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Abstract 

Building performance simulation (BPS) is a powerful tool allowing building designers to 
estimate the behavior of buildings and assess the impacts of their design decisions on their 
performance. BPS requires large number of input variables, of which some can be predicted 
during design phase with reasonable certainty such as thermal properties of materials and 
building dimensions, and some are difficult to be predicted, such as climate and occupancy. 

Climate as an input variable in BPS is the main theme of this PhD work. Climate 
conditions are key input variables for BPS, but traditionally and for simplification, a typical 
climate condition is used to represent the most likely condition that a building will 
experience. Such approach results for the final designs to be sensitive to variation of climate 
conditions and even fail to provide expected performance when the conditions are beyond 
typical ranges. Such sensitivity of buildings to atypical climate conditions is becoming more 
critical considering that due to climate change the frequency and intensity of extreme climate 
conditions is increasing. This thesis provides an overview of the risks induced by climate 
change on the performance of buildings and provide a method for protection against future 
climate uncertainty. 

The first step towards protection against climate uncertainty is to identify the climate 
conditions that a building might face during its life span. The work identifies a prospect of 
climate conditions for built environment as: climate normals or typical climate conditions and 
climate extremes. Climate extremes are distinguished into two: foreseeable extreme 
conditions and unforeseeable extreme events. It further discusses to which extent these 
conditions can be considered during the design phase of buildings. After identifying the 
possible climate conditions, a work was set to create a framework that conceptualise 
protection for buildings against all these conditions. After reviewing the concepts and 
definitions provided in the literature, the two concepts of robustness  and resilience  were 
found appropriate for the aimed framework. According to the defined framework, the concept 
of robustness is the most proper to deal with typical and foreseeable extreme climate 
conditions, where in this concept the main focus is on reducing the sensitivity of performance 
under presence of source of uncertainty. The discussion on protection against unforeseeable 
extreme events falls into the concept of resilience, where withstanding and recovery 
mechanisms should be considered and was out of scope of this thesis. Based on the 
framework a climate robu a building that, while in operation, can provide its 
performance requirements with a minimum variation under typical and foreseeable extreme 
climate conditions  

In the second step, a total of 74 representative weather files are synthesized for city of 
Geneva to account for future foreseeable extreme conditions together with typical climate 
conditions. The aim is to investigate the impacts of these conditions on the energy 
performance of single buildings and their combination to create a virtual neighborhood. The 
results showed, depending on the type of building, the relative change of peak load for 
cooling demand under near future can be up to 28.5% higher for extreme conditions 
compared to typical conditions. Furthermore, the results for the neighborhood demonstrate the 
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critical situation that an energy network may face due to increased peak load under extreme 
climatic conditions. It is concluded that only those weather files that take into consideration 
both typical and extreme conditions are the most reliable for providing representative 
boundary conditions to test the energy robustness of buildings under future climate 
uncertainties. 

In the final step, a method is proposed in this work, in which three future weather files 
including typical, extreme warm and extreme cold conditions are used in a simulation-based 
optimization process. The method allows architects and engineers to effectively consider 
future climate uncertainties during the design phase and achieve solutions with robust energy 
performance against these uncertainties. Using only three weather files make the process 
feasible and computationally inexpensive. To test the effectiveness of the method, the primary 
energy use of an obtained optimum solution is calculated for the 74 weather files. According 
to the results, the performance of the optimum solution not only has 81.5% lower variation 
(less sensitivity to climate uncertainty) but at the same time 14.4% lower mean value of 
energy use in comparison to a solution that is compliant with a recent construction standard 
(ASHRAE 90.1-2016). Less sensitivity to climate uncertainty means better robustness against 
climate change and simultaneously keeping a high performance. The simplicity and the low 
computational demand of the process ascertain the feasibility and applicability of this method. 
The approach can be used at any stage of design process and can help architects and engineers 
to improve robustness of their design against future climate uncertainties.
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Nomenclature and acronyms 

AR Augmented Reality  
BCCR Bjerknes Centre For Climate Research  
BIM Building Information Modelling 
BPS Building Performance Simulation 
CDD Cooling Degree Days 
ECY Extreme Cold Year 
EPW Energyplus Weather file 
EWY Extreme Warm Year 
GA Genetic Algorithm  
GCM General Circulation Model 
HDD Heating Degree Days 
IAQ Indoor Air Quality  
IGDG Italian Climatic Data Collection "Gianni De Giorgio" 
IPCC Intergovernmental Panel For Climate Change  
IWEC  International Weather For Energy Calculations 
LT Long-Term  
MOGA-II Multi-objective Genetic Algorithm 
MSD Mean Squared Deviation 
MT Medium-Term  
NCEI National Centers For Environmental Information  
NSGA-II  Fast Non-Dominated Sorting Genetic Algorithm 
NT Near-Term  
nZEB Nearly Zero-Energy Building  
PE Primary Energy 
RCA4 Rossby Centre Regional Atmospheric Climate Model  
RCM Regional Climate Model 
RCP Representative Concentration Pathway 
RDO Robust Design Optimization 
S/N Signal-To-Noise Ratio  
SD Standard Deviation  
SRES Special Report On Emissions Scenarios  
TDY Typical Downscaled Year  
TMY Typical Meteorological Year  
UNISDR United Nations Office For Disaster Risk Reduction  
WMO World Meteorological Organization  
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1 Introduction 
1.1 Background 

In the developed countries, more than 87% of the time is spent indoor [1] and this is 
accompanied with a rapid increase of population living in the urban areas [2].Thus, the role of 
buildings and their indoor environment is becoming increasingly important. This role 
becomes even bolder with the recent researches demonstrating  high correlation between 
indoor environment quality and health and well-being of the occupants, and hence their 
productivity [3]. In addition, there are requirements by regional and national standards and 
laws to ensure that energy-efficiency in buildings is taken into account while providing a high 
indoor air quality (IAQ) [4]. In this regard, numerical models and simulation tools such as 
Building Performance Simulation (BPS) allow the designers to simulate their design concepts 
and check their compliance with the requirements. Even though these tools had played a 
central role in achieving high performance in building designs, it is still a major challenge to 
keep the performance as expected once these designs are constructed. Such a performance gap 
between the expected level of performance and the actual performance has been discussed and 
demonstrated in the literature [5-7]. One of the main sources of this discrepancy are the 
factors that are difficult to predict during the design phase. Climate is an example of that, 
while its impact on buildings performance has proved to be prominent, it is very difficult to 
properly consider it in the simulation and design process [8]. In this PhD work, the impacts of 
climate on building performance is firstly discussed, following by an overview of the main 
challenges as well as main methods for presenting climate uncertainty in the design process of 
buildings. At the end a methodology is provided that allow architects and engineers to 
effectively consider future climate uncertainties during the design phase and achieve solutions 
that their performance are least sensitive to these uncertainties, or as it will be defined later, 
are more robust. 

1.2 Evolution of the project work 

Climate conditions are key input parameters for BPS, but traditionally and for 
simplification, a typical climate condition is used to represent the most likely condition that a 
building will experience. The justification for using most likely climate scenarios based on 
historical data in decision making process has failed to address the natural variability of 
climate and the increasing recognition of changes in the climate patterns [9]. In the recent 
years, the increasing impact of climate change and the need for understanding possible future 
climate evolutions has led to developments of climate models to simulate sophisticated earth 
climate system. The output data of climate models is downscaled to a set of hourly data 
gathered to represent one year, which is then formatted in a weather file suitable to be used in 
BPS [10]. Such weather file allows assessing the impacts of climate change on building 
performance and therefore can be used for better addressing the protection of buildings 
against climate change. While data from climate models are available, there is little-to-
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nothing done in current standards and building regulations to set principles for assessment of 
climate change impacts and to support the design of buildings protected against them.  

In the first stage of this PhD work, one of the methods for generating future weather files 
was used to study the impacts of climate change on the performance of a deep energy retrofit 
design of an existing child care center. The design of the renovation was targeting the 
achievement of a nearly zero-energy building (nZEB) with no active cooling during summer. 
This study was the base for several subsequent research questions that have been later 
answered during this PhD work. 

In the following sections, how the research questions and objectives of this study were set, 
what challenges were faced during this period, and how these challenges have been addressed 
is briefly described. 

As mentioned, the first phase of the study started by evaluating a deep energy retrofit of a 
child care center in Milan (Italy) under current and future weather scenarios. The retrofit 
design was developed by a group of building physicists and designers at Politecnico di Milano 
using an existing weather file, built from the historical observations recorded in 20-years from 
1951 to 1970. The main goal of the design was to achieve nZEB with high indoor thermal 
comfort, while using no means of active cooling during summer. This goal was achieved 
through the effective exploitation of diurnal and nocturnal natural ventilative cooling 
strategies by automated windows opening and protecting the building from excessive 
incoming solar gains by operating properly automated shading devices. As part of the PhD 
work, the task was identifying to what extent the choices that were made on the basis of 20-
year average historical data may succeed to provide acceptable energy and indoor 
environmental performance throughout the future decades [11], [12]. For this task, a software 
tool that is based on a method called morphing  was used to generate future weather files for 
the years 2030, 2050 and 2080. This method is later described in detail and is the most 
commonly used to downscale the monthly future climate data of a climate model to the 
temporal resolution suitable for BPS. This study was published in a conference paper with a 
subsequent Journal paper as follow: 

 

 Paper I: Moazami, Amin; Carlucci, Salvatore; Causone, Francesco; Pagliano, Lorenzo. 
Energy retrofit of a day care center for current and future weather scenarios. Procedia 
Engineering 2016; 145:1330-7. 

 

 Paper II: Pagliano, Lorenzo; Carlucci, Salvatore; Causone, Francesco; Moazami, Amin; 
Cattarin, Giulio. Energy retrofit for a climate resilient child care centre. Energy and 
Buildings 2016; 127:1117-32. 
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The results of this study showed the following impacts on the design due to climate 
change: 

 The installation of active cooling systems is required for coping with harsher summers 
in the future 

 The nZEB target will not be achieved in the future 

 The building can demonstrate a substantial shift from the energy need for space 
heating to a higher request of energy need for space cooling. 

This study raised two further questions which became the base for the next stages of the 
PhD work:  

 Although morphing method is one of the most commonly used approaches in the 
literature, the significance of mentioned impacts raised following question: how 
credible are the weather files generated using this approach?  

 In the study, the ability of the design to keep its expected performance under future 
scenarios was evaluated; it was named climate resilient building . Due to 
vagueness in the building science literature, t resilience  raised 
two more questions: Is it the proper term in this case? How to distinguish between this 
concept and other concepts that are used in the literature for the protection of built-
environment against the impacts of climate change? 

To answer the first question, an extensive study was performed on the available 
methodologies for generating future weather files, suitable for use in BPS. In this process, the 
authors realized that there is a lack of studies in which the performances of major available 
methods are compared, and the impacts of using them on energy calculation of buildings are 
assessed. This study was performed, and the results were published in the Journal of Applied 
Energy (Paper V), which is described later in this section. In order to proceed with this study, 
weather files generated based on all major methods were required. Nonetheless it was realised 
that this task is challenging. To understand the challenge, the source of data for future climate 
needs to be introduced first. 

Global Climate Models (GCMs) are the main source of our understanding of the future 
evolution of climate and are some of the most complex numerical models that exist. These 
models consist of several climate system components (atmosphere, ocean, land surface, snow 
and sea ice) and it describes the dynamics between them. 
these components is the base for climate projections and generation of future climate data. 
GCMs are run on supercomputers with thousands of processors [13] and the output data 
requires petabytes of data storage. These models have quite coarse spatial resolutions (100-
300 km) and their outputs are usually stored in monthly or daily temporal resolutions. The 
first challenge is that such resolutions are not suitable for BPS, which requires local climate 
data with hourly or sub-hourly time resolution. Furthermore, the following variables are the 
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minimum that are required to create weather files for use in BPS, which is not often that all 
are available in climate model datasets: 

 Air Temperature 

 Relative Humidity 

 Global Radiation 

 Diffuse Horizontal Radiation 

 Direct Normal Radiation 

 Wind Speed 

 Atmospheric pressure 

Several methods are developed to downscale climate models data to a suitable temporal 
and spatial resolution. The two main approaches are: statistical downscaling and dynamical 
downscaling. The statistical downscaling method such as morphing [14] is based on simple 
transformation algorithms. The algorithms apply changes based on monthly trends and 
variations of GCM outputs on the values of a local weather file, therefore they operate only a 
temporal downscaling. Due to simplicity of the method and availability of local weather files, 
this approach is one of the most commonly used approaches in literature [15]. There are 
several tools that generate future weather files based on this method. Two main software tools 
based on morphing method and today are available on the market were critically compared 
and analysed in the paper: 

 

 Paper III: Moazami, Amin; Carlucci, Salvatore; Geving, Stig. Critical Analysis of 
Software Tools Aimed at Generating Future Weather Files with a view to their use 
in Building Performance Simulation. Energy Procedia. 2017;132:640-5. 

 

The results suggest that, depending on the purpose of the design, care should be taken in 
using the above-mentioned tools. One of these tools was the one used for generating the 
future weather files of the first two papers. 

In the other approach which is dynamical downscaling, future climate data with higher 
resolutions for a specific region is generated by modelling climate system of that region and 
nest it into a GCM (i.e. using the outputs of GCM as boundary conditions). These models are 
called Regional Climate Models (RCMs) and the outputs of RCMs have suitable spatial 
resolution for buildings design purpose and can be run in high temporal resolution. The 
challenge is that these outputs require extensive storage space to for them to be recorded, and 
like GCMs they are also mainly stored with a monthly, daily or 6-hour resolution. In order to 
further downscale RCM data into suitable resolution, one should ask an institute that has an 
RCM, to perform the simulation and store the required data in the requested higher resolution. 
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For the purpose of the work and to acquire RCM data for Norway with suitable temporal 
resolution, a negotiation with the Bjerknes Centre for Climate Research (BCCR) institute 
started. The centres key area of research is natural variability in the Earth system and man-
made climate change (www.bjerknes.uib.no). Unfortunately, the institute did not have all the 
necessary meteorological variables stored at hourly resolution. Due to time and resource 
limitation the idea was dropped and a collaboration with Chalmers University of Technology 
was initiated. Through this collaboration, RCM data for two locations: Stockholm and Geneva 
became available. These data were at suitable resolution to create future weather files for 
BPS. The city of Geneva was chosen and a dataset of future weather files based on all major 
methods of downscaling were created. Geneva was chosen due to the possibility of having 
cold winters and warm summers. 

These data were then converted to weather files with format suitable for BPS. This allowed 
comparing the relative performance of major available methods for generating future weather 
files. These files were then used for climate change impact assessment of individual buildings 
and a neighbourhood in Geneva. The study was published as follow: 

 

 Paper IV: Moazami, Amin; Nik, Vahid; Carlucci, Salvatore; Geving, Stig. Impacts of 
future weather data typology on building energy performance  Investigating long-
term patterns of climate change and extreme weather conditions. Applied Energy. 
2019;238:696-720. 

 

The work aimed at answering two research questions: does a method of generating future 
weather files for building performance simulation bring advantages that cannot be provided 
by other methods? And what type of future weather files enable building engineers and 
designers to more credibly test robustness of their designs against climate change? 

According to the results of this study, all the methods provide enough information to study 
the long-term impacts of climate change on average. But only those weather files generated 
based on dynamical downscaling and that take into consideration both typical and extreme 
conditions are the most reliable for providing representative boundary conditions to test the 
energy robustness of buildings under future climate uncertainties. 

The next step was on proper 
against climate change. During the course of the PhD work, it was realized that there is a lack 
of precise definitions for the concept of protecting the built-environment against climate 
uncertainty. Several attributes were found in literature. Some of the common terms were: 
adaptable buildings [16], resilient buildings [17], robust buildings [18], responsive buildings 
[19]. However, the first step towards protection against climate uncertainty is to identify the 
climate conditions that a building might face during its life span. Chapter 3 is allocated to 
provide a prospect of climate conditions for built-environment and to which extend these 
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conditions can be considered during the design phase of buildings. Through this prospect 
typical and extreme climate conditions were defined and the extremes were distinguished into 
two: foreseeable extreme conditions and unforeseeable extreme events. More details are 
provided in Chapter 3. After identifying the possible climate conditions, a work was set to 
create a framework that conceptualise protection for buildings against all these conditions. 
After reviewing the concepts and definitions provided in the literature, the two concepts of 
robustness and resilience were found appropriate for the aimed framework. The literature 
review process and the development of this framework are described in Chapter 5 and the 
work was published in the following paper: 

 

 Paper V: Moazami, Amin; Carlucci, Salvatore; Geving, Stig. Robust and resilient 
buildings: A framework for defining the protection against climate uncertainty. 
(Submitted to IAQVEC 2019 conference, Bari, Italy.) 

 

Finally, the generated weather files representing future typical and extreme conditions, and 
the defined framework, allowed undertaking the final research question: how is it possible to 
design buildings with robust performance under climate change? In this regard, a 
methodology was developed, to empower architects and engineers to achieve building designs 
with robust energy performance under the future climate uncertainty. The concept of 
robustness used in this method is in agreement with the defined framework in Chapter 5. The 
results of this study were presented in the following paper: 

 

 Paper VI: Moazami, Amin; Carlucci, Salvatore; Nik, Vahid; Geving, Stig. Towards 
climate robust buildings: an innovative method for designing buildings with robust 
energy performance under climate change. (Submitted to Journal of Energy and 
Buildings) 

 

The method uses three weather files representing future typical and extreme climate 
conditions in a simulation-based optimization process. More details of the methodology are 
provided in Chapter 7. 

In the following sections, the objectives, research questions and methodologies for this 
project are briefly described. 

1.3 Objectives of the study and research questions 

The purpose of this PhD project is to create an automated and algorithm-driven 
optimization workflow for architects and engineers, which can be used during the design 
phase to  achieve energy-efficienct buildings with robust energy performance under future 
climate uncertainty. The following two objectives are addressing this purpose: 
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 The work ought to provide architects and engineers a good insight on methods for 
generating future weather files, and on which future weather data typology serves 
better their design purpose. 

 The work ought to provide architects and engineers a workflow coherent with the 
proposed definitory framework to achieve building designs with robust performance 
under climate change. 

The research objectives have been developed into the following research questions: 

 What is the prospect of future climate conditions acting on the built-environment? 
(Chapter 2) 

 How the protection of the built-environment against future climate conditions be 
schematized? (Chapter 5, Paper V) 

 What type of future weather files enables to increase the credibility of BPS outcomes 
under future climate conditions? (Chapter 4, Section 6.1, Paper III and Paper IV) 

 Which are the impacts of climate change on the performance of buildings in terms of 
energy use and thermal comfort? (Section 6.2, Paper I, Paper II and Paper IV). 

 How is it possible to design buildings with robust energy performance under future 
climate uncertainties? (Chapter 7 and Paper VI). 

1.4 Thesis outline 

This thesis consists of seven chapters and five publications: 

Chapter 1 is the introduction which gives brief description about background, aims and 
evolution of the research work. It also interconnects the publications together in a logical 
structure. 

Chapter 2 provides a prospect for all climate conditions that a building can experience 
during its life span. 

Chapter 4 describes climate modelling and the uncertainty associated to climate 
projections. 

Chapter 5 is about concepts and definitions realised for full protection of built-
environment against all future climate conditions. 

Chapter 6 describes the implication of climate data in BPS and impact assessment of 
climate change on the performance of buildings. 

Chapter 7 describes the simulation-based optimization method developed in this project to 
achieve energy-robustness for buildings under presence of climate uncertainties. 

Chapter 8 contains main findings, concluding remarks and suggestion for future works. 
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Paper I and Paper II focus on a deep retrofit design of a real case building and assess the 
impact of future climate conditions on its energy and thermal comfort performance. 

Paper III makes a comparison of two software tools to generate future projection weather 
data based on statistical downscaling. 

Paper IV provides an overview of the major approaches to create future weather data sets 
based on the statistical and dynamical downscaling of climate models and it investigates the 
importance of typical and extreme future weather conditions on the energy performance of 
buildings. 

Paper V reviews the concepts of robustness and resilience and organizes them into a 
framework that clarifies their relationships in the protection of buildings against climate 
uncertainties. 

Paper VI presents a methodology using simulation-based optimization, which allows 
designers to optimize their solutions for energy-robustness under changing climate. 

 

A schematic overview of the thesis is presented in Figure 1. 
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2 Methodology 
The first step of the research was to demonstrate the importance of future climate data as 

an input for design of high-performance buildings. For this purpose, in collaboration with 
Politecnico di Milano, a retrofit design of an existing child care center was considered to be 
evaluated under future climate data. The design was originally based on a weather file 
representing typical weather condition, generated from historical data, and aimed for 
renovating the building to become nZEB. A numerical model of the existing building was 
created based on data collected from site survey, interviews with teachers and some standard 
values. The model was then calibrated against measured delivered energy and indoor air 
temperatures  following the ASHRAE Guideline 14 [20]. This model was used to refine the 
refurbishment concept of the building, and finally to estimate the performance of the 
renovated building under current typical and future typical weather scenarios. A software tool 
called CCWorldWeatherGen was used to generate future weather files using the morphing 
method. The generated future weather files were used to assess the performance of the 
building in terms of thermal comfort and energy. The work was published in two papers [21], 
[11]. 

After studying the climate change impacts on a real case building using statistically 
downscaled climate data, the collaboration with Chalmers University gave the chance of 
having access to dynamically downscaled climate data. These data were generated by Rossby 
Centre Regional Atmospheric Climate Model (RCA4).  RCA4 is a regional climate model 
(RCM) that was used to dynamically downscale climate data from four different GCMs to the 

2 and the hourly temporal resolution [22]. Using these 
dynamically downscaled data in addition with statistically downscaled data, a weather data 
sets of 74 future weather files were generated for the city of Geneva (Switzerland) ready to 
use in BPS [15]. Representative weather files were synthesized to account for extreme 
conditions together with typical climate conditions. The weather files were applied to energy 
simulation of 16 ASHRAE standard reference buildings. The reference buildings were 
simulated in isolation, and in combination to create a virtual neighbourhood. A simulation 
workflow was implemented in the multidisciplinary design optimization platform 
modeFRONTIER coupled with MATLAB for post-processing of the output data. This was 
used to simulate the full set of 16 building models under the 74 generated future weather files, 
giving a total of 1 184 simulation runs. This allowed investigating the impacts of all major 
future weather data typology on building energy performance. The work is published in a 
journal paper [15]. 

From the literature review, the two concepts of robustness and resilience were found most 
relevant to create a framework for describing the protection of the built environment under all 
climate conditions that are identified in Chapter 5. 

In the final stage of the project, we specifically referred to an algorithm-driven multi-
objective robust design optimization whose goal consists in identifying a set of optimal 



 

 

 

20 

building design solutions to achieve energy-efficient with robust energy performance under 
climate uncertainty. The set of design solutions make the buildings to have high-energy 
performance and low performance-variability while climate uncertainty is present. It implies 
low energy use and a minimum sensitivity to the disturbance. The presence of climate 
uncertainty is the source of variation in primary energy use for the building. The specific 
robust design optimization problem was formulated with two objectives. The design effect of 
these two objectives is to narrow the distribution of the primary energy and shift the mean of 
the distribution close to the target value (ideally zero). To apply climate as source of 
performance variability, the triple method is adapted. In this method, the distribution of 
climate scenarios is represented with only three weather files: TDY, EWY and ECY. The 
TDY file represents the most likely climate evolution, and EWY and ECY are the extreme 
warm and cold climate evolutions respectively. 

A case-study building model is used to run three different optimization configurations. To 
conduct the optimization tasks, the dynamic energy simulation engine EnergyPlus [23] was 
integrated into the modular environment for process automation and optimization in the 
engineering design process modeFRONTIER [24], which embeds  a multi-objective 
optimization engine that integrates several optimization algorithms and sampling strategies. 
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3 Prospect of climate conditions for built environment 
This section tries to identify a prospect of climate conditions for buildings. The first step 

towards protection against climate uncertainty is to identify the climate conditions that a 
building might face during its lifespan. The following definitions provided by World 
Meteorological Organization (WMO), Intergovernmental Panel for Climate Change (IPCC) 
and United Nations Office for Disaster Risk Reduction (UNISDR) can provide a platform for 
depicting this prospect: 

 Climate normals averages of climatological data computed 
for the following consecutive periods of 30 years: 1 January 1981 to 31 December 
2010, 1 January 1991 to 31 December 2020, etc  

 Climate extreme 
climate variable above (or below) a threshold value near the upper (or lower) ends of 

 

 Climate change defined by IPCC 
identified (e.g., by using statistical tests) by changes in the mean and/or the variability 
of its properties and that persists for an extended period, typically decades or longer. 
Climate change may be due to natural internal processes or external forcings, or to 
persistent anthropogenic changes in the composition of  

Although nowadays, decision-makers are provided with data on climate normals and also 
projections of climate changes according to generated data by climate models [15], there are 
climate conditions that occur far beyond observed or expected ranges. These extreme events 
are unforeseeable and can lead to disaster impacts. 

 Disaster impacts 
effects (e.g., economic losses) and positive effects (e.g., economic gains), of a 
hazardous event or a disaster. The term includes economic, human and environmental 
impacts, and may include death, injuries, disease and other negative effects on human 
physical, mental and social well-  

3.1 Climate normal and typical climate conditions 

The WMO has been providing climate normals at monthly scale for the last 82 years. They 
first calculated climate normals for the period of 1901-1930 and updated them every 30 years 
[9]. As they are meant to be, these data provide decision makers and stakeholders a 
representative image of climate conditions in a given location. The climate normals are based 
on a stationary assumption of climate. Stationarity assumption is considering that natural 
systems fluctuate within an unchanging envelope of variability [25]. However, the observed 
climate change has shown that the assumption of stationarity for climate cannot be taken for 
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granted and climate normals do not provide a complete image of possible future climate for a 
location. 

3.2 Climate change and foreseeable extreme conditions 

As stated by IPCC [26], the mean (i.e. the climate normals) and the variability of climate is 
changing over time, therefore, in any decision-making process, it is important to account for 
these changes over several decades to come. Apart from long-term patterns of climate change, 
the short-term changes that induce climate extremes have to be considered. Observations 
show a more frequent and more intense occurrence of climate extremes [27]. 

