
June 2009
Stig Frode Mjølsnes, ITEM
Tord I. Reistad, ITEM

Master of Science in Communication Technology
Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Telematics

Realizing Secure Multiparty
Computations

Håvard Vegge

Problem Description
A multiparty computation is where three or more parties compute a commonly agreed function
with secret input and public output. Using this technique, virtually any cryptographic protocol
problem involving a trusted party can be solved without the need for such a party. Typical
problems are electronic voting, various types of auctions, privacy-preserving benchmarking, etc.
Although there exists a lot of research in this field, and multiparty computations are said to have
great potential, very few practical applications seem to have been developed.

This master thesis work will be to understand the basic theory of multiparty computations, and
select some interesting multiparty computation problem to implement and do experiments. The
aim will be to create a practical and useful program, and possibly set it up as a web application.
The implementation will be based on VIFF (viff.dk), a framework for creating efficient and secure
multiparty computations.

Assignment given: 15. January 2009
Supervisor: Stig Frode Mjølsnes, ITEM

Abstract

The general theory of multiparty computation (MPC) was founded in the
late 80-ties. Since then the concept has evolved in several ways in different
scientific papers. Much of the work has been put into making MPC faster, as
the first protocols were quite inefficient. Generally, MPC has been predicted
a great future potential as it is possible to simulate a trusted third party,
but without actually using one. Despite this very nice property, virtually
no practical applications have been implemented.

Recently, a new trend within the field of MPC has emerged. Several re-
search projects have turned their focus towards building frameworks that
encourage implementation of the so far theoretical protocols and applica-
tions. The Virtual Ideal Functionality Framework (VIFF) has been chosen
for this master’s thesis with the goal of creating visually and user-friendly
applications.

Two applications were implemented, both with focus on how MPC can pro-
vide practical solutions to various voting problems. The first application was
a tool for scientists to decide who to be the 1th author on some scientific
paper. This solution had several problems, including scalability, and thus
led to the development of another application. A secure web voting scheme
was set up, now allowing participants to visit a normal web page and vote
through their browser.

The methodology of using VIFF proved effective for creating MPC appli-
cations. Although the applications are mainly proof-of-concept, they show
that multiparty computations not only have a great potential, but in prac-
tice are able to solve various interesting problems even today.

i

ii

Preface

This report serves as a master’s thesis in Information Security in the 10th
semester of the Master’s Programme in Communication Technology at The
Norwegian University of Science and Technology (NTNU). The assignment
was given by PhD student Tord I. Reistad and Professor Stig F. Mjølsnes
at the Department of Telematics.

This thesis has been a challenging and inspirational task in an emerging
field of cryptology. Working with the Virtual Ideal Functionality Frame-
work (VIFF), which very few others have used, has been motivating and
exciting. I really enjoyed the practical aspect of the work.

I would like to thank my supervisor Tord I. Reistad for his valuable in-
put and frequent feedback. His enthusiasm and great mathematical skills
have been an inspiration throughout the thesis. Also thanks to Stig F. Mjøl-
snes, my professor, for helpful comments and constructive feedback.

Finally I would like to thank Atle Mauland for the cooperation regarding
the mathematics of MPC addition and multiplication in Section 3.4.3.

Trondheim, June 11, 2009

Håvard Vegge

iii

iv

Abbreviations

CSS Cascading Style Sheets

DRE Direct Recording Electronic

GF Galois Field

GUI Graphical User Interface

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

IF Ideal Functionality

IP Internet Protocol

MPC Multiparty Computation

PHP Hypertext Preprocessor

PRNG Pseudo-Random Number Generator

RPC Remote Procedure Call

SSL Secure Sockets Layer

TTP Trusted Third Party

URL Uniform Resource Locator

VIFF Virtual Ideal Functionality Framework

XML Extensible Markup Language

v

vi

Contents

Abstract i

Preface iii

Abbreviations v

List of Figures xi

List of Tables xiii

List of Listings xv

1 Introduction 1
1.1 Secure Multiparty Computation 1
1.2 Related Work . 2
1.3 Motivation . 3
1.4 Objectives . 3
1.5 Limitations . 4
1.6 Method . 4
1.7 Document Structure . 5

2 Secret Sharing 7
2.1 Secret Splitting . 7
2.2 Additive Secret Sharing . 8

2.2.1 Creating the Shares 8
2.2.2 Reconstructing the Secret 9

2.3 Shamir Secret Sharing Scheme 9
2.3.1 Overview . 9
2.3.2 Finite Fields . 11
2.3.3 Creating the Shares 11
2.3.4 Reconstructing the Secret 12

vii

Contents

3 Secure Multiparty Computation 13
3.1 Adversaries . 13
3.2 Network Assumptions . 14
3.3 Security . 14
3.4 Computation Stages . 15

3.4.1 The Input Stage . 16
3.4.2 The Final Stage . 16
3.4.3 The Computation Stage 16
3.4.4 Multiplication Example 19

3.5 MPC Frameworks . 21

4 Virtual Ideal Functionality Framework 23
4.1 History . 23
4.2 Overview . 23
4.3 Features . 24
4.4 Architecture . 24

4.4.1 Runtime . 25
4.4.2 Finite Fields . 26

4.5 Asynchronous Design . 26
4.5.1 Expression Tree . 26
4.5.2 Twisted . 27

4.6 Example VIFF Program . 28
4.7 Security Assumptions . 31
4.8 Benchmarking . 31

5 Voting 35
5.1 Overview . 35
5.2 Motivation . 36
5.3 The Voting Process . 36
5.4 Challenges . 37
5.5 Security Requirements . 37

6 Choice of Applications 39
6.1 Motivation and Properties . 39
6.2 The Author Application . 40
6.3 The Voting Application . 40

7 Application 1: Rank the Authors 41
7.1 Design and Implementation 41

7.1.1 Screen Shots . 41
7.1.2 Architecture . 44
7.1.3 Libraries . 45
7.1.4 Code . 45

7.2 Benchmarks . 47

viii

Contents

7.3 Possible Improvements . 49
7.3.1 Calculation of Points 49
7.3.2 Complicated Application Launch 49

8 Application 2: Secure Web Voting 51
8.1 Design and Implementation 51

8.1.1 Screen Shots . 52
8.2 Architecture . 56

8.2.1 Web Server . 56
8.2.2 Computation Servers 60

8.3 Libraries . 60
8.3.1 SecureRandom . 60
8.3.2 XML-RPC . 61

8.4 Security Analysis . 62
8.4.1 Voter Privacy . 62
8.4.2 Eligibility . 62
8.4.3 Uniqueness . 63
8.4.4 Fairness . 63
8.4.5 Uncoercibility . 64
8.4.6 Receipt-freeness . 64
8.4.7 Accuracy . 64
8.4.8 Individual Vote Check 65

8.5 Possible Improvements . 65

9 Discussion 67
9.1 Secure Web Voting Application 67

9.1.1 Location of the Computation Servers 67
9.1.2 Storing of Shares . 68

9.2 VIFF . 68
9.2.1 Necessary Steps . 69
9.2.2 Development . 69
9.2.3 Required Background Theory 69
9.2.4 Future Potential . 70

9.3 The Potential of Multiparty Computations 70
9.4 Further Work . 71

9.4.1 Other Applications . 71
9.4.2 Improve and Deploy a Web Voting Application 71
9.4.3 Large-scale E-voting 72

10 Conclusion 73

Bibliography 75

Web References 79

ix

Contents

A Multiplication Mathematics 81
A.1 Linear System Approach . 81
A.2 Vandermonde Matrix . 82

B VIFF Installation Guide 85
B.1 Installation Steps . 85
B.2 Troubleshooting . 86
B.3 Generation of Configuration Files 86
B.4 Additional Components . 86

C Source Code Author Application 87
C.1 author.py . 87

D Source Code Web Application 95
D.1 Vote.java . 95
D.2 server1.py . 100

E Attachment/ZIP file 105
E.1 Rank the Authors . 105
E.2 Secure Web Voting . 105
E.3 Secure Position Determination 106

x

List of Figures

1.1 A trusted party scenario to the left and the idea of MPC
(simulation of a trusted party) to the right. 1

2.1 The linear curve corresponding to a (2,n)-threshold scheme [5]. 10
2.2 The quadratic curve corresponding to a (3,n)-threshold scheme

[5]. 10

3.1 Illustration of how f(x), g(x) and h(x) can be added together
and form a new polynomial marked total. 18

3.2 Graph with the points (1,4), (2,2) and (3,0) which implies
that the secret is 6 (the line intersects the y-axis). 20

4.1 The protocol stack which VIFF is built upon. 24
4.2 Relations between class instances at runtime [GDP09]. 25
4.3 Expression tree [DGKN08]. 27
4.4 Parallel multiplication benchmarks, average time per multi-

plication [Gei08]. 32
4.5 Parallel comparison benchmarks, average time per compari-

son [Gei08]. 32

7.1 The main window of the author application. Atle cannot vote
for himself. 42

7.2 Atle tries to give all the votes for Håvard, but gets an error
message. 42

7.3 Atle has voted and 25% of the players have given their inputs. 43
7.4 The result (order of authors) is securely calculated. Nothing

else is revealed. 43
7.5 Player 1, 2 and 3 are sharing x, y and z [6]. 45
7.6 Actual number of comparisons, the upper bound growth rate,

and the average computation time used are plotted for various
values of n. 48

8.1 The architecture of the web application. 51
8.2 Step 1 for creating a poll on the web page. 53

xi

List of Figures

8.3 Step 2 for creating a poll on the web page. 54
8.4 An example e-mail received by a person participating in a vote. 54
8.5 Java applet for delivering of a vote. 55
8.6 The console of one computation server after it has calculated

the result of a vote. 56
8.7 Classes and files of the web application. 56
8.8 The three database tables where information about polls,

users and results are stored. 59
8.9 The MySQL table result, containing the encrypted shares, as

shown in phpMyAdmin. 60
8.10 XML-RPC is a remote procedure call protocol which uses

XML to encode its calls and HTTP as a transport mechanism
[10]. 61

9.1 Web application scheme which stores the shares at different
locations, that is, at P1, P2 and P3. 68

xii

List of Tables

3.1 The threshold obtainable for various qualities of security, where
all results are for adaptive security. 15

3.2 Example matrix for secret shared multiplication. 20
3.3 The players’ shares of the total polynomial. 20

5.1 Classification of voting types. 36

7.1 List of files required for executing the author program. 44
7.2 Benchmark results for the author application. 48

8.1 List of PHP files in the secure web voting application. 57

xiii

List of Tables

xiv

List of Listings

4.1 The use of callbacks in Twisted. 27
4.2 A simple VIFF example program. 29
4.3 VIFF configuration file for player 1. The pubkey and seckey

have been abbreviated. 30
7.1 Distribution of points for the votes given in the author appli-

cation. 46
7.2 The votes/points are given as inputs to the shamir share func-

tion. 46
7.3 The points, represented as shares, are summed up. 47
8.1 The essential part of the makesShares function in the Java

applet. 58
8.2 The RSA encryption of shares in the Java applet. The public

keys have been abbreviated. 58
8.3 Java code demonstrating how to create random integers. . . . 61
8.4 The XML-RPC request message sent from the web server to

computation server 1. 62
C.1 Source Code author.py . 87
D.1 Source Code Vote.java . 95
D.2 Source Code server1.py . 100

xv

List of Listings

xvi

Chapter 1

Introduction

A multiparty computation (MPC) is where three or more parties compute a
commonly agreed function, but with the restriction that none of the partic-
ipants can learn anything more than their own input and the public output.
This problem was first introduced by Yao in 1982 and exemplified through
what is known as the “millionaire problem” [Yao82]:

“Two millionaires wish to know who is richer; however, they
do not want to find out inadvertently any additional informa-
tion about each other’s wealth. How can they carry out such a
conversation?”

1.1 Secure Multiparty Computation

In a multiparty computation (MPC) there are three or more distrusting
parties. With the assistance of a (fictive) trusted party, they can securely
evaluate functions of their inputs. There exist of course no trusted party, but
a multiparty computation will be equivalent to one. Figure 1.1 illustrates
the idea of simulation.

Figure 1.1: A trusted party scenario to the left and the idea of MPC (sim-
ulation of a trusted party) to the right.

1

Chapter 1. Introduction

To the left in the figure is a judge who all participants trust to give their
secret inputs. This trusted party can then compute the outcome of the pro-
cess (for instance the sum of all inputs) and reveal the output. To the right
in the figure is how the equivalent MPC would work. There is no trusted
party, but by using multiparty computation they can still achieve the same
level of secrecy, but without having to trust someone. This is what MPC
is all about: finding cryptographic protocols that can be used to simulate
(and hence replace) trusted parties [Opp05].

Besides determining who is the richer of some number of people, multi-
party computation has many other practical applications. Some of the most
well-known are listed below:

• Electronic voting

• Elections over the Internet

• Private bidding and auctions

• Privacy-preserving data mining

• Privacy-preserving database query

• Sharing of signature or decryption functions

1.2 Related Work

The problem of multiparty computation was first introduced by Yao [Yao82].
Following the results of Ben-Or, Goldwasser and Widgerson [BOGW88] and
also Chaum, Crépeau and Damgård [CCD88] any given function may be
computed securely if t < n/3, where n is the number of players and t is
the number of corrupted players. If the adversary is passive, the bound is
t < n/2. Goldreich, Micali and Widgerson [GMW87] presented a protocol
that tolerated an active adversary corrupting any t < n/2 of the players
under computational assumptions.

An essential part of multiparty computations is secret sharing. This method
for distributing a secret amongst a group of participants by allocating shares
of the secret, was invented by both Adi Shamir [Sha79] and George Blakley
[Bla79] independently in 1979. The shamir module in VIFF is obviously
based on Shamir’s paper.

Most importantly MPC provide solutions to various problems such as dis-
tributed voting, private auctions, etc. Although having a great potential,

2

1.3. Motivation

very few practical applications are known to be in use. One example, how-
ever, is a large-scale MPC application used for trading contracts in the
Danish sugar beet market [BCD+08].

1.3 Motivation
As already mentioned, multiparty computations are said to have great po-
tential, but very few practical applications seem to have been developed.
This can partly be explained by the lack of or slow protocols for doing such
computations. Several MPC frameworks have been developed in recent years
and by using the Virtual Ideal Functionality Framework (VIFF) it should
be fairly easy to develop applications that use multiparty computations.

Multiparty computation is a powerful tool, but not widely used in prac-
tice to solve cryptographic protocol problems. Recently I have come over a
few simple problems that I have thought would be interesting to implement
using MPC:

• A project I wrote in cooperation with SINTEF ICT in the second
half of 2008 resulted in a scientific paper submitted to the conference
ICIMP 20091. In total we were five persons that had contributed to
the paper and we had to decide the order of the authors. Nobody
dared to express their preferences loudly, and the decision was finally
made by a simple and unintelligent method of drawing lots.

• A blog post by the main author behind VIFF, Martin Geisler, sug-
gested a list of names as candidates for the new framework in late
2007 [13]. Anyone could vote by leaving a comment. One of the users
then replied with the following amusing line:

“Is it possible to vote without revealing any information?
. . . and if so, can you prove it safe to do so?”

1.4 Objectives
This project consists of two main parts. First a theoretical background study
in the field of secure multiparty computation is to be performed. Secondly,
several applications will be implemented using MPC and VIFF. In general,
this master’s thesis aspires to achieve the following objectives:

• Describe the basic theory of multiparty computations. The aim is to
describe the concept clearly and with examples such that one under-
stands how secret sharing and multiparty computations really works.

1The Fourth International Conference on Internet Monitoring and Protection, ICIMP
2009, in Venice, Italy.

3

Chapter 1. Introduction

• Give a thorough introduction to VIFF and show what steps are nec-
essary to create applications with this framework.

• Create one or more practical and useful programs, and possibly set it
up as a web application.

• Evaluate VIFF and its future potential.

1.5 Limitations

The following limitations have been identified:

• Multiparty computation is a broad term and a lot of different protocols
are described in scientific papers. This thesis is focused towards the
main concepts needed to understand how MPC and programming in
VIFF works.

• The two applications developed throughout this master’s thesis are
basically just proof-of-concept applications. It would have been inter-
esting to do a more comprehensive analysis of scalability, but this has
been considered out of the scope.

1.6 Method

The method used throughout this thesis can be divided into three main
phases:

• Systematic study of scientific research, both on MPC in general and
on applications of MPC.

• Experimenting with the possibilities of VIFF and creation of a simple
test program.

• Design and implementation of one or more applications.

The most extensive phase was to design and implement the applications.
The first application, Rank the Authors in Chapter 7, was focusing on pro-
viding a user-friendly GUI. Although fulfilling this property, the evaluation
clearly showed aspects that could be improved. These aspects were trans-
formed into new properties that the next MPC application should possess.

The Secure Web Voting application in Chapter 8 was then designed and
implemented using a totally different and more complete scheme. It is a
more general voting application available from the world wide web, making
it both user-friendly, easy to understand and accessible as long as one has

4

1.7. Document Structure

an Internet connection.

For the actual implementation of code in the MPC programs, an incremen-
tal and iterative development process was chosen [Coc08]. The alternative
strategy would have been to plan everything right the first time and de-
velop the entire system with a “big-bang” at the end. This would not have
been optimal as the time to create applications with the new VIFF frame-
work was very uncertain. By using an incremental and iterative process, it
was possible to add more functionality and requirements to the application
during the implementation.

1.7 Document Structure
The remainder of this report is organized as follows:

• Chapter 2: Secret Sharing
This chapter presents theory related to secret sharing which is an
essential part of multiparty computations.

• Chapter 3: Secure Multiparty Computation
This chapter presents multiparty computation more thoroughly and
includes detailed description of how addition and multiplication are
done in MPC.

• Chapter 4: VIFF
The chapter about VIFF describes the features and mode of operation
of the framework. A simple example program is also included.

• Chapter 5: Voting
This chapter reviews basic theory related to voting as the two imple-
mented applications are voting programs.

• Chapter 6: Choice of Applications
This chapter describes the high-level motivation for the two imple-
mented applications.

• Chapter 7: Application 1: Rank the Authors
This chapter is a review of the first application; a GUI application
which lets participants of a scientific paper vote on their choice of 1th,
2th, 3th, etc. author.

• Chapter 8: Application 2: Secure Web Voting
This chapter describes a web application for secure voting. The system
requires a more extensive setup and includes a web page (HTML and
PHP), a database (MySQL) together with three computation servers
(VIFF).

5

Chapter 1. Introduction

• Chapter 9: Discussion
This chapter evaluates the two applications and VIFF as a framework.
Finally, some ideas for future work are presented.

• Chapter 10: Conclusion
The last chapter summarizes the major results and experiences, and
concludes the thesis.

Additionally, the following appendices are included:

• Appendix A: Multiplication Mathematics
The first appendix contains detailed mathematics required when per-
forming multiplication of shares in a MPC protocol.

• Appendix B: VIFF Installation Guide
This appendix explains the installation steps required for setting up
VIFF on MS Windows.

• Appendix C: Source Code Author Application
This appendix shows the source code of the author program.

• Appendix D: Source Code Web Application
This appendix shows the source code of two essential files of the web
voting application, namely the Java applet and one of the computation
servers.

• Appendix E: Attachment/ZIP file
This appendix lists the contents of the attached ZIP file.

6

Chapter 2

Secret Sharing

In this chapter theory related to secret sharing is presented. Secret sharing
is closely related to MPC and a few such schemes are thus described. Shamir
secret sharing will be the most important as it is used in VIFF.

Imagine setting up a launch program for a nuclear missile. You do not
want to give a single person this responsibility. In order to launch the mis-
sile it is desirable that two people will need to enter a password and turn
their keys at the same time. This example is comparable to the concept of
secret sharing. More formally:

Definition 1 A secret sharing scheme refers to a method which distributes
shares of a secret among a group of participants in such a way that the secret
can only be reconstructed when the shares are combined together.

2.1 Secret Splitting

A special case of secret sharing is in some literature referred to as secret
splitting. In its simplest form this scheme is flawed, but it clearly shows
what to avoid.

Consider the naive scheme of splitting the secret phrase password between
two parties. The secret phrase consists of 8 characters, each which can be
selected from a set of 100 possible characters, thus the number of possible
passwords are 1008. Assuming the generation and check of one such pass-
word takes 1 microsecond, it would take 1008 · 10−6 seconds ≈ 300 years
to check them all. On average it would only take half the time, but over
100 years is still quite some time. Now assuming an adversary has one
share, that is, four of the eight characters are known. This would reduce
the problem to 1004 possible passwords to check against. Generation and
checking of all passwords would now only take 1004 · 10−6 = 100 seconds.

7

Chapter 2. Secret Sharing

It is obvious that this scheme cause partial information disclosure [5]. To
avoid such problems, two requirements common to all unconditionally secure
secret sharing schemes can be set up:

• Each share of the secret must be at least as large as the secret itself.
This way, no information about the secret can be determined, if one
has less than threshold t shares.

• All secret sharing schemes must use random bits.

