
June 2009
Danilo Gligoroski, ITEM

Master of Science in Communication Technology
Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Telematics

Disk Encryption
Scrutinizing IEEE Standard 1619\XTS-AES

Adnan Vaseem Alam

Problem Description
'IEEE Standard for Cryptographic Protection of Data on Block-Oriented Storage Devices' (IEEE
Standard 1619-2007) is a new IEEE standard relating to narrow-block disk encryption. The
standard was approved in December 2007 by the IEEE-SA Standards Board and describes the XTS-
AES encryption algorithm and a standard for an XML-based key-export format.

In this thesis, the student will study principles and investigate methods used in disk encryption,
elaborate on IEEE Standard 1619-2007, provide a security assessment of XTS-AES, and lastly
perform a performance benchmark on hard drives using full disk XTS-AES encryption.

Assignment given: 15. January 2009
Supervisor: Danilo Gligoroski, ITEM

Abstract

Disk encryption has changed during the last decade from being a mechanism
only used by corporate executives and government agencies for their top secret
information, to become trivially feasible for everyone to utilize. One of the
forces that have been driving this development is the steady flow of new crypto-
graphic primitives such as tweakable narrow- and wide-block ciphers specifically
designed for disk encryption implementations. One such tweakable narrow-block
cipher is XTS-AES, which is standardized in IEEE Std 1619 and very recently
accepted by NIST as an approved mode of operation for AES under FIPS-140.

In the first part of this thesis, we study principles and investigate methods
used in disk encryption. We present the different implementation types of disk
encryption (hardware-based versus software-based, wide-block versus narrow-
block, authenticated versus transparent), commonly discussed modes of oper-
ations (LRW, XEX, MCB, CMC, EME, XCB), and briefly review some open-
source software implementations of disk encryption (TrueCrypt, FreeOTFE,
dm-crypt).

In the second part of this thesis we provide a thorough examination of XTS-AES,
describing both its security and real-world performance. To our knowledge, this
is the first scientific work to provide an elaborate description of XTS-AES while
also assessing its real-world performance. Our work show that introducing XTS-
AES-256 full system disk encryption using TrueCrypt 6.1a on Windows yield
a decrease in write and read speed of up to −35 % (average for Windows XP,
Windows Vista, and Windows 7 Beta). Further, our results also show that disk
operations that uses approximately 2 % of the CPU resources when no disk
encryption is present, takes up to 50 % of the CPU resources when full system
disk encryption is deployed.

i

ii

Preface

This master’s thesis is the final outcome of the author’s master studies at The
Norwegian University of Science and Technology (NTNU). The assignment was
given by Professor Danilo Gligoroski at the Department of Telematics, NTNU.
The research and writing were performed over a five-month period (February-
June 2009) in Trondheim, Norway.

This thesis is the result of an extensive research and the corroboration of many
sources. Finding concrete and reliable information about disk encryption has
proven to be a struggle, but I have hopefully created a comprehensive guide
to the topic of disk encryption and specifically the XTS-AES cipher mode.
Conducting research on and experimentation with disk encryption has been an
enriching experience and I am very pleased to have had the opportunity to scru-
tinize the state of art narrow-block cipher mode XTS-AES.

Last minute update, May 26 2009: NIST has accepted XTS-AES as an ap-
proved mode of operation for AES [27]. NIST plans to produce a draft Special
Publication that uses IEEE Std 1619-2007 as the reference for XTS-AES, along
with some general guidance. However, no official press release from NIST has
yet been published.

Acknowledgements
• My tutor, Professor Danilo Gligoroski for his encouraging feedback and

kind advice.

• NTNU staff for their generous help in providing me with necessary equip-
ment, software and licenses.

• My colleagues, family, and friends for their encouragement throughout my
master studies.

iii

iv

Contents

Abstract i

Preface iii

List of Figures ix

List of Tables xiii

List of Acronyms xv

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 2
1.3 Research Methodology . 2
1.4 Outline . 2

2 Background on Disk Encryption 5
2.1 Basic Cryptography . 5

2.1.1 Terminology . 6
2.1.2 Cryptographic Ciphers . 9
2.1.3 Advanced Encryption Standard 11
2.1.4 Block Cipher Modes of Operation 15
2.1.5 CTS: Ciphertext Stealing 19

2.2 Disk Encryption . 21
2.2.1 Hardware-based versus Software-based Encryption 21
2.2.2 Narrow-block versus Wide-block Encryption 23
2.2.3 Transparent versus Authenticated Encryption 24

2.3 Modes of Operation for Disk Encryption 26
2.3.1 LRW: Liskov, Rivest, Wagner 26
2.3.2 XEX: XOR-Encryption-XOR 27
2.3.3 MCB: Masked CodeBook 28
2.3.4 CMC: CBC-Mask-CBC 29
2.3.5 EME: ECB-Mix-ECB . 29
2.3.6 XCB: Extended CodeBook 29

2.4 Disk Encryption Software . 30
2.4.1 TrueCrypt . 31
2.4.2 FreeOTFE . 32
2.4.3 dm-crypt . 33

v

3 IEEE Std 1619-2007 35
3.1 History . 35
3.2 Scope . 36
3.3 Related Work . 37
3.4 XTS-AES . 38

3.4.1 XTS-AES Encryption Procedure 40
3.4.2 XTS-AES Decryption Procedure 42

3.5 XML-based Key-Export Format 44
3.5.1 Key Backup Structure Overview 45
3.5.2 XML Format . 47

4 Security Assessment 51
4.1 Computational Security . 51

4.1.1 General XEX Transform 51
4.1.2 XTS-AES Transform . 52

4.2 NIST Submission . 54
4.2.1 Security Related Feedback 54
4.2.2 Other Issues . 56
4.2.3 Changes . 57

4.3 Attacks . 58
4.3.1 Scenario: Stolen Storage Device 58
4.3.2 Scenario: Manipulate Disk Encryption Activity 60

4.4 Summary . 62

5 Performance Benchmark 63
5.1 Procedure . 63
5.2 Test Bench . 64

5.2.1 Computers . 64
5.2.2 Software . 65

5.3 Tests . 66
5.3.1 File Benchmark . 66
5.3.2 CPU Benchmark . 67

5.4 Test Cases . 68
5.4.1 Without Disk Encryption 68
5.4.2 With Disk Encryption . 68

5.5 Testing and Benchmarking Methodology 69

6 Results 73
6.1 Benchmarking Results . 73

6.1.1 Write Speed . 74
6.1.2 Read Speed . 76
6.1.3 CPU Usage . 78

6.2 Analysis . 80
6.2.1 Causality . 80
6.2.2 Possible Consequences . 80
6.2.3 Limitations and Sources of Error 81

6.3 Further Work . 82

7 Conclusion 83

vi

References 85

Web Resources 89

A TrueCrypt 6.1a 95

B Benchmark Results 101
B.1 Computer 1 using Windows XP 102
B.2 Computer 1 using Windows Vista 104
B.3 Computer 1 using Windows 7 . 106
B.4 Computer 2 using Windows XP 108
B.5 Computer 2 using Windows Vista 110
B.6 Computer 2 using Windows 7 . 112
B.7 Computer 3 using Windows XP 114
B.8 Computer 3 using Windows Vista 116
B.9 Computer 3 using Windows 7 . 118

C Attached ZIP file 121

vii

viii

List of Figures

2.1 A conventional block cipher versus a tweakable block cipher . . . 10
2.2 AES encryption and decryption 12
2.3 AES SubBytes stage . 13
2.4 AES ShiftRows stage . 13
2.5 AES MixColumns stage . 14
2.6 AES AddRoundKey stage . 14
2.7 ECB encryption . 16
2.8 ECB decryption . 16
2.9 CBC encryption . 17
2.10 CBC decryption . 17
2.11 Ciphertext Stealing . 20
2.12 Data-at-rest encryption . 21
2.13 Difference between a disk block and disk sector 23
2.14 LRW mode encryption . 26
2.15 XEX mode encryption . 27
2.16 MCB mode encryption . 28
2.17 Full disk encryption versus full system disk encryption 30
2.18 TrueCrypt main window . 31
2.19 FreeOTFE main window . 32
2.20 GParted showing a dm-crypt partition 33

3.1 Scope of IEEE Std 1619 . 37
3.2 XTS mode encryption . 38
3.3 Definition of a XTS-AES data unit 39
3.4 XTS-AES encryption of a single data block 40
3.5 XTS-AES encryption of multiple data blocks 41
3.6 XTS-AES encryption of multiple data blocks not dividable in

128-bit blocks . 41
3.7 XTS-AES decryption of a single data blocks 42
3.8 XTS-AES decryption of multiple data blocks 43
3.9 XTS-AES decryption of multiple data blocks not dividable in

128-bit blocks . 43
3.10 DTD for the IEEE Std 1619 key backup format 47
3.11 XML-based key backup structure example #1 47
3.12 XML-based key backup structure example #2 49

4.1 Logarithmic plot of the XEX/XTS-AES security bounds 53

ix

5.1 File benchmark performed with HD Tune Pro 3.5 66
5.2 CPU benchmark performed with HD Tune Pro 3.5 67
5.3 Tree structure depicting the test procedure 70

6.1 Average write speeds during benchmarking under Windows XP,
Windows Vista, and Windows 7 75

6.2 Average read speeds during benchmarking under Windows XP,
Windows Vista, and Windows 7 77

6.3 Average CPU usage during benchmarking under Windows XP,
Windows Vista, and Windows 7 79

6.4 Quality of Experience . 81

A.1 TrueCrypt 6.1a from www.truecrypt.org 95
A.2 TrueCrypt meny option for full system disk encryption 96
A.3 Encryption options of TrueCrypt 97
A.4 Choosing master password for TrueCrypt 97
A.5 TrueCrypt collects random numbers from cursor movement . . . 98
A.6 TrueCrypt rescue disk . 98
A.7 TrueCrypt wipe modes . 99
A.8 TrueCrypt bootloader . 99
A.9 TrueCrypt encryption process . 100

B.1 Bar diagrams showing disk performance measurements for com-
puter 1 running Windows XP without disk encryption. 102

B.2 Bar diagrams showing disk performance measurements for com-
puter 1 running Windows XP with disk encryption. 103

B.3 Bar diagrams showing disk performance measurements for com-
puter 1 running Windows Vista without disk encryption. 104

B.4 Bar diagrams showing disk performance measurements for com-
puter 1 running Windows Vista with disk encryption. 105

B.5 Bar diagrams showing disk performance measurements for com-
puter 1 running Windows 7 without disk encryption. 106

B.6 Bar diagrams showing disk performance measurements for com-
puter 1 running Windows 7 with disk encryption. 107

B.7 Bar diagrams showing disk performance measurements for com-
puter 2 running Windows XP without disk encryption. 108

B.8 Bar diagrams showing disk performance measurements for com-
puter 2 running Windows XP with disk encryption. 109

B.9 Bar diagrams showing disk performance measurements for com-
puter 2 running Windows Vista without disk encryption. 110

B.10 Bar diagrams showing disk performance measurements for com-
puter 2 running Windows Vista with disk encryption. 111

B.11 Bar diagrams showing disk performance measurements for com-
puter 2 running Windows 7 without disk encryption. 112

B.12 Bar diagrams showing disk performance measurements for com-
puter 2 running Windows 7 with disk encryption. 113

B.13 Bar diagrams showing disk performance measurements for com-
puter 3 running Windows XP without disk encryption. 114

B.14 Bar diagrams showing disk performance measurements for com-
puter 3 running Windows XP with disk encryption. 115

x

www.truecrypt.org

B.15 Bar diagrams showing disk performance measurements for com-
puter 3 running Windows Vista without disk encryption. 116

B.16 Bar diagrams showing disk performance measurements for com-
puter 3 running Windows Vista with disk encryption. 117

B.17 Bar diagrams showing disk performance measurements for com-
puter 3 running Windows 7 without disk encryption. 118

B.18 Bar diagrams showing disk performance measurements for com-
puter 3 running Windows 7 with disk encryption. 119

xi

xii

List of Tables

2.1 AES parameters . 11
2.2 NIST approved block cipher modes of operation 15

3.1 Overview of the IEEE Std 1619 key backup structure 45
3.2 StructureID element . 45
3.3 Standard element . 45
3.4 KeyScope element . 46
3.5 Transform element . 46
3.6 KeyMaterial element . 46

4.1 Queries measured in bytes . 52
4.2 Probability for an adversary to be successful in an attack based

on the birthday paradox using the probability bounds deduced
by Rogaway [Rog04] and Minematsu [Min07] for the XEX con-
struction. 53

4.3 Probability for an adversary to be successful in an attack based
on the birthday paradox using the probability bounds deduced
by Liskov et al. [LM08] for XTS-AES. 54

6.1 Average write speeds during benchmark 74
6.2 Average read speeds during benchmark 76
6.3 Average CPU usage during benchmark 78

B.1 Disk performance measurements for computer 1 running Win-
dows XP without disk encryption. 102

B.2 Disk performance measurements for computer 1 running Win-
dows XP with disk encryption. 103

B.3 Disk performance measurements for computer 1 running Win-
dows Vista without disk encryption. 104

B.4 Disk performance measurements for computer 1 running Win-
dows Vista with disk encryption. 105

B.5 Disk performance measurements for computer 1 running Win-
dows 7 without disk encryption. 106

B.6 Disk performance measurements for computer 1 running Win-
dows 7 with disk encryption. 107

B.7 Disk performance measurements for computer 2 running Win-
dows XP without disk encryption. 108

xiii

B.8 Disk performance measurements for computer 2 running Win-
dows XP with disk encryption. 109

B.9 Disk performance measurements for computer 2 running Win-
dows Vista without disk encryption. 110

B.10 Disk performance measurements for computer 2 running Win-
dows Vista with disk encryption. 111

B.11 Disk performance measurements for computer 2 running Win-
dows 7 without disk encryption. 112

B.12 Disk performance measurements for computer 2 running Win-
dows 7 with disk encryption. 113

B.13 Disk performance measurements for computer 3 running Win-
dows XP without disk encryption. 114

B.14 Disk performance measurements for computer 3 running Win-
dows XP with disk encryption. 115

B.15 Disk performance measurements for computer 3 running Win-
dows Vista without disk encryption. 116

B.16 Disk performance measurements for computer 3 running Win-
dows Vista with disk encryption. 117

B.17 Disk performance measurements for computer 3 running Win-
dows 7 without disk encryption. 118

B.18 Disk performance measurements for computer 3 running Win-
dows 7 with disk encryption. 119

xiv

List of Acronyms

AES Advanced Encryption Standard

Base64 Content encoding as specified in RFC 3548

CBC Cipher Block Chaining

CCM Counter with CBC-MAC

CFB Cipher FeedBack

CMAC Cipher-based Message Authentication Code

CMC CBC-Mask-CBC

CPU Central Processing Unit

CTR Counter

CTS Ciphertext Stealing

DMTF Distributed Management Task Force

DTD Document Type Definition

ECB Electronic CodeBook

EME Encrypt-Mask-Encrypt

ESSIV Encrypted Salt-Sector Initialization Vector

FIPS Federal Information Processing Standard

GCM Galois/Counter

GF Galois Field

IEEE Institute of Electrical and Electronics Engineers

IETF Internet Engineering Task Force

INCITS InterNational Committee for Information Technology
Standards

IP Intellectual Property

ISO/IEC JTC1 International Organization for Standardization/International
Electrotechnical Commission Joint Technical Committee

xv

IV Initialization Vector

KB Kilobyte

LRW Liskov, Rivest, Wagner

MAC Message Authentication Code

MBR Master Boot Record

MCB Masked CodeBook

NIST National Institute of Standards and Technology

OCB Offset CodeBook

OFB Output FeedBack

OS Operating System

P1619.1 Authenticated Encryption project of SISWG

P1619.2 Wide-block Encryption project of SISWG

P1619.3 Key Management Infrastructure project of SISWG

P1619 Narrow-block Encryption project of SISWG

PDA Personal Digital Assistant

PMAC Parallelizable MAC

PRP Pseudo Random Permutation

SISWG Security in Storage Working Group

SNIA Storage Networking Industry Association

Std Standard

TCB Tweakable CodeBook

TCG Trusted Computing Group

XCB Extended CodeBook

XEX XOR-Encrypt-XOR

XML Extensible Markup Languange

XOR Exclusive OR

XTS XEX-based Tweakable CodeBook mode with Ciphertext
Stealing

xvi

Chapter 1

Introduction

There are two types of
encryption: one that will prevent
your sister from reading your
diary and one that will prevent
your government.

Bruce Schneier

Computer data or digital information is one of the most sensitive and important
assets of people, businesses and organizations today. This is a result of the
prolonged process of everything and everyone going digital, which started many
years ago. Although the digital information age has brought on minimized
paperwork, increased efficiency, automation, and increased overall productivity,
one often neglected byproduct is also the need for increased security awareness.

1.1 Motivation

As the dependency on computers has increased, so has the number of portable
devices like laptops and PDAs. With these, the chances of data theft, system
compromise and intrusion activities have also increased greatly. In most cases,
the actual data is significantly more valuable than the asset it is stored on, and
unwanted disclosure of that data can thus be very damaging.

One solution is to use disk encryption to encrypt all the data on the disk, ef-
fectively reducing the risk of unwanted disclosure. Disk encryption has changed
during the last decade from being a mechanism only used by corporate ex-
ecutives and government agencies for their top secret information, to become
trivially feasible for everyone to utilize. One of the forces that have been driv-
ing this development is the steady flow of new cryptographic primitives such as
tweakable narrow- and wide-block ciphers specifically designed for disk encryp-
tion implementations. One such tweakable narrow-block cipher is XTS-AES,
which in December 2007 was standardized as a part of IEEE’s newest stan-
dard on the area of narrow-block encryption, IEEE Standard for Cryptographic
Protection of Data on Block-Oriented Storage Devices (IEEE Std 1619-2007).

1

2 Disk Encryption – Scrutinizing IEEE Standard 1619\XTS-AES

1.2 Objectives

The objectives of this thesis can be summarized as follows:

• Present a detailed introduction to the topic of disk encryption

• Give a careful examination of IEEE Std 1619-2007

• Provide a security assessment of XTS-AES

• Perform real-world performance benchmarks of XTS-AES

1.3 Research Methodology

Our research can be divided into four phases, based on the objectives stated in
the previous section. First, we will perform a comprehensive study of the gen-
eral topic of disk encryption. This will provide us with the required knowledge
needed for the second objective of this thesis, namely the task of elaborating
on IEEE Std 1619. Next, we will assess the security of XTS-AES and find at-
tacks that may be applicable to XTS-AES. Then, we will experiment with some
open-source implementations of the XTS-AES cipher, finding the most suitable
implementation to use in the last phase of our research, namely the performance
benchmark showing how disk encryption using XTS-AES affects the hard disk
performance of a computer. The test methodology used during the performance
benchmark is presented in section 5.5.

In the first part of our research, our main sources of information will include
books, papers, standardization documents, and accredited web pages on the
topic of cryptography. For the second part we will be using the standardization
document IEEE Std 1619 [CC07]. But, since this is a relatively new standard,
we will also use other sources of information to understand and detect misprints
and unfavorable explanations. Thus, we will use the P1619 Task Group Email
Archive [19] and comments from the cryptographic community [26] for errata
and supplementary information about the XTS-AES cipher. The sources used
in the security analysis of XTS-AES will also be the IEEE Std 1619 and P1619
Email Archive, along with other relevant papers where the security of XEX and
XTS-AES is discussed [Rog04, LM08, Min07].

1.4 Outline

The remainder of this thesis consists of six main chapters in addition to ref-
erences, web resources, and appendices. All the test results included in this
document are available electronically with the thesis, along with the software
used in the performance benchmark.

• Chapter 2 gives a comprehensive introduction to topic of disk encryption,
providing the reader with the necessary background to recognize different
types of disk encryption and know the most common modes of operation
for disk encryption.

Chapter 1. Introduction 3

• Chapter 3 provides a careful examination of IEEE Std 1619, describing
both the XTS-AES cipher mode and XML-based key export format.

• Chapter 4 presents the reader with a security assessment of XTS, com-
prising a review of the computational security of XTS-AES, a synopsis
of comments submitted by the cryptographic community regarding XTS-
AES, and a discussion on attacks applicable to XTS-AES.

• Chapter 5 specifies the procedure, test bench, test cases, and testing
methodology used in the performance benchmark.

• Chapter 6 presents and discusses the results obtained from performance
benchmark described in the previous chapter.

• Chapter 7 summarizes this thesis and its findings.

• Appendix A gives step-by-step instructions on how full system disk en-
cryption was employed during the performance benchmark.

• Appendix B lists the exhaustive result sets with relevant statistics.

• Appendix C lists the contents of the attached ZIP file.

Throughout this thesis, we have distinguished between printed references and
web resources to clearly state the origin of our sources of information. Printed
references are cited using alphanumerical values and web resources are cited
using numerical values. Web resources that did not provide an explicit date of
creation has been given the date of our visit. Additionally, we emphasize that
the usage of first person plural (i.e. we), is only due to common convention and
should therefore be interpreted as the author.

4 Disk Encryption – Scrutinizing IEEE Standard 1619\XTS-AES

Chapter 2

Background on Disk
Encryption

The art of war teaches us to rely
not on the likelihood of the
enemy’s not coming, but on our
own readiness to receive him; not
on the chance of his not
attacking, but rather on the fact
that we have made our position
unassailable.

The Art of War, Sun Tzu

This chapter will give a comprehensive introduction to relevant theory to under-
stand how disk encryption works. First, we will start with an introduction to
basic cryptographic elements used throughout this thesis. Next, we will address
disk encryption specifically, describing its various implementation types. Then,
we will review some modes of operation especially designed for disk encryption.
Lastly, we will describe the software-based disk encryption applications that at
the time of writing support the XTS-AES cipher mode.

2.1 Basic Cryptography

Cryptography, derived from the Greek kryptó “hidden” and gráfo “to write”,
is the ancient science and art of hiding the content of a message from prying
eyes. Although now considered a branch of modern number theory and com-
puter science, it was originally literarily done by hand as early as 4000 years
ago [Kah97]. The Egyptians used substitution ciphers to substitute hieroglyphs
with less common varieties of hieroglyphs in inscriptions on grave chambers,
presumably in order to obfuscate the meaning of the inscriptions for people who
did not know how to reverse the substitutions.

Modern cryptography is more complex, and the following subsections aim to-
wards defining basic cryptographic elements used throughout this thesis.

5

6 Disk Encryption – Scrutinizing IEEE Standard 1619\XTS-AES

2.1.1 Terminology
Cryptography uses its own terminology that we will attempt to follow through-
out this thesis. Although most of the terminology might be intuitive, we want
to prevent any erroneous conceptions by providing a description of the termi-
nology used in this thesis.

First of all, encryption is the process of encoding a message to hide its content,
while decryption is the corresponding reverse operation. The mathematical
notations for these two operations are expressed in Equation 2.1 and 2.2 respec-
tively, where p denotes the intelligible plaintext and c denotes the obfuscated
ciphertext.

E(p) = c (2.1)

D(c) = p (2.2)

By replacing c with E (p) in Equation 2.2, we can easily see that decryption of
encrypted content work as follows:

D(E(p)) = p (2.3)

As ciphers usually use keys to ensure their secrecy, we indicate encryption and
decryption with the key k as:

Ek(p) = c (2.4)

Dk(c) = p (2.5)

Furthermore, symmetric key cipher will denote a cryptographic algorithm using
the same key for both encryption and decryption, and plaintext and ciphertext
the corresponding pair of plain and enciphered message. In future equations and
figures these two objects are denoted as Pi for plaintext and Ci for ciphertext,
where i is the index. Moreover, cipher mode will often be used as short for
block cipher mode of operation. Lastly, a cryptosystem will refer to a system
consisting of a symmetric key cipher, all possible plaintext-ciphertext pairs, and
the corresponding key.

Main Cryptographic Goals

Menezes et al. [MvOV01] defines four mechanisms or services cryptography
attempts to provide:

1. Confidentiality is a service “used to keep the content of information from
all but those authorized to have it. Secrecy is a term synonymous with con-
fidentiality and privacy. There are numerous approaches to providing con-
fidentiality, ranging from physical protection to mathematical algorithms
which render data unintelligible.”

2. Data integrity is a service “which addresses the unauthorized alteration of
data. To assure data integrity, one must have the ability to detect data
manipulation by unauthorized parties. Data manipulation includes such
things as insertion, deletion, and substitution.”

Chapter 2. Background on Disk Encryption 7

3. Authentication is a service “related to identification. This function ap-
plies to both entities and information itself. Two parties entering into a
communication should identify each other. Information delivered over a
channel should be authenticated as to origin, date of origin, data content,
time sent etc.”

4. Non-repudiation is a service “which prevents an entity from denying previ-
ous commitments or actions. When disputes arise due to an entity deny-
ing that certain actions were taken, a means to resolve the situation is
necessary. [...] A trusted third party is needed to resolve the dispute.”

It is surely possible to identify other services provided by cryptography as well,
but these would probably be based upon one or more of the goals above. For
example, although disk encryption is a cryptographic service it self, it is em-
ployed through the use of one or more of the mechanisms above. Hence, the
borders between cryptographic services are not absolute, and overlaps occur.

Cryptographic Attack Models

Typically, the objective of an attack on an encryption system is to recover the
key in use, rather than simply recover the plaintext of one single ciphertext.
This is consistent with Kerckhoffs’ assumption [Ker83], which states that the
strength and security of an encrypted message should lie in keeping the key
secret, not in assuming that the algorithm used to encrypt it is unknown to the
adversary. Thus, we assume that the adversary’s main goal is to deduce the key.

We consider the following two approaches for attacking a conventional encryp-
tion scheme in order to deduce the key [Sta06]:

• A cryptanalytic attack rely on the nature of the algorithm in addition to
partial or complete knowledge to the general characteristics of the plain-
text or even some plaintext-ciphertext pairs. This type of attack exploits
the construction of the algorithm to deduce the key being used.

• A brute-force attack is a more primitive attack type. This attack is carried
out by trying every possible key on a piece of ciphertext until an intelligible
translation can be made. On average, half of all possible keys must be tried
to achieve success.

If either of these types of attack succeeds in deducing the key, the effect is
potentially grave as all future and past plaintexts encrypted with that key are
compromised. Cryptanalytic attacks can further be divided into various attack
models, based on the amount of information known to the adversary [MvOV01]:

• Ciphertext only attacks are mounted by trying to recover the key or plain-
text from the ciphertext only.

• Known plaintext attacks on the other hand are performed if the cryptan-
alyst has access to one or more plaintext-ciphertext pairs formed with the
secret key.

8 Disk Encryption – Scrutinizing IEEE Standard 1619\XTS-AES

• Chosen plaintext attacks are based on the attacker being able to choose
the plaintext and retrieve the corresponding ciphertext generated by en-
cryption.

• Chosen ciphertext attacks are the opposite, here the cryptanalyst may
choose the ciphertext, and obtain the plaintext by decryption.

The difference between these attack models is relevant when we later discuss
attacks that may be applicable to XTS-AES in section 4.3.

Computational Security

When considering the security of an encryption system, one must distinct be-
tween issues affecting the theoretical security from those of computational se-
curity. The reason for this is that in practice, no adversary can have unlimited
computational power [JBSK01]. The security of a practical encryption system
need therefore not necessarily depend on the theoretical impossibility of break-
ing a cipher, but rather on the practical difficulty of launching a successful
attack. Throughout this thesis we will use the word “complexity” to describe
such difficulty. The complexity of an attack is generally understood to mean
the average number of operations used in the attack. For a cryptosystem to be
computationally secure this means that the complexity of any successful attack
exceeds the computational capability of the adversary. Hence, we need to pay
attention to the computational effort needed for a successful attack. To describe
computational complexity, we define the following terms:

Time complexity. The time complexity denotes the expected time to solve
a problem. Note however that expected time in this case is not measured in
seconds or years, but rather in problem size. Given a cipher where brute-force
key search is the best option, the time complexity is directly dependent on the
key size. For example, the time complexity for guessing a 128-bit key is around
2128−1 = 2127. The actual time it will really take to guess it depends on the
adversary’s resources, methodology, and luck.

Space complexity. Space complexity on the other hand, refers to the space
requirements (i.e. data input) needed to solve a problem. Just like time com-
plexity, space complexity is also measured in problem size. Consider the follow-
ing two examples to distinguish time and space complexity. In an exhaustive
key-search attack, the amount of input data needed for the attack is an arbitrary
number of ciphertext blocks, which is generally a very small number in compar-
ison with the number of operation needed to test every possible key. Therefore,
the complexity of such an attack is clearly time complexity. An opposite exam-
ple is differential cryptanalysis1, where the amount of input data needed (i.e.
ciphertext-plaintext pairs) dominates, while the number of computations used
in the attack is relatively small. Hence, the complexity of such an attack is
space complexity.

1Differential cryptanalysis is a general form of cryptanalysis relating to the study of how
differences in an input can affect the resultant difference at the output [MvOV01]. In the case
of a block cipher, it refers to a set of techniques for tracing differences through the network of
permutations and substitutions, discovering where the cipher exhibits non-random behavior,
and exploiting such properties to recover the secret key [vT06].

Chapter 2. Background on Disk Encryption 9

2.1.2 Cryptographic Ciphers

The following paragraphs will give a superficial introduction to the three main
types of ciphers in today’s cryptography; block ciphers, stream ciphers and the
fairly new tweakable block ciphers.

Block Ciphers

In cryptography, a block cipher is a symmetric key cipher that operates on a
fixed-length group of bits (hence, the term block). A conventional block cipher
takes a key K ∈ {0, 1}k and a fixed-length message M ∈ {0, 1}n as input, and
produces a fixed-length ciphertext C ∈ {0, 1}n. The signature of a block cipher
is defined in Equation 2.6.

E : {0, 1}k × {0, 1}n → {0, 1}n (2.6)

Most block ciphers have similar structures (the Feistel structure being the most
popular one [Sta06]), which normally consist of a number of identical round of
processing. In each round, a substitution or permutation is performed to ob-
fuscate the original content. When doing so for a number of rounds, including
the use of a secret (i.e. key), a block cipher is able to provide confidentiality
by diffusion and confusion2. In fact, diffusion and confusion is so successful in
capturing the essence of the desired attributes of a block cipher, that they have
become the cornerstone of modern block cipher design [Rob95].