The Swiss Federal Office of Meteorology and Climatology (MeteoSwiss) provides climate 
indicators that characterize the climate, indicators such as hot days, frost days and tropical 
nights. These are also used to communicate how climate is changing. Hot days are defined as 
days in which the temperature rises above 30 °C days on which 

the temperature dips below 0 °C days on which the 
temperature does not dip below 20 °C Table 1 shows the numbers of hot days and tropical 
nights during 92 days of summer (1st June-31st August) for the city of Geneva according to 
climate normal and three climate extreme summers.  

Table 1 Comparison of the number of hot days and tropical nights for the extremely hot summer of 2003, 2017 and 2018 in Geneva. 

Number of hot days Number of tropical nights 

Climate normals1 
1961-1990 10.4 0.1 

1981-2010 14.7 0.4 

Observed climate extremes2 

Summer 2003 51 4 

Summer 2017 30 4 

Summer 2018 33 1 

The above table demonstrate how the number of hot days and tropical nights for climate 
normal (averaged over 30-year period) has increased from 1961-1990 to 1981-2010, which 
shows the change in the mean of climate. The table also reveals how the averaging process of 
calculating climate normals misses important information on climate extremes. A decision 
maker would not be informed that values up to 3 times the normal values can occur although 
there are historical records of such values. 

3.3 Unforeseeable extreme events with disaster impacts 

Climate extremes can become unforeseeable extreme events with disaster impacts through 
two mechanisms: 

Mechanism 1: Cities are complex systems, and, during an extreme event, some 
functionalities disrupt as a result of a chain of small events. An example is the failure of a 
power grid during a heat wave. This failure is typically the result of several smaller events: 
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1. Extremely high temperatures can last from days to weeks. This cause peak loads to be 
much higher both in magnitude and duration [28]. 

2. Extremely high temperatures cause reduction of the thermal capacity of the 
transmission lines that applies more stress on the power grid [29]. 

3. Heat waves are usually accompanied by stationary high-pressure zones, resulting in 
light winds at the surface and, therefore, reduced wind generation by wind turbines 
[29]. 

4. Increased air temperature has a derating effect on gas-turbines, which causes a 
reduction in capacity and the efficiency of these systems [30]. 

5. During heat wave 2003, French nuclear power plants operated at much lower capacity 
due to very low river water levels and also high temperature of the water leaving 
cooling towers exceeded environmental safety levels [31]. 

This chain of events and high demands for a period of time implies high stress on the grid, 
which can lead to unforeseeable failure of the grid system and so:  

6. No electricity leaves thousands of buildings without any means of mechanical cooling, 
potentially causing a fatal situation for the elderly, very young, or chronically ill 
people, as it occurred during the 2003-heat wave in Europe when thousands of people 
died [32]. 

The climate extremes experienced during the summer of 2003 led to disaster impacts with 
a high number of heat-related deaths in France [33] and in Switzerland [34] including 
Geneva. In Table 1, Although there is a substantial difference in number of hot days between 
the summer of 2003 with those of 2017 and 2018, the scale of the impacts was much higher 
than this difference, in other words, during the 2003 heatwave, the extreme conditions were 
coupled with other small events that in a domino effect ended to a disaster impact. Climate 
extremes increase the probability of disaster impacts, but it is almost impossible to predict 
which outcome will occur due to a number of involved factors characteristic of each urban 
system. The best description of such conditions is given in the following proverb[35]: 

For want of a nail the shoe was lost, 

For want of a shoe the horse was lost, 

For want of a horse the rider was lost, 

For want of a rider the battle was lost, 

For want of a battle the kingdom was lost, 

And all for the want of a horseshoe nail  
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The loss of one horseshoe might be insignificant, but it could indirectly cause the loss of a 
war, and is almost impossible to predict which outcome will occur. 

The frequency and intensity of climate extremes occurrence is increasing [36] and 
consequently the number of disaster impacts are on the rise. Figure 2 demonstrates for each 
year in the United States the number of weather and climate disasters with overall losses of 
more than $1 billion. An increase in the number of such events is evident. Part of this increase 
is due to expansion of urban areas, which means more people and infrastructures are exposed 
to damage during these events [37].  

 
Figure 2 Yearly occurrence of extreme events in the United States (as of 7 July 2017) whose impacts cost greater than 1 

billion. NOAA National Centers for Environmental Information (NCEI) U.S. Billion-Dollar Weather and Climate Disasters 
(2019). https://www.ncdc.noaa.gov/billions/ 

Mechanism 2: Climate extremes can also cause disaster impacts as they occur in an 
unpredictable scale of magnitude for a given location. An example of this failure mechanism 
is the hurricane Maria that made landfall on Puerto Rico on Wednesday, September 20, 2017. 
It caused several casualties and estimated damage of $ 90 billion [38]. On the island of Puerto 
Rico during 48 hours of the event,  it was recorded a maximum wind speed of 61.2 m/s and a 
maximum precipitation rate of 163.6 mm/h [39]. To provide a benchmark, the American 
Meteorological Society classifies a precipitation rate above 7.6 mm/h as heavy rainfall [40]. 
Thus, the peak value of the precipitation rate in Porto Rico during the hurricane Maria was 
more than twentyfold what is expected to be heavy rainfall. 

3.4 Full prospect of climate conditions for built-environment 

From above, a complete prospect of climate conditions for a location can be realised as: 
climate normals, climate change, foreseeable climate extremes and unforeseeable extreme 
events with disaster impacts. 
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Given a prospect of climate conditions, first, the available climate modelling technology 
that provides future climate data is discussed in Chapter 4. Based on the available data on 
historical and future climate conditions and the above prospect, in the second stage, a 
framework is conceptualized to represent the building s protection against all identified 
climate conditions. This framework is presented in Chapter 5. In Chapter 6, the 
methodologies to use data from climate models and generate future weather files for BPS are 
briefly described. And last, generated future weather files are used to assess the impacts of 
future climate on the performance of buildings at an individual building scale and a 
neighbourhood scale in the second part of Chapter 6. 
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4 Climate modelling 
4.1 Climate models 

Climate models are our most advanced tools to enhance our understanding of climate 
behaviour on long-term and short-term time scales. So called Global Climate Models (GCMs) 
are complex mathematical modelling of the earth climate system. They include different 
components for land surface, atmosphere, ocean and sea ice and simulate their interactions 
[41]. Such complex models require enormous computational power and data storage space, 
which is provided by supercomputers today. GCM outputs represent averages over a region or 
the entire globe with a spatial resolution in the range of 100-300 km2 and a monthly temporal 
resolution[15]. For higher resolutions, the regional climate models (RCMs) are used, which 
downscale the results of GCMs to a specific region and with higher temporal resolution. 
Climate models are feed with several climate forcings. an energy 
imbalance imposed on the climate system either externally or by human activities. Examples 
include changes in solar energy output, volcanic emissions, deliberate land modification, or 
anthropogenic emissions of greenhouse gases, aerosols, and their precursors.  [42]. Changes 
in climate forcings will result in having different outcomes from GCMs and RCMs. To 
determine these forcings, IPCC created a number of possible scenarios of future 
anthropogenic greenhouse gas emissions based on given socio-economic storylines that are 
used as inputs for modelling climate in the future. The first set of scenarios were introduced in 
the IPCC Special Report on Emissions Scenarios (SRES) in 1996 [43], [44]. Later, in 2014, 

 

4.2 Climate model uncertainty 

Climate models are all verified models and validated against past climate conditions [45]. 
GCMs are usually run for very long-time periods (even more than one thousand years) before 
industrialization. The major point is to verify the models concerning the performance and 
evolution of the climate system. The verified models will then set to run from 1870, picking 
initial conditions and future climate scenarios. Afterwards, what we see as future conditions is 
a function of the evolution of the climate model affected by the initial and boundary 
conditions. Once the model is verified, it means the outcomes for any period are verified and 
it cannot be said that a far future period is less/more uncertain than a near future.  

A common method to deal with the uncertainty of climate projections is to perform several 
climate simulations and creating ensemble [46]. This is the same way IPCC uses to provide 
information on the uncertainty of the projections. Figure 3 presents the near-term projections 
resulted from aggregating the outcomes of several climate models. This figure is provided by 
IPCC Fifth Assessment Report [47] and the link to the figure is given in the caption. 
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Figure 3 Gobal mean temperature near-term projections relative to 1986-2005 

(http://www.climatechange2013.org/images/figures/WGI_AR5_Fig11-25.jpg )[47] 

The dynamically downscaled data used in the PhD project were derived from four climate 
models tested under two emission scenarios: CNRM and ICHEC under RCP 8.5 and RCP 4.5, 
and IPSLm and MPIM under RCP 8.5. This gives an ensemble of six combinations. This 
means the uncertainty associated to climate modelling were taken into account (using 
simulation data from a combination of 4 climate models and 2 emission scenarios). Definitely 
more combinations would give more information on the uncertainty. In total, the weather files 
used in this study were generated based on SRES A2, RCP 4.5 and RCP 8.5 scenarios of 
IPCC. These emission scenarios cover the possible range of projections provided by IPCC 
that pass global warming of 1.5 °C with respect to the pre-industrial levels, by 2100. For 
better comparison of scenarios, following graph brought here from an article [48] published in 
Nature (Figure 4), which demonstrate the global temperature changes relative to 1986 2005 
for different scenarios of IPCC. The yellow highlighted area is not in the original graph. It is 
added for better visualization of area covered by the three considered emission scenarios 
mentioned above. 

 
Figure 4 Global temperature change (mean and one standard deviation as shading) relative to 1986 2005 for the 

SRES scenarios run by CMIP3 and the RCP scenarios run by CMIP5. The number of models is given in brackets. 
The box plots (mean, one standard deviation, and minimum to maximum range) are given for 2080 2099 for CMIP5 
(colours) and for the MAGICC model calibrated to 19 CMIP3 models (black), both running the RCP scenarios. [48] 
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Description of scenarios used in this project is given below: 

 

 SRES A2 The A2 storyline and scenario family describes a very heterogeneous 
world. The underlying theme is self-reliance and preservation of local identities. 
Fertility patterns across regions converge very slowly, which results in 
continuously increasing global population. Economic development is primarily 
regionally oriented and per capita economic growth and technological change are 

 [43] 

 RCP 4.5  to 4.5 
W/m2 before 2100 by employment of a range of technologies and strategies for 

 [49] 

 RCP 8.5 rising radiative forcing pathway leading to 
8.5 W/m2 by 2100. The underlying scenario drivers and resulting development path 
are based on the SRES [49] 

 

The availability of generating possible future climate conditions adding to the recorded 
climate data allows us to have a good coverage of the prospect of climate condition that was 
described in Chapter 3. The climate normal can be calculated for past, current and future 
while considering climate change. There is also data available for climate extremes, the 
observed conditions and foreseeable future conditions. But as mentioned before, 
unforeseeable extreme events are unpredictable. In the following chapter, a conceptual 
framework for protection of built-environment against all climate conditions is proposed and 
described. 



 

 

 

29 

5 Conceptual objectives for protection of built-
environment against climate uncertainty  

5.1 Uncertainty in modelling built-environment 

There are several studies showing that the buildings do not perform as they were expected 
to do, once they are in operation [5-7]. The sources of discrepancies can be due to 
simplifications and numerical approximation of modelling tools [50], human errors during the 
construction or poor quality of construction [51], and operational factors such as occupant 
behaviour and weather conditions [52], etc. The causes of discrepancy in buildings 
performance can be categorized in three types: epistemic uncertainties, aleatory uncertainties 
and errors. They are defined as: 

 Epistemic uncertainty: a potential deficiency that is due to a lack of knowledge. It 
can arise from assumptions introduced in the derivation of the mathematical model 
used or simplifications related to the correlation or dependence between physical 

[53] 

 Error A discrepancy between a computed, observed or measured value or condition 
[54] 

 Aleatory uncertainty: 
of a quantity, or the (usually unknown) system underlying it.  [50] 

Epistemic uncertainties in building modelling can be reduced by improvement of 
numerical models, calibration using additional experimental observations, and providing 
better information [55]. Human Errors can be minimized by the use of technological 
advancements such as Building Information Modelling (BIM) [56] and Augmented Reality 
(AR) [57], and offsite or prefabricated construction technologies [58]. These technologies can 
reduce the gap between the expected simulated quality and the quality of constructed 
building. The third type, aleatory uncertainty, due to its inherent randomness and natural 
variability, is irreducible and cannot be eliminated [59]. So far, the common approach to deal 
with this type of uncertainty in BPS is to consider a most likely scenario. For example, 
occupants are normally simulated with a fixed schedule [60] as the most probable occupancy 
scenario. Using typical meteorological year (TMY) weather files is another example of 
counting for the most likely conditions [61].. 

After the buildings are built, they are expected to perform as designed. This from the 
traditional perspective of reliability, where a system is considered reliable if it performs as 
expected in a stable environment with stable requirements [62]. However, for buildings in 
real-life conditions, the stability of the environment and requirements cannot be guaranteed. 
The environmental conditions for a building are changing constantly due to presence of 

 the other uncertainties 
can be reduced, aleatory uncertainties are irreducible. This means these uncertainties cannot 
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be eliminated and the only way to deal with them is to include them in the modelling i.e. to 
evaluate and design buildings under presence of aleatory uncertainties. 

Designing under presence of aleatory uncertainties is not a new concept and has begun a 
standard procedure in other industries since long time, but it has not been yet applied in 
buildings industry. The idea of this concept is that instead of eliminating the source of 
uncertainty, assuming or forcing that the inputs are deterministic, this source is presented as 
noise during the design phase and the goal is to achieve a design solution which has a 
performance with minimum sensitivity to the presence of 

i in the 1940s [63]. 

With the focus on climate as an aleatory uncertainty and inspired by the concept of robust 
design, during this PhD work, a novel methodology is developed for achieving buildings 
design with robust energy performance under presence of climate uncertainty. In this method, 
both climate normals (typical climate conditions) and foreseeable climate extremes based on 
historical and future generated climate data are used. These conditions are introduced as noise 
into BPS, and an algorithm-driven and simulation-based optimization process is built for 
achieving design solutions with minimum sensitivity to the presence of the noise. The 
methodology for considering climate uncertainty as noise in BPS and formulation of the 
optimization is described in detail in section 7. 

Although climate robust buildings provide performance that is insensitive to typical and 
predictable extreme conditions (see results provided in section 7.3), these buildings cannot be 
considered as protected against the unforeseeable extreme events (described in section 3.3). 
Protection against such events requires a different approach that discusses possible failure 
mechanism in case of occurrence and also a recovery mechanism. This concept in the 
literature is mainly referred to  For a better understanding, Table 2 provides the 
commonly discussed concepts of robustness and resilience both in buildings design and 
system design. 

Next section organises the concepts into a framework that clarifies their relationships, and 
protection of buildings against all climate conditions is discussed. 
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5.2 Positioning robustness and resilience in a framework for protection against climate 
change 

1) Table 2 allows identifying two aspects for both robustness and resilience concepts: (1) 
the nature of their considered uncertainties, and (2) the required attributes for the 
protection against these uncertainties. 

the 
presence of those uncertainties. For buildings, the main focus is on aleatory uncertainties such 
as occupants and climate. 

those uncertainties. For buildings, the main focus is on aleatory uncertainties such as occupant 
behavior and actions and climate. In the case of resilience, although the considered 
uncertainties are 

 section 3.3. These types 
of events, as mentioned earlier, can lead to disaster impacts (please refer to section 2). For this 
reason, the required attributes can be summariz
a building is robust, it is likely that it will withstand and absorb the shock better than a non-
robust building. However, an unforeseeable extreme event can still cause the building to fail. 
For the aforementioned matters, the following two definitions are provided in this PhD work.. 

 

 Definition 1: A robust building is a building that, while in operation, can provide its 
performance requirements with a minimum variation in a continuously changing 
environment. 

 Definition 2: A resilient building is a building that not only is robust but also can 
fulfill its functional requirements during a major disruption. Its performance might 
even be disrupted but has to recover to an acceptable level in a timely manner in order 
to avoid disaster impacts. (disaster impact is defined in Chapter 3).   

 

The functional requirements defines what a building has to do, and the performance 
requirements determines how well a functional requirement has to be done [89]. 

Following these definitions and considering the prospect of climate conditions for built-
environment that were identified in section 3.4, a framework can be realised for protection of 
built-environment against all climate conditions. The concepts of robustness and resilience 
now can be clearly related and differentiated within this framework. For a better 
understanding, the framework is depicted in Figure 5. 
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Figure 5 Framework for protection of built-environment against all climate conditions.  

 

Based on this framework: 

 A fully protected built-environment against climate change means: while in operation, 
it can provide a designed performance level with minimum variation under typical and 
foreseeable extreme conditions, and in case of unforeseeable extreme events, it can 
maintain its functionality during the event with acceptable performance level and is 
able to recover to its designed performance level after the event: in other words, the 
built-environment is protected under climate normal and foreseeable and 
unforeseeable climate extremes. 
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6 Climate change impacts on building performance 
6.1 Weather files for BPS 

Environmental data with high temporal resolution are required for BPS [3]. These data are 
provided by files that contain values for 8760 hours of a year. The BPS tool that was used in 
this project for energy calculation of the buildings is called EnergyPlus [23]. An EnergyPlus 
Weather (EPW) file contains hourly values of several climate variables, such as: air 
temperature, relative humidity, solar radiation, wind speed, etc. Figure 6 shows hourly climate 
data presented in EPW file format for the city of Geneva. The first 8 lines, includes 
information on the location, design conditions, ground temperature, etc.  

 
Figure 6 sample file header and hourly data of 1st January in the EPW file format for the city of Geneva 

Conventionally, the one-year data in a weather file are extracted from 20-30 years of 
historical recorded data, which represents represent the typical weather condition for a 
specific location. This is similar to the concept of generating climate normals by WMO 
(described in section 2). A method developed by Hall et al. [61] is used for creating this one-
year hourly data called typical meteorological year (TMY). In this method a TMY is derived 
from 30 years of weather data recordings. Climate data for January in a TMY is copied 
directly from a historical January data that has the closest match to the 30-year average 
condition for January. This process is replicated for the other months to produce 12 months of 
the typical weather year. Same as climate normals, typical weather files are meant to provide 
a representative image of climate condition for a location. As it was discussed and shown for 
climate normals in section 2, typical weather files also cannot provide a complete image of 
possible future climate for a location. This can cause a design that is developed based on 
considering only typical condition, to perform unreliably during operation when the 
conditions are different. This issue was highlighted in this project and more details are given 
in the following sections. 



 

 

 

36 

6.1.1 Weather files representing future typical conditions 

Global climate models (GCMs) data need to be downscaled to a regional location and 
hourly time scale to be able to be used in BPS. The two major downscaling methods are: 
statistical and dynamical or hybrid. Hybrid downscaling is when the statistical methods are 
used to further downscale the data from RCMs in case they are not at suitable resolution for 
BPS. Following graph (Figure 7) shows the downscaling processes to downscale climate data 
from GCM and generate future climate data to be used in BPS: 

 
Figure 7. Flowchart of different approaches for preparing climate projection data with fine spatial 

and temporal resolution suitable to generate future weather files for BPS. 

To better understand the state-of-the-art for climate change impacts assessment on 
buildings, we draw on the literature and selected 111 articles. Data presented in Figure 8 were 
extracted from the analysis of 111 scientific papers detected after querying the Web of 
Science and Scopus databases. All these papers have been published after 2001. As shown in 
this figure, with regards to the downscaling methods used for preparing weather files, 52% 
(58 articles) are based on statistically downscaled data, 13% (14 studies) used dynamical 
downscaling and 25% (28 articles) used the hybrid method. Finally, 10% of the studies (11 
articles) used recorded data, which means they used recorded data of an extreme year for 
example the year 2003 in Europe to study the impact of extreme conditions. 
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Figure 8 Analysis of literature that used BPS to assess the impact of climate change on the performance of the buildings (111 articles) 

The above results shows that statistical downscaling of GCMs is the most common method 
used for generating future climate data at suitable resolution for BPS. Between the statistical 

one of the frequently used methods in literature for climate change 
impact assessments [90]. The morphing method allows downscaling the monthly mean 
climate data that is created by a GCM to a future hourly weather data, by applying three 
transforming functions: shifting, stretching and the combination of shifting and stretching, on 
a baseline (hourly data of a typical weather file). Two software tools, namely 

 use morphing method to transform typical weather 
files into future weather files in the EPW format. Figure 9 shows, the hourly differences 
between the values of future weather data and the values of the baseline weather file. E.g. the 
pattern of shifting transformation can clearly be seen in generated data from  
for dry bulb temperature, or for relative humidity in case of CCWorldWeatherGen. 

 
Figure 9 Hourly differences between the values of projected weather data and the values of the reference IWEC weather file. 



 

 

 

38 

These types of files are generated under the assumption that short-term future weather 
patterns will follow the same pattern and climate variability as historical weather data. They 
therefore cannot represent probable future extreme conditions due to climate change. 
Conversely, the weather files generated using dynamical downscaling are not constrained by 
historical data. To better illustrate the difference between the two types of weather data, the 
hourly outdoor dry-bulb temperature for one day (1st February as an example) is plotted in for 
statistically downscaled data weather files and one dynamically downscaled data weather file, 
and compared with a TMY.  

 
Figure 10 Hourly outdoor dry-bulb temperature for one day (1st February as an example) are plotted for three weather files of 

statistical group (in green) and one weather file of the dynamical group (in blue) and compared to TMY (in black). 

As expected, the hourly temperature profiles of statistically downscaled type, the 
CCW_a21, WSH_rcp852 and MTN_a23, have a very similar pattern to the TMY file with a 
higher average temperature. However, the dynamically downscaled type, The MPIm_rcp854, 
does not match the other profiles. This again points to the fact that weather files generated 
using statistical methods cannot represent short-term variations of climate conditions induced 
by climate change. 

6.1.2 Weather files representing future typical and extreme conditions 

Albeit considering extreme conditions in the design process seems to be obvious, the 
analysis of 111 scientific papers demonstrated otherwise. It showed that 66% of the studies 

                                                 

1 CCW_a2: weather file generated by statistically downscaling using CCWorldWeatherGen tool based on SRES A2 emission scenario 
2 WSH_rcp85: weather file generated by statistically downscaling using WeatherShift tool based on RCP 8.5 emission scenario 
3 MTN_a2: weather file generated by statistically downscaling using Meteonorm tool based on SRES A2 emission scenario 
4 MPIm_rcp85: weather file generated by dynamically downscaling of MPIm GCM outputs based on RCP 8.5 emission scenario 
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(73 articles) are based on only typical future climate conditions and only 34% (38 articles) 
considered extreme conditions in theirs studies. Figure 11, shows these results. 

 
Figure 11 Analysis of literature that used BPS to assess the impact of climate change on the performance of the buildings (111 articles) 

tyåpucalwas proposed by Nik [22]. The method is based on synthesizing one typical and 
two extreme (cold and warm) data sets: Typical Downscaled Year (TDY), Extreme Cold Year 
(ECY) and Extreme Warm Year (EWY). The process for creating a TDY starts by following 
the method for creating a TMY file, except that just one climate variable (dry-bulb 
temperature) is considered in the selection of typical months instead of four. A similar 
procedure is used to create ECY and EWY data sets. However, instead of looking for the least 
absolute difference, the years with the maximum (for ECY) and minimum (for EWY) 
absolute difference are selected as the years representing the extreme temperatures for each 
month. Nik showed that by considering TDY, ECY and EWY together (which is called 
Triple), it is possible to achieve a probability distribution of future conditions which is very 
similar to the full set of 30 years RCM data.  

It was mentioned in Section 4.2 that it is necessary to consider several climate scenarios 
instead of just one scenario in the impact assessment on buildings, due to significant 
uncertainties in climate modelling. The method developed by Nik [22] was used to overcome 
the challenge of climate uncertainties, the method synthesizing one set of representative 
weather files that takes into consideration several climate scenarios (e.g. in [22], five climate 
scenarios were considered  i.e. 5×30 years of data for a 30-year time span  and TDY, ECY 
and EWY were synthesized). This allows an impact assessment to be performed under both 
typical and extreme conditions with a minimum number of required simulation runs and in 
which climate uncertainty is also taken into account. 

6.1.3 Credible weather data sets for climate change impacts assessment 

The above methods were used, which provided 72 future weather files for the city of 
Geneva as shown in Table 4. A total of 74 files were used in this study, including two TMY 
weather files. 
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Table 4. Weather files generated for the city of Geneva and used in this study. 

Method Tool/GCM/RCM Emission scenario 
Number of 

weather 
files 

Adopted term 

Statistical 

CCWorldWeatherGen A2 3* CCW_a2 

WeatherShift RCP 8.5 3 WSH_rcp85 

Meteonorm A2 3 MTN_a2 

Dynamical-typical 

MPIM-RCA4 RCP 8.5 3 MPIM_TDY_rcp85 

IPSLm-RCA4 RCP 8.5 3 IPSLm_TDY_rcp85 

ICHEC-RCA4 RCP 8.5, RCP 4.5 3 2 
ICHEC_TDY_rcp85 

ICHEC_TDY_rcp45 

CNRM-RCA4 RCP 8.5, RCP 4.5 3 2 
CNRM_TDY_rcp85 
CNRM_TDY_rcp45 

Multi GCMs-RCA4 RCP 8.5+RCP 4.5 3 TDYMultiple 

Dynamical-extreme 

MPIM_RCA4 RCP 8.5 3 2 
MPIM_ECY_rcp85 
MPIM_EWY_rcp85 

IPSLm_RCA4 RCP 8.5 3 2 
IPSLm_ECY_rcp85 
IPSLm_EWY_rcp85 

CNRM_RCA4 RCP 8.5, RCP 4.5 3 4 

CNRM_ECY_rcp85 
CNRM_EWY_rcp85 

CNRM_ECY_rcp45 
CNRM_EWY_rcp45 

ICHEC_RCA4 RCP 8.5, RCP 4.5 3 4 

ICHEC_ECY_rcp85 
ICHEC_EWY_rcp85 

ICHEC_ECY_rcp45 
ICHEC_EWY_rcp45 

Multi GCMs_RCA4 RCP 8.5+RCP 4.5 3 2 
ECYMultiple 

EWYMultiple 

* refers to three time periods: near-term (NT), medium-term (MT) and long-term (LT); one weather file for each period. 

