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Abstract— The new approach to the problem of motion plan-
ning for underactuated mechanical systems is proposed. The
novelty comes from new opportunities to handle singularities of
the dynamics of the motion generator provided that the motion
is rewritten using the nested representation and kinematic
servo-connection between generalized coordinates of the system.
The contribution is illustrated by the example of planning
oscillations of the Furuta pendulum around the horizontal.

I. INTRODUCTION

Searching for feasible behaviors of controlled mechanical
systems with one or several passive degrees of freedom is
challenging. Indeed, the dynamics of such variables consti-
tute a continuum set of equality constraints that any motion
planning method should comply with. In most of examples
such dynamic constraints are non-integrable and cannot
be ignored or discretized. Besides various direct shooting
methods, an implicit method based on a nested representation
of a movement of a mechanical system with two and more
degrees of freedom provides the only analytic approach for
solving the task1. The approach assumes a choice of a scalar
coordinate s of an n-DOF mechanical system suitable for
representing a given movement

q(t) = [q1(t); . . . ; qn(t)], t ∈ [0, T ]

as a sequence of postures parameterized by that variable

q(t) = Q (s(t)) , t ∈ [0, T ]. (1)

Loosely speaking, the coordinate s(·) serves as a motion
generator substituting the constant and one-directional flow
of time. If the vector function Q(·) is twice differentiable,
then Eqn. (1) allows reconstructing velocities and accelera-
tions of the mechanical system along the given motion as
well provided that s(·) ∈ C2([0, T ]). The kinematic relation
(1) is commonly referred to as servo-constraint or servo-
connection if it is arranged for a given motion by a feed-
forward control action.
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1It is often loosely mentioned as a virtual holonomic constraint (VHC)
approach. Such name is partly misleading and partly incorrect taking into
account the vocabulary of analytic mechanics (see [1]). Furthermore, the
basics of the method are known for a century elaborated in parallel with
well accepted terminology, which we plan to adhere and follow.

Fig. 1. Phase space of a singular differential equation

For completeness of a motion representation, the kine-
matic relation (1) should be complemented by a rule that
determines a time behavior of the coordinate s(·). For most
of underactuated mechanical systems the time profile of s(·)
cannot be assigned arbitrary: it should be a solution of a
second order differential equation of the form

α (s) s̈+ β (s) ṡ2 + γ (s) = 0 (2)

with the coefficients α(·), β(·) and γ(·) defined by the
system dynamics and by the function Q(·) used in the nested
representation (1) of the motion2. The reader can think of the
system (2) as a counterpart for the time dynamics ẗ = 0 in
searching an alternative representation of the given motion.

Since the servo-connection of the form (1) is introduced
as an attribute of an individual behavior of an underactuated
mechanical system, then the equation (2) is also used and
necessary for a compact representation of only one of its
solutions. This point is typically overlooked in literature and
quite a number of publications are focused on exploring the
phase portrait of the system (2) as a whole bringing even
further assumptions to simplify the analysis. For instance,
following the generic view, it is commonly assumed that
the variable s(·) is chosen as one of original generalized
degrees of freedom of the system. Meanwhile, a possibility
to reserve one of the system’s excessive coordinates for the
motion representation is ignored. Another part of commonly
accepted settings for motion planning postulates that for a
given motion q(·) and for smooth function Q(·) in (1) the
scalar second order system (2) can be resolved with respect to

2formulae for these coefficients will be given in section II.



higher derivative becoming an ordinary differential equation
for the predefined range of the variable s.

However, the ability to resolve Eqn. (2) with respect to
s̈ is an assumption, and for nested representations of some
of behaviors it might not be hold. This point has been
recently illustrated by the case study aimed at planning
periodic motions of a cart-pendulum system when its passive
pendulum was forced to oscillate around the horizontal.
Even though such behavior is unrealistic for implementing
experiments on most of the laboratory set-ups due to high
demands on amplitude of a feed-forward control force and
its derivative for creating the motion, planning such motion
helps to show severe limitations of the settings admitted as
standard in the topic: In particular, the arguments of [2]
for the case study have shown the constructive procedure
for deriving a smooth periodic solution of the system (2),
which do not encircle any of its equilibrium. Detecting a
presence of such periodic solutions would contradict to one
of assertions of the classical Poincare-Bendixson statement
unless one observes that for such successfully found periodic
solution of the system (2) the coefficient α(·) becomes zero
for some s = ss within the range the cycle.