The only block cipher of relevance to this thesis is the Advanced Encryption
Standard (AES), which is described in section 2.1.3.

Stream Ciphers

Block ciphers can be contrasted with stream ciphers; which operate on individ-
ual bits one at the time and the transformation varies during the encryption.
Equation 2.7 shows that the signature of a stream cipher is composed by a
keystream K ∈ {0, 1}∗ and variable-length message M ∈ {0, 1}∗ that produces
a variable-length ciphertext C ∈ {0, 1}∗.

E : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ (2.7)

Encryption is accomplished by combining the keystream with the plaintext,
usually with the bitwise XOR operation. The generation of the keystream can
be independent of the plaintext and ciphertext, yielding what is termed a syn-
chronous stream cipher, or it can depend on the data and its encryption, in
which case the stream cipher is said to be self-synchronizing. Most stream ci-
pher designs are for synchronous stream ciphers [22].

2The terms diffusion and confusion were introduced by Claude Shannon to capture the two
basic building blocks for any cryptographic system [Sha49]. While the mechanism of diffusion
seeks to make the statistical relationship between the plaintext and ciphertext as complex as
possible, the mechanism of confusion seeks to make the relationship between the statistics of
the ciphertext and the value of the key as complex as possible. The main goal of both is to
mitigate attempts to discover the key, which is achieved by the use of complex substitution
and permutation algorithms [Sta06].

10 Disk Encryption – Scrutinizing IEEE Standard 1619\XTS-AES

It is worth mentioning that for disk encryption applications, the use of stream
ciphers is futile since they require, for their security, the same keystream not
be used twice. When also considering the fact that one need to match the
amount of keystream with the exact amount of plaintext that is to be ciphered
one should clearly identify the need to prohibit this type of ciphers for disk
encryption solutions – although we have seen cases of stream ciphers being used
for this purpose in the past [Fer06, 6].

Tweakable Block Ciphers

Tweakable block ciphers are a new cryptographic primitive proposed by Liskov et
al. in their paper “Tweakable Block Ciphers” [LRW02]. While the conventional
block cipher process takes two inputs, a tweakable block cipher process takes
three inputs; a key K ∈ {0, 1}k, a messageM ∈ {0, 1}n, and a third input called
the “tweak” T ∈ {0, 1}t. The signature of a tweakable block cipher is defined in
Equation 2.8.

E : {0, 1}k × {0, 1}t × {0, 1}n → {0, 1}n (2.8)
A tweakable block cipher is thus defined quite similar to a conventional block
cipher, but makes use of one additional input in the ciphering process. This is
depicted in Figure 2.1. Please note that the additional input does not necessarily
imply that the internal block cipher construction is changed. Most commonly,
block ciphers are used “as is”, and the additional tweak value is used in pre- and
post-whitening processes. This means that the input and output of the block
cipher is combined with the tweak.

Liskov et al. mentions several design goals for the tweakable block cipher design,
but the two most important ones are; efficiency, a tweakable block cipher should
have the property that changing the tweak should be less costly than changing
the key; and security, meaning that even if an adversary has control of the tweak
input, the tweakable block cipher must remain secure. The latter implies that
the introduction of the tweak is not to provide additional uncertainty to an
adversary, only variability [LRW02].

Block Cipher
Encryption Process

Plaintext

Ciphertext

Key

(a) Conventional Block Cipher

Tweakable
Block Cipher

Encryption Process

Plaintext

Ciphertext

Tweak

Key

(b) Tweakable Block Cipher

Figure 2.1: Notice that apart from the tweak input, a tweakable block cipher is the
same as a conventional block cipher.

The tweak input in tweakable block ciphers enables a multitude of new modes of
operation. [LRW02] describes three such possible modes, and imply that most
existing block cipher modes of operation may be re-implemented as tweakable.

Chapter 2. Background on Disk Encryption 11

2.1.3 Advanced Encryption Standard
Advanced Encryption Standard (AES) was published by National Institute of
Standards and Technology (NIST) in 2001. AES is the symmetric block cipher
that has replaced Data Encryption Standard (DES) as the approved standard
for a wide range of applications [34]. AES is an instantiation of the Rjindael
block cipher, which was selected as the most suitable design for AES after a 5-
year standardization process in which a total of fifteen competing designs were
presented and evaluated [30]. AES has been extensively analyzed and is now
used worldwide, in fact; AES is the first publicly accessible and open cipher
approved by the National Security Agency (NSA) for top secret information [7].

The industry adoption of AES is widespread, and its use in disk encryption
solutions is no exception. A quick survey of both hardware-based and software-
based disk encryption solutions have namely shown us that AES is the block
cipher of choice for the vast majority of the disk encryption solutions available
to the public. Although some software-based implementations do provide the
possibility to choose between different ciphers, AES is most often the default
and recommended choice.

AES is a substitution-permutation network cipher that works on 128-bit data
blocks3, and supports three different key lengths: 128, 192 and 256 bits [DR03].
The ciphering process consists of a certain number of rounds, each consisting
of multiple stages. These are stages of permutation and substitution that ul-
timately provide confidentiality. As depicted in Figure 2.2, the first and last
stage of both the encryption and decryption process is always an AddRound-
Key stage – the stage mixing the key into the process. The reason for this is
that all the other three stages (called SubBytes, ShiftRows and MixColumns)
together provide non-linearity, confusion, and diffusion, but would not provide
any real security if placed in the beginning or the end; since they do not use the
key, and thus are fully reversible.

Key size 128 bits 192 bits 256 bits
Plaintext block size 128 bits 128 bits 128 bits
Number of rounds 10 12 14
Round key size 128 bits 128 bits 128 bits
Expanded key size 1408 bits 1664 bits 1920 bits

Table 2.1: AES parameters [Sta06]

After the initial AddRoundKey stage, the number of rounds to be performed is
based on the length of the key (see Table 2.1). When using AES with a 128-bit
key, the master key is expanded into a 1408-bit key by a stage called KeyEx-
pansion, yielding 128 bits for the initial AddRoundKey stage, and additional
1280 bits for 10 rounds of ciphering.

3Although Rjindael can be specified with a block size in any multiple of 32 bits between
128-bit and 256-bit, AES is specified to only use a data block size of 128 bits.

12 Disk Encryption – Scrutinizing IEEE Standard 1619\XTS-AES

KeyExpansion

AddRoundKey

SubBytes

ShiftRows

MixColumns

AddRoundKey

SubBytes

ShiftRows

AddRoundKey AddRoundKey

Inverse ShiftRows

Inverse SubBytes

AddRoundKey AddRoundKey

MixColumns

SubBytes

ShiftRows

Inverse MixColumns

AddRoundKey

Inverse MixColumns

Inverse ShiftRows

Inverse SubBytes

AddRoundKey

Inverse ShiftRows

Inverse SubBytes

Plaintext

Ciphertext Ciphertext

Plaintext

Last round
N

ext to last round
First round

La
st

 ro
un

d
N

ex
t t

o
la

st
 ro

un
d

Fi
rs

t r
ou

nd

Figure 2.2: AES encryption (left side) and decryption (right side). Figure adapted
from [Sta06].

The following paragraphs will briefly explain each stage of the AES algorithm;
KeyExpansion, SubBytes, ShiftRows, MixColumns, and AddRoundKey. Read-
ers familiar with the stages of AES are welcome to skip the next two pages.

In the official AES specification document [oSN], the 128-bit input data block is
depicted as a square matrix of bytes. This block is copied into the State array,
which is modified at each stage. After the final stage, State is copied to an
output matrix. In the rest of this section, references to the State are the array
which initially contained the plaintext.

Chapter 2. Background on Disk Encryption 13

KeyExpansion

The KeyExpansion stage is the very first stage initiated by the AES cipher,
and provides round keys for the AddRoundKey stages. The expanded key (i.e.
compilation of round keys) is derived by taking the master key as input and
expanding this to a size that is sufficient to provide 128-bit round keys for each
of the AddRoundKey stages of the cipher. The KeyExpansion process can be
computed ahead of time, as a security-performance tradeoff. Details about how
the KeyExpansion stage derives the expanded key can be found in [DR03, oSN].

SubBytes

1,2

a a a

aa1,1aa

a 2,1a a a

aaa

0,0 a0,1 0,2 0,3

1,0 1,3

2,0 2,2 2,3

3,0 a3,1 3,2 3,3 b

2,1

1,2

b b b b

bbbb

b b b b

bbb

0,0 0,1 0,2 0,3

1,0 1,1 1,3

2,0 2,2 2,3

3,0 3,1 3,2 3,3

SubBytes

S

Figure 2.3: AES SubBytes stage

In the SubBytes stage, each
byte in the State is replaced
with another according to a
lookup table, the Rijndael S-
box (found in [DR03]). This
operation provides the non-
linearity in the cipher. The S-
box used, is derived from the
multiplicative inverse over
Galois Field, GF(28), which
is known to have good non-
linearity properties [Sta06].
This means that the output
cannot be described as a sim-
ple mathematical function of the input. The S-box is also chosen to avoid both
fixed points (S-box(a) = a) and opposite fixed points (S-box(a) = ā, where ā is
the bitwise complement of a). The Inverse SubBytes stage is done the same way,
but with a different lookup table, the Inverse Rijndael S-box (found in [DR03]).

ShiftRows

ShiftRows

a a a a

aaaa

a a a a

aaaa

a a a a

aaaa

a a a a

aaaa

No
change

Shift 1

Shift 2

Shift 3

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3 1,1 1,2 1,3 1,0

0,0 0,1 0,2 0,3

2,0 2,1 2,2 2,3 2,0 2,12,2 2,3

3,0 3,1 3,2 3,3 3,0 3,1 3,23,3

Figure 2.4: AES ShiftRows stage

The ShiftRows stage
operates, as the name
implies, on the rows
of the State. It cycli-
cally left shifts the
bytes in each row
by a certain offset,
except for the first
row (which is left un-
changed). On the
second row, each byte
is shifted one to the
left. Similarly, on the third and fourth rows, each byte is shifted by offsets of
two and three to the left respectively. This way, each column of the output
state of the ShiftRows step is composed of bytes from each column in the input
state. The Inverse ShiftRows stage performs the circular shifts in the opposite
direction for each of the last three rows.

14 Disk Encryption – Scrutinizing IEEE Standard 1619\XTS-AES

MixColumns

1,2

a a a

aa1,1aa

a 2,1a a a

aaa

0,0

a0,1

0,2 0,3

1,0 1,3

2,0 2,2 2,3

3,0 a3,1
3,2 3,3 b

1,2

b b b

bbb

b
2,1b b b

bb

0,0

b0,1

0,2 0,3

1,0
b1,1

1,3

2,0 2,2 2,3

3,0 b3,1
3,2 3,3

MixColumns

f(x)

Figure 2.5: AES MixColumns stage

In the MixColumns
stage, the four bytes
of each column of
the State are com-
bined using an invert-
ible linear transfor-
mation. The Mix-
Columns function takes
four bytes as input
and outputs four bytes,
where each input byte
affects all output bytes.
Together with ShiftRows,
MixColumns provides
diffusion in the ci-
pher. Each column is treated as a polynomial over GF(28) and is then mul-
tiplied modulo x4 + 1 with a fixed polynomial f(x) = 3x3 + x2 + x + 2. The
MixColumns and ShiftRows transformations ensure that after a few rounds, all
output bits depend on all input bits [35]. The Inverse MixColumns stage re-
verses the diffusion made by the forward process by treating each column as
a polynomial over GF(28) multiplied modulo x4 + 1 with the fixed polynomial
g(x) = 11x3 + 13x2 + 9x+ 14. This completely reverses the process since f(x)’s
inverse is g(x), g(x) = f(x)−1mod(x4 + 1) [Sta06].

AddRoundKey

2,1

1,21,1

a a a a

aaaa

a a a a

aaaa

0,0 0,1 0,2 0,3

1,0 1,3

2,0 2,2 2,3

3,0 3,1 3,2 3,3

k k k k

kkkk

k k2,1

k

k k

kkk

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,2 2,3

3,0 3,1 3,2 3,3

b

2,1

1,2

b b b b

bbbb

b b b b

bbb

0,0 0,1 0,2 0,3

1,0 1,1 1,3

2,0 2,2 2,3

3,0 3,1 3,2 3,3

AddRoundKey

Figure 2.6: AES AddRoundKey stage

AddRoundKey is a
simple stage where
each byte of the State
is bitwise XORed with
a byte of a round key
– effectively changing
every bit of the State.
For each time the Ad-
dRoundKey stage is
performed in either
encryption or decryp-
tion, a new round
key is provided by the
KeyExpansion stage.
Although the other
stages provide essen-
tial diffusion and con-
fusion to the cipher,
this is the only stage
that mixes the actual
key material into the State. The Inverse AddRoundKey stage is identical, be-
cause the XOR operation is its own inverse, (a⊕ k)⊕ k = a.

Chapter 2. Background on Disk Encryption 15

2.1.4 Block Cipher Modes of Operation

As described in section 2.1.2, a cryptographic block cipher operates on data
blocks of fixed length. But, because encrypting the same block of plaintext
under the same key always produces the same ciphertext, several modes of op-
eration have been invented. This is a way to add more variability to the encryp-
tion process, enabling block ciphers to provide confidentiality for messages of
arbitrary block lengths, and optionally also provide authentication capabilities
[MvOV01]. These benefits come at a slightly increased computational complex-
ity, and are the reason why these designs are common.

The block cipher modes of operation can be divided into three main categories:
confidentiality modes, authentication modes, and combined modes for confi-
dentiality and authentication. The confidentiality modes are focused only on
obscuring the original content, while the authentication modes are focused on
assuring that the content has not been tampered with undetected. Thus, a com-
bined mode for confidentiality and authentication is focused on both obscuring
the original content and assuring that the content has not been tampered with.
Notice that the difference between a dedicated authentication mode and hash
function (whose purpose is also to assure that data has not been tampered with
undetected) is that while the hash function is designed to be hard to invert4,
the authentication mode bases its security on the knowledge of the secret key
and the underlying cipher.

Name Confidentiality Authentication
Electronic CodeBook (ECB) Y
Cipher-Block Chaining (CBC) Y
Cipher FeedBack (CFB) Y
Output FeedBack (OFB) Y
Counter (CTR) Y
Cipher-based Message Authenti-
cation Code (CMAC)

Y

Counter with CBC-MAC (CCM) Y Y
Galois/Counter (GCM) Y Y

Table 2.2: NIST approved block cipher modes of operation

Currently, NIST has officially approved eight block cipher modes of operations
(see Table 2.2). Of these, five are confidentiality modes (ECB, CBC, CFB,
OFB and CTR), one is an authentication mode (CMAC), and two are combined
modes for confidentiality and authentication (CCM and GCM) [38]. However,
NIST continuously receives suggestions for new modes of operation, and main-
tains a list of all proposed modes at [37].

The following paragraphs will give a detailed description of the two general-
purpose confidentiality modes that is often used in disk encryption implemen-
tations, namely ECB and CBC [Fru05, 6].

4Hash functions are designed to be preimage resistant, 2nd preimage resistant, and collision
resistant.

16 Disk Encryption – Scrutinizing IEEE Standard 1619\XTS-AES

ECB: Electronic CodeBook

A cipher is rarely used as originally published. If this is the case, the cipher
is said to be used in electronic codebook mode. But, since ECB denotes the
absence of any further design, it is also often said that it does not fully qualify as
a block cipher mode of operation [vT06]. The term codebook is used because,
for a given key there exist a unique ciphertext for every block of plaintext.
Therefore, we can image a gigantic codebook in which there is an entry for
every possible plaintext pattern showing its corresponding ciphertext. Figure
2.7 and 2.8 depicts the ECB mode encryption and decryption, respectively.

Block Cipher
Encryption

P1

C1

Block Cipher
Encryption

P2

C2

Block Cipher
Encryption

Key

Pn

Cn

KeyKey

Figure 2.7: ECB mode encryption is expressed as Ci = Ek(Pi) for 1 ≤ i ≤ n.

Block Cipher
Decryption

P1

C1

Block Cipher
Decryption

C2

Block Cipher
Decryption

Key

Pn

KeyKey

P2

Cn

Figure 2.8: ECB mode decryption is expressed as Pi = Dk(Ci) for 1 ≤ i ≤ n.

The fundamental disadvantage of this method is the same as the main reason
for using modes of operating in the first place, namely that if the same block of
plaintext appears more than once in the message, it always produces the same
ciphertext. This is unfortunate, because if you know that the message always
starts out with certain predefined fields, a cryptanalyst may have a number
of known plaintext-ciphertext pairs to work with, and thus be able to recog-
nize repetitive elements. The use of ECB in its original form is therefore often
strongly discouraged [MvOV01]. In the past, the ECB mode was sometimes rec-
ommended for the encryption of keys; however, authenticated encryption (i.e.
using a combined mode for confidentiality and authentication) would be a much
better option for this particular application area [vT06].

However, if we slightly modify the ECB mode, or use it as a subroutine – the
security concerns related to the ECBmode can be mitigated. Later in this thesis,
we will see that there is several cipher modes designed for disk encryption that
utilizes ECB – either “as is” or slightly modified.

Chapter 2. Background on Disk Encryption 17

CBC: Cipher Block Chaining

Cipher block chaining is a popular block cipher mode that tries to overcome the
security deficiencies of ECB. In CBC mode, each block of plaintext is XORed
with the preceding ciphertext block before being encrypted. This way, each
encrypted block is dependent on all plaintext blocks processed up to that point.
To produce the first block of ciphertext, an Initialization Vector (IV) is XORed
with the first block of plaintext and then encrypted. This IV must be known
to both the sender and receiver, but should at the same time be unpredictable
for a third party. By varying this IV, one can ensure that the same plaintext is
encrypted into a different ciphertext under the same key, which we have become
to know is essential for secure encryption.

Figure 2.9 shows that the input to the encryption function is dependent on the
XOR between the plaintext block and the previous ciphertext. Thus, repeating
data patterns are not exposed [Sta06].

Block Cipher
Encryption

Initialization Vector (IV)

P1

C1

Block Cipher
Encryption

P2

C2

Block Cipher
Encryption

Pn

Cn

Key Key Key

Figure 2.9: CBC mode encryption is expressed as Ci = Ek(Pi ⊕ Ci−1) for 1 ≤ i ≤ n,
where C0 = IV .

Figure 2.10 shows decryption, where the IV is XORed with the output of the
decryption algorithm to recover the first block of plaintext. Correspondingly,
proceeding plaintexts are recovered by XORing the output of the decryption
function with the preceding ciphertext.

Block Cipher
Decryption

Initialization Vector (IV)

C1

P1

Key Block Cipher
Decryption

C2

P2

Block Cipher
Decryption

Cn

Pn

Key Key

Figure 2.10: CBC mode decryption is expressed as Pi = Dk(Ci) ⊕ Ci−1 for 1 ≤ i ≤
n, where C0 = IV .

The CBC mode is not completely parallelizable; while the CBC decryption pro-
cess allows for parallelism and thus random access, the CBC encryption process
is strictly a serial operation. But, CBC can be modified to support parallelism
for both the encryption process and decryption process. [BDJR97] defines such a
variant of the CBC mode that enables parallelism by dividing the plaintext into

18 Disk Encryption – Scrutinizing IEEE Standard 1619\XTS-AES

r parallel streams and then applying the CBC mode to each of these streams.
This however requires the use of r different IV values.

If the CBC mode is to be used for disk encryption, a parallelism-friendly mode
like the latter has to be used. By doing so, one avoids that all data blocks are
chained together, which in turn would require one to re-encrypt the whole disk
for each time new data is written. The way this is avoided is by cutting the
CBC chaining for every disk sector and restarting with a new IV, so that it is
possible to encrypt sectors individually.

The IV (or IVs) used by the CBC mode can be deduced in many different ways,
depending on its application. The following bullet list presents a selection of IV
deduction-methods most often associated with disk encryption:

• The most simple and straight-forward option is to choose a plain-IV. This
implies that the IV is simply a bit representation of n (i.e. number of
the last block) padded with zeros to the block size of the cipher used, if
necessary. As being the simplest IV mode, it is also the most vulnerable.

• Another way to derive the IV is by using Encrypted Salt-Sector IV, short
ESSIV5. This method derives the IV by combining the disk sector address
with the hash of the key (used by the CBC block cipher). As the IV
depends on private information (i.e. the key), the IV sequence is not
known, and the attacks based on knowledge to the IV cannot be launched.

• The third and highly theoretical way is be to compute the IV by hashing
the plaintext from the second block till the last block. This IV deduction-
method is called Plumb-IV 6. If a bit changes in one of the plaintext blocks,
the first block is influenced by the change of the IV (since the IV is the
hash of the other plaintext blocks). As the first encryption affects all
subsequent encryption steps due to the chaining process, the whole sector
is changed. The obvious weakness of this scheme is its performance, as
data has to be processed twice – once for deriving the IV and once for
actual ciphering process.

The main drawbacks of the CBC mode is that the encryption process is natively
sequential, that messages must be padded to a multiple of the cipher block size
prior to encryption, and that its susceptible to a wide range of cryptographic
attacks when used with predictable IVs [Fru05]. Additionally, the CBC mode
has shown to have a poor avalanche effect7 [EFD08a]. Despite, CBC is a well-
used cipher mode in a wide range of cryptographic applications, but mostly in
conjunction with other security enhancing techniques to mitigate its limitations
and vulnerabilities.

5Clemens Fruhwirth is the author of ESSIV, which was developed for Linux 2.6.10 to
counter watermarking attacks [Fru05].

6The name of this mode comes from Colin Plumb, who proposed this mode. Bruce Schneier
also mentions this construction in [Sch06], but does not give a name for it.

7In cryptography, the avalanche effect is the property of a cryptographic algorithm to
significantly change an output when the input is changed slightly [Sta06]. For block ciphers
or cipher modes this means that a small change in either key, IV or plaintext should cause a
drastic change in the ciphertext. The actual term was first used by Horst Feistel, although
the concept dates back to at least Shannon’s diffusion.

Chapter 2. Background on Disk Encryption 19

2.1.5 CTS: Ciphertext Stealing
Although the block cipher modes just described facilitates encryption and de-
cryption of data lengthier than one block, they are not able to effectively handle
data that is not evenly dividable into blocks. To address this issue, ciphertext
stealing can be used. This is a technique that allows for ciphering of data that
is not evenly dividable into blocks without resulting in an expansion of the ci-
phertext [Sch06].

In principle, any block-oriented confidentiality mode can use CTS, but since
stream cipher-like modes can be applied to messages of arbitrary length without
padding, they do not benefit from this technique. Thus, the modes of opera-
tion that is most often used in combination with CTS, is ECB and CBC [Sch06].

Although there exists multiple ways to implement CTS [vT06], the common for
all is that the normal cipher mode procedure is used on all but the last two blocks
of data, which are handled differently. Figure 2.11 and the following paragraphs
will describe one way to handle the two last blocks of plaintext, denoted Pn−1

and Pn, when CTS is performed on ECB mode. In this description, the following
functions are used:

• Head(data, a) returns the first a bits of the ’data’ string.
• Tail(data, a) returns the last a bits of the ’data’ string.

ECB CTS encryption steps (see Figure 2.11a)

1. The first step is to encrypt Pn−1 to create En−1 = Ek(Pn−1). This is
equivalent to the behavior of standard ECB mode.

2. The second step is to select the first M bits of En−1 to create Cn =
Head(En−1, M). The final ciphertext block, Cn, is now composed of the
leading M bits of the second to last ciphertext block.

3. The third step is to pad Pn with the low order bits from En−1, creating
Dn = Pn ‖ Tail(En−1, B −M).

4. Finally, the fourth step is to create Cn−1, which is done by encrypting Dn

from the previous step, Cn−1 = Ek(Dn).

ECB CTS decryption steps (see Figure 2.11b)

1. The first decryption step is to decrypt Cn−1, to find Dn = Dk(Cn−1).
This undoes step 4 of the encryption process.

2. The second step is to pad Cn with the extracted ciphertext in the tail end
of Dn, making En−1 = Cn ‖ Tail(Dn, B −M).

3. The third step is to select the first M bits of Dn to create the last plaintext
block Pn = Head(Dn, M).

4. The fourth and final step is to decrypt En−1 to create the second to last
plaintext block Pn−1 = Dk(En−1).

20 Disk Encryption – Scrutinizing IEEE Standard 1619\XTS-AES

Pn-1

En-1

Pn

Head Tail

TailPn

Cn-1 Cn

Encrypt

Dn

Encrypt

B bits M bits

(a) Encryption steps

Cn

Head Tail

Cn-1

Pn

B bits M bits

Pn-1

Head Tail

Dn

En-1

Decrypt

Decrypt

(b) Decryption steps

Figure 2.11: The ciphertext stealing technique only affects the last to blocks and in
return make the transform length-preserving.

As we have seen from the latter example, implementing CTS requires buffering
of the two most recent blocks of data, so that they can be properly processed at
the end of the data stream. Thus, the cost of using CTS is a slightly increased
complexity.

Chapter 2. Background on Disk Encryption 21

2.2 Disk Encryption
Encryption of data at rest can be divided into; file-level encryption, folder-level
encryption (also called filesystem-level encryption), partition-level encryption,
and disk-level encryption, as shown in Figure 2.12. This thesis will not take
on the task to elaborate all these different types, but rather focus on disk-level
encryption – referred to only as disk encryption from this point on.

Data-at-rest Encryption

File-level
Encryption

Folder-level
Encryption

Partition-level
Encryption

Disk-level
Encryption

Figure 2.12: Data at rest encryption can be divided into different types, based on
granularity.

We define disk encryption as the cryptographic protection of data at rest when
the storage media is a block oriented addressable device (e.g., a hard disk or
flash disk). Disk encryption is almost exclusively implemented as an on-the-fly
operation; i.e. data is encrypted before being written to the storage device,
and decrypted only before use. The following sections will describe the various
implementation types of disk encryption.

2.2.1 Hardware-based versus Software-based Encryption
The first distinguishable property of disk encryption is whether it is hardware-
based or software-based (i.e. layer in which encryption is performed). Although
there might be a mistake to even talk about hardware as opposed to software
anymore, since almost all of our devices are a mix of software and hardware,
it is a certain difference between hardware-based and software-based encryption.

The most evident difference between hardware-based and software-based en-
cryption is that while hardware-based encryption is able to encrypt every single
bit on the disk without exception, the software-based encryption techniques are
not. The reasons for this are:

• The Master Boot Record (MBR) of a disk contains machine code instruc-
tions necessary to mount the disk, and thus has to be left unencrypted.
If not, the computer software trying to mount the disk by reading these
instructions, will only find obfuscated data that is not recognized, leaving
the disk useless.

• Furthermore, if we want to boot from a software-encrypted disk, the pre-
boot kernel must also be left unencrypted. The reason for this is that the
blocks where the pre-boot kernel is stored, must be available before the
operating system can boot, also meaning that the key has to be available
before there is a user interface to ask for a password (called the boot
key problem). However, one way to mitigate the vulnerabilities that this
presents is to make the operating system hash the pre-boot kernel after
boot and compare it against system variables to verify its integrity.

22 Disk Encryption – Scrutinizing IEEE Standard 1619\XTS-AES

Hardware-based encryption avoids these limitations by transparently encrypting
and decrypting every bit at a hardware-level, leaving the software completely
unaware that there even exists any encryption.

However, although software-based encryption is not able to encrypt absolutely
all the sectors on a disk, it still keeps the fundamental advantage of being able
to protect user data even when the operating system is not active. For example,
if the data is read directly from the disk when used as an auxiliary drive, the
adversary will still only find data undistinguishable from random bits – given
that the cipher mode used do not have any weaknesses that can be exploited.

We will not take on the task to debate all pros and cons of hardware-based and
software-based encryption, but rather list a few selected advantages for both:

• Hardware-based encryption provides slightly better security by being able
to encrypt every single bit on the disk, and because the keys used for
encryption and decryption is not kept in the computers memory. The
latter property avoids attacks like cold boot attack [HSH+08].

• Hardware-based encryption implementations have for along time been us-
ing keys as small as 40 bits; even though this is a key length that is
considered too short [oSN07]. But luckily, this practice has changed as
vendors have started implementing the industry standard cipher, AES, in
conjunction with cipher modes especially designed for disk encryption.

• Hardware-based encryption has traditionally been considered to achieve
better performance than software-based, as the computer’s processing
power is not used for the ciphering processes (stealing resources from the
end-user), but rather a built-in computational device dedicated for this
purpose.

• Software-based encryption is starting to gain ground on the performance
area, with the proliferation of multi-core systems. This is good for software-
based encryption because disk encryption is usually very parallelizable.
The more cores a CPU gets, the faster software encryption will be – if im-
plemented correctly. Nonetheless, modern computers usually have plenty
of extra computational power available, which can be used for the cipher-
ing process.

• Software-based encryption has the advantage of being able to be applied to
any type of storage media, while the selection of disks employing hardware-
based encryption is sparse.

• Software-based encryption has the advantage of cost, as software is cheaper
than hardware. Since the marginal cost8 of software is close to zero, a
software-based encryption solution will almost likely always be less ex-
pensive than an equivalent hardware-based solution.

In the future, hardware-based encryption drives will probably get better, but
so will the services that are available on the core computer platform itself. The

8Marginal cost is the change in total cost that arises when the quantity produced changes
by one unit, i.e. the cost of producing one more unit of a good.

Chapter 2. Background on Disk Encryption 23

exponential gain described by Moore’s Law has so far benefitted CPUs and
its subsystems faster and greater than it has for disk drives themselves. If
the exponential gain continues, it will probably continue to affect the general-
purpose systems quicker and more effectively than the special-purpose systems
like hardware-based encryption solutions. But, as we have only superficially
touched upon this topic, and therefore do not want to make any bold state-
ments, we leave this section with saying that only the future will show if the
duel between hardware-based and software-based encryption will continue, or if
one will supersede the other.

Section 2.4 will describe the software-based disk encryption applications which
at the time of writing feature XTS-AES encryption.