Boxplots of the outdoor dry-bulb air temperature of 74 weather files are plotted in Figure 
12. This figure reveals a pattern of continuous increase in the average dry-bulb temperature 
from NT5 to MT6 and LT7, and for all future weather files. The slope of increase is greater for 

                                                 
5 Refer to Near-Term future projected period (more details are provided in paper IV) 
6 Refer to Medium-Term future projected period (more details are provided in paper IV) 
7 Refer to Long-Term future projected period (more details are provided in paper IV) 
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weather files with A2 and RCP 8.5 emission scenarios than for RCP 4.5, which is in 
agreement with the GCM projections for these scenarios. An increasing trend exists for all 
generated weather files. However, the maximum values of typical future weather files only 
get close to the historical observed value of maximum temperature under LT. This reveals the 
weakness of typical weather files in representing extreme conditions, as discussed before. For 
extreme weather data sets, the distribution of EWY series for the RCP8.5 scenario is close to 
the observed maximum daily temperatures and the ECY series of RCP4.5 is close to the 
distribution of observed minimum daily temperatures. Using Multi-Scenario files therefore 
improves the coverage of both maximum and minimum borders of the distributions for dry-
bulb temperature. These files approximately cover the distributions of all other dynamical 
data group files. This means that it is possible to reduce the number of simulations by using 
Multi-Scenario weather files instead of several weather files (six in this case) with different 
climate scenarios, as was shown in [22] and [91]. 

 
Figure 12 Boxplots of the outdoor dry-bulb air temperature for the weather files. The dashed lines 

show the lower whiskers for minimum daily temperature and the upper whiskers of the maximum daily 
temperature and the horizontal dotted brown lines show the average according to recorded data from 1955 
to 2017 of Genève-Cointrin weather station. a) Historical observed data and typical weather data sets, b) 

extreme weather data sets. 

In Table 1 we compared climate normals with extreme summer recorded data using 
number of hot days and tropical nights, which showed how the averaging process of 
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generating climate normals neglect climate extremes. Here in Table 5 extreme summer 
recorded data are compared to calculated values for the same period for two TMY weather 
files (IWEC and Meteonorm), and one typical (TDYMultiple) and one extreme warm (EWYMultiple)  
weather file from dynamical groups; both for near-term (NT: 2010-2039) future. 

Table 5
the extremely hot summer of 2003 in Geneva calculated from different weather data sets. 

Number of hot days Number of tropical nights 

Climate normals 
1961-1990 10.4 0.1 

1980-2010 14.7 0.4 

TMY 
IWEC 8 1 

Meteonorm 4 3 

Future Near-Term (NT) 
TDYMultiple 10 0 

EWYMultiple 54 13 

Observed climate extremes 

Summer 2003 51 4 

Summer 2017 30 4 

Summer 2018 33 1 

It can be highlighted from Table 5 that only the EWYMultiple weather file value is comparable 
with the number of hot days that occurred during the heat waves in Geneva. The climate 
normals and the typical weather files are far from observed values. The above example 
reveals how the averaging process, both for current and future weather data, can result in 
missing extreme values. It therefore shows how systems designed taking into consideration 
only typical conditions could become a costly mistake (due to under-dimensioning). 

6.2 Impacts of climate change on case-study buildings 

The 111 articles describe earlier in section 6.1.1, were also analysed for performance 
metrics used in these studies, which are demonstrated in Figure 13. The results show the 
majority of the studies focused on the impact of climate change on energy and thermal 
performance (89%) with 48% on energy, 21% on thermal comfort and overheating risk and 
20% on both energy and comfort. 11% of the studies used other metrics such as: equivalent 
carbon dioxide emissions, mould growth risk, etc.  
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Figure 13 Analysis of literature that used BPS to assess the impact of climate change on the performance of the buildings 

(111 articles) 

In this project, even though the impacts of climate change on thermal comfort were studied 
and presented in Paper I and II, but the main focus of the thesis was on energy performance. 

6.2.1 Retrofit design of an existing buildings 

The work started by looking at the impacts of climate changes on energy performance of 
retrofit design of an existing building with the aim of becoming nZEB. The existing building 
is a child care center built in the 80s. 

 

 
Figure 14: (left) Picture of the southwest façade; (right) kindergarten plan view including the five monitored rooms. 

 

A pre-retrofit energy model was created and calibrated in order to provide reliable 
simulation outcomes. The model was first calibrated on the basis of measured monthly 
delivered energy for heating in a conditioned mode, then the best building variant after the 
first calibration was refined further by a second calibration, where it was operated in a free-
running mode. The benchmark of the second calibration was the hourly indoor air 
temperature. The indoor environmental conditions of the building were monitored from July 
2014 to July 2015. Figure depicts the comparison between the simulated and the measured 
indoor air temperature in Room 4.  
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Figure 5: Comparison of the simulated and monitored indoor air temperatures in Room 4. The shaded area represents a 

measurement uncertainty of ±0.5 ºC. 

After calibrating the pre-retrofit model, the post-retrofit model of the building was built 
and simulated under current typical (IGDG) and future typical weather conditions. 

Figure 12 shows the yearly heating and cooling energy need for space heating and cooling 
throughout the whole building under the four climatic scenarios. 

 
Figure 15 Yearly energy need for space heating and cooling per unit of net floor area. 

The analysis showed that in future weather conditions a substantial shift from heating 
energy needs to cooling energy needs would be registered in building operations in a 
temperate climate such as Milan, Italy, which is a winter dominated climate nowadays. More 
details of analysis and results are provided in following references: [11, 12, 21, 92]. 

6.2.2 ASHRAE reference buildings 

After preparing the 74-file weather data set, these weather files were used to assess the 
methods for generating typical and extreme future weather files and their impacts on building 
energy performance. To avoid having biased results because of the building type/model, to 
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minimize the probable uncertainties because of the energy simulation models and to provide 
generalizable outcomes, we chose the widely used commercial reference building benchmark 
models provided by ASHRAE 90.1[93]. The suite provides a simulation bench test to 
compare the relative impact of using the generated weather file on energy performance of 
various building types. Technical descriptions of the selected building envelope components, 
used in building models, are given in ref. [15]. The suite is a collection of standardized 
building models with realistic building characteristics and includes 16 buildings of different 
types and dimensions (Figure 16). 

 
Figure 16 Reference building models from the ASHRAE Standard 90.1. 

A simulation workflow was implemented in the multidisciplinary design optimization 
platform modeFRONTIER [24] coupled with MATLAB for post-processing of the output 
data (the implemented workflow in modeFRONTIER is shown in Figure 17). This was used 
to simulate the full set of 16 building models under the 74 generated future weather files, 
giving a total of 1 184 simulation runs 
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Figure 17 workflow implemented in modeFRONTIER 

modeFRONTIER used the algorithm presented in Figure 18 to perform the simulations. 

 
Figure 18. Configuration of simulation runs of 16 reference buildings under the generated future 

weather files. Simulation of building number 07, Medium Office, using weather file 
 

The weather data set included typical and extreme future weather data and the results are 
presented in the following. 

First, the hourly primary energy need for space heating and cooling per square meter for 
the 16 reference buildings are calculated for one year under typical weather data sets. Figure 
19 shows the distribution of calculated values for all the buildings. The above weather data 
sets allow considering the uncertainty of climate projections into energy calculations. The 
span of values resulted from simulations under these weather files, shows the uncertainty of 
buildings energy performances in future following IPCC emission scenarios (please see 
Figure 4 in section 4.2). 
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Figure 19. The boxplots present the distribution of values for the calculated annual primary cooling energy (negative values) and primary 

heating energy (positive values) under typical weather data sets for all 16 reference buildings. Values of the dynamical data group are 
presented in blue and the statistical data group in green. 
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The boxplots in Figure 19 for both statistical and dynamical under all NT, MT and LT of 
each building shows that the fast food restaurant has the largest range of primary energy. The 
range of values for this building is approximately 280-610 kWh/m2/a for space heating and 
30-160 kWh/m2/a for space cooling. The reason for this can be the high ventilation rate of 
restaurant buildings compared to other buildings. The hospital has a relatively small range for 
primary energy for space heating (~ 85-130 kWh/m2/a) and space cooling (~ 40-
90 kWh/m2/a). This is probably due to equipment energy use and other energy end-uses than 
heating, cooling and ventilation predominating in this building. 

Overall, the shifting impact on primary cooling energy and primary heating energy is 
present for all buildings except building number 16 (warehouse). This might show that 
climate conditions are not the dominant force driving the energy performance of this building. 
For some buildings, a heating-load dominated building under NT furthermore becomes a 
cooling-load dominated building under MT or LT. Examples of this are buildings number 14 
and 15 (primary and secondary schools) as discussed also in section 6.2.1 for the case study in 
Milan. This reveals that both methods are able to provide enough information to show a shift 
in the energy use of the buildings. 

The span of values for the annual primary energy increases from near-term (NT) to long-
term (LT). This is due to the fact that as the time horizon increases, emission scenarios 
diverge. For example, the distance between projected global mean temperature under RCP4.5 
and RCP8.5 is increasing by evolution of time. Otherwise, the uncertainty of near-term 
trajectories is the same as of long-term, as discussed in section 4.2. 

Second, the peak loads of the cooling demand with the date and time of occurrence for 
each of the 16 buildings under typical and extreme warm conditions were considered. Table 6 
presents the magnitude of the peaks and the time in which they occur. The peak values for 
EWYMultiple compared to TDYMultiple ranges from a 2 % increase for the hospital to a 28.5 % 
increase for the sit-down restaurant. The findings from Table 6 illustrate the importance of 
considering extreme conditions and the usefulness of the suggested approach in ensuring a 
robust design of buildings and energy systems for the future. 
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Table 6. Value of Peak cooling demand and the date-time of occurrence under NT for all buildings and the virtual neighborhood, values for 
dynamical-typical and dynamical-extreme are presented and compared. 

Building name 

Dynamical-typical 

TDYMultiple 

 Dynamical-extreme 

EWYMultiple 

 Peak cooling load 
relative change 
EWYMultiple to 

TDYMultiple 

 (%) 

Peak load for 
cooling (kW) Date-Time  Peak load for cooling 

(kW) Date-Time  

High-rise Apartment 59.97 19 Jul-17:00  62.27 24 Jul-19:00  3.8 % 

Mid-rise Apartment 18.76 19 Jul-15:00  21.22 27 Jul-15:00  13.1 % 

Hospital 235.01 20 Jun-15:00  239.67 24 Jul-15:00  2.0 % 

Large Hotel 147.61 28 Jul-19:00  172.21 19 Jul-16:00  16.7 % 

Small Hotel 34.71 19 Jul-16:00  38.06 27 Jul-16:00  9.6 % 

Large Office 430.21 20 Jun-17:00  453.95 24 Jul-15:00  5.5 % 

Medium Office 63.03 19 Jul-15:00  70.55 27 Jul-16:00  11.9 % 

Small Office 5.00 19 Jul-16:00  5.47 27 Jul-16:00  9.5 % 

Outpatient Healthcare 93.32 20 Jun-15:00  100.82 7 Jul-16:00  8.0 % 

Restaurant Fast-food 11.30 19 Jul-13:00  14.16 3 Jul-18:00  25.4 % 

Restaurant sit-down 17.96 19 Jul-12:00  23.08 3 Jul-18:00  28.5 % 

Standalone Retail 34.69 19 Jul-15:00  42.29 27 Jul-15:00  21.9 % 

Strip Mall Retail 30.57 19 Jul-15:00  38.64 27 Jul-15:00  26.4 % 

Primary School 97.27 20 Jun-15:00  109.06 13 Jun-15:00  12.1 % 

Secondary School 316.51 20 Jun-15:00  348.09 13 Jun-15:00  10.0 % 

Warehouse 5.54 19 Jul-16:00  6.78 27 Jul-17:00  22.5 % 

6.2.3 Virtual neighborhood 

A combination of the 16 buildings was used to virtually model a neighborhood. We looked 
at the neighborhood of Champel in Geneva to get an idea of the scale of such a neighborhood, 
which has a total building area of 328 105 m2 [94]. The distribution of the areas occupied by 
the buildings in the canton of Geneva was used to distribute the 16 buildings based on type. In 
the canton, 64 % of buildings are residential and 36 % are non-residential and mixed-use 
buildings [95]. The above assumptions gave the virtual neighborhood created for this study, 
which had a total energy reference area of 414 341 m2, 64.3 % residential buildings and 35.7 % 
non-residential buildings. The composition of the virtual neighborhood is presented in Table 
7. This composition was used only to assess the magnitude of impacts at the neighborhood 
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scale. The spatial attributes of a neighborhood (organization of the buildings and 
infrastructure between) are not within the scope of this paper. 

Table 7. Composition of the 16 ASHRAE standard 90.1 reference buildings in the virtual 
neighborhood for city of Geneva. 

Building 
number Name 

floor Area of 
Thermally 
conditioned 
space (1) (m2) 

Number 
of floors 

Number of 
thermal 
zones (2) 

Windows-
to-wall 
ratio (3) 

 
Number of 

building type in the 
neighborhood (4) 

Percentage of floor 
area in the whole 
neighborhood (5) 

Building01 High-rise apartment 7 059.9 10 80 30 %  20 37.8 % 

Building02 Mid-rise apartment 2 824.0 4 32 20 %  35 26.5 % 

Building03 Hospital 22 436.2 5 162 16 %  1 5.4 % 

Building04 Large hotel 10 736.3 6 195 30.2 %  1 2.6 % 

Building05 Small hotel 3 725.1 4 54 10.9 %  2 1.9 % 

Building06 Large office 46 320.4 12 74 37.5 %  1 11.2 % 

Building07 Medium office 4 982.2 3 18 33 %  3 3.6 % 

Building08 Small office 511.0 1 6 20.1 %  5 0.6 % 

Building09 Outpatient healthcare 3 804.0 3 118 20 %  1 0.9 % 

Building10 Restaurant fast-food 232.3 1 2 14 %  8 0.4 % 

Building11 Restaurant sit-down 511.2 1 2 17.1 %  3 0.4 % 

Building12 Standalone retail 2 294.0 1 5 7.1 %  1 0.6 % 

Building13 Strip mall retail 2 090.3 1 10 10.5 %  1 0.5 % 

Building14 Primary school 6 871.0 1 25 35 %  1 1.7 % 

Building15 Secondary school 19 592.0 2 46 33 %  1 4.7 % 

Building16 Warehouse 4 835.1 1 3 0.7 %  1 1.2 % 

(1) Defined by ISO 52000-1:2017 [96] as: heated and/or cooled space. 
(2) Number of thermal zones in the energy model. 
(3) Defined by ASHRAE 90.1 [97] as: The ratio of vertical fenestration areas to the gross above-grade wall area. 
(4) Number of each building type in the virtual neighborhood. 

(5) Percentage of each building type in the total floor area of the neighborhood. 

As shown in Table 6, the need for air conditioning increases dramatically during extreme 
hot conditions. This high demand can last for days to weeks. Additionally, as mentioned 
before in section 3.3, high demand and low energy production during extreme conditions, in a 
chain of smaller events can lead to the failure of power system, as in the 2006 heat wave in 
New York City [98]. 
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Electrical power demand of the virtual neighborhood under typical and extreme conditions 
was calculated to illustrate such risks at the urban scale. Figure 20 shows the power demand 
for the neighborhood during the week of the peak loads for EWYMultiple compared to TMY and 
TDYMultiple under NT. Electric power demand was calculated by adding up for each hour the 
delivered energy for total electricity for all the buildings in the neighborhood. 

 
Figure 20. The electrical load profile of virtual neighborhood for a peak summer week in Geneva, considering historical 

typical weather year (TMY), future typical weather year (TDYMultiple) and future extreme warm weather year 
(EWYMultiple) under NT. 

The criticality is during the peak load hours, which are from 2:00 pm to 6:00 pm on 
weekdays and 4:00 pm to 9:00 pm during the weekend, in the case of the virtual 
neighborhood. The so-called peak-load power plants are usually used to cater for the demand 
peaks. They have a relatively high fuel cost compared with base-load power plants and they 
are started up whenever there is a spike in demand and stopped when the demand recedes. For 
the neighborhood, the peak value of 10.23 MW is registered for TMY on Friday 18 August at 
5:00 pm. This value for TDYMultiple is slightly higher than TMY and is 10.29 MW on Tuesday 
20 June at 4:00 pm. The peak values for the extreme case EWYMultiple is above 10.28 MW for 
4 days, the highest value being 10.64 MW on Thursday 27 July at 4:00 pm. The hourly 
electricity demand during the days of extreme conditions furthermore stays above values of 
typical conditions for almost the whole week. The peak electricity demand values for the 
neighborhood for EWYMultiple under MT and LT are 11.01 MW and 11.95 MW respectively. 
This means that the value of peak electricity demand can increase by 4.0 %, 7.6 % and 16.8 % 
for extreme conditions under NT, MT and LT in relation to the TMY IWEC value. Power 
plants can, as described before, suffer reductions in efficiency during extreme conditions (heat 
waves), with a consequential reduction in the capacity of the energy system to cover peaks. 
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Taking into account these issues and looking into the increase in electricity demand for the 
virtual neighborhood under extreme conditions, it might become a challenge for the energy 
system of this neighborhood to cover the margin, especially in the likely event of a reduction 
in generation capacity. The simulation test bench used in this study is developed based on the 
2013 version of the ASHRAE 90.1 standard, which means the models are compliant with a 
recent energy code. Therefore, the above impacts can be magnified considerably if 
considering presence of older buildings with envelopes that have lower thermal performance; 
hence their energy performance is more sensitive to climate conditions. The single most 
marked observation that emerges from data comparison is the importance of considering 
extreme conditions to assure the robustness of the designed buildings or energy systems. 
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7 Robust energy performance under climate change 
In the previous chapters, the concept of robustness against climate uncertainties in 

buildings was defined as: 

 A robust building is a building that, while in operation, can provide its 
performance requirements with a minimum variation in a continuously changing 
environment.. 

It was also shown that foreseeable climate normals and extreme conditions can be 
presented in BPS with three weather files TDY, ECY and EWY. 

However, there is little-to-nothing done in current design methodologies, standards and 
building regulations to set principles for design or assessment of 
robustness. In this chapter, a methodology based on the above concepts is developed, which 
allows designers achieving solutions with minimum energy performance variation under 
climate normals and extreme conditions. 

7.1 Concept of robust design and its application in built environment 

Robust design was first introduced in the 1940s to improve the quality of products in 
industrial engineering, but this discipline has been applied in various design areas since then. 
Inspired by the work of Taguchi [63], a large attention was given to application of this 
concept in the industrial sector. Since then, this discipline has been adopted in wide range of 

the state where the technology, product, or process 
performance is minimally sensitive to factors causing variability (either in the manufacturing 

 [99]. In other words,  
a product or process is said to be robust when it is insensitive to the effect of source of 

variability, even though the sources themselves have not been eliminated [100]. Robust 
design is a general concept applicable to all design procedures when uncertainty is taken into 

uncertainties in real world conditions. 

This concept can be transferred from industrial product to buildings simply by considering 
the target value as any desired performance indicator (e.g., the indoor thermal comfort 
condition, the indoor daylight performance or the maximum delivered energy) and noise 
factor as any variable that cause deviations in the performance of a building during its 
operation (e.g. weather conditions). 

Robust design of a product involves factors that are defined as follow [101]: 

 Control factors (or Design variables), are variables that have to be specified by the 
designer; 

 Noise factors are uncertain parameters that designer cannot control (only the statistical 
characteristics of noise factors that are expected in production or in actual use of the 
product can be known or specified); 
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 Target value (Signal factor), is set by regulations or user of the product to express the 
desired value for the response of the product; 

 Response is the output of the product with the presence of noise. 

One application of robust design is in car manufacturing and specifically in car packaging 
design, where the target is achieving high spatial and ergonomic efficiency for the cars. For 
example in a study [102] for an ergonomic robust design of car packaging, the seat cushion 
angle, steering-wheel-to-BOF (ball of foot) distance, etc. were considered as control factors, 
the anthropometric variability was considered as noise factor and the response was comfort 
loss of the occupants. The aim of a robust design is to set optimal control factors in which the 
variation of response from the target value to be minimum under presence of noise factors. To 
explain the procedure of the robust design, a block diagram representation of a product [101] 
is shown in Figure 21. 

 
Figure 21 Block diagram of a product: P diagram 

A robust design problem is a multi-objective optimization problem. The objectives are to 
reduce variation of the response while the mean is shifted to a target value (Figure 22). 

 
Figure 22: Robust design applied to buildings performance where the smaller mean and variation of response f is the 

better. 
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Based on this process, Taguchi developed the signal-to-noise ratio (S/N) that is a key 

metric used to perform the first step of the optimization process. During this step, the S/N gets 

maximized that is equivalent to minimizing the sensitivity of the response to the noise factors 

[100].  

   (1) 

S/N is proportional to the base 10 logarithm of the ratio between the squared of the signal 

factors ( ) and the squared of the noise factors ( ). Adding logarithm to the metric was 

proposed by Taguchi and puts the S/N ratio into decibels units (dB) [100]. Taguchi described 

that a metric for robust design should have four properties [100]: 

1. The metric should reflect the variability in the response. 
2. The metric should be independent of adjustment of the mean. 
3. The metric should measure relative quality. 
4. The metric should not induce unnecessary complications, such as control factors 

interactions. 

Robust design process originally was formulated in a way that the process can be 
performed with minimum cost and resources. This was due to high costs of experimental tests 
and also limited computational powers for running simulations. Taguchi used orthogonal 
array that is a method for setting experiments with only fraction of the full combinations 
[100]. But with the availability of better numerical models and high computational power, this 
concept was later introduced in simulation-based optimization process, and is referred to as 
robust design optimization (RDO) [103]. In other words, RDO is when the concept of robust 
design is added to the conventional optimization [104, 105]. In conventional optimization, the 
deterministic approach does not consider the impact of unavoidable uncertainties (noise 
factors) associated with the input design variables in real engineering environment. This 
results in optimum solutions that their performance measure is sensitive and can vary 
significantly due to distribution of noise factors. The design problems of buildings 
engineering also can be formulated as RDO problems, where the objective is to achieve a 
performance measure (e.g. energy) with minimum sensitivity to a noise factor (e.g. climate).  

For this study, a number of design variables for an office building are optimized to achieve 
a minimum variation of its energy performance under the disturbance of mutable climate 
variables. In this case, the noise factor is climate change and the objectives of RDO scheme 
are to minimize mean energy performance while minimizing energy performance variability 
under climate change. Inspired by the work of Taguchi, two metrics (two objective functions) 
were developed for an optimization process that results in solutions with minimum variation 



 

 

 

56 

in energy performance of a building under presence of climate uncertainty. The first objective 
is a S/N ratio metric customize for the purpose of this study that fulfil the four properties 
described earlier. The second objective focuses on minimizing the energy use. These metrics 
are introduced in 7.2.1. 

Theoretically, in order to take into account climate uncertainty, it is possible today to run a 
design under 100 of years of consistent climate data representing past recorded data and 
future possible climate scenarios. The availability of these data makes it possible to study the 
sensitivity of a design or to look for design alternative that demonstrate minimum sensitivity 
to climate conditions. However, this means that at each step of optimization, hundreds of 
simulation runs should be performed to be able to calculate the RDO objectives. The 
optimization scheme may therefore become infeasible due to high computational cost. The 
following example helps to grasp a feeling of the time and the computation resources that are 
required to consider all possible scenarios and minimize mean and variation of energy 

ensemble of 4 scenarios (two GCM-RCMs and two emission scenario) are generated while 30 
years of historical data are also available. These provide 150 years of climate data. In the case 
of running the optimization process, each optimization step will contain 150 annual 
simulations. In other words, for an optimization process of 1000 evaluations, 150000 
simulation runs are required. Considering that each simulation takes 1 minute and the 
possibility of four parallel simulations, the optimization process will take around 26 days. The 
required time-scale is not feasible in buildings design practice.  

In order to overcome this issue, the triple method described in section 6.1.2 is used in this 
study. This approach allows allows applying climate change as noise factor in simulations by 
only using three weather files (three-year of climate data). This means, the simulation runs of 
the mentioned example reduce to 3000 (1000 evaluation × 3 simulation runs using TDY, ECY 
and EWY weather files), and as a result optimization process will require 12.5 hours.   

 

7.2 Simulation-based optimization method for design of energy-efficient buildings with 
robust energy performance 

This specific robust design optimization problem can be formulated as: 

  (2) 

  (3) 

  (4) 

where  is the vector of design variables, and  are the objective 
functions,  are inequality constraints subject to the uncertainty parameters  that can 
take any arbitrary values in the uncertainty domain . Using this formalism, the goal 
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of this robust design optimization problem is to find a set of  (i.e. the set of the 
minimum-cost building variants) among all the available building variants which are feasible 
considering all the noises factors  

 . (5) 

The design effect of these two objectives, as shown in Figure 22, is a narrow distribution 
of primary energy with the mean value close to the target value (ideally zero). Optimizing 

 will minimize the sensitivity of performance to the noise and is a measure of 
robustness. Optimizing  will minimize the primary energy use and is a measure of 
energy-efficiency. These effects are visualized in Figure 23. 

 
Figure 23 visualization of the designed effects of the two objective functions 

7.2.1 Formulating the objective functions 

As mentioned before, the focus of this study is to achieve robustness against climate 
uncertainty. In this regard, the achieved distribution of energy performance shown in Figure 
23 is only due to variations of climate. To apply climate as source of performance variability, 
as described in section 6.1.2, the triple method is adapted. EWY and ECY. Reminding that the 
TDY file represents the most likely climate evolution and EWY and ECY are the extreme 
warm and cold climate evolutions, ,  and  are the primary energy use 
(PE) calculated for the time-step  using the TDY, EWY and ECY weather files. 

