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Abstract. We introduce characteristics into chromatic homotopy the-
ory. This parallels the prime characteristics in number theory as well as
in our earlier work on structured ring spectra and unoriented bordism
theory. Here, the K(n)–local Hopkins–Miller classes ζn take the place of
the prime numbers. Examples from topological and algebraic K-theory,
topological modular forms, and higher bordism spectra motivate and
illustrate this concept.

Introduction

The classification of manifolds is intimately tied to the homotopy theory
of Thom spaces and spectra. If MO denotes the Thom spectrum for the
family of orthogonal groups, then its homotopy groups πd MO are given by
the groups of bordism classes of d–dimensional closed manifolds. Variants
of this correspondence apply to manifolds with extra structure, such as ori-
entations and Spin structures, for instance. Arguably the most relevant of
these variants for geometry are ordered into a hierarchy given by the higher
connective covers BO〈k〉 → BO of BO, and their Thom spectra MO〈k〉.
For small values of k, these describe the unoriented (MO〈1〉 = MO), ori-
ented (MO〈2〉 = MSO), Spin (MO〈4〉 = MSpin), and String bordism groups
of manifolds (MO〈8〉 = MString). The name ‘string’ in this context appears
to be due to Miller (see [34]). The spectra MO〈k〉 are also interesting as
approximations to the sphere spectrum S itself, in a sense that can be made
precise [26, Proposition 2.1.1]: There is an equivalence S ' limk MO〈k〉.
The geometric relevance of the sphere spectrum stems, of course, from the
fact that it is the Thom spectrum for stably framed manifolds.

All the bordism spectra that were just mentioned are canonically com-
mutative ring spectra in the most desirable way, namely E∞ ring spec-
tra [39]. In fact, this concept was more or less invented in order to deal
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with the very examples of Thom spectra [37]. The multiplicative structure
allows us to study them through their genera: multiplicative maps out of
commutative bordism ring spectra into spectra which are easier to under-
stand. This has been rather successful for small values of k, and the following
diagram indicates the situation.

...

��
MString

��

// tmf

MSpin

��

// ko

MSO

��

// HZ

MO // HF2

Here, the spectra HF2 and HZ are the Eilenberg–Mac Lane spectra of the
indicated rings, and the genera count the number of points mod 2 and
with signs, respectively. In the row above, the spectrum ko is the con-

nective real K-theory spectrum that receives the topological Â–genus (or
Atiyah–Bott–Shapiro orientation) (compare [31] and [32]). Finally, the
spectrum tmf is the spectrum of topological modular forms that was con-
structed in order to refine the Witten genus (or σ–orientation) (see [20],
[21], [2], [3], and [1]).

Characteristics in the sense of the title appear in the approach that
is dual to the idea underlying genera. Namely, there are interesting ring
spectra that come with maps into these bordism spectra. For instance,
since the unoriented bordism ring π∗MO has characteristic 2, there is a
unique (up to homotopy) map S//2 → MO of E∞ ring spectra from the
versal E∞ ring spectrum S//2 of characteristic 2. See [48], where E∞ ring
spectra of prime characteristics, and their versal examples S//p, have been
studied from this point of view. However, the fact that π0 MO〈k〉 = Z as
soon as k > 2 makes it evident that ordinary prime characteristics have
nothing to say about higher bordism theories. This is where the present
writing sets in. See also [7] for a different generalization.

In order to gain a better understanding of higher bordism theories, we
propose in this paper to replace the ordinary primes p ∈ Z = π0S by some-
thing more elaborate, namely by some classes that only appear after passing

to the (Bousfield [14]) localization Ŝ of the sphere spectrum S with respect

to any given Morava K-theory K(n): the classes ζn in π−1Ŝ which were first
defined by Hopkins and Miller. See [25], [16], and our exposition in Sec-
tion 1. Just as S//2 has been used in [48] to study the unoriented bordism
spectrum MO, one aim of the present writing is to show that it is the cor-

responding versal examples Ŝ//ζn which are likewise relevant to the study of
the chromatic localizations of higher bordism spectra.
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Whenever A is any K(n)–local E∞ ring spectrum with unit uA : Ŝ→ A,
there is a naturally associated class