This unexpected conclusion drawn for the case study is
rather convincing for reconsidering the settings and methods
commonly accepted for motion planning under dynamic
constraint due to underactuation. However, the example elab-
orated and explored in [2] was based on structural properties
of the cart-pendulum dynamics and cannot be readily gen-
eralized to other underactuated systems. The paper provides
new generic procedure and its justification aimed at searching
feasible motions of under-actuated mechanical systems for
the cases of the nested representation of the motion when
the assumption of the non-singularity of the system (2) is
dropped. In particular, we have investigated the situation
where the servo-connection (1) used in the representation
leads to the dynamics of the motion generator (2) with the
following properties: the singular point ss with α(ss) = 0
is in between two saddle equilibrium points sa and sb,
sa < ss < sb, see figure 1.

Due to the singularity the classical conditions of existence
and uniqueness of solutions of the equation (2) might not
anymore be valid. The contribution of the paper shows
that solutions exist and intersect the vertical line s = ss
only in two points, which, for convenience, are referred
to as “transition points.” Furthermore, the rigorous analysis
allows establishing the extraordinary property of the singular
dynamical system (2): any solution originated on left-hand
side of this vertical line can be prolonged and has infinitely
many extensions on the right-hand side. By choosing these
extensions, one can obtain a rich family of feasible solu-
tion, which includes both periodic trajectories encircling the
point (s, ṡ) = (ss, 0) on the phase plane and non-periodic
behaviors as well.

The paper is organized as follows. Section II contains
derivation of dynamics of the motion generator, and gives
motivation to study of motion generator with singularities.
A geometric meaning of motion generator with singularities

is given in section III. Theorem about existence of smooth
periodic solutions is given in section IV. As an example,
theorem is applied to find horizontal oscillations of Furuta
pendulum in section V.

II. DERIVATION OF MOTION GENERATOR EQUATION

For completeness let us shortly present the derivation of
dynamics of motion generator for an underactuated Euler-
Lagrange system with one passive degree of freedom

M (q) q̈ + C (q, q̇) q̇ +G (q) =

[
u
0

]
, (3)

where q ∈ M are generalized coordinates, q̇ = dq
dt are

corresponding generalized velocities, M is a configuration
space of dimension n, M (q) is the inertia tensor, C (q, q̇) is
Coriolis and centrifugal forces matrix, G (q) is a vector of
gravity, u are the control inputs and dimu = n− 1.

Let q (t) be a solution of system (3) in response of the
input u (t) both defined for t ∈ I ⊂ R. Suppose the solution
q (t) can be written in a parametric form (1), where the
map Q : R → M and the function s : R → R are twice
differentiable, then the function s (t) is one of solutions of
the equation

M (Q)

(
d2Q

ds2
ṡ2 +

dQ

ds
s̈

)
+

C

(
Q,

dQ

ds

)
dQ

ds
ṡ2 +G (Q) =

[
u
0

]
. (4)

Premultiplying this equation by B = [0, . . . , 1] ∈ R1×n we
get the dynamics of the motion generator

α (s) s̈+ β (s) ṡ2 + γ (s) = 0 (5)

with

α (s) = B ·M (Q (s))
dQ (s)

ds
,

β (s) = B ·M (Q (s))
d2Q (s)

ds2
+

B · C
(
Q (s) ,

dQ (s)

ds

)
dQ (s)

ds
,

γ (s) = B ·G (Q (s))

(see [4] for details).
Furthermore, the equation (5) can be a source of new

feasible trajectories for underactuated systems. In particular,
if a solution of the equation (5) is well-defined for some
time interval, then substituting this solution into the servo-
connection (1) will define the new feasible trajectory. Such
an argument with explicit assumption that the functions
α (s) , β (s) , γ (s) are continuous and α (s) 6= 0 has been
used in most of the publications on motion planning for
underactuated mechanical systems [10], [11], [12].

However, the settings become limited for recovering some
of feasible behaviors. Indeed, the example of [2] has shown
that the motion planning based on the servo-connection
leading to smooth α (s) , β (s) , γ (s) with α (s) 6= 0 cannot
reconstruct periodic behavior of the cart-pendulum system



when the pendulum oscillates around the horizontal. The
presence of such oscillations will automatically imply the
presence of an equilibrium for non-singular dynamical sys-
tem (5), which by necessity should be a solution of the
equation γ (se) = 0. Meanwhile, as it can be seen from
(5), the function γ vanishes only when B ·G (Q (se)) = 0.
It is impossible in a vicinity of the horizontal position of
the pendulum for the inverted pendulum on a cart, since the
original system doesn’t have any equilibria in such vicinity
for any position of the cart. Therefore, new attempts and
considerations of servo-connection leading to singularity of
(5) are well-motivated, and in general can lead to descrip-
tion of new feasible behaviors of underactuated mechanical
systems.