To develop a custom S/N ratio for the specific task of this study, the four properties 
described in section 7.1 were considered as a guideline. The first property is to define a metric 
that reflects the variability in the response. Accordingly, the mean squared deviation (MSD) 
is calculated, which is the average squared differences between  and  values 
with  as reference values. Considering  as reference values, this function can 
be used to measure how far the values of  and  are from these reference values 
as measure of variability. The second property requires the metric to be independent of 
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adjustment of the mean. For this reason, a second objective function was introduced. In this 
objective, calculated value of  is separately minimized, which makes the first 
objective being independent of the adjustment of . For the third property, the metric 
should measure relative quality, the S/N is calculated as relative change of  squared 
to MSD. At the final step, adding logarithm to the metric was proposed by Taguchi and puts 
the S/N ratio into decibels units (dB) [100]. With this transformation, the multiplicative 
changes in the metrics are transformed to additive changes, which helps reduce the effect of 
interactions between the design variables. It means the influence of each design variable is 
independent of the effects of the other design variables, which fulfils the fourth property. This 
metric is formulated as objective function n.1 and is descried below. By minimizing the first 
objective, the difference of energy performance under extreme and typical is minimized, 
which means the sensitivity of response to the changing of climate is minimized, while 
simultaneously the second objective minimize the annual primary energy , which is 
the annual total primary energy required by the building under average conditions (TDY). 
These objectives are formulated as below: 

Objective function n.1: the purpose of f1(x, ui) is to squeeze the energy performances 

calculated using EWY and ECY towards the one calculated using TDY. In this regard MSD is 

defined as: 

  (6) 

Following Eq. (1) for S/N ratio and in order to maintain the usual convention according to 

which an optimization is a minimization process, S/N is negated when used as objective 

function. Therefore, f1(x, ui) is: 

  (7) 

Where  is the the temporal resolution of data. For example, if one is interested in yearly 
energy performance and calculates it accumulating 12 monthly values, p has to be set at 12. If 
one is interested in the yearly energy performance calculated over hourly values, p has to be 
set at 8760; otherwise, for daily energy performance calculated over the 24 hours in a day, p 
has to be set at 24. Minimizing  results in minimizing the sensitivity of the response 
(energy use) to the variability of noise (climate conditions). 
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Objective function n.2: The purpose of  
performance under the most likely climate conditions that are represented by the TDY 
weather file. It is the annual total primary energy required by the building under TDY. The 
two objective functions can be formulated as: 

  (8) 

Where  is the the temporal resolution of data. For example, if one is interested in yearly 
energy performance and calculates it accumulating 12 monthly values, p has to be set at 12. If 
one is interested in the yearly energy performance calculated over hourly values, p has to be 
set at 8760; otherwise, for daily energy performance calculated over the 24 hours in a day, p 
has to be set at 24. 

With the two objectives described above, it is now possible to conceptualize an RDO 
process in which climate uncertainty is introduced as noise factor in simulations by only using 
three weather files. In this process, objective function n.1 minimize the deviation between 
responses under extremes and average conditions. Objective function n.2 brings the primary 
energy with the mean value close to the target value (ideally zero). The concept is visualized 
in Figure 24 for two time-steps during heating period and during cooling period. 

 

 
Figure 24 The concept of robust design optimization using three weather files: TDY, ECY and EWY 

The above formulation allows performing robust design optimization at different temporal 
resolutions. This feature is required because the effect of a noise factor on the performance 
variability of a building system varies according to its typical response time. For example, 
when optimizing building envelope properties, one would need to consider the seasonal effect 
of climate variation, so the monthly resolution might be appropriate; otherwise, if someone 
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ed shadings, the temporal resolution of 
climate variation has to be finer, e.g. day or hour. For this reason, in the development of the 
optimization process, two set of design variables were considered: building envelope 
properties and control settings. Two configurations based on these two groups were designed 
for optimization process (see section 7.2.3). Before moving to the formulation of optimization 
process, in the following section the energy models and design variables that are considered 
for this study are briefly described. 

7.2.2 Building energy model 

The small office building from ASHARE 90.1 reference buildings (please see section6.2.2) 
was chose for this study. The reference new 
construction post-1980  pre-1980  (existing buildings constructed in or after 1980 
and before 1980). The new construction models are modified according to recent editions of 
ASHRAE 90.1 Standard [97]. For the purpose of this study, two base-case were considered; 
one from new construction category complying with ASHRAE 90.1-2016 standard and one 
from post-1980 -compliant base-

-compliant base-
quality. It allows assessing energy robustness of models representing newly built and existing 
old buildings under climate uncertainty. This case-study also shows the potential 

 of buildings. 

The considered input variables for the target building are divided to two groups: building 
envelope properties and control settings. Building envelope properties involves six categories: 

-
absorptance, thermal resistance of insulation l
control settings include: cooling setpoint, heating setpoint and shading setpoint. Most of the 
input variables were divided into sub-variables according to different directions. A total of 15 
variables were finally determined. 

7.2.3 Formulation of optimization process 

As mentioned above, building systems are characterized by different response times, thus 
in order to identify reliable values for the input variables considering the appropriate time 
effect of the noise factor, a two-step optimization process was designed. First, a monthly 
resolution was used to account for the seasonal effect of climate variation, and yearly primary 
energy was used to optimize the building envelope properties. Second, an hourly resolution 
was used to account for short-term weather evolution, and daily primary energy was used to 

lowering automated solar shadings. In addition, this two-step optimization process will 
provide an insight whether, to design an energy robust building, it is sufficient to apply only 
optimal control settings without improving the building envelope or vice versa, or whether 
both strategies were important, but there might be a priority option between them. Of course, 
in the context of a building refurbishment, the deployment of optimum control settings 



 

 

 

61 

requires less interventions and costs, while the renovation of the building envelope may 
require a large capital investment. For the mentioned reasons, two different optimization 
configurations were developed. To conduct the optimization tasks, the dynamic energy 
simulation engine EnergyPlus [23] was integrated into the modular environment for process 
automation and optimization in the engineering design process modeFRONTIER [24], which 
embeds  a multi-objective optimization engine that integrates several optimization algorithms 
and sampling strategies.. 

7.2.3.1 Configuration no.1: Optimization of the building envelope 

In this task, only input variables related to thermal properties of the building envelope are 
optimized for robustness. The noise factor applied is the weather file used for running the 
simulation. Two different weather files were used to represent the extreme climate conditions, 
specifically EWY and ECY. The optimization process was performed for both NSGA-II and 
MOGA-II. The parameter settings of the algorithms are important for their performance. 
Hamdy et al. [106] recommended that the minimum required number of evaluations for 
optimization of building energy models is 1400-1800. The population size for population-
based optimizations is recommended to be 2-4 times the number of design variables [107]. 
Following the recommendations, for each algorithm 1620 evaluations were considered by 
using population size of 27 (3 9 design variables) and number of generations equal to 60. The 
initial population is generated based on random sequence. For the other settings, the default 
values were kept unchanged. These settings are reported in Table 8. During each evaluation, 
three energy simulations are run (using the EWY, ECY and TDY files) to calculate the two 
objective functions in Eq.(7) and Eq.(8). 

Table 8 Parameter settings the selected optimization algorithms 

Optimization 
algorithm 

No. of 
evaluations 

Simulatio
n resolution 

p No
. of 

runs 

populati
on size 

No. of 
generations 

Probability 
of cross-over 

Probability 
of mutation 

NSGA-II 1620 Monthly 12 1 27  60 0.9 1.0 

MOGA-II 1620 Monthly 12 1 27  60 0.5 0.1 

 

The flowchart of the process and the implemented correspondent workflow in 
modeFRONTIER are presented in Figure 25. 
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For the purpose of this work Genetic Algorithm (GA) is used for the multi-objective optimization. GA 
is the most common optimization strategy used in building performance analysis [108]. 
modeFRONTIER provides both Fast Non-dominated Sorting Genetic Algorithm (NSGA-II) algorithm 
[109] and Multi-Objective Genetic Algorithm (MOGA-II) [110]. MOGA-II is an improved version of 
MOGA [111]. To decide which optimization algorithm is best suited, in the first optimization process, 
both the algorithms were used with similar initial population. MOGA-II found providing better results 
and was chosen for the second optimization process. 

The multi-objective optimization process results in a two-dimensional solution space with a Pareto 
frontier. Figure 26 demonstrate the strategy used in this study for post-processing and selecting the 
Pareto optimal. In this method, the Pareto frontier is normalized to zero-one interval (0  
using following transformation [112]: 

  (9) 

With  and , the maximum and minimum of , . Then the closest point to the 
utopia point (  and ) is chosen as the optimal solution. This method was used because the 
significance of both objective functions was considered equal and also the values of the two objective 
functions were expressed in different orders of magnitude. 

 

Figure 26 The approach for selection of the best solution from the Pareto 

The first optimization round was performed to find optimal values for the building envelope properties 
(2016-EnvelopeOpt). Figure 27 shows the scatterplot of the simulated building variants using 
MOGA_II and NSGA_II algorithms, which are represented on the plan of the two objective functions. 
MOGA_II demonstrate a better performance by covering a larger area of the design space and 
providing Pareto frontier closer to the utopia point.  
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Figure 27 Scatter plot for the optimization of building envelope properties (in orange are building variants using MOGA_II 
algorithm and in green the ones based on NSGA_II algorithm). 

The optimal solution is selected from the Pareto frontier using the approach described earlier. In this 
approach, first the Pareto frontier is normalized to values between zero and one, and then the solution 
with minimum distance to ideal point is selected as optimal solution. The normalized Pareto frontier 
and the selected solution are shown in Figure 28. 

 

Figure 28 Normalized Pareto frontier with the selected optimal solution in black (in orange are normalized Pareto frontier 
using MOGA_II algorithm and in green the ones provided by NSGA_II algorithm). 

7.2.3.2 Configuration no.2: Optimization of the control settings 

The second process involves optimization of daily control setting using TDY, ECY and 
EWY based on hourly typical and extreme values (see section 6.1.2). The configuration 
differs from the first because the input variables related to thermal properties of building 
envelope are excluded and only the control settings are considered in the optimization run that 
uses the same noise of the configuration no.1. The optimization is performed for each day of 
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the year using MOGA_II algorithm, but the number of evaluations is now 48, while the 
probability of directional cross-over and the probability of mutation are kept the same. The 
initial population with 6 designs is generated using a random sequence and the number of 
generations is set to 8. These values were set using trials and errors to perform the process 
with an acceptable convergence level and feasible time. Figure 29 shows an optimization 
evolution for one day as an example. In each evaluation, 3 energy simulations were run under 
the three weather files. A total of 365 optimizations were performed to find optimum control 
settings for each day of the year, with objective functions set according to Eq.(7) (p=24) and 
Eq.(8). The last solution at each optimization is considered as optimum control setting for that 
day. 

 

Figure 29 Evolution of objective functions. Example of optimizing control settings for a day. 

Figure 30 demonstrate the flowchart of the optimization process for the above 

configuration. 
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Figure 30 Flowchart of the optimization process implemented in modeFRONTIER for configuration no.2 

7.3 Assessment of optimization strategies 

Six cases were designed to render the impacts of each group of design variables on the 

energy-robustness and energy-efficiency of base-cases. First on a newly built building, the 

aforementioned optimization process applied to the base-case building model compliant to the 

2016 requirements. 

1. 2016-base: It is the 2016-compliant base-case model with fixed values of heating and cooling 
setpoints and no automated solar shadings. 

Three cases were developed to identify the most effective optimization strategy: 

2. 2016-EnvelopeOpt: The building envelope properties of the 2016-base model are changed to 
their optimum values, but the control settings are not optimized; 
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3. 2016-ControlOpt: Automated solar shading is added to the 2016-base model and optimum 
daily values are used for setting the setpoint values for space heating and cooling and solar 
shading control; 

4. EnvelopeOpt+ControlOpt: Both envelope properties and control settings of 2016-base are 
replaced with optimum values. 

Afterwards, the existing building that we assumed to be compliant to 1980s quality 

standards considered for the purpose of optimization. It should be noted that the exclusive 

optimization of the building envelope without the upgrade of the HVAC systems may not be 

compatible with the latest legislative requirements (e.g., in Europe the Directive on energy 

performance of buildings), and the lifecycle of an HVAC system, in any case, is not longer 

than 30 years. Therefore, if we renovate a 1980-compliant base-case building by upgrading 

ize the building envelope 

to maximize its energy-robustness and energy-efficiency, we obtain the previously mentioned 

Envelope optimized-2016-case. Furthermore, if we optimize both the envelope properties and 

the control settings, we obtain the EnvelopeOpt+ControlOpt. Thus, we will study the case 

where an existing building gets enhanced by optimizing its control settings that would require 

a little investment. 

5. 1980-base: The building model has the same geometry of the 2016-base, but its constructions 
are set according to typical 1980s quality standards. 

Therefore, an additional case will be studied: 

6. 1980-ControlOpt: Automated solar shading is added to 1980-base model, and optimum daily 
values are used for setting the setpoint values for space heating and cooling and solar shading 
control. 

Finally, in order to test the effectiveness of the proposed method and demonstrate the most 
energy-robust building variant against climate change among the solutions, all of them are 
tested against a weather file dataset made of 74 representative weather files generated for the 
city of Geneva (see section 6.1.3). 

This assessment methodology is applied to identify the most effective optimization 
strategy to render a new building with robust energy performance under against climate 
change and to measure the robustness potential. After performing all the optimizations (more 
details are provided in Paper VI), the six cases are assessed considering their robustness 
against climate change. Each case underwent 74 annual simulations using 74 representative 
weather files. Figure 31 shows the results of this assessment, which are distribution of 74 
values of primary energy calculated for each case under 74 different weather files, including 
typical and extremes. 
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Figure 31 Qualitative distributions comparison of the six cases. For better readability the distribution of 1980-base-case 
is separated from other cases . 

Figure 31 demonstrates the primary energy use of 1980-base case has significantly high 
sensitivity to the changing climate following by cases 1980-ControlOpt, 2016-base, 2016-
EnvelopeOpt, 2016-ControlOpt and EnvelopeOpt+ControlOpt. The statistics calculated based 
on 74 values of primary energy calculated for each case are presented in Table 9. On the right 
side of the table the relative changes (%) of mean and standard deviation (SD) of all cases are 
compared to their values calculated for 1980-base and 2016-base cases.  

 

Table 9 Descriptive statistics based on 74 calculated primary energy use for each case.  

Cases 
Primary energy use (kWh/m2)  

Relative Change (%) 

to 1980-base value 

Relative Change (%) 

to 2016-base value 

Mean SD Min Median Max  Mean SD Mean SD 

1980-base 521.7 26.3 485.1 514.7 602.4  0.0% 0.0% 98.1% 354.5% 

1980-ControlOpt 301.8 21.4 275.4 296.5 363.5  -42.1% -18.7% 14.6% 269.6% 

2016-base 263.4 5.8 257.1 260.7 284.0  -49.5% -78.0% 0.0% 0.0% 

2016-ControlOpt 239.4 4.6 234.9 237.5 257.1  -54.1% -82.4% -9.1% -19.9% 

2016-EnvelopeOpt 246.7 2.1 244.2 246.2 254.6  -52.7% -92.1% -6.3% -64.0% 

EnvelopeOpt+ControlOpt 225.5 1.1 223.9 225.1 228.9  -56.8% -95.9% -14.4% -81.5% 

 



 

 

 

69 

Looking deeper into the results, the distribution of 2016-CotrolOpt has lower mean than 
2016-EnvelopeOpt but with longer tail, that actually covers the distribution of 2016-
EnvelopeOpt case. This means, although EnvelopeOpt case has higher energy demand but the 
demand is more predictable under extreme conditions than 2016-CotrolOpt case. Comparing 
1980-base and 1980-ControlOpt, optimum control settings cause significant reduction in the 
mean of primary energy use, but the variation remains significantly high and unreliable during 
extreme climate conditions. However, the highest value of 1980-CotrolOpt case is still lower 
than the lowest value of 1980-base case, which means a significant improvement only by 
applying minimum intervention using optimum control settings. EnvelopeOpt+ControlOpt 
case has very narrow distribution in compare to other cases and at the same time with the 
lowest mean value. 

Looking into statistics provided in Table 9, the calculated standard deviation of 
EnvelopeOpt+ControlOpt case, is around 5 times (81.5 %) smaller than 2016-base case and 
almost 24 times (95.9 %) smaller than 1980-base case. It points to a significant reduction of 
variability in the primary energy use, while having the lowest mean value of primary energy 
use. This makes EnvelopeOpt+ControlOpt case not only the most energy-efficient case but 
also the case with most robust energy performance. It demonstrates the effectiveness of the 
proposed method for designing buildings with robust energy performance under future 
climate uncertainties. 

Furthermore, according to the results, shading and control settings has the highest impact 
on energy-efficiency. In other words, by adjusting the cooling- and heating-setpoints to 
optimum values as well as the solar incident setpoint for shading, it is possible to significantly 
reduce the primary energy use under typical conditions. While optimizing the building 
envelope properties effectively reduces f1, which means the solution has lower variability in 
its response when exposed to extreme conditions and as a result better robustness of energy 
performance. 
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8 Conclusions 
An energy retrofit design for a child care centre in Milan targeting very high energy and 

indoor environment performances developed on the basis of a typical weather file of today 
was studied. The results showed that the choices that were made on the basis of typical 
climate conditions may fail to provide acceptable energy and indoor environmental 
performance throughout the future decades. 

In another study performed during this PhD work, 74 weather data sets for Geneva were 
synthesized and applied to the energy simulation of 16 ASHRAE standard reference 
buildings, single buildings and their combination to create a virtual neighborhood. The 
dynamical and statistical methods for downscaling the outputs of GCMs were used for 
preparing the weather data sets to account for extreme conditions together with typical climate 
conditions. According to the results, for the near-term future, the range of relative change of 
peak load for cooling demand under extreme conditions shows an increase of 2 % to 28.5 %, 
compared to typical conditions depending on the building type. Furthermore, the analysis of 
the virtual neighborhood revealed that the peak electric power demand for the neighborhood 
can increase by 4.0 %, 7.6 % and 16.8 % under near-term, medium-term and long-term future 
for extreme conditions in relation to the value calculated using the TMY file. These results 
underline the importance of considering extreme conditions in studying the impacts of climate 
change on single buildings and larger spatial scales (e.g. urban and city scales) and preparing 
urban energy systems for future conditions. 

In conclusion, the above studies provided further evidence that proper weather data sets 
based on high resolution data from climate models and several climate scenarios, including 
extreme conditions, are required to empower building engineers and architects to test their 
design solutions under future climate uncertainties. It was also noticed that a large part of 
literature with focus on the impacts of future climate conditions on the performance of 
buildings are from the UK, where such weather files are readily accessible for several 
locations. It shows that the availability of such files is crucial and requires efforts at national 
levels. Only this type of approach will involve more experts into the discussion of finding 
solutions that guarantee a more robust and climate resilient built environment in the future. 

For better protection of buildings against climate change, this work propose a robust 
design optimization (RDO) workflow, where the aim is to achieve an optimum solution that 

feasibility of the method is considering climate variations by using only three weather files 
that represent typical (TDY), extreme warm (EWY) and extreme cold (ECY) weather 
conditions. A multi-objective optimization process was configured with two objective 
functions. Minimization of the two objective functions provided in this study, ensures having 
a building with low energy use under most likely conditions and minimum variation when the 
conditions change or become extreme. This method applied on the the small office building 
model from ASHARE 90.1 reference buildings models, and for the city of Geneva. After 
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performing all the optimizations, the design solutions were assessed for their robustness 
against climate change. Each design solution underwent 74 annual simulations using 74 
representative weather files for Geneva.The results demonstrated that by having optimum 
daily setpoint temperatures for cooling and heating, and solar incident setpoint for shading, it 
is possible to reduce significantly the primary energy use under typical conditions. While 
optimizing the building envelope properties reduce significantly the variability of 
performance under changing climate conditions including extremes. And finally, by 
optimizing both the envelope properties and the control settings, the most energy-efficient 
solution with robust energy performance was achieved. According to the results, the 
performance of the optimum solution not only had 81.5% lower variation (less sensitivity to 
climate uncertainty) but at the same time 14.4% lower mean value of energy use in 
comparison to a solution that was compliant with a recent construction standard (ASHRAE 
90.1-2016). Less sensitivity to climate uncertainty means better robustness against climate 
change and simultaneously keeping a high performance.  

This PhD work is a step towards practical tools for designing climate robust buildings, and 
as demonstrated, efforts at national levels for developing standardised weather data sets 
representing typical and extreme conditions is crucial for such purpose. The simplicity and the 
low computational demand of the process ascertain the feasibility and applicability of this 
method. The approach can be used at any stage of the design process and can help architects 
and engineers to improve robustness of their design against future climate uncertainties. The 
work is easily extensible to develop further robust design methods for other sources of 
variations than climate and other target performances than energy. 
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Abstract

Many scientific evidences have shown that Earth’s climate is rapidly changing. By 2050, European Union is aiming to 
significantly reduce greenhouse gas emissions (GHG) in the building sector. Achieving this target might help the mitigation of 
global warming, but the climate change seems inevitable. This means that both new and refurbished buildings should be able to 
face those conditions that they are going to experience during their lifetime. Therefore, any building design should be checked 
both for current and future climate scenarios. This study describes the use of a downscaling method named morphing to generate 
future weather scenarios and intends to support the design process of a deep energy retrofit of a day care center in order to 
improve the energy and thermal comfort performance of the building under the current and future weather scenarios. The retrofit
concept of the building also includes hybrid ventilation, automated solar shading, lighting controls and renewable energy 
generation systems. 
© 2015 The Authors. Published by Elsevier Ltd.
Peer-review under responsibility of organizing committee of the International Conference on Sustainable Design, Engineering 
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1. Introduction

The 195 countries were participating in the 2015 United Nations Climate Change Conference (COP 21) in Paris 
recently agreed on a set of global actions to limit the global warming below 1.5 °C with respect to the pre-industrial 
period [1]. The recent assessment report by the Intergovernmental Panel on Climate Change (IPCC) highlights the 
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considerable technological, economics and institutional challenges that are required to achieve this goal [2]. 
Moreover, designers and managers of the built environment have to take into account the forthcoming changes since 
the global warming can cause extreme conditions such as summer overheating and a substantial shift from space 
heating to space cooling both for existing and new buildings in temperate, winter-dominated climates [3]. IPCC 
developed future climate scenarios based on possible future GHG emissions. These scenarios are considered as most 
likely future global conditions. In order to make these scenarios suitable for the building sector, local scenarios are 
required. Belcher et al. [4], developed a methodology called ‘morphing’ that generates future weather scenarios with 
an hourly resolution from general circulation models of the atmosphere, which have a monthly resolution. In this 
work, three different future weather scenarios for the city of Milan in Italy were developed using IPCC scenarios and 
the morphing method. Such three scenarios, namely 2020, 2050, and 2080, are used to assess the deep energy retrofit 
design of a day care center [5], against future climate change. To date, in the design process of high-performance 
buildings, typical meteorological year are mostly used, and little attention has been reserved to future weather 
projections. Robert and Kummert [6] have shown that a net-zero energy building, designed under typical weather 
conditions, can miss the net-zero energy target in future projected years. The focus of this paper is to evaluate the 
behavior of a net-zero energy day care center under future weather scenarios, in terms of energy and thermal 
comfort. To this aim, the long-term thermal discomfort indices proposed in the European standard EN 15251 [7] are 
used to assess indoor thermal comfort conditions and suitable climate severity indices have been applied to 
characterize the severity of the future weather scenarios. 

Nomenclature

ASHRAE  American society of heating, refrigerating, and air-conditioning engineers  
BPS  Building performance simulation 
CDD   Cooling degree-day 
COP  Conference of the Parties 
CV(RMSE) Coefficient of variation of the Root mean square error 
HadCM3  UK Met Office Hadley Centre coupled model version 3 
HDD   Heating degree-day  
HVAC   Heating ventilation and air conditioning  
IPCC   Intergovernmental panel on climate change 
MBE  Mean bias error 
PV  Photovoltaic 
SRES  Special report on emission scenarios 
TMY   Typical meteorological year  

2. Materials and methods 

A deep energy retrofit of a day care center was supported by building performance simulation (BPS) to improve 
the energy and thermal comfort performance of the building and to achieve the net zero energy balance under the 
current, typical and future weather scenarios.

First, an environmental monitoring of the building allowed to identify the most important deficiencies of the 
existing building and address the retrofitting concept. Then, BPS was used to support the retrofit design of a day 
care center and the consequent decision-making process. A model of the existing building was created and 
calibrated against both monthly measured delivered energy and hourly indoor air temperature [3]. Then, several 
refurbishment options were implemented in the model and compared in order to identify the best options to apply 
into the final retrofitting concept of the building, which includes hybrid ventilation, automated solar shading, 
lighting controls and a photovoltaic (PV) generation systems. The model of the existing building (also referred as 
the pre-retrofit model) was after that used as the reference to evaluate the energy saving and the thermal 
enhancement of the post-retrofit building under typical, current and future weather scenarios. 
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2.1. The case study: the day care center of Via Feltrinelli 11 

The day care center is a one-story rectangular building located in Via Feltrinelli 11 in Milan, Italy. It has two 44-
meter-long façades on southwest and northeast and two 23-meter-long façades on southeast and northwest. The 
building has a total gross area of 944 m2 and a net floor area of 855 m2. Around 58% of the net floor area is 
dedicated to the children activities and the remaining are staff and service areas. The total heated volume of the 
building is 3422 m3, and the building is characterized by surface to volume ratio (S/V) equal to 0.77 m2/m3. Table 1 
reports the designed values of the opaque and glazing components of the building envelope implemented in the 
numerical models representing the existing building and the retrofitting concept. 

Fig. 1. (a) Kindergarten plan view including the five monitored rooms; (b) picture of the southwest facade. 

     Table 1. Descriptions of the building envelope opaque and glazing components of the pre- and post- retrofit models. 