2.2 Additive Secret Sharing
There exist several secret sharing schemes which differ in theory and applica-
tion. The most trivial ones require all n participants in order to reconstruct
the secret. Additive secret sharing is an example of such a scheme and is
described next.

Assume we wish to split the secret s among n people, then n − 1 ran-
dom numbers r1, ..., rn−1 need to be selected. It is impossible to choose
a random integer in a way that all integers are equally likely (the sum of
the infinitely many equal probabilities, one for each integer, cannot be 1).
Therefore an integer p larger than all possible messages that might occur is
selected. Then s and r are regarded as numbers mod p [TW06]. The share
for player Pn is computed:

sn = s−
n−1∑
i=1

ri mod p

The rest of the players Pi, 1 ≤ i ≤ n− 1, get the shares si = ri. In order to
reconstruct the secret, the sum of all shares needs to be computed:

s =
n∑
i=1

si mod p

The above technique is absolutely secure if done properly. Each piece by
itself is totally worthless, but together the players can reconstruct the secret.
A scheme characterized by this property is also the definition of a perfect
secret sharing scheme.

2.2.1 Creating the Shares

Below is a simple example to better understand how additive secret sharing
really works. Assume we have a secret = 13 which should be secret shared
among n = 3 participants. We define an integer p = 20 to work over,
together with n − 1 random numbers r1 = 3 and r2 = 8. The following
calculations are then possible:

8

2.3. Shamir Secret Sharing Scheme

s1 = r1 mod p = 3 mod 20 = 3
s2 = r2 mod p = 8 mod 20 = 8
s3 = s−

∑n−1
i=1 ri mod p = 13− (3 + 8) mod 20 = 2

2.2.2 Reconstructing the Secret

Reconstructing the secret is easy, just add all shares together and we see
that the sum 13 is equal to the original secret.

s =
n∑
i=1

si mod p = 3 + 8 + 2 mod p = 13

One problem with this protocol is that with a missing share, no one can
reproduce the secret. Schemes that solve this issue are called threshold
schemes and are described next.

2.3 Shamir Secret Sharing Scheme

In difference to additive secret sharing, threshold schemes allow a subset
of the players to reconstruct the secret. More formally a (t, n)-threshold
scheme is defined as follows:

Definition 2 A (t,n)-threshold scheme is a method of sharing a message M
among a set of n participants such that any subset consisting of t participants
can reconstruct the message M, but no subset of smaller size can reconstruct
M. [TW06]

In 1979, both Adi Shamir [Sha79] and George Blakley [Bla79] independently
presented such threshold schemes. Shamir’s method is using polynomial in-
terpolation, while Blackley works on the intersection of hyperplanes. Only
Shamir’s secret sharing will be described here, as this is the scheme imple-
mented in VIFF.

2.3.1 Overview

In order to illustrate Shamir secret sharing, a (2, n) scheme is designed. As-
sume a secret is to be shared among n participants. In Figure 2.1 the point
(0, s) on the y-axis, which corresponds to the secret, is selected. Drawing
a random line through this point gives n points on that line. Each point
(x1, y1), (x2, y2), ..., (xn, yn) represents a share.

Since two points determine a line, it is clear that two participants can dis-
cover the secret by drawing a line between their points, and from there check

9

Chapter 2. Secret Sharing

Figure 2.1: The linear curve corresponding to a (2,n)-threshold scheme [5].

where the line intersects the y axis. If holding only one share, infinite possi-
bilities would exist for a line through this point. This means that with one
point, no information about the secret is revealed.

Extending the idea to a (3, n) scheme, a curve determined by three points is
needed. This corresponds to the quadratic function y = a0 + a1 · x+ a2 · x2.
Again the secret is located on the y-axis before drawing a random curve
corresponding to a quadratic function that goes through the point. Finally
n points are selected as seen in Figure 2.2 which all represent a share.

Figure 2.2: The quadratic curve corresponding to a (3,n)-threshold scheme
[5].

10

2.3. Shamir Secret Sharing Scheme

2.3.2 Finite Fields

Finite fields are used in Shamir secret sharing and in VIFF, thus a brief
description is given. A finite field, also called a Galois field, is a field with a
finite number of elements. The order of a finite field is always a prime or a
power of a prime.

GF (p), where p is a prime number, is simply the ring of integers modulo
p. This means one can perform operations (addition, subtraction, multipli-
cation) as usually done on integers, followed by reduction modulo p. For
instance, in GF (7), 5 + 4 = 9 is reduced to 2 modulo 7.

The reason for working modulo p is to achieve perfect secrecy, that is, given
fewer than threshold t shares, the secret can be any element in the field
and thus those shares do not supply any additional information about the
secret. Simply working over all the reals makes it impossible to state the
same qualities, because the shares cannot be uniformly distributed over the
reals.

2.3.3 Creating the Shares

The essential idea of Shamir is that two points are sufficient to define a line,
three points to define a parabola, etc. To define a polynomial of degree t−1,
it then requires t points:

f(x) = s+ r1x+ ...+ rt−1x
t−1 mod p

The prime p must be larger than all possible messages and also larger than
the number of n players. The coefficients r1, ..., rt−1 in f(x) are randomly
chosen from a uniform distribution over the integers in [0, p).

To illustrate this mathematically, suppose that we have a secret 1337 (s =
1337). It it desirable to divide this secret into 6 shares (n = 6) and where
any subset of 3 players (t = 3) can reconstruct the secret. As t = 3, we
select t − 1 = 2 random integers r1 = 122 and r2 = 51. The polynomial is
then:

f(x) = 1337 + 122x+ 51x2

and the shares can be calculated as shown below. Note, however, that we
assume to be working over a very large field in the following calculations
and thus the problem of overflow is avoided.

11

Chapter 2. Secret Sharing

s1 = f(1) = 1337 + 122 · 1 + 51 · 12 = 1510
s2 = f(2) = 1337 + 122 · 2 + 51 · 22 = 1785
s3 = f(3) = 1337 + 122 · 3 + 51 · 32 = 2162
s4 = f(4) = 2641
s5 = f(5) = 3222
s6 = f(6) = 3905

2.3.4 Reconstructing the Secret

In order to reconstruct the polynomial and hence the secret message, we
will use interpolation. The requirement is that we obtain t of the polyno-
mial’s values (x, f(x) = sx). According to Lagrange’s formula, the following
expression gives the polynomial f(x):

f(x) =
t∑
i=1

si

t∏
j=1
j 6=i

x− xj
xi − xj

mod p

Because we want to evaluate the polynomial at x = 0, the equation can be
further simplified. This gives the following formula to calculate the secret s:

s = f(0) =
t∑
i=1

si

t∏
j=1
j 6=i

−xj
xi − xj

mod p

Now suppose player 2, 4 and 5 want to collaborate to determine the secret.
Using the last equation and the tuples (2, 1785), (4, 2641) and (5, 3222) the
reconstruction of the secret is possible.

s = 1785 · (−4
2−4 ·

−5
2−5) + 2641 · (−2

4−2 ·
−5
4−5) + 3222 · (−2

5−2 ·
−4
5−4)

= 5950− 13205 + 8592
= 1337

12

Chapter 3

Secure Multiparty
Computation

This chapter addresses secure multiparty computation (MPC) which is the
problem of how mutually distrusting parties can compute a function without
revealing their individual input values to each other. More formally the
problem of multiparty computation is defined as follows [Dam06]:

Definition 3 Secure multiparty computation (MPC) can be defined as the
problem where n participants P1, ..., Pn agree on a function f and wish to
compute and reveal to each participant (y1, ..., yn) = f(x1, ..., xn), where each
input xi is a secret input provided by participant Pi. Player Pi will only learn
yi, nothing more.

Security in this context means guaranteeing the correctness of the output
as well as the privacy of the participants’ inputs, even if some participants
try to cheat.

3.1 Adversaries
Participants in a MPC protocol do not necessarily behave as intended. Cor-
rupt players may occur and they are divided into the following two main
groups [Opp05]:

• A passive adversary is where players perform the protocol correctly,
but collaborate in information gathering and sharing with the goal of
getting access to sensitive information of other players. Such players
are sometimes called semihonest.

• An active adversary is a group of players deviating from the protocol
in order to disrupt the computation. The goal is to produce incorrect
results and/or violate the privacy of other players. Such players are
sometimes called byzantine.

13

Chapter 3. Secure Multiparty Computation

Both types can be static or adaptive. A static adversary means that the
set of corrupted players is chosen before the protocol starts. An adaptive
adversary on the other hand, can choose which players to corrupt during
the execution of the protocol.

3.2 Network Assumptions
Traditionally secure multiparty computations were done with the assump-
tion of a synchronous network, with a known maximum drift rate. In this
setting it is easy to divide a protocol into logical units called rounds. In each
round, each player may send a message to each other and the messages are
delivered before the next round begins.

Modern networks, like the Internet, are though mostly asynchronous. Data
is transmitted without the use of an external clock signal and problems like
congestion, delay, lost packets and other transmission errors might occur. It
is worth noticing that VIFF with its Twisted integration is designed to be
used on asynchronous networks. Refer to Section 4.5 for a description.

In addition the players communicate with each other over channels. Many
MPC protocols assume the existence of pairwise channels among the play-
ers. For a MPC protocol to be information-theoretically secure, it is assumed
that there exists an unconditionally secure channel between each of the par-
ticipants.

Other protocols assume broadcasting, which is similar to the Byzantine
Agreement [LSP82]. A Byzantine fault tolerant system will be able to reach
the same group decision assuming there are not too many Byzantine players
(also known as active adversaries). A message “broadcast” by a faulty user
will result in all honest users agreeing on a single value for that message
[GL02].

3.3 Security
This section describes some classical results on security and threshold ad-
versaries. Generally, the security can be divided into two groups [KLR06]:

1. Information-theoretically secure MPC is unconditionally secure, i.e.,
it is not possible to cheat or violate the security even if an adversary
has unrestricted computing power. It can be further classified into the
following levels:

(a) Perfect security: The result of a real execution of the protocol
with a real adversary must be exactly the same as the result of

14

3.4. Computation Stages

an ideal execution with a trusted party and an ideal adversary.
(b) Statistical security: The result of the real protocol execution need

“only” be statistically close to the result of an ideal execution.

2. Cryptographically secure MPC is based on unproven cryptographic
primitives that are assumed to be computationally infeasible.

As mentioned in Section 1.2 the classical results for the information-theoretic
model due to Ben-Or, Goldwasser an Widgerson [BOGW88] and Chaum,
Crépeau and Damgård [CCD88] state that every function can be securely
computed with perfect security in presence of an adaptive, passive adver-
sary, if the adversary corrupts less than n/2 players. The threshold for an
adaptive, active adversary is n/3.

If a physical broadcast channel is available, then every function can be
computed securely with statistical security, if the adaptive, active adver-
sary corrupts less than t < n/2 players [RBO89].

For the cryptographic model, Goldreich, Micali and Widgerson showed that
any function can be securely computed with computational security in pres-
ence of a static, active adversary corrupting less than n/2 players [GMW87].
These results are summarized in Table 3.1, refer to [CDN08] for more details.

Passive Active with Active without
broadcast broadcast

Perfect n/2 n/3 n/3
Statistical n/2 n/2 n/3
Computational n/2 n/2 n/2

Table 3.1: The threshold obtainable for various qualities of security, where
all results are for adaptive security.

3.4 Computation Stages
According to a paper by Ben-Or, Goldwasser and Widgerson [BOGW88] a
multiparty computation can be divided into three stages:

1. The input stage, where each player enters some value(s) which are
shared according to a secret sharing scheme.

2. The computation stage, where the specified arithmetic circuit is eval-
uated with the shared values.

3. The final stage, where the output value(s) are reconstructed.

15

Chapter 3. Secure Multiparty Computation

Each stage is described next. Stage 2 is the most complicated, as it involves
both addition and multiplication of shared values, and the details of the
computation stage is thus explained last.

3.4.1 The Input Stage

Basically players give some input which is secret shared among the partici-
pants. As described in Section 2.3 this implies that it is possible to compute
a function, while preserving the secrecy of the player’s inputs.

Let P0,...,Pn−1 be a set of players that want function F to be computed.
Assume that all inputs are elements from the finite field E, with |E| > n,
and that F is some polynomial over E.

Let α0,...,αn−1 be some n distinct non-zero element in our field E. Each
player then selects t random elements ai ∈ E, for i = 1, ..., t, setting

f(x) = s+ a1x+ ...+ atx
t

The value si = f(αi) is sent to each player Pi. The sequence (s0, ..., sn−1)
consists of random variables uniformly distributed over E and the value
of the input is thus completely independent from the shares si that are
distributed to the other players.

3.4.2 The Final Stage

In order for a player to reconstruct the secret value s he gathers the shares
from all players and computes the interpolation polynomial f(x) of degree
t. The free coefficient is then the result and can be revealed.

All coefficients of f(x), except the free coefficient, are uniform random vari-
ables independent of the inputs. This implies that the set of shares does not
contain any information about the inputs except from what follows from the
value of f(0).

3.4.3 The Computation Stage

Addition and multiplication are described next as these are the fundamental
operations in MPC (and VIFF).

Addition

Let sf and sg be two secrets that are shared with Shamir’s secret sharing
scheme using the polynomials f(x) and g(x), respectively. Every player has
a share of both secrets denoted by si,j where i is the polynomial and j is the
player. The addition of sf and sg can be done locally by each player simply

16

3.4. Computation Stages

by adding its own shares of the secrets sf and sg resulting in a new share
for each player. For three players the calculations are:

snew,1 = sf,1 + sg,1
snew,2 = sf,2 + sg,2
snew,3 = sf,3 + sg,3

This is possible due to the following calculations. Let f and g be the two
polynomials:

f(x) = sf + r1fx+ r2fx
2 + . . .+ rt−1fx

t−1

g(x) = sg + r1gx+ r2gx
2 + . . .+ rt−1gx

t−1

Let h(x) be the sum of f(x) and g(x):

h(x) = f(x) + g(x)
h(x) = (sf + sg) + (r1f + r1g)x+ (r2f + r2g)x2 + . . .+ (rt−1f + rt−1g)xt−1

h(x) = (sf + sg) + r1x+ r2x
2 + . . .+ rt−1x

t−1

The result is a new polynomial with the same degree as f(x) and g(x),
where the coefficients in each term of h(x) is the sum of the coefficients in
the corresponding terms of f(x) and g(x). The polynomial h(x) intersects
the y-axis in the same point as the addition of f(x) + g(x).

Addition Example

To illustrate why addition can be done locally, assume we have three secrets
(0, 2 and 2). The polynomials are set to:

f(x) = 2x
g(x) = x+ 2
h(x) = −x+ 2

We plot these functions for x values between 0 and 3, in addition to the
sum of the three polynomials (2x + 4) which is marked total in Figure 3.1.
The relation between the functions is clearly illustrated. Both f(x), g(x)
and h(x) were defined as functions of degree 1, and the total function is
obviously of the same degree. Remember that the original secrets were 0, 2
and 2. The sum is 4 and corresponds to where the total polynomial intersects
the y-axis.

Multiplication

Multiplication is a bit more complicated than addition. Again, let sf and
sg be two secrets that are shared using the polynomials f(x) and g(x), re-
spectively, which are of degree t− 1. The multiplication of two polynomials

17

Chapter 3. Secure Multiparty Computation

Figure 3.1: Illustration of how f(x), g(x) and h(x) can be added together
and form a new polynomial marked total.

of degree t− 1 will result in a new polynomial h(x) with degree 2t− 2. This
would require more points for the interpolation used to reconstruct the se-
cret, meaning that more players have to participate in the reconstruction.
Additional multiplications will raise the degree even further, eventually ren-
dering the interpolation impossible due to the lack of participating players.
To overcome this problem, h(x) needs to be reduced to the original degree
t− 1. Let f and g be the two polynomials:

f(x) = sf + r1fx+ r2fx
2 + . . .+ rt−1fx

t−1

g(x) = sg + r1gx+ r2gx
2 + . . .+ rt−1gx

t−1

The multiplication of f(x) · g(x) results in a new polynomial h(x):

h(x) = f(x) · g(x)
h(x) = sfg(x) + r1fxg(x) + r2fx

2g(x) + . . .+ rt−1fx
t−1g(x)

h(x) = sfsg + sfr1gx+ sfr2gx
2 + . . .+ r1f sgx+ . . .+ rt−1fx

t−1rt−1gx
t−1

To clarify h(x) can be written in the following form:

h(x) = sfsg + r1x+ r2x
2 + . . .+ r2t−2x

2t−2

Each player now holds a “share” of h(x), a polynomial of degree 2t−2, which
needs to be reduced to a polynomial of degree t−1. These h(x) outputs are
then used as input to a new round of sharing, which results in a new set of
shares in new random polynomials on the form of i(y):

i(y) = h(x, y) = h(x) + r1y + r2y
2 + . . .+ rt−1y

t−1

18

3.4. Computation Stages

Solving this results in a polynomial of the correct degree with sfsg as the
free coefficient:

i(y) = sfsg + r1y + r2y
2 + . . .+ rt−1y

t−1

3.4.4 Multiplication Example

In order to explain the secret shared multiplication, an example with small
numbers is included below. Two secrets are defined (3 and 2), and the two
polynomials are set to:

f(x) = 3− 2x
g(x) = 2 + x

Each player has a share in f(x) and g(x) where x = 1, 2, 3 for player 1,
player 2 and player 3, respectively.

Player 1: f(1) = 1 g(1) = 3
Player 2: f(2) = −1 g(2) = 4
Player 3: f(3) = −3 g(3) = 5

By multiplying the shares from f(x) and g(x) each player obtain a “share”
in h(x). The players share these values with a new random polynomial as
shown in row 4 in Table 3.2. The rest of the table is calculated by each
player inputting x = 1, 2, 3 in its own polynomial and distributes a share to
each of the other players. As an example, player 1 calculates:

Share 1: 3 + 2 · 1 = 5
Share 2: 3 + 2 · 2 = 7
Share 3: 3 + 2 · 3 = 9

Player 1 then distributes share 2 to player 2 and share 3 to player 3. Both
player 2 and player 3 calculate their column in Table 3.2 and distribute the
shares to the other players.

Now each player holds its secret polynomial (player 1 holds 3 + 2x etc.)
together with a single point from each of the other players’ polynomials
(player 1 receives −1 from player 2 and −14 from player 3). With this in-
formation, each player can calculate its share of the total polynomial using
one of two methods:

• Linear system approach (Appendix A.1)

• Vandermonde matrix (Appendix A.2)

19

Chapter 3. Secure Multiparty Computation

Player 1 Player 2 Player 3
f(x) 1 -1 -3
g(x) 3 4 5
h(x) 3 -4 -15

3 + 2x -4 + 3x -15 + x Sh
Player 1 5 -1 -14 4
Player 2 7 2 -13 2
Player 3 9 5 -12 0

Table 3.2: Example matrix for secret shared multiplication.

These calculations give the players the values seen in Table 3.3, which can
also be found in the sh column in Table 3.2:

Player Share value
1 4
2 2
3 0

Table 3.3: The players’ shares of the total polynomial.

When a subset of at least two players exchanges shares the secret can be
reconstructed. By plotting the values as shown in Figure 3.2, the secret is
found where the line intersects the y-axis. The revealed number is 6, which
corresponds with the multiplication of the initial secrets 3 and 2.

Figure 3.2: Graph with the points (1,4), (2,2) and (3,0) which implies that
the secret is 6 (the line intersects the y-axis).

20

3.5. MPC Frameworks

3.5 MPC Frameworks
In order to make the creation of applications based on multiparty computa-
tions simpler, several MPC frameworks have been developed. They are all
listed below together with a brief description. VIFF is further described in
Chapter 4 and is also the framework used for developing the applications in
this thesis.

• The Virtual Ideal Functionality Framework (VIFF) allows you to spec-
ify secure multiparty computations in a clean and easy way [14]. It
was started by Martin Geisler and grew out of the SIMAP project
mentioned below.

• The SIMAP project is conducted at the University of Aarhus, Denmark
in collaboration with the University of Copenhagen and industry part-
ners [4]. The tools are a set of efficient cryptographic protocols and a
domain-specific language named Secure Multiparty Computation Lan-
guage (SMCL) [7].

• The FairPlay project is an initiative from the Hebrew University of
Jerusalem and the University of Haifa in Israel. Fairplay [MNPS04] is a
system for secure two-party computation, and FairplayMP [BDNP08]
is a different system for secure computation by more than two parties.

• Sharemind is another project aiming to be an efficient and easily pro-
grammable platform for developing privacy-preserving computations
[BLW08]. It is currently developed by people in the University of
Tartu in Estonia and AS Cybernetica.

21

Chapter 3. Secure Multiparty Computation

22

Chapter 4

Virtual Ideal Functionality
Framework

The Virtual Ideal Functionality Framework (VIFF) provides a Python li-
brary for creating SMPC protocols. It allows three or more parties to ex-
ecute a cryptographic protocol to do some joint computation, without the
players revealing anything about their inputs. This chapter gives an in-
troduction to VIFF including the history of the project, the architecture,
current features and an example VIFF program.