ζn(A) : S−1 ζn−→ Ŝ uA−→ A

in π−1A. Continuing to use the terminology as in [48], we will say that
a K(n)–local E∞ ring spectrum A has (chromatic) characteristic ζn if there
exists a homotopy ζn(A) ' 0 (compare Definition 1.12 below). We note that
this concept only involves the existence of a homotopy, whereas for structural
purposes one will want to work with actual choices of homotopies, i.e. with

commutative Ŝ//ζn–algebras. See Section 2.1, and [48] again.
There are families of examples of characteristic ζn spectra for arbitrary n:

the Lubin–Tate spectra En (Example 2.2), the Iwasawa extensions Bn of

the K(n)–local sphere (Example 2.3), and the versal examples Ŝ//ζn that
map to all of these (see Proposition 2.5).

Hopkins [22] and Laures [36] have given useful descriptions of the K(1)–
local E∞ ring spectra KOK(1) and tmfK(1) at the prime p = 2. The first step

in these cases is to kill the class ζ1 in Ŝ in an E∞ manner so as to obtain

the versal example Ŝ//ζ1 above. The second (and already last) step in either
case is to kill another class in the latter. This underlines the importance of

an understanding of the versal examples Ŝ//ζn, and since B1 = KOK(1), it
naturally leads one to ask for a similar description of the higher Iwasawa
extensions Bn. I hope this will be pursued elsewhere (see Remark 2.7).

The K(1)–localizations of many algebraic K-theory spectra are not of
characteristic ζ1, and the behavior of multiplication with ζ1 on the homotopy
groups is connected to open number theoretic conjectures (see Remark 3.3).
In contrast to that, the work of Laures [35] and his student Reeker [44] shows
that the K(1)–localizations of MSpin, and MSU all have characteristic ζ1.

In some genuinely new examples dealt with here, we take the natural
next step: The K(2)–localizations of the topological modular forms spec-
trum tmf, the String bordism spectrum MString, and MU〈6〉 have charac-
teristic ζ2 almost everywhere (see Propositions 4.1 and 5.4).

The paper is organized into five sections. In Section 1, we briefly review
the basic context for chromatic homotopy theory, establish the notation that
we are going to use here, and define chromatic characteristics. Section 2
introduces the versal examples and presents the higher Iwasawa extensions.
Section 3 contains our discussion of topological and algebraic K-theory spec-
tra. In Section 4, we show how to deal with spectra related to topological
modular forms, and bordism spectra are examined in the final Section 5.

1. Characteristics in chromatic homotopy theory

In this section we will review some chromatic homotopy theory as far as
it is needed for our purposes, and introduce the basic concept of chromatic
characteristics (see Section 1.7). The case n = 1 will be mentioned as
an accompanying example throughout, but we emphasize that this case is
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always somewhat atypical, and the general case is the one we are interested
in. Also, in the spirit of [30], we have chosen notation that avoids having
to say anything special when p = 2. Nevertheless, we do so, if it seems
appropriate for the examples at hand, in particular in Section 5 when it
comes to bordism theories.

We will use the following conventions: All spectra are implicitly K(n)–
localized. In particular, the notationX∧Y will refer to the K(n)–localization
of the usual smash product, and the homology X0Y is defined as π0 of that.

As an exception to these rules, we will write Ŝ for the K(n)–local sphere to
emphasize the idea that it is a completed form of the sphere spectrum S,

and Sn = ΣnŜ denotes its (de)suspensions.

1.1. The Lubin–Tate spectra. Let p be a prime number, and n a
positive integer. We will denote by En the corresponding Lubin–Tate spec-
trum. The coefficient ring is isomorphic to

π∗En ∼= W(Fpn)[[u1, . . . , un−1]][u±1],

where W is the Witt vector functor from commutative rings to commutative
rings, and the generators sit in degrees |uj | = 0 and |u| = −2. This coeffi-
cient ring (or rather its formal spectrum) is a base for the universal formal
deformation of the Honda formal group of height n.

Example 1.1. If n = 1, then the Lubin–Tate spectrum E1 is the p–adic
completion KUp of the complex topological K-theory spectrum KU.

1.2. The Morava groups. The n–th Morava stabilizer group Sn and
the Galois group of Fpn over Fp both act on En such that their semi-direct
product Gn, the extended Morava stabilizer group, also acts on En.

Example 1.2. If n = 1, then the Morava stabilizer group G1 = S1 is the
group Z×p of p–adic units which acts on E1 = KUp via Adams operations.