2.2.2 Narrow-block versus Wide-block Encryption

The second property that distinguishes different disk encryption types is narrow-
block encryption and wide-block encryption.

Narrow-block algorithms, as the name implies, operate on small blocks of data.
Although there is no universally standardized size, the block size used by narrow-
block algorithms is usually 16 bytes. Wide-block algorithms on the other hand
encrypt or decrypt a whole sector at the time, i.e. 512 bytes – the most common
sector size9. Figure 2.13 depicts the difference between a block and a sector.

A

B
C

D

Figure 2.13: The figure shows the difference between a (A) disk track, (B) geometrical
sector, (C) disk sector, and (D) disk block.

9In the near future, its expected that the standard sector size will grow up to 1024, 2048,
4096 or even 8192 bytes [Fer06].

24 Disk Encryption – Scrutinizing IEEE Standard 1619\XTS-AES

Narrow-block algorithms have the advantage of being more efficient, especially
when considering hardware implementations [19]. The tradeoff is however that
the smaller block size of the narrow-block algorithms provides finer granularity
for certain type of attacks [CC07]. Wide-block algorithms are considered to be
slow, as they have to process the data through multiple passes [25]. In applica-
tions that require streaming reads and writes, the delay or buffer requirements of
most wide-block implementations can be prohibitive. But on the plus side, if an
implementation has extra available buffer space, computing power, and latency
tolerance, wide-block encryption provides better protection than narrow-block
encryption [25]. Hence, this is a tradeoff that must be considered depending on
the application area.

The P1619 Task Group selected the narrow-block mode XTS for IEEE Std 1619,
prioritizing the added efficiency over the additional risk [CC07]. But, recogniz-
ing that wide-block encryption ultimately provides better security, P1619.2 was
started as a separate project to study wide-block encryption [17].

As convention from this point on, we will use the term narrow-block when
referring to a single data block of 16-byte, and the term sector or wide-block
when referring to a 512-byte data block.

2.2.3 Transparent versus Authenticated Encryption

If the purpose of the encryption is only to protect the privacy of the data this is
usually solved using a cryptographic cipher mode for confidentiality. If we also
want to guarantee data integrity, this can be achieved by the use of authenti-
cated encryption, which leads us to the last set of properties that distinguishes
different types of disk encryption, namely whether the encryption transform is
transparent or authenticated.

Transparent encryption is encryption that one is able to place into an exist-
ing data path without having to change the data layout or message formats of
other components in the data paths [CC07]. This means that the encryption
process can be implemented to occur in software, along the data path from the
application layer to the storage device, or inside the storage device itself, all
without having to modify the data transmission protocols or the data layout on
the media.

Authenticated encryption on the other hand, is a type of encryption best suited
for tape drives and not sector-level storage devices like hard disks and flash disks.
The reason for this is that authenticated encryption produces an authentication
tag with every ciphertext (or at least for every set of ciphertexts) to ensure data
integrity. This conflict with a fundamental requirement for sector-level storage
devices set by the way most disks store information. Disks normally store in-
formation in fixed-size sectors, which in turn are written to in a random order.
These properties impose two constraints.

The first constraint is that encryption must be performed on a per-data unit
basis – either a per-block basis or per-sector basis. The reason for requiring
that encryption and decryption is done on a per-data unit basis is simply that

Chapter 2. Background on Disk Encryption 25

the encryption or decryption of one data unit cannot depend on any other data
unit. Consider the following scenario, where we suppose the encryption algo-
rithm works in data units that is dependent on an arbitrary number of other
data units. To write data unit x, the system first have to read all the other data
units that x is dependent on, decrypt them, and then encrypt all of them when
the data unit x again is ready to be written back to the disk. Not only is this
approach complex, but would also result in very low performance utilization.
Furthermore, there are applications, such as databases, that rely on the fact
that they can write to data unit x without danger of damaging data unit x− 1
or x + 1 [Fer06]. They use this property to ensure that no information (other
than possibly the data unit that is being written) is lost in case of crash or
power failure.

The second constraint is that the ciphertext cannot be larger than the plaintext.
Although highly convenient with respect to data integrity, there is practically
no extra room to store additional data, i.e. more room exists but it is infeasible
to use it for providing data integrity [Fer06]. Thus, we cannot store message
authentication code (MAC) values with the ciphertext. The rationale behind
this constraint follows. We could map a 512 byte operating system sector into a
1024 byte disk-sector, but that would result in the loss of half the disk capacity,
a price the average user will probably not be willing to pay. We could reserve
one in every 16 data unit to store MAC values for the other 15 data units, but
this has several problems. First of all, writing to data unit x means updating
an additional data unit that contains MAC. This turns a write operation into a
read-then-write operation with the associated performance loss. Furthermore,
it could damage the MAC data unit (e.g., if there is a power failure), which
would lead to the loss of the other 14 data units; also unacceptable. Finally, for
various usability, manageability, and deployment reasons, it should be possible
to enable and disable disk encryption.

Thus, we see that adding dedicated MAC data units modifies the disk layout
and reduces the amount of available disk space in such a way that average users
would not accept. Thus, although it is possible to use sector-level storage de-
vices like hard disks and flash disks for authenticated encryption, it is highly
unpractical. This leaves authenticated encryption best suited for tape drives
used for archive and backup.

To summarize this subsection, we re-capture the two requirements for all trans-
parent encryption modes for block-oriented storage devices:

• The encryption transform must be applicable to individual data-units in-
dependently of other data-units and in arbitrary order. This is called the
random-access property, and implies that no chaining between different
data-units is possible.

• The encryption transform must be length-preserving, i.e. the length of the
ciphertext must be equal to that of the plaintext. This means that the
transform must be deterministic, and that it cannot store any nonce, IV,
or message authentication code (MAC) value with the ciphertext.

26 Disk Encryption – Scrutinizing IEEE Standard 1619\XTS-AES

2.3 Modes of Operation for Disk Encryption

Section 2.1.4 described two general-purpose cipher modes that can be used for
disk encryption when slightly modified. However, there also exist cipher modes
that are especially designed for disk encryption. The following paragraphs will
describe the most commonly known disk encryption modes with the exception
of the XTS mode, as a detailed description is given in chapter 3.

Please note that the following modes only describe encryption of data that is an
integral number of either 16-byte or 512-byte blocks (i.e. one can say that they
are used in a modified ECB mode even though they are modes of operations
themselves). In other words these techniques do not address how to handle data
that is not evenly dividable into blocks. This means that in order to use any of
the following algorithms in an implementation of disk encryption were the latter
is required (e.g., disks using 520-byte sectors), one must address this issue by
also choosing a length-preservation algorithm, e.g., ciphertext stealing.

2.3.1 LRW: Liskov, Rivest, Wagner

LRW is a tweakable narrow-block cipher mode, short for Liskov, Rivest, Wagner
– the trio who inspired to this mode with their paper “Tweakable Block Cipher”
[LRW02]. This paper outlined the difference between a conventional block cipher
and a tweakable block cipher, and introduced a generic construction for the
latter; which became the basis of the LRW construction. LRW with AES as the
underlying cipher was for a long time considered the most promising candidate
for P1619 [CC04].

Block Cipher
EncryptionKey1

Key2

n Pn

Cn

T

Figure 2.14: LRW mode encryption

As we recall from 2.1.2, the characteristic feature of a tweakable block cipher
mode is the use of a tweak value as an additional input to the ciphering process.
The tweak used by LRW is made up by the multiplication between a secret key
and the logical index of the data block being encrypted (T = Key2 ⊗ n, where
Key2 is the secret key, and n is the logical index). The key used for this pur-
pose is not to be derived from the key material of the block cipher (which uses
another key - Key1), but has to be supplied additionally [CC04]. By making
the tweak dependent of the logical index, LRW effectively ties the ciphertext to
a disk location, which in turn mitigates threats such as copy-and-paste attacks
and malleability attacks (described in section 4.3).

Chapter 2. Background on Disk Encryption 27

However, the cost of the modular multiplication, which is performed in GF(2128)
modulo x128+x7+x2+x+1, is a somewhat slower cipher, due to the complexity
of implementing general multiplication [19]. But, an efficient implementation
of LRW can make use of the fact that consecutive blocks having the same
sector address (i.e. logical index) is able to reuse previously known tweaks
(one can easily verify that Ti+1 = Key2 ⊗ (i+ 1) = (Key2 ⊗ i)⊕ (Key2 ⊗ n) =
Ti⊕(Key2⊕n)). Thus, one might create a precomputed table of values, making
it possible to compute the tweak for a full 512-byte sector, for the cost of only
1 multiplication operation, 32 additions and a few integer increments [CC04].

2.3.2 XEX: XOR-Encryption-XOR
XEX is another tweakable narrow-block cipher mode, proposed by Rogaway in
his paper “Efficient Instantiations of Tweakable Blockciphers and Refinements to
Modes OCB and PMAC” [Rog04]. XEX is actually a subroutine in Rogaway’s
Offset CodeBook (OCB) mode, which is a combined mode for confidentiality and
authentication. XEX in it self is a general-purpose algorithm, but when used
for disk encryption facilitates efficient processing of consecutive blocks [19].

Block Cipher
EncryptionKey

αj

Pn

Cn

α1
Block Cipher
Encryption

Key

N

α2

. . .

i1 i2

i j

T

Figure 2.15: XEX mode encryption

The main construction of XEX is simple, XOR-Encrypt-XOR, but the compo-
sition of the tweak is slightly more complex. The tweak, as defined by [Rog04],
is comprised of the encrypted value of an index multiplied with several other
indexes (T = Ek(N) ⊗ αi11 ⊗ α

i2
2 ⊗ · · · ⊗ α

ij
j). When used for disk encryption

the tweak is represented as a multiplication between the sector address and two
to the power of the block index inside the sector (T = Ek(N)⊗ 2i, where N is
the sector address and i is the block index) [19]. There is some similarity be-
tween LRW and XEX, but it is worth emphasizing that while LRW is a cipher
mode dedicated to disk encryption, XEX is considered a general block cipher
construction which can be modified especially for disk encryption [Rog04].

XEX, when used for disk encryption, is considered not significantly less efficient
than LRW [19]. XEX avoids the inconvenience of implementing general mul-
tiplication in GF(2128), but still have to facilitate multiplication in the binary
field GF(2) modulo x128 + x7 + x2 + x + 1. On the other hand, XEX requires
two cipher calls for each encrypted block; one to encrypt the sector address and
one to encrypt or decrypt the actual data block. However, an efficient imple-
mentation of XEX can make use of the fact that for consecutive blocks having
the same sector address, the encryption of the sector address only has be done
once and can be reused for that whole sector afterwards. Moreover, XEX avoids

28 Disk Encryption – Scrutinizing IEEE Standard 1619\XTS-AES

the time-consuming process of generating multiple keys, since it uses the same
key for encrypting the sector address as it does for encrypting or decrypting
the actual data block. The security proof of XEX is given in Rogaway’s paper
[Rog04].

2.3.3 MCB: Masked CodeBook
MCB is yet another tweakable narrow-block cipher. This block cipher mode was
proposed by El-Fotouh et al. in their paper “A New Block Mode of Operation
for Disk Encryption” [EFD08b] in which they proclaim it to be very fast com-
pared to other similar ciphers [EFD08b].

The distinguishing property of MCB is that it uses three keys. The first key
(called the MKey) is used to generate a mask array – used to further variate
the output of each block cipher operation. The second key is used to encrypt
the tweak (called the TKey). Lastly, the third key is used for encryption or
decryption of the actual data block (called the EKey). The mask matrix used
by MCB contains enough masking data to be used with a whole sector at the
time, without having to use the same mask twice. This mask is constructed
using AES in counter mode [EFD08b].

Block Cipher
EncryptionEKey

Pn

Cn

Block Cipher
Encryption

TKey

SectorID

Mask[n]

Mask[32+n]

T

MCB Mask
Generation MKey

Figure 2.16: MCB mode encryption

As seen from Figure 2.16, the encryption process of MCB can be divided into
three stages – one for each key. The first stage is to compute the tweak by
encrypting the sector ID using the second key (T = ETKey(SectorID)). The
next stage is to produce the masking values (denoted Mask[n] and Mask[32+n]
in Figure 2.16), which are derived by XORing the tweak from the previous step
with their respective row in the mask matrix. Then the last stage is the same
as for XEX, namely XOR-Encrypt-XOR.

Thus, we observe that the MCB mode does not use any modular multiplication
but rather a few extra XOR operations to variate the values used in the pre- and
post-whitening processes. The authors of MCB argue that the MCB is secure
as long as its three keys are not known to the adversary, and have thoroughly
discussed the consequences of an adversary knowing one or two of the three keys
in [EFD08b].

Chapter 2. Background on Disk Encryption 29

2.3.4 CMC: CBC-Mask-CBC
CMC is a tweakable wide-block cipher mode drafted by Halevi and Rogaway.
This cipher mode uses the well known CBC mode in cascade, with a masking
stage in between. After the first CBC processing, a mask is computed from the
resulting ciphertext, which in turn is applied to all intermediate cipher blocks.
This step causes interdependency among the cipher blocks. A second CBC pro-
cessing is then performed, but now traversing the intermediate ciphertext in
reversed order. As in normal CBC, this scheme also uses an IV, but the authors
call it a tweak value. The tweak value serves as IV for both CBC steps, making
the cipher mode a tweakable cipher mode.

CMC’s main advantage is that, since it uses two steps of CBC processing, it is
able to reuse an existing implementation of CBC. But, as a consequence of the
CBC steps, CMC is not parallelizable. The security proof for CMC is found in
Halevi and Rogaway’s paper “A Tweakable Enciphering Mode” [HR03b].

2.3.5 EME: ECB-Mix-ECB
EME is another tweakable wide-block cipher mode developed by the duo Halevi
and Rogaway. In contrast to CMC, EME is parallelizable and thus suitable as
cipher mode for high speed storage devices [HR03a]. EME is based on a tweak-
able enciphering scheme described in the paper “A Parallelizable Enciphering
Mode” [HR03a]. As the name suggests, EME uses the ECB mode as a subrou-
tine, applying ECB mode encryption to the plaintext, followed by a mixing step,
and then repeating another ECB mode encryption. The cipher mode structure
is symmetric, and thus decryption is done the same way.

EME is considered as to having a two main advantages over CMC beyond only
it’s parallelizability; that all block cipher calls in EME is done using one single
key, instead of two; and that enciphering under EME only uses the forward di-
rection of the block cipher, while deciphering only uses the backwards direction.
These changes from CMC are convenient when using a cipher such as AES,
where the two directions are substantially different [HR03a]. The security proof
of EME is based on the assumption that the underlying block cipher used is
secure [HR03a].

2.3.6 XCB: Extended CodeBook
XCB is yet another wide-block cipher mode, which utilizes a Luby-Rackoff struc-
ture [MF04]. This mode was developed by McGrew and Fluhrer of Cisco Sys-
tems, Inc. According to the authors, XCB’s application area is not only disk
encryption, but also other areas where systems cannot allow data expansion,
such as some network protocols. The XCB mode is based on a five-round Luby-
Rackoff cipher in which the first and last rounds do not use the conventional Feis-
tel structure, but makes use of a single block cipher invocation instead [MF04].
A fundamental drawback of XCB, EME, and CMC in their original form is that
they are patented [20].

30 Disk Encryption – Scrutinizing IEEE Standard 1619\XTS-AES

2.4 Disk Encryption Software
There is a vast amount of disk encryption software available, mainly dividable
between two categories: commercial and open-source software. In addition,
there is also software commercially bundled with operating systems like; Bit-
Locker [23] for Windows Vista and FileVault [1] for Mac OS X v10.3 and later.
The most popular open-source disk encryption software includes BestCrypt [5],
CrossCrypt [10], dm-crypt [9], DriveCrypt [13], FreeOTFE [11], and TrueCrypt
[45]. In the commercial category the list is even longer.

The following paragraphs will describe the open-source cryptographic software
which, at the time of writing, features disk encryption using AES in XTS mode.
But first, for the sake of simplicity and later discussion, we define three classes
of disk encryption software.

Full disk encryption (1)

Encryption software employing full disk encryption encrypts every single bit
of data on a disk or partition. The only sector which is not encrypted is the
MBR. This sector contains machine code instructions necessary to mount the
disk, and thus have to be left unencrypted. This encryption type is suitable for
non-system disks when using software-based encryption solutions.

Full system disk encryption (2)

As mentioned above, the term full disk encryption is used when every bit of
data on a disk is encrypted. However, if every single bit of data on a disk is
encrypted, it will not be possible to boot from that disk (even though the MBR
is left unencrypted). Encryption software employing full system disk encryption
thus encrypts every bit of data, except the pre-boot kernel and MBR. This
encryption type is suitable for system disks (i.e. disks containing the operating
system) when using software-based encryption solutions.

Virtual encrypted partition (3)

Encryption software supporting virtual encrypted partitions features standalone
file containers that can be mounted as disks or read/written using any other
method. These file containers are normal files that can be moved, renamed, and
deleted, the same way as other files. Although this is not disk encryption per say,
it is included since most disk encryption software also includes this functionality.

M

(1)

Pre-Boot
Kernel

(2)
(3)

User Data (Operating system, user �les etc.)B
R

Figure 2.17: The figure illustrates the difference between (1) full disk encryption, (2)
full system disk encryption, and (3) virtual encrypted partitions.

Chapter 2. Background on Disk Encryption 31

2.4.1 TrueCrypt
TrueCrypt [45] is free open-source disk encryption software for Windows, Mac
OS X, and Linux. It features strong 256-bit encryption using XTS mode with
AES, Twofish, or Serpent block cipher, or all three of them in cascade mode. As
of version 5.1, the Windows version of TrueCrypt supports full system disk en-
cryption, as well as full disk encryption and file containers that may be mounted
as virtual encrypted partitions.

Figure 2.18: TrueCrypt main window

Once disk encryption is applied, or a virtual encrypted partition is mounted,
the encryption/decryption is entirely transparent, and except from a small True-
Crypt icon in task bar there is no visual sign of encryption. If full system disk
encryption is applied, the user is met with an authentication screen at boot. As
of version 6.1, it is even possible to prevent an adversary that is watching you
start your computer from knowing that TrueCrypt is in use by turning off all
text in the pre-boot authentication screen. This way, when you start the com-
puter, no texts will be displayed by the TrueCrypt boot loader (not even if you
enter the wrong password). The computer will appear to be “frozen” while you
can type your password [47]. Furthermore, as of version 6.1 it is also possible
to create a separate Hidden Operating System [47].

Virtual encrypted partitions exists as normal files on the host filesystem, and
must be opened and mounted by TrueCrypt, either by using the main window
(depicted in Figure 2.18) or shell commands.

32 Disk Encryption – Scrutinizing IEEE Standard 1619\XTS-AES

In addition to its encryption features, TrueCrypt provides two levels of plausible
deniability, in case an adversary forces you to reveal the password: by the use
of hidden volume10 and the fact that no TrueCrypt volume can be identified
(i.e. cannot be distinguished from random data) [47]. One weakness with this
scheme is that this feature is not likely to hide the volumes from a seasoned
adversary, as there will be disk space that cannot be accounted for, unless they
are sufficiently small.

2.4.2 FreeOTFE

FreeOTFE [11] is another transparent disk encryption program. It supports
both PCs (running Windows 2000/XP/Vista) and PDAs (running Windows
Mobile 2003/2005/6). Block ciphers supported by FreeOTFE include AES,
Blowfish, RC6, Serpent, Twofish, and others [12]. Unlike TrueCrypt, which
supports full system disk encryption, FreeOTFE only supports full disk encryp-
tion and virtual encrypted partitions.

Figure 2.19: The FreeOTFE window showing a virtual encrypted partition (G:) and
a disk which is full disk encrypted (H:).

The characteristic feature about FreeOTFE is that it provides a modular ar-
chitecture allowing third parties to implement additional algorithms if required.
Originally, FreeOTFE only offered encryption using CBC with ESSIV, but as
of version 3.0, the LRW and XTS modes were also introduced [12].

Similar to TrueCrypt, FreeOTFE also allows any number of hidden volumes to
be created, providing both plausible deniability and deniable encryption.

10Known as steganography, which is the art and science of writing hidden messages in such
a way that no-one apart from the sender and intended recipient even realizes there is a hidden
message, a form of security through obscurity [Kah97]. By contrast, cryptography obscures
the meaning of a message, but it does not conceal the fact that there is a message.

Chapter 2. Background on Disk Encryption 33

2.4.3 dm-crypt
dm-crypt [9] is included in Linux kernel versions 2.6 and later, and is able to
perform full system disk encryption, full disk encryption, make virtual encrypted
partitions, and encrypt specific files. dm-crypt uses cryptographic routines from
the UNIX kernel’s Crypto API [24], supporting modes of operations like XTS,
LRW, and CBC with ESSIV.

Used with initrd11, dm-crypt is also able to provide a pre-boot authentica-
tion mechanism similar to TrueCrypt. Furthermore, dm-crypt encrypted disks
can be accessed and used under Windows using FreeOTFE, provided that the
filesystem used is supported by Windows (i.e. FAT/FAT32/NTFS). ext3 and
ext2 filesystems can also be mounted using the ext2 Installable File System
driver for Windows [41].

Figure 2.20: The drive map in the partition software GParted show that the dm-crypt
partition (/dev/sda4) is unrecognized, while the other LVM volumes is recognized as
distinct filesystems.

The dm-crypt device mapper target resides in the kernel space of Linux, and
is concerned only with encryption and decryption – it does not interpret any
data itself. It relies on user space front-ends to create and activate encrypted
volumes, and manage authentication. At least two frontends are currently avail-
able: cryptsetup [9] and cryptmount [8].

11initrd or the initial ramdisk is a temporary file system commonly used by the Linux
kernel during boot. The initrd is typically used for making preparations before the real root
file system can be mounted.

34 Disk Encryption – Scrutinizing IEEE Standard 1619\XTS-AES

Chapter 3

IEEE Std 1619-2007

The nice thing about standards is
that there are so many of them to
choose from.

Andrew S. Tanenbaum

IEEE Std 1619 [CC07] is the most recent IEEE standard regarding the encryp-
tion of data on block-oriented storage devices. It was approved by the IEEE-SA
Standard Board in December 2007 [2] and published in April 2008.

The purpose of this chapter is give a complete and detailed description of IEEE
Std 1619-2007; that describes the XTS-AES algorithm and a standard for XML-
based key export format. First, we will briefly skim the history of this standard
describing the various solutions considered. Next, we will describe the scope
of the standard, comparing it with the other family members of Project 1619.
Then, after shortly discussing related work we will elaborate on the XTS-AES
algorithm by first describing the general XTS mode and then thoroughly ex-
plaining XTS-AES and its encryption and decryption procedures. Lastly, we
will address the XML-based key export format.

3.1 History
IEEE Std 1619 started out as Project 1619 in August 2002 after the forma-
tion of IEEE Computer Society’s Security in Storage Working Group (SISWG).
Originally, the objective of the project was to create one encryption standard
suitable for data storage devices [HC03]. But starting from mid 2005, the ob-
jective of P1619 was divided up into several sub projects (see Figure 3.1), each
with its own scope, whereas P1619’s became narrow-block encryption.

Before the P1619 were split into several sub projects, the first mode of operation
which was considered was the wide-block EME mode, created by Shai Halevi
and Phil Rogaway in 2003. The EME transform was proposed to be used with
AES as the underlying cipher, acting on data blocks of 512 bytes. The draft
proposal mode was called EME-32-AES, and is described in [CC03]. This mode
was however proven vulnerable by Antione Joux in his paper “Cryptanalysis of

35

36 Disk Encryption – Scrutinizing IEEE Standard 1619\XTS-AES

the EMDMode of Operation”1 [Jou03], which was presented at EuroCrypt 2003.

This led to the next mode considered by SISWG for P1619, namely the narrow-
block LRW mode. LRW was also proposed to be used with AES as the under-
lying cipher, but would operate on data blocks of 128 bits. The draft proposal
mode was called LRW-AES, and is described in [CC04]. The LRW mode was
suggested in April 2004, and was until mid 2006 considered the most promis-
ing candidate for P1619. During this period, the scope of P1619 also changed
to focus merely on narrow block encryption modes. But LRW fell when Niels
Ferguson of Microsoft noted in Crypto 2006 that you can leak the tweak key
if encrypted with itself [3]. Consequently in August 2006 after a straw poll in
SISWG, the P1619 Task Group abandoned LRW [19].

When the focus of P1619 changed to narrow-block encryption modes specifically,
Mart Somera pointed SISWG to the XEX mode in January 2006 [3]. But being
a general purpose algorithm, the P1619 Task Group had to customize its con-
struction. Without going into details (because those will shortly be described in
the following sections) the result was a XEX-based algorithm called XTS-AES,
which in turn was chosen to be included in the standard. P1619 was approved
in December 2007 and named IEEE Std 1619: Cryptographic Protection of Data
on Block-Oriented Storage Devices, describing the XTS-AES encryption algo-
rithm and a standard for an XML-based key-export format.

In early 2008, IEEE submitted XTS to NIST for consideration as an encryption
mode of operation for the AES block cipher. NIST held a public review period
from June 2008 to September 2008 and very recently, Matthew Ball, the Chair
of SISWG, announced in an email [27] to the P1619 Task Group that NIST had
accepted XTS as an approved mode of operation for AES under FIPS 1402.

3.2 Scope

The scope of IEEE Std 1619 is to define a standard architecture for cryptographic
protection of data on block-oriented storage devices [CC07]. This architecture
consists of two elements, namely XTS-AES and a XML-based key backup struc-
ture.

XTS-AES, which is usually considered the main part of the standard, is a trans-
parent narrow-block encryption mode of operation especially designed for disk
encryption that can be implemented in both software and hardware. The other
main part of the standard is the XML-based key backup structure that aims to
facilitate an application independent way of sharing the keys used in encryption
and decryption processes. This is achieved by defining the key material and
necessary settings in the unified data format XML.

1Notice that the article is a cryptanalysis of the Encrypt-Mask-Decrypt (EMD) mode. But
EME, which only differs from EMD by not being parallelizable, is also subject to the same
attacks [Jou03].

2The Federal Information Processing Standard 140 (FIPS) are series of publications num-
bered 140 which are a U.S. government computer security standards that specify requirements
for cryptography modules. As of December 2006, the current version of the standard is FIPS
140−2, issued on 25 May 2001 [36].

Chapter 3. IEEE Std 1619-2007 37

IEEE Project 1619

P1619:
Narrow-block

Encryption

P1619.1:
Authenticated

Encryption

P1619.2:
Wide-block
Encryption

P1619.3:
Key Management

Infrastructure

IEEE Std 1619

Figure 3.1: The scope of IEEE Std 1619 is to define a standard architecture for
cryptographic protection of data on block-oriented storage devices.

In the future, IEEE Std 1619 will be complemented by P1619.2 and P1619.3.
P1619.2 is aimed at defining a standard for wide-block encryption [17]. This
will complement IEEE 1619 by providing an alternative storage encryption al-
gorithm for block-oriented storage devices, but with a wide-block granularity.
P1619.3 will complement the XML-based key-backup structure defined in IEEE
Std 1619 by also defining methods for the storage, management, and distribu-
tion of cryptographic keys used for the protection of stored data [18].

As depicted by Figure 3.1, there is also one more family member, namely
P1619.1. P1619.1 was approved and published as IEEE Std 1619.1 together with
IEEE Std 1619. As the name of the standard suggests, it describes methods
and algorithms for authenticated disk encryption [16]. In light of the difference
explained in section 2.2.3, we are able to identify it as a standard suitable for
tape drives, and not primarily block-oriented storage devices such as hard disks
and flash disks, which is the scope of IEEE Std 1619 and P1619.2.

3.3 Related Work
To our knowledge, there is no other initiative specifically aimed for standardizing
narrow-block encryption. However, IEEE’s SISWG is not the only standardiza-
tion body involved in storage security initiatives in general. In addition to
SISWG, the Internet Engineering Task Force (IETF), InterNational Commit-
tee for Information Technology Standards (INCITS), International Organization
for Standardization/International Electrotechnical Commission Joint Technical
Committee (ISO/IEC JTC1), Storage Networking Industry Association (SNIA),
Distributed Management Task Force (DMTF), and Trusted Computing Group
(TCG) all have projects related to storage security [14].

Of these, the standardization body most often referred to in popular media is
TCG, which recently announced release of final versions of their storage speci-
fications named Opal Security Subsystem Class Specification for PC clients and
Enterprise Security Subsystem Class Specification for data center storage [39].
However, these are both specifications for hardware-based encryption solutions,
yielding them interesting only to storage device vendors. Moreover, they do not
recommend any specific mode of operation other than using the AES cipher [6].

38 Disk Encryption – Scrutinizing IEEE Standard 1619\XTS-AES

3.4 XTS-AES
XEX-based Tweakable CodeBook mode with Ciphertext Stealing (XTS)3 is the
disk encryption mode of operation proposed by the P1619 Task Group. XTS
with AES as the underlying block cipher gave birth to the tweakable narrow-
block encryption algorithm XTS-AES. XTS-AES comes in two flavors: XTS-
AES-128 and XTS-AES-256. As the names suggests XTS-AES-128 is the mode
using 128-bit keys, and XTS-AES-256 is the mode using 256-bit keys. To be
compliant with the standard, an implementation must support at least one of
the above modes [CC07].

The XTS cipher mode can be broken down into three parts, namely: the XEX-
based construction, tweakable codebook mode, and ciphertext stealing. The
following paragraphs will give a very brief and holistic description of the XTS
mode, while later sections will describe the XTS-AES cipher mode in detail.

Position
address

Block Cipher
Encryption

Block Cipher
Encryption

Key2 Key1

2 j

Cn

Pn

Figure 3.2: XTS mode encryption

The XEX-based construction means that XTS follows the same steps as XEX,
when the general-purpose algorithm XEX is modified for disk encryption (see
Figure 3.2). One important modification from the XEX design is however the
use of two keys, instead of one. The first key (Key1) is needed in the encryption
step of XOR-Encrypt-XOR. While the second key (Key2) is used to encrypt the
position address value.