4.1 History
VIFF was started by the PhD student Martin Geisler in March 2007. It
grew out of a research project called Secure Information Management and
Processing (SIMAP) [4] carried out at the University of Aarhus, Denmark.
SIMAP, which again is the successor to the Secure Computing Economy and
Trust (SCET) project [3], was the first project to create and run a large-
scale application of multiparty computation. This took place in January
2008 and was a double auction directed at Danish farmers trading sugar
beet contracts [BCD+08].

The sugar beet auction was programmed in Java in the SIMAP project. This
Java implementation was big (about 8,500 lines of code for some 130 classes
and interfaces) and a number of problems with its design were detected.
The new VIFF implementation in Python supports the same protocols as
the SIMAP project and more, with considerably fewer lines of code [13].

4.2 Overview
VIFF hides the difficult cryptographic details and as a developer it works like
a high-level API for writing multiparty computations. Figure 4.1 illustrates

23

Chapter 4. Virtual Ideal Functionality Framework

how VIFF takes care of network communication, secret sharing and opera-
tions on shares in MPC. Instead of writing for instance add(add(a, b), c)
one can just type a + b + c which then is compiled to VIFF library calls
interpreted by the Python Virtual Machine. The upper row named Devel-
opment is where the work of this thesis is concentrated.

Figure 4.1: The protocol stack which VIFF is built upon.

4.3 Features

Current features include:

• Arithmetic with shares from Zp or GF(28). Further described in Sec-
tion 4.4.2.

• Secret sharing based on Shamir and pseudo-random secret sharing
(PRSS).

• Secure addition, multiplication, and exclusive-or of shares.

• Comparison of secret shared Zp inputs, with secret Zp or GF(28)
output.

• Automatic parallel (asynchronous) execution. More information is
given in Section 4.5.

• Secure communication using SSL.

4.4 Architecture

VIFF consists of several modules. The main functionality is implemented in
viff.runtime module, while the viff.field module contains implemen-
tations of finite fields. These modules are further explained next.

24

4.4. Architecture

4.4.1 Runtime

The viff.runtime module is where the virtual ideal functionality is hiding.
It is responsible for sharing inputs, handling communication and running
calculations. The module contains the Runtime and Share classes. Runtime
offers methods to do addition, multiplication, etc. and these methods oper-
ate on Share instances.

Figure 4.2 illustrates how Runtime objects interconnect with Share objects.
A number of Share objects can exist on each party (represented by a circle)
and they use the Runtime object when asked to perform calculations like
addition, multiplication, etc. The Runtime objects are again connected to
each other via ShareExchanger objects, which maintain SSL connections
between the parties [GDP09].

Figure 4.2: Relations between class instances at runtime [GDP09].

25

Chapter 4. Virtual Ideal Functionality Framework

4.4.2 Finite Fields

VIFF provides classes for modeling Galois fields. All fields work the same,
that is, one instantiates an object from a field to get hold of an element
of that field. Normal arithmetic like addition, multiplication, etc. is pro-
vided via overloaded operators. An example demonstrating how to define a
field, create field elements and do multiplication and addition (with modulo
reduction), is showed below.

Zp = GF(19)
a = Zp(10)
b = Zp(5)
c = 2 * a + b

Because of the GF(19), the FieldElement object c will wrap around and
hold the value of 6.

4.5 Asynchronous Design

VIFF aims to be usable by parties connected by real world networks, like the
Internet, where a message is likely to go through many hops which introduce
an unpredictable delay. In a synchronous setting all parties wait for each
other at the end of each round, but VIFF has no concept of rounds. Instead
VIFF provide asynchronous communication by using a Python framework
called Twisted. This makes it possible to create a function and arrange for
this to be called when the data is available.

4.5.1 Expression Tree

As an example, consider the expression tree in Figure 4.3. It illustrates the
calculation: z = x+ y = (a ∗ b) + (c ∗ d). The variables a, b, c and d all rep-
resent secret shared values, while the arrows denote dependencies between
the expressions. The two variables x and y are mutually independent and
may be calculated in parallel.

Two factors determine the execution time of a multiparty computation, that
is, the speed of the CPUs engaged in the local computations and the de-
lay through the network. Normally the network latency will dominate as
it can reach several hundred milliseconds. In this context parallel means
that when the calculation of x waits on network communication from other
parties, then the calculation of y must get a chance to begin its network
communication. This will put maximum load on both the CPU and the
network [DGKN08].

26

4.5. Asynchronous Design

Figure 4.3: Expression tree [DGKN08].

4.5.2 Twisted

As mentioned, VIFF uses the event-driven networking engine Twisted in
order to build efficient network applications with asynchronous communica-
tion. In contrast to a synchronous model where system calls may be blocked,
Twisted is using non-blocking calls. Operations in VIFF may be executed
in a random order because deferred objects are used and never the results
themselves. A deferred result will eventually contain some data, but in the
meanwhile it is just added as a callback function. This function will be called
when the data is ready [16].

from tw i s t ed . web . c l i e n t import getPage
from tw i s t ed . i n t e r n e t import r e a c t o r

def pr intContents (contents) :

print "The Deferred has c a l l e d pr intContents with the
f o l l ow i n g contents : "

print contents

r e a c t o r . stop ()

d e f e r r ed = getPage (’ http :// twis tedmatr ix . com/ ’)
d e f e r r ed . addCallback (pr intContents)

S t a r t the Twisted event loop .
r e a c t o r . run ()

Listing 4.1: The use of callbacks in Twisted.

Listing 4.1 shows a call to getPage, which returns a Deferred. A callback
is attached in order to handle the contents of the page once the data is
available.

27

Chapter 4. Virtual Ideal Functionality Framework

4.6 Example VIFF Program
As mentioned, VIFF hides much of the difficult cryptographic concepts.
Next follows a review of maybe the simplest VIFF program one can create.
Listing 4.2 shows a program for three players who each provide a private
input (in this case a random integer between 1 and 200). They want to
calculate the sum of their total financial wealth, but do not want to reveal
its own number. The following steps occur in the program:

• Each player executes python example.py --no-ssl player-i.ini
where i is the player number.

• The first lines import standard and VIFF modules.

• Each player has a configuration file with information about the other
players. An example is given in Listing 4.3.

• On line 37 the create_runtime function is asked to run the protocol
when ready. Among others it schedules the opening of TCP connec-
tions between the parties. In order to start the associated events, the
Twisted reactor needs to be started (reactor.run() on line 39).

• One line 13 the private inputs are created. Each player generates a
random number between 1 and 200.

• One line 15 the finite field Zp is defined. The calculations will be
done over this field, so it is important that it is bigger than the largest
values that can occur.

• Line 16 invokes the shamir_share method. All players contribute
their inputs which are secret shared and distributed to the other play-
ers. Each player now holds three variables: m1 is the player’s share of
the input number from player 1, m2 is the share from player 2 and m3
is the share from player 3.

• Two secure addition operations are done in line 17. The variables are
Share instances, so the + operator call the runtime.add method.

• One line 20 the sum is opened, meaning that the shares are sent to
the designated receivers and Shamir recombines them. Note that the
open_sum is also a Share and it is not possible to directly print its
value.

• A callback to results_ready is done in line 21 which prints the result.

• The runtime.shutdown() callback on line 22 will make the players
synchronize, close the TCP connections and stop the reactor.

28

4.6. Example VIFF Program

1 from optparse import OptionParser
2 from tw i s t ed . i n t e r n e t import r e a c t o r
3
4 from v i f f . f i e l d import GF
5 from v i f f . runtime import Runtime , create_runtime , gather_shares
6 from v i f f . c on f i g import l oad_conf ig
7 from v i f f . u t i l import rand
8
9 class Protoco l :
10
11 def __init__(s e l f , runtime) :
12 s e l f . runtime = runtime
13 s e l f . m i l l i o n s = rand . rand int (1 , 200)
14
15 Zp = GF(1031)
16 m1, m2, m3 = runtime . shamir_share ([1 , 2 , 3] , Zp , s e l f .

m i l l i o n s)
17 sum = m1 + m2 + m3
18 open_sum = runtime . open (sum)
19
20 r e s u l t s = gather_shares ([open_sum])
21 r e s u l t s . addCallback (s e l f . r e su l t s_ready)
22 r e s u l t s . addCallback (lambda _: runtime . shutdown ())
23
24 def r e su l t s_ready (s e l f , r e s u l t s) :
25 sum = r e s u l t s [0] . va lue
26 print sum
27
28 par s e r = OptionParser ()
29 Runtime . add_options (par s e r)
30 opt ions , args = par s e r . parse_args ()
31
32 i f l en (args) == 0 :
33 par s e r . e r r o r ("You must s p e c i f y a c on f i g f i l e ")
34 else :
35 id , p l ay e r s = load_conf ig (args [0])
36
37 pre_runtime = create_runtime (id , p layers , 1 , opt ions)
38 pre_runtime . addCallback (Protoco l)
39 r e a c t o r . run ()

Listing 4.2: A simple VIFF example program.

29

Chapter 4. Virtual Ideal Functionality Framework

As mentioned, each player has a configuration file with information about
the other players. The host address and port number are present in order
to know who to contact. The pubkey and seckey hold Paillier keys [Pai99]
used for homomorphic encryptions and the prss_keys hold shared keys used
for pseudo-random secret sharing [CDI05] among players. Note that player
1 has full information about its own keys, but only the public keys of the
other players.

1 # VIFF c o n f i g f i l e f o r Player 1
2
3 [Player 1]
4 host = l o c a l h o s t
5 port = 9001
6 pubkey = 6495900803 . . . 2 9 , 4135810115 . . . 52
7 seckey = 6495900803 . . . 2 9 , 4135810115 . . . 5 2 , 5413250669 . . . 32
8 [[prss_keys]]
9 1 3 = 0xc882b63ebd7ab023cda1b4c9ba18787a3563f21dL

10 1 2 = 0x93a05fdfb6c682bd543a8cc4d016df1b37d5a157L
11 [[prss_dealer_keys]]
12 [[[Dealer 1]]]
13 1 3 = 0x3a74bc9292ab8332ee4939c29cc8e05e668b2fa4L
14 1 2 = 0xdbaf5936f3a904272454ba85c86912837afb6359L
15 2 3 = 0x234c4ef f1e228e14beb1e0c36edf787189269469L
16 [[[Dealer 2]]]
17 1 3 = 0x92731178e72dab4367a4238bfe0a6654451cc59aL
18 1 2 = 0 xc4f35ddaea3552573d11b69c408fa f401d3f f67 fL
19 [[[Dealer 3]]]
20 1 3 = 0xf8a8115e3b4a694c49bdef3bdb37fa6b5b573c1cL
21 1 2 = 0x652b4be0c1afb12c5b1d860689e177db181deaceL
22
23 [Player 2]
24 host = l o c a l h o s t
25 port = 9002
26 pubkey = 1228140364 . . . 1 9 , 1504025515 . . . 44
27
28 [Player 3]
29 host = l o c a l h o s t
30 port = 9003
31 pubkey = 3149769946 . . . 7 7 , 1472902211 . . . 82
32
33 # End of c o n f i g

Listing 4.3: VIFF configuration file for player 1. The pubkey and seckey
have been abbreviated.

30

4.7. Security Assumptions

4.7 Security Assumptions
VIFF is short for Virtual Ideal Functionality Framework and programs will
implement a virtual ideal functionality (IF). The Universally Composable
(UC) security framework by Canetti [Can01] defines security as follows:

Definition 4 A protocol is secure if an outside observer cannot distinguish
between an execution of the real world protocol and an ideal world protocol.

The real world is where the actual protocol and attacks on it take place.
The ideal world protocol is a specification of what we would like the proto-
col to do. In order to prove a protocol secure, one takes the protocol which
is known to be secure and prove that the new protocol is indistinguishable
from the ideal scenario.

There is no IF in the real world, but VIFF makes it possible to implement a
virtual ideal functionality. A VIFF program is indistinguishable from a real
world program in the sense that everything that can happen in a real world
protocol could happen in the ideal world too. Since no successful attacks
can occur in a ideal world, no successful attacks can occur in the real world
either [15].

Any cryptographic system has security assumptions that need to be ful-
filled in order to be considered secure. The creators of VIFF include three
security assumptions in their documentation:

1. There is a threshold of adversaries that can be corrupted. Only 1/2
of the players may be corrupted, that is, there must be an honest
majority. In the case of three players, only one player can be corrupted.

2. An adversary is computationally bounded. The protocols used by
VIFF rely on certain computational hardness assumptions, and there-
fore only polynomial time adversaries are allowed.

3. VIFF currently only supports passive adversaries as described in Sec-
tion 3.1, meaning that the adversary can monitor network traffic, but
still follows the protocol. Support for active (Byzantine) adversaries
is planned in a future version.

4.8 Benchmarking
Evaluating the performance of programs implemented in VIFF is dependent
on several parameters, like number of operations and number of players.
The type of operation is also very important. As described in Section 3.4.3
addition and multiplication have different requirements. Addition can be

31

Chapter 4. Virtual Ideal Functionality Framework

done locally while multiplication requires an extra step of re-sharing and
thus network traffic. As a consequence, comparison is also a lot more time-
consuming than addition, since it involves several multiplication operations.

As a part of his PhD progress report [Gei08], Martin Geisler provides bench-
mark results done with VIFF version 0.4 (released March 12th 2008). The
benchmark was run over the Internet using full TLS encryption and by using
three computers located in Denmark, Norway and USA. The main results
for multiplication and comparison are given below to indicate the efficiency.

Figure 4.4 shows how the average time per multiplication drops rapidly
at first until it stabilizes at around 1.3 ms. Remember that VIFF has a par-
allel execution and by default many multiplications will be started before
the first one finishes.

Figure 4.4: Parallel multiplication benchmarks, average time per multipli-
cation [Gei08].

Figure 4.5 shows that the average time of a comparison falls to around 800
ms, which is much slower than multiplication. Note that the comparison
protocol by Toft [Tof05] in this benchmark has been improved, but com-
parisons are still an efficiency problem, not only in VIFF, but in MPC in
general.

Figure 4.5: Parallel comparison benchmarks, average time per comparison
[Gei08].

32

4.8. Benchmarking

Other results from the same report indicate that time spent on local com-
putations (CPU time) is negligible compared to the communication cost
between the computers.

33

Chapter 4. Virtual Ideal Functionality Framework

34

Chapter 5

Voting

This chapter gives a brief overview of electronic voting with emphasis on
different electronic voting types and typical security requirements. Note that
the voting application implemented in Section 8 is not a full-scale election;
however, it will be analyzed according to the same requirements.

5.1 Overview

Electronic voting refers to the use of computers or computerized voting
equipment to cast ballots in an election [Cet08]. There are several types
of voting and based on voting equipment and voting location, electronic
voting can be classified into five different types [Cet09]. A description is
given below, while Table 5.1 summarizes them all including paper based
voting.

• DRE voting (Direct Recording Electronic) is physically hardened elec-
tronic equipment with special purpose voting software. The votes are
cast inside a voting booth at a polling site, however, cast votes are
recorded in electronic ballot boxes.

• Poll-site voting does not use voting booths, but public computers at a
polling-site. The computers are connected over a closed and controlled
network.

• Poll-site kiosk voting typically contains electronic voting terminals in-
side a voting booth at a polling site (as in DRE voting). The terminals
are connected with a closed and controlled network.

• Poll-site Internet voting provides a polling-site where users cast their
votes by using public computers. The computers at the site are online
over an uncontrolled network.

35

Chapter 5. Voting

• Remote Internet voting only requires Internet access and can be done
from your home computer. For authentication, the credentials of vot-
ers are verified prior to the voting period through the use of a password
or some type of authentication token.

Stand-alone Voting Networked Voting
Controlled Network Uncontrolled Network

Paper Voting Paper-based Voting N/A N/A

Electronic Voting DRE Voting Poll-site kiosk voting Poll-site Internet voting
Poll-site voting Remote Internet voting

Table 5.1: Classification of voting types.

5.2 Motivation

Most aspects of our lives have online components, ranging from e-mails,
music and other types of entertainment. Still the old fashioned paper ballots
are used in polling (or voting), but we have seen an increase in the use of
electronic voting systems in the recent years. Some countries are pioneers
in the use of electronic voting, even over the Internet. In the United States
7.7% of the voters used electronic voting systems even in 1996. This use
was mainly through DRE machines, which also have been used in Brazil,
Venezuela, India and Netherlands. Internet voting has been used in United
States, United Kingdom, Ireland, Switzerland, Canada, France and Estonia.
However, most countries have their own approach for Internet voting. As
an example, voters in Switzerland receive their access passwords through
mail, while Estonia uses advanced national identity cards equipped with
electronic chips. Also in Norway there are plans for e-voting, but not until
2011 [Usc08].

5.3 The Voting Process

There exists a wide variety of electronic voting systems and protocols, but
the main process is almost standard. The typical actors participating in any
voting system is described below [Cet09]:

• Voter: A voter is entitled to vote in the election, and has some private
information that identifies it.

• Registration authority: The registration authority ensures that only
registered voters can vote (and only once).

• Collection authority: The collection authority collects all cast votes.

36

5.4. Challenges

• Tallying authority: The tallying authority computes the result of the
election and publishes it.

5.4 Challenges

Incorporating electronic voting, especially for use in nation-wide elections,
requires the fulfillment of several security requirements. The traditional
paper-based voting is open and easy to understand, while electronic voting
involves a more complex system. Internet is open and reachable by anyone,
thus the e-voting results can in theory be manipulated at any step in the
voting process. Sufficient security and cryptography is thus crucial to ensure
the trustworthiness of the system.

In their paper Damgård, Groth and Gorm outline three important chal-
lenges that need to be solved [DGS02]:

• Privacy: Only the final result should be made public, no information
about the votes must be leaked.

• Robustness: The result will reflect all submitted and well-formed bal-
lots correctly, even if some voters or entities running the election cheat.

• Universal verifiability: After the election, the result can be verified by
anyone. In order words, any party should be able to convince himself
that the election was fair in the sense that the published tally was
correctly computed.

When implementing a voting scheme it could be defined analogously to the
security definition of MPC, that is, with help of a fictive trusted party which
is simulated by a protocol. Each voter would then send its vote to the trusted
party, who selects the valid votes, adds them up and publishes the tally. A
voting protocol would thus be secure if an adversary cannot achieve more
than what he could in this specification. However, this is not the standard
approach for defining security of a voting scheme. Usually a list of properties
that must be satisfied is given. In conformance with most literature, such
security requirements are listed next.

5.5 Security Requirements

In his paper, Analysis of Security Requirements for Cryptographic Voting
Protocols, O. Cetinkaya lists security requirements that a secure and com-
plete cryptographic voting protocol should satisfy [Cet08]:

• Voter privacy: The prevention of associating a voter with a vote.

37

Chapter 5. Voting

• Eligibility: Only eligible voters who are registered can cast votes.

• Uniqueness: Only one vote per voter should be counted.

• Fairness: No partial tally is revealed before the end of the voting
period to ensure that all candidates/choices are given a fair decision.

• Uncoercibility: Any voter must be able to vote freely and no coercer
should be able to extract the value of the vote.

• Receipt-freeness: The system should not provide a confirmation of the
receipt of the vote which may yield its content.

• Accuracy: The published tally should be correctly computed from
correctly cast votes.

• Individual vote check: The voter should be able to check that his
encrypted vote was counted and tabulated correctly in the final tally.

38

Chapter 6

Choice of Applications

The first chapters about MPC, secret sharing, VIFF and voting have served
as an introduction to what this thesis aspires to achieve: the development
of applications using multiparty computation. This chapter will first de-
scribe the high-level motivation for the applications, before explaining the
difference between the two.

6.1 Motivation and Properties
As already mentioned, multiparty computations have great potential. How-
ever, most practical applications exist only in scientific papers. As an ex-
ample Du and Atallah [DA01] have studied a number of applications, but
only aim to stimulate researchers into coming up with new theoretical MPC
problems. In a publication by CACE1 a long list of applications together
with relevant properties that needs to be implemented are listed [Pin08].
Are some of these applications implemented and publicly available? If the
potential of MPC is so great, why are there not more practical applications
out there?

One counter-example is the double auction in which Danish farmers can
trade sugar beet contracts using MPC [BCD+08]. This master’s thesis aims
to implement applications that are practical and could be useful for a large
audience. In order to make a practical application, several properties are
defined:

• The application must be easy to understand, which implies a self-
explanatory GUI. A user should never have to write code into a com-
mand line window to make it work.

• The application must be user-friendly. It should not be necessary to
install a lot of other packages and programs to make it work.

1Computer Aided Cryptography Engineering

39

Chapter 6. Choice of Applications

• The application must be easy accessible, which in practice mean it
should be available on the world wide web.

Not only would an application fulfilling these properties be interesting to
implement, but I believe a public deployment of more MPC applications
would increase the interest for this promising field of security. Next follows
a brief introduction to each of the two implemented applications with focus
on which properties they hold and to what extent they fulfill needs existing
among the public.

6.2 The Author Application
Chapter 7 describes a simple and specific voting program where authors on
a scientific paper can vote for their choice of 1th, 2th, 3th, etc. author.
This is done with the help of a self-explanatory GUI and is thus easy to
understand. The usefulness is more arguable as the problem of selecting
authors is quite far-fetched and not anything that would interest ordinary
non-scientific people.