Building envelope component Description of the existing 
components

Pre-retrofit estimated 
U-value, W/(m2K)

Post-retrofit calculated 
U-value, W/(m2K)

Roof Pre-cast concrete slab 1.3 0.10

Vertical opaque wall Pre-cast concrete panel 1.2 0.10

Floor (facing an unheated basement) Pre-cast concrete slab 1.3 0.30

Windows Clear double glazing + Aluminum 
frame without thermal break 

5.8 0.73 

2.2. Environment monitoring of the building 

Currently, a natural gas boiler with metal radiators for heating are installed in the day care center, and no active 
cooling system is available. The occupants manually operate the windows to refresh indoor air all year round and 
cool down the building during summer days. In order to evaluate the thermal quality of the building envelope of the 
existing building, an inspection with an infrared thermal camera was performed during winter 2014. The analysis 
clearly showed a poor thermal resistance of the envelope due to a very low thermal insulation and the existence of 
noteworthy thermal bridges. The indoor environmental conditions of the building are under monitoring since July 
2014; it was therefore possible to note a very high drop of indoor air temperature (Figure 2b) during the Christmas 
holidays of 2014, because the heating system was switched off and the building envelope performance are poor. 
Carbon dioxide concentration was monitored in Room 4 (Figure 2a) to assess indirectly indoor air quality in the 
building. The result shows noticeable peaks after September with values considerably higher than the reference 
value of 700 ppm above the 400 ppm background level recommended by the standard ASHRAE 62 [8]. The 
recorded data shows that the buildings clearly needs a better ventilation strategy [9]. 
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Fig. 2. (a) Carbon dioxide concentration in Room 4; (b) Air temperature in Room 4 versus outdoor air temperature. 

2.3. Modeling and simulation of the pre- and post-retrofit numerical models of the building 

Modeling and simulation of the building were performed in the whole-building dynamic software EnergyPlus 
[10], version 8.3.0.1. Within the capability of EnergyPlus, the building model was created to reproduce in detail the 
geometry of the existing building, and the algorithms were selected in order to reproduce accurately physical 
phenomena. Two rounds of simulations were carried out, one for the pre-retrofit building model and the second for 
the post-retrofit building model to assess both the building models under typical, current, and future weather 
scenarios.

Regarding the existing building, it was modeled without mechanical ventilation and cooling systems, and, hence, 
the whole building was modeled to be passively operated during summertime. According to the Italian law DPR 412 
[11], in Milan, heating systems can be turned on during the period ranging from 15th October to the 15th April. This 
period was adopted to schedule the operation of the heating system, and, during the rest of the year, the model was 
simulated in free-running mode. The heating set-point temperature was set according to the design values 
recommended by EN 15251 and based on the Fanger comfort model. The internal gains are heat produced by 
occupants, electrical equipment, and artificial lighting. Then, the pre-retrofit model was calibrated to provide 
consistent and reliable simulation outcomes. Two calibration processes were carried out, following the ASHRAE 
Guideline 14 [12]. In the beginning, the pre-retrofit model was calibrated based on the monthly measured delivered 
energy. The model was then refined with a second calibration using hourly measured indoor air temperature as the 
benchmark.

The post-retrofit building was simulated in two configurations: the first configuration assumes that no mechanical 
cooling system is installed, and the building is in free-running during summertime while the second one assumes 
that an ideal reversible air-to-air heat pump is installed. Hence, the building is mechanically conditioned throughout 
the year. The cooling set-point temperature is set according to the design values recommended by EN 15251 and 
based on the Fanger comfort model. In the two post-retrofit building models, a PV system is included. The 
generation system is assumed to be adequate to meet the net-zero energy target expressed in primary energy and 
calculated on a yearly basis. 

2.4. Generation of the future weather scenarios 

In this paper, the approach proposed by Jentsch et al. [13] is adopted. They developed a tool called 
CCWorldWeatherGen that provides future weather projections with an hourly resolution. Such future weather data 
are suitable for being used in BPS. The calculation method implemented in this tool uses three factors: first, the A2 
emission scenario that is developed by the Special report on emission scenarios (SRES) of IPCC working group 3 
[2]. Second, the UK Met Office Hadley Centre Coupled Model version 3 (HadCM3) [14], and third, a downscaling 
method called morphing, which was introduced by [4]. This calculation method is applied in the Typical 
Meteorological Year (TMY) file to obtain hourly weather data for the three future scenarios in 2020, 2050 and 2080. 
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In summary, five different scenarios are created: the typical weather file (TMY), the monitored weather file for the 
year 2014, and three weather projections for the years 2020, 2050, and 2080. For each scenario, heating degree-day 
(HDD) and cooling degree-day (CDD) are calculated and used to evaluate their climate severity (Table 2). 

     Table 2. Comparison of climate severity of the typical, current and future weather scenarios. 

Parameter (unit of measure) TMY 2014 2020 2050 2080 

HDD (°C h) 3002 2274 2718 2384 1988 

CDD (°C h) 3 45 26 116 289 

2.5. Assessment of the energy and thermal performance of the building models 

Since the existing building is operated in free-running mode during summer, to assess the enhancement of the 
post-retrofit concept a long-term thermal discomfort index is used for the thermal comfort assessment [15]. The 
Percentage out of range method, proposed by the European standard EN 15251, was used to assess the building 
thermal performance, although it is characterized by some limitations [16,17]. It calculates the percentage of 
occupied hours when the indoor operative temperature falls outside of a given thermal comfort category. This index 
is symmetrical, i.e. it measures both overheating and undercooling occurrences [17]. Moreover, EN 15251 suggests 
the use of Category I for spaces occupied by very sensitive and fragile people, such as day care centers. 

For the second configuration of the post-retrofit model, since the building is assumed fully conditioned, the 
energy needs for space heating and cooling, before and after the retrofit, are compared in the typical, current and the 
three future weather scenarios. 

3. Results and discussion 

The calibrated model of the existing building reproduces the general thermal behavior of the actual building with 
a good agreement (Figure 3). The calibration process comprised two subsequent calibrations. The first calibration 
was based on monthly energy use over a 1-year period (2014) and showed a Mean bias error (MBE) and a 
Coefficient of variation of the Root mean square error (CV(RMSE)) equal respectively to MBE = 3.7 % and 
CV(RMSE) = 11.6 %. According to ASHRAE Guideline 14, a numerical model can be considered calibrated if 
MBE and CV(RMSE) are lower than 5% and 15% correspondingly, for monthly data. In order to further refine the 
model and to reduce the uncertainty, a second calibration run was carried out for the hourly indoor air temperature 
measured in Room 4. In the second run, the best building variant showed MBE = 0.8 % and CV(RMSE) = 4.2 %. 
ASHRAE Guideline 14 recommends that MBE has to be lower than 10% and CV(RMSE) has to be lower than 30% 
for hourly data.  Therefore, the model is also calibrated in terms of hourly temperatures. For further details on the 
calibration procedure of the model, please refer to [3]. 

Fig. 3. Comparison of simulated and monitored indoor air temperatures in Room 4. The shaded area is the measurement uncertainty of ±0.5 ºC. 
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3.1. Post-retrofit model simulated in free-running mode during summer under typical and future weather scenarios 

In this first simulation round, the building has been simulated in free-running during the period 15th May to 15th

September. The obtained results provide information on the period in which the building might experience thermal 
discomfort due to overheating. Figure 4 shows the indoor operative temperature contrasted with the exponentially-
weighted running mean outdoor temperature only for the occupied hours. Although the Category I is suitable for a 
day care center according to EN 15251, all three categories proposed by such standard are depicted in Figure 4, to 
show the effect that the selection of the comfort category can have on the building assessment [18]. According to the 
simulations, the energy retrofit design concept for the existing day care center performs quite well concerning the 
overheating issue during the summer period under the current year (2014), TMY and 2020 scenarios. In 2050 and 
2080 scenarios the temperature falls outside the upper thresholds of the comfort categories. 
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Fig. 4. Comparison of the running mean of the outdoor temperature and the indoor operative temperature in the five weather scenarios. In red the 
conditions referring to the existing building model and in blue the conditions referring to the retrofitted building model. 

According to the 2050 and 2080 projections, it is expected that the running mean of outdoor temperature will fall 
outside the applicability domain of the adaptive thermal comfort model as proposed by EN 15251. Furthermore, 
considering both upper and lower overshoots, the total amount of hours out of Category-I range increases drastically 
in the 2080 scenario, but the percentage of undercooling tends to decrease for future weathers accordingly to the 
global warming predictions. 

Figure 5 presents the difference between the pre- and post-retrofit situation of respectively primary energy usage 
( PE) and absolute difference of long-term thermal discomfort index ( LDI). It can be seen that the gain of energy 
performance between the post-retrofit and pre-retrofit conditions reduces in the future warmer conditions, whereas 
the thermal discomfort difference value increases considerably. It means that the post-retrofit building shows not 
only a much better energy performance but also a much lower occurrence of overheating conditions compared to the 
existing building, particularly under future climate scenarios.  
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Fig. 5. Difference of primary energy usages ( PE) and absolute difference of long-term discomfort index ( LDI) of pre- and post-retrofit models 

3.2. Post-retrofit model simulated in conditioning mode under typical and future weather scenarios 

The second round of simulations considers the post-retrofit building model fully conditioned throughout the year 
by assuming the installation of an ideal system that guarantees the achievement of the heating and cooling set-point 
temperatures. Figure 6 shows primary energy disaggregated by energy service for the whole building in the five 
weather scenarios under study. The primary energy conversion factors are assumed to be symmetric for the 
electricity delivered from the grid to the building and for the electricity generated by the photovoltaic (PV) system 
i.e. 2.18 kWhPE/kWhel [19]. Considering the TMY scenario, a PV system with a total capitation area of 120 m2 and a 
nominal efficiency of 13% was required to balance (over one year) the whole building primary energy. 

Fig. 6. Primary energy breakdown of the post-retrofit building including electricity generated by the PV system. 

Energy simulation indicates that global warming could determine, in Milan, a shift from heating dominance to 
cooling dominance. Furthermore, although the energy need for heating will decrease, the overall energy usage of the 
building will increase. Furthermore, in 2050 and 2080, the post-retrofit building concept might not be anymore 
compliant with the net-zero energy target if the capitation area of the PV system is not increased. Moreover, it is 
worth to be reminded that the performance decay of the PV system has not been modeled. 

4. Conclusions

The energy retrofit project for a day care center targeting the net zero primary energy balance and high indoor 
environment quality has been developed on the base of a TMY weather file. Such weather scenario synthesizes 
climate in the recent past, 1951-1970. Energy simulation of the pre- and post- retrofit building models were carried 
out under five weather scenarios: TMY, current (2014), and three future weather scenarios (2020, 2050 and 2080) 
projected according to the methodology proposed by [13]. The objective of the analysis was to investigate whether 
the chosen energy concepts that were selected on the base of typical/past climate conditions would be resilient to 
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future expected climate change. The study showed that the retrofitting concept of the building including hybrid 
ventilation, automated solar shading, lighting controls, renewable energy generation systems and improvement of 
the building envelope thermal resistance may result quite robust in the mid-term also in free-running during 
summertime. However, in the long-term, to face climate change effects, the installation of an active cooling system 
might be necessary. Regarding the assessment of the long-term thermal discomfort condition in a building, our 
analysis suggests that care should be taken in using symmetric indexes, since a design strategy targeting to reducing 
overcooling occurrences in the present weather might make the building less resilient to overheating in future 
climate conditions. 
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a b  s  t r  a c t

Climate  scientists have  developed and  refined climate  change  models on  a  global  scale. One of  the aims of

these  models is  to predict the effects of  human activities  on  climate, and  thus  the delivery of information

that  is  useful to devise mitigation  actions.  Moreover, if  they  can be properly downscaled  to a regional  and

local  level,  they might  be  useful to deliver support  for adaptation  actions.  For example,  they  may be used

as  an  input for  the  better  design of the  features  of buildings  in order  to make  them  resilient to climate

modification,  e.g., able  to passively  control  heat  flows  to produce comfortable  indoor  conditions not  only

in  the present  climate,  but  also  in future climate  conditions.  Taking into account the future  weather

scenarios  that show  an increase in the global  temperature  and  climate  severity,  a  likely consequence

on  building energy use will be  a  substantial shift  from  space  heating  to space cooling,  and  potentially

uncomfortable  thermal  conditions  during  the summer  will  became a  major challenge, both  for new  and

existing  buildings. In  this  paper,  a  deep energy retrofit  of a child  care  centre located in Milan  (Italy)  is

analysed  on the basis  of future  weather  scenarios; the analysis  aims to  identify to  what extent choices

that  are  made  nowadays  on  the basis  of a  typical  meteorological  year may succeed  to provide  acceptable

energy  and  indoor environmental performance  throughout the future decades. The  analysis  confirms that

climate  change  might  require the installation of active cooling  systems  to  compensate for  harsher  summer

conditions  over  a  long-term  horizon,  however,  in the  mid-term,  passive  cooling strategies  combined

with  envelope  refurbishment  may still  guarantee  thermally comfortable  conditions,  and  they will reduce

energy  cooling needs  when  active cooling  is  eventually  installed.

©  2016 Elsevier B.V. All rights reserved.

1. Introduction

The average temperature of our planet is increasing rapidly.

According to the analysis performed by NASA in 2015, the year 2014

was the warmest on record (since 1880), and this trend is expected

to continue over the long term [1].  At the beginning of 2016, NOAA

and NASA reported that 2015 was by  far the hottest year on record

globally. NOAA [2] also reported that “During December [2015],

Abbreviations: ASHRAE, American Society of  Heating Refrigerating and Air Con-

ditioning Engineers; CSI, Climatic Severity Index; CO2,  carbon dioxide; CDD, cooling

degree-days; HDD, heating degree-days; GCM, general circulation model; GCSI,

Global Climate Severity Index; HadCM3, UK Met  Office Hadley Centre Coupled Model

version 3; HVAC, heating ventilation and air conditioning; IAQ, indoor air quality;

IPCC, Intergovernmental Panel on Climate Change; NASA, National Aeronautics and

Space Administration; NOAA, National Oceanic and Atmospheric Administration

(USA); TMY, typical meteorological year; TRY, typical reference year; IGDG, Italian

climatic data collection ”Gianni De Giorgio”.
∗ Corresponding author.

E-mail address: amin.moazami@ntnu.no (A.  Moazami).

the average temperature across global land and ocean surfaces was

2.00 ◦F (1.11 ◦C) above the 20th century average. This was the high-

est for December in the 1880–2015 record, surpassing the  previous

record of  2014 by  0.52 ◦F (0.29 ◦C). The December temperature

departure from average was  also the highest departure among

all months in the historical record and the first time a monthly

departure has reached +2 ◦F from the 20th century average”. The

working groups of  the Intergovernmental Panel on Climate Change

(IPCC) have developed scenarios for both contaminant emissions

and global warming [3,4];  these scenarios are able to describe

the likely average global conditions in the future. However, local

climate scenarios are required in order to design our built environ-

ment to be able to withstand future weather conditions. ASHRAE

fundamentals 2009 states in Chapter 14: “The evidence is unequiv-

ocal that the climate system is warming globally (IPCC 2007). The

most frequently observed effects relate to increases in average,

and to some degree, extreme temperatures” [5];  and it reports the

results obtained by Thevenard [6] according to which design condi-

http://dx.doi.org/10.1016/j.enbuild.2016.05.092

0378-7788/© 2016 Elsevier B.V. All rights reserved.
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tions, heating degree days and cooling degree days were all found

to have significantly modified values.

By adopting the morphing methodology presented by Belcher

et al. [7], three different future weather scenarios were developed

for the city of Milano, and the deep energy retrofit design of a child

care centre [8,9] was assessed against them, in order to evaluate

the building resilience to future local climate change.

2. Background

The Italian educational buildings stock consists of 52 000 build-

ings, of which about 63% were constructed before 1973 [10],  the

year of the first oil crisis, which provided the initial stimulus towards

the introduction of energy efficiency targets in building regulations.

The energy retrofit of such a large and old building stock, which is

mostly owned by local governments, can yield significant improve-

ments in energy efficiency (EE). Constructions from before the first

Italian law on energy performance in buildings (Law n. 373/1976),

especially in the 50′s and 60′s, are characterised typically by a very

poor performance. Hence, the case study presented in  this paper,

the retrofit of a building that was constructed in the 80′s, might

provide a conservative estimation of the energy savings that could

potentially be obtained if  a  similar retrofit strategy were applied

to buildings constructed between the 50′s  and 70′s. However, also

the envelope of the pre-retrofit child care centre, analysed here,

presents a poor thermal performance, as indicated in Table 1.

Educational buildings capable of high energy performance have

been built in the last decades, sometimes showing problematic

issues on the side of  thermal comfort (TC) and indoor air quality

(IAQ) [11]. For example, higher ventilation rates in order to improve

IAQ imply more energy use, and care in design and control is needed

to find a sensible balance. A potential ‘EE-TC-IAQ dilemma’ in  high-

performance educational buildings in the Netherlands has been

analysed through measurements and surveys and it is presented

in [12].

Another challenge is that even high-performance buildings and

zero-energy buildings are designed using current or historical data

such as typical weather data files e.g. Typical Reference Year (TRY),

Typical Meteorological Year (TMY) and, in the case of  Italy, weather

files of the Italian Climatic data collection “Gianni De  Giorgio”

(IGDG), all of which are based on weather data parameters mea-

sured in a time span of  the order of twenty years in the past [13].

This results in a lack of  analysis of the behaviour of those buildings

during their lifetime where climate patterns might be significantly

different from present and past patterns. In order to contribute in

filling this gap, this paper focuses on the resilience assessment of

a high-performance retrofit for a child care centre against future

weather scenarios. To  achieve this aim, in parallel to an  analysis

of energy performances, the long-term thermal discomfort indices

proposed in the European standard EN 15251 [14] are used to assess

the indoor thermal comfort conditions, and suitable climate sever-

ity indices have been applied to characterise the severity of a few

future weather scenarios.

2.1. Climate severity

Phillips and Crowe [15] define climate severity as  “an

unfavourable aspect of  climate that arises as a consequence of

certain adverse climate elements, occurring either singularly or

in combination, and persisting beyond some minimum duration

and/or at an intensity above some critical threshold”. It was  also

pointed out that “duration, frequency, extremes and variability are

important statistics that should be considered part of  any scheme

that attempts to quantify the  unfavourable aspects of  climate” [15].

One of the first examples is the Climatic Severity Index (CSI) that was

proposed by Markus et al. [16],  which defines, by  a  single number

on a dimensionless scale, “the stress placed on a building’s energy

system by any given climatic stimulus”.

For the specific case of buildings, the climate severity can be

expressed in various ways. A particularly simple way is by using

the Heating degree-days (HDD) index, i.e. the cumulative number,

computed over a year under ‘representative’ weather, of the prod-

ucts of a time interval (a day) and the sole positive difference

between an outdoor reference temperature (below which a build-

ing needs to be heated1) and the outdoor air temperature. In case

a conventional value for the building balance-point temperature is

assumed, e.g., 18 ◦C in Europe and 65◦F in the USA, the number

of HDDs becomes independent of  the features of the building and

can be used as a concise description of  the cold season climate;

it is often used for climatic classification purposes in legislation

[17]. The great diffusion of mechanical cooling systems fostered

the definition of  a similar index for the warm season, i.e. the Cool-

ing degree-days (CDD). However, not all of  the national legislations

have included a classification of climatic zones for cooling needs

[18]. The heating and cooling degree-days, based on a  conventional

choice of the building balance-point temperature, have the advan-

tage of  being independent from the specific building features and

being easily available, see  e.g., [19].  Caution should be used anyway,

and one should check how the tabulated values are calculated for

both the reference temperature and the time step for calculations

(hourly, daily) [20],  since these may  differ from country to coun-

try. Moreover, degree-days cannot capture the dynamic effects due

to solar irradiance (excluding the indirect effect on external tem-

perature), which depend on many factors including the building’s

orientation, the window-to-wall ratio, the optical properties of the

glazing systems (including fixed/movable solar shading devices),

the thermal mass of the building etc. Thus, degree-day analysis can

lead to large deviations when compared to energy simulations [21].

More detailed methods have been developed in order to include the

building thermal dynamics during the whole year in a single value

metric. For example, Burmeister and Keller [22] and Keller and Mag-

yari [23] propose an ordinary differential equation for an  energy

balance of the  indoor air temperature, which includes information

on the thermal mass, the  thermal transmittance of the external

walls, the  air change rate and the total solar energy transmittance

of transparent elements, condensed into three parameters named

the generalised loss-factor,  the time constant and the gain-to-loss

ratio. The equation also includes a  building-specific meteorologi-

cal function, which depends on the external air temperature, the

solar irradiance on the faç ade and the gain-to-loss ratio. The model

allows for the calculation of the free-running temperature of a

room, and it helps when making decisions at an early-design stage,

when it is  still not possible or desirable to handle a large number of

parameters. The objective is to “arrive at the lowest possible energy

consumption of a room, construct it  in a way, that its free-run-

temperature2 remains the most part  of the year within the comfort

range [. .  .]. This strategy minimises not only the energy need but

also the peak powers needed for heating and/or cooling” [23].

In recent years, an Italian research group led by  Terrinoni

developed a  new index that tackles the climate severity of  the sum-

mer season [18,24,25].  The proposed Summer CSI is determined

from hourly calculations and takes into  account the outdoor air

1 This temperature is called the building balance-point temperature and it is  defined

as the value of  the outdoor air  temperature at which, for a specified value of indoor

temperature (set-point), the total heat loss is equal to the free heat gain (from occu-

pants, lights, sun etc.). The  building balance-point temperature is  a consequence

of the functions and features of the building rather than just the outdoor weather

conditions.
2 Note of the authors: usually the free-run-temperature mentioned here is  gener-

ally called free-running temperature in the literature.
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Table 1
Description and properties of building envelope components in the pre- and post-retrofit configurations.

Building envelope component Pre-retrofit (calculated) U-value, W/(m2K) Post-retrofit (design) U-value, W/(m2K)

Roof 1.30 0.09

Vertical opaque wall 1.20 0.09

Window (glazing plus frame) 5.80 0.73

Floor (facing an unheated basement) 1.30 0.30

temperature, specific humidity and solar irradiation. The energy

requirement for cooling a space is normalised with respect to

the main characteristics of the building (geometrical dimensions,

global thermal transmittance and thermal capacity), thus being

independent from the characteristics of the building, and linearly

dependent on the climatic variables.

In the study by  Sánchez et  al. [26],  the climate severity met-

rics for winter and summer were assessed as the ratio between

the heating or cooling energy needs of  a  certain building and

the needs that the same building has in a reference site. The

indices are functions of the heating or cooling degree-days and the

mean accumulated global radiation over a horizontal surface. The

methodology was developed in particular for assessing the influ-

ence of the urban heat island effect on a  building’s energy use. With a

similar definition, Salmerón et  al. [27] introduce the Global Climate

Severity Index, combining the  heating and cooling end-uses and

weighting them in terms of  primary energy and of carbon dioxide

(CO2) emissions.

2.2. Building resilience to future weather scenarios

The CSI and its following modifications were introduced to

assess the performance of a building in  the  typical climate; how-

ever, as the consequences of  climate change become more and

more evident at a local level, the research interest now includes

a medium-to-long-term perspective. Given the lifetime of a build-

ing, predictions show that it will experience substantial climatic

change, and thus modelling for design and compliance to national

guidance should be  completed using both typical and future

weather scenarios [28].  Although de Wilde and Tian [29] remarked

that the HVAC systems are likely to be replaced every 15–20 years, a

time span in which the gradual effects of climate change might not

yet play a relevant role, this  is only true for the generation compo-

nents of those systems. Distribution and terminal devices usually

have a longer life; the life of opaque and transparent building enve-

lope elements are generally even longer, and the latter elements

should, hence, be dimensioned to be able to perform their function

in future climate scenarios.

Throughout the last decades, researchers have proposed vari-

ous ways to assess how buildings will react to climate. As pointed

out in [28], “the overwhelming majority of  studies on the impact of

climate change on buildings thus far look at relatively straightfor-

ward performance indicators: energy use for heating, energy use

for cooling, and building overheating. Both energy uses are often

combined into one figure for overall energy use, or  annual carbon

emissions”.

Two main approaches can be followed, which could be denom-

inated general and building-specific.

The former proposes indices that  are not strictly related

to the analysed building and rely on simple correlations and

the global thermal performance parameters of  buildings. For

example, Burmeister and Keller [22] trace back the thermal

behaviour of a room to three parameters: the generalised loss-

factor (accounting for the heat losses through the  envelope and

the ventilation/infiltration rate), the time constant and the (solar)

gain-to-loss ratio. The impact of these parameters can be studied

without detailing, e.g. the stratigraphy of the opaque components

or the optical properties of the transparent elements. The strength

of this approach is evidently the attempt to gain early hints that

can guide the pre-design phase of a building.

The latter focuses on the analysis of one  or a  few case studies

or of ideal typical buildings, and it relies on dynamic thermal sim-

ulation to obtain yearly time series for present and future climate

conditions. This approach needs a more detailed description of the

building’s characteristics, and thus it cannot be suitable in a pre-

design phase. However, it can enable a deeper understanding of the

thermal dynamics of  specific parts of the analysed thermal system

(meaning the building envelope and its services), and it may also

offer insights to guide a generalisation process for a broader build-

ing stock. For example, Wang and Chen [30] analysed the change in

the energy requirement for space cooling in buildings in  15  differ-

ent US cities that are located in seven climate zones by  the decade

throughout the 2080s. In particular, the typical buildings in this

study were an  apartment, a hospital, a hotel, a single-family house,

a small and a medium-sized office, a  restaurant, a mall and a school.

Although these indices are mostly dedicated to assess energy

use, they should always be accompanied by an  indication of the

thermal comfort levels that are expected to be experienced by the

occupants, in particular when dealing with sensitive and fragile

persons as e.g. handicapped, sick, very young children and elderly

persons [31].  As reported in [28],  “some work is emerging that

suggests a need to study alternative or more refined metrics”;

for example the work done by Lomas and Ji  [32] that correlates

resilience of passively cooled buildings to their life expectancy.

Thermal comfort assessments for the future climate cannot usu-

ally take into consideration the full spectrum of  outdoor conditions,

due to the inevitable inaccuracy of  predictions. Probably one of the

most complex thermal comfort-based index proposed so  far is the

Climate Severity Index by Murdock et  al. [33,34], which comprises

indicators for winter discomfort (wind chill, length of winter and

severity of winter) and summer discomfort (Humidex, length of

summer, warmth of  summer, dampness), as well as psychologi-

cal factors (darkness, sunshine, wet days and fog),  hazards (e.g.,

strong winds, thunderstorms and snowfall) and outdoor mobility

(e.g., restricted visibility). Evidently, this index was not intended

to only be used for indoor thermal comfort assessments, and it  has

a more general focus on perceived ‘weather-related’ well-being.

