm
http://www.tropsoft.com/strongenc/des.htm
http://ophcrack.sourceforge.net/
http://ophcrack.sourceforge.net/
http://office.microsoft.com/en-us/project/HA011331361033.aspx
http://www.unicode.org/standard/principles.html
http://www.unicode.org/standard/principles.html
http://msdn.microsoft.com/en-us/library/ms721592(VS.85).aspx
http://manpages.ubuntu.com/manpages/intrepid/en/man5/passwd.5.html
http://manpages.ubuntu.com/manpages/intrepid/en/man5/shadow.5.html
http://www.kernel.org/doc/man-pages/online/pages/man3/crypt.3.html
http://www.kernel.org/doc/man-pages/online/pages/man3/crypt.3.html
http://www.gnu.org/software/libtool/manual/libc/crypt.html
http://people.redhat.com/drepper/SHA-crypt.txt

WEB REFERENCES 213

[53] Ubuntu. login.defs - shadow password suite configuration; 2008. Ubuntu manuals.
Available from: http://manpages.ubuntu.com/manpages/intrepid/en/man5/
login.defs.5.html.

[54] Dribin D. How Mac OS X Implements Password Authentication, Part 2.
Dave Dribin’s Blog. 2006;Available from: http://www.dribin.org/dave/blog/
archives/2006/04/28/os_x_passwords_2/.

[55] MacShadow KB. Mac OS X password hashes; 2009. macshadows.com.
Available from: http://www.macshadows.com/kb/index.php?title=Mac_OS_X_
password_hashes.

[56] Nordahl-Hagen P. Offline NT Password & Registry Editor; 2008. bootdisk.
Available from: http://home.eunet.no/˜pnordahl/ntpasswd/bootdisk.html.

[57] Bania P. Kon-Boot; 2009. piotrbania.com. Available from: http://piotrbania.
com/all/kon-boot/.

[58] Lagerweij B. Bart’s Preinstalled Environment (BartPE) bootable live windows
CD/DVD; 2006. Version 3.1.10a. Available from: http://www.nu2.nu/
pebuilder/.

[59] NightMan. VistaPE; 2008. vistape.net. Available from: http://www.vistape.
net/.

[60] Mark Russinovich BC. NTFSDOS; 2001. A mirror of the original page. Available
from: http://arcadecontrols.com/Mirrors/mirror/www.sysinternals.com/
Utilities/NtfsDos.html.

[61] Avira. Avira NTFS4DOS Personal; 2009. free-av.com. Available from: http:
//www.free-av.com/en/tools/11/avira_ntfs4dos_personal.html.

[62] sala. Password Renew; 2007. sala source. Available from: http://www.kood.org/
windows-password-renew/.

[63] Bakowski D. WindowsGate 1.1, Enabling/disabling Windows logon password
validation; 2008. Forum at www.911cd.net. Available from: http://www.911cd.
net/forums//index.php?showtopic=21204.

[64] PcLoginNow. PC Login Now; 2009. pcloginnow.com. Available from: http:
//www.pcloginnow.com/.

[65] My Digital Life. Hack to Log On to Windows XP and 2000 without Changing
Existing Password with DreamPackPL; 2004. mydigitallife.info. Available from:
http://tinyurl.com/dreampackpl2004.

[66] Tait J. DreamPackPL with Password Protection; 2004. Plugin for BartPE.
Available from: http://userwww.sfsu.edu/˜john/bartspe/DreamPackDocs/
DreamPackPL_pw.htm.

http://manpages.ubuntu.com/manpages/intrepid/en/man5/login.defs.5.html
http://manpages.ubuntu.com/manpages/intrepid/en/man5/login.defs.5.html
http://www.dribin.org/dave/blog/archives/2006/04/28/os_x_passwords_2/
http://www.dribin.org/dave/blog/archives/2006/04/28/os_x_passwords_2/
http://www.macshadows.com/kb/index.php?title=Mac_OS_X_password_hashes
http://www.macshadows.com/kb/index.php?title=Mac_OS_X_password_hashes
http://home.eunet.no/~pnordahl/ntpasswd/bootdisk.html
http://piotrbania.com/all/kon-boot/
http://piotrbania.com/all/kon-boot/
http://www.nu2.nu/pebuilder/
http://www.nu2.nu/pebuilder/
http://www.vistape.net/
http://www.vistape.net/
http://arcadecontrols.com/Mirrors/mirror/www.sysinternals.com/Utilities/NtfsDos.html
http://arcadecontrols.com/Mirrors/mirror/www.sysinternals.com/Utilities/NtfsDos.html
http://www.free-av.com/en/tools/11/avira_ntfs4dos_personal.html
http://www.free-av.com/en/tools/11/avira_ntfs4dos_personal.html
http://www.kood.org/windows-password-renew/
http://www.kood.org/windows-password-renew/
http://www.911cd.net/forums//index.php?showtopic=21204
http://www.911cd.net/forums//index.php?showtopic=21204
http://www.pcloginnow.com/
http://www.pcloginnow.com/
http://tinyurl.com/dreampackpl2004
http://userwww.sfsu.edu/~john/bartspe/DreamPackDocs/DreamPackPL_pw.htm
http://userwww.sfsu.edu/~john/bartspe/DreamPackDocs/DreamPackPL_pw.htm

214 CHAPTER 10. WEB REFERENCES

[67] RainbowCrack. Project RainbowCrack; 2009. project-rainbowcrack.com. Available
from: http://project-rainbowcrack.com/.

[68] Openwall Project. John the Ripper password cracker; 2009. openwall.com.
Available from: http://www.openwall.com/john/.

[69] Openwall Project. John the Ripper’s cracking modes; 2009. openwall.com.
Available from: http://www.openwall.com/john/doc/MODES.shtml.

[70] Openwall Project. Wordlist rules syntax; 2009. openwall.com. Available from:
http://www.openwall.com/john/doc/RULES.shtml.

[71] dninja. CeWL - Custom Word List generator; 2009. digininja.org. Available from:
http://www.digininja.org/cewl.php.

[72] Montoro M. Cain & Abel; 2009. oxid.it. Available from: http://www.oxid.it/
cain.html.

[73] Montoro M. Password Crackers; 2009. oxid.it. Available from: http://www.oxid.
it/ca_um/.

[74] LCPSoft. LCP; 2007. lcpsoft.com. Available from: http://www.lcpsoft.com/
english/index.htm.

[75] fizzgig. fgdump; 2008. foofus.net. Available from: http://swamp.foofus.net/
fizzgig/fgdump/fgdump-2.1.0-exeonly.zip.

[76] ncuomo. Windows 2k/NT/XP’s syskey encryption; 2006. studenti.unina.it.
Available from: http://www.studenti.unina.it/˜ncuomo/syskey/.

[77] Montoro M. Projects; 2009. oxid.it. Available from: http://www.oxid.it/
projects.html.

[78] Inc Sun Microsystems. VirtualBox; 2009. virtualbox.org. Available from: http:
//www.virtualbox.org/.

[79] Gupta V. How to Reset/Recover Forgotten Windows NT/2000/XP/2003
Administrator Password?; 2009. Tweaking with Vishal v2. Available from:
http://tinyurl.com/2axlpr.

[80] Microsoft. How to Use the Net User Command. 2007;Available from: http://
support.microsoft.com/kb/251394.

[81] phirleon (nickname). password hash; 2008. vpsmedia Forum. Available from:
https://www.vpsmedia.com/forum/showthread.php?t=3.

[82] rearthur2003 (nickname). Replace Sethc.exe With Cmd.exe; 2007. Blackhat
Forums. Available from: http://www.blackhat-forums.com/index.php?
showtopic=3613.

http://project-rainbowcrack.com/
http://www.openwall.com/john/
http://www.openwall.com/john/doc/MODES.shtml
http://www.openwall.com/john/doc/RULES.shtml
http://www.digininja.org/cewl.php
http://www.oxid.it/cain.html
http://www.oxid.it/cain.html
http://www.oxid.it/ca_um/
http://www.oxid.it/ca_um/
http://www.lcpsoft.com/english/index.htm
http://www.lcpsoft.com/english/index.htm
http://swamp.foofus.net/fizzgig/fgdump/fgdump-2.1.0-exeonly.zip
http://swamp.foofus.net/fizzgig/fgdump/fgdump-2.1.0-exeonly.zip
http://www.studenti.unina.it/~ncuomo/syskey/
http://www.oxid.it/projects.html
http://www.oxid.it/projects.html
http://www.virtualbox.org/
http://www.virtualbox.org/
http://tinyurl.com/2axlpr
http://support.microsoft.com/kb/251394
http://support.microsoft.com/kb/251394
https://www.vpsmedia.com/forum/showthread.php?t=3
http://www.blackhat-forums.com/index.php?showtopic=3613
http://www.blackhat-forums.com/index.php?showtopic=3613

WEB REFERENCES 215

[83] Apple Inc. Mac OS X: Changing or resetting an account password; 2009. Apple
Support. Available from: http://support.apple.com/kb/HT1274.

[84] Microsoft. How to create and use a password reset disk in Windows Vista;
2009. support.microsoft.com. Available from: http://support.microsoft.com/
kb/930381.

[85] Microsoft. Create a Password Reset Disk; 2001. microsoft.com. Available
from: http://www.microsoft.com/windowsxp/using/setup/learnmore/tips/
keramidas1.mspx.

[86] semprini, freshmint, Hephaestus, William42, RancidPickle, (nicknames). How
to recover a lost Linux root or Windows 2000 Administrator password;
2000. Everything2 forum. Available from: http://everything2.com/title/
How%2520to%2520recover%2520a%2520lost%2520Linux%2520root%2520or%
2520Windows%25202000%2520Administrator%2520password.

[87] TechTarget. Bourne shell; 2005. SearchEnterpriseLinux.com Definitions. Avail-
able from: http://searchenterpriselinux.techtarget.com/sDefinition/0,
,sid39_gci214635,00.html.

[88] Pash A. Reset your lost OS X password; 2007. MAC
TIP. Available from: http://lifehacker.com/software/mac-tip/
reset-your-lost-os-x-password-278898.php.

[89] Admin G. Lost root password?; 04. BSDZONE. Available from: http://www.
bsdzone.net/weblog/archives/2004/11/19/lost-root-password/.

[90] ImgBurn. Download: ImgBurn v2.4.2.0 (1,926 KB). LIGHTNING UK!; 2009.
Available from: http://www.imgburn.com/index.php?act=download.

[91] Wal K. Accessing a Fedora Logical Volume from Ubuntu; 2008. inux-sxs.org.
Available from: http://www.linux-sxs.org/storage/fedora2ubuntu.html.

[92] Red Hat. Get Fedora 10 Desktop Edition Now; 2009. fedoraproject.org. Available
from: http://fedoraproject.org/en/get-fedora.

[93] PcLoginNow. PCLoginNow2 0 stable; 2008. sourceforge.net. Available from:
http://sourceforge.net/project/showfiles.php?group_id=231735.

[94] S.L. WinZip Computing. Download WinZip Evaluation Version; 2009. executable.
Available from: http://www.winzip.com/downwz.htm.

[95] The Shmoo Group. Rainbow Tables; 2006. rainbowtables.shmoo.com. Available
from: http://rainbowtables.shmoo.com/.

[96] The Shmoo Group. Rainbow Tables; 2006. rainbowtables.shmoo.com.
Available from: http://205.127.87.136:6969/torrents/alpha_num_sym32_
space.torrent?6BF7984266AB058D020E49B36B84F950E0BFA933.

http://support.apple.com/kb/HT1274
http://support.microsoft.com/kb/930381
http://support.microsoft.com/kb/930381
http://www.microsoft.com/windowsxp/using/setup/learnmore/tips/keramidas1.mspx
http://www.microsoft.com/windowsxp/using/setup/learnmore/tips/keramidas1.mspx
http://everything2.com/title/How%2520to%2520recover%2520a%2520lost%2520Linux%2520root%2520or%2520Windows%25202000%2520Administrator%2520password
http://everything2.com/title/How%2520to%2520recover%2520a%2520lost%2520Linux%2520root%2520or%2520Windows%25202000%2520Administrator%2520password
http://everything2.com/title/How%2520to%2520recover%2520a%2520lost%2520Linux%2520root%2520or%2520Windows%25202000%2520Administrator%2520password
http://searchenterpriselinux.techtarget.com/sDefinition/0,,sid39_gci214635,00.html
http://searchenterpriselinux.techtarget.com/sDefinition/0,,sid39_gci214635,00.html
http://lifehacker.com/software/mac-tip/reset-your-lost-os-x-password-278898.php
http://lifehacker.com/software/mac-tip/reset-your-lost-os-x-password-278898.php
http://www.bsdzone.net/weblog/archives/2004/11/19/lost-root-password/
http://www.bsdzone.net/weblog/archives/2004/11/19/lost-root-password/
http://www.imgburn.com/index.php?act=download
http://www.linux-sxs.org/storage/fedora2ubuntu.html
http://fedoraproject.org/en/get-fedora
http://sourceforge.net/project/showfiles.php?group_id=231735
http://www.winzip.com/downwz.htm
http://rainbowtables.shmoo.com/
http://205.127.87.136:6969/torrents/alpha_num_sym32_space.torrent?6BF7984266AB058D020E49B36B84F950E0BFA933
http://205.127.87.136:6969/torrents/alpha_num_sym32_space.torrent?6BF7984266AB058D020E49B36B84F950E0BFA933

216 CHAPTER 10. WEB REFERENCES

[97] Debian. Debian; 2009. debian.org. Available from: http://www.debian.org/.