The biggest drawback, however, is the extensive setup needed to make the
application run. Each participant would have to install VIFF and a lot of
required components. Each participant would also need to create a con-
figuration file containing, among others, a public and a private key. This
procedure is clearly too extensive.

6.3 The Voting Application
Chapter 8 describes a more general voting application and solves the prob-
lems present in the first application. The actual computation is now dele-
gated to three computation servers, making the requirements of each partici-
pating user much less. A web browser with Java support is all that is needed.

With its graphical interface, both for creating a poll and for giving a vote,
the application is easy to understand. It is also very user-friendly since
most people know how to use a web browser. Finally, and perhaps most
importantly, it is available on the Internet. It is a web application offering
easy and practical voting, but at the same time provides a strong level of
privacy.

40

Chapter 7

Application 1: Rank the
Authors

As mentioned in Chapter 1.3 I wrote a project in cooperation with SINTEF
ICT in the second half of 2008. The work resulted in a scientific paper
and we had no tools for deciding whom to be the first author, other than
drawing lots. This chapter describes an application addressing this problem.

The author program lets all participants on a scientific paper vote on their
choice of 1th, 2th, 3th, etc. author. This is done via a graphical interface
where it is not possible to vote for yourself. The votes are secret shared and
finally added up before revealing only the ranking of the authors.

Section 7.1 contains information about the functionality and implementa-
tion of the application. A few benchmark tests are given in Section 7.2 while
some possible improvements is listed in Section 7.3.

7.1 Design and Implementation

The implementation is based on VIFF, which is a Python framework for
specifying secure multiparty computations. First the application in action is
demonstrated through a series of screen shots. Next follows a description of
the architecture and libraries used, before examining the code and important
choices more in detail.

7.1.1 Screen Shots

Assume four participants (Atle, Håvard, Tord and Martin) want to decide
the order of author names on a scientific paper. Using the author application
each player will see the window in Figure 7.1 when running the program.
The figure shows Atle’s view and it is obvious that he is not able to vote for

41

Chapter 7. Application 1: Rank the Authors

himself.

Figure 7.1: The main window of the author application. Atle cannot vote
for himself.

One could imagine that Atle would try to give all votes to Håvard, in order
to outsmart the two last players, but as seen in Figure 7.2, this would result
in an error message.

Figure 7.2: Atle tries to give all the votes for Håvard, but gets an error
message.

Following the correct procedure as indicated in Figure 7.3, Atle selects Hå-
vard as 1th author, Tord as 2th author and Martin as 3th author. Pushing
the submit button will initiate a secret sharing procedure of Atle’s vote and
the GUI is updated. Atle is the only player so far that has given his vote,

42

7.1. Design and Implementation

which is reflected in the progress bar labeled 25%.

Figure 7.3: Atle has voted and 25% of the players have given their inputs.

When all players have given their votes, the progress bar reaches 100%
and VIFF will calculate the result. It takes a few seconds, mainly due to
comparison of shares, which is a time-consuming task. As displayed in the
bottom of Figure 7.4 the only output is the sequence of authors, nothing
else is revealed.

Figure 7.4: The result (order of authors) is securely calculated. Nothing else
is revealed.

43

Chapter 7. Application 1: Rank the Authors

7.1.2 Architecture

The author program is a relatively simple application. The main VIFF code
is located in one class which each player has to execute. Table 7.1 lists the
three files needed to start the program. In addition one would need to install
VIFF together with the GUI toolkit PyGTK. Installation instructions can
be found in Appendix B.

File Description
player-x.ini Config file containing information like hostname and

port number of the other players. See an example in
Listing 4.3 in Section 4.6.

author_config.txt Config file containing the participating players’ names.
This file is imported into the main VIFF program.

author.py The main VIFF program which initiates the GUI, re-
ceives votes, secret shares the votes and finally outputs
the ranking of the authors. A more detailed review is
given in Section 7.1.4.

Table 7.1: List of files required for executing the author program.

When distributing the config files (.ini), note that player-1.ini corre-
sponds to the first name in author_config.txt, player-2.ini corresponds
to the second name in author_config.txt, etc. In a real world scenario
each player would probably build up the config file itself, including its own
private key and the others player’s public key. When developing small ap-
plications it is though much easier to generate all files and run the program
on the local host.

After starting the application, each participating player will deliver its vote.
Figure 7.5 shows the basic idea if three players were to execute the program
and had one number each to share. Then player 1 (P1) has the variable x
which is secret shared into x1, x2 and x3. Player 1 will keep share x1 for
itself, while sending share x2 to player 2 and share x3 to player 3.

Note that in the author program there is not only one number for each
player, but n numbers, where n is the number of players. If three persons
are executing the program, player 1 would for instance have 3 numbers, that
is, the amount of points for the selected 1th author, some points for the 2th
author and 0 points for the 3th author (which would be the player itself).
When secret sharing these three numbers among all players, each numbers
will result in three shares, meaning quite a lot of shares are created.

All the shares are handled by VIFF and the only output from the appli-
cation will be the ranking of the authors.

44

7.1. Design and Implementation

Figure 7.5: Player 1, 2 and 3 are sharing x, y and z [6].

7.1.3 Libraries

One of the main goals with this program was to create an application with
an easy graphical interface. To achieve this, a GUI toolkit for Python was
needed. Several toolkits, like PyQt, Tkinter and wxPython were considered,
but PyGTK1 was chosen due to its integration with Twisted [2]. This is im-
portant in order to run both the network and graphical event loops.

In order to sort arrays secret shared, an implementation of a secure sorting
algorithm made by the VIFF Development Team is used. The algorithm
used is bitonic sort [9] and was chosen in order to maximize the amount of
work (comparisons) done in parallel.

7.1.4 Code

This section will explain the essential parts of the author program, focusing
on how the players get their points and which numbers that are shared. The
complete source code is included in Appendix C.

Assume four players are running the author program. When for instance
player 1 clicks the submit button, an array of this player’s ranking could be
as indicated below, meaning player 2 is ranked as 1th author, player 4 as
2th author and player 3 as 3th author.

self.list[0] = 2
self.list[1] = 4
self.list[2] = 3

1GTK+ for Python http://www.pygtk.org

45

http://www.pygtk.org

Chapter 7. Application 1: Rank the Authors

Since player 1 cannot vote for itself, it is left out of the array. The code in
Listing 7.1 then transforms the ranking array into an array containing points.

s e l f . po in t s = range (s e l f . number_of_players)
pts = s e l f . number_of_choices
for i in range (0 , s e l f . number_of_choices) :

x = s e l f . l i s t [i]
s e l f . po in t s [x−1] = pts
pts −= 1

Give y o u r s e l f 0 p o i n t s
s e l f . po in t s [s e l f . runtime . id −1] = 0

Listing 7.1: Distribution of points for the votes given in the author
application.

First author results in n− 1 points, second author in n− 2 points, etc. As
indicated in the new array below, player 1 receives 0 points, player 2 receives
3 points, player 3 receives 1 point and player 4 receives 2 points.

self.points[0] = 0
self.points[1] = 3
self.points[2] = 1
self.points[3] = 2

It is these n variables which are player 1’s inputs to the shamir share func-
tion in the VIFF code. In the example with four players, a total of 16 (n ·n)
variables/shares are created.

var_num = 0
for i in range (0 , s e l f . number_of_players) :

p laye r = 1
for j in range (0 , s e l f . number_of_players) :

i f s e l f . runtime . id == player :
exec ’ a%s = s e l f . runtime . shamir_share ([p laye r] , Zp ,

s e l f . po in t s [i]) ’ % var_num in g l oba l s () , l o c a l s ()
else :

exec ’ a%s = s e l f . runtime . shamir_share ([p laye r] , Zp) ’
% var_num in g l oba l s () , l o c a l s ()

var_num += 1
playe r += 1

Listing 7.2: The votes/points are given as inputs to the shamir share
function.

The most important line in Listing 7.2 is self.runtime.shamir_share([player],
Zp, self.points[i]). A variable containing some points is secret shared into
four different representations of this number and then each player gets one
share. In order to calculate the player with the most points, each player

46

7.2. Benchmarks

executes the code in Listing 7.3.

Ca l c u l a t e the sum of p o i n t s f o r each p l ay e r
array = []
var_num = 0
for i in range (0 , s e l f . number_of_players) :

exec ’ sum%s = 0 ’ % i in g l oba l s () , l o c a l s ()
for j in range (0 , s e l f . number_of_players) :

exec ’ sum%s += a%s ’ % (i , var_num) in g l oba l s () , l o c a l s
()

var_num += 1
exec ’ array . append (sum%s) ’ % i in g l oba l s () , l o c a l s ()

Listing 7.3: The points, represented as shares, are summed up.

Notice that these sums, in accordance with the description of VIFF in Chap-
ter 4, do not contain any understandable numbers yet. Not until shares from
the other players are received, and the VIFF framework starts computing
the sums, can one make any sense of the information. The array of sums
is also sorted secret shared and the only output which is revealed is the
ranking of the authors.

7.2 Benchmarks
To evaluate the performance and scalability of the author application, a
number of benchmark tests were run over a fast local area network (ping
times < 1 ms) using full SSL encryption. The computers had Intel Pentium
CPUs with clock speeds ranging from 1.5 GHz to 2.60 GHz, about 1 GB of
RAM and were running Windows XP Professional, Python 2.5.4 and VIFF
0.7.1. This would be a typical setup if all authors on a scientific paper were
from the same institution.

The benchmarks were run with n = 3, 4, ..., 8 while the threshold was kept
on t = 1. This was due to the included sorting algorithm not working prop-
erly with other threshold values. Although this “bug” would be a security
problem, it is not important for the benchmark tests. 8 participants were
considered appropriate, as more authors on a scientific paper is rare. An-
other problem for me was to get hold of this amount of computers.

Table 7.2 shows the average computation time of the author application.
The computation consists of adding up a sum of points for each player be-
fore finally sorting an array list with n elements. The sorting function has a
total number of comparisons that is O(nlog2n), which is what causes most
of the time consumed.

From the column Time/comp we see that the time per comparison drops

47

Chapter 7. Application 1: Rank the Authors

rapidly at first, and is still decreasing for n = 8. This corresponds to the
performance results given in Section 4.8 where the time per comparison ap-
proached 800 ms for n > 10. Notice that for n = 4, the time per comparison
is notably faster than for n = 5. The reason for this is not clear, and would
require a more thorough analysis of the comparison protocol.

(n, t) Average time (s) Comparisons Time/comp (s)
(3,1) 7,03 3 2,34
(4,1) 7,91 6 1,32
(5,1) 13,27 9 1,47
(6,1) 16,58 13 1,28
(7,1) 20,38 18 1,13
(8,1) 24,52 24 1,02

Table 7.2: Benchmark results for the author application.

In Figure 7.6 the actual number of comparisons, the upper bound (big O)
growth rate of the number of comparisons, and the average time for various
values of n are plotted. We see that the the Time would probably cross the
Comparison line if higher values of n were used.

Figure 7.6: Actual number of comparisons, the upper bound growth rate,
and the average computation time used are plotted for various values of n.

To conclude, it is obvious that comparison of shared values is a time-
consuming task. For this specific author application it would probably not
cause any problems. However, using such a scheme for bigger applications
would be impossible. This does not scale very well!

48

7.3. Possible Improvements

7.3 Possible Improvements
The author application works for its intended purpose and could easily have
been used to decide the order of authors in a scientific paper. Still there are
a few aspects which could be improved.

7.3.1 Calculation of Points

With the current point rating system, where 1th author results in n − 1
points, 2th author in n − 2 points etc., people could end up with the same
amount of points. The application does not handle this incident specifically,
but the bitonic sort algorithm implemented will provide a default solution.
If two persons receive the same amount of points, the person nearest the
bottom of the author_config.txt file will be ranked first.

Since this is mostly a proof-of-concept application, no further solutions have
been implemented, but one could imagine the following solutions:

• Decide one player who’s vote will count extra if two players receive the
same amount of points.

• Introduce a second round of voting between those players with equal
amount of points.

7.3.2 Complicated Application Launch

Although the graphical interface makes it easy to understand how to vote,
the process of installing Python and VIFF, distributing configuration files
and finally execute the program through the command line is overly com-
plicated. In addition, all participants have to execute the application and
give their vote in about the same space of time, as there are no concept for
storing the votes.

One could imagine setting up the author program as a web application,
where one player puts up the vote. Then the participating players can visit
a specific URL and vote through their web browser, without the need to
install a lot of other programs. Such a scheme was designed through the
Secure Web Voting application (see Chapter 8), but it is more a general poll
than a tool for paper authors.

49

Chapter 7. Application 1: Rank the Authors

50

Chapter 8

Application 2: Secure Web
Voting

The author application in Chapter 7 worked as intended, but required a lot
of programs and packages to be installed in order to run. To improve these
complications a new voting scheme was developed, focusing on making it
easiest possible to deliver a vote. Instead of each player running VIFF and
executing the multiparty computation protocol, these tasks are delegated to
three computation servers. The only required step for each participant is to
visit a unique URL from a normal web browser.

8.1 Design and Implementation

Figure 8.1 illustrates the main idea behind the web application. The partic-
ipants connect to the web server and deliver their votes via a Java applet.
The web server will receive the votes and save them to a database. When
all the participants have answered, a message will initiate the secure com-
putation among the three servers P1, P2 and P3.

Figure 8.1: The architecture of the web application.

51

Chapter 8. Application 2: Secure Web Voting

Note that the three computation servers each have a public/private key pair.
When a participant delivers a vote, it will be secret shared and encrypted
with the public key of the computation servers. At last the entire set of
ciphertexts is stored in a database.

The vote of the last participant will trigger a message to all the compu-
tation servers. They will connect to the database, fetch their respective
entries, decrypt the ciphertexts with its private key, and finally compute the
result from the shares.

8.1.1 Screen Shots

Next follows some screen shots of the sequence of events needed to carry out
a vote. Note that the system should be available and possible to check out at
any time. The vote setup page at http://folk.ntnu.no/havardv/smpc/
is guaranteed to work as long as NTNU’s web systems are up and running.
The Java applet, where the actual voting takes place, is located at the same
place.

The uncertainty lies within the computation servers, since they need to
be online and running at the workplace at NTNU. I cannot guarantee for
these computers to be available in the future.

Setting up the Vote

The first step is to create the vote itself. By visiting the above URL, a
standard web page containing different form elements will appear. As seen
in Figure 8.2 the first step include options like:

• Title

• Description

• Your name (the author of the specific vote)

• Your e-mail

• Number of participants, possibly up to 10

• Voting options, possibly up to 9 choices

52

http://folk.ntnu.no/havardv/smpc/

8.1. Design and Implementation

Figure 8.2: Step 1 for creating a poll on the web page.

53

Chapter 8. Application 2: Secure Web Voting

The next screen (step 2) asks for the e-mail addresses to the number of
persons participating in the vote. If three participants were selected, the
page would look like the one in Figure 8.3. After pressing the submit button,
each participant will receive an e-mail like the one listed in Figure 8.4.

Figure 8.3: Step 2 for creating a poll on the web page.

Figure 8.4: An example e-mail received by a person participating in a vote.

The author of the vote will in addition receive a confirmation e-mail re-
porting that the vote was created and that e-mails have been sent to all
participants.

54

8.1. Design and Implementation

Deliver a Vote

As mentioned each participant will receive an e-mail with a unique link.
Several “random” sequences of letters and numbers are created to identify
the poll and each of the participants. The Java applet where the actual
voting takes place is illustrated in Figure 8.5.

Figure 8.5: Java applet for delivering of a vote.

When pressing the submit button in the Java applet, the chosen value will
be secret shared and encrypted. These values are then sent via HTTP POST
to a PHP script on the web server which stores the representations of the
vote in a database.

Calculate the Result

When all participants have voted, an XML-RPC message is automatically
sent to all of the three computation servers initiating the computation. The
result is then e-mailed to all participants, while nothing else is revealed.
Figure 8.6 shows how one of the servers acts during the session. Also note

55

Chapter 8. Application 2: Secure Web Voting

that it is immediately ready for new XML-RPC messages and computation
of votes from different polls.

Figure 8.6: The console of one computation server after it has calculated
the result of a vote.

8.2 Architecture

As the voting system consists of several entities, the different source files
and database tables are on various locations. Note that Figure 8.7 is not a
correct UML diagram, but it illustrates where the different classes and files
belong.

Figure 8.7: Classes and files of the web application.

8.2.1 Web Server

The web server is where all users direct their communication in order to set
up or deliver a vote. Although the files that constitutes the web server is
placed in the same location, they can be divided into three different entities.

56

8.2. Architecture

The PHP scripts are run by the server, while the Java applet executes locally
on the clients’ machines. The MySQL database is located on some other
server at NTNU.

PHP Script

The web page where the voting takes place is built up with HTML and PHP.
See Table 8.1 for a brief explanation.

File Description
style.css Style sheet for controlling the style and layout of mul-

tiple web pages at once.
config.php The config file contains the username and password to

the MySQL database. Note that this file is only ac-
cessible by the web server. In addition there are func-
tions for connecting and disconnecting the database
together with a function for creating “random” se-
quences of letters and numbers.

index.php The index file holds all the forms for creating a poll.
When all information is gathered, the values are dis-
patched to process.php.

process.php The process file connects to the database and stores
the poll together with the participating users. E-mails
are also sent out.

vote.php The vote file checks the incoming variables. If a
valid user asks for an existing poll, the Java applet
is showed. The steps performed by the Java applet
are further described in the next section.

vote_functions.php This file contains a lot of functions regarding the vot-
ing, show_poll() and store_result() to mention a
few. These functions are accessible to the other PHP
scripts.

vote_post.php The vote_post file receives the encrypted shares from
the Java applet through an HTTP POST request. It
verifies that the answer is valid and stores the result in
the database. If all participants have voted, the three
files xmlrpc-(1,2,3).php will be executed.

xmlrpc-(1,2,3).php These three files are identical except for the $host
and $port variables. Each file will send an XML-
RPC request to the corresponding computation server
initiating the computation of the poll.

Table 8.1: List of PHP files in the secure web voting application.

57

Chapter 8. Application 2: Secure Web Voting

Java Applet

The Java applet takes in parameters like title, description and the options
one can vote for. A GUI is then built and showed to the user. When the
user submits his vote, the selected option is secret shared. The calculation
of the shares is shown in Listing 8.1. The variable id is just the index of one
of the radio buttons, for instance would the first button yield the number 0.
The variable random is a big integer between 0 and 2160 − 1.

public void makeShares (int id) {

. . .

share1 = id + random ∗ 1 (mod p) ;
share2 = id + random ∗ 2 (mod p) ;
share3 = id + random ∗ 3 (mod p) ;

}

Listing 8.1: The essential part of the makesShares function in the Java
applet.

Next the three shares are encrypted using RSA and one of the computation
servers’ public keys. Share 1 will be encrypted using computation server 1’s
public key, share 2 with computation server 2’s public key and finally share
3 with computation server 3’s public key. The encryption shown in Listing
8.2 is done with 1024 bits RSA keys.

public void encryptShares (B ig Intege r share1 , B ig Intege r share2 ,
B ig Intege r share3) {
Big Intege r n1 = new Big Intege r (" 9681521607 . . . 9 3 ") ;
B ig Intege r n2 = new Big Intege r (" 9186864592 . . . 2 9 ") ;
B ig Intege r n3 = new Big Intege r (" 1159172490 . . . 0 9 ") ;
B ig Intege r e = new Big Intege r (" 65537 ") ; // 2^16+1

Big Intege r c1 = share1 .modPow(e , n1) ;
B ig Intege r c2 = share2 .modPow(e , n2) ;
B ig Intege r c3 = share3 .modPow(e , n3) ;

}

Listing 8.2: The RSA encryption of shares in the Java applet. The public
keys have been abbreviated.

When the encryption is finished, the values are transmitted back to the PHP
script which stores the three values in the database. These values make no
sense even if they had been captured on the way to the web server.

The reason why this operation (i.e. secret sharing and encryption) is per-
formed through a Java applet and not just in the original PHP script is

58

8.2. Architecture

based on security. A PHP script is executed server-side and a vote would
thus be transferred in clear text over the Internet from the client to the web
server before it is secret shared. By using a Java applet, this problem is
bypassed, since it is run locally by the voter. The vote is first secret shared,
and then each share is encrypted using RSA, before transmitting the content.

Another question is, assuming a Java applet is used, why not store the
encrypted shares directly from the applet through Java’s JDBC1 instead
of returning the values to the PHP script? If the Java applet itself were
to connect to the database and store the results, it would have needed the
database user and password. Preferably user id and password should remain
safely on the server, not in a client-side application. This is the reason why
the Java applet does not use JDBC, but instead transfers the encrypted
shares back to the PHP script, and it is the PHP server that connects to
the MySQL database and stores the values.

Database

Three tables are set up in a database to keep track of the polls, users and
encrypted shares. Figure 8.8 shows the columns of each table. PK is short
for primary key while the I is an abbreviation for index. A database in-
dex improves the speed of data selection. Especially when the database
query contains a WHERE clause an index on that column would lessen the
workload the server must endure to perform the search.