The term tweakable codebook mode (TCB) comes from the fact that XTS uses
electronic codebook mode (ECB), but with two additional inputs in each cipher-
ing step, hence the name tweakable. Although the ECB based nature of XTS is
not clearly illustrated in the figure above because it only depicts the encryption
of a single data block, the ECB similarity of TCB will become clear when en-
cryption and decryption of multiple data blocks is described later in this chapter.

Lastly, in order to adapt the algorithm to also be able to process data that is
not dividable into even 128-bit blocks, XTS makes use of the ciphertext stealing
(CTS) technique when needed.

3Although XEX-TCB-CTS should be abbreviated as XTC, “C” was replaced with “S” (for
“stealing”) to avoid confusion with the abbreviation for the ecstasy drug, which is also XTC.

Chapter 3. IEEE Std 1619-2007 39

Before continuing with a detailed description of how XTS-AES encryption (3.4.1)
and decryption (3.4.2) is performed, the next couple of paragraphs will define
some key terms used to describe XTS-AES.

Data block. In data storage, a block is a sequence of bits or bytes, having a
nominal length (i.e. a block size). The XTS-AES algorithm refers to a data block
as the single block of plaintext or ciphertext of 128 bits in size. According to
the standard, each data block is assigned a non-negative block number [CC07].

Data unit. A data unit on the other hand is the sequence of one or more data
blocks. Figure 3.3 depicts such a sequence of data blocks, comprising a data
unit. According to the standard, each data unit must be assigned a position
address (logical address or sector address) that is a non-negative integer [CC07].

Data
block #4

Data unit

Data
block #3

Data
block #2

Data
block #1

Figure 3.3: The number of 128-bit blocks in a data unit shall not exceed 2128 − 2
[CC07].

The mapping between the data unit and the transfer, placement, and compo-
sition of data on the storage device is however not defined by IEEE Std 1619.
But, in order to be compliant with the standard, an implementation must in-
clude documentation describing this mapping [CC07]. Thus, an encrypted data
unit does not necessarily have to correspond to a physical block address on the
storage device, hence the generic term position address.

Tweak. As described in section 2.1.2, a tweak is an extra input used to further
variate the output of a cryptographic function. The tweak used in XTS-AES is
a 128-bit value, represented by the multiplication between the encrypted value
of the position address (either a logical address or sector address) of the data,
with two (2) to the power of the block number inside the data unit.

Key scope. Key scope is defined as a range of data encrypted with the same
XTS-AES key. The key scope is identified by three non-negative integers:

• The position address corresponding to the first data unit
• The size in bits of each data unit
• The number of units to be encrypted/decrypted under the control of this

key

An XTS-AES key shall not be associated with more than one key scope. The
reason for this restriction is that encrypting more than one block with the same
key and same index introduces vulnerabilities that might potentially be used in
an attack on the system [CC07].

Modular multiplication. ⊗ is used in the following figures to denote mod-
ular multiplication of two polynomials over the binary field GF(2), modulo
x128 + x7 + x2 + x+ 1. Details about how modular multiplication is performed
can be found in [MvOV01, Sta06].

40 Disk Encryption – Scrutinizing IEEE Standard 1619\XTS-AES

3.4.1 XTS-AES Encryption Procedure
Encryption of a Single Data Block

The most elementary building block of the XTS-AES algorithm (after the AES
cipher, of course) is the scheme for encrypting a single 128-bit block of plain-
text. In IEEE Std 1619, this is denoted XTS-AES-blockEnc and expressed
mathematically in Equation 3.1, and graphically in Figure 3.4.

C ← XTS-AES-blockEnc(Key, P, i, j) (3.1)

where

• Key is the 256 or 512 bit XTS-AES key, which is composed by two fields
of equal size, namely Key1 and Key2, such that Key = Key1 | Key2.

• P is a 128-bit block of plaintext
• i is a 128-bit value representing the position address
• j is the sequential number of the 128-bit block inside the data unit
• C is the 128-bit block of ciphertext resulting from this operation

AES
EncryptionKey1

Plaintext

Ciphertext

CC

PP

TAES
Encryptioni

Key2 2j

Figure 3.4: XTS-AES-blockEnc

As seen from Equation 3.1, XTS-AES-blockEnc takes four inputs; the key set,
128 bits of plaintext, the position address, and a block number; which is used
to produce 128 bits of ciphertext. The encryption procedure of XTS-AES for
a single 128-bit data block follows. First, the position address (i) is encrypted
using Key2 and multiplied with 2j . Two (2) represents the second element of
GF(2128) that corresponds to the polynomial x (i.e. 0x216 in hexadecimal, and
0000...00102 in binary), and j is the sequential number of the 128-bit block in-
side the data unit being processed.

The result of the modular multiplication is the Tweak (T), which is used twice;
first to be XORed with the plaintext, resulting in PP ; and secondly XORed
with CC (the result of encrypting PP with Key1), which gives the ciphertext.

Chapter 3. IEEE Std 1619-2007 41

Encryption of a Data Unit

As data can be of variable length, Equation 3.2 and Figure 3.5 describes the
encryption procedure for a data unit consisting of multiple data blocks.

C ← XTS-AES-Enc(Key, P, i) (3.2)

where Key, P, i and C is defined the same way as for Equation 3.1.

XTS-AES-
blockEnc

P1

C1

P2

C2

Key

Pn-1

Cn-1

KeyKey XTS-AES-
blockEnc

XTS-AES-
blockEnc

i, 1 i, 2 i, n-1

Key XTS-AES-
blockEnc

i, n

Cn

Pn

Figure 3.5: XTS-AES-Enc used on plaintext dividable in 128-bit blocks. Notice the
use of XTS-AES-blockEnc as a subroutine.

The plaintext is first partitioned into n blocks, P = P1 | ... | Pn−1 | Pn. If the
plaintext size is evenly dividable into n 128-bit blocks, the XTS-AES-Enc pro-
cedure is done straight forward in tweakable codebook mode with the position
address (i) and the block number (j) as additional inputs.

On the other hand, if the plaintext size is not dividable in 128-bit blocks, CTS
is used. This means that the first n-2 blocks P1, ..., Pn−2 are encrypted as in
the latter case (plaintext is dividable in 128-bit blocks), while the second to last
block Pn−1 and last block Pn utilizes the CTS technique depicted in Figure 3.6.

XTS-AES-
blockEnc

P1

C1

P2

C2

Key

Pn-1

Cn-1

KeyKey XTS-AES-
blockEnc

XTS-AES-
blockEnc

i, 1 i, 2 i, n-1

Key

Pn

XTS-AES-
blockEnc

i, n

CP

Cn CP

PP

CC

Cn-1

Cn

Figure 3.6: XTS-AES-Enc used on plaintext not dividable in 128-bit blocks

After encrypting the plaintext blocks P1 to Pn−2 in normal TCB mode, Pn−1

is also encrypted, but the result (CC) is split in to two; Cn which becomes the
last block of ciphertext, and CP which is used as input to the last encryption
operation (PP), along with the last bits of the plaintext Pn. This last encryp-
tion operation results in the second to last ciphertext, namely Cn−1.

42 Disk Encryption – Scrutinizing IEEE Standard 1619\XTS-AES

3.4.2 XTS-AES Decryption Procedure
Decryption of a Single Data Block

Decryption of a single data block is almost the exact opposite of encryption
described in section 3.4.1. In IEEE Std 1619, this is denoted XTS-AES-blockDec
and expressed mathematically in Equation 3.3, and graphically in Figure 3.7.

P ← XTS-AES-blockDec(Key,C, i, j) (3.3)

where

• Key is the 256 or 512 bit XTS-AES key, which is composed by two fields
of equal size, namely Key1 and Key2, such that Key = Key1 | Key2.

• C is a 128-bit block of ciphertext
• i is a 128-bit value representing the position address
• j is the sequential number of the 128-bit block inside the data unit
• P is the 128-bit block of plaintext resulting from this operation

AES
DecryptionKey1

Plaintext

Ciphertext

PP

CC

TAES
Encryptioni

Key2 2j

Figure 3.7: XTS-AES-blockDec

If we were to compare Figure 3.7 with Figure 3.4, we see that the only difference
is that while XTS-AES-blockEnc makes use of the AES encryption procedure,
XTS-AES-blockDec uses the reverse procedure (i.e. AES decryption). But, no-
tice that the AES encryption process is still used to derive the tweak T, as it is
impossible to use the reverse procedure and still get the correct T. The decryp-
tion procedure of XTS-AES for a single 128-bit data block follows.

Just like for encryption, the position address (i) is encrypted using Key2 and
multiplied with 2j in GF(2128). Where two (2) still is the second element of
GF(2128) that corresponds to the polynomial x, and j still is the sequential
number of the 128-bit block inside the data unit being processed. The result of
modular multiplication is (T), which is used twice; first to be XORed with the
ciphertext, resulting in CC ; and secondly XORed with PP, which in turn gives
the plaintext.

Chapter 3. IEEE Std 1619-2007 43

Decryption of a Data Unit

Just like the encryption process of a data unit needs to take into account that
data can be of variable length, so must the decryption process. Equation 3.4
and Figure 3.8 describes the decryption procedure for a data unit consisting of
a multiple data blocks.

P ← XTS-AES-Dec(Key,C, i) (3.4)

where Key, C, i and P is defined the same way as for Equation 3.3.

XTS-AES-
blockDec

C1

P1

C2

P2

Key

Cn-1

Pn-1

KeyKey XTS-AES-
blockDec

XTS-AES-
blockDec

i, 1 i, 2 i, n-1

Key XTS-AES-
blockDec

i, n

Pn

Cn

Figure 3.8: XTS-AES-Dec used on plaintext dividable in 128-bit blocks. Notice the
use of XTS-AES-blockDec as a subroutine.

The ciphertext is first partitioned into n blocks, C = C1 | ... | Cn−1 | Cn. If
the ciphertext size is evenly dividable into n 128-bit blocks, the XTS-AES-Dec
procedure is done straight forward in tweakable codebook mode using the posi-
tion address (i) and the block number (j) as additional inputs.

But if the ciphertext size is not dividable in 128-bit blocks, CTS is used. This
means that the first n-2 blocks C1, ..., Cn−2 are decrypted as in the latter case
(plaintext is dividable in 128-bit blocks), while the second to last block Cn−1

and last block Cn utilizes the CTS technique depicted in Figure 3.9.

XTS-AES-
blockDec

C1

P1

C2

P2

Key

Cn-1

Pn-1

KeyKey XTS-AES-
blockDec

XTS-AES-
blockDec

i, 1 i, 2 i, n-1

Key

Cn

XTS-AES-
blockDec

i, n

CP

Pn CP

CC

PP

Pn-1

Pn

Figure 3.9: XTS-AES-Dec used on plaintext not dividable in 128-bit blocks

After decrypting the plaintext blocks C1 to Cn−2 in normal TCB mode, Cn−1 is
also decrypted, but the result (PP) is split in to two; Pn which becomes the last
block of plaintext, and CP which is used as input to the last decryption oper-
ation (CC), along with the last bits of the ciphertext Cn. This last decryption
operation results in the second to last plaintext, namely Pn−1.

44 Disk Encryption – Scrutinizing IEEE Standard 1619\XTS-AES

3.5 XML-based Key-Export Format
The IEEE 1619 standard also defines a XML-based key-export format. A de-
vice compliant with this standard must consequently also support its key backup
structure [CC07].

The key backup structure provides all the information that is needed in order to
decrypt an arbitrary number of data units that is encrypted with XTS-AES. But
before we begin describing the key backup structure, the following paragraphs
will clarify and define some terms used later on.

XML

Extensible Markup Language (XML) [53] as the well-known general-purpose
markup language is used to represent the key backup structure of IEEE Std 1619.
Describing the key in such a unified format facilitates application independent
ways of sharing key material, which is one the goals of the IEEE Std 1619
[CC07].

DTD

While XML is a markup language used to create other markup languages, a
Document Type Definition (DTD) [52] is needed to create and describe the
language. In our setting, a DTD is used to define the elements that need to be
present in the key backup structure.

Base64

Base64 refers to a specific content transfer encoding. It is used as a generic
term for any similar encoding scheme that encodes binary data by treating it
numerically and translating it into a base 64 representation. As we will see later
on, some of the content in the key backup structure is encoded with Base64,
according to IETF RFC 3548 [21].

Without going into details, Base64 encoding obfuscates the original content
into a form that is not human readable. The Base64 encoding used in the
key backup structure defined by IEEE 1619 can be compared to substitution
ciphering4. The substitution table and other detailed information regarding the
Base64 encoding can be found in RFC 3548.

4Substitution ciphering is a method of encryption by which units of plaintext are replaced
with ciphertext according to a regular system or substitution table [Sta06]. The receiver
deciphers the text by performing an inverse substitution.

Chapter 3. IEEE Std 1619-2007 45

3.5.1 Key Backup Structure Overview
The leftmost column of Table 3.1 lists the five elements that need to be present
in the key backup structure in order to be compliant with IEEE Std 1619. Each
of these is explained further in their respective tables below, while an example
of a XML document that fulfills these is shown in 3.5.2. Tables are adapted
from [CC07].

Element Description Reference
StructureID Identifier of current structure Table 3.2
Standard Standard identifier Table 3.3
KeyScope Key scope Table 3.4
Transform Transform description Table 3.5
KeyMaterial Key material and its length Table 3.6

Table 3.1: Key backup structure

StructureID

Element Size XML Encoding Description
ID 16 bytes Base64 General identifier

for the key backup
structure.

Comment Up to 1024 bytes Text A text description
provided by the
vendor.

Table 3.2: StructureID contains the information needed to uniquely identify a par-
ticular instance of a key backup structure.

Standard

Element Size XML Encoding Description
StandardNumber Up to 128 bytes Text Number of the

standard used.
Shall be IEEE STD
1619-2007.

StandardComment Up to 256 bytes Text Any additional
standard-related
information.

Table 3.3: Standard defines information about the standard to which the data units
were encrypted. Shall be set to IEEE STD 1619-2007.

46 Disk Encryption – Scrutinizing IEEE Standard 1619\XTS-AES

KeyScope

Element Size XML Encoding Description
KeyScopeStart 16 bytes Integer Value of the tweak

associated with the
first data unit in
the scope.

DataUnitSize 16 bytes Integer The number of bits
in one data unit
that is covered by
the current key.

KeyScopeLength 16 bytes Integer The number of data
units that are cov-
ered by the current
key.

Table 3.4: KeyScope defines the scope of the key material that is identified in the key
backup structure. The KeyScope is a sequence of data units, numbered consecutively
starting at a certain position.

Transform

Element Size XML Encoding Description
TransformName Up to 16 bytes Text The transform

name.

Table 3.5: The Transform name shall be one of the supported strings, XTS-AES-128
or XTS-AES-256.

KeyMaterial

Element Size XML Encoding Description
KeyLength 2 bytes Integer Length (in bits) of

the key. Allowed
values are 256 (for
XTS-AES-128) and
512 (for XTS-AES-
256).

KeyValue Variable Base64 The value of the
key.

Table 3.6: KeyMaterial is defined by the KeyLength and KeyValue.

Chapter 3. IEEE Std 1619-2007 47

3.5.2 XML Format
The DTD for key backup format is shown in Figure 3.10, while an example of
an XML document following this DTD is shown in Figure 3.11.

<!ELEMENT KeyBackup (StructureID, Standard, KeyScope, Transform, KeyMaterial)>
 <!ELEMENT StructureID (ID, Comment?)>
 <!ELEMENT ID (#PCDATA)>
 <!ATTLIST ID Encoding CDATA #FIXED "Base64">
 <!ELEMENT Comment (#PCDATA)>
 <!ELEMENT Standard (StandardNumber, StandardComment?)>
 <!ELEMENT StandardNumber (#PCDATA)>
 <!ELEMENT StandardComment (#PCDATA)>
 <!ELEMENT KeyScope (KeyScopeStart, DataUnitSize, KeyScopeLength)>
 <!ELEMENT KeyScopeStart (#PCDATA)>
 <!ATTLIST KeyScopeStart Encoding CDATA #FIXED "Integer">
 <!ELEMENT DataUnitSize (#PCDATA)>
 <!ATTLIST DataUnitSize Encoding CDATA #FIXED "Integer">
 <!ELEMENT KeyScopeLength (#PCDATA)>
 <!ATTLIST KeyScopeLength Encoding CDATA #FIXED "Integer">
 <!ELEMENT Transform (TransformName)>
 <!ELEMENT TransformName (#PCDATA)>
 <!ELEMENT KeyMaterial (KeyLength, KeyValue)>
 <!ELEMENT KeyLength (#PCDATA)>
 <!ATTLIST KeyLength Encoding CDATA #FIXED "Integer">
 <!ELEMENT KeyValue (#PCDATA)>
 <!ATTLIST KeyValue Encoding CDATA #FIXED "Base64">

Figure 3.10: DTD for key backup format [CC07]

<?xml version="1.0" encoding="ISO-8859-1" standalone="no"?>
<!DOCTYPE KeyBackup SYSTEM "keybackup.dtd">
<KeyBackup>
 <StructureID>

<ID Encoding="Base64">YUBlJHJqMDNhWjFAJCVwXQ==</ID>
 <Comment>Comment text here</Comment>
 </StructureID>
 <Standard>

<StandardNumber>IEEE STD 1619-2007</StandardNumber>
 <StandardComment>Disk</StandardComment>
 </Standard>
 <KeyScope>
 <KeyScopeStart Encoding="Integer">0</KeyScopeStart>
 <DataUnitSize Encoding="Integer">4096</DataUnitSize>
 <KeyScopeLength Encoding="Integer">1083</KeyScopeLength>
 </KeyScope>
 <Transform>
 <TransformName>XTS-AES-256</TransformName>
 </Transform>
 <KeyMaterial>
 <KeyLength Encoding="Integer">512</KeyLength>
 <KeyValue Encoding="Base64">

IUApKFQlWEpHJCkoVypUJVgoKU5UJV
dYKShXJVhOSlJFR0gpSCgjJWd0eDk3
d3h0NW03NTNobXR4ISNkZjRzZw==

 </KeyValue>
 </KeyMaterial>
</KeyBackup>

Figure 3.11: An example XML document containing a key for a single key scope
[CC07].

48 Disk Encryption – Scrutinizing IEEE Standard 1619\XTS-AES

A key backup structure such as the one depicted in Figure 3.11, can further
be protected by encrypting the key material part (KeyMaterial defined in Ta-
ble 3.6). This is done by encrypting the <KeyValue></KeyValue> part with
XML-ENC [51] and embedded within the XML key backup structure. Any key
wrap algorithm5 allowed by the XML-ENC specification can be used, but it is
mandatory to at least support NIST AES-CBC-256 [CC07].

The location of the wrapping key (i.e. the key used to encrypt the XTS-AES
key) is not specified in IEEE Std 1619. But, the cryptographic strength of the
wrapping keys should be at least equivalent to the strength of the storage en-
cryption keys wrapped. For example, to wrap an XTS-AES-256 key one should
at least use AES with 256-bit keys as the wrapping algorithm [CC07]. More
about how to choose an appropriate wrap algorithm can be found in NIST Key
Management Guidelines [28].

Figure 3.12 shows an example where the KeyMaterial is encrypted using AES-
256 Wrap Key, whose wrapping key has the identifier WrapKey. This example
corresponds to the unwrapped example in Figure 3.11. The Base64 encoding of
the wrapping key used in Figure 3.12 is as follows [CC07]:

9s7VKp6PYKOXtYjs5OFBoqCDA3MmFd5tTqYnZv+PVro=

5A key wrap algorithm is encryption algorithms designed to encapsulate (encrypt) crypto-
graphic key material.

Chapter 3. IEEE Std 1619-2007 49

Algorithm="http://www.w3.org/2001/04/xmlenc#aes256-cbc"
 xmlns:xenc="http://www.w3.org/2001/04/xmlenc#"/>
 <ds:KeyInfo xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
 <ds:KeyName xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
 WrapKey

</ds:KeyName>
 </ds:KeyInfo>
 <xenc:CipherData xmlns:xenc="http://www.w3.org/2001/04/xmlenc#">
 <xenc:CipherValue
 xmlns:xenc="http://www.w3.org/2001/04/xmlenc#">
 M1uzVD5PGeoneuFP0bgG3o1bzGVRr

 CLG5pR00ER/eTyBTRNSEdmOyT3Q/2
 ZGdNn4plzIAml5QYgCKjOTJMPWxzZFZH75/S3SHA
 haOYhy4DXovhf+LiiXvThqxWcGaIXS6a4+X82vBgT8j2JRqPe/+A==
</xenc:CipherValue>

 </xenc:CipherData>
 </xenc:EncryptedData>
 </KeyValue>
 </KeyMaterial>
</KeyBackup>

<KeyBackup>
 <StructureID>
 <ID Encoding="Base64">YUBlJHJqMDNhWjFAJCVwXQ==</ID>
 <Comment>Comment text here</Comment>
 </StructureID>
 <Standard>
 <StandardNumber>IEEE STD 1619-2007</StandardNumber>
 <StandardComment>Disk</StandardComment>
 </Standard>
 <KeyScope>
 <KeyScopeStart Encoding="Integer">0</KeyScopeStart>
 <DataUnitSize Encoding="Integer">4096</DataUnitSize>
 <KeyScopeLength Encoding="Integer">1083</KeyScopeLength>
 </KeyScope>
 <Transform>
 <TransformName>XTS-AES-256</TransformName>
 </Transform>
 <KeyMaterial>
 <KeyLength Encoding="Integer">512</KeyLength>
 <KeyValue Encoding="Base64">
 <xenc:EncryptedData xmlns:xenc="http://www.w3.org/2001/04/xmlenc#"
 Type="http://www.w3.org/2001/04/xmlenc#Content">
 <xenc:EncryptionMethod

Figure 3.12: The same XML document as depicted in Figure 3.11, but with the
KeyValue wrapped using AES-256 Key Wrap [CC07].

50 Disk Encryption – Scrutinizing IEEE Standard 1619\XTS-AES

Chapter 4

Security Assessment

Treat your password like your
toothbrush. Don’t let anybody else
use it, and get a new one every
six months.

Clifford Stoll

This chapter will give a security assessment of XTS-AES. First, we will discuss
the computational security of XTS-AES. Secondly, we will provide the reader
with a synopsis of the comments set forward by the cryptographic community
in response to the request for comments on XTS-AES by NIST. Lastly, we will
describe attacks that may be applicable to XTS-AES.

4.1 Computational Security
As described in section 2.1.1, a cryptosystem can be considered computationally
secure if the complexity of an attack exceeds the computational capability of the
adversary. This section will show that XTS-AES provides a security guarantee
that makes it the narrow-block cipher of choice for storage devices seeking the
cryptographic goal of confidentiality. Since the security of XTS is based upon
the security of XEX, we will first consider XEX and then proceed with XTS.
For details regarding the mathematical deductions and formal security proofs,
please refer to [Rog04, Min07] for XEX and [CC07, LM08] for XTS-AES.

4.1.1 General XEX Transform
The security analysis of the general-purpose algorithm XEX is given by Rog-
away in [Rog04] and shows that XEX is secure as long as the number of blocks
that are encrypted under the same key is sufficiently smaller than the birthday
bound value of 2

n
2 , where n is the block size of the underlying block cipher.

The security proof is given by assuming an adversary that is able to make ar-
bitrary number of encryption and decryption queries to the tweakable cipher,
using arbitrary number of tweak values. These queries are answered by either
the XEX construction or by a truly random collection of permutations and

51

52 Disk Encryption – Scrutinizing IEEE Standard 1619\XTS-AES

their inverses over {0, 1}n. The adversary’s task is to determine which the case
is. Theorem 8 in [Rog04] proves that an adversary that makes at most q such
queries cannot distinguish these two cases with advantage1 more than 9.5 q

2

2n +ε,
where ε is the error term, q is the number of encrypted 128-bit blocks, and n
is the block size of the underlying cipher in bits [CC07, Rog04]. However, this
probability bound was improved by Minematsu to 4.5 q

2

2n + ε in his paper “Im-
proved Security Analysis of XEX and LRW Modes” [Min07].

The real-world explanation for this security proof is based on the fact that no
realistic adversary would have more information available than the adversary
in the attack model described by Rogaway. This follows from the fact that
the adversary in Rogaway’s attack model is able to choose all the plaintext
and ciphertext that is fed to the construction. Since the theorem (Theorem 8,
[Rog04]) states that no adversary in that model can distinguish the construction
from a collection of random permutations, it follows that no realistic adversary
can distinguish between these cases with any significant advantage. This means
that an attack would be just as successful against a collection of truly random
permutations, one per each 128-bit block, as it would be against XEX.

Furthermore, the security proof in [Rog04] implies that the only attacks that are
possible against XEX are the ones that are inherent from the use of transparent
encryption with a narrow-block granularity. However, when the number of
blocks q that are available to the adversary approaches the birthday bound,
there is a non-negligible probability that one is able to distinguish ciphertext
produced by XEX from a random sequence of permutations [CC07].

4.1.2 XTS-AES Transform

As XTS-AES is an instantiation of the XEX scheme (with AES as the underly-
ing block cipher), the authors of XTS-AES assume that the security proof for
XEX holds for XTS [CC07], and can thereby also inherent the same probability
bounds for an attacker to success. In Appendix D of IEEE Std 1619 the authors
of XTS-AES argue that the inherit security from XEX yields a strong security
guarantee as long as the same key is not used to encrypt much more than 240

blocks (which corresponds to about 16 terabyte of data).

Bytes Queries (q)
1 Gigabyte 10243 226

1 Terabyte 10244 236

1 Petabyte 10245 246

1 Exabyte 10246 256

Table 4.1: Table showing different amount of data encrypted with the same key and
the number of queries (i.e. number of 128-bit blocks) that this data corresponds to.

1In cryptography, the advantage is defined as the difference between the adversary’s prob-
ability of being successful in an attack on the system and the probability of success by simply
guessing. This can be expressed as Adv(A) = Pr(Successful attack) – ε, where A is the
adversary and ε is the probability of success by guessing (also called the error term).

Chapter 4. Security Assessment 53

If we consider the case of one terabyte (which corresponds to q = 236), we can
see from Table 4.2 that no attack can succeed with probability better than at
most approximately 2−52 (i.e. approximately two in nine quadrillion).

The security guarantee deteriorates as more data is encrypted with the same key,
as shown in Table 4.2. For example, when using the same key for a petabyte
of data, attacks based on the birthday paradox have a success probability of
at most approximately 2−32 (i.e. approximately one in four billion), and with
one exabyte of data, the success probability is at most approximately 2−12 (i.e.
approximate one in four thousand).

Queries (q) 9.5 q2

2128 4.5 q2

2128

226 2−72.7521 2−73.8301

236 2−52.7521 2−53.8301

246 2−32.7521 2−33.8301

256 2−12.7521 2−13.8301

Table 4.2: Probability for an adversary to be successful in an attack based on the birth-
day paradox using the probability bounds deduced by Rogaway [Rog04] and Minematsu
[Min07] for the XEX construction.

But, note that the consequence of success is being able to distinguish XTS
ciphertext from pseudo random permutations, not to recover the encryption key
or plaintext. Figure 4.1 show a plot of the probability bound functions, which
depict that to reach even a 1 % success probability in being able to distinguish
XTS ciphertext from pseudo random permutations, a minimum of 261 blocks,
i.e. 32 exabyte, of data would have to be encrypted with the same key.

0.002 0.004 0.006 0.008 0.010

57

58

59

60

2q

p

Figure 4.1: Logarithmic plot (2q) showing the probability (p) for an adversary to
be successful in an attack based on the birthday paradox using the probability bounds
q2/2n (topmost graph), 4.5q2/2n (midmost graph), and 9.5q2/2n (bottommost graph).

54 Disk Encryption – Scrutinizing IEEE Standard 1619\XTS-AES

4.2 NIST Submission
As mentioned in section 3.1, IEEE submitted XTS to NIST for consideration
as an approved encryption mode of operation for the AES block cipher, under
NIST FIPS 140. As part of this process NIST sent out a request for public
comments on XTS [32]. The main reason for this request was to give the cryp-
tographic community (i.e. also those who did not participate in the development
of XTS-AES) a chance to comment and evaluate the XTS-AES algorithm.

The following paragraphs aims to review and summarize the feedback provided
by the cryptographic community. We have sought to include and describe all the
well-documented responses submitted to NIST that in our opinion is interesting
with respect to the security and viability of XTS. The complete set of comments
submitted to NIST regarding XTS-AES can be found at [31, 33].

4.2.1 Security Related Feedback

Use of two keys instead of one

Liskov et al. criticizes the use of two keys in the XTS-AES algorithm in their
response [LM08] to the request for comments on XTS-AES. They argue that
two keys is unnecessary since the XEX construction is already been proven to be
secure with only one key. Furthermore, the obvious advantage of using a single
key is that the key length required would be halved, yet the level of security
will remain effectively the same [LM08]. Moreover, they also point out that the
standard does little to justify the choice to modify XEX so that two keys are
used instead of one.

Security proof of XEX is not valid for XTS without modification

A second point of criticism against XTS-AES set forward by Liskov et al. is
that the current security analysis of XTS-AES, included in the standard (and
summarized in section 4.1) does not necessarily apply to XTS, since it does
not adjust the analysis of XEX for the use of two keys. However, Liskov et
al. provides such a security analysis in [LM08], that achieves a better security
bound (q

2

2n + ε), and avoids trying to apply the analysis of XEX improperly.
Table 4.3 show the probabilities of being able to distinguish XTS ciphertext
from pseudo random permutations when using the security bound deduced by
Liskov et al.

Queries (q) q2

2128

226 2−76

236 2−56

246 2−36

256 2−16

Table 4.3: Probability for an adversary to be successful in an attack based on the
birthday paradox using the probability bounds deduced by Liskov et al. [LM08] for
XTS-AES.

Chapter 4. Security Assessment 55

Currently, all of the comments and responses (editorial and others) provided by
Liskov et al. in [LM08] is listed under errata for IEEE Std 1619 at the official
SISWG homepage [15], suggesting their feedback has been accepted.