[98] Torvalds L. The Linux Kernel Archives; 2009. kernel.org. Available from: http:
//www.kernel.org/.

[99] Debian Live Project. Debian Live; 2009. debian.org. Available from: http:
//debian-live.alioth.debian.org/.

[100] Debian Live Project. DebianLive/live-helper; 2009. debian.org. Available from:
http://wiki.debian.org/DebianLive/live-helper.

[101] TrueCrypt Foundation. TrueCrypt; 2009. truecrypt.org. Available from: http:
//www.truecrypt.org/.

[102] RainbowCrack. List of Rainbow Tables; 2009. project-rainbowcrack.com. Available
from: http://project-rainbowcrack.com/table.htm.

[103] Aberystwyth University. The University’s password generator page; 2000.
aber.ac.uk. Available from: http://users.aber.ac.uk/auj/portfolio/
mnemonic.shtml.

[104] PC Tools. Secure Password Generator; 2009. pctools.com. Available from: http:
//www.pctools.com/guides/password/.

[105] Klein DV. Foiling the Cracker: A Survey of, and Improvements to Password
Security, (revised paper with new data). In: 14th DoE Computer Security Group;
May 1991. Available from: http://www.klein.com/dvk/publications/passwd.
pdf.

[106] freerainbowtables. Free Rainbow Tables; Distributed Rainbow Table Project; 2009.
freerainbowtables.com. Available from: http://www.freerainbowtables.com/.

[107] Schneier B. Secret Questions; 2009. schneier.com. Available from: http://www.
schneier.com/blog/archives/2009/05/secret_question.html.

[108] FreeTDS. Domain Logins; 2006. FreeTDS User Guide: A Guide to Installing,
Configuring, and Running FreeTDS. Available from: http://www.freetds.org/
userguide/domains.htm.

[109] Microsoft Corporation. What’s the difference between BitLocker Drive
Encryption and Encrypting File System?; 2009. Windows Help and How-
to. Available from: http://windowshelp.microsoft.com/Windows/en-US/help/
62f28747-c146-483c-b378-ff3f3977f0111033.mspx.

[110] Ou G. Prevent data theft with Windows Vista’s Encrypted File System (EFS)
and BitLocker. 2007;Available from: http://articles.techrepublic.com.com/
5100-10878_11-6162949.html.

http://www.debian.org/
http://www.kernel.org/
http://www.kernel.org/
http://debian-live.alioth.debian.org/
http://debian-live.alioth.debian.org/
http://wiki.debian.org/DebianLive/live-helper
http://www.truecrypt.org/
http://www.truecrypt.org/
http://project-rainbowcrack.com/table.htm
http://users.aber.ac.uk/auj/portfolio/mnemonic.shtml
http://users.aber.ac.uk/auj/portfolio/mnemonic.shtml
http://www.pctools.com/guides/password/
http://www.pctools.com/guides/password/
http://www.klein.com/dvk/publications/passwd.pdf
http://www.klein.com/dvk/publications/passwd.pdf
http://www.freerainbowtables.com/
http://www.schneier.com/blog/archives/2009/05/secret_question.html
http://www.schneier.com/blog/archives/2009/05/secret_question.html
http://www.freetds.org/userguide/domains.htm
http://www.freetds.org/userguide/domains.htm
http://windowshelp.microsoft.com/Windows/en-US/help/62f28747-c146-483c-b378-ff3f3977f0111033.mspx
http://windowshelp.microsoft.com/Windows/en-US/help/62f28747-c146-483c-b378-ff3f3977f0111033.mspx
http://articles.techrepublic.com.com/5100-10878_11-6162949.html
http://articles.techrepublic.com.com/5100-10878_11-6162949.html

WEB REFERENCES 217

[111] Thomas K. A User’s Look at Ubuntu 8.10 Intrepid Ibex; 2008.
lifehacker article. Available from: http://lifehacker.com/5072351/
a-users-look-at-ubuntu-810-intrepid-ibex.

[112] Utimaco Safeware. SafeGuard Easy; 2009. Available from: http://go.utimaco.
com/safeguard-easy/.

[113] Erwan Le Gall MD. [HOWTO] Build and using a custom kernel; 2008. debian-
live-devel mailing list. Available from: http://lists.alioth.debian.org/
pipermail/debian-live-devel/2008-April/003456.html.

[114] ActiveState. ActivePerl; 2009. activestate.com. Available from: http://www.
activestate.com/activeperl/.

http://lifehacker.com/5072351/a-users-look-at-ubuntu-810-intrepid-ibex
http://lifehacker.com/5072351/a-users-look-at-ubuntu-810-intrepid-ibex
http://go.utimaco.com/safeguard-easy/
http://go.utimaco.com/safeguard-easy/
http://lists.alioth.debian.org/pipermail/debian-live-devel/2008-April/003456.html
http://lists.alioth.debian.org/pipermail/debian-live-devel/2008-April/003456.html
http://www.activestate.com/activeperl/
http://www.activestate.com/activeperl/

Appendix A
How to Build YALP

This appendix will give a rough description on how to build the tool YALP. YALP is a
live CD based on Debian Lenny. The CD was created with a program called live-helper
available for Debian. This tutorial may also work on future releases of Debian.

There are some prerequisites before the tool can be built. Live-helper [99] has to be
installed on the system subject to building YALP and the scripts and folders must apply
to the commands presented in the script below. We used VirtualBox [78] and installed
Debian [97] as a virtual machine. Inside this virtual machine we installed subversion and
live-helper. Through subversion we fetched a YALP folder including the build YALP.sh
script presented below in Appendix A.1 and the necessary files. The build YALP.sh
script then created an image (binary.iso) file, namely the YALP live CD image.

In the YALP live CD we include a custom build Linux kernel with support for UFS
file system used by FreeBSD. To build this custom kernel we used the build kernel.sh
script also presented below in Section A.2. Erwan Le Gall and Michel Depeige have
a great tutorial in how to integrate a custom kernel in a Debian live environment
at [113]. The build kernel.sh script must be modified if other versions than 2.6.29.3
are used. We used the kernel configuration .config that was used when a standard
Debian live distribution was made. The .config file is then located in /boot in the
newly created distribution. When running the build kernel.sh script various questions
concerning drivers may appear, the default value is usually a good option. When the
script finished the output was some .deb files which can then be moved to custom kernel
folder used in build YALP.sh.

A.1 build YALP.sh

The YALP built script (build YALP.sh) is presented below:

#!/bin/bash

custom_kernel="../custom_kernel/2.6.26.2"

219

220 CHAPTER A. HOW TO BUILD YALP

images="../images"
other_packages="../other_packages"
other_scripts="../other_scripts"
our_scripts="../our_scripts"
local_hooks="../local_hooks"

aptitude install --assume-yes live-helper

mkdir livecd
cd livecd

lh_config --iso-volume "YALP" --iso-publisher "Jørgen Blakstad and Rune\
Walsø Nergård" --hostname YALP --username user --bootappend-live "\
keyb=no" --mirror-bootstrap "http://ftp.no.debian.org/debian/" --\
mirror-chroot "http://ftp.no.debian.org/debian/" --mirror-binary "\
http://ftp.no.debian.org/debian/" --packages "chntpw locate john \
ntfs-3g openssh-client libdigest-md4-perl libcrypt-passwdmd5-perl \
libfuse2 fuse-utils dmsetup libsm6 lvm2 less" --syslinux-menu \
enabled --syslinux-timeout 10

mkdir config/chroot_local-includes/home
mkdir config/chroot_local-includes/home/user
cp $our_scripts/* $other_scripts/* config/chroot_local-includes/home/\

user/
cp $other_packages/* $custom_kernel/* config/chroot_local-packages/
cp $images/yalp.rle config/binary_syslinux/yalp.rle
sed ’s/LH_SYSLINUX_SPLASH=""/LH_SYSLINUX_SPLASH="config“/\

binary_syslinux“/yalp.rle"/’ config/binary >test
sed ’s/LH_SYSLINUX_MENU_LIVE_ENTRY="Start Debian Live"/\

LH_SYSLINUX_MENU_LIVE_ENTRY="Start YALP"/’ test >test2
mv test2 config/binary
rm test
sed ’s/LH_LINUX_PACKAGES="/LH_LINUX_PACKAGES="none" #/’ config/chroot >\

test
sed ’s/LH_LINUX_FLAVOURS="/LH_LINUX_FLAVOURS="dlb" #/’ test >test2
mv test2 config/chroot
rm test
cp $local_hooks/* config/chroot_local-hooks
lh_build

Listing A.1: Script to build YALP.

A.2. BUILD KERNEL.SH 221

A.2 build kernel.sh

The custom Linux kernel built script (build kernel.sh) is presented below:

#!/bin/bash

This script will/should build a custom kernel possible to use with \
the build of YALP

distro="2.6.26.2"
lsource="http://kernel.org/pub/linux/kernel/v2.6/linux-$distro.tar.bz2"
lpatch="http://www.kernel.org/pub/linux/kernel/v2.6/patch-$distro.bz2"
workingdir="‘pwd‘"
configdir="$workingdir/config" # Kernel config dir

cd /usr/src/
rm -fr *.deb

wget $lsource
tar -xvjf linux-$distro.tar.bz2
cd linux-$distro
wget $lpatch
bunzip2 patch-$distro.bz2
patch -R -p1 < patch-$distro
cp $configdir ./.config # Used config located in /boot/ in a already \

created livecd
sed ’s/# CONFIG_UFS_FS_WRITE is not set/CONFIG_UFS_FS_WRITE=y/’ .config\

>test # (vim .config -> CONFIG_UFS_FS_WRITE=y)
mv test .config
aptitude install --assume-yes module-assistant gcc libncurses-dev \

fakeroot kernel-package zlib1g-dev
fakeroot make-kpkg --initrd --revision=dlb.1.0 --append-to-version=-dlb\

kernel_image kernel_headers modules
aptitude install --assume-yes lzma-source squashfs-source aufs-source
cd /usr/src
rm -rf /usr/src/linux
ln -s linux-$distro linux
m-a update
m-a build -k /usr/src/linux-$distro lzma
m-a build -k /usr/src/linux-$distro squashfs
mkdir $workingdir/$distro
cp /usr/src/*.deb $workingdir/$distro

Listing A.2: Script to build custom kernel of YALP.

Appendix B
YALP Scripts

In this appendix the various scripts created for YALP are presented. A description on
how to build YALP can be found in Appendix A.

B.1 startup.sh

#!/bin/bash

This script is the script that is initiated when YALP has finished \
the boot process.

It is a menu for all the other scripts. To work properly, the \
following files has to be included:

agreement, menu, menu1, menu2, menu3 and the rest of the scripts.

some variables

mountdir="/mnt/os"
folder="/home/user"
#folder="/media/Documents/master/thesis/scripts/YALP/our_scripts"

initial licence and agreement

sudo cat $folder/agreement
echo "Do you understand and agree to the terms mentioned above?"
read agree
if [-z $agree]

then
sudo shutdown -h now

223

224 CHAPTER B. YALP SCRIPTS

elif [$agree != "yes"]
then
sudo shutdown -h now

fi

a method checking if a system is mounted

ismounted () {
if [-d $mountdir]

then
tmp=‘ls -A $mountdir | grep -c .‘
if [$tmp -eq 0]

then
echo "It looks like no host filesystem has been \

mounted."
echo "Will first run a mount script (mountos.sh)"
sudo sh $folder/mountos.sh
if [$? -eq 113]

then
echo "Will return to main menu!"
menu

fi
fi

else
echo "It looks like no host filesystem has been mounted."
echo "Will first run a mount script (mountos.sh)"
sudo sh $folder/mountos.sh
if [$? -eq 113]

then
echo "Will return to main menu!"
menu

fi
fi

}

supplementary tools menu

menu3 () {
sudo cat $folder/menu3
read option
case $option in

1)

B.1. STARTUP.SH 225

sudo sh $folder/mountos.sh
menu
;;

2)
sudo fdisk -l
menu
;;

3)
sudo truecrypt -h|less
;;

4)
menu
;;

*)
echo "Please enter a valid number!"
menu3
;;

esac
}

password recovery tools menu

menu2 () {
sudo cat $folder/menu2
read option
case $option in

1)
sudo ophcrack-cli|less
;;

2)
sudo john|less
;;

3)
sudo perl $folder/lm2ntcrack.pl
;;

4)
menu
;;

*)
echo "Please enter a valid number!"
menu2
;;

226 CHAPTER B. YALP SCRIPTS

esac
}

password resetting tools menu

menu1 () {
sudo cat $folder/menu1
read option
case $option in

1)
ismounted
sudo perl $folder/editshadow.pl $mountdir/etc/\

shadow
menu
;;

2)
ismounted
sudo perl $folder/editmasterpasswd.pl $mountdir/\

etc/master.passwd
menu
;;

3)
ismounted
sudo sh $folder/replace_startup_files.sh
menu
;;

4)
sudo chntpw
;;

5)
menu
;;

*)
echo "Please enter a valid number!"
menu1
;;

esac
}

main menu with options

menu () {

B.1. STARTUP.SH 227

sudo cat $folder/menu
read option
case $option in

1)
menu1
;;

2)
menu2
;;

3)
menu3
;;

4)
exit
;;

5)
sudo shutdown -r now
;;

6)
sudo shutdown -h now
;;

*)
echo "Please enter a valid number!"
menu
;;

esac
}

menu
Listing B.1: YALP startup script.