Figure 8.8: The three database tables where information about polls, users
and results are stored.

To illustrate what is actually stored in the database, a snapshot of the table
result is given in Figure 8.9. The values in the column code are identical

1JDBC is an API for the Java programming language that defines how a client may
access a database.

59

Chapter 8. Application 2: Secure Web Voting

meaning all rows belong to the same poll. The three shares is a represen-
tation of a vote, but needs to be decrypted and reconstructed in order to
mean anything.

Figure 8.9: The MySQL table result, containing the encrypted shares, as
shown in phpMyAdmin.

8.2.2 Computation Servers

Each of the three computation servers holds a file server-i.py, where i is
the number 1, 2 or 3. This file contains the VIFF code and also provides
the functionality of an XML-RPC server.

When a message is received from the web server reporting that all users
in a vote have answered, each computation server connects to the database
and fetches the belonging shares. Computation server 1 will fetch all values
from the share1 column, computation server 2 will fetch all values from the
share2 column and finally computation server 3 from the share3 column.
Each of the servers has a unique secret key and thus is able to decrypt its
shares. By executing the VIFF protocol the three servers calculate the result
of the poll and they also notifies all participants by e-mail.

8.3 Libraries

In addition to VIFF there are several libraries and modules helping to build
all functionality of the system. This section will outline two of the most
important, namely SecureRandom and XML-RPC.

8.3.1 SecureRandom

SecureRandom is a Java class which provides a cryptographically strong
pseudo-random number generator (PRNG) [11]. When the Java applet cre-
ates the shares, a big random integer is needed, and SecureRandom helps
in this process. Listing 8.3 demonstrates how the class is used to create a
random number between 0 and 2160 − 1. This number is again used in the

60

8.3. Libraries

creation of the shares.

Big Intege r random = Big Intege r .ZERO;

SecureRandom secRandom ;
try {

secRandom = SecureRandom . ge t In s tance ("SHA1PRNG") ;
random = new Big Intege r (160 , secRandom) ; // 160 b i t s

}
catch (NoSuchAlgorithmException e) {

e . pr intStackTrace () ;
}

Listing 8.3: Java code demonstrating how to create random integers.

8.3.2 XML-RPC

XML-RPC is a specification and a set of implementations that allow software
running on dissimilar operating systems or different environments to make
procedure calls over the Internet [17]. It uses XML to encode its calls and
HTTP as a transport mechanism. XML-RPC has evolved into what is now
called SOAP, but many people prefer XML-RPC because of its simplicity
and ease of use. The concept is illustrated in Figure 8.10.

Figure 8.10: XML-RPC is a remote procedure call protocol which uses XML
to encode its calls and HTTP as a transport mechanism [10].

In the voting application, XML-RPC is used for the communication between
the PHP script at the web server and the Python/VIFF script at the com-
putation servers. When all participants of a vote have given their answers,
an XML-RPC message will be transmitted. Listing 8.4 shows the request
message sent from the web server to the computations servers. It contains

61

Chapter 8. Application 2: Secure Web Voting

only a single method initiate_computation with a code variable.

POST / HTTP/1.0
User−Agent: XML−RPC fo r PHP 2 . 2 . 2
Host : 129 . 241 . 209 . 179 :8001
Accept−Encoding: gzip , d e f l a t e
Accept−Charse t : UTF−8,ISO−8859−1,US−ASCII
Content−Type: t ex t /xml
Content−Length: 170

<?xml version=" 1 .0 " ?>
<methodCall>

<methodName>in i t i a te_computat ion</methodName>
<params>

<param>
<value><s t r i n g>XbIRNvMd</ s t r i n g></value>

</param>
</params>

</methodCall>

Listing 8.4: The XML-RPC request message sent from the web server to
computation server 1.

8.4 Security Analysis
Section 5.5 listed several security requirements that a secure and complete
cryptographic voting protocol should satisfy. An e-voting system for use
in a national election obviously has stronger requirements that this web
application. Nevertheless the security analysis is performed with respect to
these eight requirements.

8.4.1 Voter Privacy

The authentication is made very easy in the web voting system. Each partic-
ipant receives a unique identifier consisting of “random” letters and numbers
through their e-mail. The identifier and the e-mail are though not linked to-
gether in the database, thus nothing can be discovered about a participant.
Information about IP address etc. are not stored.

The actual vote will consist of the tuple (code, share1, share2, share3)
and even if someone were to break into the database, they would not find
out which of the participants delivered the vote.

8.4.2 Eligibility

The requirement of non-eligible voters not being able to vote is satisfied
through the same “random sequences”. One could, using brute force, try to

62

8.4. Security Analysis

guess a poll_code and a user_code, but this would be a time-consuming task.
The random sequence consists of 8 characters, each which have 62 possible
values. As a result one would have to try 862 = 9, 807971461541689e + 55
values (187 bits), or on average the half of this, to find a specific poll. In
addition one would also have to guess the user_code which is of the same
length.

A possible improvement would be to let each user generate a pair of pri-
vate/public keys and this way be verified against a registrar or similar. Such
a setup would be a lot more complex and not very practical for a simple and
easy web voting such as this one.

8.4.3 Uniqueness

Uniqueness is about making sure only one vote is counted for each eligible
voter. As already mentioned, each participant receives an unique identifier
which is stored in the database. When this user delivers its vote, the table
users in the database will set the belonging column has_voted to 1. If the
same user visits the poll once more, it will be notified that “It is not allowed
to vote more than once!”

8.4.4 Fairness

To ensure all candidates/choices get a fair decision, no partial tally must be
revealed before the end of the voting. This is the case in the web applica-
tion since nothing is calculated before the last participant has voted. Not
until then will a message be sent to the computation servers which start the
process of calculating the result.

As mentioned each vote is secret shared into three shares. These are again
encrypted with the public key of one of the computation servers. As a
consequence, no one except the computation server with the corresponding
private key is able to decrypt the share.

Security of the Shares

The shares in the Java applet are made with the following equation:

share = s+ random ∗ x(modp)

The variable x lies in the range [1,3], s in the range [0,9] (number of choic-
es/candidates) and random in the range [0,p) where p is 2160. The modulus
operation provides perfect security in the sense that the share can be any
element from 0 to p and thus this share alone does not supply any additional
information about the secret s. A brute force attack would now be in the
order of 2160.

63

Chapter 8. Application 2: Secure Web Voting

RSA Encryption

In the web voting application all shares are stored in the same database.
If someone had managed to break into the database, all shares would be
revealed and the system proven useless. That is why the shares are en-
crypted with RSA. As of today, the largest known number factored by a
general-purpose factoring algorithm is 663 bits long [8]. The current recom-
mendation is that n should be at least 1024-2048 bits long. The Java applet
is using 1024 bits which RSA Security claims that are equivalent in strength
to 80-bit symmetric keys.

8.4.5 Uncoercibility

Participating voters are able to vote freely, without anyone able to coerce
them into casting a vote in a particular way.

In addition, no authority should be able to extract the value of a vote.
Assume that someone where to get hold of the private key of one computa-
tion server. It would then be possible to decrypt one share, but that would
not be enough to reconstruct the vote. In fact, knowing one share is not
helpful at all.

Also remember from Section 8.2.1 that the Java applet is executed locally.
The creation of shares and the subsequent encryption is only “visible” for
that user. When the values are sent to the web server, they have no meaning
except for the set of cooperative computation servers, thus confidentiality is
achieved.

8.4.6 Receipt-freeness

The application has no concept of confirmation or receipt of the votes other
than a string reporting “Answer stored in database... you will receive an
e-mail when the results are ready!” Leaking of information regarding the
vote because of receipts is thus non-existent, thus discouraging vote-buying
or coercing.

8.4.7 Accuracy

Assuming the simple authentication scheme based on “random” letters and
numbers as described in Section 8.4.2 about eligibility holds, the final out-
put of the vote should be correctly computed.

Countermeasures against attacks like SQL-injection etc. have been imple-
mented, but other security precautions regarding the MySQL database are
not employed. If an adversary had gained access to the database, he could

64

8.5. Possible Improvements

have deleted or modified the encrypted shares. He would however, not man-
age to derive the content of the votes.

The multiparty computation itself is secure against passive adversaries for
up to 1/2 of the computation servers.

8.4.8 Individual Vote Check

It would be desirable if a voter could be able to check that his encrypted vote
was counted and tabulated correctly in the final tally. The problem is that
the combination of receipt-freeness and individual verifiability requirements
obviously conflict with each other. One would need some kind of receipt in
order to achieve verifiability, but then the same receipt could be used for
vote buying or selling. As a consequence this voting application has given
preference to receipt-freeness and thus no functionality for verifying votes
later in the process are implemented.

8.5 Possible Improvements
The Secure Web Voting application was successfully implemented and illus-
trates a more practical way of using multiparty computation. However, it is
still just a proof-of-concept application and several aspects could have been
improved. Below are some of the security parameters that could have been
adjusted, further discussion is given in Section 9.

• The “random” sequence of letters and numbers are of size 8. They
could easily be increased from just 8 characters to a bigger number if
desired.

• The size of the RSA keys used for encryption in the Java applet is 1024
bits. According to security recommendations, it should in practice be
increased to at least 2048 bits, as 1024 bits RSA may become breakable
in the near future.

• Investigate the possibility of fulfilling both receipt-freeness and verifi-
ability.

• In the current application it is only computation server 1 that sends
out e-mails of the voting results. Functionality that distributes and
synchronizes this responsibility between the servers should be done.
Such an important task should not be performed by a single entity
alone.

65

Chapter 8. Application 2: Secure Web Voting

66

Chapter 9

Discussion

This chapter will evaluate the Secure Web Voting application and the re-
quired steps in order to build an application in VIFF. Section 9.3 discusses
the potential of secure multiparty computations, while some ideas for further
work are given in Section 9.4.

9.1 Secure Web Voting Application

While the Rank the Authors application was overly difficult to execute, the
Secure Web Voting application was successfully implemented to solve this
problem. Instead of each participant executing the secure multiparty com-
putation, this task was delegated to three computation servers. The only
required step for a participant is to visit a web page (the poll) with a normal
web browser.

The application illustrates how MPC can be used to simulate a trusted
third party, but some issues would have to be solved in order to trust the
application. All computation servers should not be run by one authority and
this issue is addressed in Section 9.1.1 below. Another scheme for storing
the shares is described in Section 9.1.2.

9.1.1 Location of the Computation Servers

In the proof-of-concept application, all computation servers are run locally
on one machine. This eases the development and testing, but in a real-
world scenario, these computers should be independent and run by different
authorities. One could for instance be run at NTNU, one with the VIFF
development guys in Denmark and one at a university in the USA. That
way no party would have access to all the information and nobody could be
able to cheat.

67

Chapter 9. Discussion

9.1.2 Storing of Shares

In the current application all encrypted shares are stored in the same database.
Another scheme could be to let each computation server hold its own database.
The share for computation server 1 would thus only be stored in the respec-
tive database and impossible for the other computation servers to access.

One could still encrypt the shares, but it would not be absolutely neces-
sary, if the transfer is assumed to take place through a secure channel. The
main reason why the shares are encrypted in the current application is to
avoid all three shares from being stored in cleartext at the same location.
Then the choice is to encrypt the shares or store them at separate locations.
The latter is illustrated in Figure 9.1.

Figure 9.1: Web application scheme which stores the shares at different
locations, that is, at P1, P2 and P3.

Note that the three shares should never be at the same location, other than
at the client-side. In the figure above it seems like the web server will get all
the shares, but in an implementation it should be a Java applet (or another
client-side application) that transmits the shares to the computation servers
directly.

9.2 VIFF

The author’s of VIFF claim that the framework allows you to specify secure
multiparty computations in a clean and easy way. However, it is a relatively
new framework and except for the developers, very few people have built
applications using VIFF so far. As a consequence, there exists little objective
review of the framework, in contrast to existing and widespread frameworks.
This section describes which steps and amount of background theory that
are needed to build applications using VIFF.

68

9.2. VIFF

9.2.1 Necessary Steps

In order to develop applications using VIFF one needs to install VIFF and
several belonging packages. The procedure for MS Windows is described in
detail in Appendix B, refer to the installation guide [12] to install on Mac
OS X and GNU/Linux.

On Windows at least 6 different components1 need to be installed. This
is overly complicated, especially if the goal is to make VIFF a popular tool.
A single file which could install all the dependencies needed by VIFF auto-
matically would have been great. This is an issue which the developers are
aware of, but yet a solution is missing, and for the time being the installation
process is not very user-friendly to newcomers.

9.2.2 Development

Once VIFF is installed, development is fairly easy. By inspecting one of the
enclosed example applications (for instance the VIFF implementation of the
millionaire problem), one understands how to structure the code elements.
Creating similar and simple applications is thus trivial (at least if you know
the Python programming language from before).

The problem occurs when deviating from the example applications, be-
cause as a new VIFF developer you probably have difficulties understand-
ing what functions like runtime.shamir_share(), runtime.open() and
gather_shares() really is. There is a documentation section on VIFF’s
web page, but I would love to see a more comprehensive and easy explained
documentation guide, at least to invite other than MPC experts to try it
out.

9.2.3 Required Background Theory

As mentioned, one could easily create a simple VIFF application that does
some computation on a number of input values. Another question is how
much one understands of the program. If someone is eager enough to de-
velop an application in VIFF, they will probably want to understand why
it is secure and how the calculations are done.

As VIFF uses multiparty computations and Shamir secret sharing, these
two main theory pillars are essential to understand the framework. As seen
from Chapter 2 and Chapter 3 the background theory is pretty extensive,
especially when diving into the mathematics of addition and multiplication.

1Python, Twisted, GMPY, OpenSSL Win32 Installer, PyOpenSSL and VIFF.

69

Chapter 9. Discussion

Also in VIFF there are aspects which are not self-explanatory. An essential
building block is for instance the event-driven network engine Twisted and
its use of deferred objects. In order to create more complex applications all
this needs to be understood.

9.2.4 Future Potential

In spite of the somewhat troublesome installation process, VIFF is very
promising. As pointed out in the introduction in Section 1.3, multiparty
computations are said to have great potential, but very few applications
have emerged except for in scientific papers. This could change due to
frameworks like VIFF. Especially for people with some knowledge of mul-
tiparty computations, this framework makes it trivial and fast to develop
applications.

The first large-scale and practical application of multiparty computation,
which took place in January 2008, was run by the SIMAP project [BCD+08].
The double auction system for trading sugar beets among Danish farmers
was a success and is still in use. As VIFF grew out of the same project and
have implemented the same functionality (and more), there is no reason why
VIFF will be less successful. VIFF is still in its starting line, and several
efficiency issues are constantly under development, but it has the possibility
of becoming very good. Of course, it depends on the developers continu-
ing their good work. Also, multiparty computations are not a well-known
concept to the general public, and thus there will be a challenge to inform
about the potential.

9.3 The Potential of Multiparty Computations

Secure multiparty computations have many potential applications, for in-
stance secure auctions, privacy-preserving benchmarking, e-voting and privacy-
preserving data mining [CK08]. However, the research has been mainly
focused towards cryptographic methods for building secure multiparty com-
putation protocols and formally proving the security properties of those
protocols. As it turns out, few of these protocols have emerged as practical
applications. Two of the main problems can be identified as:

1. Poor performance, functionality and scalability.

2. Lack of understanding about the potential of MPC among the general
public.

If a trusted third party (TTP) is available, it can be very simple and efficient:
the TTP privately collects the secret inputs, performs the calculation and

70

9.4. Further Work

delivers the output to each party. Such a protocol will fulfill privacy and
correctness requirements if followed strictly. In real-life a provider offering
this kind of guarantees might not be available or is too expensive. In such
cases, multiparty computation could replace the TTP. There is still much
work to be done regarding the aspect of practical implementations, but there
is no doubt that multiparty computations have potential to be used in a lot
more applications.

9.4 Further Work
This section lists some ideas for future work.

9.4.1 Other Applications

In the first phase of this master’s thesis several possible applications were
identified. I chose to focus on making a practical application available to the
public via the World Wide Web. Some of the other ideas are listed below
and could perhaps be interesting to implement in the future:

• Distributed RSA (Atle Mauland implemented this).

• Shortest path problems (Dijkstra).

• Privacy-preserving database queries.

• Calculation of bad mortgage in Norwegian banks or similar problems.

• Position determination without GPS, see Tord Ingolf Reistad’s paper
Multi-party Secure Position Determination [Rei06]. This was actually
implemented as a test program and the code is included in the attached
ZIP file (see Appendix E).

• See the article by CACE [Pin08] for more application ideas.

9.4.2 Improve and Deploy a Web Voting Application

The Secure Web Voting application was successfully implemented, but since
it was mainly a proof-of-concept application, some issues were identified in
Section 8.5. These issues could be fixed or one could make a completely
new voting application, based on the same ideas. However, the application
should be deployed and ran by three different and independent computa-
tions servers. It could give multiparty computations more focus and good
publicity.

Imagine the creation of a web site similar to Doodle [1], just that the new
service would provide better privacy through the use of multiparty compu-
tations.

71

Chapter 9. Discussion

9.4.3 Large-scale E-voting

As Norway are planning the introduction of e-voting in 2011, it would be
interesting to evaluate how a voting scheme in such a large scale could be
done using MPC and VIFF. One challenge would of course be that all the
security requirements listed in Section 5.5 and most likely some additional
nation-specific requirements would have to be provided.

Another issue which is not addressed in this thesis is how such a voting
scheme would perform in a bigger scale. The current database, VIFF pro-
gram and the connection between them should handle 10,000 votes, maybe
1,000,000. Also, the current application does not perform any complex arith-
metic, something that should be implemented and further investigated.

72

Chapter 10

Conclusion

In this thesis the Virtual Ideal Functionality Framework (VIFF) has been
used for implementing practical applications based on multiparty computa-
tion (MPC). VIFF has proven to be a feasible and easy framework, thus
accelerating the change from just theoretical protocols into hopefully a lot
more implemented programs.

The work started with a theoretical study of secret sharing and multiparty
computation with emphasize on giving illustrative figures and clarifying ex-
amples. VIFF, its functionality and mode of operation were also thoroughly
investigated. In addition, an overview of electronic voting, challenges and
typical security requirements have been briefly examined.

The background study led to the development of the first application, a
small GUI program in which participants on some scientific paper can vote
for their choice of 1th, 2th, 3th, etc. author. Although successfully imple-
mented, several issues were identified. In order to execute the application,
several additional components would have to be installed. This is overly
complicated for a program that originally should solve an easy problem. A
second problem was that it did not scale very well. Also, all participating
voters would have to run the application at the same time, a requisition that
is very impractical.

After evaluating the author application, a different scheme for doing MPC
voting was designed. It solved all the problems present in the first appli-
cation, and also took a step further into becoming a realistic way of using
MPC in practical applications. A Secure Web Voting application was imple-
mented, but instead of each player running VIFF and executing the MPC
protocol, these tasks were now assigned to three computation servers. For
a participating voter’s point of view, the only requirement is to visit a web
page (URL) from a normal web browser. This is also a scheme which could

73

Chapter 10. Conclusion

be used for bigger applications, like nation-wide elections, but this would
probably require even stronger security requirements. If used in this con-
text, a more thoroughly analysis of scalability would have to be performed,
but this has been considered out of the scope of this thesis. Looking at the
double auction application developed through the SIMAP project, in which
over 1000 Danish farmers each submitted 4000 bids, an indication of the
potential is given [BCD+08].

As described above, SIMAP, which is the predecessor of VIFF, obviously
worked and had its uses. VIFF has implemented the same functionality
and more, thus the potential for becoming a great framework is certainly
present. For the development of this thesis’ applications VIFF proved as an
easy and intuitive tool. However, for the framework to stay alive, continued
improvements and development are needed.

The classical theory of MPC shows great potential, but efficiency has been
a problematic issue. Addition of shares is very fast, multiplications a bit
slower. Comparisons are still very inefficient though, as experienced in the
Rank the Authors application. An estimate of 800 ms per comparison makes
this impractical for applications that cannot afford some delay. As a con-
sequence, one must evaluate what a specific application needs of arithmetic
operations, in order to discover how feasible a successful implementation is.

To conclude, I hope this thesis’ work can stimulate other people into cre-
ating more practical applications, and hopefully put some of them on the
web. The presence of a popular web application based on MPC, accessible
for the general public, would certainly demonstrate the power of MPC to a
bigger audience.

74

Bibliography

[BCD+08] Peter Bogetoft, Dan Lund Christensen, Ivan Damgard, Mar-
tin Geisler, Thomas Jakobsen, Mikkel Krøigaard, Janus Dam
Nielsen, Jesper Buus Nielsen, Kurt Nielsen, Jakob Pagter,
Michael Schwartzbach, and Tomas Toft. Multiparty compu-
tation goes live. Cryptology ePrint Archive, Report 2008/068,
2008.