Ciphertext stealing

Michael Willett of Seagate points out in his response to the request for comment
that the CTS implementation in XTS-AES makes the algorithm unnecessarily
cumbersome [42]. He claims that the result of swapping the last two blocks
is the loss of ability to access the data sequentially backwards and forwards,
which in turn may also cause incompatibility issues with other mechanisms. He
furthermore point out the absence of any security proof in the XTS-AES specifi-
cation (or reference to such a proof) that the CTS implementation of XTS-AES
will not worsen the security. Moreover, he suggests the use of a more recent
definition of CTS [vT06] that do not include the swapping of the two last blocks.

Philip Rogaway also share the concern about the missing security proof for the
CTS implementation: “When the data unit (sector) is a multiple of 128 bits,
each 128-bit block within the data unit should be separately enciphered as though
by independent, uniformly random permutations. That part is clear. But what
security property does one except for partial blocks? One might hope, for exam-
ple, that the final 128+b bits (b<128) would likewise be enciphered as if by a
strong PRP2” [33].

In Liskov et al.’s response to the call for comment on XTS, they sketch a proof
that XTS-AES’s CTS implementation is sound if the basic scheme is sound.
Furthermore, Matthew Ball, the Chair of IEEE SISWG, responds to these con-
cerns by referring to the facts that NIST has proposed to incorporate a similar
CTS mode for CBC [29] and that despite the lacking formal security proof CTS
still has general approval in the cryptographic community [25].

Inherent narrow-block weaknesses

Vijay Bharadwaj and Neils Ferguson of Microsoft submitted concern about the
inherit narrow-block weaknesses of XTS-AES that allows fine-grained ciphertext
manipulation attacks like data modification attack ([33], page 7).

In a data modification attack the adversary randomizes a block of data in such
a way that introduce a security hole in the system whilst keeping the system
functional. For example, modern operating systems have several settings that
are important for the security of the system. Each of these settings is obvi-
ously an attack target. In a data modification attack, an adversary will try to
find such a block of ciphertext that, when randomized, has a reasonable chance
of changing a settings to something insecure; corrupting a access control func-
tion such that the system omits certain checks; or perhaps corrupting an input
validation routine such that it does not clean up untrusted input. The narrow-
block nature of the XTS-AES algorithm (i.e. that it works on 16-byte blocks of
data at the time) makes this attack easy according to Bharadwaj and Ferguson.
They suggest that a wide-block encryption method would not be as susceptible

2Pseudo Random Permutation

56 Disk Encryption – Scrutinizing IEEE Standard 1619\XTS-AES

to such an attack since there are fewer data blocks to randomize. Additionally,
when randomizing a wide-block, more of the overall data structure will be de-
stroying yielding an increased chance of also damaging necessary parts of the
data structure.

The P1619 Task Group acknowledges the narrow-block weaknesses in Appendix
D of IEEE Std 1619 by confirming that an adversary has greater malleability
with a 16-byte encryption mode like XTS, as opposed to wide-block algorithms
like EME and XCB. The authors of XTS-AES justify the acceptance of the
inherit narrow-block weaknesses by referring to the fact that narrow-block en-
cryption is best suited only when a low-resource consuming cipher is needed (in
terms of buffer, computation power, and latency) [25]. Thus, it is a tradeoff
between efficiency and security.

Attack model addressed by XTS-AES

Another important comment provided by Michael Willett of Seagate, Niels Fer-
guson of Microsoft, and Philip Rogaway that the XTS-AES specification doc-
ument, IEEE Std 1619, does not clearly specify what kind of attack model
XTS-AES is suppose to address [42, 33]. Without a clearly formulated state-
ment of what the application areas and security goals is, it is hard to analyze
the proposal, or to determine how widely applicable XTS may be.

Matthew Ball recognizes that they could have added more details about all
the applications that are suitable for XTS, but since this was considered a
somewhat subjective area, it was omitted and ultimately left up to the designers
and implementers to determine whether the XTS mode is appropriate for their
specific design requirements [25].

4.2.2 Other Issues

XTS-AES specification only to be available through purchase

One of the topics that NIST wanted to be commented was the proposal for the
approved specification to be available only by purchase from IEEE [32]. This
proposal received very much criticism and was mostly commented as simply
unacceptable by most of the responders to the call for comments on XTS-AES.
The only proposal for an alternative solution was given by David Clunie ([33],
page 3) who suggests that IEEE can be remunerated by the federal government
in ways that do not involve purchase fees for the standard.

Matthew Ball explains their stand of why the standard must be associated with
a publication fee in [25]. He argues that in the case of XTS-AES, the members
of the P1619 Task Group (consisting of everyone from academic researchers
to representatives of private companies) did not pay any fees to participate in
the development, nor did NIST pay anything to develop this standard, and
that this structure allowed the participants of top cryptographs to develop the
details of the XTS-AES mode, free of cost to them. Naturally, when neither
NIST is paying nor the P1619 Task Group members are paying, the publication
cost is passed on to the user. He further argue that this is generally not an

Chapter 4. Security Assessment 57

issue for corporations, as they are expected to pay for standards as part of
product development, in addition, he claims that many companies already have a
company-wide access to the IEEE library, allowing them to access and download
IEEE 1619 for no additional cost.

Concerns of intellectual property rights

There has also been some unease regarding the intellectual property (IP) rights
of the XTS-AES algorithm. Matthew Ball wrote in his email to NIST dated
September 1, 2008 that: “Rogaway (the inventor of XEX, the basis of XTS) has
no IP claims on XEX, nor knows of anyone else who does (see this e-mail [40]).
NeoScale (now nCipher – soon to be acquired by Thales) submitted a blanket
statement [44] of owning undisclosed IP for all of IEEE P1619, but there is no
reason to believe that this IP covers XTS specifically.” [26].

From searches for patent applications owned by NeoScale performed by the
P1619 Task Group, there was found some patents for general storage encryption
methods and key management solutions as of January 2009 (complete list in
[25]), but none that specifically covers XTS or XEX mode of encryption. The
P1619 Task Group therefore dismisses the patent claims submitted by NeoScale
as an ambiguity that exists for all technology [25]. At the time of writing, no new
information or ruling regarding this matter has been made publicly available.

4.2.3 Changes

In light of the feedbacks received, the P1619 Task Group have suggested the
following changes in order to facilitate a broad acceptance for XTS-AES as an
NIST approved mode of operation [26]. Which of these that may or may not be
included in the NIST Special Publication on XTS is not yet decided.

Allow using one key instead of two

The first change that the P1619 Task Group suggests NIST can make without
effecting the security of XTS-AES is to allow for the use of one AES key instead
of two [26]. This change is substantiated by the previously mentioned fact that
the original XEX construction uses one key and at the same time is provable
secure. This will effectively reduce the complexity of the ciphering processes, as
key generation is a heavy duty operation.

Allow alternative ciphertext stealing method

Another change that the P1619 Task Group brings to NIST is to allow switching
the order of the blocks created through CTS [25]. They argue that there is no
security-related reason for the CTS implementation to be exactly as specified
in IEEE Std 1619 [26].

Allow 192-bit AES keys

Although IEEE Std 1619 only specifies XTS-AES-128 and XTS-AES-256, i.e.
XTS-AES encryption with 128-bit and 256-bit keys, the P1619 Task Group do
not see any security-related reason for not also allowing 192-bit keys [26].

58 Disk Encryption – Scrutinizing IEEE Standard 1619\XTS-AES

4.3 Attacks
The rest of this chapter will briefly go through some attacks that may be applica-
ble to the narrow-block cipher mode XTS-AES. We have grouped the different
attacks based on their area of application when regarding the following two
attack scenarios:

1. The case of a stolen storage device already employing full disk encryption
with the possibility that the adversary (at best) has partial knowledge
to the contents of the stolen disk (i.e. the attacker is able to initiate
ciphertext-only attacks and known-plaintext attacks).

2. The case where the adversary is able to monitor and manipulate the ci-
phering process of a full disk encryption solution (i.e. the attacker is able
to initiate chosen-plaintext attacks and chosen-ciphertext attacks).

4.3.1 Scenario: Stolen Storage Device

In this scenario the adversary has stolen the encrypted storage device. At-
tacks applicable in this scenario assume that the adversary is computationally
unbounded in terms of time and storage resources.

Exhaustive key search attack

Exhaustive key search attack refers to the attempt of systemically guessing a
cryptographic key. This is done by trying every possible key to decipher a ci-
phertext until one key result in some intelligible plaintext. The complexity of
this attack can be described by the number of tried decryptions, which is, on
average 2k−1 for a block cipher with a key size k [JBSK01]. An exhaustive
key search can be mounted on any cipher and sometimes a weakness in the key
schedule of the cipher can help improve the efficiency of such an attack.

An exhaustive key search is a typical brute-force attack that can be applied not
only to block ciphers, but to any cryptographic system that’s protection relies
on the secrecy of the key [JBSK01]. Hence, it is important that the systems key
size is large enough to make the exhaustive key-search attack infeasible due to
time complexity.

The feasibility of an adversary being able to launch an exhaustive key search
attack against a stolen disk that employs XTS-AES encryption is dependent on
AES’s ability to withstand a such attack, and since AES is unlikely to be broken
by an exhaustive key search attack in the foreseeable future, so is XTS-AES.
But, the condition is of course that the master key (used by the KeyExpansion
stage of AES to derive the rounds keys) is not trivially predictable.

Birthday attack

The idea behind this attack originates from the birthday paradox3 that states
that a given a group of 23 randomly chosen people, the probability of at least

3Its actually not a paradox in the sense of leading to a logical contradiction, but is called
a paradox because the mathematical truth contradicts naïve intuition.

Chapter 4. Security Assessment 59

two of them having the same birthday is more than 50 % [Fel68]. The math-
ematics behind the birthday paradox can be translated into the well-known
cryptographic attack called the birthday attack.

The birthday attack is independent of the underlying algorithm used because it
relies on the ability to find two ciphertexts, such that f(c1) = f(c2), for a given
function f where c1 6= c2. The method used to find a collision is to evaluate
the function f for different ciphertexts that may be chosen randomly or pseudo
randomly until the same result is found more than once. This attack is limited
by the space complexity, as acquiring enough ciphertexts to successfully launch
this attack may be hard. On average one needs 2

n
2 ciphertexts to successfully

perform a birthday attack, where n is the block length of the cipher [Tan02].

This attack is applicable to disk encryption as well, especially when there is no
tweak or chaining between blocks used to further variate the output of each block
cipher encryption. Nevertheless, considering the scenario of a stolen storage
device encrypted with a narrow-block cipher, this yields a whole disk of 128-bit
blocks of ciphertext; slightly relaxing the space complexity of a birthday attack.

Dictionary attack

Encryption algorithms usually use a password to generate the key or keys used
in ciphering operations. This exposes inherent weaknesses in the security, as the
complexity is entirely dependent on the password strength, or “unguessability”.
An attack that exploits this weakness by systematically testing passwords likely
to succeed is called a dictionary attack.

Dictionary attacks are somewhat similar to exhaustive key search attacks, but
instead of trying every possible key (which usually is at least 128-bit), a dic-
tionary attack tries every possible password likely to succeed, typically derived
from a list of words in a dictionary. Generally, dictionary attacks succeed be-
cause many people have a tendency to choose passwords which are short (usually
7 characters, plus or minus two [Mil56]), single words found in dictionaries or
simple easily-predicted variations on words, such as appending a digit.

While an ordinary dictionary attack is limited by time complexity (i.e. the time
it takes to test all possible passwords), it is possible to achieve a time-space
tradeoff through pre-computation by encrypting and storing a list of encrypted
dictionary words, sorted by the encrypted value. This requires a considerable
amount of preparation time, but makes the actual attack almost instantaneous.
The time-space tradeoff means that the attack becomes limited by space com-
plexity (i.e. storing all possible encrypted dictionary words) instead of by time
complexity.

All cryptosystems, including disk encryption solutions that use passwords to
derive the cryptographic key(s) later used in ciphering operations are suscep-
tible to this attack. Unless, there exists a policy that limits the number of
authentication attempts that can be made.

60 Disk Encryption – Scrutinizing IEEE Standard 1619\XTS-AES

Cold boot attack

Cold boot attack is a type of password attack susceptible to most software-based
encryption schemes [6]. The fact that software-based encryption solutions store
the encryption key(s) in the computer memory, in order to be able to do on-the-
fly ciphering operations, is exploited in this attack. These keys, if extracted,
cause a collapse in the software-based security scheme.

This attack relies on the data remanence property of computer memory, whereby
data bits can take up to several minutes to degrade after power has been re-
moved. This time can be further prolonged by cooling down the memory, with
say compressed air or liquid nitrogen, in which case it will take up to several
hours for data bits to decay [HSH+08]. The actual attack is usually carried
out by “cold-booting” a machine already running an operating system and a
software-based disk encryption scheme, then dumping the contents of memory
before the data disappears.

Although the basic issue has been known for several years [6], this attack was
formally proposed by Halderman et al. in their paper “Lest We Remember:
Cold Boot Attacks on Encryption Keys” [HSH+08]. In this paper, they demon-
strate that it is possible to leverage the remanence effects in memory modules by
performing a “cold-boot” the target computer, load a custom OS extracting the
memory to an external drive, locate the key material and decrypt hard drives
automatically. To compensate for the risk of bit errors that has already decayed
in memory (during the attack), they also suggest methods for correcting such
errors by utilizing the inherited “dead state” structure of memory modules and
an error-correcting code [HSH+08].

This attack is only applicable if the adversary steals a computer that is already
running or in sleep/suspend mode – in which cases the memory is still active [6].
Since this attack is independent of the underlying cipher, it is also applicable
to software-based encryption solutions using XTS-AES.

4.3.2 Scenario: Manipulate Disk Encryption Activity

In this scenario the adversary is able to monitor and manipulate data being
read and written to and from the storage device (i.e. the adversary is able
to launch both chosen-plaintext attacks and chosen-plaintext attacks). A real-
world example of this can be the case of out-sourced storage, where the adversary
is in complete control of the storage medium either by network or physical access.
Attacks applicable in this scenario assume that the adversary is computationally
bounded in terms of time and storage resources.

Non-malleability

Non-malleability is a property for cryptographic algorithms formally defined by
Dolev et al. [DDN00]. An encryption algorithm is considered malleable if it
is possible to an adversary to transform a ciphertext into another ciphertext
which decrypts to a related plaintext. A overly simplified definition is, given an
encryption of plaintextm1, Ek(m1), it is possible to generate another ciphertext

Chapter 4. Security Assessment 61

Ek(m2) which decrypts to m2 that is related to m1, for a known Ek, without
necessarily knowing or learning m1.

Malleability is often undesired4 since it allows an adversary to modify the con-
tents of a confidential message. If an adversary is able to guess the syntax or
format of the message and the applied encryption scheme is malleable, this can
be exploited. Consider the following example where encryption is performed
with a stream cipher, which is inherently malleable. Suppose a bank encrypts
its financial information, and a customer sends an encrypted message contain-
ing, say, “TRANSFER $0000100.0 TO ACCOUNT #1985”. If an attacker knows or
is able to guess the format of the encrypted message and modify the message in
transit, the attacker could be able to change the amount of the transaction, or
recipient of the funds, e.g. “TRANSFER $0100000.0 TO ACCOUNT #1337”.

Stream ciphers are bit-level malleable5 as it is trivial to predict the change in
plaintext if one is to modify the ciphertext. Block ciphers on the other hand,
are usually harder to manipulate in the same way, and malleability is often
only achieved at a block-level. However, cipher modes like CBC have construc-
tional vulnerabilities making them bit-level malleable. When considering the
malleability of XTS-AES, one must take into account that all modes with a
single AES pass are exposed to malleability of encrypted text [4]. Thus, we
must also consider XTS-AES as malleable. XTS is however “less malleable”
than other narrow-block ciphers mode like CBC-AES. For XTS an adversary
cannot randomize with a granularity of less than 16-bytes, whereas with CBC,
the adversary can modify specific bits within a 16-byte block – with the cost of
randomizing the previous 16-bytes [25].

Cut-and-paste attack

A cut-and-paste attack is an attack in which the adversary substitutes a section
of ciphertext with a different section that looks like (but is not the same as)
the one removed. The substituted section appears to decrypt normally, along
with the authentic sections, but results in a plaintext that serves a particu-
lar purpose for the adversary. Consider the following “mix and match” weak-
ness, if Ek(P0P1...Pm) = C0C1...Cm and Ek(P̄0P̄1...P̄m) = C̄0C̄1...C̄m then
Ek(P0P̄1...Pm) = C0C̄1...Cm. Essentially, the adversary cuts one or more sec-
tions from the ciphertext and reassembles these sections so that the decrypted
data will result in coherent but invalid information. Cut-and-paste attack is a
type of message modification attack: the adversary removes a message from a
message flow (e.g., network traffic), alters it, and reinserts it.

XTS-AES is susceptible to this attack mainly since the encryption process does
not produce any authentication tags to ensure data integrity. This means that
any ciphertext (original or modified by the adversary) will decrypt as some
plaintext and there is no built-in mechanism to detect possible alterations. The

4Some cryptosystems are malleable by design [DDN00]. Such schemes are known as ho-
momorphic encryption schemes.

5If a cipher is said to be bit-level malleable, it means that its susceptible for a bit-flipping
attack, i.e. the adversary is able to change one bit in the ciphertext that will yield a predictable
change of one bit in the plaintext.

62 Disk Encryption – Scrutinizing IEEE Standard 1619\XTS-AES

countermeasure used by the XTS-AES algorithm to mitigate cut-and-paste at-
tacks is by using the position address of the data as an additional input in the
encryption and decryption processes. Incorporating this position information
makes it possible to cryptographically hide the fact that the same data block
encrypted with the same key will yield the same ciphertext, and also prevents
any “mix and match” between different positions. But, in the scenario where
the adversary is able to monitor and possibly modify the ciphering process, it
is also reasonable to assume that he or she can deduce the position address.

4.4 Summary
In this chapter, we assessed the security of XTS-AES. By doing so we have made
several observations, of which a summary follows.

• By reviewing the security proof of XEX/XTS, we found that to even
reach a 1 % probability of successfully being able to distinguish XTS
ciphertext from pseudo random permutations, a minimum of 32 exabyte
of data have to be encrypted with the same key. When we recognize
that this is the complexity of being able to initiate an attack relying on
ciphertext similarities (i.e. birthday attack), we may rightfully state that
the computational security of XTS-AES is indeed strong6.

• We further noted that wide-block encryption modes are generally consid-
ered to provide better security than narrow-block modes [CC07, 25]. (The
wide-block initiative P1619.2 will thus be very interesting to follow). The
particular strength of the XTS-AES cipher mode is storage encryption
systems where the applications using the plaintext is able to detect when
16-byte blocks are randomized, and where using wide-block encryption or
authenticated encryption is not feasible due to limited processing power,
latency requirements, or space limitations.

• When reviewing potential attacks against XTS-AES, we found that the
common for all of these is that they are either generic attacks (appli-
cable to all cryptosystems) or that they rely on the inherent nature of
XTS-AES7. Namely, that XTS-AES is a transparent narrow-block cipher,
which in turn makes it vulnerable to attacks that rely on the absence of
any data integrity check prior to decryption. Attacks which exploit the
latter quality include data modification attacks like cut-and-paste attack
and malleability attack. The other attack types, namely exhaustive key
search attack, dictionary attack, and cold boot attack are all generic at-
tacks. This means that they do not attack on the cipher mode it self,
but rather the keys and passwords used for encryption. Hence, the only
countermeasure to such attacks is to implement security mechanisms and
policy’s independent of the encryption mode.

6We emphasize that although there is mismatch between different papers discussing the
security of XTS-AES, the computational security of XTS-AES is strong no matter which
security bound (i.e. 9.5q2/2n, 4.5q2/2n, or q2/2n) one assume applies. The example above,
holds for all the discussed bounds.

7With the exception of cold boot attack, which relies on the the data remanence property
of computer memory [HSH+08].

Chapter 5

Performance Benchmark

No amount of experimentation
can ever prove me right; a single
experiment can prove me wrong.

Albert Einstein

We believe that the best way to assess the performance of XTS-AES based disk
encryption, is to provide real-world measurements on how it affects a computer’s
hard disk performance.

This chapter will present the procedure, test bench, test cases, and testing
methodology used to acquire objective performance measurements. The results
and corresponding analysis is however presented in chapter 6. Note that this
performance benchmark is limited to software-based encryption only, and does
not consider hardware-based encryption.

5.1 Procedure

The performance assessment was conducted by benchmarking three different
computers hard disk performances when (1) no disk encryption was present
and (2) when the disk employed transparent XTS-AES-256 full system disk en-
cryption. We repeated the benchmarking in case (1) and (2) for Windows XP,
Windows Vista, and Windows 7 (Beta) on each computer. The performance
attributes of interest was; write speed, read speed, and CPU usage during disk
operations. We chose to focus on the latter attributes because we believe these
are of relevance when considering the performance of a hard disk.

When we later present and discuss the results, we will focus on the change
in performance when full system disk encryption is introduced. In the case
of transfer speeds (i.e. write and read speed) we are interested in the percent
wise change, since this is a metric that makes it possible to compare different
computers’ performance with each other. But, in the case of CPU usage during
disk operations, this is an attribute that is already measured in percent, and
thus it is of most interest to compare the numerical change that occurs when
introducing XTS-AES-256 full system disk encryption.

63

64 Disk Encryption – Scrutinizing IEEE Standard 1619\XTS-AES

5.2 Test Bench
Before we proceed with the tests and test cases, this section will present the test
bench, consisting of computer hardware and software used in the performance
benchmark.

5.2.1 Computers
The computer hardware was chosen with respect to the following priority: diver-
sity, relevance, and availability (in that order). Specifications of the computers
used in the performance benchmarking of XTS-AES follows below.

Computer 1

Manufacturer: Hewlett-Packard
Model: Pavilion zd8000
Type: Laptop
Chipset: Intel 915 Express Chipset Family
CPU type: Intel Pentium 4 650 processor w/Hyper Thread Technology
CPU clock rate: 3.40 GHz, 2 MB L2 cache, 800 MHz FSB
Number of physical CPU cores: 1
Memory: 1 GB 533 MHz DDR2 SDRAM
Hard disk: Seagate 100GB Momentus 5,400 rpm (ST9100822A)

Computer 2

Manufacturer: Fujitsu Siemens
Model: Scaleo T-360
Type: Desktop
Chipset: Intel 915 Express Chipset Family
CPU type: Intel Pentium 4 560 processor w/Hyper Thread Technology
CPU clock rate: 3.60 GHz, 1 MB L2 cache, 800 MHz FSB
Number of physical CPU cores: 1
Memory: 3 GB 400 MHz DDR2 SDRAM
Hard disk: Western Digital 160 GB 7,200 rpm (WD1600JD-55HBB0)

Computer 3

Manufacturer: Hewlett-Packard
Model: Compaq dc7900
Type: Desktop
Chipset: Intel Q45 Express Chipset Family
CPU type: Intel Core 2 Duo E8400 processor
CPU clock rate: 3.00 GHz, 6 MB L2 cache, 1333 MHz FSB
Number of physical CPU cores: 2
Memory: 4 GB 800 MHz DDR2 SDRAM
Hard disk: Western Digital 160 GB 7,200 rpm (WD1600AAJS-60B4A)

Before use and between testing with different operating systems, each computer
was formatted and fresh copies of software and appropriate system drivers were
installed.

Chapter 5. Performance Benchmark 65

5.2.2 Software
Before deciding which software to use in our performance benchmark, we did
an extensive survey of available disk encryption applications and benchmark-
ing tools. The following paragraphs state the motivation for using the chosen
software, namely TrueCrypt for disk encryption and HD Tune Pro for disk
benchmarking.

TrueCrypt 6.1a

TrueCrypt [45] was presented in section 2.4.1. We used TrueCrypt to apply full
system disk encryption using XTS-AES-256 (i.e. XTS mode encryption with
AES using 256-bit keys). TrueCrypt was chosen because of several reasons; free
and open source software, has good reputation in the security society, is well-
documented, continuously updated, and last but not least because it is the only
encryption application for the windows-platform that supports XTS-AES and
full system disk encryption.

Step-by-step instructions on how full system disk encryption were applied using
TrueCrypt 6.1a is given in Appendix A.

HD Tune Pro 3.5

HD Tune Pro [43] is a multi-purpose hard disk utility for the windows-platform.
HD Tune Pro features disk health checks, error scanning, temperature moni-
toring, benchmarking of transfer rates (read and write), and measurements of
access time, burst rate, and CPU usage during disk operations.

After a comprehensive trail and error process pursuing the most suitable bench-
mark application for our scope, we found HD Tune Pro to be the best software
for measuring the performance attributes of interest, namely write speed, read
speed, and CPU usage.

Operating systems

As mentioned in beginning of this chapter, we repeated the benchmarking on
the following windows operating systems:

• Windows XP Professional with Service Pack 3

• Windows Vista Business Edition with Service Pack 1

• Windows 7 Ultimate Edition (Beta Build 7057) as the bleeding edge Mi-
crosoft operating system was also included in the testing.

It is worth mentioning that the Ultimate and Enterprise Editions of Windows
Vista and Windows 7 already includes a built-in full system disk encryption
option, called BitLocker [23]. The reason for not using this to perform full
system disk encryption was that BitLocker only features encryption based on
AES in CBC mode at the time of writing [Fer06].

66 Disk Encryption – Scrutinizing IEEE Standard 1619\XTS-AES

5.3 Tests

5.3.1 File Benchmark
The first test of interest was a file benchmark performed to measure the read
and write speed of the hard disk.

Test-ID: File_Benchmark
Purpose: Measure read speed and write speed with the hard disk utility

HD Tune Pro 3.5.
Prerequisites: No applications running in the background. No wired or wire-

less network connections enabled.
Steps: 1. Open HD Tune Pro 3.5

2. Choose the File benchmark pane and press Start
3. After the file benchmark is complete, copy the complete
result set to a log file
4. Repeat the steps 2−3 ten consecutive times
5. Close HD Tune Pro 3.5

Notes: The benchmark performed in this test returns write and read
speeds for different block sizes. The block size of interest during
this test is 64 KB, and thus the only result which is presented
later on. This means that the speeds measured will tell us
how fast data is written or read when the file operations is
done on data blocks of 64 KB in size. The HD Tune manual
recommends that the data block size is set to 64 KB, as lower
values may give lower test results [43].

Figure 5.1: File benchmark performed with HD Tune Pro 3.5

Chapter 5. Performance Benchmark 67

5.3.2 CPU Benchmark
The second, but nonetheless important test was to measure the CPU usage
during disk operations.

Test-ID: CPU_Benchmark
Purpose: Measure the CPU usage during disk operations with the hard

disk utility HD Tune Pro 3.5.
Prerequisites: No applications running in the background. No wired or wire-

less network connections enabled.
Steps: 1. Open HD Tune Pro 3.5

2. Choose the Benchmark pane and press Start
3. After the file benchmark is complete, copy the complete
result set to a log file
4. Repeat the steps 2−3 ten consecutive times
5. Close HD Tune Pro 3.5

Notes: The benchmark performed in this test returns transfer rate
(read only), access time, burst rate and CPU usage. Of these,
it is only the CPU usage that is of interest, and thus the only
result which is presented later on. The CPU usage tells us how
much CPU time (in %) the system is using to read data from
the disk. Although it would be interesting to also measure how
much CPU time the system is using to write data, this was not
possible with the current settings.

Figure 5.2: CPU benchmark performed with HD Tune Pro 3.5

68 Disk Encryption – Scrutinizing IEEE Standard 1619\XTS-AES

5.4 Test Cases
The following two tables describes the test cases used to compare the perfor-
mance variables obtained when (1) no disk encryption was present and (2) when
the disk employed transparent XTS-AES-256 full system disk encryption.

When reading through the test cases, it might be useful and clarifying to go back
and skim through File_Benchmark (section 5.3.1) and CPU_Benchmark (section
5.3.2) when mentioned, as they are used as subroutines.

5.4.1 Without Disk Encryption

Testcase-ID: No_Encryption
Purpose: Measure the write speed, read speed, and CPU usage when no

disk encryption is applied.
Prerequisites: Clean installation of operating system with no other software

than HD Tune Pro 3.5 and necessary system drivers installed.
Steps: 1. Perform File_Benchmark

2. Perform CPU_Benchmark
Notes: It is expected that when No_Encryption is performed on differ-

ent operating systems, it will most likely give different results
(even when using the same computer). This might sound odd,
since it is the same hardware being tested. Although not desir-
able, the truth is that different operating systems might have
different device drivers for the same piece of hardware, which
in turn may affects the performance achieved.

5.4.2 With Disk Encryption

Testcase-ID: XTS-AES-256_Encryption
Purpose: Measure the write speed, read speed, and CPU usage when

XTS-AES-256 full system disk encryption is applied.
Prerequisites: Clean installation of operating system with no other software

than TrueCrypt 6.1a, HD Tune Pro 3.5, and necessary system
drivers installed. XTS-AES-256 full system disk encryption
applied by TrueCrypt as described in Appendix A.

Steps: 1. Perform File_Benchmark
2. Perform CPU_Benchmark

Notes: It is expected that when XTS-AES-256_Encryption is per-
formed on different operating systems, it will most likely give
different results (even when using the same computer).

Chapter 5. Performance Benchmark 69

5.5 Testing and Benchmarking Methodology

This section will give an introduction to test methodology that should be prop-
erly addressed to ensure the quality of a benchmark like this. In addition, we
define arithmetic average, standard deviation, standard error, and confidence
interval.

Quantitative versus Qualitative

Data can be described in quantitative terms or qualitative terms. The way we
typically define them, we call data “quantitative” if it is in numerical form and
“qualitative” if it is not. Quantitative research is identified by the fact that it
involves analysis on data that exist in a range of magnitude (i.e. it is quan-
tifiably measurable). Examples of physical quantities are distance, mass and
time. Qualitative research on the other hand, involves analysis of data such as
words (e.g., from interviews), pictures (e.g., video), or objects (e.g., an artifact).

Our performance benchmark might hence be considered a strictly quantitative
research as our aim is to provide quantifiable performance measurements.