228 CHAPTER B. YALP SCRIPTS

B.2 replace startup files.sh

#!/bin/bash

This script ease the process of performing the "Replace a pre-login \
executable file" procedure

It will replace the sethc.exe with cmd.exe and make a backup of the \
old sethc.exe file.

This script has also got support for reverting back to normal after \
the resetting has been done.

path=$1
mountfolder="/mnt/os"
xp="$mountfolder/WINDOWS/system32"
vistaN7="$mountfolder/Windows/System32"

if [-z $path]
then
if [-d $xp]

then
path=$xp

elif [-d $vistaN7]
then
path=$vistaN7

else
echo "Please enter the path to the windows system32 \

folder e.g. /mnt/os/Windows/System32/"
read tmp
path=$tmp

fi
fi

finished="false"
while [$finished == "false"]
do

echo -- \

echo This script can replace the sticky keys startup program or \
revert to backup if already done.

echo -- \

echo

B.2. REPLACE STARTUP FILES.SH 229

echo "Do you want to ’replace’ the sethc.exe or ’revert’ to \
backup?"

read answer
case $answer in

replace)
if [-e $path/sethc.exe.bak]

then
echo "It seems that a backup file exists. \

Maybe you have already replaced the \
file."

echo "Are you sure you want to replace? \
Type ’yes’ to confirm."

read answer3
if [$answer3 == "yes"]

then
cp $path/sethc.exe $path/sethc.exe.\

bak
cp $path/cmd.exe $path/sethc.exe
echo ------------------------------\

------------------------------ \

echo Replace done. You can now \
reboot the machine and by \
pressing shift 5 times

echo enter a Windows command \
console, cmd.exe, to perform \
further password handling.

echo ------------------------------\
------------------------------ \

exit
fi

else
echo "Are you sure you want to replace the \

startupfile? Type ’yes’ to confirm."
read answer2
if [$answer2 == "yes"]

then
cp $path/sethc.exe $path/sethc.exe.\

bak
cp $path/cmd.exe $path/sethc.exe
echo ------------------------------\

------------------------------ \

230 CHAPTER B. YALP SCRIPTS

echo Replace done. You can now \

reboot the machine and by \
pressing shift 5 times

echo enter a Windows command \
console, cmd.exe, to perform \
further password handling.

echo ------------------------------\
------------------------------ \

exit
fi

fi
;;

revert)
echo Will try to revert from the backupfile \

hopefully located at:
echo $path/sethc.exe.bak
mv $path/sethc.exe.bak $path/sethc.exe
echo -- \

echo Revert done. You can now reboot the machine \

and sticky keys should be restored
echo to normal. The changes done from Windows \

command console will not be reverted.
echo -- \

exit
;;

*)
echo Will exit, have a nice day!
exit
;;

esac
done

Listing B.2: Replace startup file script.

B.3. EDITSHADOW.PL 231

B.3 editshadow.pl

#!/usr/bin/perl
use Crypt::PasswdMD5;
use File::Copy;

This script edits the /etc/shadow file. It replaces an old md5 hash \
with a new one created for a desired password

my $old = "";
foreach (@ARGV) { $old = "$_" }
if($old eq ""){

print "Please enter the folder where the shadow file is located \
ie. ’/etc/shadow’ : ";

chomp($old = <STDIN>);
}
#my $old = ’/etc/shadow’;
my $new = ’shadow.tmp’;
my $bak = "$old.bak";
my $typo = 0;
my $edit = 0;

open(OLD,’<’,$old) or die "can’t open $old: $!";
open(NEW,’>’,$new) or die "can’t open $new: $!";

my($username,$temp,$temp2,$temp3,$alg,$salt2,$hash2,$rest,$line);
while($line = <OLD>){

if($line =˜ m/“$1“$/){
print "$line";

$username = substr $line, 0, index($line, ’:’);
print "Is ’$username’ the correct user? Enter ’yes’ or ’\

no’: ";
chomp(my $correctuser = <STDIN>);
if($correctuser eq "yes"){

print "Insert desired password: ";
chomp(my $password = <STDIN>);
print "Insert desired salt: ";
chomp(my $salt = <STDIN>);
$crypted = unix_md5_crypt($password, $salt);
my $hash = substr $crypted, 4+length($salt);
$edit = 1;
$temp = substr $line, length($username);

232 CHAPTER B. YALP SCRIPTS

$alg = substr $temp, 2, 1;
$temp2 = substr $temp, 4;
$salt2 = substr $temp2, 0, index($temp2, ’$’);
$temp3 = substr $temp2, length($salt2);
$hash2 = substr $temp3, 1, index($temp3,’:’)-1;
$rest = substr $temp3, length($hash2);
$line =˜ s/$salt2/$salt/;
$line =˜ s/$hash2/$hash/;

print "$line“n";
print NEW $line;

}elsif($correctuser eq "no"){
print NEW $line;

}else{
print "You typed wrong, please type ’yes’ or ’no\

’!“n";
$typo = 1;

}
}else{

print NEW $line;
}

}
if($typo == 0 && $edit == 1){

close(OLD) or die "can’t close $old: $!";
close(NEW) or die "can’t close $new: $!";

move($old, $bak) or die "can’t rename $old to $bak: $!";
move($new, $old) or die "can’t rename $new to $old: $!";

}else{
close(OLD) or die "can’t close $old: $!";
close(NEW) or die "can’t close $new: $!";

unlink($new) or die "can’t delete $old: $!";
}

Listing B.3: Edit shadow file script.

B.4. MOUNTOS.SH 233

B.4 mountos.sh

#!/bin/bash
os=$1
mountdir="/mnt/os"

This script will help the user with mounting a host system, it needs \
a lot of improvements.

if [-z $os]
then
echo "Please enter a os you want to mount! (Win/Ubuntu/Fedora/\

FreeBSD/unmount)."
read mount
os=$mount

fi
if [-d $mountdir]

then
echo "will unmont $mountdir if it is already mounted."
umount $mountdir

else
mkdir $mountdir

fi
case $os in

unmount|umount)
rmdir $mountdir
echo unmounting done
exit
;;

*)
echo "Mount directory $mountdir created."
echo "The partition device can be found later, by running\

’sudo fdisk -l’."
echo "Here is the output of fdisk -l:"
fdisk -l
echo "Enter partition device with full path, ie. /dev/\

sda2."
echo "(press enter if you want us to try common options \

(/dev/sda1 or /dev/hda1))."
read device
dev=$device
if [-z $dev]

234 CHAPTER B. YALP SCRIPTS

then
if [-a /dev/sda1]

then
echo "Partition device is /dev/sda1."
dev="/dev/sda1"

elif [-a /dev/hda1]
then
echo "Partition device is /dev/hda1."
dev="/dev/hda1"

else
echo "Harddrive device is not found."
echo "Please enter partition device:"
read device
dev=$device

fi
elif [-a $dev]

then
echo "Will try to mount with $dev as partition \

device"
else

echo "Harddrive device was not supported!"
echo "Please run this script again with correct \

device values"
exit 113

fi
esac
case $os in

FreeBSD|freeBSD|freebsd|bsd|BSD)
echo will try mount $os

mount -t ufs -o rw,ufstype=ufs2 $dev $mountdir
if ["$?"-ne 0]; then echo "Could not mount! returning \

to main menu."; exit 113; fi
;;

Ubuntu*|ubuntu*|Fedora*|fedora*)
echo will try mount $os

mount -t ext3 $dev $mountdir
if ["$?"-ne 0]; then echo "Could not mount! returning \

to main menu."; exit 113; fi
;;

Win*|win*)
echo will try mount $os

mount -t ntfs-3g $dev $mountdir

B.4. MOUNTOS.SH 235

if ["$?"-ne 0]; then echo "Could not mount! returning \
to main menu."; exit 113; fi

;;
Mac*|mac*)
echo will try mount $os

echo "$os not yet supported!"
exit 113
;;

*)
echo "$os not supported, filesystem not mounted."
echo "Is $os an operating system?"
echo "Please try again, returning to main menu."
rmdir $mountdir
exit 113
;;

esac
if [-d $mountdir]

then
tmp=‘ls -A $mountdir | grep -c .‘
if [$tmp -eq 0]; then

echo "Something went wrong, $dev was not mounted to \
$mountdir."

echo "Have you typed in the correct host os?"
rmdir $mountdir
exit 113

else
echo "It looks like the file system was successfully \

mounted to $mountdir."
fi

fi
Listing B.4: Mount operating system script.

Appendix C
How to Disable LM Hashing

In this appendix a possible way to disable the storing of the LM hash on your computer
is presented. Recall that this is done by default in Windows Vista. The approach, found
in [38], is presented below:

1. Click Start, click Run, type regedit, and then click OK.

2. Locate and then click the following key in the registry:
HKEY LOCAL MACHINE\SYSTEM\CurrentControlSet\Control\Lsa

3. On the Edit menu, point to New, and then click DWORD Value.

4. Type NoLMHash, and then press ENTER. If the DWORD value is already there,
edit the existing DWORD instead.

5. On the Edit menu, click Modify.

6. Type 1, and then click OK.

7. Restart your computer, and then change your password.

237

Appendix D
How to Add 30 Users

In this appendix we present the scripts that we have made to easily add the 30 users in the
Empirical Password Study presented in 8. Please note that there are 2 different scripts
presented below, depending on whether you want to add the users on a Windows or Unix
system. The scripts are written in Perl which is included in most Linux distributions,
and can for instance be found for Windows at ActiveState’s web page [114]. The scripts
require a list of passwords, listed each password per line presented in a file, as an
argument. The programs have to run under Administrator privileges. The script for
Unix also requires that the useradd program is present in the operating system.

D.1 addusers win.pl

The script below adds 30 users on a Windows system.

#!/usr/bin/perl

my $passwdfile = $ARGV[0];
if($passwdfile eq ""){

print "Please enter the name of the passwordfile (located the \
same place as this script): ";

chomp($passwdfile = <STDIN>);
}

open(PASSWDFILE,’<’,$passwdfile) or die "can’t open $passwdfile: $!";

$count = 1;
while($password = <PASSWDFILE>){

$username = "user$count";
chomp($password); # remove newlines:)
print "Will add $username with password $password “n";

239

240 CHAPTER D. HOW TO ADD 30 USERS

$cmd = "NET USER $username $password /add";
$cmd2 = "NET LOCALGROUP Administrators $username /add";
$cmd3 = "NET GROUP “"Domain Admins“" $username /add ";
system $cmd;
system $cmd2;
$count = $count + 1;

}
Listing D.1: Script to add 30 users in a Windows system.

D.2 addusers lin.pl

The script below adds 30 users on a Unix system.

#!/usr/bin/perl

my $passwdfile = $ARGV[0];
if($passwdfile eq ""){

print "Please enter the name of the passwordfile (located the \
same place as this script): ";

chomp($passwdfile = <STDIN>);
}

open(PASSWDFILE,’<’,$passwdfile) or die "can’t open $passwdfile: $!";

$count = 1;
while($password = <PASSWDFILE>){

$username = "user$count";
chomp($password); # remove newlines:)
print "Will add $username with password $password “n";
$cmd = "sudo useradd $username -p ‘echo $password | mkpasswd -s \

-H md5‘";
system $cmd;
$count = $count + 1;

}
Listing D.2: Script to add 30 users in a Unix system.

NOTE: If you want to copy/paste the scripts above to a file, be aware of that the / at
the end of some the lines just means line break, and shall not be a part of the script.

Appendix E
Attachments

The attachments to this thesis consist of both an enclosed CD and electronic attach-
ments. The latter is submitted to the DAIM system [10].

E.1 Attached CD

Enclosed in this thesis is a CD containing our self made tool YALP, a bootable live CD.
To boot the CD you have to insert it into your CD ROM drive and then select to boot
from CD ROM during startup. YALP is a tool that can be used for password resetting
and password recovery.

E.2 Electronic Attachments

The electronic attachment (thesis.zip), which is submitted to the DAIM system [10],
includes the following directories:

• YALP contains all the necessary files and folders to build YALP.

• Other contains other scripts and files that were used in the experiments described
in our thesis. This includes password files and a character set.

It should be added that README.txt files, which explain the content of these directories
in more details, are also included in the thesis.zip file.

241

G
en

er
at
io
n
of
 R
ai
nb

ow
 T
ab

le
s

Th
e
m
at
er
ia
l o
n
th
is
 p
os
te
r
is
 e
xt
ra
ct
ed

 fr
om

 th
e
M
as
te
r
Th
es
is
 “
To

ol
s
an
d
Te
ch
ni
qu

es
 fo

r
Re

se
tt
in
g
or

Re
co
ve
ry
 o
f A

dm
in
is
tr
at
or
 P
as
sw

or
ds
 o
n
Po

pu
la
r
O
pe

ra
tin

g
Sy
st
em

s”
.