1.3. Devinatz–Hopkins fixed point spectra. If K 6 Gn is a
closed subgroup of the extended Morava stabilizer group Gn, then EhK

n will
denote the corresponding Devinatz–Hopkins fixed point spectrum [16]. For

instance, in the maximal case K = Gn, we have EhGn
n ' Ŝ (see Thm. 1(iii)

of loc. cit.), as a reflection of Morava’s change-of-rings theorem. See also [11]
for a different approach.

The Devinatz–Hopkins fixed point spectra are well under control in the
optic of their Morava modules: There are isomorphisms

(En)∗(E
hK
n ) = π∗(En ∧ EhK

n ) ∼= C(G/K, π∗En),

where C(G/K, π∗En) is the ring of continuous functions from the coset
space G/K to π∗En with its (p, u1, ..., un−1)–adic topology. For the triv-
ial group K = e this has been known to Morava (and certainly others) for
a long time. See [28] for the history and a careful exposition.
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1.4. Some subgroups of the Morava stabilizer group. The
Morava stabilizer group acts on the Dieudonné module of the Honda formal
group of height n, which is free of rank n over W(Fpn). The determinant
gives a homomorphism Sn → W(Fpn)×. This extends over Gn and factors
through Z×p . The subgroup SGn is defined as the kernel of the (surjective)
determinant, so that we have an extension

1 −→ SGn −→ Gn −→ Z×p −→ 1

of groups. Let ∆ 6 Z×p denote the torsion subgroup. If p = 2, then this
subgroup is cyclic of order 2, and if p 6= 2, then it is cyclic of order p − 1.
The pre-image of ∆ under the determinant is customarily denoted by G1

n.
In other words, there is an extension

1 −→ G1
n −→ Gn −→ Z×p /∆ −→ 1, (1.1)

and the groups SGn and G1
n are then also related by a short exact sequence.

1 −→ SGn −→ G1
n −→ ∆ −→ 1

We remark that there are (abstract) isomorphisms Z×p /∆ ∼= Zp of groups,
but no canonical choice seems to be available.

1.5. The Iwasawa extensions of the local spheres. An Iwasawa
extension is a (pro-)Galois extension (for instance of number fields) with
Galois group isomorphic to the additive group Zp of the p–adic integers for
some prime number p. The canonical Iwasawa extension of the K(n)–local
sphere is the Devinatz–Hopkins fixed point spectrum

Bn = EhG1
n

n

with respect to the closed subgroup G1
n. This spectrum is sometimes referred

to as Mahowald’s half-sphere, in particular in the case n = 2.

Example 1.3. If n = 1, then the spectrum B1 is either the 2–
completion KO2 of the real topological K-theory spectrum KO (when p = 2)
or the Adams summand Lp of the p–completion of the complex topologi-
cal K-theory spectrum KU (when p 6= 2).

The spectra Bn are well under control in the optic of their Morava mod-
ules: There are isomorphisms

(En)∗(Bn) = π∗(En ∧ Bn) ∼= C(Z×p /∆, π∗En),

and the right hand side can be identified (non-canonically) with the ring of
continuous functions on the p–adic affine line Zp.

From (1.1) we infer that the spectrum Bn carries a residual action of

the group Z×p /∆ ∼= Zp, and this makes Ŝ→ Bn into an Iwasawa extension of
the K(n)–local sphere (see [16, bottom of p. 5]). Whenever we choose a topo-
logical generator of this group, this yields an automorphism g : Bn → Bn.
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Proposition 1.4. ([16, Proposition 8.1]) There is a homotopy fibration
sequence

S0 −−−→ Bn

g−id

−−−→ Bn

δ
−−−→ S1 (1.2)

of K(n)–local spectra.

For each p and n, we fix one such fibration sequence once and for all.

Example 1.5. If n = 1, then the fibration sequence

S0 −−−→ B1

g−id

−−−→ B1 (1.3)

has been known for a long time. It can be extracted from [14], which in
turn relies on work of Mahowald (p = 2) and Miller (p 6= 2).

1.6. The Hopkins–Miller classes. We are now ready to introduce
the Hopkins–Miller classes ζn that are to play the role of the integral primes p
in the chromatic context.

Definition 1.6. The homotopy class ζn ∈ π−1Ŝ is defined as the (de-
suspension of) the composition

S0 −→ Bn
δ−→ S1

of the outer maps in the homotopy fibration sequence (1.2).