While offering a good attempt at a comprehensive evaluation of the

impact of  climate severity on personal thermal comfort, the  index

presents drawbacks, such as the need for very advanced weather

predictions and the strong impact of weighting coefficients when

combining factors in the global index.

In the field of indoor thermal comfort assessment, the general

trend is to adopt long-term thermal discomfort metrics (e.g., [31]),

such as indices that refer to thermal comfort models or simpler

criteria that compute the number of hours outside certain fixed

temperature ranges. In general, more than fifteen long-term ther-

mal discomfort indices are available in  literature and standards, and

they can be grouped into four homogeneous categories: percent-

age indices, cumulative indices, risk indices and averaging indices

[35]. Unfortunately, their assessment capabilities are not aligned

and the selection of the index strongly influences the assessment

[36]. In the present paper, the thermal resilience of a building

under varying climatic conditions is evaluated by means of all-year,
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Fig. 1. Southwest faç ade of the child care centre.

Fig. 2. Building plan view including the five monitored rooms.

whole-building, and dynamic simulations; and it is expressed in

terms of:

• The energy need for space heating and cooling3 under typical and

future weather scenarios.
• The indoor operative temperature in free-running conditions

under typical and future weather scenarios.

3. Case study: the comprehensive energy retrofit of a  child
care centre

The object of the analysis is a child care centre that is occupied by

children who are 3–36 months old. It was built in the ‘80s in Milan,

Italy [8,9]. It is a one-story building with a simple rectangular base

(44 m long and 23 m  wide); the longest sides are facing south-west

and north-east (Figs. 1 and 2). Around 58% of the ground floor is

dedicated to children activities, and the rest is used for staff and

service areas. The building has: a gross floor area of  944 m2;  a net

floor area of 855 m2;  a gross heated volume of 3422 m3 and a shape

factor (S/V) equal to 0.77 m2/m3.

The existing building is a typical heavy-prefabricated facil-

ity, made of precast concrete panels that  include a thin layer of

polystyrene foam. The U-value of the walls before the retrofit is

estimated to be about 1.0 W/(m2 K). After the retrofit the faç ade will

be covered with prefabricated wooden modules. The modules are

highly insulated (with approximately 35–38 cm of  mineral wool)

3 The energy need for heating or  cooling is defined in EN ISO 13790 [37]. and EN

15603 [38] as “heat to be delivered to, or extracted from, a conditioned space to

maintain the intended temperature conditions during a given period of time”.

and include mechanical ventilation and automated solar shading

devices. The U-value of the external walls after the retrofit will be

in the order of 0.1 W/(m2 K).

The existing roof is a pitched metallic plate with no insula-

tion, placed upon a horizontal concrete slab (Predalles system). The

metallic plate will be removed and a  new insulation layer will  be

laid on the existing slab (approximately 38–40 cm of  mineral wool).

After the retrofit the U-value of  the roof will be in the order of

0.1 W/(m2 K).

The existing floor has been constructed using a precast concrete

slab with a linoleum finishing. The whole floor is above a  basement

space that is not heated. An insulation layer 10 cm to 15 cm thick

will be added to the side of the  slab that is facing the basement in

order to reach a U-value of  0.3 W/(m2 K).

The existing windows are made of an  air-filled double glaz-

ing unit, Ug ≈ 3  W/(m2 K), with aluminium frames without thermal

breaks, Uf ≈  6  W/(m2 K). In addition to the  low thermal perfor-

mance, the low airtightness of the existing windows causes a high

infiltration loss. During the retrofit, new high-performance win-

dows (with an overall thermal transmittance Uw =  0.73 W/(m2 K))

will be integrated in the prefabricated faç ade modules.

A natural gas boiler for heating is currently installed in the child

care centre in combination with metal radiators, whereas a  con-

nection to the local district heating system will be provided after

the retrofit.

No mechanical ventilation system is currently available in the

building, and the ventilation is accomplished by the manual oper-

ation of  the windows. A new decentralised mechanical ventilation

system coupled with highly-efficient double-flow heat recovery

units with a nominal sensible recovery efficiency of 0.80 will be

installed inside the prefabricated faç ade.

The building’s indoor conditions were monitored from July 2014

to July 2015 (Figs. 3  and 4), and the building envelope was  checked

with an infrared thermal camera. During the Christmas holidays

there was a large drop in the indoor temperature, and similar rapid

temperature drops appeared over winter weekends and during the

night-time when the heating system was  off. This is  evidence of the

poor thermal features of  the building envelope (Fig. 3).

CO2 concentration was  monitored in Room 4  (Fig. 4), which is a

common space where children play and spend a large part of their

time. Throughout August the building is unoccupied, therefore, the

recorded average value of 400 ppm may  be considered as the aver-

age background outdoor CO2 level. After September, noticeable

peaks have been recorded in the room, with values that substan-

tially exceed the reference value of 700 ppm above the background

level [39],  i.e. beyond 1100 ppm. This evaluation should be made

under steady-state conditions, however, the recorded peaks go far

beyond the threshold, showing that the  building needs a  better

ventilation strategy.

The amount of delivered energy4 [37,38] to heat the  space and

produce hot water was  gathered from energy bills for the heating

seasons from 2008 to 2015, showing an  average yearly value (nor-

malised with respect to the net floor surface of the treated zones) of

130 kWh/(m2 a) for heating and 30 kWh/(m2 a) for hot water. Deliv-

ered energy for heating shows considerable variations from year to

year as a function of the different climate severities. The delivered

energy in the form of electricity for the seasons from 2012 to 2014

was on average 35 kWh/(m2 a).

The data for the delivered energy, derived from the bills and the

indoor environment monitoring data, are coherent with the low

4 Delivered energy is  defined in ISO 13790 [37] and EN 15603 [38] as “energy,

expressed per energy carrier, supplied to the technical building systems through the

system boundary, to satisfy the uses  taken into account (heating, cooling, ventilation,

domestic hot water, lighting, appliances etc.) or to produce electricity”.
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Fig. 3. Outdoor air temperature and indoor air  temperature in Room 4 (used as  a proxy of the operative temperature) compared to the operative temperature ranges for

comfort categories according to standard EN 15251.

Fig. 4. For each day: maximum hourly CO2 concentration level in  Room 4  during occupation hours; indoor and outdoor air temperature values averaged over the occupied

hours.

thermal performance of the existing building envelope components

(Table 1) and heating and lighting systems; furthermore, no solar

control strategy has been implemented in the existing building,

and this clearly contributes to overheating during the hot periods.

Finally, the child care centre shows poor ventilation management

and a potential low level of indoor air quality (IAQ).

The energy retrofit strategy was, therefore, defined by means of

an integrated design process involving the architects of  the Munici-

pality of Milan and the authors, which analysed existing constraints

and targeted the following goals:

• Reducing the energy need for space heating.
• Reducing all of the energy uses by  improving the efficiency of the

building’s systems.
• Adopting passive strategies for cooling whenever possible, while

avoiding the installation of active cooling systems.
• Installing new grid-connected renewable energy generation sys-

tems.

• Improving IAQ by  installing highly-efficient decentralised ven-

tilation systems, and by implementing an effective ventilation

strategy.
• Ensuring adequate thermal comfort conditions all-year long.
• Reducing construction time to limit the disturbance or interrup-

tion of the educational service.

4. Methodology

Building performance simulation is a powerful technique to sup-

port not only the design of a new building, or the refurbishment

of an  existent one, but also in the  operation, diagnostics, commis-

sioning and evaluation of the building’s performance. In this work,

simulation has been used to compare various energy saving mea-

sures and refurbishment options in order to guide the definition of

the energy concept.

A numerical model of the existing building was created and

calibrated against measured delivered energy and indoor air tem-

peratures, then used to define the refurbishment concept of  the

building, and finally to estimate the  performance of  the renovated
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building under typical and future weather scenarios in free-running

and conditioned modes.

4.1. Numerical model calibration

Building performance simulation tools are increasingly versa-

tile and are able to implement a considerable number of physical

models and several numerical resolution schemes. Their potential

for delivering useful forecasts of  energy and comfort performances

is only tackled through skilled modelling choices and an accurate

calibration process. Indeed, the building performance simulation

models that are not calibrated or calibrated only based on a

single benchmark such as energy use or indoor air tempera-

ture, can be significantly unreliable [40]. Calibration is  a process

where the results of a simulation are compared with measured

data to improve the agreement of the simulation outcomes with

respect to a chosen set of benchmarks through the adjustment

of independent parameters that are implemented in the building

model. Though calibration is fundamental, at present there are no

internationally-agreed requirements for evaluating the goodness-

of-fit of a building energy model, but a few recommendations have

been proposed in guidelines, such as the ASHRAE Guideline 14 [41].

The guideline introduces three basic methods to estimate energy

use and savings that result from the efficiency measures: the whole

building approach, the retrofit isolation approach and the  whole

building calibrated simulation approach (calibrated simulation).

The latter approach considers using simulation programs for the

energy modelling of pre- and post-retrofit buildings. The proposed

set-up for the calibration by  ASHRAE is:

1. Produce a calibrated simulation plan.

2. Collect data from the field.

3. Create a numerical model of the building.

4. Compare simulation model output to measured data.

5. Refine model until an acceptable calibration is achieved.

6. Produce baseline and post-retrofit models.

7. Estimate savings.

8. Report on observations and savings.

The ASHRAE Guideline 14 uses two indices to evaluate the

goodness-of-fit of the building energy model: the Mean bias error,

MBE, and the Coefficient of variation of  the Root mean square error,

CV(RMSE).

MBE is a non-dimensional measure of the overall bias error

between the measured and simulated data in a known time res-

olution, and it is usually expressed as  a percentage:

MBE  ≡
∑Np

i=1
(mi − si)∑Np

i=1
mi

[%] (1)

where mi (i = 1, 2, . . .,  Np) are the measured data, si (i = 1, 2, .  .  .,  Np)

are the simulated data at time interval i and Np is the total number

of the data values.

CV(RMSE) represents how well the simulation model describes

the variability in the measured data. It  is defined as:

CV (RMSE) ≡ 1

m̄

√∑Np

i=1
(mi − si)

2

Np
[%] (2)

where, besides the quantities already introduced in Eq.  (1), m̄ is the

average of the measured data values.

The evaluation of the accuracy of a building energy simulation

model is made according to the model’s conformity with the recom-

mended criteria for MBE  and CV(RMSE). According to the ASHRAE

Guideline 14, the simulation model is considered calibrated if it has

MBE that is not larger than 5%, and CV(RMSE) that is not larger than

15%, when the monthly data are used for the calibration, and MBE

not larger than 10% and CV(RMSE) not larger than 30% when the

hourly data are used for the calibration.

In the present work, in order to get a reliable building energy

model, and to increase the accuracy of the estimation of the

building’s performance, the pre-retrofit model of the building

underwent two subsequent calibrations. The building model was

first calibrated on the basis of the building’s measured monthly

energy use for heating in conditioned mode, then it was refined in

free-running with a second calibration with respect to monitored

hourly indoor air temperatures in a selected thermal zone of the

building (Room 4).  In both calibrations the input weather file for

the simulations was constructed by collecting and formatting the

data of a  weather station in Milano-Bovisa that is in a similar posi-

tion with respect to the city centre. The weather data were recorded

during the same time-interval of the monitored data for the energy

use and indoor temperature.

The calibration process requires the identification of  those input

variables that, at the  same time, are affected by  uncertainty and

can significantly impact on the chosen benchmark. Then, a scale

of variation has to be identified for each of them according to the

boundary conditions. Table 2 reports the five input variables, the

scale of variation and the step size tested in  the first calibration.

In order to identify the independent variables that, at  the same

time, influence the energy and thermal performances of the build-

ing and that are mostly affected by uncertainty, we referred to

Hopfe [42],  who identified through a sensitivity analysis the most

influencing variables on both energy performance and thermal dis-

comfort. However, in the present case study of calibration: the room

size is fixed and it is not a design variable; the  type of windows,

the power density of the electric equipment and electric lighting

and the number of occupants in the building have been precisely

quantified with surveys and an energy audit, and hence they are

not sources of significant uncertainty [8].  Therefore, the calibra-

tion process focused on testing independent variables that describe

infiltration rates, the thickness of the insulating layer of  opaque

envelope components and, we also added, the global seasonal effi-

ciency of the heating system. As for air infiltration, the ranges of

variation of the flow coefficient and flow exponent were set accord-

ing to the values reported in Tables A1,  A2 and A3 of  Annex A.

The thickness of  the insulating layer was based on geometric con-

straints due to the entire thickness of the  components, which were

measured during the energy audit. Finally, the range of  variation of

the global seasonal efficiency of the heating system was deduced

from calculations based on the Italian standard UNI TS 11300-2

[43] according to the components that are actually installed in the

building. Table 2  presents the independent variables, their range of

variation and the step size used in the monthly energy calibration.

According to the calibration problem described in  Table 2,  a

problem space of 1875 building variants was  investigated.

The second calibration inherited the model from the first cali-

bration, and it  was based on the air temperature monitored in Room

4 (Fig. 2) from the 15th May  to the 15th July. This period was specif-

ically chosen because the  pre-retrofit building was in free-running

from the 15th April to the 15th October. Also in the designed post-

retrofit model, the building is assumed to be in  free-running from

the 15th April to the  15th October. Three input variables were cho-

sen. Table 3  shows the independent variables, the range of variation

and the steps adopted in the second calibration based on hourly

temperatures.

The indoor air temperature is used as the control parameter for

the control strategies of the solar shading and window opening

devices, since in the pre-retrofit situation both adaptation possi-

bilities are manually operated by the teachers on the basis of their

personal feelings about the  indoor thermal condition. The range of

the variations was deduced from the analysis of  the monitored data.
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Table 2
Input variables for calibration based on monthly values of  delivered energy.

Source of uncertainty Independent variables (unit of measure) Range of variation

Air-leakage of joints

between building

envelope components

Flow coefficient (kg s−1 m−1crack @

1 Pa)

{Very poor, Poor,

Medium}a

Flow exponent (non-dimensional)

Insulation thickness Wall insulation (cm) {1, 2, 3, 4, 5}
Roof insulation (cm) {1, 2, 3, 4, 5}
Floor insulation (cm) {1, 2, 3, 4, 5}

Heating system Global seasonal efficiency (%) {45, 49, 53, 57, 61}
a See Annex A for the specific values of Flow coefficient and Flow exponent implemented in the simulations.

Table 3
Input variables for calibration based on the hourly indoor measured air temperature in Room 4.

Source of uncertainty Independent variables (unit of measure) Range of  variation

Control strategy of solar shading devices Indoor air  temperature (◦C) {22, 23, 24, 25, 26}
Control strategy of window opening Indoor air  temperature (◦C) {22, 23, 24, 25, 26}
Occupancy Number of occupants in Room 4 (people) {20, 25, 30, 35, 40}

The number of occupants in Room 4  is affected by  a  wide day-by-

day variability; hence, from a survey of the building staff and from

the analysis of the measured CO2 concentrations, the daily values

were deduced and used as the range of variation in the calibration

process.

According to the calibration problem described in Table 3, a

problem space of 125 building variants was investigated.

4.2. Future weather scenarios

The Special report on emission scenarios (SRES) of IPCC working

group 3 provides four storylines followed by four scenario families

for the future climate, and IPCC working group 1  developed Gen-

eral Circulation Models (GCM) as tools for simulating the response

of the global climate system to the increase of greenhouse gas con-

centrations [4]. The combination of  GCMs and SRES scenarios are

used to predict the future climate. Each storyline considers different

future directions. They cover a  variety of  future characteristics such

as social, economical and technological changes. In this paper, we

adopted the approach presented by  Jentsch et  al. [44], who  devel-

oped a tool called CCWorldWeatherGen that provides hourly future

weather data that is suitable for building performance simulation.

The calculation principles of this tool are based on the A2 emis-

sion scenario developed by  SRES, the UK Met  Office Hadley Centre

Coupled Model version 3  (HadCM3) [45] and a  downscaling method

called morphing, proposed by Belcher et  al. [7]. HadCM3 is one  of

the major GCMs that supports the IPCC reports, and the combina-

tion of this model with the A2 emission scenario is one of the most

widely used combinations in climate predictions [13]. The A2 rep-

resents a very heterogeneous world with continuously increasing

global population, regional economic development and technolog-

ical change that is fragmented and slower than in other scenarios.

This scenario has a continuous increase in greenhouse gas  emission

that causes the increase of  temperature with best estimate of 3.4 ◦C

at 2090–2099 relative to 1980–1999 [46].

The morphing method allows to downscale the monthly mean

predicted data that is created, in  this case by HadCM3, to a future

hourly weather data, by applying three transforming functions on

a ‘baseline’ hourly weather data file, e.g., a typical meteorological

year (having TMY  or other equivalent format): shifting, stretching

and the combination of shifting and stretching.

Shifting is used when the climate change scenario requires an

absolute change to the mean. It has an additive formulation and it

adds the HadCM3 predicted absolute monthly mean change (�xm)

to the TMY  hourly data (x0):

x =  x0 +  �xm (3)

Shifting is, for example, used to adjust atmospheric pressure.

Stretching has a  multiplicative formulation and scales the TMY

hourly data (x0) by a HadCM3 predicted relative monthly mean

change (�m). �m is a fractional change between the future monthly

values and the existing TMY  data according to HadCM3.

x =  �mx0 (4)

Stretching is used, for example, when there is a  change to either

the mean or the variance. The combination of shifting and stretching

is a linear combination of the two  previous transforming functions:

x =  x0 +  �xm + �m

(
x0 − x0,m

)
(5)

The combination of shifting and stretching is used when the mor-

phing has to be applied to both the  mean and the variance of the

hourly weather data, for example, in the case of  temperature shift,

by adding the HadCM3 predicted absolute monthly mean change,

it is stretched by the monthly diurnal variation of this parameter.

More detailed information is available in Ref [7].

In our case a typical weather data file  from Milano-Linate from

the Italian Climatic data collection “Gianni De Giorgio” (IGDG)

was downloaded from Ref. [47] and used as a baseline. The above

method was  applied on this file to obtain hourly weather data for

the three future scenarios in the years 2020, 2050 and 2080. For

each scenario, the cooling potential of night natural ventilation

was evaluated by calculating the number of summer night hours

when the outdoor air temperature falls below 20 ◦C.  Moreover, the

HDD and CDD values were calculated and compared to evaluate the

severity of the different scenarios (Table 4).

4.3. Set-up of the building energy simulations

The dynamic energy simulation of the building was performed

using the software EnergyPlus [48], version 8.3.0.1. Each released

version of EnergyPlus undergoes two major types of validation tests

[49]: analytical tests, according to ASHRAE Research Projects 865

and 1052, and comparative tests, according to the ANSI/ASHRAE

140 [50] and IEA SHC Task34/Annex43 BESTest method. The build-

ing model was  set-up with the aim to reproduce the actual

geometry of the building in detail, and the algorithms were

selected, among the ones available within EnergyPlus, with the aim
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Table 4
Comparison of the climate severity of the typical and future weather scenarios and assessment of the cooling potential of night natural ventilation.

Weather scenario

Parameter (unit of measure) IGDG 2020 2050 2080

HDD20 ◦C (◦C h) 3002 2718 2384 1988

CDD26 ◦C (◦C h) 3 26 116 289

Night hours when outdoor air temperature is below 20 ◦C (h) 468 368 266 168

to represent physical phenomena as accurately as possible, to the

expense of computing time.

In detail, the update frequency to calculate sun paths was  set to

1 day. The heat conduction through the  opaque envelope was  cal-

culated via the finite difference method with a 3-min time step [51].

The natural convection heat exchange coefficient near the external

and internal surfaces were calculated via the adaptive convection

algorithm [52], to meet the local conditions of each surface of  the

model. We  chose an initialisation period of 25  days, rather than the

default value of seven days, to reduce the effect of  the thermal ini-

tialisation of the model. The voluntary ventilation and involuntary

air infiltration were calculated with the AirflowNetwork module to

better estimate the contribution of  natural ventilation due to both

infiltration and opening of the  windows.

Two sets of simulations were carried out. During the first set,

the model was simulated in free-running mode to assess the per-

formance of the building envelope by itself, and passive strategies

in the typical (IGDG) and in the future climates. Then, the second

set was simulated adding to the model an  ideal active system which

ensures that indoor operative temperature is maintained at the

chosen winter and summer set-point temperatures during occupa-

tion hours. According to the Italian law [17], in Milan, the  heating

season ranges from the 15th October to the 15th April. No indi-

cation is provided by legislation on the length and start date of

the cooling season. Following the analysis and suggestions in [53],

the authors decided to use the  period from the 15th May  to the

30th September as the ‘summer’ period, this being the time inter-

val in which the 15-day mean sol-air temperature is higher than

the summer set-point temperature. Furthermore, the building was

considered unoccupied during all national holidays, weekends, and

during August due to the summer vacation, according to the actual

schedule.

In the pre-retrofit model used for the monthly energy calibra-

tion, the heating set-point for the indoor air temperature was set

to 21 ◦C according to the data gathered from the building survey.

In the post-retrofit model used in a conditioned mode for the cli-

mate resilience assessment, (i) the heating set-point for the indoor

air temperature was set to 20 ◦C according to the requirement set

by the Italian law DPR 412 [17],  and (ii) the cooling set-point for the

indoor operative temperature was set to 24 ◦C, taking as reference

Table A3 of EN 15251; the rationale for this choice is discussed in

the next paragraphs.

There is ample debate and continuous progress on thermal

comfort models and their implications on building design, which

eventually will translate into a further revision of the standards

(both EN and ASHRAE). Among the open issues one might list:

• The Fanger model was derived on the base of a necessary condi-

tion of thermal balance and additional conditions, namely two

correlations, obtained by  observing subjects in thermal com-

fort. One correlation relates mean skin temperature and activity

level, and the second relates evaporative heat loss and metabolic

activity. The two correlations were derived by  analysing data

regarding American college-age subjects in controlled climate

chamber (no quantitative correlation index was  given) and

later compared with similar experiments involving 128 Danish

college-age subjects with a mean age of  23 years and 128 elderly

subjects with a mean age of  68 years. Specific data regarding small

children were not part of the dataset [54]. Therefore, van Hoof

[55] underlines that “the PMV  model applies to healthy adult

people and cannot, without corrections, be applied to children,

older adults and the disabled”. Some studies that have been pub-

lished recently deal with the  comfort perception and preference

by children attending kindergarten or primary school [56–59]. In

general, they point to a possible lower acceptance of warm con-

ditions by children compared with adults, but the conclusions

are based on various methodological attempts to translate the

ASHRAE comfort sensation questionnaire in terms and images

accessible to children (hence potentially affected by some seman-

tic distortion) and on corrections to take into account differences

in metabolic rate and body area between children and adults. The

need for further research is proposed in the cited papers, and none

of them reports evaluations on children 3–36 months old.
• From statistical analysis of the recognised international thermal

comfort survey databases (ASHRAE RP-884 database, SCATs the

Smart Controls And Thermal Comfort database,  BCC Berkeley City

Center project database), some researchers have suggested that

the EN 15251 category I, ranging between PMV  values −0.2 and

+0.2 (which is called category A in ISO standards), might be too

narrow to actually be perceived by subjects [60].  The authors con-

clude that: “In an analysis of high-quality field studies, the three

classes do not exhibit different comfort/acceptability outcomes.

The tightly air-temperature-controlled space (class A) does not

provide higher acceptability for occupants than non-tightly air-

temperature-controlled spaces (class B and C).”
• On the same issue of the operational significance of Category

A, Alfano et al. [61] performed an  analysis of uncertainty based

on error propagation assuming the sensors accuracy required

by EN ISO 7726. They conclude that: “the PMV range required

by A-category can be practically equal to the error due to the

measurements accuracy and/or the estimation of  parameters

affecting the index itself [62]; as a matter of fact,  the errors

accepted by EN ISO 7726 in terms of required accuracy give large

errors in the PMV  value, as in Fig. 2”.  The cited Figure does indeed

report uncertainties in the PMV  value of the order of 0.8–1.1, that

is comparable with the widths of the two  widest categories: Cate-

gory II and III  defined respectively by the limits −0.5 <  PMV  < +0.5

and −0.7 <  PMV  <  +0.7.

One consequence of this debate might have been the fact that in

EN 15251 the Category I, rather than being implicitly proposed as

the one of highest comfort levels as in ISO 7730, has been proposed

for “very sensitive and fragile persons with special requirements

like handicapped, sick, very young children and elderly persons”

[63]. However, no statistical analysis is proposed in EN 15251 to

support the applicability of  Category I to sensitive and fragile peo-

ple.

While a deeper understanding about comfort categories and

children thermal sensations and expectations is being developed,

in everyday practice a designer has anyway to choose a reasonable

set point during the warm season. A national design value for the

cooling set-point is not available in Italy; the value of 24.0 ◦C for

indoor operative temperature was adopted for this analysis. This

value was  chosen taking into account Table A2  of  EN 15251 entitled



L. Pagliano et al. /  Energy and Buildings 127 (2016) 1117–1132 1125

Recommended indoor temperatures for energy calculations, which

recommends indoor temperature be  in the range 22.5–24.5 ◦C for

kindergartens in Category I, assuming clothing insulation of 0.5 clo

and a metabolic rate of 1.4 met  correspondent to standing-walking

activity.

4.4. Thermal comfort assessment of the post-retrofit building

model

A few long-term thermal discomfort indices proposed by the

EN 15251 are used to assess the performance of the post-retrofit

building model operated in free-running mode. Specifically, the

Percentage outside the range method and the Degree hours

criterion are suitable to that purpose. The former provides a quan-

tification of the fraction of time during which the indoor operative

temperatures exceed the given thresholds that depend on the cho-

sen comfort category. This index is symmetrical, i.e. it measures

both overheating and undercooling occurrences. The Degree hours

criterion provides a quantification of the magnitude of  the over-

heating phenomenon by summing over the considered period, for

each occupation hour, the product of time and the temperature

difference of the indoor temperature from the upper temperature

limit of the chosen comfort category. This index is asymmetrical,

i.e. it measures only the magnitude of  overheating occurrences. For

a more detailed description of  the indices refer to Ref [35].