[BDNP08] Assaf Ben-David, Noam Nisan, and Benny Pinkas. Fairplaymp:
a system for secure multi-party computation. In CCS ’08: Pro-
ceedings of the 15th ACM conference on Computer and commu-
nications security, pages 257–266, New York, NY, USA, 2008.
ACM.

[Bla79] G.R. Blakley. Safeguarding cryptographic keys. In Proceedings
of National Computer Conference, 48:313–317, 1979.

[BLW08] Dan Bogdanov, Sven Laur, and Jan Willemson. Sharemind: a
framework for fast privacy-preserving computations. Cryptology
ePrint Archive, Report 2008/289, 2008.

[BOGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Com-
pleteness theorems for non-cryptographic fault-tolerant dis-
tributed computation. In STOC ’88: Proceedings of the twen-
tieth annual ACM symposium on Theory of computing, pages
1–10, New York, NY, USA, 1988. ACM.

[Can01] R. Canetti. Universally composable security: A new paradigm
for cryptographic protocols. In FOCS ’01: Proceedings of the
42nd IEEE symposium on Foundations of Computer Science,
page 136, Washington, DC, USA, 2001. IEEE Computer Soci-
ety.

[CCD88] David Chaum, Claude Crépeau, and Ivan Damgard. Multiparty
unconditionally secure protocols. In STOC ’88: Proceedings of
the twentieth annual ACM symposium on Theory of computing,
pages 11–19, New York, NY, USA, 1988. ACM.

75

Bibliography

[CDI05] Ronald Cramer, Ivan Damgård, and Yuval Ishai. Share Conver-
sion, Pseudorandom Secret-Sharing and Applications to Secure
Computation, pages 342–362. SpringerLink, 2005.

[CDN08] Ronald Cramer, Ivan Damgård, and Jesper Buus Nielsen. Mul-
tiparty computaion, an introduction. Technical report, Com-
puter science department of Aarhus University, May 25, 2008.
http://www.daimi.au.dk/~ivan/mpc.pdf.

[Cet08] O. Cetinkaya. Analysis of security requirements for crypto-
graphic voting protocols (extended abstract). pages 1451–1456,
March 2008.

[Cet09] O. Cetinkaya. Cryptography in electronic voting systems. In
International Conference on eGovernment and eGovernance,
pages 297–310, Ankara, Turkey, March 2009.

[CHE87] David E. Penney C. H. Edwards. Elementary Linear Algebra.
Prentice Hall, 1987.

[CK08] O. Catrina and F. Kerschbaum. Fostering the uptake of secure
multiparty computation in e-commerce. pages 693–700, March
2008.

[Coc08] Dr. Alistair Cockburn. Using both incremental and iterative
development. CrossTalk - The Journal of Defense Software En-
gineering, 21(5):27–30, May 2008.

[DA01] Wenliang Du and Mikhail J. Atallah. Secure multi-party com-
putation problems and their applications: a review and open
problems. In NSPW ’01: Proceedings of the 2001 workshop
on New security paradigms, pages 13–22, New York, NY, USA,
2001. ACM.

[Dam06] Ivan Damgård. Theory and Practice of Multiparty Computation,
pages 360–364. Lecture Notes in Computer Science. Springer-
Link, Berlin / Heidelberg, August 2006.

[DGKN08] Ivan Damgård, Martin Geisler, Mikkel Krøigaard, and Jes-
per Buus Nielsen. Asynchronous multiparty computation: The-
ory and implementation. Cryptology ePrint Archive, Report
2008/415, 2008.

[DGS02] Ivan Damgård, Jens Groth, and Gorm Salomonsen. The theory
and implementation of an electronic voting system. In Secure
Electronic Voting, pages 77–100. Kluwer Academic Publishers,
2002.

76

http://www.daimi.au.dk/~ivan/mpc.pdf

Bibliography

[GDP09] Martin Geisler, Ivan Damgård, and Benny Pinkas. Mpc virtual
machine specification. Technical report, Computer Aided
Cryptography Engineering, January 9, 2009.
http://www.cace-project.eu/downloads/
deliverables-y1/CACE_D4.3_MPC_Virtual_Machine_
Specification.pdf.

[Gei08] Martin Geisler. Implementing asynchronous multi-party com-
putation - phd progress report. Technical report, University of
Aarhus, Denmark, January 2008.

[GL02] Shafi Goldwasser and Yehuda Lindell. Secure computation with-
out a broadcast channel. In In 16th International Symposium
on Distributed Computing (DISC), 2002.

[GMW87] O. Goldreich, S. Micali, and A. Wigderson. How to play any
mental game. In STOC ’87: Proceedings of the nineteenth an-
nual ACM symposium on Theory of computing, pages 218–229,
New York, NY, USA, 1987. ACM.

[KLR06] Eyal Kushilevitz, Yehuda Lindell, and Tal Rabin. Information-
theoretically secure protocols and security under composition.
In STOC ’06: Proceedings of the thirty-eighth annual ACM sym-
posium on Theory of computing, pages 109–118, New York, NY,
USA, 2006. ACM.

[LSP82] Leslie Lamport, Robert Shostak, and Marshall Pease. The
byzantine generals problem. ACM Trans. Program. Lang. Syst.,
4(3):382–401, 1982.

[MNPS04] Dahlia Malkhi, Noam Nisan, Benny Pinkas, and Yaron Sella.
Fairplay - a secure two-party computation system. In In
USENIX Security Symposium, pages 287–302, 2004.

[Opp05] Rolf Oppliger. Contemporary Cryptography (Artech House
Computer Security Library). Artech House, Inc., Norwood, MA,
USA, 2005.

[Pai99] Pascal Paillier. Public-key cryptosystems based on composite
degree residuosity classes. pages 223–238. 1999.

[Pin08] Benny Pinkas. Applications of secure computation. Technical
report, Computer Aided Cryptography Engineering, July 30,
2008.
http://www.cace-project.eu/downloads/
deliverables-y1/CACE_D4.1_ApplicationsofMPC.pdf.

77

http://www.cace-project.eu/downloads/deliverables-y1/CACE_D4.3_MPC_Virtual_Machine_Specification.pdf
http://www.cace-project.eu/downloads/deliverables-y1/CACE_D4.3_MPC_Virtual_Machine_Specification.pdf
http://www.cace-project.eu/downloads/deliverables-y1/CACE_D4.3_MPC_Virtual_Machine_Specification.pdf
http://www.cace-project.eu/downloads/deliverables-y1/CACE_D4.1_Applications of MPC.pdf
http://www.cace-project.eu/downloads/deliverables-y1/CACE_D4.1_Applications of MPC.pdf

Bibliography

[RBO89] T. Rabin and M. Ben-Or. Verifiable secret sharing and multi-
party protocols with honest majority. In STOC ’89: Proceedings
of the twenty-first annual ACM symposium on Theory of com-
puting, pages 73–85, New York, NY, USA, 1989. ACM.

[Rei06] Tord Ingolf Reistad. Multi-party secure position determination.
Presented at the NIK-2006 conference, 2006.
http://www.nik.no.

[Sha79] Adi Shamir. How to share a secret. Communications of the
ACM, 22(11):612–613, 1979.

[Tof05] Tomas Toft. Secure integer computation with applications in
economics - phd progress report. Technical report, University
of Aarhus, Denmark, July 2005.

[Tur66] L. Richard Turner. Inverse of the Vandermonde Matrix With
Applications. Lewis Research Center, NASA, Cleveland, Ohio,
1966.

[TW06] Wade Trappe and Lawrence Washington. Introduction to Cryp-
tography with Coding Theory (Second Edition). Pearson Pren-
tice Hall, Upper Saddle River, NJ, USA, 2006.

[Usc08] Christian Uscatu. Electronic universal voting. Informatica Eco-
nomica, 48(4):130–135, 2008.

[Yao82] Andrew C. Yao. Protocols for secure computations. In Founda-
tions of Computer Science, 1982. SFCS ’08. 23rd Annual Sym-
posium on, pages 160–164, 1982.

78

http://www.nik.no

Web References

[1] Doodle AG. Doodle: Easy scheduling, Last accessed May 31, 2009.
http://www.doodle.com.

[2] Twisted Documentation. Choosing a reactor and gui toolkit integra-
tion, Last accessed April 28, 2009.
http://twistedmatrix.com/projects/core/documentation/
howto/choosing-reactor.html#auto11.

[3] The Alexandra Institute Centre for IT security. Scet - secure computing
economy and trust, Last accessed May 19, 2009.
http://www.aicis.alexandra.dk/uk/projects/scet.htm.

[4] The Alexandra Institute Centre for IT security. Simap - secure infor-
mation management and processing, Last accessed May 19, 2009.
http://www.aicis.alexandra.dk/uk/projects/simap/index.htm.

[5] Michael Frei. Cs513: System security - secret sharing. Technical
report, The Department of Computer Science at Cornell University,
Last accessed May 15, 2009.
http://www.cs.cornell.edu/Courses/cs513/2000SP/
SecretSharing.html.

[6] Martin Geisler. Virtual ideal functionality framework - high-level design
overview. VIFF Design Talk at a SIMAP meeting, September 2007.
http://viff.dk/files/design-talk.pdf.

[7] Basic Research in Computer Science (BRICS). Secure multiparty com-
putation language, Last accessed May 19, 2009.
http://www.brics.dk/SMCL.

[8] RSA Laboratories. Rsa-200 is factored!, Last accessed June 9, 2009.
http://www.rsa.com/rsalabs/node.asp?id=2879.

[9] H.W. Lang. Bitonic sort, Last accessed April 28, 2009.
http://iti.fh-flensburg.de/lang/algorithmen/sortieren/
bitonic/bitonicen.htm.

79

http://www.doodle.com
http://twistedmatrix.com/projects/core/documentation/howto/choosing-reactor.html#auto11
http://twistedmatrix.com/projects/core/documentation/howto/choosing-reactor.html#auto11
http://www.aicis.alexandra.dk/uk/projects/scet.htm
http://www.aicis.alexandra.dk/uk/projects/simap/index.htm
http://www.cs.cornell.edu/Courses/cs513/2000SP/SecretSharing.html
http://www.cs.cornell.edu/Courses/cs513/2000SP/SecretSharing.html
http://viff.dk/files/design-talk.pdf
http://www.brics.dk/SMCL
http://www.rsa.com/rsalabs/node.asp?id=2879
http://iti.fh-flensburg.de/lang/algorithmen/sortieren/bitonic/bitonicen.htm
http://iti.fh-flensburg.de/lang/algorithmen/sortieren/bitonic/bitonicen.htm

Web References

[10] Jean-Yves Stervinou. Jy’s weblog > jeu 3 juil 2003, Last accessed May
10, 2009.
http://radio.weblogs.com/0001103/2003/07/03.html.

[11] Inc. Sun Microsystems. Securerandom (java 2 platform se v1.4.2), Last
accessed May 10, 2009.
http://java.sun.com/j2se/1.4.2/docs/api/java/security/
SecureRandom.html.

[12] VIFF Development Team. Installation guide, Last accessed June 4,
2009.
http://viff.dk/doc/install.html.

[13] VIFF Development Team. The history of viff, Last accessed May 1,
2009.
http://viff.dk/doc/history.html.

[14] VIFF Development Team. Viff, the virtual ideal functionality frame-
work, Last accessed May 15, 2009.
http://viff.dk.

[15] VIFF Development Team. Overview, Last accessed May 4, 2009.
http://viff.dk/doc/overview.html#security-assumptions.

[16] Twisted. Asynchronous programming with twisted, Last accessed May
2, 2009.
http://twistedmatrix.com/projects/core/documentation/
howto/async.html.

[17] Inc. UserLand Software. Xml-rpc home page, Last accessed May 10,
2009.
http://www.xmlrpc.com.

80

http://radio.weblogs.com/0001103/2003/07/03.html
http://java.sun.com/j2se/1.4.2/docs/api/java/security/SecureRandom.html
http://java.sun.com/j2se/1.4.2/docs/api/java/security/SecureRandom.html
http://viff.dk/doc/install.html
http://viff.dk/doc/history.html
http://viff.dk
http://viff.dk/doc/overview.html#security-assumptions
http://twistedmatrix.com/projects/core/documentation/howto/async.html
http://twistedmatrix.com/projects/core/documentation/howto/async.html
http://www.xmlrpc.com

Appendix A

Multiplication Mathematics

A.1 Linear System Approach
Continuing from Section 3.4.4 the players can solve a linear system of equa-
tions. Each player can establish three equations using the formula as shown
in Equation (A.1).

fg(i, j) = si,j = sh + r1j + r2j
2 (A.1)

In Equation (A.1) i refers to the player holding the share and j refers to the
player that created the share. Player 1 can do the following calculations:

fg(1, 1) = s1,1 = 5
fg(1, 2) = s1,2 = −1
fg(1, 3) = s1,3 = −14

Organizing these values into a matrix yields:sh r1 r2 5
sh 2r1 4r2 −1
sh 3r1 9r2 −14

Player 1 wants to solve the equations with respect to sh, which is player 1’s
share of the total polynomial. Solving the linear system can be done using
Gaussian elimination [CHE87] as shown below:

1 1 1 5
1 2 4 −1
1 3 9 −14

 R2 − 1 ·R1
=⇒

R3 − 1 ·R1

1 1 1 5
0 1 3 −6
0 2 8 −19

 R3 − 2 ·R2
=⇒

1 1 1 5
0 1 3 −6
0 0 2 −7

 1
2 ·R3
=⇒

1 1 1 5
0 1 3 −6
0 0 1 −3.5

81

Appendix A. Multiplication Mathematics

Going backwards from row three, all the unknown variables can be calcu-
lated:

r2 = −3.5
r1 = −6− 3 · r2 = −6− 3 · (−3.5) = 4.5
sh = 5− r1 − r2 = 5− 4.5− (−3.5) = 4

The value sh = 4 can be located in Table 3.3. Player 2 and player 3 have to
use their values in order to calculate their value of sh.

A.2 Vandermonde Matrix

Continuing from Section 3.4.4 the players do not need to solve the linear
system. By using the inverse of a Vandermonde matrix each player can ob-
tain its share of the total polynomial by means of a less complex calculation.
The Vandermonde matrix is defined as [Tur66]:

V =

1 x1 x2

1 · · · xn−1
1

1 x2 x2
2 · · · xn−1

2
1 x3 x2

3 · · · xn−1
3

...
...

...
1 xn x2

n · · · xn−1
n

V is the Vandermonde matrix and I is the identity matrix, both of size 3x3.
For three players where x1 = 1, x2 = 2 and x3 = 3 the two matrices are
defined as follows:

V =

1 1 1
1 2 4
1 3 9

 I =

1 0 0
0 1 0
0 0 1

Gauss-Jordan elimination is used to transform [V |I] into [I|V −1].

1 1 1 1 0 0
1 2 4 0 1 0
1 3 9 0 0 1

 R2 − 1 ·R1
=⇒

R3 − 1 ·R1

1 1 1 1 0 0
0 1 3 −1 1 0
0 2 8 −1 0 1

 R3 − 2 ·R2
=⇒

1 1 1 1 0 0
0 1 3 −1 1 0
0 0 2 1 −2 1

 1
2 ·R3
=⇒

1 1 1 1 0 0
0 1 3 −1 1 0
0 0 1 1

2 −1 1
2

 R2 − 3 ·R3
=⇒

1 1 1 1 0 0
0 1 0 −5

2 4 −3
2

0 0 1 1
2 −1 1

2

 R1 − 1 ·R2
=⇒

R1 − 1 ·R3

1 0 0 3 −3 1
0 1 0 −5

2 4 3
2

0 0 1 1
2 −1 1

2

82

A.2. Vandermonde Matrix

The tuple (3,−3, 1) in the first row of the inverse Vandermonde matrix will
always contain these values when three players are participating and they
use the indexes 1, 2 and 3. This gives an advantage for solving the linear
systems since no computation on solving the unknown variables needs to be
done.

From Table 3.2 player 1 has received the tuple of share values (5,−1,−14)
from player 1, 2 and 3, respectively. In order for player 1 to find its share
on the total polynomial, the matrix multiplication of the two tuples is cal-
culated:

[
3 −3 1

]
·

 5
−1
−14

 =
[
15 + 3− 14

]
=
[
4
]

The value 4 can be located in Table 3.3. Player 2 and player 3 will have to
calculate the Vandermonde tuple (3,−3, 1) with their own tuple from Table
3.2 in order to find their shares on the total polynomial.

83

Appendix A. Multiplication Mathematics

84

Appendix B

VIFF Installation Guide

The people behind VIFF are offering an installation guide at their web site
which explains the necessary steps on Windows, Mac OS X and GNU/Linux
[12]. The procedure for Windows is described below and my choice of ver-
sions is included in parenthesis.

B.1 Installation Steps

1. Download and install Python (2.5)1.

2. Include the path to your Python installation (e.g. C:\Python25\) in
the PATH system environment variable.

3. Download and install Twisted (8.2.0)2.

4. Download and install GMPY (1.03)3.

5. Download and execute an OpenSSL Win32 Installer (v0.9.8j)4. If re-
quired, also install Visual C++ 2008 Redistributables from the same
URL.

6. Download and install PyOpenSSL (0.8)5.

7. Download and install VIFF (0.7.1)6.

1Python: http://python.org
2Twisted: http://twistedmatrix.com
3GMPY: http://code.google.com/p/gmpy
4OpenSSL: http://www.slproweb.com/products/Win32OpenSSL.html
5PyOpenSSL: http://pyopenssl.sourceforge.net
6VIFF: http://viff.dk

85

http://python.org
http://twistedmatrix.com
http://code.google.com/p/gmpy
http://www.slproweb.com/products/Win32OpenSSL.html
http://pyopenssl.sourceforge.net
http://viff.dk

Appendix B. VIFF Installation Guide

B.2 Troubleshooting
If using Windows Vista, right-click on the installers and choose the option
to run as administrator.

If a python program reports the error No module named win32api, install
Python Extensions for Windows7.

B.3 Generation of Configuration Files
Execute the following commands from within the directory:
C:\Python25\Lib\site-packages\viff\apps
to generate configuration files and certificates for three players:

1. python generate-config-files.py -n 3 -t 1 localhost:9001 localhost:9002
localhost:9003

2. python generate-certificates.py -n 3

B.4 Additional Components
The Rank the Authors applications described in Chapter 7 is developed using
the GUI toolkit PyGTK8. In order to run the application, the following steps
are needed (in addition to the VIFF steps):

• Download and install GTK+ runtime (2.12.9)9, PyCairo (1.4.12)10,
PyGObject (2.14.1)11 and PyGTK (2.12.1)12

• Restart the computer for some changes to take effect.

The Secure Web Voting application (actually the computation servers) re-
quires a MySQL package:

• Download and install mysql-python (1.2.2)13

7Python Extensions for Windows: http://sourceforge.net/project/showfiles.
php?group_id=78018&package_id=79063

8PyGTK GUI Toolkit: http://www.pygtk.org
9GTK+ runtime: http://sourceforge.net/project/showfiles.php?group_id=

98754
10PyCairo: http://ftp.gnome.org/pub/GNOME/binaries/win32/pycairo/1.4/
11PyGObject: http://ftp.gnome.org/pub/GNOME/binaries/win32/pygobject/2.14/
12PyGTK: http://ftp.gnome.org/pub/GNOME/binaries/win32/pygtk/2.12/
13MySQL support for Python: http://sourceforge.net/projects/mysql-python

86

http://sourceforge.net/project/showfiles.php?group_id=78018&package_id=79063
http://sourceforge.net/project/showfiles.php?group_id=78018&package_id=79063
http://www.pygtk.org
http://sourceforge.net/project/showfiles.php?group_id=98754
http://sourceforge.net/project/showfiles.php?group_id=98754
http://ftp.gnome.org/pub/GNOME/binaries/win32/pycairo/1.4/
http://ftp.gnome.org/pub/GNOME/binaries/win32/pygobject/2.14/
http://ftp.gnome.org/pub/GNOME/binaries/win32/pygtk/2.12/
http://sourceforge.net/projects/mysql-python

Appendix C

Source Code Author
Application

The source code of the author application is shown below. The rest of the
source files are included in an attached ZIP file, see Appendix E.