On the face of it, this definition seems to depend upon the choice of a
topological generator g of the group Z×p /∆. But every other generator h has
the form h = gα for a p–adic unit α.

Lemma 1.7. For any p–adic unit α ∈ Z×p , we can write

(T + 1)α − 1 = ε(T) · T
for some unit ε(T) in the Iwasawa ring Zp[[T]].

Proof. Consider the function f(T) = (T + 1)α−1 and observe that we
have f(0) = 0, so that f is divisible by T. And f ′(0) = α is a unit in the
coefficient ring Zp by assumption. �

If T = g− 1, then h− 1 = gα− 1 = (T + 1)α− 1, and the lemma implies
that two choices g, h of generators of Z×p /∆ yield self-maps of Bn that only
differ by an equivalence.

Similarly, it also makes no essential difference whether we have g − id
or its negative id− g in (1.2): it changes δ (and therefore ζn) by at most a
sign. The convention in [16, §8] is different from ours.

Remark 1.8. On a more conceptual level, one might be tempted to
describe ζn using the canonical map S0 = (Bn)hZp → Bn → (Bn)hZp from
the homotopy fixed points to the homotopy orbits, and duality. Since this
point of view has, so far, not led to computational advances, we refrain from
doing so.
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If we map S0 into the fibration sequence (1.2), then we obtain a long
exact sequence

[S0,Bn]
g∗−id

−−−→ [S0,Bn]
δ∗
−−−→ [S0,S1] −−−→ [S−1,Bn], (1.4)

and ζn is, by definition, the image of the unit u under the map δ∗.
Using the defining homomorphism (1.1) of G1

n, we obtain a homomor-
phism

cn : Gn −→ Z×p /∆ ∼= Zp ⊆ π0En

that we can think of as a twisted homomorphism, or 1-cocycle, and as such
it defines a class in the first continuous cohomology H1(Gn;π0En).

Proposition 1.9. ([16, Proposition 8.2]) The Hopkins–Miller class ζn
is detected by ±cn in the K(n)–local En–based Adams–Novikov spectral
sequence.

The class cn is non-zero and ζn is non-zero in π−1S0. In fact, it generates
a subgroup isomorphic to Zp in π−1S0. However, the class ζn becomes zero
in Bn:

Proposition 1.10. The composition

S−1 ζn //S0 //Bn

of ζn with the unit u of Bn is zero.

Proof. We have uζn = uδu, and there is already a homotopy uδ ' 0
as part of the fibration sequence (1.2). �

Remark 1.11. The reader might wonder if perhaps π−1Bn = 0, which is
a stronger statement than the one in Proposition 1.10. But this is not always
true. In fact, it is false for n = 2 and p = 2 by recent work of Beaudry,
Goerss, and Henn (see [8, Cor. 8.1.6], which gives π−1B2 = Z/2 at p = 2).
However, even in that case it is still true that g∗ = id on π−1Bn, and this

allows us to prove the surjectivity of δ∗ : π0Bn → π−1Ŝ in (1.4) for n 6 2
at all primes. Injectivity follows from g∗ = id on π0Bn, which also holds
for n 6 2 at all primes. See [18] and [19] for the case n = 2 and p = 3. It
follows that δ∗ is an isomorphism for n 6 2 at all primes. It appears to be
open if these groups are isomorphic for n > 3.

1.7. Chromatic characteristics. In the predecessor [48] of this
paper, we have defined the notion of an E∞ ring spectrum A of prime char-
acteristic. If p is the prime number in question, then this means that there
is a null-homotopy p ' 0 in A. We will now work K(n)–locally and replace
the prime numbers p by the Hopkins–Miller classes ζn.

Definition 1.12. If A is a K(n)–local E∞ ring spectrum, and if we

let uA : Ŝ→ A denote its unit, then

ζn(A) : S−1 ζn−→ Ŝ uA−→ A



8 MARKUS SZYMIK

is the associated class in π−1A. If A is a K(n)–local E∞ ring spectrum such
that there exists a null-homotopy ζn(A) ' 0, then we will say that A has
characteristic ζn. If we write Char(ζn) for the class of all K(n)–local E∞
ring spectra that have characteristic ζn, then we may also write

A ∈ Char(ζn)

in that case.