III. SINGULAR DIFFERENTIAL EQUATION OF 2ND ORDER

Consider the equation (5) with smooth coefficients, if
function α is separated from zero, then the right hand side
of the equation

s̈ =
−β (s) ṡ2 − γ (s)

α (s)
(6)

is (locally) Lipschitz for any initial condition. In this case
any periodic trajectory must encircle at least one equilibrium
point se given by the equation γ (se) = 0 (see theorem 33
in [5] for details).

On the other hand, if at some point ss α becomes zero
(i.e. α (ss) = 0), then the statement cannot be used, even
though the functions α, β, γ in a neighborhood of ss may
satisfy some additional requirements, so the equation have
smooth solutions.

For this case one can notice that in the left half-plane{
(s, ṡ) ∈ R2|s < ss

}
of phase space of the equation (6) the

Picard–Lindelöf theorem can be applied, and solutions exist
at least on finite time intervals. Consider solution s (t) of
(5) defined on t ∈ I = (0, τ) ⊂ R approaching the critical
point ss from the left: limt→τ s (t) = ss. If s (t) is a twice
differentiable on I , then its time derivative must satisfy:
limt→τ

(
β (s) ṡ2 + γ (s)

)
= 0, which can be rewritten as

lim
t→τ

ṡ2 (t) = −γ (ss)

β (ss)
.

Any of such trajectories therefore will converge from the
left to one of the transition points: (ss,±ṡs), where ṡs =√
− γ(ss)β(ss)

(see figure 1). In these points uniqueness of
solutions is then violated. The similar arguments can be
applied for trajectories in the right half-plane of the phase
plane.

Suppose the point ss is between two equilibriums sa and
sb of “saddle” type. Then the isoclines (green curves on
figure 1) connect the equilibriums with transition points.
Since the uniqueness of solutions of (6) is violated only at
the line s = ss, then one can conclude that any trajectory
originated from s ∈ (sa, ss) ∪ (ss, sb) will converge to the
points (ss,±ṡs). This results in two sets of solutions crossing
these points from left to the right and from right to the left
respectively.

Provided that these solutions crossing the transition points
have smooth second derivative s̈ at transition points, one
can reconstruct the smooth trajectory well-defined for both
right and left hand side of phase space. Such a “concatenated
trajectory” will be obviously a solution of (5).

IV. PERIODIC MOTION PLANNING

The next theorem provides sufficient conditions of exis-
tence of smooth solutions of singular equation of type (2).

Theorem 1. Let there exist 3 values sa, sb, ss ∈ R, sa <
ss < sb such that the functions α, β, γ of equation (5) satisfy
the conditions:

1) α ∈ C3(sa, sb), and β, γ ∈ C2(sa, sb),
2) α (ss) = 0, α′ (ss) > 0,
3) α (s) 6= 0 ∀s ∈ [sa, sb]\ {ss},
4) γ (sa) = γ (sb) = 0, γ′(sa) > 0, γ′(sb) < 0,
5) γ (s) > 0 ∀s ∈ (sa, sb),
6) β(ss)

α′(ss)
< − 1

2 .
Then the following statements hold:

1) for any solution sl (t) of initial value problem (5) with
sl (0) ∈ (sa, ss), ṡl (0) = 0 there is a time moment
τl ∈ (0,∞) such that

lim
t→τl−0

sl (t) = ss,

lim
t→τl−0

ṡl (t) =

√
−γ (ss)

β (ss)
;

2) for any solution sr (t) with sr (0) ∈ (ss, sb), ṡr (0) =
0, there is a time moment τr ∈ (0,∞) such that

lim
t→−τr+0

sr (t) = ss,

lim
t→−τr+0

ṡr (t) =

√
−γ (ss)

β (ss)
; (7)

3) the twice differentiable function s (t) defined as

s (t) :=


sl (t) t ∈ [0, τl)

ss t = τl

sr (t− T ) t ∈ (τl, T ] ,

s (T + t) = s (T − t) ∀t ∈ R,

where T = τl + τr, is a periodic solution of the
equation (5) with period 2T ;

4) the trajectory q (t) = Q (s (t)) is a periodic solution
of (3) defined in response with control input given by
(4).