Pr
ep

ar
ed

 b
y
Jø
rg
en

 B
la
ks
ta
d
an
d
Ru

ne
 W

. N
er
gå
rd
,

un
de

r
th
e
su
pe

rv
is
io
n
of
 P
ro
f.
D
an
ilo

 G
lig
or
os
ki

D
ep

ar
tm

en
t o

f T
el
em

at
ic
s,
 N
TN

U

Em
ai
l:
jo
rg
en

bl
@
st
ud

.n
tn
u.
no

, r
un

ew
al
s@

st
ud

.n
tn
u.
no

 Ba

ck
gr
ou

nd

Pa
ss
w
or
ds
 c
an

 b
e
us
ed

 to
 p
ro
te
ct
 th

e
us
er
 a
cc
ou

nt
 o
n
yo
ur
 c
om

pu
te
r
pr
ev
en

tin
g
un

au
th
or
iz
ed

 p
er
so
ns
 to

 e
nt
er
 th

e
sy
st
em

. B
ut
 w
ha
t i
f y
ou

, a
s

an
 a
ut
ho

ri
ze
d
pe

rs
on

, f
or
ge
t t
hi
s
pa
ss
w
or
d?

 A
nd

 w
ou

ld
 it
 n
ot
 b
e
ni
ce
 to

 c
he

ck
 th

e
st
re
ng
th
 o
f t
he

 p
as
sw

or
d
be

fo
re
 y
ou

 u
se
 it
?
A
 s
tr
on

g
pa
ss
w
or
d
ca
n
pr
ev
en

t u
na
ut
ho

ri
ze
d
pe

rs
on

s
to
 a
cc
es
s
th
e
sy
st
em

, a
nd

 a
 g
oo

d
pa
ss
w
or
d
co
ns
is
ts
 o
f b

ot
h
up

pe
rc
as
e
an
d
lo
w
er
ca
se
 le
tt
er
s,

nu
m
be

rs
 a
nd

 s
pe

ci
al
 c
ha
ra
ct
er
s.
 It
 s
ho

ul
d
al
so
 b
e
as
 lo
ng

 a
s
po

ss
ib
le
, a
pp

ea
r
lik
e
a
ra
nd

om
 g
en

er
at
ed

 p
as
sw

or
d
an
d
st
ill
 b
e
ea
sy
 to

 r
em

em
be

r.

Ra
in
bo

w
 ta

bl
es
 c
an

 b
e
us
ed

 to
 r
ec
ov
er
 y
ou

r
pa
ss
w
or
d.

 Th
e
pa
ss
w
or
ds
 a
re
 s
to
re
d
on

 th
e
co
m
pu

te
r
as
 h
as
h
va
lu
es
. P
op

ul
ar
 h
as
h

al
go
ri
th
m
s
us
ed

 a
re
 L
M
 h
as
h,
 N
T
ha
sh
, M

D
5
ha
sh
 a
nd

 S
H
A
‐5
12

 h
as
h.
 T
he

LM

 a
nd

 N
T
ha
sh
 v
al
ue

s
ar
e
st
or
ed

 in
 th

e
SA

M
 fi
le
 in

 W
in
do

w
s
sy
st
em

s,

an
d
th
e
M
D
5
an
d
SH

A
‐5
12

 h
as
h
va
lu
es
, a
m
on

g
ot
he

rs
, a
re
 s
to
re
d
in

pa
ss
w
or
d
fil
es
 in

 U
N
IX
 s
ys
te
m
s.
 M

an
y
U
N
IX
 s
ys
te
m
s
us
e
sa
lt
an
d
pa
ss
w
or
d

as
 in
pu

t w
he

n
ge
ne

ra
tin

g
th
e
ha
sh
 v
al
ue

. A
 s
al
t c
on

ta
in
s
ra
nd

om
 b
its
, a
nd

a
ne

w
 s
al
t i
s
ge
ne

ra
te
d
ea
ch
 ti
m
e
it
is
 u
se
d.
 T
hi
s
m
ak
es
 th

e
ha
sh
 v
al
ue

ha
rd
er
 to

 c
ra
ck
 w
ith

 r
ai
nb

ow
 ta

bl
es
. W

in
do

w
s
sy
st
em

s
do

 n
ot
 u
se
 s
al
t.

 Ra
in
bo

w
 ta

bl
es
 c
on

ta
in
 a
 c
on

ne
ct
io
n
be

tw
ee
n
a
ha
sh
 v
al
ue

 a
nd

 it
s

co
rr
es
po

nd
in
g
pa
ss
w
or
d.
 B
y
ha
vi
ng

 th
is
 c
on

ne
ct
io
n
al
re
ad
y
av
ai
la
bl
e
fo
r a

ll
po

ss
ib
le
 h
as
h
va
lu
es
, a
 q
ui
ck
 s
ea
rc
h
th
ro
ug
h
th
e
ta
bl
es
 fo

r
a
de

si
re
d

ha
sh
 v
al
ue

 c
an

 r
ev
ea
l t
he

 p
as
sw

or
d.

Fi
gu
re
 1
: T
he

 r
ai
nb

ow
 ta

bl
e
lo
ok

up
 p
ro
ce
ss
.

 H
el
lm

an
 [1

] p
ro
po

se
d
a
tim

e‐
m
em

or
y
tr
ad
e‐
of
f w

he
n
ap
pl
yi
ng

 a
 c
ry
pt
an
al
yt
ic
 a
tt
ac
k.
 H
el
lm

an
 u
se
d
so
m
et
hi
ng

 c
al
le
d
ha
sh
 c
ha
in
s
to
 d
ec
re
as
e

th
e
m
em

or
y
re
qu

ir
em

en
ts
. I
ns
te
ad

 o
f s
to
ri
ng

 a
ll
th
e
ha
sh
 v
al
ue

s
in
 m

em
or
y,
 th

e
ha
sh
 v
al
ue

s
ar
e
or
ga
ni
ze
d
in
 c
ha
in
s.
 O
nl
y
th
e
fir
st
 a
nd

 th
e
la
st

el
em

en
t o

f t
he

 c
ha
in
 a
re
 s
to
re
d
in
 th

e
m
em

or
y,
 s
av
in
g
m
em

or
y
at
 th

e
co
st
 o
f c
ry
pt
an
al
ys
is
 ti
m
e.
 A
dd

iti
on

al
 m

em
or
y
tr
ad
e
of
f i
s
ac
qu

ir
ed

 b
y

re
du

ci
ng

 th
e
ha
sh
 v
al
ue

s
in
to
 k
ey
s.

 In
 F
ig
ur
e
1,
 th

e
ha
sh
 v
al
ue

 D
FG

A
 is
 s
ub

je
ct
 to

 c
ra
ck
in
g.
 In

 th
e
to
p
ri
gh
t c
or
ne

r
of
 th

e
fig
ur
e,
 D
FG

A
 is
 r
ed

uc
ed

 w
ith

 a
 r
ed

uc
tio

n
fu
nc
tio

n
an
d
th
e

ke
y
is
 lo
ok
ed

 u
p
in
 th

e
ra
in
bo

w
 ta

bl
es
. T
he

 k
ey
 h
ad

 n
o
m
at
ch
 w
ith

 a
ny

 o
f t
he

 e
nd

po
in
t k

ey
s,
 a
nd

 o
n
th
e
ne

xt
 li
ne

 th
e
ke
y
is
 h
as
he

d
ag
ai
n
an
d

th
en

 fu
rt
he

r r
ed

uc
ed

 w
ith

 a
 n
ew

 r
ed

uc
tio

n
fu
nc
tio

n.
 T
he

 lo
ok
up

 p
ro
ce
ss
 n
ow

 fi
nd

s
a
m
at
ch
 a
nd

 fr
om

 th
e
co
rr
es
po

nd
in
g
st
ar
tp
oi
nt
 k
ey
 a
bc
d

th
ro
ug
h
a
nu

m
be

r
of
 r
ed

uc
tio

n
fu
nc
tio

ns
 th

e
de

si
re
d
ke
y
oi
er
 is
 d
er
iv
ed

.
 In
st
ea
d
of
 u
si
ng

 a
 s
in
gl
e
re
du

ct
io
n
fu
nc
tio

n
R,
 O
ec
hs
lin

 [2
] s
ug
ge
st
 u
si
ng

 a
 s
eq

ue
nc
e
of
 r
el
at
ed

 r
ed

uc
tio

n
fu
nc
tio

ns
 R

1 u
p
to
 R

t‐
1.
 H
e
ca
lle
d
th
e

ne
w
 c
ha
in
s
ra
in
bo

w
 c
ha

in
s,
 a
nd

 th
e
ta
bl
es
 c
on

ta
in
in
g
th
es
e
ch
ai
ns

ra
in
bo

w
 ta

bl
es
.

 Th
er
e
ar
e
m
an
y
re
as
on

s
fo
r
ha
vi
ng

 r
ai
nb

ow
 ta

bl
es
 a
va
ila
bl
e.
 O
ne

 r
ea
so
n
is

th
at
 p
eo

pl
e
fo
rg
et
 th

ei
r p

as
sw

or
d
to
 th

ei
r
us
er
 a
cc
ou

nt
 a
nd

 d
es
pe

ra
te
ly

w
an
t t
o
ac
ce
ss
 th

ei
r
fil
es
 a
ga
in
. T
he

n
yo
u
ca
n
cr
ac
k
th
e
ha
sh
 v
al
ue

 u
si
ng

ra
in
bo

w
 ta

bl
es
 to

 r
ec
ov
er
 th

e
lo
st
 p
as
sw

or
d.
 A
no

th
er
 r
ea
so
n
ca
n
be

 to

ch
ec
k
th
e
st
re
ng
th
 o
f a

 p
as
sw

or
d
be

fo
re
 u
se
. I
f t
he

 c
ho

se
n
pa
ss
w
or
d
is

re
ve
al
ed

 b
y
th
e
us
e
of
 r
ai
nb

ow
 ta

bl
es
, y
ou

 m
ig
ht
 b
e
as
ke
d
to
 c
ho

os
e
a

st
ro
ng
er
 p
as
sw

or
d.
 Y
ou

 c
an

 e
ith

er
 o
bt
ai
n
pr
ec
om

pu
te
d
ra
in
bo

w
 ta

bl
es
, o
r

yo
u
ca
n
m
ak
e
yo
u
ow

n
ta
bl
es
, u
si
ng

 fo
r
in
st
an
ce
 th

e
W
in
rt
ge
n
[3
] o

r
th
e

rt
ge
n
[4
] t
oo

l.
 A
pp

ro
ac
h

Th
is
 a
pp

ro
ac
h
w
ill
 g
iv
e
an

 in
di
ca
tio

n
of
 h
ow

 lo
ng

 ti
m
e
it
w
ill
 ta

ke
 to

pr
od

uc
e
ra
in
bo

w
 ta

bl
es
 th

at
 c
an

 b
e
us
ed

 to
 c
ra
ck
 N
T
ha
sh
 v
al
ue

s.
 T
he

 to
ol

na
m
ed

 W
in
rt
ge
n
w
ill
 b
e
us
ed

 in
 th

is
 a
pp

ro
ac
h.
 T
hi
s
ap
pr
oa
ch
 m

ay
 a
ls
o
be

Fi
gu
re
 2
: T
he

 w
in
rt
ge

n
to
ol
.

ap
pl
ie
d
to
 g
en

er
at
e
ra
in
bo

w
 ta

bl
es
 fo

r
ot
he

r
ty
pe

s
of
 h
as
h
va
lu
es
. T
he

 c
om

pu
te
r
us
ed

 w
he

n
th
es
e
es
tim

at
io
ns
 w
er
e
do

ne
 w
as
 a
 D
el
l O

pt
iP
le
x

G
X2

70
 P
en

tiu
m
 4
 2
.6
0
G
H
z
1
G
B.

 W
he

n
pr
od

uc
in
g
ra
in
bo

w
 ta

bl
es
 y
ou

 h
av
e
to
 c
on

si
de

r
th
e
fo
llo
w
in
g
se
tt
in
gs
: T
yp
e
of
 h
as
h,
 m

in
im

um
 a
nd

 m
ax
im

um
 p
as
sw

or
d
le
ng
th
, c
ha
in

le
ng
th
, c
ha
in
 c
ou

nt
, n
um

be
r
of
 ta

bl
es
 a
nd

 c
ha
rs
et
. A

s
ca
n
be

 s
ee
n
fr
om

 F
ig
ur
e
2,
 n
tlm

 w
as
 c
ho

se
n
to
 b
e
th
e
ha
sh
 ty

pe
, t
he

 m
ax
im

um
 p
as
sw

or
d

le
ng
th
 h
as
 b
ee
n
se
t t
o
9
ch
ar
ac
te
rs
, t
he

 r
ai
nb

ow
 le
ng
th
 w
as
 s
et
 to

 1
52
00
, t
he

 c
ha
in
 c
ou

nt
 to

 6
71

08
86

4
an
d
th
e
nu

m
be

r o
f t
ab
le
s
th
at
 a
re
 g
oi
ng

to
 b
e
ge
ne

ra
te
d
w
as
 1
70

00
0.
 T
he

 fi
gu
re
 b
el
ow

 u
se
 th

e
ch
ar
se
t n

am
ed

 a
ll‐
sp
ac
e‐
D
G
 b
ut
 o
th
er
 c
ha
rs
et
s
ca
n
be

 c
ho

se
n.