In the case where the post-retrofit building model is condi-

tioned, an ideal system provides all of the energy needs required to

meet the winter and summer set-point temperatures. The perfor-

mance of the building in the typical and future climate scenarios

is assessed using as a metric the energy need for heating and cool-

ing (that is the energy to be delivered to the conditioned spaces in

order to meet the thermal comfort conditions specified in Section

4.3).

5. Results and discussion

First, the results of  the calibration of the  numerical model

are presented to show the reliability of  the subsequent analyses.

Then, the thermal behaviour of the post-retrofit building model in

free-running mode under typical and future weather scenarios is

proposed in order to assess how long the building might be oper-

ated in a purely passive way without affecting the thermal comfort

conditions of the occupants. These results also highlight the evolu-

tion of the building’s passive behaviour in future weather scenarios,

where, progressively, the summer overheating issue will become

dominant. Since the results show that the building cannot rely

solely on passive strategies (currently because of space heating,

and in the future also because of space cooling), the  energy need

for heating and cooling the building is calculated assuming that the

building is in a fully conditioned mode. These analyses show how

the energy need for space heating and cooling will probably vary in

future scenarios, implying significant challenges for designers and

building managers.

5.1. Calibration of the pre-retrofit building model

The pre-retrofit model was calibrated in order to provide reliable

simulation outcomes. Two calibration processes were carried out

in order to increase its estimation accuracy. Specifically, the model

was first calibrated on the basis of  measured monthly delivered

energy for heating in  a conditioned mode, then the best building

variant after the first calibration was refined further by  a second

calibration, where it was operated in a free-running mode. The

benchmark of the second calibration was the  hourly indoor air

temperature that was measured in Room 4.

The results of the  first calibration are: MBE  and CV(RMSE) of the

monthly delivered energy over the  calibration period (year 2014)

for the pre-retrofit model are equal to 3.7% and 11.6%, respectively,

hence the model satisfies the  criteria recommended by the ASHRAE

Guideline 14  for the monthly data.

Then, the final  combination of  the best values for the indepen-

dent variables provided values of MBE  and CV(RMSE) equal to 0.8%

and 4.2%, respectively. Therefore, the model can be  considered cal-

ibrated according to the ASHRAE Guideline 14. Table 5 reports the

values of the independent variables resulting form the calibration

process. Table 1  summarises the thermal performance of the build-

ing elements of the  calibrated building model.

Fig. 5  depicts the comparison between the simulated and the

measured indoor air temperature in Room 4.

The calibrated model of the pre-retrofit building reproduces the

general thermal behaviour of the actual building with a good agree-

ment, and it  catches the main peaks. It is characterised by  slightly

wider fluctuations and a more rapid variation of the indoor air tem-

perature as a consequence of  sudden changes in the outdoor air

temperature than  the actual building. This can partly be  explained

by the lower thermal inertia considered in the  model compared to

reality, since furniture and equipment were not modelled. After the

second calibration, the refined model is used as a baseline to sup-

port the design of the retrofit and create the post-retrofit building

model.

5.2. Performance of the post-retrofit building model under

current and future weather scenarios

After calibrating the pre-retrofit model, the post-retrofit model

of the building was  built and simulated under typical (IGDG) and

future weather scenarios. The performance of the post-retrofit

building was evaluated by first assuming that the building is oper-

ated in free-running mode by evaluating the long-term thermal

discomfort indices that are proposed by EN 12521 (the Percentage

outside the range method and the Degree hours criterion),  then in

conditioned mode by calculating the energy needs for heating and

cooling.

5.2.1. Post-retrofit model simulated in free-running mode

The building has been simulated in free-running mode, i.e. keep-

ing both the heating and the cooling systems off for the whole year.

The internal gains, i.e. the heat produced by  the occupants and the

internal electrical loads for lighting and appliances, are taken into

account in the simulations. The obtained results provide informa-

tion on the  periods in  which the building might potentially work in

free-running mode, and the frequency and intensity of  overheating

throughout the whole year.

Fig. 6 shows, only for the hours when the school is occupied,

the indoor operative temperatures in the building (averaged over

all of  the occupied zones) obtained by  simulation using the IGDG

weather file and the weather projections for 2020, 2050 and 2080,

which were plotted against the running mean of the external

temperature5 over the entire year. The hourly indoor operative

temperatures are compared to the EN 15251 comfort thresholds

for Categories I, II  and III for the warm period of the year.

As discussed in the previous parts of this paper, the child care

centre is occupied by  children who are 3–36 months old and the

information on thermal comfort for this age  range is scarce and it

has not yet been incorporated into thermal comfort models. Hence

the data obtained for the simulations over the IGDG and future

5 The running mean of the external temperature is defined in EN 15251 as the

“exponentially weighted running mean of the daily mean external air  temperature”

[14].
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Table 5
Values of the independent variables that characterise the calibrated building variant.

Source Independent variables (unit of measure) Scale of variation Best value

Air-leakage of joints between building

envelope components

Flow coefficient (kg s−1 m−1 crack @ 1 Pa) {Very poor, Poor, Medium} Poor

Flow exponent (non-dimensional)

Insulation thickness Wall insulation (cm) {1, 2, 3, 4, 5} 2

Roof insulation (cm) {1, 2, 3, 4, 5} 2

Floor insulation (cm) {1, 2, 3, 4, 5} 3

Heating system Global seasonal efficiency (%) {45, 49, 53, 57, 61}  53

Control strategy of solar shading devices Indoor air  temperature (◦C) {22, 23, 24, 25, 26} 24

Control strategy of window opening Indoor air  temperature (◦C) {22, 23, 24, 25, 26}  25

Occupancy Number of occupants in Room 4  (people) {20, 25, 30, 35, 40}  25
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Fig. 6. Indoor hourly operative temperature versus the running mean of daily outdoor temperature with  the building operated in  free-running mode, under typical (IGDG)

and future weather scenarios (2020, 2050, 2080).

weather scenarios are not only compared to Category I suggested in  EN 15251 for “very sensitive and fragile persons” [14],  but also

to the other two categories.
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into the active heating region and into the active cooling region.

According to the simulations, the energy concept developed for

the retrofit of the building works quite well with respect to over-

heating during the summertime in  the typical weather file (IGDG)

scenario and under a  near future scenario (2020); whereas the

indoor temperature is outside the upper thresholds of the comfort

categories in the 2050 and 2080 scenarios, but only for a few hours.

However, when considering both the upper and lower thresholds,

the amount of hours when the indoor operative temperature is

outside the adaptive comfort categories is quite large. In order to

quantify this behaviour, Fig. 7  shows the percentage of hours when

the running mean of  the outdoor temperature falls inside or out-

side of the range of the running mean of the outdoor temperature

where the EN adaptive comfort model is applicable. Three regions

are identified in this way: a heating region where the running mean

of the outdoor temperature is lower than 15 ◦C, an  adaptive region

where it is between 15 and 30 ◦C, and a cooling region where it  is

higher than 30 ◦C.

The simulations under the future scenarios show a significantly

important reduction in the hours when active heating is required

(44% of time in 2080 compared to 57% in IGDG scenario), and an

interesting expansion of the  period when the EN adaptive comfort

model can by applied (50% in the 2080 scenario versus 43% in the

IGDG scenario). Finally, the 2050 and 2080 scenarios show that in

2% and 6% of the occupied hours, respectively, the running mean of

the outdoor temperature falls outside of the domain of the adaptive

model on the upper side. During this time the EN adaptive com-

fort model cannot be used any more, and an active cooling system

should be used to ensure thermal comfort conditions. Therefore,

PMV has to be used again, according to EN 15211, with a  con-

sequent problem in the discontinuity of design implications and

temperature set-points, as  already discussed in Ref. [64].

Free-running indoor conditions change considerably in future

climates, as shown in the cumulative distribution of the indoor

operative temperatures that are presented in Fig.  8.

Focusing on the summer period, defined here as ranging from

the 15th May  to the 30th September, Fig. 9 shows the outcome of

the Percentage Outside of  the Range Method, which quantifies to

what extent the average indoor operative temperature falls within

the boundaries of  the EN 15251′s comfort categories during occu-

pied hours.

It might appear surprising that the percentage of the occupied

hours when the indoor operative temperature falls inside Category

I significantly increases (from 35% to 74%) in the future weather sce-

narios. However, since the Percentage Outside of the Range Method

is a symmetric long-term thermal discomfort index, it  records both

the occurrences due to overheating and those due to undercooling.

In order to better understand the source of thermal discomfort, the

frequency of overheating and undercooling referring to all of the

three comfort categories are represented separately in Fig.  10.

Limited to the climate of Milan, during the summertime and

with the post-retrofit building being operated in free-running

mode, when the  indoor operative temperature falls outside of a

given comfort category, in most of  the cases, the  cause of the ther-

mal discomfort is due to undercooling, defined as the condition

when the indoor operative temperature is below the lower limit of

a given comfort category. Only in the  2050 and 2080 scenarios, and

with respect to Category I and II, the occurrence of indoor operative

temperatures that are above the upper limit of those comfort cate-

gories are found as the source of  thermal discomfort for a maximum

of 5% of the occupied hours. If a designer were to try to optimise the

building using this index under the IGDG scenario, he/she might be

brought to select, for example, a configuration of the envelope with

a lower performance than considered here (in order to shift all of

the indoor temperatures during the summer upwards, under the

IGDG scenario). This would have the drawback of  increasing the

risk and occurrence of overheating when the weather evolves to a

warmer configuration in the future, as noticed in [64].  Symmetry

of comfort category is reported in both EN  15251 and ASHRAE 55,

but it seems to be more of a result of assumptions [65],  than the

outcome of statistical analyses. Indeed, a certain deviation from

symmetry in thermal preferences was already found by  Nicol and

Humphreys [66].  Furthermore, one might argue that overcooling

might be easier to manage than overheating, via  adaptations in

clothing in the first hours of the morning, and, in  this particular

building, by adopting a  finer control of  the night cooling ventilation.

Fig. 11 shows the intensity of  the deviation quantified by the

degree hours criterion proposed by EN  15251. It is an asymmetrical

index, since it cumulates only degree hours of  exceedance above the

upper threshold of a given comfort category (during the  summer) or

it cumulates only the degree hours of exceedance below the lower

limit of a  given comfort category (during the winter).

According to the simulations and the assumed morphing trans-

formation of the weather, the post-retrofit building model performs

considerably well in the summer conditions, and, even in 2080,

the overheating issues appear to be limited with only a few occur-

rences in July. However, it  should be  considered that the thermal

discomfort is assessed using the adaptive comfort model, thus the

lower and upper temperature thresholds vary according to the run-

ning mean of the outdoor temperature, which is rising in future

weather scenarios, i.e. 2020, 2050 and 2080. However, the improve-

ments of the thermal comfort models are outside of  the scope of

this paper. As  for the long-term indexes, our analysis suggests that

care should be taken in using the symmetric indexes, since focus-

ing on overcooling in the present weather might make the building

less resilient to overheating in the future climate conditions. This

reinforces the need to verify if the assumption of symmetry of  the

thermal comfort categories with respect to the optimal comfort
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Fig. 10. Percentage of hours with overheating or undercooling occurrences referred to the adaptive comfort categories I,  II and III  under IGDG and future weather scenarios

for the post-retrofitted building model in  free-running mode.

temperature is reliable, or  if amendments might be required on

this point.

Even with a high-performance envelope and well-designed pas-

sive techniques, the introduction of an  active cooling system (either

vapour compression, solar assisted absorption, evaporative or com-

binations) might become necessary as the climate gets warmer

and there are fewer opportunities for free-cooling with natural

ventilation [67]. However, the simulations lead to conclude that

the post-retrofit building model will be able to run in  purely free-

running mode during the summer (given the uncertainty related

to the prediction of future weather conditions) for the next 30

years approximately, while later on it  could operate in a mixed-

mode after the installation of a cooling system, i.e.  exploiting the

remaining free-cooling potential and relying on the active system

for critical conditions.

Ideally, the design of a new building or a retrofit should be  con-

ducted with this long-term vision, including, from the start, passive

physical features that are able to make the building’s fabric resilient

to future weather and a  plan for installing a cooling system when

it eventually becomes necessary. For example, in the case of new
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constructions, one might foresee and allow for the technical spaces

required for the later installation of radiant technologies and a

mechanical ventilation system. However, one should also consider

that, in the next 30 years, cooling technologies might evolve sig-

nificantly, making it  hard to determine now which systems (for

generation, distribution and diffusion) would be an optimal choice

in the future.

5.2.2. Post-retrofit model simulated in a conditioned mode

The second set of  simulations considers the building operated

in a conditioned mode for both the winter and the summer periods

assuming that the required energy is provided by an ideal system.

Therefore, the second set of simulations allows for the estimation

of the energy need for heating and cooling required by  the building

to maintain the set-point temperatures mentioned in Section 4.3

throughout the year.

Fig. 12 shows the yearly energy need for space heating and cool-

ing throughout the whole building under the four climatic scenarios

under study.

When the climate evolves to a warmer configuration, the energy

need for space heating is reduced, whereas the energy need for

space cooling increases. Table 6 reports the yearly energy need

for heating and cooling under the future weather scenarios, and

their percentage variations calculated with respect to the situation

corresponding to IGDG.

Fig. 12 and Table 6 show that the total energy need of  the build-

ing will shift towards space cooling as the climate gets warmer. Also

the national energy demand might shift from natural gas (which is

typically used for heating in Italy) to electric energy, to an extent

dependent on which fraction of  active cooling will be realised via

compression cooling. Moreover, the whole energy need for space

conditioning (heating plus cooling) will increase up to 25% in 2080

with respect to the IGDG scenario, and it will take an even higher

impact if it is considered in terms of primary energy. Therefore, it is

of national interest to manage the actual primary energy demand

of the building sector in the  coming years, which will  be influenced

not only by the performance of  the building envelope and energy

systems, but also by  the evolution and the penetration of renewable

generation technologies, as well as by the efficiency of the electric

grid.

6. Conclusions

An energy retrofit project for a child care centre targeting very

high energy and indoor environment performances has been devel-

oped on the basis of a typical (IGDG) weather file. IGDG and TMY

weather files were built using data from the climate conditions of

past decades. The building model has been simulated taking into

consideration the future weather scenarios developed according to

the morphing methodology applied to the IGDG file. The objective of

the analysis was  to investigate whether the chosen energy concept

would be  resilient to the expected future climate changes.

The analysis showed that the design approach based on the sub-

stantial exploitation of passive strategies and the improvement of

envelope thermal resistance and solar protections may  result quite

robust in  the mid-term weather scenario, justifying the initial cap-

ital investment. In the long-term weather scenario, however, in

order to be able to cope with the warmer outdoor conditions, the

building will probably have to integrate an active cooling system

(compression, absorption, evaporative etc.), hopefully optimised to

operate in a mixed-mode with natural ventilation.

As for the use of the  long-term thermal discomfort indexes,

our analysis suggests that symmetric indexes should be used with

caution as for the summer season, since focusing on overcool-

ing in present weather might make the building less resilient to

overheating in the future climate conditions. Rather, the physi-

cal features allowing the building to manage the summer loads

should be installed and their exploitation graduated through con-

trols to follow the evolution of  the climate. There might also be

scope for further analysis on whether the long-term thermal dis-

comfort indexes should consider comfort categories that are strictly

symmetrical with respect to the optimal comfort temperature.

In general, the analysis showed that in future weather con-

ditions a substantial shift from heating energy needs to cooling

energy needs would be registered in building operations in a tem-

perate climate such as Milan, Italy, which is a winter dominated

climate nowadays. A higher shift might be expected at lower lati-

tudes, and should be considered by  designers.

A design shift from ‘static’ buildings into buildings that can

respond and adapt to climate change is therefore required. More-

over, it should also be considered that the  applicability of the

comfort models available nowadays to child care centres and

kindergartens presents several limitations. The Fanger model was

developed in  climate chambers through interviews with young

adults. The adaptive model is suggested by EN15251 “for human

occupancy with mainly sedentary activities and dwelling, where

there is easy access to operable windows and occupants may  freely

adapt their clothing to the indoor and/or outdoor thermal condi-

tions” [14],  but young children do not have the same opportunities

as adults regarding behavioural adjustment, physiological acclima-

tisation and psychological habituation, as classified by  Brager and

de Dear [68], to adapt to the  thermal environment. For example,

they do not have direct control over operable windows, and can-

not easily adjust their clothing or get themselves hot and cold food

and drinks. In addition, they present a higher metabolic level when

compared to sedentary adults, given both by physiological aspects

and by activities/games performed at  the care centre. Thus, the

most important adaptive measures are due to their teachers, who

need to take decisions for the whole classroom, e.g., the operation

of windows and the scheduling of activities.
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Table 6
Yearly energy need for space heating and cooling for the post-retrofit building model under future weather scenario and percentage variations with respect to IGDG.

Weather scenario

Parameter, unit of measure IGDG 2020 2050 2080

Heating

Energy need, (kWh m−2a−1) 13.4 11.2 9.4 7.5

Variation with respect to IGDG (%) –  −16% −30% −45%

Cooling

Energy need, (kWh m−2a−1) 9.7 13.3 16.8 21.6

Variation with respect to IGDG (%) +37% +73% +123%

Heating and cooling

Energy need, (kWh m−2a−1) 23.1 24.5 26.2 29.1

Variation with respect to IGDG (%) – +6% +13% +25%

Considering this, the reported results might be slightly opti-

mistic and the need for an active cooling system could be required

earlier in buildings that are occupied by children, compared to

offices or other kinds of buildings. Meanwhile, there is probably

a need to improve the adaptive and the thermal comfort models in

general, and the long-term thermal discomfort indexes, in order to

provide the designers with better analysis tools to address climate

change in buildings design. Refinements of thermal comfort cat-

egories and guidelines on their applicability in various conditions

will be important both for the comfort objectives and for the energy

containment objectives of  the design process [69].
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Annex A. —Crack templates

Table of data with flow coefficient, C, and flow exponent, n,  are

presented for the following components: windows, doors, walls,

roof and floor.

The crack characteristics of  windows and doors are normalised

by opening perimeter lengths. Porosity of  walls, roof and floor has

been modelled as a single equivalent crack for each component
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Table A1
Predefined crack template values—Very poor.

Component Flow coefficient

(kg s−1 m−1crack @ 1  Pa)

Flow Exponent

(non-dimensional)

Internal windows 0.0030 0.60

External windows 0.0030 0.60

Internal doors 0.0030 0.60

External doors 0.0030 0.66

Internal walls 0.0190 0.75

External walls 0.0004 0.70

Roof 0.0030 0.70

Floor 0.0002 0.70

Table A2
Predefined crack template values—Poor.

Component Flow coefficient

(kg s−1 m−1crack @ 1  Pa)

Flow Exponent

(non-dimensional)

Internal windows 0.00180 0.60

External windows 0.00100 0.60

Internal doors 0.02000 0.60

External doors 0.00180 0.66

Internal walls 0.00500 0.75

External walls 0.00020 0.70

Roof 0.00015 0.70

Floor 0.00020 0.70

Table A3
Predefined crack template values—Medium.

Component Flow coefficient

(kg s−1 m−1crack @ 1  Pa)

Flow Exponent

(non-dimensional)

Internal windows 0.00014 0.65

External windows 0.00140 0.65

Internal doors 0.02000 0.60

External doors 0.00140 0.65

Internal walls 0.00300 0.75

External walls 0.00010 0.70

Roof 0.00010 0.70

Floor 0.00090 0.70

.
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, are today available on the market and enable individual 
end-users, to generate future projection weather data that can be used for executing building performance simulation. These 
software tools have been developed based on different assumptions. Therefore, the outputs of the two tools were generated and 
compared both graphically and using statistical methods to get to a better understanding of their differences and, hence, to 
identify possible consequences when applied to building performance simulation. The results suggest that, depending on the 
purpose of the design, care should be taken in using the above-mentioned tools. 
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Peer-review under responsibility of the organizing committee of the 11th Nordic Symposium on Building Physics. 

Keywords: Future weather generation tools, building performance simulation, climate change, future weather data 

1. Introduction

In 1976 National Climatic Data Center (NCDC) [1] provided one of the first weather data sets, called test
reference year (TRY) to be used in building performance simulation. Since then many attempts have been made by 
several organizations to create worldwide weather data sets such as WYEC, TMY, CWEC and CTZ that are readily 
accessible for users of energy simulation tools [2]. But the increasing recognition of climate change and its impact 
on built environment [3] has added a new dimension to this challenge, which is the increasing need for future 
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projection weather data sets for the local climates. To tackle this challenge, several methods have been developed. 
Guan [4] reviewed the methods used to prepare future weather data for the study of the impact of climate change on 
buildings. One of the practical and frequent used methods is to impose the predicted future climate data generated by 
a general circulation model (GCM) on the current typical weather data such as typical meteorological year (TMY) 
for a specific location. Since the output of GCMs are expressed with a monthly resolution and monthly values are 
not suitable for building performance simulation (BPS) purposes, Belcher et al. [5] introduced a downscaling method 
named morphing. Jentsch et al. [6] discuss the general validity of the morphing method and state that the extensive 
use of this method in the UK and its acceptance by the Chartered Institution of Building Services Engineers (CIBSE) 
[7] give some confidence in its principal applicability. However, De Dear [8] questions this method by highlighting 
its limitations and in general the uncertainties associated with all climatic impact research. 

The present study has three purposes. First, it provides users of BPS with the general idea of mentioned concepts 
and processes on generating future weather data. Second, it presents a comprehensive statistical analysis of the 
outputs from the two future weather generator tools available today on the market, CCWorldWeatherGen [6] and 

[9], which allows exploring relationships and differences among the data samples. Third, the study 
warns modellers that, since only a few variables are modified by one of the tools and the other is developed on an 
older IPCC report, these tools have to be used carefully and consciously. 

2. Methodology 

In order to give an overview of the two future weather generator tools and estimate the implications of their use 
in BPS, foremost, the background and calculation assumptions made for their development are described in Section 
2.1 and 2.2. Next, three European capitals are used to represent diverse climate conditions in Europe. Accordingly, 
in Section 2.3, three future projected periods are considered, namely near-term (NT), medium-term (MT) and long-
term (LT). The two tools generated the three future projected periods for each of the three selected cities. Finally, 
Section 2.4 presents the statistical metrics that are used to quantify the changes and differences in the output of the 
two tools. 

2.1. CCWorldWeatherGen tool 

In 2000, the Intergovernmental Panel on Climate Change (IPCC) published a special report on the emission 
scenarios (SRES) that provided projections of possible future climate change. These scenarios were used in the third 
and fourth assessment reports, respectively mentioned hereby AR3 [10] and AR4 [11]. Based on AR3 and AR4, 
Jentsch et al. [6] published their work on providing a methodology based on morphing technique for generation of 
future weather data for worldwide locations. The standard weather file formatted according to the EnergyPlus 
Weather (EPW) was selected as the baseline weather data for conducting the morphing procedure. EPW files are 
freely available for worldwide locations, which is as well one of the key attractiveness of this method.  

 Jentsch et al. [6] reviewed six GCMs under AR3 and 23 GCMs under AR4, which were available on the IPCC 
online data distribution center [12] by the time. They found that the most suitable GCM for applying their method 
was HadCM3 [13] for A2 emission scenario [10]. HadCM3 output is expressed as relative changes with respect to 
the data gathered in the period ranging from 1961 to 1990 that is taken as a timeframe. The tool job is to 
superimpose this relative change on the meteorological parameters stored in an EPW file format. 

In this study, weather files from international weather for energy calculation (IWEC) database are considered. 
IWEC database has been derived from measured weather data from 1982 to 1999, which is a different timeframe 
than HadCM3. According to Jentsch [6], this means that morphed weather files created using this EPW data are 
expected to overestimate the effect of climate change for the given location. Based on the above-mentioned 
methodology, the Sustainable energy research group (SERG) at Southampton university  introduced a Microsoft® 

The climate change world weather generator (CCWorldWeatherGen)  [14]. The tool is 
freely available and it allows users to generate future weather files for worldwide locations within three time slices: 
2011- - - 1961-1990). It 
transforms EPW files template into future weather data always in the EPW format ready for use in BPS tools. More 
details on generation of climate parameters for EPW future weather data can be find in [15] and [5]. 
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2.2.  

In their fifth assessment report, AR5 [16]
representative concentration pathways (RCPs). Based on two of the RCP emission scenarios (4.5 and 8.5), Arup and 

[17] that applies the morphing procedure on the 
outcomes of 14 GCMs (out of approximately 40 models) available under AR5 [18]. The tool provides future 
projection weather data for three time periods  2026- 2056-
2081- -2005  and two emission scenarios  RCP8.5 
and RCP4.5   Moreover, WeatherShift
that is constructed for each variable using linear interpolation between the model values [9]. This method was 
introduced earlier from  UK Climate Impact Programme (UKCIP) for the UK Climate Projections [19]. The CDF 
enables users to decide a probability assigned to the projections. In order to make comparable the outcomes of the 
two weather generation tools, 
AR5, which is in accordance with the A2 scenario used by SERG in the CCWorldWeatherGen. For the probability 
level, we chose 50% value, which means the median or as referred by UKCP09 as central estimate. Table 1 contrasts 
the different assumptions used in the two tools. 

     Table 1. Differences between the two tools. 

 CCWorldWeatherGen  

Projected time periods 2020, 2050, 2080 2035, 2065, 2090 

IPCC Report AR3 (2001), AR4 (2007) AR5 (2014) 

GCM(s) HadCM3 14 models 

IPCC emission scenario(s) A2 RCP4.5, RCP8.5 

Downscaling method Morphing Morphing 

Baseline period 1961-1991 1986-2005 

2.3. Projected periods 

The two tools use different time slices as described before. For the simplicity of this study, three projection 
periods  near-term (NT) projection, medium-term (MT) projection and long-term (LT) projection  have been used. 
The terminology was adopted from 

. 