Remark 1.13. By definition, being of characteristic ζn is a property
of K(n)–local E∞ ring spectra. Definition 1.12 applies more generally
to K(n)–local ring spectra up to homotopy, but the examples of interest
to us always come with an E∞ structure.

Proposition 1.14. If A is a K(n)–local E∞ ring spectrum of charac-
teristic ζn, then so is every K(n)–local commutative A–algebra B.

Proof. The unit of any A–algebra B factors through the unit of A. �

2. Chromatic and versal examples

First of all, here is an example which shows that not all K(n)–local E∞
ring spectra have characteristic ζn.

Example 2.1. In the initial example A = Ŝ of the K(n)–local sphere,

the unit is the identity, so that we have ζn(Ŝ) = ζn, and this is non-zero as
a consequence of Proposition 1.9. Therefore,

Ŝ 6∈ Char(ζn).

This result is analogous to the fact that S 6∈ Char(p) for the (un-localized)
ring of spheres.

Clearly, if A is a K(n)–local E∞ ring spectrum such that π−1A vanishes,
then the element ζn(A) ∈ π−1A = 0 is automatically null-homotopic. Let us
mention a couple of interesting examples of this type.

Example 2.2. Because the Lubin–Tate spectra En are even spectra, we
have π−1En = 0, so that ζn(En) ' 0, and this implies

En ∈ Char(ζn).

In other words, the Lubin–Tate spectra En all have characteristic ζn.

Even if we have π−1A 6= 0, or if we are perhaps in a situation when we
do not know yet whether this or π−1A = 0 holds, we might still be able to
decide if ζn(A) is null-homotopic. This is the case in the following examples.

Example 2.3. We have

Bn ∈ Char(ζn)

for all heights n by Proposition 1.10.
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2.1. The versal examples. An important theoretical role in the the-
ory of K(n)–local E∞ ring spectra of characteristic ζn is played by the versal
examples. These will be introduced now.

Let PX denote the free K(n)–local E∞ ring spectrum on a K(n)–local
spectrum X. There is an adjunction

EK(n)
∞ (PX,A) ∼= SK(n)(X,A)

between the space of K(n)–local E∞ ring maps and the space of maps
of K(n)–local spectra. In one direction, the bijection sends an E∞
map PX → A to its restriction along the unit X → PX of the adjunc-

tion. (The unit of the E∞ ring spectrum PX is a map Ŝ→ PX, of course.)
The inverse is denoted by x 7→ ev(x) for any given class x : X → A.

Definition 2.4. The K(n)–local E∞ ring spectrum Ŝ//ζn is defined as
a homotopy pushout

PS−1
ev(0) //

ev(ζn)
��

Ŝ

��

Ŝ // Ŝ//ζn
in the category of K(n)–local E∞ ring spectra.

There are various ways of producing such a homotopy pushout diagram.

The easiest one might be to start with a cofibrant model of Ŝ, replacing the
morphism ev(0) = P(S−1 → D0) by P of a cofibration S−1 → K for some
contractible K, for instance the cone on S−1, and then taking the actual
pushout. See [38] for suitable notions of cofibrancy in the relevant model
categories.

Proposition 2.5. We have

Ŝ//ζn ∈ Char(ζn)

for all primes p.

Proof. The homotopy commutativity of the enlarged diagram

S−1
0

��""

ζn

,,

PS−1 //

��

Ŝ

��

Ŝ // Ŝ//ζn

immediately shows that ζn(Ŝ//ζn) is homotopic to zero. �
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Remark 2.6. The K(n)–local E∞ ring spectrum Ŝ//ζn has the usual
property of any homotopy pushout: a null-homotopy of ζn(A) gives rise to

a map Ŝ//ζn → A, and conversely. In fact, this allows us to add upon the

preceding proposition: Any choice of homotopy pushout Ŝ//ζn comes with

a preferred homotopy ζn(Ŝ//ζn) ' 0 (that corresponds to the identity map).
It also implies that there is a map

Ŝ//ζn −→ A (2.1)

of K(n)–local E∞ ring spectra if and only if A ∈ Char(ζn). There is no
reason why a map (2.1), once it exists, should be unique. In fact, there will
usually be many such maps, even up to homotopy. This explains our use of
Artin’s term ‘versal’ (from [4]) rather than ‘universal.’