C.1 author.py

Listing C.1: Source Code author.py
1 # The author program imports a l i s t o f names (author_conf ig . t x t)
2 # These p a r t i c i p a n t s can vo te on who w i l l be the 1 th , 2 th , e t c .
3 # author one some paper . This i s done v ia a g r a p h i c a l i n t e r f a c e
4 # and i t i s not p o s s i b l e to vo te f o r y o u r s e l f .
5 #
6 # Note t h a t i f two (or more) p l a y e r s r e c e i v e the same amount o f
7 # points , the b i t o n i c s o r t a l gor i thm w i l l w i l l p rov ide a d e f a u l t
8 # s o l u t i o n . The person neares t the bottom of the
9 # author_conf ig . t x t f i l e w i l l be ranked f i r s t .
10 #
11 # The implementat ion i s based on VIFF, the V i r tu a l I d e a l
12 # F u n c t i o n a l i t y Framework , wh i l e the GUI t o o l k i t used i s PyGTK.
13
14 from tw i s t ed . i n t e r n e t import g tk2 r eac to r # For gtk −2.0
15 g tk2 r eac to r . i n s t a l l ()
16 from tw i s t ed . i n t e r n e t import r e a c t o r
17
18 from optparse import OptionParser
19 from v i f f . f i e l d import GF
20 from v i f f . runtime import Runtime , create_runtime , gather_shares
21 from v i f f . comparison import Toft07Runtime
22 from v i f f . c on f i g import l oad_conf ig
23 from v i f f . u t i l import rand , f ind_prime
24
25 import pygtk
26 pygtk . r e qu i r e (’ 2 . 0 ’)

87

Appendix C. Source Code Author Application

27 import gtk
28
29 import re
30 from math import log , f l o o r
31 import time
32
33 class Protoco l :
34 " " " Def in ing the pro toco l , which w i l l be s t a r t e d at the
35 bottom of the f i l e . " " "
36
37 def __init__(s e l f , runtime) :
38 " " " Imports the names o f the p a r t i c i p a n t s and i n i t i a t e s
39 the c r e a t i o n o f the GUI. " " "
40
41 # Save the Runtime f o r l a t e r use
42 s e l f . runtime = runtime
43
44 # Read p l a y e r names from c o n f i g f i l e
45 f i l e = open (" author_conf ig . txt " , " r ")
46 l i n e s = f i l e . r e a d l i n e s ()
47 f i l e . c l o s e ()
48 s e l f . p l ay e r s = []
49 for i in l i n e s :
50 # Transform unicode s t r i n g s to UTF−8. Norwegian
51 # l e t t e r s would o the rw i s e have caused warnings .
52 s e l f . p l aye r s . append (re . sub (" \n " , " " , s t r (i) . decode ("

i so8859 −15")))
53 s e l f . number_of_players = len (s e l f . p l aye r s)
54 s e l f . number_of_choices = len (s e l f . p l aye r s) − 1
55 s e l f . c reate_gui ()
56
57 def create_gui (s e l f) :
58 " " " The g r a p h i c a l i n t e r f a c e i s b u i l t us ing w idge t s from
59 the PyGTK t o o l k i t . " " "
60
61 # Create main window
62 s e l f . window = gtk .Window(gtk .WINDOW_TOPLEVEL)
63 s e l f . window . s e t_ t i t l e ("Rank the Authors ")
64 s e l f . window . s e t_pos i t i on (gtk .WIN_POS_CENTER)
65 s e l f . window . s e t_de fau l t_s i z e (220 , 100)
66 s e l f . window . set_border_width (10)
67
68 # Create the outher box (widge t con ta iner)
69 vbox = gtk .VBox(False , 0)
70 hbox = gtk .HBox(True , 0)
71 s e l f . window . add (vbox)
72 vbox . pack_start (hbox , False , False , 0)
73
74 # Table f o r arranging l a b e l s and rad io bu t tons
75 tab l e = gtk . Table (s e l f . number_of_players , s e l f .

number_of_players , Fa l se)
76 tab l e . set_row_spacings (2)
77 tab l e . se t_co l_spac ings (10)
78 j = 0

88

C.1. author.py

79 for i in range (0 , s e l f . number_of_players) :
80 i f not s e l f . runtime . id == (i +1) :
81 # Name of p l a y e r s
82 l a b e l = gtk . Label (s e l f . p l aye r s [i])
83 tab l e . attach (l abe l , j +1, j +2, 0 , 1)
84 # 1th , 2 th , 3 th , e t c . author
85 l a b e l = gtk . Label (s t r (j +1) + " th ")
86 tab l e . attach (l abe l , 0 , 1 , j +1, j +2)
87 j += 1
88
89 # Set up grouped rad io bu t tons . The exec s ta tement i s
90 # used to c r e a t e dynamic v a r i a b l e names .
91 var_num = 0
92 a c t i v e = 1
93 for i in range (0 , s e l f . number_of_choices) :
94 k = 0
95 for j in range (0 , s e l f . number_of_players) :
96 name = s t r (j +1)
97 i f not s e l f . runtime . id == (j+1) :
98 var_num += 1
99 i f (var_num % s e l f . number_of_choices == 1) :

100 exec ’ s e l f . r ad io%s = s e l f . setup_radio (
None , " " , name) ’ % var_num

101 else :
102 exec ’ s e l f . r ad io%s = s e l f . setup_radio (

s e l f . r ad io%s , " " , name) ’ % (var_num ,
var_num−1)

103 exec ’ t ab l e . attach (s e l f . r ad io%s , k+1, k+2, i
+1, i +2, 0) ’ % var_num

104 k += 1
105 # S e t t i n g some rad io bu t tons as checked by d e f a u l t
106 exec ’ s e l f . r ad io%s . s e t_act ive (True) ’ % ac t i v e
107 a c t i v e += s e l f . number_of_choices + 1
108
109 vbox . pack_start (tab le , False , False , 0)
110
111 # Separator
112 separa to r = gtk . HSeparator ()
113 vbox . pack_start (separator , False , True , 10)
114
115 # Submit bu t ton
116 submitbox = gtk .HBox(False , 0)
117 s e l f . button = gtk . Button (" Submit ")
118 s e l f . button . connect (" c l i c k e d " , s e l f . check_votes , None)
119 submitbox . pack_start (s e l f . button , True , False , 0)
120 vbox . pack_start (submitbox , False , False , 0)
121
122 # Separator 2
123 separa to r = gtk . HSeparator ()
124 vbox . pack_start (separator , False , True , 10)
125
126 # Progress bar
127 s e l f . pbar = gtk . ProgressBar ()
128 vbox . pack_start (s e l f . pbar , False , False , 0)

89

Appendix C. Source Code Author Application

129
130 # Separator 3
131 separa to r = gtk . HSeparator ()
132 vbox . pack_start (separator , False , True , 10)
133
134 # Output
135 outputbox = gtk .HBox(False , 0)
136 s e l f . l a b e l = gtk . Label ("Make your choice , " + s t r (s e l f .

p l ay e r s [s e l f . runtime . id −1]) + " ! ")
137 outputbox . pack_start (s e l f . l abe l , True , False , 0)
138 vbox . pack_start (outputbox , False , False , 0)
139
140 s e l f . window . show_all ()
141
142 def setup_radio (s e l f , group , l abe l , va lue) :
143 " " " Function to s i m p l i f y the d i s p l a y o f grouped
144 rad io bu t tons . " " "
145
146 rad io = gtk . RadioButton (group , l a b e l)
147 rad io . set_name (value)
148 return rad io
149
150 def on_error (s e l f , widget) :
151 " " " Function t h a t d i s p l a y s an error message i f
152 check_votes r e p o r t s so . " " "
153
154 md = gtk . MessageDialog (s e l f . window ,
155 gtk .DIALOG_DESTROY_WITH_PARENT, gtk .MESSAGE_ERROR,

gtk .BUTTONS_OK, " Error : ")
156 md. format_secondary_text ("You can only g ive one person

one vote . Try again ! ")
157 md. run ()
158 md. des t roy ()
159
160 def check_votes (s e l f , widget , data=None) :
161 " " " Function f o r check ing t h a t the p l a y e r have not g i ven
162 more than one vo te f o r each person . " " "
163
164 check = 1
165 s e l f . l i s t = []
166 buttion_number = 1
167 for i in range (0 , s e l f . number_of_choices) :
168 exec ’ group = s e l f . r ad io%s . get_group () ’ %

buttion_number in g l oba l s () , l o c a l s ()
169 for j in group :
170 i f j . get_act ive () :
171 for k in range (0 , l en (s e l f . l i s t)) :
172 i f i n t (j . get_name ()) == s e l f . l i s t [k] :
173 check = 0
174 s e l f . on_error (None)
175 break
176 s e l f . l i s t . append (i n t (j . get_name ()))
177 buttion_number += s e l f . number_of_choices
178 i f check == 1 :

90

C.1. author.py

179 s e l f . submit (s e l f , None)
180
181 def submit (s e l f , widget , data=None) :
182 " " " Function f o r a c t i o n s when p r e s s i n g the
183 submit bu t ton . " " "
184
185 # Create a l i s t o f the p o i n t s g i ven . Player1 ’ s r e c e i v e d
186 # p o i n t s i s p laced at p o i n t s [0] , p l ayer2 ’ s r e c e i v e d
187 # p o i n t s a t p o i n t s [1] , e t c . F i r s t author g i v e s n−1
188 # points , second author g i v e s n−2 points , e t c .
189 s e l f . po in t s = range (s e l f . number_of_players)
190 pts = s e l f . number_of_choices
191 for i in range (0 , s e l f . number_of_choices) :
192 x = s e l f . l i s t [i]
193 s e l f . po in t s [x−1] = pts
194 pts −= 1
195 # Give y o u r s e l f 0 p o i n t s
196 s e l f . po in t s [s e l f . runtime . id −1] = 0
197
198 # Create a temporary output t e x t
199 output = " For 1 th author you s e l e c t e d : " + s t r (s e l f .

p l ay e r s [s e l f . l i s t [0] −1])
200 s e l f . l a b e l . se t_text (output)
201 s e l f . button . s e t_ s en s i t i v e (Fa l se)
202
203 # Setup f o r the comparison p r o t o c o l to work
204 l = s e l f . runtime . opt ions . b i t_length
205 k = s e l f . runtime . opt ions . secur i ty_parameter
206 modulus = 2∗∗65
207 Zp = GF(find_prime (modulus , blum=True))
208
209 # The input i s s e c r e t shared . We end up wi th
210 # n∗n v a r i a b l e s , where n = number o f p l a y e r s
211 s e l f . time1 = time . c l o ck ()
212 var_num = 0
213 for i in range (0 , s e l f . number_of_players) :
214 p laye r = 1
215 for j in range (0 , s e l f . number_of_players) :
216 i f s e l f . runtime . id == player :
217 exec ’ a%s = s e l f . runtime . shamir_share ([

p laye r] , Zp , s e l f . po in t s [i]) ’ % var_num
in g l oba l s () , l o c a l s ()

218 else :
219 exec ’ a%s = s e l f . runtime . shamir_share ([

p laye r] , Zp) ’ % var_num in g l oba l s () ,
l o c a l s ()

220 var_num += 1
221 p laye r += 1
222
223 s e l f . sha re s = 0
224 def s tep (value) :
225 " " " Function f o r updat ing the progre s s bar . " " "
226
227 s e l f . sha re s += 1

91

Appendix C. Source Code Author Application

228 percent = round ((s e l f . sha re s ∗100 .0) / f l o a t (s e l f .
number_of_players) , 2)

229 text = s t r (percent) + "%"
230 s e l f . pbar . s e t_ f r a c t i on (s e l f . sha re s / f l o a t (s e l f .

number_of_players))
231 s e l f . pbar . set_text (t ex t)
232 return value
233
234 # Add c a l l b a c k f o r one v a r i a b l e per p l a y e r . This way we
235 # know when a user h i t s the submit bu t ton and we can
236 # update the progre s s bar .
237 for i in range (0 , s e l f . number_of_players) :
238 exec ’ a%s . addCallback (s tep) ’ % i in g l oba l s () ,

l o c a l s ()
239
240 # Ca l c u l a t e the sum of p o i n t s f o r each p l ay e r
241 array = []
242 var_num = 0
243 for i in range (0 , s e l f . number_of_players) :
244 exec ’ sum%s = 0 ’ % i in g l oba l s () , l o c a l s ()
245 for j in range (0 , s e l f . number_of_players) :
246 exec ’ sum%s += a%s ’ % (i , var_num) in g l oba l s () ,

l o c a l s ()
247 var_num += 1
248 exec ’ array . append (sum%s) ’ % i in g l oba l s () , l o c a l s

()
249
250 # I n i t i a t e the s o r t i n g a l gor i thm of the sums array
251 so r t ed = s e l f . s o r t (array)
252
253 # Gather the r e s u l t s and c a l l the s e l f . r e su l t s_ready
254 # method when they have a l l been r e c e i v e d
255 so r t ed = gather_shares (map(s e l f . runtime . open , so r t ed))
256 so r t ed . addCallback (s e l f . r e su l t s_ready)
257
258 # Open the sums (shares) and put them in a l i s t
259 l ist_of_sums = []
260 for i in range (0 , s e l f . number_of_players) :
261 exec ’ open%s = s e l f . runtime . open (sum%s) ’ % (i , i) in

g l oba l s () , l o c a l s ()
262 exec ’ l i st_of_sums . append (open%s) ’ % i in g l oba l s () ,

l o c a l s ()
263
264 #s o r t ed . addCal l back (lambda _: s e l f . runtime . shutdown ())
265
266 def s o r t (s e l f , array) :
267 " " " This s o r t f unc t i on i s prov ided as a par t o f f the
268 VIFF framework . The a l gor i thm used i s b i t o n i c s o r t which
269 was chosen in order to maximize the amount o f work
270 (comparisons) done in p a r a l l e l . " " "
271
272 # Make a sha l l ow copy − the a l gor i thm wont be
273 # in−p l ace anyway s ince we c r ea t e l o t s o f new
274 # Shares as we go a long .

92

C.1. author.py

275 array = array [:]
276
277 # Corresponding array f o r the order o f authors accord ing
278 # to t h e i r p o i n t s
279 order = []
280 for i in range (0 , s e l f . number_of_players) :
281 order . append (i +1)
282
283 def b i t on i c_so r t (low , n , ascending) :
284 i f n > 1 :
285 m = n // 2
286 b i t on i c_so r t (low , m, ascending=not ascending)
287 b i t on i c_so r t (low + m, n − m, ascending)
288 bitonic_merge (low , n , ascending)
289
290 def bitonic_merge (low , n , ascending) :
291 i f n > 1 :
292 # Choose m as the g r e a t e s t power o f 2
293 # l e s s than n .
294 m = 2∗∗ i n t (f l o o r (l og (n−1, 2)))
295 for i in range (low , low + n − m) :
296 compare (i , i+m, ascending)
297 bitonic_merge (low , m, ascending)
298 bitonic_merge (low + m, n − m, ascending)
299
300 def compare (i , j , ascending) :
301
302 def xor (a , b) :
303 # TODO: We use t h i s s imp le xor u n t i l
304 # h t t p :// t r a c k e r . v i f f . dk/ i s sue60 i s f i x e d .
305 return a + b − 2∗a∗b
306
307 l e = array [i] <= array [j] # a d e f e r r e d
308
309 # We must swap array [i] and array [j] when they
310 # s o r t in the wrong d i r e c t i o n , t h a t i s , when
311 # ascending i s True and array [i] > array [j] , or
312 # when ascending i s Fa l se (meaning descending)
313 # and array [i] <= array [j] .
314 #
315 # Using array [i] <= array [j] in both cases we see
316 # t h a t t h i s i s the e x c l u s i v e−or :
317 b = xor (ascending , l e)
318
319 # We now wish to c a l c u l a t e
320 #
321 # ai = b ∗ array [j] + (1−b) ∗ array [i]
322 # aj = b ∗ array [i] + (1−b) ∗ array [j]
323 #
324 # which uses four secure m u l t i p l i c a t i o n s . We can
325 # r e w r i t e t h i s to use on ly one secure m u l t i p l i c a t i o n
326 ai , a j = array [i] , array [j]
327 b_ai_aj = b ∗ (a i − a j)
328

93

Appendix C. Source Code Author Application

329 array [i] = a i − b_ai_aj
330 array [j] = a j + b_ai_aj
331
332 # Switch the order array cor r e spond ing l y
333 oi , o j = order [i] , o rder [j]
334 b_oi_oj = b ∗ (o i − o j)
335
336 order [i] = o i − b_oi_oj
337 order [j] = o j + b_oi_oj
338
339 b i t on i c_so r t (0 , l en (array) , ascending=False)
340 return order
341
342 def r e su l t s_ready (s e l f , r e s u l t s) :
343 " " " This f unc t i on i s c a l l e d as a c a l l b a c k above and the
344 r e s u l t s v a r i a b l e w i l l conta in a c t u a l f i e l d e lements , not
345 j u s t shares . " " "
346
347 s e l f . time2 = time . c l o ck ()
348 s e l f . time = s e l f . time2 − s e l f . time1
349 print " time : " , s e l f . time
350
351 # Unpack the l i s t
352 for i in range (0 , s e l f . number_of_players) :
353 exec ’ r%s = in t (r e s u l t s [i] . va lue) ’ % i
354
355 # Create the f i n a l output message
356 output = " "
357 for i in range (0 , s e l f . number_of_players) :
358 exec ’ output += "%sth : " + s e l f . p l ay e r s [r%s−1] + " "

’ % (i +1, i)
359
360 s e l f . l a b e l . se t_text (output)
361 print output
362
363 # Parse command l i n e arguments .
364 par s e r = OptionParser ()
365 Runtime . add_options (par s e r)
366 opt ions , args = par s e r . parse_args ()
367
368 i f l en (args) == 0 :
369 par s e r . e r r o r ("You must s p e c i f y a c on f i g f i l e ")
370 else :
371 id , p l ay e r s = load_conf ig (args [0])
372
373 # Create a d e f e r r e d Runtime and ask i t to run our p r o t o c o l
374 # when ready
375 pre_runtime = create_runtime (id , p layers , 1 , opt ions ,

Toft07Runtime)
376 pre_runtime . addCallback (Protoco l)
377
378 r e a c t o r . run ()

94

Appendix D

Source Code Web
Application

The source code of the Java applet and one of the computation servers are
shown below. In addition the web application consists of several PHP files
which are included in an attached ZIP file, see Appendix E.

D.1 Vote.java

Listing D.1: Source Code Vote.java
1 import java . awt . ∗ ;
2 import java . awt . event . ActionEvent ;
3 import java . awt . event . Act i onL i s t ene r ;
4 import java . app le t . ∗ ;
5 import java . i o . ∗ ;
6 import java . math . B ig Intege r ;
7 import java . net . ∗ ;
8 import java . s e c u r i t y . NoSuchAlgorithmException ;
9 import java . s e c u r i t y . SecureRandom ;
10 import java . u t i l . ArrayList ;
11 import java . u t i l . HashMap ;
12 import java . u t i l . I t e r a t o r ;
13 import javax . swing . ∗ ;
14
15 public class Vote extends Applet implements Act ionL i s t ene r {
16
17 St r ing t i t l e ;
18 St r ing code ;
19 St r ing user_id ;
20 St r ing d e s c r i p t i o n ;
21 int number_of_options ;
22 HashMap<Integer , Str ing> opt ions = new HashMap<Integer ,

Str ing >() ;
23
24 ArrayList<Checkbox> rad iobuttons ;

95

Appendix D. Source Code Web Application

25 JButton submitButton ;
26 JLabel t i t l e L a b e l ;
27 JTextArea d e s c r i p t i o nF i e l d ;
28 JScro l lPane s c r o l lA r e a ;
29 JTextArea outputFie ld ;
30 CheckboxGroup radioGroup ;
31
32 St r ing r e s u l t = " " ;
33
34 public void i n i t () {
35 // Fetch the parameter v a l u e s from the HTML code t h a t
36 // i s c a l l i n g the a p p l e t
37 t i t l e = getParameter (" t i t l e ") ;
38 d e s c r i p t i o n = getParameter (" d e s c r i p t i o n ") ;
39 code = getParameter (" code_var ") ;
40 user_id = getParameter (" u s e r i d ") ;
41 number_of_options = In t eg e r . pa r s e In t (getParameter ("

number_of_options ")) ;
42
43 for (int i = 0 ; i < number_of_options ; i++) {
44 opt ions . put (i , getParameter (" opt ion " + i)) ;
45 }
46
47 // Make the GUI
48 setLayout (null) ;
49 submitButton = new JButton (" Submit ") ;
50 t i t l e L a b e l = new JLabel (t i t l e) ;
51 d e s c r i p t i o nF i e l d = new JTextArea (d e s c r i p t i o n) ;
52 s c r o l lA r e a = new JScro l lPane (d e s c r i p t i o nF i e l d) ;
53 outputFie ld = new JTextArea () ;
54 outputFie ld . setLineWrap (true) ;
55 radioGroup = new CheckboxGroup () ;
56 rad iobuttons = new ArrayList<Checkbox>() ;
57
58 for (int i = 0 ; i < number_of_options ; i++) {
59 rad iobuttons . add (new Checkbox (opt ions . get (i) ,

radioGroup , fa l se)) ;
60 }
61
62 // Set x and y , width and h e i g h t
63 t i t l e L a b e l . setBounds (20 , 0 , 350 , 30) ;
64 d e s c r i p t i o nF i e l d . s e tEd i t ab l e (fa l se) ;
65 d e s c r i p t i o nF i e l d . setLineWrap (true) ;
66 d e s c r i p t i o nF i e l d . setBorder (BorderFactory .

createLoweredBevelBorder ()) ;
67
68 s c r o l lA r e a . setBounds (20 , 30 , 350 , 40) ;
69 s c r o l lA r e a . s e tAu t o s c r o l l s (true) ;
70
71 int y = 80 ;
72 for (int i = 0 ; i < number_of_options ; i++) {
73 rad iobuttons . get (i) . setBounds (20 , y , 350 , 30) ;
74 y += 30 ;
75 }