 A
s
al
re
ad
y
m
en

tio
ne

d,
 F
ig
ur
e
2
sh
ow

s
W
in
rt
ge
n
w
ith

 s
et
tin

gs
 th

at
 m

ig
ht
 b
e
us
ed

 to
 c
re
at
e
th
e
ra
in
bo

w
 ta

bl
es
 u
se
d
to
 c
ra
ck
 th

e
N
T
ha
sh
 v
al
ue

s.

Fr
om

 th
e
Be

nc
hm

ar
k
m
en

u
at
 th

e
lo
w
er
 le
ft
 o
f t
he

 w
in
do

w
 d
iff
er
en

t c
al
cu
la
tio

ns
 a
re
 s
ho

w
n.
 N
ot
e
th
at
 th

e
To
ta
l p
re
co
m
pu

ta
tio

n
tim

e
is

es
tim

at
ed

 to
 o
ve
r 5

67
0
ye
ar
s
on

 th
e
sy
st
em

 u
se
d
in
 th

is
 a
pp

ro
ac
h
an
d
th
e
M
ax
 c
ry
pt
an

al
ys
is
 ti
m
e,
 w
hi
ch
 is
 th

e
m
ax
im

um
 ti
m
e
it
m
ig
ht
 ta

ke
 to

cr
ac
k
th
e
ha
sh
 v
al
ue

, i
s
es
tim

at
ed

 to
 o
ve
r 2

34
 d
ay
s.
 P
er
fo
rm

in
g
th
is
 a
pp

ro
ac
h
on

 th
e
ex
is
tin

g
sy
st
em

 is
 th

er
ef
or
e
un

de
si
ra
bl
e.
 A
 r
eq

ui
re
m
en

t o
f

99
%
 o
r
m
or
e
in
 S
uc
ce
ss
 p
ro
ba

bi
lit
y
le
d
to
 th

is
 e
st
im

at
e.
 T
he

 r
eq

ui
re
m
en

t w
as
 a
ch
ie
ve
d
w
ith

 th
e
cu
rr
en

t s
et
tin

gs
, a
s
ca
n
be

 s
ee
n
in
 F
ig
ur
e
2.
 A

s
a
co
ns
eq

ue
nc
e
of
 th

e
pr
oc
es
s
ta
ki
ng

 to
o
m
uc
h
tim

e
on

 th
e
cu
rr
en

t s
ys
te
m
, a
n
in
te
re
st
in
g
st
ud

y
w
ou

ld
 b
e
to
 s
ee

 h
ow

 lo
ng

 ti
m
e
th
e
sa
m
e

pr
oc
es
s
w
ou

ld
 b
e
es
tim

at
ed

 to
 ta

ke
 o
n
a
su
pe

rc
om

pu
te
r.
 If
 th

e
es
tim

at
ed

 ti
m
e
se
em

s
ac
ce
pt
ab
le
, i
t w

ou
ld
 a
ls
o
be

 in
te
re
st
in
g
to
 a
ct
ua
lly
 r
un

th
is
 p
ro
ce
ss
. B

ut
 if
 a
 s
up

er
co
m
pu

te
r
is
 u
se
d
it
m
ay
 b
e
be

ne
fic
ia
l t
o
ch
an
ge
 th

e
ch
ai
n
le
ng
th
, c
ha
in
 c
ou

nt
 a
nd

 n
um

be
r
of
 ta

bl
es
. I
f y
ou

 in
cr
ea
se

fo
r
ex
am

pl
e
th
e
ch
ai
n
le
ng
th
, t
he

 r
es
ul
t w

ill
 b
e
th
at
 th

e
ra
in
bo

w
 ta

bl
e
w
ill
 d
ec
re
as
e
in
 s
iz
e
bu

t o
n
th
e
ot
he

r
ha
nd

 th
e
ne

w
 c
ha
in
 r
eq

ui
re
s
a

m
or
e
po

w
er
fu
l p
ro
ce
ss
or
. T
he

 id
ea

 is
 to

 s
til
l g
ai
n
ad
eq

ua
te
 S
uc
ce
ss
 p
ro
ba

bi
lit
y.
 It
 s
ho

ul
d
be

 n
ot
ed

 th
at
 it
 is
 a
ls
o
po

ss
ib
le
 to

 u
se
 a
 to

ol
 n
am

ed

rt
ge
n
fo
r
th
is
 p
ro
ce
ss
. r
tg
en

 is
 a
va
ila
bl
e
fo
r
U
N
IX
 s
ys
te
m
.

 G
oa

l
Th
e
th
ou

gh
t b

eh
in
d
th
is
 p
re
se
nt
at
io
n
is
 to

 h
ig
hl
ig
ht
 th

e
fa
ct
 th

at
 th

e
tim

e
sp
en

t t
o
ge
ne

ra
te
 s
uc
h
ra
in
bo

w
 ta

bl
es
 m

os
t l
ik
el
y
w
ill
 b
e
dr
am

at
ic
al
ly

re
du

ce
d
w
ith

 th
e
us
e
of
 a
 s
up

er
co
m
pu

te
r.
 If
 y
ou

 c
om

pa
re
 th

e
co
m
pu

ta
tio

n
tim

es
 o
f g
en

er
at
in
g
ra
in
bo

w
 ta

bl
es
 o
n
ou

r
sy
st
em

 a
nd

 a

su
pe

rc
om

pu
te
r,
 th

e
am

ou
nt
 o
f r
ai
nb

ow
 ta

bl
es
 w
ill
 b
e
dr
am

at
ic
al
ly
 la
rg
er
 w
he

n
us
in
g
a
su
pe

rc
om

pu
te
r.
 T
hi
s
w
ill
 le
ad

 to
 a
 s
ig
ni
fic
an
tly

 g
re
at
er

ch
an
ce
 o
f r
ev
ea
lin
g
th
e
de

si
re
d
pa
ss
w
or
d.

Co
nc
lu
si
on

A
s
a
sy
st
em

 a
dm

in
is
tr
at
or
 fo

r
a
la
rg
e
co
rp
or
at
io
n
it
w
ou

ld
 b
e
an

 a
dv
an
ta
ge
 to

 h
av
e
a
la
rg
e
se
t o

f r
ai
nb

ow
 ta

bl
es
, t
o
re
co
ve
r
an
d/
or
 te

st
 th

e
em

pl
oy
ee
’s
 p
as
sw

or
ds
. B

as
ed

 o
n
th
is
 a
pp

ro
ac
h
it
ca
n
be

 c
on

cl
ud

ed
 th

at
 b
ui
ld
in
g
th
e
de

si
re
d
ra
in
bo

w
 ta

bl
es
 w
ill
 ta

ke
 to

o
m
uc
h
tim

e
on

 o
ur

sy
st
em

. T
hi
s
is
 w
hy

 it
 is
 d
es
ir
ab
le
 to

 te
st
 th

is
 p
ro
ce
ss
 o
n
a
su
pe

rc
om

pu
te
r,
 a
nd

 th
en

 s
ee

 h
ow

 lo
ng

 ti
m
e
it
w
ill
 ta

ke
.

 Re
fe
re
nc
es

[1
] M

ar
tin

 E
. H

el
lm

an
. A

 c
ry
pt
an

al
yt
ic
 ti
m
e‐
m
em

or
y
tr
ad

e‐
of
f.
IE
EE

 T
RA

N
SA

CT
IO
N
S
O
N
 IN

FO
RM

A
TI
O
N
 T
H
EO

RY
,

IT
‐2
6:
40
1‐
40
6,
 1
98

0.
 A
va
ila
bl
e
fr
om

: h
tt
p:
//
w
w
w
ee
.s
ta
nf
or
d.
ed

u/
~h

el
lm

an
/p
ub

lic
at
io
ns
/3
6.
pd

f
 [2
] P

hi
lip
pe

 O
ec
hs
lin
. M

ak
in
g
a
Fa
st
er
 C
ry
pt
an

al
yt
ic
 T
im

e‐
M
em

or
y
Tr
ad

e‐
O
ff
, 2
00
3.
 A
va
ila
bl
e
fr
om

:
ht
tp
:/
/i
nf
os
ci
en

ce
.e
pf
l.c
h/
ge
tf
ile
.p
y?
re
ci
d=

99
51

2&
m
od

e=
be

st

 [3
] M

on
to
ro
 M

. W
in
rt
ge
n,
 2
00
9.

A
va
ila
bl
e
fr
om

: h
tt
p:
//
w
w
w
.o
xi
d.
it/
pr
oj
ec
ts
.h
tm

l
 [4
] P

ro
je
ct
 R
ai
nb

ow
Cr
ac
k,
 R
ai
nb

ow
Cr
ac
k
v.
1.
3,
 2
00

9.

A
va
ila
bl
e
fr
om

: h
tt
p:
//
pr
oj
ec
t‐
ra
in
bo

w
cr
ac
k.
co
m
/

All in a day’s work: Password cracking for the
rest of us

Jørgen Blakstad1, Rune Walsø Nerg̊ard1, Martin Gilje Jaatun2, and Danilo
Gligoroski1

1 Department of Telematics, NTNU, NO-7491 Trondheim , Norway
2 SINTEF ICT, NO-7465 Trondheim, Norway
{jorgenbl,runewals}@stud.ntnu.no

Abstract. The majority of computer systems are still protected primar-
ily with a user name and password, and many users employ the same
password on multiple systems. Additionally, some of the most popular
operating systems such as Windows XP, Windows Vista and the up-
coming Windows 7, still use ad-hoc constructed hash functions such as
LM and NT, while many Linux variants use the long time broken hash
function MD5. This paper describes an experiment where we have tested
the strength of a selection of passwords when converted to LM, NT and
MD5 hashes, respectively, using commonly available tools. Our conclu-
sion is that a large number of passwords can be cracked within a normal
working day, and that all LM hash passwords can be recovered before
morning coffee. The use of such weak hash functions in the process of
user authentication in these operating systems poses a significant threat
to an organization’s security.
Keywords: Password, Security, Cracking, LM Hash, NT, MD5

1 Introduction

Most computer systems are still protected primarily by a username and password
combination. Using passwords and password management routines for giving
access rights is a technique that is as old as the history of operating systems.
Generally speaking the development in the way how passwords were kept and
used in operating systems went through these phases:

1. Keep passwords in pure text form [1].
2. Encrypt passwords with some naive encrypting algorithms or modifications

of DES and keep just the encrypted parts [2, 3].
3. Encrypt passwords with DES and keep just the encrypted parts [2, 3].
4. Pre-pend the passwords with some added random value called ”salt” and

then encrypt them with DES. Keep just the encrypted parts [2].
5. Hash the passwords with some cryptographic hash function and keep just

the hash digests [4–6].
6. Pre-pend the passwords with some added random value called ”salt” and

then hash them with some cryptographic hash function. Keep just the hash
digests [7, 8].

It is a common understanding in the information security community that
the techniques that combine salting and hashing of the passwords (item 6 in the
previous list) are much more secure than the techniques described in items 1 – 5.
The security of the techniques under items 5 and 6 also depend on the security
of the cryptographic hash function employed. If the used hash function is weak
(i.e. it is easy to find preimages, second preimages or collisions for that hash
function), then protection of the passwords by that hash function is also weak.

In the area of cryptographic hash functions the most popular family of
hash functions is the MD4 family, which includes functions like MD5, HAVAL,
RIPEMD, RIPEMD-160, SHA-0, SHA-1, SHA-2 and many others [9–11]. Many
of those cryptographic functions have been practically broken (such as MD4,
MD5, HAVAL, RIPEMD, SHA-0), and SHA-1 was theoretically broken in 2005
[12].

However, it is a shocking and disappointing fact that currently the most
popular operating systems still use weak cryptographic hash functions (ad-hoc
constructed hash functions that do not belong even to the MD4 family) and
many of them do not even use salting techniques. Typical examples are Microsoft
Windows XP that uses an ad-hoc hash solution called “LM hash”, the more
recent Microsoft Vista and the latest Windows 7 operating systems that use
an ad-hoc hash function called “NT hash” (seen as an improved version of LM
hash), and some versions of the popular Linux operating system Ubuntu that
use the long time broken MD5 hash function.

Motivated by the fact that those most popular operating systems are still
using very weak and practically broken hash functions for dealing with passwords
and user authentication techniques, we chose 30 passwords of different strengths,
and wanted to see how many could be cracked during a period of 1 day (8 hours).
In this experiment dictionary attacks and attacks with the use of rainbow tables,
which are both password cracking techniques, were applied.

In our experiments we have included exactly the three aforementioned types
of hash functions: LM hash, NT hash and MD5 hash.

The remainder of the paper is structured as follows: In Section 2 we give
a brief description of our laboratory environment. Section 3 describes how our
experiment was carried out, with results presented in Section 4. We discuss the
results in Section 5, and offer our conclusions and suggestions for further work
in Section 6.

2 Laboratory Environment

We made fresh installations of Windows XP, Windows Vista, Windows 7 RC
and Ubuntu 8.10 on identical systems. It should be added that we installed an
extra hard disk to be able to store the rainbow tables used for the LM hashes,
as the rainbow tables were 64GB in size. The dictionary and the rainbow table
attacks on the LM- and NT hashes were run in parallel. This was done on two
Windows Vista systems. The dictionary attack that was run on the MD5 hashes

was not run in parallel with any of the other attacks. The MD5 dictionary attack
was run on Ubuntu 8.10.