Remark 2.7. As a consequence of the versal property, we have an E∞
map Ŝ//ζn → Bn, and it is tempting to try to fit it into a pushout square

Ŝ//ζn // Bn

X //

OO

Ŝ

OO

of K(n)–local E∞ ring spectra. Two more requirements are on my wish

list for that. First, the morphism X → Ŝ//ζn on the left is an Iwasawa
extension, just like the one on the right. In particular, the spectrum X

can be described as the homotopy fixed points of a Galois action on Ŝ//ζn
of a group isomorphic to Zp. Second, the spectrum X is free as an E∞
ring spectrum (X ' PY for some small, K(n)–local Y ), so that the E∞
map X → Ŝ//ζn is adjoint to a map Y → Ŝ//ζn of spectra, and hence easier
to construct. For n = 1 this rediscovers Hopkins’ cell decomposition of B1

from [22] (with Y = S0 the K(n)–local sphere).

In order to demonstrate the relevance of the concept of (chromatic)
characteristics outside of chromatic homotopy theory itself, we will, in the
rest of this paper, give many examples of naturally occurring K(n)–local E∞
ring spectra of characteristic ζn, in particular for n = 1 and n = 2.

3. K-theories

Let us start with the topological K-theory spectra. There are equiva-
lences koK(1) ' KOK(1) and kuK(1) ' KUK(1) so that it is sufficient to state
the results for the connective versions. Note that koK(n) and kuK(n) are
contractible when n > 2, so that n = 1 is the canonical height of choice.

Proposition 3.1. We have

koK(1), kuK(1) ∈ Char(ζ1)

at all primes.
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Proof. The K(1)–localizations (at p) agree with the p–completions of
the periodic versions, compare [26, Lemma 2.3.5]. The complete periodic
theories are well known to have vanishing π−1. �

The situation for algebraic K-theory spectra is different: Let Fq be an
algebraic closure of a finite field Fq with q elements. If q is a power of the

prime p we are working at, then the algebraic K-theory spectra K(Fq)K(1)

and K(Fq)K(1) are contractible by Quillen’s work [43]. (To lift his space level
statements to spectra, use the Bousfield–Kuhn functor, or [39]; see [16].)

We can therefore assume that the characteristic of Fq is different from p
from now on, so that q ∈ Z×p . Then, again by Quillen, there is an equiv-

alence K(Fq)K(1) ' E1, and K(Fq)K(1) can be identified with the homotopy

fiber E
h〈q〉
1 of the self-map q − id on E1.

Proposition 3.2. We have

K(Fq)K(1) 6∈ Char(ζ1)

at all primes different from q.

Proof. As we have remarked before, we have q ∈ Z×p , and this element
has infinite order. It generates an infinite closed subgroup 〈q〉 such that the
quotient Z×p /〈q〉 is finite. The long exact sequence induced by (1.3) shows

that ζ1 is zero in π−1E
h〈q〉
1 if and only if there is an element f in

(B1)0(E
h〈q〉
1 ) ∼= C(Z×p /〈q〉,Zp)

such that f(gu) = f(u) + 1 for all u ∈ Z×p , where g is as in (1.3). Since g

has finite order in the finite group Z×p /〈q〉, but 1 has infinite order in Zp,
such an element f cannot exist. �

It follows immediately that many other algebraic K-theory spectra
do not have characteristic ζ1, for instance K(Z)K(1) and K(Z`)K(1) for
primes ` 6= p. The same is true for K(Zp)K(1), but this requires results of
Bökstedt–Madsen (for odd primes p) or Rognes (for p = 2). In the former
case, there is a p–adic splitting

K(Zp) ' j ∨ Σj ∨ Σ bu,

so that there is K(1)–local splitting

K(Zp) ' S ∨ ΣS ∨ ΣE1,

and ζ1 6= 0. In the latter case, the situation is the same up to extensions:
We have

Σj −→ X −→ Σ ku

for some spectrum X that is in

X −→ K(Z2) −→ j

(see [12] and [45]).
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Remark 3.3. We have been concentrating on establishing only the
non-triviality of the class ζ1 for some algebraic K-theory spectra. In fact,
Mitchell’s work [41] explains that several unsolved conjectures in number
theory are related to the K(1)–localization of algebraic K-theory spectra,
and the behavior of ζ1 on them. For instance, let F be a number field
with ring OF of integers. Let ` be an odd prime, and assume that OF [1/`]
contains the `–th roots of unity. The Z`–rank of π0K(OF [1/`])K(1) is the
number s of primes dividing ` in OF . The image of multiplication with ζ1,

ζ1 : π1K(OF [1/`])K(1) −→ π0K(OF [1/`])K(1),

lies in the Adams filtration 1 subgroup H2
ét(OF [1/`];Z`(1)) of rank s− 1. It

turns out that the image has maximal rank s− 1 if and only if an algebraic
version of Gross’ conjecture holds (see [41, 3.6.1]).