Variable Control

Testing can be rendered completely useless if the number of variables involved
are not reduced to an absolute minimum. For experiments, the ideal is to have
only one variable. In a real world environment however, only having one vari-
able is not possible, but the good experimenter attempts to reduce the effects
of anything that might affect the test. When variables are not kept in check,
accuracy may be reduced, although the perceived precision may be high.

In our testing, we tried to keep the number of variables at an minimum by
facilitating that the least amount of background processes was running: a fresh
boot was performed before every test case was run, wired and wireless network
connections was disabled, and no other software other than necessary system
drivers, TrueCrypt, and HD Tune Pro was installed or executed at any time.

Significant Digits

The basic idea here is that you do not keep more digits than you measure. For
example, when putting raw numbers into equations or averaging data, some
calculators will return more digits than what is significant. The calculator may
give a mean of 3.33333. If your only were to include three significant digits in
your data (e.g., 3.33, 3.26, and 3.45), the correct number of significant digits are
not kept. This can lead to the idea that the data is more or less precise than in
actuality.

Our performance benchmark relates exclusively to disk speeds and CPU usage.
To present these numbers, we will be using up to four significant digits for both
speed (measured in MB/s) and CPU usage (CPU time in %). Furthermore, all
speed measurements are presented in megabytes per second (MB/s), where one
megabyte equals to 1, 048, 576 bytes (i.e. 1, 024 kilobytes).

70 Disk Encryption – Scrutinizing IEEE Standard 1619\XTS-AES

Repeatability of Results

The repeatability of a test is the most telling gauge of how well an experiment
has been done. If the tester and a third party follow the same guidelines and
get the same results, the test results may be considered repeatable.

We have facilitated for the readers of this thesis to be able to repeat this per-
formance benchmark by accurately listing the test procedure, test bench, and
test cases used. Furthermore, the ZIP file attachment to this thesis includes the
software applications used in the benchmark (see Appendix C).

Sample Size

The more times a test is done under the correct conditions, the more likely
spurious results (small mistakes in each individual test) will not adversely affect
the final averages. Each test instance should be tested multiple times, and it
is preferable to have more than one of the items to perform tests on, as some
examples may perform better or worse than others.

In our testing, we had a sample size of ten. As previously described we used
three different computers, each with different specifications. Each computers
disk performance was tested under three operating systems. Figure 5.3 depicts
a tree-structure showing the test order. After a clean installation of Windows
XP, the test case No_Encryption was performed (consisting of File_Benchmark
and CPU_Benchmark, which in turn each consists of ten repetitions – hence
the sample size of ten). Then, the test case XTS-AES-256_Encryption was
performed (consisting of the same tests as in the latter case, but now the hard
disk employed transparent full system disk encryption). This process was then
repeated for Windows Vista and Windows 7.

Computer 1

Windows XP

Windows Vista

Windows 7

No_Encryption

XTS-AES-256_Encryption

Computer 2

Computer 3

File_Benchmark

CPU_Benchmark

File_Benchmark

CPU_Benchmark

Figure 5.3: Both write speed, read speed and CPU usage was measured ten times in
each case, hence the sample size of ten. These benchmarks where repeated both without
and with disk encryption, with three different operating systems, on three different
computers, yielding a total of 360 benchmark tests.

Chapter 5. Performance Benchmark 71

Arithmetic Average

The arithmetic average (or mean) of a list of numbers is the sum of the entire
list divided by the number of items in the list (shown in Equation 5.1). If the
list is a statistical sample, we call the resulting statistic a sample mean.

x̄ =
x1 + x2 + · · ·+ xn

n
=

1
n

n∑
i=1

xi (5.1)

After each test (i.e. File_Benchmark and CPU_Benchmark) was performed, the
sample mean of the result set was calculated. For the sake of simplicity, it is
the sample means that are presented in chapter 6, while the exhaustive result
sets (i.e. all ten measurements in each case) are listed in Appendix B.

Standard Deviation/Standard Error

The standard deviation (SD) of a population or sample set is a measure of the
data’s spread of values (expressed in Equation 5.2). Standard error (SE) is
the standard deviation over the root of the number of samples (expressed in
Equation 5.3). Thus, standard error takes into account the number or samples
in the experiment.

SD =

√√√√ 1
n− 1

n∑
i=1

(xi − x̄)2 (5.2)

SE =
SD√
n

(5.3)

Simply put, a small standard deviation/standard error means that most of the
values recorded during testing are within a small range of the arithmetic average
of the data. In other words, the smaller the standard deviation/standard error,
the more the numbers are to be trusted. The standard deviation and standard
error of each result set is listed in Appendix B.

Confidence interval

A confidence interval (CI) is an interval estimate of a population or sample
parameter. Instead of estimating the parameter by a single value, an interval
likely to include the parameter is given. Thus, a confidence interval will indicate
the reliability of an estimate. How likely the interval is to contain the parameter
is determined by the confidence level and a corresponding confidence coefficient
(expressed as α and zα in Equation 5.4). Increasing the desired confidence level
will widen the confidence interval.

Pr(x̄− SE · zα < x < x̄+ SE · zα) = 1− α (5.4)
We chose to calculate a 95 % confidence interval (α = 0.05) using a Student’s
t-distribution for each result set (corresponding to zα = 2.228 when considering
a sample size of 10). This makes us able to claim that there is a 95 % probability
that the “correct” value will be within in the confidence interval. The interval
for each result set is listed in Appendix B. The reason for using Student’s t-
distribution is that the standard deviation is not given in beforehand, but rather
has to be calculated after the fact.

72 Disk Encryption – Scrutinizing IEEE Standard 1619\XTS-AES

Chapter 6

Results

If we knew what we were doing, it
wouldn’t be research.

Albert Einstein

In theory, there is no difference
between theory and practice. But,
in practice, there is.

Jan L. A. van de Snepscheut

This chapter will present the results from the performance benchmark described
in the previous chapter. In addition we will also provide an analysis of the results
by discussing causality, possible consequences, limitations and possible sources
of error, along with suggestions for further work.

Please note that the abbreviated results are presented in this chapter, while the
exhaustive result sets are listed in Appendix B.

6.1 Benchmarking Results
Before we proceed with the test results, we want to emphasize that we are inter-
ested in the change in performance when introducing XTS-AES-256 full system
disk encryption. As we recall from section 5.1, we stated that in the case of
transfer speeds we are interested in the percent wise change, while in the case
of CPU usage during disk operations, we are interested in the numerical change.

To ensure the validity of our results, we make the following assumptions. We
assume that the results obtained by using TrueCrypt 6.1a to employ XTS-AES-
256 full system disk encryption is representative for the actual performance of
a software-implementation of XTS-AES using 256-bit keys as specified by the
IEEE Std 1619. We also assume that the result obtained by taking the average
of each respective performance attribute under all three operating systems yield
a representative metric of the write speed, read speed and CPU usage for each
computer.

73

74 Disk Encryption – Scrutinizing IEEE Standard 1619\XTS-AES

6.1.1 Write Speed
Table 6.1 and Figure 6.1 shows the average write speeds, both without and with
disk encryption for each of the operating systems on the different computers.
In addition, the numerical and percent wise change in each case is also listed.

Write speed Difference
Without disk
encryption

With disk
encryption

Numerical Percent

Computer 1
Windows XP 27.2 MB/s 21.2 MB/s −6.0 MB/s −22.1 %
Windows Vista 26.8 MB/s 20.8 MB/s −6.0 MB/s −22.4 %
Windows 7 27.2 MB/s 20.6 MB/s −6.6 MB/s −24.2 %

Computer 2
Windows XP 59.2 MB/s 42.1 MB/s −17.1 MB/s −28.8 %
Windows Vista 51.4 MB/s 40.4 MB/s −11.0 MB/s −21.5 %
Windows 7 60.6 MB/s 41.2 MB/s −19.4 MB/s −32.0 %

Computer 3
Windows XP 93.9 MB/s 63.0 MB/s −30.9 MB/s −32.9 %
Windows Vista 87.1 MB/s 65.1 MB/s −22.0 MB/s −25.3 %
Windows 7 98.6 MB/s 54.4 MB/s −44.2 MB/s −44.9 %

Table 6.1: Average write speeds during benchmark

We observe that,

• Computer 1’s write speed is approximately 27 MB/s when operating with-
out disk encryption and approximately 21 MB/s when employing full sys-
tem disk encryption, yielding a decrease of approximately −22 %.

• Computer 2’s write speed is approximately 57 MB/s when operating with-
out disk encryption and approximately 41 MB/s when employing full sys-
tem disk encryption, yielding a decrease of approximately −28 %.

• Computer 3’s write speed is approximately 93 MB/s when operating with-
out disk encryption and approximately 61 MB/s when employing full sys-
tem disk encryption, yielding a decrease of approximately −34 %.

The percent wise change in write speed is different for each computer. Although
we expected some difference, we did not expect the gap to be of this magnitude;
the lowest percent wise decrease in write speed is approximately −22 % and the
highest percent wise decrease in write speed is approximately −34 %. However,
we identify an interesting pattern; the higher the disks write speed is without
disk encryption, the larger the percent wise decrease is measured when full
system disk encryption is applied. But since correlation does not necessarily
imply causation, we cannot say for sure.

Summary. Our measurements show that the percent wise decrease in write
speed is approximately −28 % (±6 %) when using full system disk encryption.

Chapter 6. Results 75

0 MB/s

10 MB/s

20 MB/s

30 MB/s

40 MB/s

Without Disk Encryption With Disk Encryption

20,6 MB/s

27,2 MB/s

20,8 MB/s

26,8 MB/s

21,2 MB/s

27,2 MB/s

Windows XP Windows Vista Windows 7

(a) Average write speeds for computer 1 during benchmark

0 MB/s

10 MB/s

20 MB/s

30 MB/s

40 MB/s

50 MB/s

60 MB/s

70 MB/s

Without Disk Encryption With Disk Encryption

41,2 MB/s

60,6 MB/s

40,4 MB/s

51,4 MB/s

42,1 MB/s

59,2 MB/s

Windows XP Windows Vista Windows 7

(b) Average write speeds for computer 2 during benchmark

0 MB/s

10 MB/s

20 MB/s

30 MB/s

40 MB/s

50 MB/s

60 MB/s

70 MB/s

80 MB/s

90 MB/s

100 MB/s

Without Disk Encryption With Disk Encryption

54,4 MB/s

98,6 MB/s

65,1 MB/s

87,1 MB/s

63 MB/s

93,9 MB/s

Windows XP Windows Vista Windows 7

(c) Average write speeds for computer 3 during benchmark

Figure 6.1: Average write speeds during benchmark for (a) computer 1, (b) computer
2, and (c) computer 3 using different operating systems.

76 Disk Encryption – Scrutinizing IEEE Standard 1619\XTS-AES

6.1.2 Read Speed
Table 6.2 and Figure 6.2 shows the average read speeds, both without and with
disk encryption for each of the operating systems on the different computers.
In addition, the numerical and percent wise change in each case is also listed.

Read speed Difference
Without disk
encryption

With disk
encryption

Numerical Percent

Computer 1
Windows XP 28.7 MB/s 19.7 MB/s −9.0 MB/s −31.2 %
Windows Vista 28.6 MB/s 19.2 MB/s −9.4 MB/s −32.8 %
Windows 7 28.5 MB/s 18.8 MB/s −9.7 MB/s −34.1 %

Computer 2
Windows XP 57.2 MB/s 41.6 MB/s −15.6 MB/s −27.2 %
Windows Vista 50.7 MB/s 39.8 MB/s −10.9 MB/s −21.5 %
Windows 7 57.5 MB/s 40.9 MB/s −16.6 MB/s −28.9 %

Computer 3
Windows XP 93.9 MB/s 66.4 MB/s −27.5 MB/s −29.3 %
Windows Vista 88.4 MB/s 69.6 MB/s −18.8 MB/s −21.3 %
Windows 7 98.6 MB/s 62.8 MB/s −35.8 MB/s −36.3 %

Table 6.2: Average read speeds during benchmark

We observe that,

• Computer 1’s read speed is approximately 29 MB/s when operating with-
out disk encryption and approximately 19 MB/s when employing full sys-
tem disk encryption, yielding a decrease of approximately −35 %.

• Computer 2’s read speed is approximately 55 MB/s when operating with-
out disk encryption and approximately 41 MB/s when employing full sys-
tem disk encryption, yielding a decrease of approximately −26 %.

• Computer 3’s read speed is approximately 94 MB/s when operating with-
out disk encryption and approximately 66 MB/s when employing full sys-
tem disk encryption, yielding a decrease of approximately −30 %.

Also in this case we take notice that the percent wise change in speed is different
for each computer. The gap between the highest percent wise decrease and low-
est percent wise decrease is substantial also in this case, yielding approximately
−35 % and approximately −26 %, respectively.

But unlike in the case of write speed, we do not recognize any special pattern.
In fact, the computer with the disk that is measured to have the lowest read
speed without disk encryption (i.e. computer 1) is the one experiencing the
highest percent wise decrease when full system disk encryption is employed.

Summary. Our measurements show that the percent wise decrease in read
speed is approximately −30 % (±5 %) when using full system disk encryption.

Chapter 6. Results 77

0 MB/s

10 MB/s

20 MB/s

30 MB/s

40 MB/s

Without Disk Encryption With Disk Encryption

18,8 MB/s

28,5 MB/s

19,2 MB/s

28,6 MB/s

19,7 MB/s

28,7 MB/s

Windows XP Windows Vista Windows 7

(a) Average read speeds for computer 1 during benchmark

0 MB/s

10 MB/s

20 MB/s

30 MB/s

40 MB/s

50 MB/s

60 MB/s

70 MB/s

Without Disk Encryption With Disk Encryption

40,9 MB/s

57,5 MB/s

39,8 MB/s

50,7 MB/s

41,6 MB/s

57,2 MB/s

Windows XP Windows Vista Windows 7

(b) Average read speeds for computer 2 during benchmark

0 MB/s

10 MB/s

20 MB/s

30 MB/s

40 MB/s

50 MB/s

60 MB/s

70 MB/s

80 MB/s

90 MB/s

100 MB/s

Without Disk Encryption With Disk Encryption

62,8 MB/s

98,6 MB/s

69,6 MB/s

88,4 MB/s

66,4 MB/s

93,9 MB/s

Windows XP Windows Vista Windows 7

(c) Average read speeds for computer 2 during benchmark

Figure 6.2: Average read speeds during benchmark for (a) computer 1, (b) computer
2, and (c) computer 3 using different operating systems.

78 Disk Encryption – Scrutinizing IEEE Standard 1619\XTS-AES

6.1.3 CPU Usage
Table 6.3 and Figure 6.3 shows the average CPU usage, both without and with
disk encryption for each of the operating systems on the different computers.
In addition, the numerical and percent wise change in each case is also listed.

CPU usage Difference
Without disk
encryption

With disk
encryption

Numerical Percent

Computer 1
Windows XP 1.1 % 27.1 % 26.0 % 2460.4 %
Windows Vista 1.8 % 24.5 % 22.7 % 1278.1 %
Windows 7 1.3 % 22.0 % 20.7 % 1659.2 %

Computer 2
Windows XP 1.8 % 52.2 % 50.4 % 2863.6 %
Windows Vista 2.8 % 53.3 % 50.5 % 1803.9 %
Windows 7 2.2 % 51.2 % 49.0 % 2227.7 %

Computer 3
Windows XP 2.0 % 45.8 % 43.8 % 2247.2 %
Windows Vista 2.5 % 50.3 % 47.8 % 1913.6 %
Windows 7 2.3 % 53.5 % 51.2 % 2214.7 %

Table 6.3: Average CPU usage during benchmark

We observe that,

• Computer 1’s CPU usage is approximately 2 % when no disk encryption
was present, and went up to approximately 25 % when disk encryption
was employed, yielding a numerical change of about 23 %.

• Computer 2’s CPU usage is approximately 2 % when no disk encryption
was present, and went up to approximately 53 % when disk encryption
was employed, yielding a numerical change of about 51 %.

• Computer 3’s CPU usage is approximately 2 % when no disk encryption
was present, and went up to approximately 50 % when disk encryption
was employed, yielding a numerical change of about 48 %.

The obvious case point to be made from our observations is that while computer
2 and 3 experienced a numerical increase in CPU usage of approximately 50 %,
computer 1 only experienced a numerical increase of 23 %. This is a major
difference, and we have no definitive explanation for this. But, there is one
discrepancy between the disks, namely that computer 1’s disk is a 5,400rpm
disk, while the two other computers have 7,200rpm disks. But again, since
correlation does not necessarily imply causation, we cannot say for sure that
this is the reason.

Summary. Our measurements show that disk operations (i.e. the bench-
marking test) that without disk encryption took about 2 % of the CPU’s time,
takes up to approximately 50 % of the CPU’s time when using full system disk
encryption.

Chapter 6. Results 79

0 %

10 %

20 %

30 %

40 %

Without Disk Encryption With Disk Encryption

22,0 %

1,3 %

24,5 %

1,8 %

27,1 %

1,1 %

Windows XP Windows Vista Windows 7

(a) Average CPU usage of computer 1 during benchmark

0 %

10 %

20 %

30 %

40 %

50 %

60 %

Without Disk Encryption With Disk Encryption

51,2 %

2,2 %

53,3 %

2,8 %

52,2 %

1,8 %

Windows XP Windows Vista Windows 7

(b) Average CPU usage of computer 2 during benchmark

0 %

10 %

20 %

30 %

40 %

50 %

60 %

Without Disk Encryption With Disk Encryption

53,5 %

2,3 %

50,3 %

2,5 %

45,8 %

2,0 %

Windows XP Windows Vista Windows 7

(c) Average CPU usage of computer 3 during benchmark

Figure 6.3: Average CPU usage during benchmark for (a) computer 1, (b) computer
2, and (c) computer 3 using different operating systems.

80 Disk Encryption – Scrutinizing IEEE Standard 1619\XTS-AES

6.2 Analysis

In light of the results obtained, we see that applying XTS-AES-256 full system
disk encryption does in fact noticeably affect a computers hard disk perfor-
mance. All security mechanisms yield some performance decrease, which in the
case of disk encryption is a decrease in transfer speed and increase in CPU us-
age during disk operations. A performance decrease was indeed expected, the
question was more of which magnitude.

We recall from the previous sections that the decrease in write speed and read
speed when introducing XTS-AES-256 full system disk encryption was mea-
sured to be up to −35 % (average for all operating systems). Whilst the CPU
usage results showed that disk operations (i.e. the benchmark test) that used
approximately 2 % of the CPU resources when no disk encryption was present,
took approximately up to 50 % when full system disk encryption was employed.

6.2.1 Causality

Although the cause to the performance decrease might seem obvious, it should
nevertheless be formally addressed. We believe that the performance decrease
is caused by the overhead encountered when TrueCrypt transparently encrypts
and decrypts all the data that goes to and from the disk, respectively. This
process will obviously require the computational power of the CPU since the
ciphering is performed in software. This in turn yields a decrease in transfer
speed (due to the additional layer the data must pass through) and increase in
CPU usage (due to the increased need for computational power).

6.2.2 Possible Consequences

Even though a decrease in disk speed of up to −35 % at best will not be noticed
at all, the increase in CPU usage during disk operations is substantial. For
simple operations like surfing the web, using word processors or spreadsheets,
listening to music etc., the performance decrease (in transfer speed and available
CPU power) might not yield any noticeable performance degradation. But, for
resource intensive operations like high-resolution video editing, high-end com-
puter gaming, and high-speed data transmissions this is surely unfavorable.

Other consequences that may or may not be a result of increased CPU usage
during disk operations follows:

• More overall power consumption, which in the case of laptops might in
turn result in a reduction in battery life time.

• Less computational power available for the user to utilize in his or hers
actual work. This makes multitasking more challenging, and might even
make certain programs close to non-respondent.

• A reduction in available CPU power (i.e. a degradation of the computer
performance) may simply make the average user unwilling to use disk
encryption.

Chapter 6. Results 81

When all is said and done, it is ultimately the perceived performance that de-
termines whether the performance decrease is acceptable or not. This however,
requires one to define and additionally assess the Quality of Experience (see
Figure 6.4) in each test case, which is a qualitative research aspect not covered
by our performance benchmark.

Application Service

User

Quality of Experience Quality of Service

Figure 6.4: Quality of Experience may be defined as the Quality of Service as perceived
by the end-user.

6.2.3 Limitations and Sources of Error
In order to comply with correct scientific procedure, we address limitations and
possible sources of error in the following paragraphs.

Limitations in our performance benchmark:

• Due to time constraints and limited access to computer hardware, we
were only able to perform benchmarking of three computers (and their
respective hard disks). We believe that testing with more hardware is
preferable to even more precisely assess the performance penalty that can
be expected when introducing full system disk encryption.

• We chose to benchmark system disks, i.e. disks that the operating system
resides on. Another approach would have been to benchmark the perfor-
mance decrease experienced by non-system disks (i.e. full disk encryption,
not full system disk encryption). Although the latter would also provide
useful data, we had to choose one due to time limitations.

• We could have focused merely on one operating system, and thus had the
time to perform even more tests (i.e. increased the sample size). The latter
would further increase the reliability and validity of our data. However, we
decided to include Windows XP, Windows Vista, and Windows 7 (Beta)
to provide diversity.

Possible sources of error in our performance benchmark:

• The TrueCrypt daemon that transparently ciphers all data going to and
from the disk might be subject to further optimization, i.e. improvements
to minimize non-cryptographic overhead [46].

• The measurement precision of HD Tune Pro is another possible source of
error. As specified in section 5.3.1, we chose a block size of 64 KB during
the speed measurements, meaning that the speeds that are measured tell
us how fast data is written or read when the file operations is done on
data blocks of 64 KB in size. Although this was the recommended setting
[43], we cannot exclude the possibility that choosing another block size
would have yielded different results.

82 Disk Encryption – Scrutinizing IEEE Standard 1619\XTS-AES

6.3 Further Work
Our performance benchmark of XTS-AES is, to our knowledge, the only scien-
tific work one of its kind. We believe that assessing the real-world performance
of XTS-AES is very important with respect to its viability and chances for
widespread industry adoption. In the following paragraphs we indicate further
work within the realm of performance testing of software-based implementations
of XTS-AES that is yet to be done.

Systematic testing

The best overall picture of XTS-AES’ affect on hard disks calls for systematic
testing with respect to different brands, disk sizes (e.g., 60 GB, 100 GB, 250
GB, 500 GB), and speeds (e.g., 5,400rpm, 7,400rpm, and 10,000rpm disks).
At the same time systematically varying the available computational power is
also of utmost interest. The latter is important since software-based encryption
solutions utilize the computational power of the computer using it.

Quality of Experience

The perceived performance when employing disk encryption solutions, i.e. the
Quality of Experience, is also a possible subject for further research. Although
a quantitative research of this nature is subjective, the results might very well
be valuable for vendors of storage security products.

Other modes of operations for disk encryption

Real-world comparison with other modes of operations for disk encryption is
also a point of great interest. This will however require a disk encryption ap-
plication that is able to choose both narrow- and wide-block cipher modes. To
our knowledge, no disk encryption software at the time of writing features “out-
of-the-box” support for wide-block cipher modes.

Hard disks versus Flash disks

Since flash disks are becoming more and more commonly used as system disks,
it would be interesting to also assess the prospective performance decrease in
disks of this type. One of the most intriguing questions is probably whether the
inherent high-speed nature of flash disks will completely choke the CPU when
used with software-based encryption solutions or not.

Laptop battery time penalty

Another very practical and interesting test is how software-based disk encryption
affects the battery time of a laptop. To test our suspicion about the battery time
penalty, we did a very superficial test on computer 1 by playing a 720p video
file in a loop both when employing disk encryption and not. This showed us
that the battery time without disk encryption was approximately 64 minutes,
but sunk to approximately 41 minutes when full system disk encryption was
employed. For the battery time penalty to be assessed properly, one should
preferably perform various tests on a wide variety of laptop and battery types.

Chapter 7

Conclusion

I may not have gone where I
intended to go, but I think I have
ended up where I needed to be.

Douglas Adams

Until IEEE Std 1619 was published in April 2008, there was no standardized
or explicitly recommended mode of operation for disk encryption applications.
Although not especially suited, ECB and CBC are still commonly used cipher
modes in disk encryption solutions. But with the introduction of XTS-AES, the
cryptographic industry now has a recommended narrow-block encryption mode
explicitly designed for disk encryption usage.

The overall goal of this thesis was to provide a thorough examination of XTS-
AES, describing both its security and real-world performance.

When reviewing the security of XTS-AES we observed that it is very hard to
find exploitable similarities in XTS ciphertext of 128-bit. In fact, to even have
a 1 % success probability of being able to distinguish XTS ciphertext from
pseudo random permutations (i.e. birthday attack); one must be in possession
of at least 32 exabyte of data encrypted with the same key. We further found
that the only attacks applicable to XTS-AES at this time are generic attacks
(that may be applied to any cryptosystem) or attacks that rely on the trans-
parent narrow-block nature of XTS-AES. Thus, we have showed that XTS-AES
provides a strong security guarantee as long as an adversary has limited access
to ciphertext, the applications using the plaintext is able to detect malleability
attacks, and the security scheme using XTS-AES has other security mechanisms
in place to prevent generic attacks like exhaustive key search attack, dictionary
attack, and cold boot attack.

Our unique real-world performance benchmark was conducted using TrueCrypt,
which at the time of writing is the only application supporting XTS-AES and
full system disk encryption. We measured the performance attributes; write
speed, read speed and CPU usage during disk operations, both before and after
employing full system XTS-AES-256 disk encryption. Our research showed that

83

84 Disk Encryption – Scrutinizing IEEE Standard 1619\XTS-AES

the decrease in write and read speed was up to −35 % for computers running
Windows (average for Windows XP SP2, Windows Vista SP1, and Windows
7 Beta). Whilst the CPU usage results showed that disk operations that used
approximately 2 % of the CPU resources when no disk encryption was present,
took approximately up to 50 % when full system disk encryption was employed.
Thus, our findings imply that using a software-implementation of XTS-AES no-
ticeably affects not only the write and read speed to disk, but also the available
CPU power.

The industry adoption of XTS-AES is starting to pick up, and will likely flourish
as a consequence of NIST very recently having accepted XTS as an approved
mode of operation for AES. This strengthens the need for further systematic
testing in order to even more precisely assess XTS-AES’ performance impact on
storage devices.

References

[BDJR97] Mihir Bellare, Anand Desai, Eron Jokipii, and Phillip Rogaway. A
Concrete Security Treatment of Symmetric Encryption. Proceed-
ings 38th Annual Symposium on Foundations of Computer Science,
FOCS’97. IEEE Computer Society, 1997.

[CC03] IEEE Computer Society: Storage Systems Standards Committee
and Information Assurance Standards Committee. Draft Proposal
for Tweakable Wide-block Encryption. March 2003. https://siswg.
net/docs/EME-AES-03-22-2004.pdf.

[CC04] IEEE Computer Society: Storage Systems Standards Committee
and Information Assurance Standards Committee. Draft Proposal
for Tweakable Narrow-block Encryption. August 2004. https://
siswg.net/docs/LRW-AES-10-19-2004.pdf.

[CC07] IEEE Computer Society: Storage Systems Standards Committee
and Information Assurance Standards Committee. IEEE Standard
for Cryptographic Protection of Data on Block-Oriented Storage De-
vices – IEEE Std 1619-2007. December 2007. http://ieeexplore.
ieee.org/servlet/opac?punumber=4493431.

[DDN00] Danny Dolev, Cynthia Dwork, and Moni Naor. Non-Malleable Cryp-
tography. March 2000.

[DR03] Joan Daemen and Vincent Rijmen. A Specification for Rijndael, the
AES Algorithm. September 2003. http://fp.gladman.plus.com/
cryptography_technology/rijndael/aes.spec.311.pdf.

[EFD08a] Mohamed Abo El-Fotouh and Klaus Diepold. The Analysis of Win-
dows Vista Disk Encryption Algorithm. 2008.

[EFD08b] Mohamed Abo El-Fotouh and Klaus Diepold. A New Narrow Block
Mode of Operations for Disk Encryption. September 2008. http:
//ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4627074.

[Fel68] William Feller. An Introduction to Probability Theory and Its Ap-
plications, Volume 1. Wiley, 1968.

[Fer06] Niels Ferguson. AES-CBC + Elephant diffuser. A
Disk Encryption Algorithm for Windows Vista. Au-
gust 2006. http://download.microsoft.com/download/
0/2/3/0238acaf-d3bf-4a6d-b3d6-0a0be4bbb36e/
BitLockerCipher200608.pdf.

85

https://siswg.net/docs/EME-AES-03-22-2004.pdf
https://siswg.net/docs/EME-AES-03-22-2004.pdf
https://siswg.net/docs/LRW-AES-10-19-2004.pdf
https://siswg.net/docs/LRW-AES-10-19-2004.pdf
http://ieeexplore.ieee.org/servlet/opac?punumber=4493431
http://ieeexplore.ieee.org/servlet/opac?punumber=4493431
http://fp.gladman.plus.com/cryptography_technology/rijndael/aes.spec.311.pdf
http://fp.gladman.plus.com/cryptography_technology/rijndael/aes.spec.311.pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4627074
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4627074
http://download.microsoft.com/download/0/2/3/0238acaf-d3bf-4a6d-b3d6-0a0be4bbb36e/BitLockerCipher200608.pdf
http://download.microsoft.com/download/0/2/3/0238acaf-d3bf-4a6d-b3d6-0a0be4bbb36e/BitLockerCipher200608.pdf
http://download.microsoft.com/download/0/2/3/0238acaf-d3bf-4a6d-b3d6-0a0be4bbb36e/BitLockerCipher200608.pdf

86 Disk Encryption – Scrutinizing IEEE Standard 1619\XTS-AES

[Fru05] Clemens Fruhwirth. New Methods in Hard Disk Encryption. 2005.

[HC03] Jim Hughes and Jack Cole. Security in Storage. January 2003. http:
//www.msstc.org/cole/security-in-storage-200301.pdf.

[HR03a] Shai Halevi and Phillip Rogaway. A Parallelizable Enciphering
Mode. June 2003. http://seclab.cs.ucdavis.edu/papers/eme.
pdf.