The rainbow tables used to crack the LM hash were much smaller than those
for other hashes because of their weak cryptographic properties (as there are
less combinations to try). Oechslin [13] also used the LM hash as an example
when he introduced the concept of rainbow tables. We chose to include the NT
hash because this is the new hash type included by Microsoft on newer Windows
versions. The NT hash is supposed to solve many of the weaknesses of the LM
hash, but still no salt is included. This is why the NT hash also is susceptible to
the rainbow table attack. The MD5 hash was chosen because it is a common type
of hash used in Unix systems. MD5 hashes are supported by John the Ripper
[14], which is the tool that we used for the MD5 hashes in this experiment, and
they may be cracked with the use of a dictionary attack. At RainbowCrack’s web
pages [15] rainbow tables for MD5 are available but we did not include these in
the experiment due to time constraints.

3 Experimental Procedure

Table 1 gives an overview of which techniques (dictionary attack and/or rainbow
table attack) that were applied to what type of hash. For all the dictionary
attacks performed we used the wordlist that is already included in the Cain &
Abel tool [16]. In the case where John the Ripper was used for the dictionary
attack the same wordlist was imported. For the LM hashes we used rainbow
tables specifically designed to crack LM hashes and these tables, which in all
consists of 64 subtables, were in total 64GB in size. The LM rainbow tables were
downloaded for free from [17].

For the NT hashes we used rainbow tables that were specifically designed
to crack NT hashes but the tables we used for this purpose were not free. It is
possible to obtain free NT rainbow tables from Ophcrack’s web pages [18], such
as the one named Vista free, but these do not include as many characters as the
versions you have to pay for. The NT rainbow tables that we bought are called
Vista special, are 8GB in size and were obtained from Ophcrack’s web page as
well. The Vista special rainbow tables in all consists of 4 rainbow tables.

Type of hash Techniques

LM hash Dictionary attack and rainbow table attack

NT hash Dictionary attack and rainbow table attack

MD5 Dictionary attack
Table 1. Applied techniques corresponding to their type of hash.

3.1 Selection of Passwords

In this experiment we wanted to test passwords of different strength. That is
why we created three different password groups, and then added 10 password
to each group. Most Popular, Mnemonic Passwords and Random Passwords are
the names of these groups. The ten passwords added to the Most Popular group
are taken from Bruce Schneier’s web page [19], 8 of the Mnemonic Passwords are
taken from a mnemonic password generator [20] while 2 are created by us. The
Random Passwords are collected from a random password generator [21] found
on the Internet. The group labeled Most Popular contain some of the most com-
mon passwords used, and as we can see from Table 2, these passwords do not
seem very secure. As a contrast, the Random Passwords are considered very se-
cure because they are randomly generated with both lower-case- and upper-case
letters, numbers and special characters. One disadvantage with the randomly
generated passwords are that they are hard to remember, and that is why we
have included some mnemonic passwords. A mnemonic password is a password
where a user for example chooses a phrase that is easy to remember (mnemonic)
and uses a character to represent each word in the phrase. Mnemonic pass-
words are therefore passwords that seem like random generated passwords but
are easier to remember because they are generated from phrases that are easy
to remember. As already mentioned, we chose to create two of the mnemonic
passwords ourselves (5GCTw4tG@N and tcC!tW84s), and this was to also in-
clude mnemonic passwords of nine and ten characters in length. It was desirable
to test passwords with different characteristics. As an example of a mnemonic
password we can take a look at one of our self-created password: 5GCTw4tG@N
- Fifth Grade Comm Tech waiting for their Graduation at NTNU. An overview
of the 30 different passwords and to which group they belong is given in Table
2. Table 3 lists all the selected Mnemonic Passwords and their corresponding
phrase.

Most Popular Mnemonic Passwords Random Passwords

password1 hm71li qaSt4@

abc123 k0fzug vANe$a

myspace1 fp6jar !aFu9ut

password msi89a0 C7e++AV

blink182 %l41pc w2U$atHe

qwerty1 m.f0vgk $ Ch6cU5

fuckyou v*qbt4un Ke42A2Pe*

123abc qtdra# rA3$ ey*c

baseball1 5GCTw4tG@N b*#D9*7yEG

football1 tcC!tW84s 8rA* pHa$8
Table 2. An overview of the 30 selected passwords, and their corresponding category.

Mnemonic
Passwords

Phrase

hm71li Hefin manages Sven’s first lugubrious identity

k0fzug Kath’s nothing frazzles Zoe’s unexpected gadget

fp6jar Frank promotes Zach’s jocular absentminded rabbit

msi89a0 Morgan seizes if eighth Nina argues nothings

%l41pc Percy liberates Fourier’s first priceless cabbage

m.f0vgk Morgan stops for only Vivian glamorises kilns

v*qbt4un Victor’s handy quarter boosts Tim’s fourth unknown number

qtdra# Quentin traps Dave’s reputable aloof hash

5GCTw4tG@N Fifth Grade Comm Tech waiting for their Graduation at NTNU

tcC!tW84s The current crisis in the world fights for survival
Table 3. 10 mnemonic passwords with their corresponding phrase.

Type of hash Tools

LM hash Cain & Abel

NT hash Cain & Abel, Ophcrack

MD5 John the Ripper
Table 4. An overview of the tools used

3.2 Applied Methodologies for Password Cracking

For the LM and NT hashes, we first applied a dictionary attack to exclude some
of the weakest passwords before we started to crack the rest of the passwords
with the use of rainbow tables. For the MD5 hashes we only applied a dictionary
attack. We created 30 users on a Windows XP machine, 30 users on a Windows
Vista machine and 30 users on a Ubuntu 8.10 machine to be able to attack all of
the three different types of hashes (LM hash, NT hash and MD5 hash). The user
accounts, and thus also the corresponding password files, were created on virtual
machines using a program called VirtualBox [22]. We used VirtualBox because
it is easy to revert the actions done on a virtual machine. To create this many
users we made scripts to automate this process. The script for adding users in a
UNIX system adds 30 users with their passwords hashed with MD5, The result
was a shadow file created in Ubuntu 8.10 containing 30 MD5 hash values.

When we planned this experiment, and before we knew how long time the
dictionary and the cryptanalysis attack would take, we agreed to stop the dic-
tionary attacks on the LM hashes and the NT hashes (the SAM files) after
maximum 2 hours and then use the remaining 6 hours for the rainbow tables
(8 hours in total). The reason why we planned with such time constraints was
that we did not expect all the passwords to be revealed and that we therefore
had to cancel the jobs before completion, as the idea was to only use 1 day.
We also wanted the cryptanalysis attack to get most of the available time as we
thought that the chance was bigger that the rainbow table attack would crack
the more difficult passwords. When it comes to the MD5 hashes the dictionary

attack was supposed to run for 8 hours continuously, and then be aborted if it
had not completed by then.

4 Results

In this section the achieved results regarding the empirical password study will
be presented. Keep in mind that this experiment was supposed to reveal how
many of the 30 selected passwords that were possible to reveal during 1 day (8
hours).

4.1 Timing

Phase 1 of this experiment was a timing phase used to measure how long time
both the dictionary attack and the rainbow table attack with the use of rainbow
tables would take when trying to crack the LM and NT hash. This phase also
measured the time of the dictionary attack on the MD5 hash. The results from
this timing phase is presented below. We still separate between LM hash, NT
hash and MD5 hash.

LM hash For the LM hash we used Cain & Abel [16] for both the dictionary and
the rainbow table attack, and for the former we used a wordlist (Wordlist.txt)
which is included by default in the Cain & Abel tool. When the LM hash is
constructed, the password is first divided into two segments with maximum 7
characters in each segment. The two segments are then hashed separately. The
password used in this phase consists of 10 characters and therefore 2 LM hash
values are constructed, one for the 7 first characters and one for the remaining 3
characters. As expected, none of these two hash values was cracked after running
the dictionary attack, and thus the password was not revealed.

For the dictionary attack we had to open the Windows Task Manager and
use the CPU Time to measure the time. The total time for the dictionary attack
1 minute and 8 seconds (68 seconds). This time measurements show how long
time it may take if the password is not found during the dictionary attack.

Now let us take a look at the timing of the rainbow table attack. We used only
one table to be able to create an estimate instead of running the whole attack,
as this would take longer time than we wanted to spend on the timing phase.
The rainbow table attack, using just one of the tables, took 291,50 + 49,91 =
341,41 seconds = 5 minutes 41 seconds, when the password was not revealed by
this single rainbow table. When calculating the total time for the single rainbow
table we included Total disk access time and Total rainbow table time. Now we
had to make an estimate for the maximum time the rainbow table attack might
take when including all the 64 rainbow tables: 5 minutes 41 seconds * 64 tables
= 364 minutes 10 seconds (21850 seconds) = 6 hours 4 minutes. This estimate
illustrates the worst case scenario, if no password is found during the rainbow
table attack.

Table 5 gives an overview of the timing results from the dictionary attack
and from the estimate of the rainbow attack. The latter is based on the accom-
plishment of one of the 64 rainbow tables. Both these attacks were performed
on one password (8rA* pHa$8).

The idea with the timing phase was to find out how long time the dictionary
attack and the rainbow table attack might take, and if it would be advantageous
to include a dictionary attack to reveal the easiest passwords before running
the rainbow table attack with the rainbow tables. Table 5 gives an indication
of how much time the different attacks might take. The dictionary attack only
constitute 0.24% of the available time and the rainbow table attack is estimated
to constitue 75.87% of the time. This leaves us with as much as 23.90% unused
time.

NT hash For the NT hash we used Cain & Abel [16] for the dictionary attack
and Ophcrack for the rainbow table attack. Let us first consider the dictionary
attack. We used the same wordlist (Wordlist.txt) as for the LM hash.

The dictionary attack was measured to take 54 seconds, but from this we had
to deduct 5 seconds as this was the time it took to start Cain & Abel. This makes
the total time for the dictionary attack 49 seconds. This gives an indication of
how long time it might take if the password is not found during the dictionary
attack.

The rainbow table attack on the NT hash, using just one of the tables, took
8 minutes 20 seconds. The field displaying the time is labeled Time elapsed.
In this case we do not need to deduct anything as Ophcrack has a build-in
timing function which starts when the cracking process begins, and not when
the program is loaded. As this was just an estimate when using one of the
tables, we have to make an estimate of how long time it might take when all the
4 rainbow tables are included. The 4 NT rainbow tables mentioned here are the
tables that together form the non-free Vista special tables. The total estimate for
the use of rainbow tables on the NT hash is: 8 minutes 20 seconds (500 seconds)
* 4 tables = 33 minutes 20 seconds (2000 seconds). This estimate illustrates the
case if no password is found during the rainbow table attack on the NT hash.

Table 5 gives an overview of the timing results from the dictionary attack
and from the estimate of the rainbow table attack performed on the NT hash
value. Both these attacks were performed on one password.

MD5 hash For the MD5 hash we only performed a dictionary attack, and we
used John the Ripper to find out how long time the dictionary attack would take
on the selected password (8rA* pHa$8). To start the dictionary attack we had
to run a couple of commands:

1. umask 077
2. sudo unshadow /etc/passwd /etc/shadow > mypasswd
3. sudo john −−wordlist=Wordlist.lst −−rules mypasswd

First, the umask command was used to set adequate permission rights. Next
we used the unshadow command to obtain the content of the passwd file and
of the shadow file, and then store the content in a new file named mypasswd in
this case. The third command, john, was used to actually start the dictionary
attack using John the Ripper. As can be seen from the third command we used
the same wordlist as for both the LM hash and the NT hash. By using −−rules
in the same command we also specified that we wanted to use certain mangling
rules for the dictionary attack. Cain & Abel, which was used for both the LM
and NT hash, also used certain mangling rules. The command sudo was used to
get administrator privileges. Note that these commands also have to be applied
in Phase 2 to run the dictionary attack on all the 30 users.

We used the timing function included in the John the Ripper tool, and the
figure shows that the dictionary attack, including the word mangling, took 51
minutes and 48 seconds (3108 seconds) to complete on the selected password.

Table 5 gives an overview of the timing results from the dictionary attack per-
formed on the MD5 hash value. Note that the dictionary attack was performed
on just one password.

Hash Technique Time

LM Dictionary attack 1 minute 8 seconds (68 seconds)

LM Rainbow attack 6 hours 4 minutes (21850 seconds)

NT Dictionary attack 49 seconds

NT Rainbow Table attack 33 minutes 20 seconds (2000 seconds)

MD5 Dictionary attack 51 minutes 48 seconds (3108 seconds)
Table 5. Time measurement for the LM, NT and MD5 hash

4.2 Password Cracking

The LM hashes were obtained from a Windows XP machine, the NT hashes from
a Windows Vista machine and the MD5 hashes from a Ubuntu 9.05 machine. We
also performed an experiment on the side for the NT hashes, with the use of a
machine running the newly released Windows 7 RC operating system. This was
to be able to highlight possible improvements that Microsoft had done regarding
the handling of the login password. A full outline of the selected passwords can
be found in Table 2.

LM hash Note that a password consisting of 7 characters or less will only have
one LM hash value.