Remark 3.4. Thanks to Mitchell’s earlier work [40], we know that
the algebraic K-theory spectra K(R)K(n) are contractible for all (discrete)
rings R and all heights n > 2. This does not hold if we are willing to work
with ring spectra E instead: We have ζn 6= 0 in K(S)K(n), because K(S)
is equivalent to Waldhausen’s A-theory of a point, and that splits off the
sphere spectrum. It might be more interesting to study K(E) for E = ko
or E = ku instead of E = S. See the work [5, 6] of Ausoni–Rognes.

4. Topological modular forms

In this section, we discuss the spectrum tmf of topological modular
forms. See the ICM talks [20, 21], [23, 24], and the Bourbaki seminar [17],
for instance.

Proposition 4.1. We have

tmfK(2) ∈ Char(ζ2)

at all primes.

Proof. For n = 2, Behrens [9, Remark 1.7.3] has given an argument
for the identification of the K(2)–localization of the spectrum of topolog-
ical modular forms with EO2, the homotopy fixed point spectrum of E2

with respect to the maximal finite subgroup M of the extended Morava
group G2, that holds for the prime p = 3. His argument can be adapted to
the case p = 2 as well.

Since the maximal finite subgroup M sits inside the subgroup G1
2,

the K(2)–localization of the topological modular forms spectrum is a com-
mutative B2–algebra. By Proposition 1.14 and Example 2.3, we know
that T ∈ Char(ζn) for all commutative Bn–algebras T .

The situation at large primes p > 5 is similar, but less well represented
in the published literature. The K(2)–localization of tmf is the spectrum of
global sections of the derived structure sheaf of the completion of the moduli
stack of generalized elliptic curves in characteristic p at the complement of
the ordinary locus. (See Behrens’ notes [10], for instance.) This sheaf can be
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constructed using the Goerss–Hopkins–Miller theory of Lubin–Tate spectra.
The upshot is that the spectra of sections are again given by homotopy fixed
points of Lubin–Tate spectra with respect to finite subgroups. These lie in
the kernel of any homomorphism to a torsion-free group. (A difference is that
this time their orders are co-prime to the characteristic, but this does not
play a role here.) In any case, we see that the same argument as for p = 2
and p = 3 can be applied. �

Remark 4.2. For n > 3, we trivially have tmfK(n) ∈ Char(ζn) as well,
at all primes, because the spectrum tmf is K(n)–acyclic in that case, so that
the localization vanishes.

Remark 4.3. The case n = 1 is non-trivial and interesting. Hopkins has
studied tmfK(1) at all primes, constructed a nullhomotopy of ζ1 on tmfK(1)

and used it to describe the latter as an E∞ algebra over the versal exam-

ple Ŝ//ζ1 with one more cell attached. See [22], [36], and [10].

Remark 4.4. The K(1)–local K3 spectra from [46, 47] are even hence
obviously of characteristic ζ1. No presentation as an E∞ algebra over the

versal example Ŝ//ζ1 is known in these cases.

Remark 4.5. The strategy for the proof of Proposition 4.1 can also
be pursued to show that the higher real K-theories EOp−1 have chromatic
characteristics.

5. Bordism theories

Since the sphere spectrum represents framed bordism, it is clear that
not all bordism spectra have chromatic characteristics. In this section we
discuss the bordism spectra MSpin and MString as well as their complex
cousins MSU and MU〈6〉.

Proposition 5.1. We have

MSpinK(n) ∈ Char(ζn)

at all primes and all heights n > 1.