[HR03b] Shai Halevi and Phillip Rogaway. A Tweakable Enciphering Mode.
June 2003. http://seclab.cs.ucdavis.edu/papers/cmc.pdf.

[HSH+08] J. Alex Halderman, Seth D. Schoen, Nadia Heninger, William Clark-
son, William Paul, Josept A. Calandrino, Ariel J. Feldman, Ja-
cob Appelbaum, and Edward W. Felten. Lest We Remember:
Cold Boot Attacks on Encryption Keys. February 2008. http:
//citp.princeton.edu/pub/coldboot.pdf.

[JBSK01] Borka Jerman-Blazic, Wolfgang S. Schneider, and Tomaz Klobucar.
Advanced Security Technologies in Networking. Ios Pr Inc, 2001.

[Jou03] Antoine Joux. Cryptanalysis of the EMD Mode of Operation.
May 2003. http://www.ssi.gouv.fr/fr/sciences/fichiers/
lcr/jo03.pdf.

[Kah97] David Kahn. The Codebreakers: The Comprehensive History of Se-
cret Communication from Ancient Times to the Internet. Simon &
Schuster, 1997.

[Ker83] Auguste Kerckhoffs. La cryptographie militaire, volume 9. Jour-
nal des sciences militaires, 1883. http://www.petitcolas.net/
fabien/kerckhoffs/#english.

[LM08] Moses Liskov and Kazuhiko Minematsu. Comments on XTS-
AES. September 2008. http://csrc.nist.gov/groups/ST/
toolkit/BCM/documents/comments/XTS/XTS_comments-Liskov_
Minematsu.pdf.

[LRW02] Moses Liskov, Ronald L. Rivest, and David Wagner. Tweakable
Block Ciphers. August 2002. http://www.cs.berkeley.edu/~daw/
papers/tweak-crypto02.pdf.

[MF04] David A. McGrew and Scott Fluhrer. The Extended Codebook (XCB)
Mode of Operation. October 2004. http://eprint.iacr.org/2004/
278.pdf.

[Mil56] George Miller. The Magical Number Seven, Plus or Minus Two,
volume 63. The Psychological Review, 1956.

[Min07] Kazuhiko Minematsu. Improved Security Analysis of XEX and
LRW Modes. 2007. http://www.springerlink.com/content/
437264702kn51263/fulltext.pdf.

[MvOV01] Alfred J. Menezes, Paul C. van Oorchot, and Scott A. Vanstone.
Handbook of Applied Cryptography. CRC Press, 2001.

http://www.msstc.org/cole/security-in-storage-200301.pdf
http://www.msstc.org/cole/security-in-storage-200301.pdf
http://seclab.cs.ucdavis.edu/papers/eme.pdf
http://seclab.cs.ucdavis.edu/papers/eme.pdf
http://seclab.cs.ucdavis.edu/papers/cmc.pdf
http://citp.princeton.edu/pub/coldboot.pdf
http://citp.princeton.edu/pub/coldboot.pdf
http://www.ssi.gouv.fr/fr/sciences/fichiers/lcr/jo03.pdf
http://www.ssi.gouv.fr/fr/sciences/fichiers/lcr/jo03.pdf
http://www.petitcolas.net/fabien/kerckhoffs/#english
http://www.petitcolas.net/fabien/kerckhoffs/#english
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/XTS/XTS_comments-Liskov_Minematsu.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/XTS/XTS_comments-Liskov_Minematsu.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/XTS/XTS_comments-Liskov_Minematsu.pdf
http://www.cs.berkeley.edu/~daw/papers/tweak-crypto02.pdf
http://www.cs.berkeley.edu/~daw/papers/tweak-crypto02.pdf
http://eprint.iacr.org/2004/278.pdf
http://eprint.iacr.org/2004/278.pdf
http://www.springerlink.com/content/437264702kn51263/fulltext.pdf
http://www.springerlink.com/content/437264702kn51263/fulltext.pdf

References 87

[oSN] National Institute of Standards and Technology (NIST). Federal
Information Processing Standards (FIPS) Publication (PUB) 197
- Specification for the Advanced Encryption Standard (AES).
http://www.csrc.nist.gov/publications/fips/fips197/
fips-197.pdf.

[oSN07] National Institute of Standards and Technology (NIST). Recom-
mendation for Key Management - Part 1: General (Revised) -
SP800-57. March 2007. http://csrc.nist.gov/publications/
nistpubs/800-57/sp800-57-Part1-revised2_Mar08-2007.pdf.

[Rob95] Matt Robshaw. Block Ciphers. RSA Laboratories Technical Report
TR-601, August 1995.

[Rog04] Phillip Rogaway. Efficient Instantiations of Tweakable Blockciphers
and Refinements to Modes OCB and PMAC. September 2004. http:
//www.cs.ucdavis.edu/~rogaway/papers/offsets.pdf.

[Sch06] Bruce Schneier. Applied Cryptography. Pearson Prentice Hall, 2006.

[Sha49] Claude Shannon. Communication Theory of Secrecy Systems. Bell
Systems Technical Journal, No. 4, 1949.

[Sta06] William Stallings. Cryptography and Network Security. Pearson
Prentice Hall, 2006.

[Tan02] Andrew S. Tanenbaum. Computer Networks. Prentice Hall, 2002.

[vT06] Henk C.A. van Tilborg. Encyclopedia of Cryptography and Security.
Springer-Verlag New York Inc., 2006.

http://www.csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://www.csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57-Part1-revised2_Mar08-2007.pdf
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57-Part1-revised2_Mar08-2007.pdf
http://www.cs.ucdavis.edu/~rogaway/papers/offsets.pdf
http://www.cs.ucdavis.edu/~rogaway/papers/offsets.pdf

88 Disk Encryption – Scrutinizing IEEE Standard 1619\XTS-AES

Web Resources

[1] Apple. Mac OS X Security, Visited: 03-04-2009. http://http://images.
apple.com/macosx/pdf/MacOSX_Leopard_Security_TB.pdf.

[2] IEEE Standards Association. IEEE Approves Standards for Data Encryp-
tion, Visited: 27-01-2009. http://standards.ieee.org/announcements/
StdsForEncryption.html.

[3] Matt Ball. Overview of the IEEE Security in Storage Working
Group (SISWG) - As presented at Crypto 2008, Visited: 10-02-
2009. https://siswg.net/index2.php?option=com_docman&task=doc_
view&gid=137&Itemid=41.

[4] Matthew Ball. SISWG P1619 Task Group Minutes 27-09-2006, Visited: 15-
03-2006. https://siswg.net/index.php?option=com_content&task=
view&id=91.

[5] BestCrypt. BestCrypt Software Family, Visited: 19-02-2009. http://www.
jetico.com/bcrypt.htm.

[6] Jon Callas. PGP Blogs, CTO Corner - Jon Callas, Visited: 26-04-2009.
http://blog.pgp.com/index.php/category/cto_corner/.

[7] National Security Agency (NSA) CNSS Secretariat. Fact Sheet - CNSS
Policy No. 15, Fact Sheet No. 1 National Policy on the Use of the Ad-
vanced Encryption Standard (AES) to Protect National Security Sys-
tems and National Security Information, Visited: 04-02-2009. http:
//www.cnss.gov/Assets/pdf/cnssp_15_fs.pdf.

[8] Open Source Community. cryptmount - a utility for accessing encrypted
filesystems, Visited: 14-02-2009. http://cryptmount.sourceforge.net/.

[9] Open Source Community. dm-crypt: a device-mapper crypto target, Vis-
ited: 14-02-2009. http://www.saout.de/misc/dm-crypt/.

[10] CrossCrypt. Open Source AES and TwoFish Linux compatible on the
fly encryption for Windows XP and Windows 2000, Visited: 19-02-2009.
http://scherrer.cc/crypt/.

[11] Sarah Dean. FreeOTFE, Visited: 13-02-2009. http://www.freeotfe.
org/.

[12] Sarah Dean. FreeOTFE - Frequently Asked Questions, Visited: 13-02-2009.
http://www.freeotfe.org/docs/FAQ.htm.

89

http://http://images.apple.com/macosx/pdf/MacOSX_Leopard_Security_TB.pdf
http://http://images.apple.com/macosx/pdf/MacOSX_Leopard_Security_TB.pdf
http://standards.ieee.org/announcements/StdsForEncryption.html
http://standards.ieee.org/announcements/StdsForEncryption.html
https://siswg.net/index2.php?option=com_docman&task=doc_view&gid=137&Itemid=41
https://siswg.net/index2.php?option=com_docman&task=doc_view&gid=137&Itemid=41
https://siswg.net/index.php?option=com_content&task=view&id=91
https://siswg.net/index.php?option=com_content&task=view&id=91
http://www.jetico.com/bcrypt.htm
http://www.jetico.com/bcrypt.htm
http://blog.pgp.com/index.php/category/cto_corner/
http://www.cnss.gov/Assets/pdf/cnssp_15_fs.pdf
http://www.cnss.gov/Assets/pdf/cnssp_15_fs.pdf
http://cryptmount.sourceforge.net/
http://www.saout.de/misc/dm-crypt/
http://scherrer.cc/crypt/
http://www.freeotfe.org/
http://www.freeotfe.org/
http://www.freeotfe.org/docs/FAQ.htm

90 Disk Encryption – Scrutinizing IEEE Standard 1619\XTS-AES

[13] DriveCrypt. Securstar, encryption software solutions, Visited: 19-02-2009.
http://www.securstar.com/products_drivecrypt.php.

[14] Eric A. Hibbard. Storage Developer Conference 2008 - Status Re-
port on Storage Security Initiatives, Visited: 18-02-2009. http:
//www.snia.org/events/storage-developer2008/presentations/
tuesday/EricHibbard_StateOfStorageSecurityInitiatives.pdf.

[15] IEEE Security in Storage Working Group. P1619 Standard Architecture for
Encrypted Shared Storage Media, Visited: 20-01-2009. https://siswg.
net/index.php?option=com_content&task=view&id=38&Itemid=73.

[16] IEEE Security in Storage Working Group. P1619.1 Standard for Authenti-
cated Encryption with Length Expansion for Storage Devices, Visited: 20-
01-2009. https://siswg.net/index.php?option=com_content&task=
view&id=38&Itemid=74.

[17] IEEE Security in Storage Working Group. P1619.2 Standard for
Wide-Block Encryption for Shared Storage Media, Visited: 20-
01-2009. https://siswg.net/index.php?option=com_content&task=
view&id=37&Itemid=75.

[18] IEEE Security in Storage Working Group. P1619.3 Standard for
Key Management Infrastructure for Cryptographic Protection of Stored
Data, Visited: 20-01-2009. https://siswg.net/index.php?option=com_
content&task=view&id=38&Itemid=76.

[19] IEEE Security in Storage Working Group. IEEE 1619 SISWG email
archive, Visited: 27-01-2009. http://grouper.ieee.org/groups/1619/
email/.

[20] IEEE Security in Storage Working Group. IEEE 1619 SISWG Security in
Storage Working Group, Visited: 27-01-2009. http://siswg.net/.

[21] Simon Josefsson. The Base16, Base32, and Base64 Data Encodings. RFC
3548 (Informational), July 2003. http://www.ietf.org/rfc/rfc3548.
txt.

[22] RSA Laboratories. Frequently Asked Questions about Today’s Cryptogra-
phy, Visited: 31-02-2009. http://www.rsa.com/rsalabs/node.asp?id=
2152.

[23] Microsoft. Explore the features: Bitlocker Drive Encryption, Vis-
ited: 24-03-2009. http://www.microsoft.com/windows/windows-vista/
features/bitlocker.aspx.

[24] James Morris and David S. Miller. Crypto API for Linux, Visited: 14-02-
2009. http://gondor.apana.org.au/~herbert/crypto/.

[25] Matthew V. Ball (Chair of IEEE SISWG). Follow-up to NIST’s Consider-
ation of XTS-AES as standardized by IEEE Std 1619-2007 (Draft 3 - April
12, 2009), Visited: 01-05-2009. https://siswg.net/index.php?option=
com_docman&task=doc_download&gid=169&Itemid=41.

http://www.securstar.com/products_drivecrypt.php
http://www.snia.org/events/storage-developer2008/presentations/tuesday/EricHibbard_StateOfStorageSecurityInitiatives.pdf
http://www.snia.org/events/storage-developer2008/presentations/tuesday/EricHibbard_StateOfStorageSecurityInitiatives.pdf
http://www.snia.org/events/storage-developer2008/presentations/tuesday/EricHibbard_StateOfStorageSecurityInitiatives.pdf
https://siswg.net/index.php?option=com_content&task=view&id=38&Itemid=73
https://siswg.net/index.php?option=com_content&task=view&id=38&Itemid=73
https://siswg.net/index.php?option=com_content&task=view&id=38&Itemid=74
https://siswg.net/index.php?option=com_content&task=view&id=38&Itemid=74
https://siswg.net/index.php?option=com_content&task=view&id=37&Itemid=75
https://siswg.net/index.php?option=com_content&task=view&id=37&Itemid=75
https://siswg.net/index.php?option=com_content&task=view&id=38&Itemid=76
https://siswg.net/index.php?option=com_content&task=view&id=38&Itemid=76
http://grouper.ieee.org/groups/1619/email/
http://grouper.ieee.org/groups/1619/email/
http://siswg.net/
http://www.ietf.org/rfc/rfc3548.txt
http://www.ietf.org/rfc/rfc3548.txt
http://www.rsa.com/rsalabs/node.asp?id=2152
http://www.rsa.com/rsalabs/node.asp?id=2152
http://www.microsoft.com/windows/windows-vista/features/bitlocker.aspx
http://www.microsoft.com/windows/windows-vista/features/bitlocker.aspx
http://gondor.apana.org.au/~herbert/crypto/
https://siswg.net/index.php?option=com_docman&task=doc_download&gid=169&Itemid=41
https://siswg.net/index.php?option=com_docman&task=doc_download&gid=169&Itemid=41

Web Resources 91

[26] Matthew V. Ball (Chair of IEEE SISWG). Email to NIST dated Septem-
ber 1, 2008, Visited: 15-03-2009. http://csrc.nist.gov/groups/ST/
toolkit/BCM/documents/comments/XTS/XTS_comments-Ball.pdf.

[27] Matthew V. Ball (Chair of IEEE SISWG). Email to P1619 working group
dated May 26, 2009 with subject: “NIST will accept XTS-AES (as defined
by IEEE Std 1619-2007) as an Approved Mode of Operation”, Visited:
27-05-2009. http://grouper.ieee.org/groups/1619/email/msg02579.
html.

[28] National Institute of Standards and Technology (NIST). Key
Management Guidelines SP800-57, August 2005. http://csrc.
nist.gov/publications/nistpubs/800-57/SP800-57-Part1.pdf
and http://csrc.nist.gov/publications/nistpubs/800-57/
SP800-57-Part2.pdf.

[29] National Institute of Standards and Technology (NIST). Pro-
posal to Extend CBC Mode By “Ciphertext Stealing”, May
2007. http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/
ciphertext%20stealing%20proposal.pdf.

[30] National Institute of Standards and Technology (NIST). Press Release
09-08-1999: NIST Announces Encryption Standard Finalists, Visited:
05-02-2009. http://frwebgate.access.gpo.gov/cgi-bin/getdoc.cgi?
dbname=2001_register&docid=01-4886-filed.pdf.

[31] National Institute of Standards and Technology (NIST). Comments on the
Proposal to Approve XTS-AES, Visited: 15-02-2009. http://csrc.nist.
gov/groups/ST/toolkit/BCM/comments.html.

[32] National Institute of Standards and Technology (NIST). Request for Public
Comment on XTS, Visited: 15-02-2009. http://csrc.nist.gov/groups/
ST/documents/Request-for-Public-Comment-on_XTS.pdf.

[33] National Institute of Standards and Technology (NIST). Public
Comments on the XTS-AES Mode, Visited: 15-03-2009. http:
//csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/
XTS/collected_XTS_comments.pdf.

[34] National Institute of Standards and Technology (NIST). Advanced En-
cryption Standard (AES) Questions and Answers, Visited: 27-01-2009.
http://www.nist.gov/public_affairs/releases/aesq&a.htm.

[35] National Institute of Standards and Technology (NIST). Archived info: C
S R C - Federal Information Processing Standard (FIPS) for the Advanced
Encryption Standard, FIPS-197, Visited: 27-01-2009. http://csrc.nist.
gov/encryption/aes/.

[36] National Institute of Standards and Technology (NIST). Federal Infor-
mation Processing Standards (FIPS) Publications, Visited: 29-02-2009.
http://csrc.nist.gov/publications/PubsFIPS.html.

http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/XTS/XTS_comments-Ball.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/XTS/XTS_comments-Ball.pdf
http://grouper.ieee.org/groups/1619/email/msg02579.html
http://grouper.ieee.org/groups/1619/email/msg02579.html
http://csrc.nist.gov/publications/nistpubs/800-57/SP800-57-Part1.pdf
http://csrc.nist.gov/publications/nistpubs/800-57/SP800-57-Part1.pdf
http://csrc.nist.gov/publications/nistpubs/800-57/SP800-57-Part2.pdf
http://csrc.nist.gov/publications/nistpubs/800-57/SP800-57-Part2.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/ciphertext%20stealing%20proposal.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/ciphertext%20stealing%20proposal.pdf
http://frwebgate.access.gpo.gov/cgi-bin/getdoc.cgi?dbname=2001_register&docid=01-4886-filed.pdf
http://frwebgate.access.gpo.gov/cgi-bin/getdoc.cgi?dbname=2001_register&docid=01-4886-filed.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/comments.html
http://csrc.nist.gov/groups/ST/toolkit/BCM/comments.html
http://csrc.nist.gov/groups/ST/documents/Request-for-Public-Comment-on_XTS.pdf
http://csrc.nist.gov/groups/ST/documents/Request-for-Public-Comment-on_XTS.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/XTS/collected_XTS_comments.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/XTS/collected_XTS_comments.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/XTS/collected_XTS_comments.pdf
http://www.nist.gov/public_affairs/releases/aesq&a.htm
http://csrc.nist.gov/encryption/aes/
http://csrc.nist.gov/encryption/aes/
http://csrc.nist.gov/publications/PubsFIPS.html

92 Disk Encryption – Scrutinizing IEEE Standard 1619\XTS-AES

[37] National Institute of Standards and Technology. NIST Accepted Block
Cipher Modes of Operation for Consideration, Visited: 23-01-2009. http:
//csrc.nist.gov/groups/ST/toolkit/BCM/modes_development.html.

[38] National Institute of Standards and Technology. NIST Approved Block
Cipher Modes of Operation, Visited: 30-01-2009. http://csrc.nist.gov/
groups/ST/toolkit/BCM/index.html.

[39] Trusted Computing Group Press Release. Better Protection from
Client to Data Center Made Possible With New Trusted Comput-
ing Group Storage Device Specifications, January 2009. http://www.
trustedcomputinggroup.org/media_room/news/15.

[40] Philip Rogaway. Quick check on IP situation of XEX, September 2006.
http://grouper.ieee.org/groups/1619/email/msg01309.html.

[41] Stephan Schreiber. Ext2 Installable File System, Visited: 14-02-2009.
http://www.fs-driver.org/.

[42] Micheal Willett (Seagate). Request for Public Comment on XTS-AES,
Visited: 15-03-2009. http://csrc.nist.gov/groups/ST/toolkit/BCM/
documents/comments/XTS/revised_XTS_comments-Seagate.pdf.

[43] EFD Software. HD Tune, Visited: 11-02-2009. http://www.hdtunepro.
com.

[44] NeoScale Systems. Letter of Assurance to IEEE on IEEE Std
1619, March 2007. http://standards.ieee.org/db/patents/
loa-1619-neoscale-08Mar2007.pdf.

[45] TrueCrypt. Free open-source disk encryption software for Windows
Vista/XP, Mac OS X, and Linux, Visited: 01-02-2009. http://www.
truecrypt.org/.

[46] TrueCrypt. Version History, Visited: 01-02-2009. http://www.truecrypt.
org/docs/?s=version-history.

[47] TrueCrypt. Frequently Asked Questions, Visited: 04-02-2009. http://
www.truecrypt.org/faq.php.

[48] TrueCrypt. Header Key Derivation, Salt, and Iteration Count,
Visited: 08-03-2009. http://www.truecrypt.org/docs/?s=
header-key-derivation.

[49] TrueCrypt. Random Number Generator, Visited: 08-03-2009. http://
www.truecrypt.org/docs/?s=random-number-generator.

[50] TrueCrypt. Truecrypt Rescue Disk, Visited: 08-03-2009. http://www.
truecrypt.org/docs/?s=rescue-disk.

[51] World Wide Web Consortium (W3C). XML Encryption Syntax and Pro-
cessing, W3C Recommendation 10 December 2002. http://www.w3.org/
TR/xmlenc-core.

http://csrc.nist.gov/groups/ST/toolkit/BCM/modes_development.html
http://csrc.nist.gov/groups/ST/toolkit/BCM/modes_development.html
http://csrc.nist.gov/groups/ST/toolkit/BCM/index.html
http://csrc.nist.gov/groups/ST/toolkit/BCM/index.html
http://www.trustedcomputinggroup.org/media_room/news/15
http://www.trustedcomputinggroup.org/media_room/news/15
http://grouper.ieee.org/groups/1619/email/msg01309.html
http://www.fs-driver.org/
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/XTS/revised_XTS_comments-Seagate.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/XTS/revised_XTS_comments-Seagate.pdf
http://www.hdtunepro.com
http://www.hdtunepro.com
http://standards.ieee.org/db/patents/loa-1619-neoscale-08Mar2007.pdf
http://standards.ieee.org/db/patents/loa-1619-neoscale-08Mar2007.pdf
http://www.truecrypt.org/
http://www.truecrypt.org/
http://www.truecrypt.org/docs/?s=version-history
http://www.truecrypt.org/docs/?s=version-history
http://www.truecrypt.org/faq.php
http://www.truecrypt.org/faq.php
http://www.truecrypt.org/docs/?s=header-key-derivation
http://www.truecrypt.org/docs/?s=header-key-derivation
http://www.truecrypt.org/docs/?s=random-number-generator
http://www.truecrypt.org/docs/?s=random-number-generator
http://www.truecrypt.org/docs/?s=rescue-disk
http://www.truecrypt.org/docs/?s=rescue-disk
http://www.w3.org/TR/xmlenc-core
http://www.w3.org/TR/xmlenc-core

Web Resources 93

[52] World Wide Web Consortium (W3C). Definition of the XML document
type declaration from Extensible Markup Language (XML) 1.0 (Fourth
Edition), W3C Recommendation 16 August 2006. http://www.w3.org/
TR/REC-xml/#dt-doctype.

[53] World Wide Web Consortium (W3C). Extensible Markup Language (XML)
1.0 (Fourth Edition), W3C Recommendation 16 August 2006. http://
www.w3.org/TR/REC-xml/.

http://www.w3.org/TR/REC-xml/#dt-doctype
http://www.w3.org/TR/REC-xml/#dt-doctype
http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/REC-xml/

94 Disk Encryption – Scrutinizing IEEE Standard 1619\XTS-AES

Appendix A

TrueCrypt 6.1a

This Appendix gives step-by-step instructions on how full system disk encryption
was applied when the test case named XTS-AES-256_Encryption (described in
section 5.4.2) was performed.

Step 1

TrueCrypt 6.1a was downloaded from [45] and installed with default settings.

Figure A.1: At the time of testing the latest stable version of TrueCrypt was 6.1a.

Step 2

The next step was to open TrueCrypt and choose System → Encrypt System
Partition/Drive (as depicted in Figure A.2) to start the TrueCrypt Volume
Creation Wizard.

95

96 Disk Encryption – Scrutinizing IEEE Standard 1619\XTS-AES

Figure A.2: Full system disk encryption is initiated from the TrueCrypt main win-
dow.

Step 3

At this point TrueCrypt asks a couple of questions regarding the manner of
operation, which we answered as follows:

• Type of System Encryption: Normal
• Area to Encrypt: Encrypt the whole drive
• Encryption of Host Protected Area: Yes
• Number of Operating Systems: Single-boot

Step 4

After this, TrueCrypt presents the user with encryption algorithms to choose
from. As depicted in Figure A.3, AES was selected, which uses the XTS mode
of operation with a key size of 256 bits (XTS-AES-256).

Notice that you also can choose a hash algorithm at this point. This is used by
the random number generator (as a pseudorandom mixing function), which is
involved in the generation of the master key (AES key), secondary key (XTS
key), salt, volume header key, and secondary header key [48, 49]. The default
hash algorithm (i.e. RIPEMD-160) was selected.

Appendix A. TrueCrypt 6.1a 97

Figure A.3: TrueCrypt features strong 256-bit encryption using XTS mode with either
AES, Twofish or Serpent block cipher, or all three of them in cascade mode.

Step 5

The next step was to choose the password used for pre-boot authentication.

Figure A.4: Notice that TrueCrypt also features the use of a keyfile, which is a file
whose content is combined with a password.

Step 6

After choosing a password, TrueCrypt generates the necessary keys by using
the password defined in the previous step and random data collected from your
mouse cursor movement (see Figure A.5). When this process was complete, a
new TrueCrypt window displayed the generated keys.

98 Disk Encryption – Scrutinizing IEEE Standard 1619\XTS-AES

Figure A.5: Mouse cursor movement inside the TrueCrypt window is used to collect
random numbers.

Step 7

Before the process of full system disk encryption starts, TrueCrypt requires the
user to create a TrueCrypt Rescue Disk. This is used if the TrueCrypt Boot
Loader, header key, or other critical data gets damaged. More about the neces-
sity and use of the TrueCrypt Rescue Disk is found at [50].

After the Rescue Disk image was created, it was written (burned) to an empty
CD-R, and verified by TrueCrypt.

Figure A.6: Notice that it is not possible to proceed without getting your Rescue Disk
verified.

Appendix A. TrueCrypt 6.1a 99

Step 8

At this point, only a few clicks away from the actual encryption process, True-
Crypt requires the user to choose a Wipe mode (see Figure A.7). This is done
because overwritten data might be recovered using techniques such as magnetic
force microscopy. This also applies to data that are overwritten with their en-
crypted form (which is exactly what TrueCrypt are about to do). For the testing
purposes in this thesis, the Wipe mode was set to None.

Figure A.7: It is possible to choose between four wipe modes: None, 3-pass, 7-pass
and 35-pass.

Step 9

Then, before the actual encrypting can start, TrueCrypt needs to verify that
everything workings correctly. This was done by restarting and authenticating
us to the TrueCrypt Boot Loader (see Figure A.8).

Figure A.8: As of TrueCrypt version 6.1, it is possible to turn off all text in the pre-
boot authentication screen, preventing an adversary that is watching you start your
computer from knowing that TrueCrypt is in use.

100 Disk Encryption – Scrutinizing IEEE Standard 1619\XTS-AES

Step 10

After Windows restarted, and the pretest was performed successfully, the actual
encryption started (depicted in Figure A.9).

Figure A.9: Notice that it is possible to pause the full system disk encryption process
at any time.

After the encryption process is complete, TrueCrypt never saves any decrypted
data to the disk again – it only stores it temporarily in computer memory.
From this point on, data is automatically encrypted or decrypted right before
it is written or read, completely transparent to the user.

Appendix B

Benchmark Results

This Appendix presents the exhaustive result sets with corresponding statistics;
arithmetic average, standard deviation, standard error, and 95 % confidence
intervals.

The table below gives an overview of the different computers and operating
systems along with the page number on which the results is listed; even page
numbers show the results when no disk encryption was present (i.e. the test
case No_Encryption) and odd page numbers show the results when the disk
employed transparent XTS-AES-256 full system disk encryption (i.e. the test
case XTS-AES-256_Encryption).

Operating System Pages

Computer 1
Windows XP 102 − 103
Windows Vista 104 − 105
Windows 7 106 − 106

Computer 2
Windows XP 108 − 109
Windows Vista 110 − 111
Windows 7 112 − 113

Computer 3
Windows XP 114 − 115
Windows Vista 116 − 117
Windows 7 118 − 119

101

102 Disk Encryption – Scrutinizing IEEE Standard 1619\XTS-AES

B.1 Computer 1 using Windows XP

Without disk encryption

Write speed Read speed CPU usage
#1 27.46 MB/s 28.95 MB/s 1.10 %
#2 27.11 MB/s 29.66 MB/s 1.10 %
#3 26.52 MB/s 29.15 MB/s 1.00 %
#4 27.17 MB/s 28.42 MB/s 1.10 %
#5 27.00 MB/s 28.96 MB/s 1.00 %
#6 28.31 MB/s 28.79 MB/s 1.00 %
#7 27.19 MB/s 28.43 MB/s 1.20 %
#8 27.20 MB/s 28.60 MB/s 1.00 %
#9 27.17 MB/s 27.83 MB/s 1.10 %
#10 26.81 MB/s 28.41 MB/s 1.00 %

Write speed Read speed CPU usage
Arithmetic average 27.2 MB/s 28.7 MB/s 1.1 %
Standard deviation 0.47 0.50 0.07
Standard error 0.15 0.16 0.02
95% Confidence interval [26.87,27.53] [28.37,29.07] [1.05,1.15]

Table B.1: Disk performance measurements for computer 1 running Windows XP
without disk encryption.

0 MB/s

10 MB/s

20 MB/s

30 MB/s

40 MB/s

Write speed Read speed

28,7 MB/s27,2 MB/s

0 %

10 %

20 %

30 %

40 %

CPU usage

1,1 %

Figure B.1: Average write speed, read speed, and CPU usage during disk benchmark
for computer 1 running Windows XP without disk encryption.