Remark 2. Since the solution s (t) is twice differentiable,
then the corresponding control input u? (t) is a continuous
function. Furthermore, according to (4) the nominal control
input u? can be expressed as a function of s.
Remark 3. The statement can be applied to solve the problem
of trajectory planning for point-to-point movement. Indeed,
for this case one needs to find a trajectory which begins at
point s1 and ends at s2. One way to solve the problem is
to find such a map Q that is defined on s1 < ss < s2 and



corresponding conditions of theorem 1 hold. Then, as stated,
the pair of solutions sl (t), sr (t) of initial value problem
with sl (0) = s1, ṡl = 0 and sr (0) = s2, ṡr (0) = 0 can be
concatenated into the function s (t), which solves the original
problem.

V. EXAMPLE: FURUTA PENDULUM OSCILLATIONS
AROUND A HORIZONTAL

As shown in [2], the cart-pendulum system possesses a
periodic solution q? (t) in response to u? (t), for which
the pendulum oscillates in a small neighborhood of the
horizontal. The proof of existence of such a solution was
based on the fact that the right-hand side of dynamic equa-
tions does not depend on cart displacement and its velocity.
Unfortunately, such a solution cannot be readily generalized
for other systems, like Furuta pendulum [6] or Pendubot
[7]. Nevertheless, theorem 1 gives alternative criterion and
can be applied for shaping new class of oscillations of such
underactuated systems.

A. Equations of Motion of Furuta Pendulum

The equations of motion of Furuta pendulum are [8]:

M (q) q̈ + C (q, q̇) q̇ +G (q) =

[
u
0

]
(8)

with

M =

[
m1l

2
1 +m2

(
l21 + l22 sin2 θ

)
m2l1l2 cos θ

m2l1l2 cos θ m2l
2
2

]
C = m2

[
l22θ̇ cos θ sin θ

(
l22φ̇ cos θ − l1l2θ̇

)
sin θ

−l22φ̇ cos θ sin θ 0

]

G =

[
0

−gm2l2 sin θ

]
where q = (φ, θ) are generalized coordinates with φ being
the angle (azimuth) of the first link, θ being the angle
between the upward vertical and the second link, m1,m2

are masses of the links, l1, l2 are lengths of the links, g is
the gravitational acceleration, u is the torque applied to the
first link.

B. Periodic Trajectories of Furuta Pendulum Around the
Horizontal

Here we will explore conditions of theorem 1 to the system
(8) and prove existence of a periodic solution when the
second link of the Furuta pendulum remains all the time
in a neighborhood of the horizontal. The problem can be
formulated as follows:

Problem 4. Find a solution q? (t) with corresponding control
input u? (t) of system (8) satisfying the properties
• the trajectory q? (t) is twice differentiable;
• the control input u? (t) is continuous;
• the functions are periodic with some period T : ∃T ∈

(0,∞): q? (t+ T ) = q? (t), u? (t+ T ) = u? (t) ∀t ∈
R;

• the function θ? (t) stays within the interval(
− 3

4π,−
1
4π
)

Fig. 2. Functions α (s), β (s), γ (s)

when the parameters are [3]: l1 = 0.262m, l2 = 0.470m,
m1 = 0.431kg, m2 = 0.128kg, g = 9.81m/s2.

Let the map Q in (1) be a polynomial

Q (s) =

(
− l2

2l1
s2

s

)
,

then after dividing by m2l2 the equation (5) will be

α (s) s̈+ β (s) ṡ2 + γ (s) = 0

with

α = l1 cos s

(
− l2
l1
s

)
+ l2,

β = −l2 cos s sin s

(
− l2
l1
s

)2

+ l1 cos s

(
− l2
l1

)
,

γ = −g sin s. (9)

According to theorem 1, one needs to find two saddle points
which for our case can be defined as sa = −π, sb = 0.
Let ss be a solution of ss cos ss = 1 on [sa, sb]. It’s
approximate value is given by ss ≈ −2.074. It can be easily
checked that the functions (9) meet the conditions 1-5 of
theorem. The condition 6 gives the restriction for the system
parameters l2 > 0.948 · l1. It is valid for the system under
consideration (actually, this restriction can be eliminated by
choosing a different Q). Thus, all the conditions of theorem 1
are valid. The phase portrait of equation (9) is depicted on
figure 3. This plot shows trajectories in a neighborhood of
singularity where the uniqueness of solutions is violated:
all the trajectories are crossing the vertical line s = ss
with the same velocity. While, the phase coordinates stay
continuous in the neighborhood of transition points as well
as corresponding control input (see red curves on figure 7
and figure 4).