Proof. At odd primes, the spectrum MSpin is equivalent to a wedge
of even suspensions of BP. (The splitting as a wedge of Brown–Peterson
spectra is well-known [26]. It can be deduced from one of Steinberger’s
general splitting results [15, Theorem III.4.3]. We can then work rationally
in order to see that only even suspensions are necessary. And rationally,
both MSpin and BP are even. Compare a similar argument in the proof of
Proposition 5.4 below.) Consequently, the K(n)–localizations of MSpin are
well understood at odd primes. The K(n)–localization of BP has

π∗BPK(n) = (v−1
n π∗BP)p,v1,...,vn−1 .

This has been explained by Hovey [25, Lemma 2.3], for instance. We see
that the homotopy groups π∗BPK(n) are concentrated in even degrees. This
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clearly implies π−1 = 0 for the K(n)–localizations of MSpin, and a fortiori
these have characteristic ζn.

The even prime p = 2 affords some extra arguments. Since the
Spin bordism spectrum MSpin, as any Thom spectrum, is connective, we
in particular have π−1 MSpin = 0. This does not imply the result for
the K(1)–localization, however (think of S). But, the Anderson–Brown–
Peterson (ABP) splitting shows that this still holds after K(1)–localization,
since the spectrum MSpin splits K(1)–locally at the prime p = 2 as a wedge
of (unsuspended) localizations of copies of the spectrum ko (compare [26,
Proposition 2.3.6]).

MSpinK(1) '

∨
j

KO


2

Therefore, the result follows from what we have said for the K-theories in
Section 3, Proposition 3.1. For heights n > 2, the spectrum MSpin is K(n)–
acyclic, again by the ABP splitting. �

Remark 5.2. At odd primes, the spectrum MSU also decomposes into
even suspensions of BP. (This time, the splitting is explicitly stated by
Steinberger [15, Remarks III.4.4], and ‘even’ follows again by rational con-
siderations.) We can similarly conclude that

MSUK(n) ∈ Char(ζn)

at odd primes and all heights n > 1. At the prime p = 2, the situation
is substantially different, since no simple ABP-type splitting is known. See
Pengelley [42], who found the BoP summands. According to Reeker’s the-
sis [44], we have at least MSUK(1) ∈ Char(ζ1).

The canonical maps MString → MSpin and MU〈6〉 → MSU of bordism
spectra are both K(1)–local equivalences [26, Prop. 2.3.1]. Therefore, we
immediately get:

Corollary 5.3. We have

MStringK(1),MU〈6〉K(1) ∈ Char(ζ1)

at all primes p.

For n > 2 we can offer the following result.

Proposition 5.4. We have

MStringK(n),MU〈6〉K(n) ∈ Char(ζn)

at all primes p > 5 and all heights n > 2.

Proof. If p > 5, then both MString and MU〈6〉 split p–locally as wedges
of suspensions of BP by [29, Corollary 2.2]. See also [27].

MU〈6〉(p) '
∨
j

Σmj BP(p)
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MString(p) '
∨
j

Σnj BP(p)

We can work rationally in order to obtain information about the suspen-
sions mj and nj needed, and that is easy: Since π∗MU〈6〉Q ∼= Q[c2, c3, . . . ]
with |cn| = 2n, and π∗BPQ ∼= Q[v1, v2, . . . ] with |vn| = 2(pn−1), we see that
the mj are even. Similarly for the nj , using π∗MStringQ

∼= Q[p2, p3, . . . ]
and |pn| = 4n.

A fortiori, these additive decompositions exist also K(n)–locally at the
prime in question. The K(n)–localization of BP has

π∗BPK(n) = (v−1
n π∗BP)p,v1,...,vn−1 , (5.1)

see [25, Lemma 2.3] again. Therefore, the homotopy groups of both of the
spectra MU〈6〉K(n) and MStringK(n) are concentrated in even degrees. We

can deduce that both of the groups π−1 MStringK(n) and π−1 MU〈6〉K(n)

vanish for primes p > 5, from which the statement follows. �

Remark 5.5. For the small primes p = 2 and p = 3 it is still true that we
are able to find finite complexes F (depending on p) with cells only in even
dimensions such that MString∧F and MU〈6〉 ∧ F split as wedges of (even)
suspensions of BP (see [29, Corollary 2.2]). Strictly speaking, this excludes
the case MString at the prime p = 2. But, since there is a map

MU〈6〉 −→ MString,

Proposition 1.14 guarantees that it would be sufficient to prove that MU〈6〉
has chromatic characteristics to be able to infer that for the string bordism
spectrum as well.
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