Appendix B. Benchmark Results 103

With disk encryption

Write speed Read speed CPU usage
#1 21.24 MB/s 21.26 MB/s 26.90 %
#2 21.21 MB/s 20.94 MB/s 27.50 %
#3 21.12 MB/s 20.61 MB/s 27.30 %
#4 21.20 MB/s 17.35 MB/s 27.50 %
#5 21.19 MB/s 20.60 MB/s 27.00 %
#6 21.26 MB/s 17.08 MB/s 26.80 %
#7 21.19 MB/s 20.71 MB/s 27.30 %
#8 21.19 MB/s 20.49 MB/s 26.90 %
#9 21.30 MB/s 20.80 MB/s 27.10 %
#10 21.08 MB/s 17.64 MB/s 27.10 %

Write speed Read speed CPU usage
Arithmetic average 21.2 MB/s 19.7 MB/s 27.1 %
Standard deviation 0.06 1.67 0.25
Standard error 0.02 0.53 0.08
95% Confidence interval [21.15,21.24] [18.57,20.92] [26.92,27.28]

Table B.2: Disk performance measurements for computer 1 running Windows XP
with disk encryption.

0 MB/s

10 MB/s

20 MB/s

30 MB/s

40 MB/s

Write speed Read speed

19,7 MB/s21,2 MB/s

0 %

10 %

20 %

30 %

40 %

CPU usage

27,1 %

Figure B.2: Average write speed, read speed, and CPU usage during disk benchmark
for computer 1 running Windows XP with disk encryption.

104 Disk Encryption – Scrutinizing IEEE Standard 1619\XTS-AES

B.2 Computer 1 using Windows Vista

Without disk encryption

Write speed Read speed CPU usage
#1 28.41 MB/s 29.71 MB/s 2.20 %
#2 28.85 MB/s 29.73 MB/s 1.90 %
#3 29.15 MB/s 29.52 MB/s 1.80 %
#4 28.44 MB/s 29.71 MB/s 1.80 %
#5 28.79 MB/s 29.61 MB/s 2.20 %
#6 25.21 MB/s 27.40 MB/s 1.50 %
#7 24.16 MB/s 27.41 MB/s 1.40 %
#8 25.04 MB/s 27.42 MB/s 1.80 %
#9 25.12 MB/s 27.56 MB/s 1.60 %
#10 25.12 MB/s 27.96 MB/s 1.60 %

Write speed Read speed CPU usage
Arithmetic average 26.8 MB/s 28.6 MB/s 1.8 %
Standard deviation 2.03 1.12 0.27
Standard error 0.64 0.36 0.09
95% Confidence interval [25.40,28.26] [27.81,29.39] [1.61,1.99]

Table B.3: Disk performance measurements for computer 1 running Windows Vista
without disk encryption.

0 MB/s

10 MB/s

20 MB/s

30 MB/s

40 MB/s

Write speed Read speed

28,6 MB/s
26,8 MB/s

0 %

10 %

20 %

30 %

40 %

CPU usage

1,8 %

Figure B.3: Average write speed, read speed, and CPU usage during disk benchmark
for computer 1 running Windows Vista without disk encryption.

Appendix B. Benchmark Results 105

With disk encryption

Write speed Read speed CPU usage
#1 21.10 MB/s 19.33 MB/s 24.50 %
#2 21.02 MB/s 19.43 MB/s 23.20 %
#3 20.77 MB/s 19.21 MB/s 26.30 %
#4 20.71 MB/s 19.18 MB/s 26.20 %
#5 20.76 MB/s 18.94 MB/s 23.00 %
#6 20.75 MB/s 19.50 MB/s 22.60 %
#7 20.52 MB/s 19.11 MB/s 23.90 %
#8 20.71 MB/s 19.74 MB/s 26.70 %
#9 20.94 MB/s 18.69 MB/s 24.50 %
#10 20.92 MB/s 19.20 MB/s 24.40 %

Write speed Read speed CPU usage
Arithmetic average 20.8 MB/s 19.2 MB/s 24.5 %
Standard deviation 0.17 0.30 1.45
Standard error 0.05 0.09 0.46
95% Confidence interval [20.70,20.94] [19.03,19.44] [23.48,25.52]

Table B.4: Disk performance measurements for computer 1 running Windows Vista
with disk encryption.

0 MB/s

10 MB/s

20 MB/s

30 MB/s

40 MB/s

Write speed Read speed

19,2 MB/s
20,8 MB/s

0 %

10 %

20 %

30 %

40 %

CPU usage

24,5 %

Figure B.4: Average write speed, read speed, and CPU usage during disk benchmark
for computer 1 running Windows Vista with disk encryption.

106 Disk Encryption – Scrutinizing IEEE Standard 1619\XTS-AES

B.3 Computer 1 using Windows 7

Without disk encryption

Write speed Read speed CPU usage
#1 27.24 MB/s 28.86 MB/s 1.20 %
#2 27.58 MB/s 29.18 MB/s 1.30 %
#3 27.87 MB/s 28.81 MB/s 1.30 %
#4 26.81 MB/s 29.23 MB/s 1.20 %
#5 27.12 MB/s 29.15 MB/s 1.30 %
#6 26.93 MB/s 22.77 MB/s 1.30 %
#7 27.05 MB/s 29.07 MB/s 1.20 %
#8 26.80 MB/s 29.48 MB/s 1.30 %
#9 26.91 MB/s 29.32 MB/s 1.10 %
#10 27.35 MB/s 29.57 MB/s 1.30 %

Write speed Read speed CPU usage
Arithmetic average 27.2 MB/s 28.5 MB/s 1.3 %
Standard deviation 0.35 2.04 0.07
Standard error 0.11 0.65 0.02
95% Confidence interval [26.92,27.41] [27.11,29.98] [1.25,1.35]

Table B.5: Disk performance measurements for computer 1 running Windows 7
without disk encryption.

0 MB/s

10 MB/s

20 MB/s

30 MB/s

40 MB/s

Write speed Read speed

28,5 MB/s27,2 MB/s

0 %

10 %

20 %

30 %

40 %

CPU usage

1,3 %

Figure B.5: Average write speed, read speed, and CPU usage during disk benchmark
for computer 1 running Windows 7 without disk encryption.

Appendix B. Benchmark Results 107

With disk encryption

Write speed Read speed CPU usage
#1 20.86 MB/s 18.55 MB/s 21.50 %
#2 21.13 MB/s 16.86 MB/s 21.80 %
#3 20.82 MB/s 18.77 MB/s 21.80 %
#4 20.49 MB/s 17.83 MB/s 22.50 %
#5 20.82 MB/s 19.30 MB/s 22.60 %
#6 20.45 MB/s 19.48 MB/s 22.20 %
#7 21.08 MB/s 18.66 MB/s 22.40 %
#8 21.08 MB/s 19.34 MB/s 21.50 %
#9 19.98 MB/s 19.21 MB/s 22.00 %
#10 19.13 MB/s 20.01 MB/s 21.60 %

Write speed Read speed CPU usage
Arithmetic average 20.6 MB/s 18.8 MB/s 22.0 %
Standard deviation 0.62 0.91 0.41
Standard error 0.20 0.29 0.13
95% Confidence interval [20.15,21.02] [18.16,19.44] [21.71,22.29]

Table B.6: Disk performance measurements for computer 1 running Windows 7 with
disk encryption.

0 MB/s

10 MB/s

20 MB/s

30 MB/s

40 MB/s

Write speed Read speed

18,8 MB/s
20,6 MB/s

0 %

10 %

20 %

30 %

40 %

CPU usage

22,0 %

Figure B.6: Average write speed, read speed, and CPU usage during disk benchmark
for computer 1 running Windows 7 with disk encryption.

108 Disk Encryption – Scrutinizing IEEE Standard 1619\XTS-AES

B.4 Computer 2 using Windows XP

Without disk encryption

Write speed Read speed CPU usage
#1 59.44 MB/s 56.85 MB/s 1.80 %
#2 59.42 MB/s 56.84 MB/s 1.90 %
#3 59.92 MB/s 57.09 MB/s 1.70 %
#4 59.21 MB/s 57.84 MB/s 1.70 %
#5 58.81 MB/s 57.09 MB/s 1.80 %
#6 57.21 MB/s 57.84 MB/s 1.70 %
#7 59.71 MB/s 56.34 MB/s 1.70 %
#8 58.96 MB/s 57.64 MB/s 1.80 %
#9 59.39 MB/s 57.46 MB/s 1.70 %
#10 59.43 MB/s 57.09 MB/s 1.80 %

Write speed Read speed CPU usage
Arithmetic average 59.2 MB/s 57.2 MB/s 1.8 %
Standard deviation 0.76 0.48 0.07
Standard error 0.24 0.15 0.02
95% Confidence interval [58.62,59.68] [56.87,57.55] [1.75,1.85]

Table B.7: Disk performance measurements for computer 2 running Windows XP
without disk encryption.

0 MB/s

10 MB/s

20 MB/s

30 MB/s

40 MB/s

50 MB/s

60 MB/s

70 MB/s

Write speed Read speed

57,2 MB/s59,2 MB/s

0 %

10 %

20 %

30 %

40 %

50 %

60 %

CPU usage

1,8 %

Figure B.7: Average write speed, read speed, and CPU usage during disk benchmark
for computer 2 running Windows XP without disk encryption.

Appendix B. Benchmark Results 109

With disk encryption

Write speed Read speed CPU usage
#1 42.11 MB/s 42.29 MB/s 52.20 %
#2 42.13 MB/s 42.09 MB/s 51.90 %
#3 42.04 MB/s 41.91 MB/s 52.10 %
#4 42.13 MB/s 41.49 MB/s 52.40 %
#5 42.11 MB/s 40.86 MB/s 52.20 %
#6 42.12 MB/s 40.01 MB/s 52.30 %
#7 42.09 MB/s 42.97 MB/s 51.80 %
#8 42.11 MB/s 41.82 MB/s 52.40 %
#9 42.10 MB/s 40.95 MB/s 52.40 %
#10 42.11 MB/s 41.91 MB/s 51.90 %

Write speed Read speed CPU usage
Arithmetic average 42.1 MB/s 41.6 MB/s 52.2 %
Standard deviation 0.02 0.84 0.23
Standard error 0.01 0.27 0.07
95% Confidence interval [42.09,42.12] [41.04,42.22] [52.04,52.36]

Table B.8: Disk performance measurements for computer 2 running Windows XP
with disk encryption.

0 MB/s

10 MB/s

20 MB/s

30 MB/s

40 MB/s

50 MB/s

60 MB/s

70 MB/s

Write speed Read speed

41,6 MB/s42,1 MB/s

0 %

10 %

20 %

30 %

40 %

50 %

60 %

CPU usage

52,2 %

Figure B.8: Average write speed, read speed, and CPU usage during disk benchmark
for computer 2 running Windows XP with disk encryption.

110 Disk Encryption – Scrutinizing IEEE Standard 1619\XTS-AES

B.5 Computer 2 using Windows Vista

Without disk encryption

Write speed Read speed CPU usage
#1 46.98 MB/s 51.93 MB/s 2.90 %
#2 48.78 MB/s 50.83 MB/s 2.40 %
#3 49.12 MB/s 51.93 MB/s 2.60 %
#4 45.62 MB/s 46.19 MB/s 2.70 %
#5 54.86 MB/s 50.71 MB/s 2.80 %
#6 55.17 MB/s 49.18 MB/s 2.60 %
#7 53.62 MB/s 50.27 MB/s 3.10 %
#8 52.50 MB/s 51.67 MB/s 3.10 %
#9 52.24 MB/s 52.14 MB/s 3.00 %
#10 55.58 MB/s 52.40 MB/s 2.80 %

Write speed Read speed CPU usage
Arithmetic average 51.4 MB/s 50.7 MB/s 2.8 %
Standard deviation 3.58 1.88 0.23
Standard error 1.13 0.59 0.07
95% Confidence interval [48.92,53.97] [49.40,52.05] [2.64,2.96]

Table B.9: Disk performance measurements for computer 2 running Windows Vista
without disk encryption.

0 MB/s

10 MB/s

20 MB/s

30 MB/s

40 MB/s

50 MB/s

60 MB/s

70 MB/s

Write speed Read speed

50,7 MB/s51,4 MB/s

0 %

10 %

20 %

30 %

40 %

50 %

60 %

CPU usage

2,8 %

Figure B.9: Average write speed, read speed, and CPU usage during disk benchmark
for computer 2 running Windows Vista without disk encryption.

Appendix B. Benchmark Results 111

With disk encryption

Write speed Read speed CPU usage
#1 39.72 MB/s 39.34 MB/s 53.20 %
#2 40.64 MB/s 38.84 MB/s 54.10 %
#3 40.17 MB/s 39.76 MB/s 53.00 %
#4 40.23 MB/s 39.26 MB/s 52.70 %
#5 40.55 MB/s 39.76 MB/s 53.20 %
#6 40.54 MB/s 40.81 MB/s 53.10 %
#7 40.61 MB/s 40.07 MB/s 52.80 %
#8 40.20 MB/s 39.89 MB/s 53.80 %
#9 40.59 MB/s 40.26 MB/s 54.60 %
#10 40.63 MB/s 40.46 MB/s 52.60 %

Write speed Read speed CPU usage
Arithmetic average 40.4 MB/s 39.8 MB/s 53.3 %
Standard deviation 0.30 0.59 0.65
Standard error 0.10 0.19 0.21
95% Confidence interval [40.17,40.60] [39.43,40.26] [52.84,53.76]

Table B.10: Disk performance measurements for computer 2 running Windows Vista
with disk encryption.

0 MB/s

10 MB/s

20 MB/s

30 MB/s

40 MB/s

50 MB/s

60 MB/s

70 MB/s

Write speed Read speed

39,8 MB/s40,4 MB/s

0 %

10 %

20 %

30 %

40 %

50 %

60 %

CPU usage

53,3 %

Figure B.10: Average write speed, read speed, and CPU usage during disk benchmark
for computer 2 running Windows Vista with disk encryption.

112 Disk Encryption – Scrutinizing IEEE Standard 1619\XTS-AES

B.6 Computer 2 using Windows 7

Without disk encryption

Write speed Read speed CPU usage
#1 60.65 MB/s 57.13 MB/s 2.30 %
#2 61.11 MB/s 57.82 MB/s 2.30 %
#3 60.11 MB/s 56.80 MB/s 2.50 %
#4 60.86 MB/s 57.82 MB/s 2.20 %
#5 55.99 MB/s 57.82 MB/s 2.40 %
#6 60.32 MB/s 57.85 MB/s 2.00 %
#7 61.92 MB/s 57.58 MB/s 2.20 %
#8 60.86 MB/s 56.32 MB/s 2.20 %
#9 61.58 MB/s 57.99 MB/s 1.90 %
#10 62.14 MB/s 57.82 MB/s 2.00 %

Write speed Read speed CPU usage
Arithmetic average 60.6 MB/s 57.5 MB/s 2.2 %
Standard deviation 1.73 0.56 0.19
Standard error 0.55 0.18 0.06
95% Confidence interval [59.33,61.77] [57.10,57.89] [2.07,2.33]

Table B.11: Disk performance measurements for computer 2 running Windows 7
without disk encryption.

0 MB/s

10 MB/s

20 MB/s

30 MB/s

40 MB/s

50 MB/s

60 MB/s

70 MB/s

Write speed Read speed

57,5 MB/s
60,6 MB/s

0 %

10 %

20 %

30 %

40 %

50 %

60 %

CPU usage

2,2 %

Figure B.11: Average write speed, read speed, and CPU usage during disk benchmark
for computer 2 running Windows 7 without disk encryption.

Appendix B. Benchmark Results 113

With disk encryption

Write speed Read speed CPU usage
#1 41.10 MB/s 40.95 MB/s 50.70 %
#2 41.14 MB/s 39.57 MB/s 50.90 %
#3 41.63 MB/s 41.87 MB/s 51.20 %
#4 41.16 MB/s 41.33 MB/s 51.10 %
#5 40.76 MB/s 40.87 MB/s 51.20 %
#6 41.60 MB/s 41.29 MB/s 52.60 %
#7 41.13 MB/s 40.88 MB/s 50.90 %
#8 41.01 MB/s 40.73 MB/s 51.20 %
#9 41.13 MB/s 40.57 MB/s 51.30 %
#10 41.17 MB/s 40.95 MB/s 51.00 %

Write speed Read speed CPU usage
Arithmetic average 41.2 MB/s 40.9 MB/s 51.2 %
Standard deviation 0.26 0.60 0.52
Standard error 0.08 0.19 0.16
95% Confidence interval [41.00,41.36] [40.48,41.32] [50.83,51.57]

Table B.12: Disk performance measurements for computer 2 running Windows 7
with disk encryption.

0 MB/s

10 MB/s

20 MB/s

30 MB/s

40 MB/s

50 MB/s

60 MB/s

70 MB/s

Write speed Read speed

40,9 MB/s41,2 MB/s

0 %

10 %

20 %

30 %

40 %

50 %

60 %

CPU usage

51,2 %

Figure B.12: Average write speed, read speed, and CPU usage during disk benchmark
for computer 2 running Windows 7 with disk encryption.

114 Disk Encryption – Scrutinizing IEEE Standard 1619\XTS-AES

B.7 Computer 3 using Windows XP

Without disk encryption

Write speed Read speed CPU usage
#1 94.06 MB/s 93.76 MB/s 2.00 %
#2 94.06 MB/s 93.33 MB/s 1.90 %
#3 93.25 MB/s 93.76 MB/s 1.90 %
#4 92.77 MB/s 92.90 MB/s 1.90 %
#5 93.21 MB/s 95.08 MB/s 1.90 %
#6 94.50 MB/s 93.76 MB/s 1.90 %
#7 93.21 MB/s 93.76 MB/s 2.00 %
#8 94.06 MB/s 94.19 MB/s 2.10 %
#9 94.96 MB/s 93.33 MB/s 2.00 %
#10 94.50 MB/s 95.52 MB/s 1.90 %

Write speed Read speed CPU usage
Arithmetic average 93.9 MB/s 93.9 MB/s 2.0 %
Standard deviation 0.71 0.80 0.07
Standard error 0.22 0.25 0.02
95% Confidence interval [93.36,94.36] [93.37,94.51] [1.95,2.05]

Table B.13: Disk performance measurements for computer 3 running Windows XP
without disk encryption.

0 MB/s

10 MB/s

20 MB/s

30 MB/s

40 MB/s

50 MB/s

60 MB/s

70 MB/s

80 MB/s

90 MB/s

100 MB/s

Write speed Read speed

93,9 MB/s93,9 MB/s

0 %

10 %

20 %

30 %

40 %

50 %

60 %

CPU usage

2,0 %

Figure B.13: Average write speed, read speed, and CPU usage during disk benchmark
for computer 3 running Windows XP without disk encryption.

Appendix B. Benchmark Results 115

With disk encryption

Write speed Read speed CPU usage
#1 63.03 MB/s 66.61 MB/s 45.10 %
#2 62.89 MB/s 68.64 MB/s 45.60 %
#3 64.12 MB/s 63.66 MB/s 45.80 %
#4 67.54 MB/s 65.69 MB/s 46.60 %
#5 61.40 MB/s 67.70 MB/s 45.30 %
#6 63.58 MB/s 67.14 MB/s 46.10 %
#7 59.68 MB/s 61.56 MB/s 45.70 %
#8 64.12 MB/s 67.23 MB/s 46.10 %
#9 61.47 MB/s 67.54 MB/s 45.40 %
#10 62.46 MB/s 68.01 MB/s 46.00 %

Write speed Read speed CPU usage
Arithmetic average 63.0 MB/s 66.4 MB/s 45.8 %
Standard deviation 2.10 2.19 0.45
Standard error 0.66 0.69 0.14
95% Confidence interval [61.55,64.51] [64.83,67.92] [45.48,46.12]

Table B.14: Disk performance measurements for computer 3 running Windows XP
with disk encryption.

0 MB/s

10 MB/s

20 MB/s

30 MB/s

40 MB/s

50 MB/s

60 MB/s

70 MB/s

80 MB/s

90 MB/s

100 MB/s

Write speed Read speed

66,4 MB/s63 MB/s

0 %

10 %

20 %

30 %

40 %

50 %

60 %

CPU usage

45,8 %

Figure B.14: Average write speed, read speed, and CPU usage during disk benchmark
for computer 3 running Windows XP with disk encryption.

116 Disk Encryption – Scrutinizing IEEE Standard 1619\XTS-AES

B.8 Computer 3 using Windows Vista

Without disk encryption

Write speed Read speed CPU usage
#1 83.78 MB/s 83.80 MB/s 2.50 %
#2 88.22 MB/s 89.38 MB/s 2.50 %
#3 87.09 MB/s 89.01 MB/s 2.40 %
#4 88.96 MB/s 86.79 MB/s 2.60 %
#5 87.45 MB/s 89.38 MB/s 2.70 %
#6 87.09 MB/s 89.75 MB/s 2.60 %
#7 87.45 MB/s 89.38 MB/s 2.40 %
#8 87.45 MB/s 89.01 MB/s 2.50 %
#9 86.68 MB/s 89.38 MB/s 2.40 %
#10 87.11 MB/s 88.28 MB/s 2.40 %

Write speed Read speed CPU usage
Arithmetic average 87.1 MB/s 88.4 MB/s 2.5 %
Standard deviation 1.34 1.83 0.11
Standard error 0.43 0.58 0.03
95% Confidence interval [86.18,88.08] [87.13,89.71] [2.42,2.58]

Table B.15: Disk performance measurements for computer 3 running Windows Vista
without disk encryption.

0 MB/s

10 MB/s

20 MB/s

30 MB/s

40 MB/s

50 MB/s

60 MB/s

70 MB/s

80 MB/s

90 MB/s

100 MB/s

Write speed Read speed

88,4 MB/s87,1 MB/s

0 %

10 %

20 %

30 %

40 %

50 %

60 %

CPU usage

2,5 %

Figure B.15: Average write speed, read speed, and CPU usage during disk benchmark
for computer 3 running Windows Vista without disk encryption.

Appendix B. Benchmark Results 117

With disk encryption

Write speed Read speed CPU usage
#1 64.75 MB/s 72.07 MB/s 48.90 %
#2 64.85 MB/s 67.16 MB/s 49.50 %
#3 65.63 MB/s 69.41 MB/s 50.10 %
#4 61.39 MB/s 68.01 MB/s 50.70 %
#5 68.04 MB/s 67.02 MB/s 50.90 %
#6 64.30 MB/s 69.27 MB/s 49.20 %
#7 64.57 MB/s 68.65 MB/s 50.70 %
#8 64.84 MB/s 71.17 MB/s 51.00 %
#9 68.30 MB/s 72.54 MB/s 51.50 %
#10 63.94 MB/s 70.55 MB/s 50.90 %

Write speed Read speed CPU usage
Arithmetic average 65.1 MB/s 69.6 MB/s 50.3 %
Standard deviation 1.98 1.95 0.87
Standard error 0.63 0.62 0.28
95% Confidence interval [63.66,66.46] [68.21,70.96] [49.69,50.91]

Table B.16: Disk performance measurements for computer 3 running Windows Vista
with disk encryption.

0 MB/s

10 MB/s

20 MB/s

30 MB/s

40 MB/s

50 MB/s

60 MB/s

70 MB/s

80 MB/s

90 MB/s

100 MB/s

Write speed Read speed

69,6 MB/s
65,1 MB/s

0 %

10 %

20 %

30 %

40 %

50 %

60 %

CPU usage

50,3 %

Figure B.16: Average write speed, read speed, and CPU usage during disk benchmark
for computer 3 running Windows Vista with disk encryption.

118 Disk Encryption – Scrutinizing IEEE Standard 1619\XTS-AES

B.9 Computer 3 using Windows 7

Without disk encryption

Write speed Read speed CPU usage
#1 98.86 MB/s 97.69 MB/s 2.10 %
#2 99.05 MB/s 99.93 MB/s 2.50 %
#3 95.87 MB/s 99.93 MB/s 2.30 %
#4 96.93 MB/s 99.18 MB/s 2.30 %
#5 99.05 MB/s 91.24 MB/s 2.20 %
#6 99.48 MB/s 99.18 MB/s 2.30 %
#7 99.81 MB/s 100.36 MB/s 2.40 %
#8 98.21 MB/s 99.93 MB/s 2.40 %
#9 99.05 MB/s 98.32 MB/s 2.40 %
#10 100.01 MB/s 99.93 MB/s 2.20 %

Write speed Read speed CPU usage
Arithmetic average 98.6 MB/s 98.6 MB/s 2.3 %
Standard deviation 1.30 2.71 0.12
Standard error 0.41 0.86 0.04
95% Confidence interval [97.72,99.55] [96.66,100.48] [2.22,2.39]

Table B.17: Disk performance measurements for computer 3 running Windows 7
without disk encryption.

0 MB/s

10 MB/s

20 MB/s

30 MB/s

40 MB/s

50 MB/s

60 MB/s

70 MB/s

80 MB/s

90 MB/s

100 MB/s

Write speed Read speed

98,6 MB/s98,6 MB/s

0 %

10 %

20 %

30 %

40 %

50 %

60 %

CPU usage

2,3 %

Figure B.17: Average write speed, read speed, and CPU usage during disk benchmark
for computer 3 running Windows 7 without disk encryption.

Appendix B. Benchmark Results 119

With disk encryption

Write speed Read speed CPU usage
#1 54.59 MB/s 62.39 MB/s 53.70 %
#2 55.81 MB/s 63.37 MB/s 52.80 %
#3 54.36 MB/s 62.87 MB/s 54.20 %
#4 54.46 MB/s 64.07 MB/s 52.90 %
#5 54.88 MB/s 63.73 MB/s 53.20 %
#6 52.75 MB/s 63.80 MB/s 53.60 %
#7 54.31 MB/s 63.80 MB/s 53.50 %
#8 54.99 MB/s 56.18 MB/s 54.00 %
#9 53.14 MB/s 63.74 MB/s 53.20 %
#10 54.46 MB/s 63.81 MB/s 53.60 %

Write speed Read speed CPU usage
Arithmetic average 54.4 MB/s 62.8 MB/s 53.5 %
Standard deviation 0.88 2.37 0.45
Standard error 0.28 0.75 0.14
95% Confidence interval [53.76,54.99] [61.10,64.45] [53.18,53.82]

Table B.18: Disk performance measurements for computer 3 running Windows 7
with disk encryption.

0 MB/s

10 MB/s

20 MB/s

30 MB/s

40 MB/s

50 MB/s

60 MB/s

70 MB/s

80 MB/s

90 MB/s

100 MB/s

Write speed Read speed

62,8 MB/s
54,4 MB/s

0 %

10 %

20 %

30 %

40 %

50 %

60 %

CPU usage

53,5 %

Figure B.18: Average write speed, read speed, and CPU usage during disk benchmark
for computer 3 running Windows 7 with disk encryption.

120 Disk Encryption – Scrutinizing IEEE Standard 1619\XTS-AES

Appendix C

Attached ZIP file

The attached ZIP file contains the following files and directories:

• TrueCrypt6.1a.exe – TrueCrypt 6.1a for Windows

• HDTunePro3.5.exe – HD Tune Pro 3.5 for Windows

• Logs/Computer1/ – Log files for computer 1

• Logs/Computer2/ – Log files for computer 2

• Logs/Computer3/ – Log files for computer 3

• Logs_README.txt – Describing the contents of the Logs-folder

121

	Title Page
	Problem Description
	Abstract
	Preface
	Contents
	List of Figures
	List of Tables
	List of Acronyms
	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Research Methodology
	1.4 Outline

	2 Background on Disk Encryption
	2.1 Basic Cryptography
	2.1.1 Terminology
	2.1.2 Cryptographic Ciphers
	2.1.3 Advanced Encryption Standard
	2.1.4 Block Cipher Modes of Operation
	2.1.5 CTS: Ciphertext Stealing

	2.2 Disk Encryption
	2.2.1 Hardware-based versus Software-based Encryption
	2.2.2 Narrow-block versus Wide-block Encryption
	2.2.3 Transparent versus Authenticated Encryption

	2.3 Modes of Operation for Disk Encryption
	2.3.1 LRW: Liskov, Rivest, Wagner
	2.3.2 XEX: XOR-Encryption-XOR
	2.3.3 MCB: Masked CodeBook
	2.3.4 CMC: CBC-Mask-CBC
	2.3.5 EME: ECB-Mix-ECB
	2.3.6 XCB: Extended CodeBook

	2.4 Disk Encryption Software
	2.4.1 TrueCrypt
	2.4.2 FreeOTFE
	2.4.3 dm-crypt

	3 IEEE Std 1619-2007
	3.1 History
	3.2 Scope
	3.3 Related Work
	3.4 XTS-AES
	3.4.1 XTS-AES Encryption Procedure
	3.4.2 XTS-AES Decryption Procedure

	3.5 XML-based Key-Export Format
	3.5.1 Key Backup Structure Overview
	3.5.2 XML Format

	4 Security Assessment
	4.1 Computational Security
	4.1.1 General XEX Transform
	4.1.2 XTS-AES Transform

	4.2 NIST Submission
	4.2.1 Security Related Feedback
	4.2.2 Other Issues
	4.2.3 Changes

	4.3 Attacks
	4.3.1 Scenario: Stolen Storage Device
	4.3.2 Scenario: Manipulate Disk Encryption Activity

	4.4 Summary

	5 Performance Benchmark
	5.1 Procedure
	5.2 Test Bench
	5.2.1 Computers
	5.2.2 Software

	5.3 Tests
	5.3.1 File Benchmark
	5.3.2 CPU Benchmark

	5.4 Test Cases
	5.4.1 Without Disk Encryption
	5.4.2 With Disk Encryption

	5.5 Testing and Benchmarking Methodology

	6 Results
	6.1 Benchmarking Results
	6.1.1 Write Speed
	6.1.2 Read Speed
	6.1.3 CPU Usage

	6.2 Analysis
	6.2.1 Causality
	6.2.2 Possible Consequences
	6.2.3 Limitations and Sources of Error

	6.3 Further Work

	7 Conclusion
	References
	Web Resources
	A TrueCrypt 6.1a
	B Benchmark Results
	B.1 Computer 1 using Windows XP
	B.2 Computer 1 using Windows Vista
	B.3 Computer 1 using Windows 7
	B.4 Computer 2 using Windows XP
	B.5 Computer 2 using Windows Vista
	B.6 Computer 2 using Windows 7
	B.7 Computer 3 using Windows XP
	B.8 Computer 3 using Windows Vista
	B.9 Computer 3 using Windows 7

	C Attached ZIP file