96

D.1. Vote.java

76
77 submitButton . setBounds (20 , y+10, 100 , 30) ;
78 outputFie ld . setBounds (20 , y+50, 350 , 30) ;
79 outputFie ld . s e tEd i t ab l e (fa l se) ;
80
81 // Add the GUI components to the a p p l e t
82 add (t i t l e L a b e l) ;
83 add (s c r o l lA r e a) ;
84 for (int i = 0 ; i < number_of_options ; i++) {
85 add (rad iobuttons . get (i)) ;
86 }
87 add (submitButton) ;
88 add (outputFie ld) ;
89
90 // Add ac t i on to the bu t ton
91 submitButton . addAct ionLis tener (this) ;
92 }
93
94 // Actions when p r e s s i n g the submit bu t ton
95 public void act ionPerformed (ActionEvent event) {
96 i f (event . getSource () == submitButton) {
97 St r ing label = radioGroup . getSelectedCheckbox () .

getLabe l () ;
98 int id = −1;
99 I t e r a t o r <Integer> i t = opt ions . keySet () . i t e r a t o r () ;

100 while (i t . hasNext ()) {
101 In t eg e r key = i t . next () ;
102 St r ing va l = opt ions . get (key) ;
103 i f (va l == label) {
104 id = key ;
105 break ;
106 }
107 }
108 submitButton . setEnabled (fa l se) ;
109 outputFie ld . setText ("You s e l e c t e d : " + label + " (" +

id + ") ") ;
110 makeShares (id) ;
111 }
112 }
113
114 // Creat ion o f the shares
115 public void makeShares (int id) {
116 Big Intege r share1 ;
117 Big Intege r share2 ;
118 Big Intege r share3 ;
119
120 Big Intege r random = Big Intege r .ZERO;
121 Big Intege r p = new Big Intege r ("

1461501637330902918203684832716283019655932542983 ") ;
// same modulus as in VIFF

122
123 SecureRandom secRandom ;
124 try {
125 secRandom = SecureRandom . ge t In s tance ("SHA1PRNG") ;

97

Appendix D. Source Code Web Application

126 random = new Big Intege r (160 , secRandom) ; // 160 b i t s
127 }
128 catch (NoSuchAlgorithmException e) {
129 e . pr intStackTrace () ;
130 }
131
132 // share−x = id + random∗x mod p
133 share1 = intToBig (id) . add (random . mult ip ly (intToBig (1))) .

mod(p) ;
134 share2 = intToBig (id) . add (random . mult ip ly (intToBig (2))) .

mod(p) ;
135 share3 = intToBig (id) . add (random . mult ip ly (intToBig (3))) .

mod(p) ;
136
137 outputFie ld . setText (" Share 1 : " + share1 + " Share 2 : " +

share2 + " Share 3 : " + share3) ;
138 encryptShares (share1 , share2 , share3) ;
139 }
140
141 // Function f o r conver t ing an I n t e g e r to a Big In t ege r
142 public Big Intege r intToBig (int number) {
143 return new Big Intege r (In t eg e r . t oS t r i ng (number)) ;
144 }
145
146 // 1024 b i t s RSA encryp t ion o f the shares
147 public void encryptShares (B ig Intege r share1 , B ig Intege r

share2 , B ig Intege r share3) {
148 Big Intege r n1 = new Big Intege r ("

968152160772263289847388078038937747255610409. . .93 ") ;
149 Big Intege r n2 = new Big Intege r ("

918686459282295450909710816030529675197106090. . .29 ") ;
150 Big Intege r n3 = new Big Intege r ("

115917249021135811596506973975170039300995937. . .09 ") ;
151 Big Intege r e = new Big Intege r (" 65537 ") ; // 2^16+1
152
153 Big Intege r c1 = share1 .modPow(e , n1) ;
154 Big Intege r c2 = share2 .modPow(e , n2) ;
155 Big Intege r c3 = share3 .modPow(e , n3) ;
156
157 outputFie ld . setText ("Wait ! Saving to db . . . Encr 1 : " +

c1 + "Encr 2 : " + c2 + "Encr 3 : " + c3) ;
158 doPost (code , user_id , c1 , c2 , c3) ;
159 }
160
161 // Function which t ransmi t s the shares v ia a POST r e q u e s t to

the PHP/Web s e r v e r
162 public void doPost (S t r ing code , S t r ing user_id , B ig Intege r

share1 , B ig Intege r share2 , B ig Intege r share3) {
163 URL ur l ;
164 URLConnection urlConn ;
165 DataOutputStream output ;
166 BufferedReader input ;
167
168 try {

98

D.1. Vote.java

169 u r l = new URL(getCodeBase () . t oS t r i ng () + " vote_post .
php ") ;

170
171 urlConn = ur l . openConnection () ;
172 urlConn . setDoOutput (true) ;
173 urlConn . setDoInput (true) ;
174 urlConn . setUseCaches (fa l se) ;
175 urlConn . setRequestProperty (" Content−Type " , "

app l i c a t i o n /x−www−form−ur lencoded ") ;
176
177 output = new DataOutputStream (urlConn .

getOutputStream ()) ;
178 St r ing content = " code=" + code + "&use r i d=" +

user_id + "&c1=" + share1 + "&c2=" + share2 + "&
c3=" + share3 ;

179 output . wr i teBytes (content) ;
180 output . f l u s h () ;
181 output . c l o s e () ;
182 DataInputStream in = new DataInputStream (urlConn .

getInputStream ()) ;
183 input = new BufferedReader (new InputStreamReader (in)

) ;
184 St r ing s t r ;
185 while ((s t r = input . readLine ()) != null) {
186 r e s u l t = r e s u l t + s t r + " \n" ;
187 outputFie ld . setText (r e s u l t) ;
188 }
189 input . c l o s e () ;
190 }
191 catch (MalformedURLException e) {
192 outputFie ld . setText ("Malformed URL: " + e . getMessage

()) ;
193 }
194 catch (IOException e) {
195 outputFie ld . setText (" IO Exception : " + e . getMessage

()) ;
196 }
197 }
198 }

99

Appendix D. Source Code Web Application

D.2 server1.py

Listing D.2: Source Code server1.py
1 from optparse import OptionParser
2 from tw i s t ed . i n t e r n e t import r e a c t o r
3
4 from v i f f . f i e l d import GF
5 from v i f f . runtime import Runtime , create_runtime , gather_shares ,

Share
6 from v i f f . comparison import Toft07Runtime
7 from v i f f . c on f i g import l oad_conf ig
8 from v i f f . u t i l import rand , f ind_prime
9

10 from tw i s t ed . web import xmlrpc , s e r v e r
11 import MySQLdb
12 from decimal import ∗
13 import smtpl ib
14 import s t r i n g
15
16 class MyFunctions (xmlrpc .XMLRPC) :
17
18 def xmlrpc_init iate_computat ion (s e l f , code) :
19 " " " This f u n c t i o n s i s c a l l e d remote ly from the
20 web s e r v e r (PHP) . " " "
21
22 s e l f . p r o to co l . fetch_from_db (code)
23 return True
24
25 def save_instance (s e l f , p r o to co l) :
26 " " " Saves the p r o t o c o l in s tance such t h a t i s i s
27 r eachab l e f o r the MyFunctions c l a s s " " "
28
29 s e l f . p r o to co l = pro to co l
30
31 class Protoco l :
32 " " " Def in ing the pro toco l , which w i l l be s t a r t e d at
33 the bottom of the f i l e . " " "
34
35 def __init__(s e l f , runtime) :
36 # Save the Runtime f o r l a t e r use
37 s e l f . runtime = runtime
38 s e l f . s tart_xmlrpc_server ()
39
40 def start_xmlrpc_server (s e l f) :
41 " " " S t a r t s Twisted ’ s XML−RPC s e r v e r . " " "
42
43 host = " l o c a l h o s t "
44 port = 8001
45
46 r = MyFunctions (allowNone=True)
47 r . save_instance (s e l f)
48 r e a c t o r . l istenTCP (port , s e r v e r . S i t e (r))
49

100

D.2. server1.py

50 def fetch_from_db (s e l f , code) :
51 " " " Fetches the shares from DB and decryp t s them . " " "
52
53 s e l f . code = code
54 print " Po l l ID : " , s e l f . code
55 print " Fetching encrypted share s from DB . . . "
56
57 # connect
58 db = MySQLdb. connect (host="mysql . stud . ntnu . no " , user="

s e c r e t " , passwd=" s e c r e t " ,
59 db=" havardv_smpc ")
60 # c re a t e a cursor
61 cur so r = db . cur so r ()
62 # execu te SQL statement
63 i f s e l f . runtime . id == 1 :
64 cur so r . execute ("SELECT share1 FROM r e s u l t WHERE code

= ’ "+s e l f . code+" ’ ")
65 e l i f s e l f . runtime . id == 2 :
66 cur so r . execute ("SELECT share2 FROM r e s u l t WHERE code

= ’ "+s e l f . code+" ’ ")
67 e l i f s e l f . runtime . id == 3 :
68 cur so r . execute ("SELECT share3 FROM r e s u l t WHERE code

= ’ "+s e l f . code+" ’ ")
69 # g e t the r e s u l t s e t as a t u p l e
70 r e s u l t = cur so r . f e t c h a l l ()
71 db . c l o s e ()
72 # i t e r a t e through r e s u l t s e t
73 s e l f . sha re s = []
74 i = 0
75 print " Decrypting share s . . . "
76 for record in r e s u l t :
77 # from encr to share
78 # d i s a unique p r i v a t e RSA key f o r s e r v e r 1
79 n = 968152160772263289847388078038937747255610. . .93
80 d = 198588118120474470992240077102666282197188. . .45
81
82 exec ’ c%s = in t (record [0]) ’ % i in g l oba l s () , l o c a l s

()
83 ge tcontext () .Emax = 10000000000000000000
84 exec ’m%s = pow(c%s , d , n) ’ % (i , i) in g l oba l s () ,

l o c a l s ()
85 exec ’ s e l f . sha re s . append (m%s) ’ % i in g l oba l s () ,

l o c a l s ()
86 i = i + 1
87 s e l f . do_computation ()
88
89 def do_computation (s e l f) :
90 " " " The encrypted v a l u e s are conver ted to shares
91 and r e c o n s t r u c t e d . " " "
92
93 print " S ta r t i ng computation o f share s . . . "
94 s e l f . modulus=2∗∗160
95 s e l f . prime = find_prime (s e l f . modulus , blum=True)
96 #p r i n t " prime : " , s e l f . prime

101

Appendix D. Source Code Web Application

97 Zp = GF(s e l f . prime)
98
99 # Convert ing to shares

100 s e l f . number_of_shares = len (s e l f . sha re s)
101 for i in range (0 , s e l f . number_of_shares) :
102 exec ’m%s = Share (s e l f . runtime , Zp , Zp(s e l f . sha re s [i

])) ’ % i in g l oba l s () , l o c a l s ()
103
104 # The r e s u l t s are s e c r e t shared , so we must open them
105 # b e f o r e we can do anyth ing u s e f u l wi th them .
106 l i s t_o f_va lue s = []
107 for i in range (0 , s e l f . number_of_shares) :
108 exec ’ open%s = s e l f . runtime . open (m%s) ’ % (i , i) in

g l oba l s () , l o c a l s ()
109 exec ’ l i s t_o f_va lue s . append (open%s) ’ % i in g l oba l s

() , l o c a l s ()
110
111 # We w i l l now ga ther the r e s u l t s and c a l l the
112 # s e l f . r e su l t s_ready method when they have a l l been
113 # r e c e i v e d .
114 r e s u l t s = gather_shares (l i s t_o f_va lue s)
115 r e s u l t s . addCallback (s e l f . r e su l t s_ready)
116
117 r e s u l t s . addCallback (lambda _: s e l f . runtime . synchron i ze ()

)
118 #r e s u l t s . addCal l back (lambda _: s e l f . runtime . shutdown ())
119
120 def r e su l t s_ready (s e l f , r e s u l t s) :
121 " " " This f unc t i on i s c a l l e d as a c a l l b a c k above and the
122 r e s u l t s v a r i a b l e w i l l conta in a c t u a l f i e l d e lements , not
123 j u s t shares . " " "
124
125 s e l f . f e t ch_po l l_ in fo (s e l f . code)
126 s e l f . number_of_options = len (s e l f . opt i ons)
127
128 for i in range (0 , s e l f . number_of_options) :
129 exec ’ sum%s = 0 ’ % i
130
131 for i in range (0 , s e l f . number_of_shares) :
132 temp = r e s u l t s [i] . va lue
133 exec ’ sum%s += 1 ’ % temp
134
135 print " Publ ic output : "
136 output = " "
137 for i in range (0 , s e l f . number_of_options) :
138 newl ine = " \n"
139 exec ’ l i n e = s e l f . opt i ons [i] + " r e c e i v ed " + s t r (

sum%s) + " vote (s) . " ’ % i
140 output = output + newl ine + l i n e
141
142 print output
143
144 s e l f . send_mail (s e l f . par t i c ipants_emai l , output)
145

102

D.2. server1.py

146 def send_mail (s e l f , l i s t , output) :
147 " " " Sending o f e−mai ls to the p a r t i c i p a n t s o f
148 the vo te . " " "
149
150 emai l s = []
151 emai l s = l i s t . s p l i t (" ; ")
152 # Remove the ex t ra semicolon
153 emai l s . pop ()
154
155 fromaddr = s e l f . author_email
156 toaddrs = " "
157 cc = " " #pol l_author
158 bcc = emai l s
159 sub j e c t = " Result o f p o l l : " + s e l f . t i t l e
160 text = "The output o f the vote i s : \ n " + output
161
162 # Prepare a c t u a l message
163 message = s t r i n g . j o i n ((
164 "From : %s " % fromaddr ,
165 " Subject : %s " % subject ,
166 " " ,
167 text
168) , " \ r \n ")
169
170 # Send the mail
171 s e r v e r = smtpl ib .SMTP(’ smtp . stud . ntnu . no ’)
172 s e r v e r . se t_debug leve l (1)
173 s e r v e r . sendmail (fromaddr , bcc , message)
174 #p r i n t s e r v e r . v e r i f y (toaddrs)
175 print "E−mai l s are sent . . . "
176
177 s e r v e r . qu i t ()
178
179 def f e t ch_po l l_ in fo (s e l f , code) :
180 " " " Fetch ing o f e−mail addresses , p o l l t i t l e , e t c .
181 from the database . " " "
182
183 print " Fetching the r e c i p i e n t ’ s e−mail addre s s e s from DB

. . . "
184 # connect
185 db = MySQLdb. connect (host="mysql . stud . ntnu . no " , user="

s e c r e t " , passwd=" s e c r e t " ,
186 db=" havardv_smpc ")
187 # c re a t e a cursor
188 cur so r = db . cur so r ()
189 # execu te SQL statement
190 i f s e l f . runtime . id == 1 :
191 cur so r . execute ("SELECT t i t l e , author_email ,

par t i c ipants_emai l , opt ions FROM po l l WHERE code
= ’ "+s e l f . code+" ’ ")

192 # g e t the r e s u l t
193 r e s u l t = cur so r . f e t chone ()
194 db . c l o s e ()
195 s e l f . t i t l e = r e s u l t [0]

103

Appendix D. Source Code Web Application

196 s e l f . author_email = r e s u l t [1]
197 s e l f . pa r t i c ipant s_ema i l = r e s u l t [2]
198 s e l f . opt i ons = []
199 s e l f . opt i ons = r e s u l t [3] . s p l i t (" ; ")
200 # Remove the ex t ra semicolon
201 s e l f . opt i ons . pop ()
202
203 # Parse command l i n e arguments .
204 par s e r = OptionParser ()
205 Runtime . add_options (par s e r)
206 opt ions , args = par s e r . parse_args ()
207
208 i f l en (args) == 0 :
209 par s e r . e r r o r ("You must s p e c i f y a c on f i g f i l e ")
210 else :
211 id , p l ay e r s = load_conf ig (args [0])
212
213 # Create a d e f e r r e d Runtime and ask i t to run our p r o t o c o l when

ready .
214 pre_runtime = create_runtime (id , p layers , 1 , opt ions ,

Toft07Runtime)
215 pre_runtime . addCallback (Protoco l)
216
217 # S t a r t the Twisted event loop .
218 r e a c t o r . run ()

104

Appendix E

Attachment/ZIP file

Included with this master’s thesis is an attachment in the form of a ZIP file.
Three directories exist in this file, and the content is listed next.

E.1 Rank the Authors
Refer to Section 7.1.2 for a description of the files.

• author.py

• author_config.txt

E.2 Secure Web Voting
Refer to Section 8.2 for a description of the files.

• Computation Servers (directory)

– server1.py
– server2.py
– server3.py

• Web Site (directory)

– config.php
– index.php
– process.php
– style.css
– Vote.class
– vote.php
– vote_functions.php

105

Appendix E. Attachment/ZIP file

– vote_post.php
– xmlrpc-1.php
– xmlrpc-2.php
– xmlrpc-3.php
– xmlrpc.inc
– xmlrpc_wrappers.inc
– xmlrpcs.inc
– images (directory)

• Java applet and MySQL (directory)

– Vote.java (The source code of the Java applet.)
– phpMyAdmin SQL Dump.sql (SQL dump of the three database

tables.)

E.3 Secure Position Determination
This program was not included in the thesis, but was a test program im-
plementing the protocol by Tord Ingolf Reistad from his paper Multi-party
Secure Position Determination [Rei06].

• position.py

106

	Title Page
	Problem Description
	Abstract
	Preface
	Abbreviations
	List of Figures
	List of Tables
	List of Listings
	1 Introduction
	1.1 Secure Multiparty Computation
	1.2 Related Work
	1.3 Motivation
	1.4 Objectives
	1.5 Limitations
	1.6 Method
	1.7 Document Structure

	2 Secret Sharing
	2.1 Secret Splitting
	2.2 Additive Secret Sharing
	2.2.1 Creating the Shares
	2.2.2 Reconstructing the Secret

	2.3 Shamir Secret Sharing Scheme
	2.3.1 Overview
	2.3.2 Finite Fields
	2.3.3 Creating the Shares
	2.3.4 Reconstructing the Secret

	3 Secure Multiparty Computation
	3.1 Adversaries
	3.2 Network Assumptions
	3.3 Security
	3.4 Computation Stages
	3.4.1 The Input Stage
	3.4.2 The Final Stage
	3.4.3 The Computation Stage
	3.4.4 Multiplication Example

	3.5 MPC Frameworks

	4 Virtual Ideal Functionality Framework
	4.1 History
	4.2 Overview
	4.3 Features
	4.4 Architecture
	4.4.1 Runtime
	4.4.2 Finite Fields

	4.5 Asynchronous Design
	4.5.1 Expression Tree
	4.5.2 Twisted

	4.6 Example VIFF Program
	4.7 Security Assumptions
	4.8 Benchmarking

	5 Voting
	5.1 Overview
	5.2 Motivation
	5.3 The Voting Process
	5.4 Challenges
	5.5 Security Requirements

	6 Choice of Applications
	6.1 Motivation and Properties
	6.2 The Author Application
	6.3 The Voting Application

	7 Application 1: Rank the Authors
	7.1 Design and Implementation
	7.1.1 Screen Shots
	7.1.2 Architecture
	7.1.3 Libraries
	7.1.4 Code

	7.2 Benchmarks
	7.3 Possible Improvements
	7.3.1 Calculation of Points
	7.3.2 Complicated Application Launch

	8 Application 2: Secure Web Voting
	8.1 Design and Implementation
	8.1.1 Screen Shots

	8.2 Architecture
	8.2.1 Web Server
	8.2.2 Computation Servers

	8.3 Libraries
	8.3.1 SecureRandom
	8.3.2 XML-RPC

	8.4 Security Analysis
	8.4.1 Voter Privacy
	8.4.2 Eligibility
	8.4.3 Uniqueness
	8.4.4 Fairness
	8.4.5 Uncoercibility
	8.4.6 Receipt-freeness
	8.4.7 Accuracy
	8.4.8 Individual Vote Check

	8.5 Possible Improvements

	9 Discussion
	9.1 Secure Web Voting Application
	9.1.1 Location of the Computation Servers
	9.1.2 Storing of Shares

	9.2 VIFF
	9.2.1 Necessary Steps
	9.2.2 Development
	9.2.3 Required Background Theory
	9.2.4 Future Potential

	9.3 The Potential of Multiparty Computations
	9.4 Further Work
	9.4.1 Other Applications
	9.4.2 Improve and Deploy a Web Voting Application
	9.4.3 Large-scale E-voting

	10 Conclusion
	Bibliography
	Web References
	A Multiplication Mathematics
	A.1 Linear System Approach
	A.2 Vandermonde Matrix

	B VIFF Installation Guide
	B.1 Installation Steps
	B.2 Troubleshooting
	B.3 Generation of Configuration Files
	B.4 Additional Components

	C Source Code Author Application
	C.1 author.py

	D Source Code Web Application
	D.1 Vote.java
	D.2 server1.py

	E Attachment/ZIP file
	E.1 Rank the Authors
	E.2 Secure Web Voting
	E.3 Secure Position Determination