Nine passwords were revealed from the dictionary attack, and are listed in
italics in Table 8. 30% av the passwords were revealed from the dictionary attack,
while 70% of them will be a subject for the rainbow table attack.

We estimated the time for the dictionary attack on the one selected password
to be 1 minute and 8 seconds. The dictionary attack carried out with all the 30

selected passwords was measured to take 1 minute and 9 seconds. But also in
this case we had to deduct the time it took for Cain & Abel to start as we
used the CPU Time displayed in Windows Task Manager. Remember that the
CPU time may not be completely accurate because of the influence from other
processes. After deducting the 6 seconds that Cain & Abel used to start, the
dictionary attack was estimated to take 1 minute 3 seconds. This shows that it
does not take longer time to run a dictionary attack on a password file containing
several LM hashes than a password file containing just one LM hash. In fact,
the estimate indicates that the case with several LM hashes takes shorter time
than when cracking just one LM hash, but be aware of that minor inaccuracy
may influence the result.

Now let us consider the rainbow table attack with the use of the LM rainbow
tables. It should be noted that the users with a password that was revealed
during the dictionary attack was moved from the list of passwords we wanted to
reveal during the rainbow table attack. Examining the “Revaled LM?” column
in Table 8, we can see that all the remaining 21 passwords were revealed.

This means that we have revealed all the 30 selected passwords by using
both a dictionary attack and a rainbow table attack on the LM hashes.

Even though we managed to reveal the 21 remaining passwords we still have
to calculate how much time the rainbow table attack took to complete. To cal-
culate the time we included Total disk access time and Total cryptanalysis time
as reported by the Cain & Abel tool. The rainbow table attack, using all the
rainbow tables, took 1724.58 + 6369.71 = 8094.29 seconds = 2 hours 14 minutes.

Table 6 gives an overview of the timing results from the dictionary attack
and from the rainbow table attack. Recall that the rainbow table attack using
the LM rainbow tables on the selected password was estimated to take 6 hours
4 minutes. The dictionary attack performed in this phase was carried out on all
the 30 selected passwords, while the remaining 21 hash values were subject to
the cryptanalysis attack.

Technique Time

Dictionary attack 1 minute 3 seconds (63 seconds)

Rainbow Table attack 2 hours 14 minutes (8094 seconds)
Table 6. Phase 2: Time measurements for the LM hashes

The dictionary attack constitutes 0.2% of the available time of 8 hours, and
the rainbow table attack constitues 28% of the time. This leaves us with 71.68%
unused time.

NT hash We used Cain & Abel for the dictionary attack on the NT hashes,
while Ophcrack was used for the rainbow table attack.

A complete list of all the revealed passwords from the dictionary attack is
given in the “revealed NT?” column in Table 8 (indicated by Yes in italics).

We are going to point out some differences from the case with the LM hashes.
Firstly, note that 8 passwords were revealed from the dictionary attack.

At this point we experienced a minor difference between the SAM file ob-
tained from the Windows Vista machine and the SAM file from the machine
running Windows 7 RC. When we imported the SAM file that originated from
Windows 7 RC we noticed that the loaded NT hash values were different than
those that were loaded when using the Windows Vista SAM file, even though
the same user account passwords were utilized. And when we tried to run the
dictionary attack no passwords were revealed. At this point we wondered if Mi-
crosoft had improved their password handling for Windows 7 RC by for instance
including a salt when generating the NT hash value. This turned out to not be
the case. We tried to import the Windows 7 RC SAM file into Ophcrack to see
if the hash values still were different from the hash values in the Windows Vista
SAM file, and in Ophcrack they were the same. This sat aside our theory about
improved password security. When we had loaded the Windows 7 RC SAM file in
Ophcrack we chose Save from the top menu and then Save to file. The saved file
was then imported into Cain & Abel, which was the tool used for the dictionary
attacks. Now, the hash values were the same for both the Windows 7 RC SAM
file and Windows Vista SAM file.

We estimated the time for the dictionary attack on the NT hash for the
selected password to be 49 seconds. The dictionary attack carried out in this
phase with all the 30 selected passwords was measured to take 58 seconds. After
deducting the 5 seconds it took for Cain & Abel to start, as we used the CPU
Time displayed in Windows Task Manager to measure the time, the dictionary
attack was measured to take 53 seconds. This shows that it does not necessarily
take significantly longer time to run a dictionary attack on a password file con-
taining several NT hash values than it does with a password file containing just
one NT hash value.

Let us now consider the rainbow table attack with the use of the NT rainbow
tables. The users with a password that was revealed during the dictionary attack
were moved from the list of passwords we wanted to reveal during the rainbow
table attack. 10 passwords of the 22 remaining passwords were revealed from
the rainbow table attack. In other words, the rainbow table attack with the NT
rainbow tables was able to reveal 45.5% of the 22 passwords that were subject
to the rainbow table attack.

The results presented above show that 8 passwords were revealed during the
dictionary attack and 10 passwords were reveled during the rainbow table attack,
meaning that 18 of the 30 selected passwords were revealed in total. Table 8 list
all the 30 passwords to give an overview of which of the selected passwords that
were revealed. This can be seen from the column labeled NT Revealed?. The 18
passwords that were found are listed with Yes in the NT Revealed? column. Note
that the 8 passwords revealed during the dictionary attack have italic fonts. This
means that the passwords revealed during the rainbow table attack is marked
with “Yes” in the NT Revealed? column but do not have their font in italic. 12
of the 30 passwords were not revealed.

As already mentioned, we have been able to reveal 18 of the 30 selected
passwords by using both a dictionary attack and a rainbow table attack on the
NT hash values. 27% of the 30 selected passwords were revealed during the
dictionary attack while 33% of the passwords were revealed during the rainbow
table attack. This means that 40% of the NT hash values were not cracked.

The rainbow table attack took 4 hours 26 minutes. The rainbow table attack
using the NT rainbow tables was estimated to take 33 minutes and 20 seconds.
Table 7 gives an overview of the timing results from the dictionary attack and
from the rainbow table attack. The dictionary attack performed in this phase
was carried out on all the 30 selected passwords, while the remaining 22 hash
values were subject to the cryptanalysis attack.

Technique Time

Dictionary attack 53 seconds

Rainbow Table attack 4 hours 26 minutes (15960 seconds)
Table 7. Time measurements for the NT hashes

The dictionary attack constitutes 0.18% of the available time and the rainbow
table attack constitues as much as 55.42% of the time. This leaves us with 44.40%
unused time.

It should be added that we got almost the same results when using the
Windows 7 RC SAM file as we did when we used the Windows Vista SAM file.
The results from the dictionary attack was identical, and the only difference was
that the rainbow table attack performed on the Windows 7 RC SAM file took
5 hours 15 minutes and 28 seconds to complete while, as already presented, the
same attack took 4hours and 26 minutes on the Windows Vista SAM file. The
exact same passwords were revealed in both cases. This means that the NT hash
values stored in the Windows Vista SAM file and the Windows 7 RC file are
identical, and that Microsoft has not increased the security to the newly released
Windows 7 RC operating system regarding the login passwords that are hashed
and stored in the SAM file. Microsoft has for example still not included a salt
when generating the NT hash values.

MD5 hash For the MD5 hash a dictionary attack was the only attack that was
applied, using the John the Ripper tool for the whole 8 hours period.

The 8 passwords that were revealed during the dictionary attack constitute
27% of all the 30 selected passwords. This means that the remaining 22 pass-
words, which constitute the remaining 73%, were not found since the dictionary
attack was the only attack performed on the MD5 hash values.

The results presented above show that 8 passwords (27%) were revealed
during the dictionary attack, meaning that 22 of the 30 selected passwords were
not revealed at all. Table 8 lists all the 30 passwords to give an overview of which

of the selected passwords that were revealed, and which did not. This can be
seen from the column labeled MD5 Revealed?.

Number Length Revealed LM? Revealed NT? Revealed MD5?

1 9 Yes Yes Yes

2 6 Yes Yes Yes

3 8 Yes Yes No

4 8 Yes Yes Yes

5 8 Yes Yes No

6 7 Yes Yes Yes

7 7 Yes Yes Yes

8 6 Yes Yes Yes

9 9 Yes Yes Yes

10 9 Yes Yes Yes

11 6 Yes Yes No

12 6 Yes Yes No

13 6 Yes Yes No

14 7 Yes Yes No

15 6 Yes Yes No

16 7 Yes No No

17 8 Yes No No

18 6 Yes Yes No

19 10 Yes No No

20 9 Yes No No

21 6 Yes Yes No

22 6 Yes Yes No

23 7 Yes No No

24 7 Yes No No

25 8 Yes No No

26 8 Yes No No

27 9 Yes No No

28 9 Yes No No

29 10 Yes No No

30 10 Yes No No
Table 8. The results obtained from the various attacks.

We estimated the time for the dictionary attack on the MD5 hash for the
selected password to be 51 minutes and 48 seconds. The dictionary attack carried
out in this phase with all the 30 selected passwords was aborted after 8 hours,
as this was the time limit set for the experiment. This means that the attack did
not complete. In other words, the dictionary attack took 100% of the available
time.

5 Discussion

Figures from the company Net Applications [23] indicate that Windows XP still
has more than 60% of the total market share for desktop operating systems. Al-
though there are large uncertainties associated with these figures, it is clear that
a very large proportion of laptops in the world today are running Windows XP,
and these laptops by default will have LM hashes enabled. Our small experiment
revealed that not only can all LM hashes on a computer be cracked in a day, but
at two and a quarter hours it can even be performed before most office workers
have finished their morning coffee.

The results from our attacks on the LM hash show that in this case it did not
matter to which category the password belongs because all the passwords were
revealed after the completion of both attacks. According to our intention, almost
all of the weakest passwords were revealed during the dictionary attack. As this
was the purpose of running the dictionary attack, this part of the experiment
has to be considered successful. It is however important to add that in this
case it was not really necessary to run the dictionary attack at all, since the
character set used for the cryptanalysis attack included every character that is
possible to employ in the password. It is possible to include so many characters
in the character set and still be able to reveal the password in relatively short
time because of the weaknesses related to the construction of the LM hash, e.g.,
the password is converted to uppercase and split into two segments before it is
hashed. This reduces the number of combinations that has to be tried to reveal
the password. In other words, this means that the rainbow table attack would
have revealed all the 30 passwords.

The results from the rainbow table attack on the NT hash show that 10 pass-
words (33%) were revealed. After the completion of both the dictionary attack
and the rainbow table attack, 18 passwords (60%) were revealed in total. This left
us with 12 unrevealed passwords (40%). Most of the 10 passwords that were re-
vealed through the rainbow table attack on the NT hash belongs to the category
named Mnemonic Passwords. Actually 6 of the 10 mnemonic passwords were
revealed, and in addition also one password from the Most Popular category
and two passwords from Random Passwords. The 4 remaining password from
the Mnemonic Passwords category that were not revealed is m.f0vgk (7 char-
acters), v*qbt4un (8 characters), 5GCTw4tG@N (10 characters) and tcC!tW84s
(9 characters). The last two are the passwords that were produced by us, and
both of them have corresponding phrases that are easy for us to remember even
though they consist of many characters. The maximum password length that
are supported by the Vista special tables is 8 characters, and the corresponding
character set are quite limited as only numbers from 0 to 9 and lowercase let-
ters are supported. As 5GCTw4tG@N is 10 characters long it was expected that
this password was not revealed during the rainbow table attack. The tcC!tW84s
password consists of 9 characters. This is also too long for the Vista special ta-
bles to crack. The other two passwords (m.f0vgk and v*qbt4un) that were not
revealed by the Vista special rainbow tables are both within the supported pass-
word length of the Vista special tables, but they have different character sets

because they have different length. Both of these passwords consist of lowercase
letters, one number and one special character. The only thing that prevents both
of them from being revealed by the rainbow tables is the special characters. We
have now considered the only four passwords from the Mnemonic Passwords cat-
egory that were not revealed by the rainbow table attack. This was to highlight
that the characters that these passwords consisted of were not included in the
character set. All the revealed passwords consist of characters that are included
in the character set.

If we take a look at the Random Passwords category there were only two
passwords (qaSt4@ and vANe$a) that were revealed by the rainbow table attack.
The reason why these two passwords were revealed is because they both consist
of only 6 characters. If they had been one character longer, they would not
have been revealed because the character set for passwords of 7 characters in
length do not include special characters. Both of the passwords contain a special
character. They are also the only passwords in the Random Passwords category
that are just 6 characters in length, and the other passwords are not revealed by
the rainbow table attack.

The two passwords myspace1 and blink182 not revealed by the dictionary
attack, were revealed by the rainbow table attack. Both myspace1 and blink182
consist of 8 characters, which is the longest password length that is supported
by the Vista special tables. The reason why both these passwords were revealed
is because they only consist of lowercase letters in addition to numbers. If for
example only one of the characters had been an uppercase letter the passwords
would not have been revealed. It has now been shown that small differences
might determine whether a password is going to be revealed or not.

The same results were obtained when the dictionary attack and the crypt-
analysis attack were performed on the SAM file that originated from the Win-
dows 7 RC operating system. This means that also the same discussions applies
for the NT hashes stored in the Windows 7 RC SAM file.