C. Orbital Stabilization

Here we indicate the method for orbital stabilization of the
found trajectory of the system (8). To this end we rewrite the
system (3) in affine form with state vector x =

(
φ, θ, φ̇, θ̇

)
:

ẋ = f (x) + g (x)u (10)



Fig. 3. Phase portrait of equation 9

Fig. 4. Control input as a function of s

where

f (x) =

(
q̇

−M−1 (q) (C (q, q̇) q̇ +G (q))

)
,

g (x) =

(
0

col1M−1 (q)

)
are smooth functions.

Let the desired trajectory x? (t) of the system (10) be
constructed as described in previous subsection. It means
that there exists the input u? (t) such that

ẋ? = f (x?) + g (x?)u?.

The aim is to find such a feedback u (x) that the given
trajectory x? (t) be orbitally stable for the closed loop system
(10). For this purpose let us represent the desired input u? (t)
as a function of state u? (x), such that u? (t) = u? (x?(t)).
This function can be directly obtained from the equation (4)
(see figure 4).

For the synthesis of feedback controller we reuse the
procedure presented in [2]. It is based on the transverse
linearization approach, where for a given trajectory x? (t)
of underactuated mechanical system (considered as a curve
in the phase space of the system) one reconstruct a family of
moving orthogonal hyperplanes Πt. On each hyperplane we
consider a local coordinate frame with basis P (t) ∈ R4×3

originated at the intersection of Πt and x? (t). Here matrix
P (t) consists of an orthogonal complement of the unit
tangent vector ẋ?(t)

‖ẋ?(t)‖ (see [2] for more details).

Fig. 5. LQR coefficients

Let us introduce also the new control input v as

v = u− u? (x) ,

and define h (x) ≡ f (x) + g (x)u? (x). Then the system
(10) can be written as

ẋ = h (x) + g (x) v. (11)

In a small tubular neighborhood of curve x? (t) we define
local coordinates (τ, ξ) by the rule

τ = arg min
t
‖x− x? (t)‖ ,

x = x? (τ) + P (τ) ξ.

The variable τ plays the role of the new time for the
linearized system. The vector ξ represents deviations of
real trajectory from desired one. The dynamics of (11) in
coordinates τ, ξ can be written as

ξ̇ =
dPT

dτ
Pξτ̇ + PT (h (x)− h (x?) τ̇ + g (x) v)

and it’s linearization is
dξ

dτ
≈ A (τ) ξ + b (τ) v (12)

with A (τ) = dPT

dτ P + PT ∂h∂x |x?P , and b (τ) = PT g (x?).
To stabilize the given system we designed an LQR of

the form v = k (τ) ξ, where k ∈ R1×3. The numerically
computed coefficients k (τ) are depicted on the figure 5. The
behavior of phase coordinates of the Furuta pendulum aug-
mented with corresponding nonlinear controller is depicted
on figure 7, the corresponding control input as a function of
time is given on figure 6.

VI. DISCUSSIONS AND FUTURE WORK

A new general method for constructing the periodic and
aperiodic motions for underactuated systems is proposed.
The idea of the method consists in a targeted choice of
servo-connections, leading to a singular dynamics of motion
generator. We have formulated sufficient conditions, under
which solutions of singular equation and their derivatives are
continuous functions, and the phase trajectories pass through
singularity with the same velocity and acceleration. This



Fig. 6. Orbital stabilization: control input

Fig. 7. Orbital stabilization: phase coordinates

allows concatenating any segments of trajectories belonging
to opposite sides of the singularity into the solution. Joining
the different segments one can obtain periodic trajectories
with arbitrarily small amplitude or trajectories passing the
given points. The phase portrait of such equation has an
extraordinary form such as depicted on figure 1.

The results are illustrated by the example of constructing
a periodic behavior of the Furuta pendulum when the pendu-
lum oscillates around the horizontal. This problem is chosen
because it cannot be solved by known methods of con-
structing motions for underactuated systems. Based on the
previous results of the authors [2], the constructed motion is
stabilized. The designed feedback controller provides orbital
exponential stability for the found cycle. The simulation can
be fount at https://youtu.be/pzyIWb7szew. The
results validate the robustness of the constructed nonlinear
control system.

It is worth to emphasize that the conditions of theorem 1
describing the smooth prolongation of a solution of the
equation as it passes through a singular point are expressed
in the form of a system of equations and inequalities imposed
on the parameters of mechanical system.
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