If we were supposed to compare the use of a dictionary attack with a rain-
bow table attack we would highlight that while the dictionary attack requires a
relatively small wordlist, the rainbow tables are generally a lot bigger, requiring
a quite large storage capacity. Rainbow tables must either be downloaded or
generated in advance of the attack, and this may take quite a long time depend-
ing on your download speed and the system you are using. It is important to
be aware that attackers with ill intentions probably would invest a big effort to
recover the password.

Another observation is that when it comes to cracking passwords with the
use of rainbow tables, it does not matter if the password is strong or weak as
long as the password is within the requirements sat for the particular rainbow
tables.

The results obtained from the empirical password study show that even
though it is important to choose a strong password, this may not be sufficient by
itself. The underlying system does also influence how easily the password can be
recovered. A good example of this is Windows XP, which utilizes the LM hash

together with the NT hash. Because of the weaknesses with the construction of
the LM hash, the rainbow tables can support a character set consisting of all the
characters necessary to reveal all the passwords. The results obtained from our
study, showing that all the 30 selected passwords may be revealed using rainbow
tables, confirms this statement. It may also be confirmed by investigating the
character set as well. To avoid the case illustrated in this example you should
either disable the use of LM hash or you should use a password longer than 14
characters if you are using Windows XP. When the password is 15 characters or
longer an operating system that uses both LM hash and NT hash will not store
the LM hash, only the NT hash.

This study shows that a big portion of the selected passwords were revealed,
even with computers that are not particularly powerful. As the storage capacity
and processor power of mainsteam computers keeps increasing, more computa-
tions can be performed in a shorter amount of time. Even though the use of a
salt in the generation of the password hash will probably offer sufficient protec-
tion from password recovery for a while, it will only be a temporary respite. It
has been generally known even before Klein’s studies [24] that it is important to
choose a good password – our findings indicate that in the near future, it will
not matter how good your password is; it’ll get cracked anyway.

6 Conclusions and Further Work

The password as an authentication mechanism is headed for obsolence, as the
password lengths required to thwart ranibow table attacks are rapidly approach-
ing unmanageable (or unrememberable) proportions. If you are still using the
LM hash on your laptop, you might as well put your passord in a cleartext file
and call it “password.txt” - according to our results, anyone who wants your
password will have it by the end of the working day. Even though we were not
able to crack all the NT hashes, it seems that it is only a matter of time before
rainbow tables for all practical password lengths will be generally available also
for the NT hash.

An obvious opportunity for further work would be to employ rainbow tables
for MD5 to see how a vanilla Linux distribution bears up under a cracking
attack. More fundamental contributions could be made in finding alternatives
to passwords that are more secure, but with the same level of social acceptance
and ease of use.

Acknowledgements

The research for this paper was conducted as part of a MSc thesis at the Nor-
wegian University of Science and Technology (NTNU).

References

1. M. Wilkes, Time - Sharing Computer Systems. New York, NY, USA: American
Elsevier, 1968.

2. R. Morris and K. Thompson, “Password security: a case history,” Commun. ACM,
vol. 22, no. 11, pp. 594–597, 1979.

3. M. Luby and C. Rackoff, “A study of password security,” J. Cryptol., vol. 1, no. 3,
pp. 151–158, 1989.

4. E. Glass, “The ntlm authentication protocol and secu-
rity support provider,” sourceforge.net, 2006. [Online]. Available:
http://davenport.sourceforge.net/ntlm.html#theLmResponse

5. M. G. Jaatun, “Lmhash spoofing vha samba klient,” FFI note, 2000.
6. J. M. Johansson, “The great debates: Pass phrases vs. passwords. part 1 of 3,” 2004.

[Online]. Available: http://technet.microsoft.com/en-us/library/cc512613.aspx
7. F. K. Developers, FreeBSD Handbook, 2009. [Online]. Available:

http://www.freebsd.org/docs.html (June 2009)
8. U. Drepper, “Unix crypt using sha-256 and sha-512,” people.redhat.com, 2008.

[Online]. Available: http://people.redhat.com/drepper/SHA-crypt.txt
9. R. Rivest, “The MD4 message-digest algorithm,” IETF Request for Comments

(RFC) 1320.
10. ——, “The MD5 message-digest algorithm,” IETF Request for Comments (RFC)

1321, Internet Activities Board, Internet Engineering Task Force.
11. Secure Hash Standard, National Institute of Science and Technology Std. Federal

Information Processing Standard (FIPS) 180-1.
12. X. Wang, Y. L. Yin, and H. Yu, “Finding collisions in the full SHA-1,” Lecture

Notes in Computer Science, vol. 3621, pp. 17–36, 2005, Proceedings of Crypto
2005.

13. P. Oechslin, “Making a Faster Cryptanalytic Time-Memory Trade-Off,” in The
23rd Annual International Cryptology Conference, CRYPTO ’03, ser. Lecture
Notes in Computer Science, vol. 2729, 2003, pp. 617–630. [Online]. Available:
http://infoscience.epfl.ch/getfile.py?recid=99512&mode=best

14. O. Project, “John the ripper password cracker,” openwall.com, 2009. [Online].
Available: http://www.openwall.com/john/

15. RainbowCrack, “Project rainbowcrack,” project-rainbowcrack.com, 2009. [Online].
Available: http://project-rainbowcrack.com/

16. M. Montoro, “Cain & abel,” oxid.it, 2009. [Online]. Available:
http://www.oxid.it/cain.html

17. “Rainbow tables,” shmoo.com, The Shmoo Group, 2006. [Online]. Available:
http://rainbowtables.shmoo.com/

18. Ophcrack, “What is ophcrack?” sourceforge.net, 2009. [Online]. Available:
http://ophcrack.sourceforge.net/

19. B. Schneier, “Myspace passwords aren’t so dumb,” schneier.com, 2006. [Online].
Available: http://www.schneier.com/essay-144.html

20. “The university’s password generator page,” aber.ac.uk, Aberystwyth University,
2000. [Online]. Available: http://users.aber.ac.uk/auj/portfolio/mnemonic.shtml

21. “Secure password generator,” pctools.com, PC Tools, 2009. [Online]. Available:
http://www.pctools.com/guides/password/

22. “Virtualbox,” virtualbox.org, Sun Microsystems, Inc, 2009. [Online]. Available:
http://www.virtualbox.org/

23. “Operating System Market Share.” [Online]. Available:
http://marketshare.hitslink.com/

24. D. V. Klein, “Foiling the cracker: A survey of, and improvements to password secu-
rity, (revised paper with new data),” in 14th DoE Computer Security Group, May
1991. [Online]. Available: http://www.klein.com/dvk/publications/passwd.pdf

	Title Page
	Problem Description
	Abstract
	Preface
	List of Figures
	List of Tables
	List of Listings
	Abbreviations
	Definitions
	1 Introduction
	1.1 Motivation
	1.2 Related Work
	1.3 Objectives
	1.4 Limitations
	1.5 Methodology
	1.6 Document Structure
	1.7 Conventions

	2 Background
	2.1 Techniques
	2.1.1 How to Choose a Password
	2.1.2 Password Recovery Techniques
	2.1.2.1 Password Guessing
	2.1.2.2 Password Cracking
	2.1.2.3 Rainbow Tables

	2.2 Boot Process
	2.2.1 Windows
	2.2.2 Linux
	2.2.3 BSD
	2.2.3.1 FreeBSD
	2.2.3.2 Mac OS X

	2.3 Password Handling
	2.3.1 Windows
	2.3.1.1 SAM
	2.3.1.2 Hashing of passwords

	2.3.2 Linux
	2.3.2.1 The passwd file
	2.3.2.2 The shadow suite

	2.3.3 BSD
	2.3.3.1 FreeBSD
	2.3.3.2 Mac OS X

	2.4 Tools
	2.4.1 Password Resetting
	2.4.1.1 Offline NT Password & Registry Editor
	2.4.1.2 Kon-Boot
	2.4.1.3 Bart's Preinstalled Environment (BartPE)
	2.4.1.4 PCLoginNow 2.1.0
	2.4.1.5 DreamPackPL
	2.4.1.6 The passwd Tool

	2.4.2 Password Recovery
	2.4.2.1 Ophcrack
	2.4.2.2 John the Ripper
	2.4.2.3 Cain & Abel
	2.4.2.4 LCP

	2.4.3 Supplementary
	2.4.3.1 The fgdump Tool
	2.4.3.2 Winrtgen

	3 Laboratory
	3.1 Hardware
	3.2 Operating Systems

	4 Method
	4.1 Overview of Procedures and Tools
	4.1.1 Password Resetting
	4.1.1.1 Procedures for Windows Operating Systems
	4.1.1.2 Tools for Windows Operating Systems
	4.1.1.3 Procedures for Unix-based Operating Systems
	4.1.1.4 Tools for Unix-based Operating Systems

	4.1.2 Password Recovery
	4.1.2.1 Tools for Windows Operating Systems
	4.1.2.2 Tools for Unix-based Operating Systems

	4.2 Overview of Supplementary Procedures and Tools
	4.2.1 Procedures for Windows Operating Systems
	4.2.2 Tools for Windows Operating System
	4.2.3 Procedures for Unix-based Operating Systems
	4.2.4 Tools for Unix-based Operating System

	5 Procedures
	5.1 Procedures for Password Resetting
	Procedure 1: Windows XP Repair Backdoor
	Procedure 2: Edit Shadow File in Unix Systems
	Procedure 3: Shortcut for Bypassing Regular Login Procedure
	Procedure 4: Replace a Pre-login Executable File
	Procedure 5: Use Mac OS X Installation Disk
	Procedure 6: Windows Password Reset Disk

	5.2 Supplementary Procedures
	Procedure 7: Edit Boot Parameters in Unix Systems
	Procedure 7.1: Edit Boot Parameter: single
	Procedure 7.2: Edit Boot Parameter: init=/bin/bash

	Procedure 8: Reboot and Hold Apple+S
	Procedure 9: Enter Single-user Mode Through Boot-menu
	Procedure 10: Using Live CD to Obtain Password File
	Procedure 11: Using Live CD to Change Root Into the Host Operating System

	6 Tools
	6.1 Tools for Password Resetting
	Tool 1: PCLoginNow 2.0.1
	Tool 2: Offline NT Password & Registry Editor
	Tool 3: BartPE
	Tool 3.1: Password Renew
	Tool 3.2: WindowsGate

	Tool 4: Kon-Boot
	Tool 5: DreamPackPL
	Tool 6: passwd

	6.2 Tools for Password Recovery
	Tool 7: Ophcrack Live CD 2.1.0
	Tool 8: John the Ripper 1.7.2
	Tool 9: Cain & Abel v4.9.30
	Tool 10: LCP 5.04

	6.3 Supplementary Tools
	Tool 11: fgdump 2.1.0
	Tool 12: Winrtgen 2.8

	7 Results
	7.1 Procedures and Tools
	7.1.1 Password Resetting
	7.1.2 Password Recovery

	7.2 YALP
	7.2.1 Description of YALP
	7.2.2 Contents of YALP

	8 Empirical Password Study
	8.1 Laboratory Environment
	8.2 Line of Action
	8.2.1 Selection of Passwords
	8.2.2 Phase 1: Timing
	8.2.3 Phase 2: Password Cracking

	8.3 Results of The Study
	8.3.1 Phase 1: Timing
	8.3.1.1 LM hash
	8.3.1.2 NT hash
	8.3.1.3 MD5 hash

	8.3.2 Phase 2: Password Cracking
	8.3.2.1 LM hash
	8.3.2.2 NT hash
	8.3.2.3 MD5 hash

	9 Discussion
	9.1 Procedures and Tools
	9.1.1 Evaluation of Procedures
	9.1.2 Evaluation of Tools
	9.1.3 General Discussion

	9.2 Empirical Password Study
	9.2.1 Time Measurements for LM and NT
	9.2.2 Password Cracking of LM and NT
	9.2.3 Time Measurements and Password Cracking of MD5
	9.2.4 Discussion of General Results

	9.3 The YALP Tool
	9.4 Implications of Poor Login Security
	9.4.1 Implications of a Weak Login Mechanism
	9.4.2 Implications of a Weak Password

	9.5 Possible Solutions to Prevent Unauthorized Access
	9.5.1 Choosing a Secure Password
	9.5.2 A More Secure Password Handling
	9.5.3 Protection Mechanisms

	9.6 Windows versus Unix
	9.7 Lessons Learned
	9.7.1 Laboratory Equipment
	9.7.2 Selection of passwords
	9.7.3 Time measurements

	9.8 Further Work
	9.8.1 Disk Encryption
	9.8.2 Use of Supercomputers
	9.8.3 YALP
	9.8.4 Other Hardware and Operating Systems
	9.8.5 Other Exploitable Weaknesses
	9.8.6 Other Authentication Mechanisms
	9.8.7 Resetting and Recovery of Passwords Over Networks

	10 Conclusion
	Bibliography
	Web References
	A How to Build YALP
	A.1 build_YALP.sh
	A.2 build_kernel.sh

	B YALP Scripts
	B.1 startup.sh
	B.2 replace_startup_files.sh
	B.3 editshadow.pl
	B.4 mountos.sh

	C How to Disable LM Hashing
	D How to Add 30 Users
	D.1 addusers_win.pl
	D.2 addusers_lin.pl

	E Attachments
	E.1 Attached CD
	E.2 Electronic Attachments

	F Poster
	G Paper