2.4. Statistical analysis 

Statistical analysis was carried out on all the parameters contained in the EPW files using the software package 
IBM® SPSS® Statistics version 24. For the first step of the analysis, all the parameters contained in the EPW file 
were tested for normality using the Kolmogorov-Smirnov statistic given the sample size. Since the result of the test 
for all the parameters showed a non-normal distribution for p  0.05, non-parametric statistic methods were 
adopted to explore the differences among different sets of data. Secondly, to estimate the statistical significance of 
the differences between the baseline IWEC files and the generated future weather files, the Mann-Whitney U test 
was used. This test is the non-parametric test equivalence of the t-test for independent samples. Instead of 
comparing means of the two groups, as in the case of the t-test, the Mann-Whitney U test actually compares 
medians. If the significance level (p) provided by the Mann-Whitney U test is higher than 0.05 there is statistically 
significant difference between the two tested independent samples. 

Thirdly, to quantify the magnitude of the differences, the effect size (ES) was calculated. According to Cohen 
[20], ES is some specific nonzero value and the larger this value, the greater the degree to which the phenomenon 
under study is manifested, which in our case is a statistically significant difference. The effect size is defined as 
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zr
N

   (1)

Where r is the effect size, z N is the sample size. According to Cohen [20], ES is 
considered large if the value of r is larger than 0.5, medium if it is in the range between 0.5 and 0.1, and low if is 
lower than 0.1. 

The key variables considered for this assessment are dry bulb temperature, relative humidity and global 
horizontal radiation. 

3. Results 

The first step aimed at characterizing the data samples. As mentioned before the output of the tools are in EPW 
format, which contains several meteorological parameters in hourly values for an entire year. All meteorological 
failed the Kolmogorov-Smirnov normality test and are hence are not normally distributed. For this reason, data is 
described using the median and the interquartile range instead of using the mean and the standard deviation and is 
represented graphically using a boxplot. As an example, Figure 1 shows the distribution of the three key variables 
plotted solely for Paris in the three future projection weather scenarios as generated by the two tools. It allowed us to 
have a quick scan of the differences. 

Figure 2 shows, for the three key variables in the three selected locations, the hourly differences between the 
values of the long-term projected weather data and the values of the reference IWEC weather file. Pattern of the 
differences of the two tools emerge and show a substantial different implementation of the morphing method in the 
two tools. Next, the Mann-Whitney U test was used to estimate quantitatively the magnitude of the difference 
between the reference IWEC file and the future projection weather files. Table 2 reports the effect size of the 
changes as a result of this analysis. 

 

 

Fig. 1. Comparison of the outcomes of the two weather generation tools for the three meteorological parameters for the city of Paris.  
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Fig. 2. Hourly differences between the values of the long-term projected weather data and the values of the reference IWEC weather file  

Table 1. Comparison of the changes with respect to the reference IWEC file and indication of the effect size of the change. 
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4. Discussion and Conclusion 

The direct comparison of the distributions of values generated by the two future weather generation tools displays 
little differences between them (Figure 1), but, Figure 2 shows very different patterns in application of the morphing 
method although both tools recur to the same method to downscale the monthly values generated by the GCMs. 

After the comparison in Table 2, the two tools demonstrate to be substantially different and Weathershift only 
modifies the most important meteorological parameters (dry bulb temperature, dew point temperature, relative 
humidity, atmospheric pressure, global horizontal radiation, direct normal radiation, diffuse horizontal radiation, and 
wind speed). This aspect is of major importance when a modeler (designer, consultant, etc.) want to test the 
performance of a model that uses one of the other meteorological variables under future weather scenarios. 
Furthermore, Table 2 shows that a change in a variable might be not statistically significant in the near-term, but 
becomes statistically significant in medium-term and long-term, for example the global horizontal radiation in case 
of Paris for CCWorldWeatherGen or in case of Athens for WeatherShift . The effect size of climate change 
increases for higher latitudes, that is, although the net increase in temperature in Copenhagen is lower than in 
Athens, the relative temperature rise will be higher in the former city. 
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H I G H L I G H T S

• Assessing the methods for generating typical and extreme future weather files.

• Typical weather data sets can only predict long-term variations of climate.

• Extreme weather files are needed to assess short-term variations such as heatwaves.

• Extreme weather files are needed for a robust design in building and urban scales.

• Using only typical data underestimates peak load calculations considerably.
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Keywords:

Future weather files

Typical and extreme weather conditions

Climate uncertainty
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A B S T R A C T

Patterns of future climate and expected extreme conditions are pushing design limits as recognition of climate

change and its implication for the built environment increases. There are a number of ways of estimating future

climate projections and creating weather files. Obtaining adequate representation of long-term patterns of cli-

mate change and extreme conditions is, however, challenging. This work aims at answering two research

questions: does a method of generating future weather files for building performance simulation bring ad-

vantages that cannot be provided by other methods? And what type of future weather files enable building

engineers and designers to more credibly test robustness of their designs against climate change? To answer

these two questions, the work provides an overview of the major approaches to create future weather data sets

based on the statistical and dynamical downscaling of climate models. A number of weather data sets for Geneva

were synthesized and applied to the energy simulation of 16 ASHRAE standard reference buildings, single

buildings and their combination to create a virtual neighborhood. Representative weather files are synthesized

to account for extreme conditions together with typical climate conditions and investigate their importance in

the energy performance of buildings. According to the results, all the methods provide enough information to

study the long-term impacts of climate change on average. However, the results also revealed that assessing the

energy robustness of buildings only under typical future conditions is not sufficient. Depending on the type of

building, the relative change of peak load for cooling demand under near future extreme conditions can still be

up to 28.5% higher compared to typical conditions. It is concluded that only those weather files generated based

on dynamical downscaling and that take into consideration both typical and extreme conditions are the most

reliable for providing representative boundary conditions to test the energy robustness of buildings under future

climate uncertainties. The results for the neighborhood explaining the critical situation that an energy network

may face due to increased peak load under extreme climatic conditions. Such critical situations remain un-

foreseeable by relying solely on typical and observed extreme conditions, putting the climate resilience of

buildings and energy systems at risk.
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1. Introduction

Building performance simulation (BPS) empowers designers to

evaluate a proposed design under the probable climate conditions that a

building will face during its lifetime. Weather data defines the external

boundary conditions for a numerical building model. Detailed weather

data that, as a minimum, includes daily and hourly resolution is re-

quired to properly describe the dynamic energy behavior of a building.

There have been many attempts over the last 40 years by a number of

organizations to create standardized weather files for thousands of lo-

cations on the planet [1]. These files are readily accessible to users and

have formats that are suitable to be directly used in energy simulation

tools [2]. Weather files are usually built upon recordings of actual

historical weather data. Different weather files may, however, have

different baseline observation periods. These standardized weather files

provide BPS users with a single-year of typical weather data that re-

present typical regional climate conditions, based on a continuous time

span of 20 or 30 years of historical observed data. These weather data

sets are widely used and represent average conditions well enough.

They, however, to a large extent fail to represent extreme weather

conditions and to project future conditions, especially at the hourly

temporal resolution, as it has been shown by several studies [3–6]. As a

result, a number of methods have been developed to create future

weather files for BPS. These have been discussed in a review paper by

Herrera et al. [7]. The future weather files are used to study the impacts

of climate change on building performance, numerous works on this

having been published. Yau and Hasbi [8] reviewed the climate change

impacts on commercial buildings and arrived at the trivial conclusion

that, in general, buildings in regions with a projected increase in tem-

perature will, in the future, require more energy for space cooling and

less energy for space heating. Other studies revealed similar conclusions

for case-study buildings in Austria [9], Italy [10], United States [11],

China [12], and other locations around the globe. de Wilde and Coley

[13] discuss the relationship between climate change and buildings and

conclude that the majority of studies on the impact assessment of cli-

mate change on buildings look at few performance indicators, such as

energy use for space heating and cooling, and the risk of overheating.

There are, however, studies of the hygrothermal performance of

buildings under future climatic conditions [14], which investigate

performance indicators that highly correlate with air temperature and

moisture content [15], and that take into account several climate in-

dices such as air temperature, relative humidity, solar radiation and

cloudiness [16].

The Intergovernmental Panel for Climate Change (IPCC) created a

number of possible scenarios of future anthropogenic greenhouse gas

emissions based on given socio-economic storylines, to project future

changes in climate for impact and adaptation assessment. The first set

of scenarios were introduced in the IPCC Special Report on Emissions

Scenarios (SRES) in 1996 [17,18]. Later, in 2014, the IPCC adopted a

new series of emission and concentration scenarios called “Re-

presentative Concentration Pathways (RCPs)” [19]. These emission

scenarios are the input data used to provide initial conditions for the so-

called General Circulation Models or Global Climate Models (GCMs),

which are today’s most complex quantitative models for forecasting

climate change. GCM outputs represent averages over a region or the

entire globe with a spatial resolution in the range of 100–300 km2 and a

monthly temporal resolution. These data resolutions are not suitable for

direct use in BPS tools that require local weather data with hourly or

sub-hourly resolution. Therefore, GCM data need to be downscaled to

the appropriate spatial and temporal resolution. Indeed, all future

weather information with a spatial resolution of less than 100 km2 and

temporal resolution less than monthly values has been through a

downscaling process [20]. There are two main approaches to downscale

GCM outputs and generating data with a finer temporal and spatial

resolution. These are dynamical and statistical downscaling. After the

downscaling process, the generated years of weather data need to be

formatted according to a precise template to be readable by BPS tools.

One common approach is the method developed by Hall et al. [21] for

creating a typical meteorological year (TMY), which is derived from

30 years of weather data recordings. January for the TMY is copied

directly from the historical January data that has the closest match to

the 30-year average condition for January. This process is replicated for

Nomenclature

AR IPCC Assessment Report

ASHRAE American Society of Heating, Refrigerating, and Air-

Conditioning Engineers

BPS Building performance simulation

ECY Extreme Cold Year

EPW EnergyPlus Weather

EWY Extreme Warm Year

GCM Global Climate Model or General Circulation Model

IPCC Intergovernmental Panel for Climate Change

IPCC DDC IPCC Data Distribution Center

IWEC International Weather for Energy Calculations

PNNL Pacific Northwest National Laboratory

RCM Regional Climate Model

RCP Representative Concentration Pathway

SRES Special Report on Emission Scenarios

TDY Typical Downscaled Year

TMY Typical Meteorological Year

UKCP09 UK Climate Projections 2009

XMY Extreme Meteorological Year

Fig. 1. Analysis of literature that used BPS to assess the impact of climate change on the performance of the buildings (111 articles).
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the other months to produce 12months of the typical weather year.

Subsequently, some methods, for example the spline method, are then

adopted to smooth and link together the twelve monthly weather data

series. One of the main disadvantages of this method on climate change

impact assessment is its averaging nature: the generation of a typical

weather year neglects extreme weather conditions. We, in the last

decade, have experienced some of the warmest years on record [22].

Such conditions highlight the importance of considering extreme con-

ditions in the design and adaptation process of buildings and energy

systems for the future conditions. A probabilistic forecast indicates a

warmer than normal period for 2018–2022, temporarily reinforcing the

long-term global warming trend and increasing the likelihood of intense

to extreme temperatures, as happened in summer 2018 in Europe [23].

Failure in climate change adaptation can lead to costly short- and long-

term issues [24], such as blackouts due to energy supply disruption

[25]. Power failures can leave thousands of buildings without elec-

tricity or any means of space cooling, which can be fatal for the elderly,

very young, or the chronically ill people. The heat wave of the summer

of 2003 in Europe caused more than 70 000 heat-related deaths [26].

This is becoming increasingly important as the number of elderly

people continues to rise and the predicted occurrence of heat waves

increases [27]. These problems partly are arising from the fact that

existing buildings are not designed for atypical conditions, and their

expected performance is based on most-likely conditions. It makes their

performance to fluctuate significantly when outdoor climate conditions

fall out of typical conditions. That is why during a heat wave the

electricity demand soars and causes the energy systems at risk of

failure. Unfortunately, only a minority of scientific works and profes-

sional practices test their building design under conditions that include

extremes. We draw on the literature and selected studies that used BPS

to assess the impact of climate change on the performance of the

buildings (Fig. 1).

Fig. 1 was developed from the analysis of 111 scientific papers de-

tected after querying the Web of Science and Scopus databases. All

these papers have been published after 2001 and are listed in Appendix

A. Albeit considering extreme conditions in the design process seems to

be obvious due to the increase in their frequency of occurrence and

magnitude and also the high cost of possible damages, but according to

Fig. 1, 66% of the studies (73 articles) are based on only typical future

climate conditions. Furthermore, with regards to the downscaling

methods used for preparing weather files, 52% (58 articles) are based

on statistically downscaled data, 13% (14 studies) used directly data

from RCMs and 25% (28 articles) used the hybrid method. These

methods are described further in this study. Finally, 10% of the studies

(11 articles) used recorded data, which means they used recorded data

of an extreme year such as that of 2003 in Europe to study the impact of

extremes conditions. It is worth highlighting that 38% of all the 111

studies (42 articles) corresponding to 55% of all the studies that con-

sider extremes (21 out of 38 articles) are from the UK where Test re-

ference year (TRY) weather files representing future typical conditions

and near extreme Design Summer Year (DSY) weather files are provided

at national level. These files are generated using data from the UK

Climate Projections (UKCP) project [28]. Therefore, it seems that if

reliable future weather data sets are available at a national level, the

tendency to be used in building studies is very high.

As mentioned, adequate representation of long-term patterns of

climate change and extreme conditions is challenging, as there are a

number of ways of estimating future climate projections and creating

weather files. This study provides an overview of the major approaches

for creating future weather data sets based on statistical and dynamical

downscaling of climate models. For the first time, the effects of using

major available approaches for generating future weather files are

studied on the calculation of energy performance of buildings. The

building models were simulated in isolation and combined to create a

virtual neighborhood representing a neighborhood in Geneva. The in-

vestigation critically analyzes the magnitude of the difference between

impact assessments carried out using weather data generated by dy-

namical and statistical downscaling methods. It also investigates the

possibility and importance of using extreme weather years in BPS at

both the building and neighborhood scales. This will allow under-

standing the magnitude of the risk induced at large scale by not taking

into account possible future climate extremes. The main objective of

this study is to provide insight on which is the most reliable future

weather generation method to use in building energy simulations, en-

abling engineers and designers to test their building designs and

achieve designs that are less sensitive and more robust against climate

changes.

A total number of 74 future weather data files, which include typical

and extreme weather years, were generated for the city of Geneva,

Switzerland, to be used in the investigation. Geneva was chosen due to

the availability of the data and the possibility of having cold winters

and warm summers. Geneva furthermore reached a temperature record

of 41.5 °C (+5.4 °C above the average temperature) during the summer

heat wave in Europe of 2003 [29]. This makes an interesting site to

investigate in this work. The generated weather files were used to si-

mulate 16 commercial reference buildings proposed by the ASHRAE

Standard 90.1. Each of the buildings was simulated using the 74

weather files, which resulted in a total of 1184 simulation runs.

Afterwards, a virtual neighborhood was also created using a combina-

tion of the 16 buildings for a total of 85 buildings, to evaluate the

impact of the weather file typology on estimating the energy demand at

the neighborhood scale.

This paper is divided into five sections. Section 2 provides a short

background on downscaling GCM outputs to generate future weather

files to us in BPS (Section 2.1), and to creating typical and extreme

weather data sets (Section 2.2). Section 3 explains the methodology

used for performing the analysis applied in this study, details of the

generated weather files, building models, and virtual neighborhood

being given in Sections 3.1, 3.2.1 and 3.2.2 respectively. Results are

presented and discussed in Section 4, followed by Conclusions in

Section 5.

2. Preparing future weather data sets

2.1. Downscaling global climate models

Global climate models (GCMs) are numerical models of the physical

processes that characterize the global climate system, including the

atmosphere, oceans, cryosphere and land surface [30]. These models

are validated against past climate conditions to check if they can si-

mulate the evolution of the climate system by means of running re-

analyses like ERA-40 for validation. ERA‐40 is a re‐analysis of me-

teorological observations from September 1957 to August 2002 pro-

duced by the European Centre for Medium‐Range Weather Forecasts

(ECMWF) [31]. Once the model is verified and validated, it will set to

run (usually from 1870), picking initial conditions and forced by

emissions scenarios or Representative Concentration Pathways (RCPs),

which are based on different greenhouse gas emission scenarios de-

veloped by IPCC [20]. Results of GCMs are expressed at the global or

continental scale, and typically use long temporal resolutions such as

monthly, seasonal or annual periods. These scales are too coarse for

many applications and particularly for the building performance as-

sessment. Direct use of the GCM output in impact assessment is there-

fore not recommended due to recognized biases [32]. Buildings are

affected by the local climate, and some assessment methods may re-

quire environmental data even at the sub-hourly resolution [33]. Future

weather data sets at finer temporal and spatial resolutions than those

provided by GCMs are required to meet the needs of building engineers

and designers. As previously mentioned, there are two main approaches

to generating future weather data series. These are dynamical down-

scaling and statistical downscaling. There is a third approach that consists

of a combination of the two approaches and is referred as hybrid
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downscaling.

The flowchart in Fig. 2 displays the usual steps of the downscaling

process available today.

The downscaling process of GCMs provides climate data with higher

spatial and temporal resolutions. The procedure hence requires addi-

tional information and assumptions, which typically result in a propa-

gation of uncertainties. There are also a number of GCMs developed by

different institutes, generating future climate projections. The chaotic

nature of the climate system limits accurate interannual prediction of

global temperatures [23]. There are several uncertainties that affect any

impact assessment of climate change, such as uncertainties in the his-

torical relationship between temperature variability and economic

growth, the spatial pattern temperature change associated with the

level of aggregate emissions, and the future rate and pattern of eco-

nomic development [34]. Therefore, probabilistic approaches are

usually taken into account for the impact assessment of climate change,

considering several climate scenarios and uncertainties. The existence

of several models and uncertainties in simulating future climatic con-

ditions is an important challenge which should be considered in impact

assessment in all fields. This has been thoroughly investigated in pre-

vious works [14,16,35]. There is significant confidence that climate

models provide reliable quantitative estimates of future climate change.

This confidence comes from the fact that models are based on accepted

physical principles and also from their ability to regenerate observed

patterns of current climate and past climate change [36].

2.1.1. Dynamical downscaling

Dynamical downscaling derives local or regional climate informa-

tion using a Regional Climate Model (RCM). RCMs are numerical

models that require explicitly specified boundary conditions from a

GCM, or an observation-based data set (re-analysis). They simulate

“atmospheric and land surface processes, while accounting for high-

resolution topographical data, land-sea contrasts, surface character-

istics, and other components of the Earth-system” [37]. RCMs generate

climate information at a much finer resolution than GCM, down to

2.5 km2 [38]. This method has many advantages. It however also re-

quires a considerable amount of computational power and large storage

for the creation of the data sets. An RCM is nested into a GCM. The

overall quality of the outputs is therefore tied to the accuracy of the

underlying GCM [39]. Efforts were therefore made to quantify these

uncertainties by combining different GCM-RCM pairings and per-

forming series of simulations called ‘ensembles’. Examples of such ef-

forts are the ENSEMBLES [40] and EURO-CORDEX [41] projects. The

need to consider several climate scenarios rather than just one scenario

in the impact assessment of buildings has been highlighted in previous

studies [42,16]. The Rossby Centre Regional Atmospheric Climate

Model (RCA4) is used in this study. RCA4 has been running for the

European CORDEX domain at two different horizontal resolutions,

50 km2 and 12.5 km2. Downscaling of the ERA-Interim reanalysis data

are used to evaluate model performance in the recent past climate [43].

The verification process has been performed for the historical period

1961–2005 for which historical forcing was applied [44]. The model is

then used to perform simulations for different future scenarios in which

RCP scenarios have been applied to prescribe future radiative forcing.

For the purpose of this work, the output data from the combination of

four GCMs downscaled by RCA4 and forced by two different RCPs (4.8

and 8.5) are used. The details are given in Section 3.1.4.

Fig. 2. Flowchart of different approaches for preparing climate projection data with fine spatial and temporal resolution suitable to generate future weather files for

BPS.
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2.1.2. Statistical downscaling

Statistical downscaling derives estimation of regional or local cli-

mate variables from larger-scale climate data using deterministic or

stochastic approaches. The difference between the approaches depends

on whether an additional noise term for random variability is explicitly

included [45]. Until now, the complexity of the dynamical downscaling

method and the high level of expertise that is required to interpret the

results of the climate simulations have pushed BPS users to favor sta-

tistical downscaling. This approach is simpler than dynamical down-

scaling, however, due to the higher availability of hourly data, which

can be directly extracted from RCMs, it is expected that the number of

applications for locations worldwide that use dynamical downscaling

will increase [46]. The next two sections briefly look into two available

approaches (and their assumptions) for statistical downscaling of

GCMs.

2.1.2.1. Morphing. The morphing downscaling method was proposed by

Belcher et al. [47] and applies three transformation algorithms to the

hourly values of given weather variables. The algorithms apply changes

based on monthly trends and variations of GCM or RCM outputs for a

given location. These three algorithms are called Shift, Stretch and

Combination of shift and stretch.

(1) Shift is an additive formulation and adds a predicted absolute

monthly mean change (Δxm) derived from a GCM or RCM to the

hourly values of a weather variable in the weather file (x0) for the

month m:

= +x| x xm 0 m (1)

(2) Stretch has a multiplicative formulation and scales the hourly values

of a variable in the weather file (x0) by a predicted relative monthly

mean change (αm) for the month m.

=x| ·xm m 0 (2)

(3) The Combination of shifting and stretching is a linear combination of

the two previous transforming functions. The hourly values of a

weather variable in the weather file are both shifted by adding the

predicted absolute monthly mean change (Δxm) and stretched by a

predicted relative monthly mean change (αm) for the month m.

= + +x| x x (x x )m 0 m m 0 0,m (3)

where x0,m is the variable x0 averaged over month m for all the con-

sidered averaging years of future data provided by climate models.

=

× ×

x 1
24 d N

x0,m
m Nyears monthm

0

where N is the number of years in the averaging period, dm is the

number of days in month m, and 24 h of a day.

One of the three algorithms is applied, which depending on the

weather variable. For example, the first algorithm is used for adjusting

atmospheric pressure, the second is used for wind speed, and the third

for temperature. A guideline on using the above algorithms for the

variables in a weather file is given in [47]. CCWorldWeatherGen and

WeatherShift are two available tools. They use the morphing method to

create climate change weather files starting from EnergyPlus weather

files (EPW). Moazami et al. [48] critically compared the output of the

two tools to identify the possible consequences of applying these to BPS.

The two tools have differences in some of their calculation assumptions,

which are discussed in more detail in Sections 3.1.1 and 3.1.2.

2.1.2.2. Stochastic generation. Stochastic weather models are based on a

statistical analysis of recorded climate data. The models can derive all

other weather variables [49] using the inputs of just a few independent

weather variables (e.g. solar radiation). For example, Meteonorm

software is a weather generator that uses the interpolation of the

principal weather variables to provide weather data for any site in the

world [50]. It provides weather variables such as global irradiance on a

horizontal plane at the ground level, dry-bulb temperature, dew-point

temperature and wind speed. Values are delivered as monthly and

yearly long-term means and data time series at the hourly and minute

time resolution are generated stochastically and correspond to typical

years. The model can generate hourly weather data that can be used as

input for BPS. All noteworthy Meteonorm details are given in Section

3.1.3.

2.1.3. Hybrid downscaling

A hybrid approach can, in some cases, be used to reduce the com-

putational resources and storage space required in dynamical down-

scaling. It is commonly called hybrid downscaling, the outputs of an

RCM being stored at a coarse spatial and temporal resolution and fur-

ther downscaled using the statistical methods. For example, the climate

projections for the UK (UKCP09) provide future weather data on a

monthly basis at a spatial resolution of 25 km2. This data is then sta-

tistically downscaled to the hourly and/or daily temporal resolution at

a 5 km2 spatial resolution [28]. Another example is the Integrated

Multi-scale Environmental Urban Model (IMEUM) in which climate

variables estimated at the city scale by RCM data at a 25 km2 resolution

Table 1

Advantages and disadvantages of downscaling methods.

Downscaling method Advantages Disadvantages

Dynamical downscaling using

RCM
• Physically consistent data sets across different weather

variables [20]

• Not constrained by historical data [20]

• Large data sets [20]

• Powerful computational resources and expertise required [20]

Statistical downscaling using

morphing
• Flexible because it can be applied to the large number of

weather files that are available worldwide [54]

• Captures localized weather conditions [47,54,7]

• The method is simple [47]

• Low amount of computational power is required [55]

• Largely analogous to the present-day with lack of details about

potential future changes in diurnal weather patterns [54]

• Lack of future extreme weather conditions [54]

• Potential difference in the reference timeframe of the GCM data and a

chosen ‘present day’ typical weather file causing under- or

overestimation of climate change impacts [55]

• Lack of physical consistency between climate variables due to the

independent ‘morphing’ of climate variables. It creates a different

relationship between the variables to that currently observed at the site

[56]

Statistical downscaling using

stochastic methods
• Is possible to simulate extreme weather conditions that have

not yet been observed, while being statistically

representative for the location [7]

• Is possible to simulate a wide range of feasible climate

conditions [7]

• Relies on statistics derived from historical observations of climate

[57]

• There is an inherent assumption that future weather patterns will be the

same as those observed historically [7]

• This method has difficulties in modeling with accuracy some of the

climatic variables [58]
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are statistically downscaled first to the spatial resolution of 1 km2 and

then to the 100m2 resolution [51].

There have been several studies on relative performance of statis-

tical and dynamical or hybrid downscaling methods in climate change

impact assessments. Fowler et al. [52] provided a comprehensive in-

sight to the choice of downscaling method when examining the impacts

of climate change on hydrological systems. Wilby et al. [53] compared

the relative performance of future rainfall projections generated by the

range of available downscaling methods. The topic has been also dis-

cussed in BPS literature and Table 1 lists and summarizes the main

advantages and disadvantages of downscaling methods given in the

literature. But there is a lack of work on the effect of using different

downscaling methods for generating future weather files on the energy

performance of buildings.

All the above mentioned methods are capable of providing high

resolution weather data for several years into the future. Weather data

in a BPS readable format (e.g., EPW format) is required. Experts achieve

this by following the principles used for creating Typical Meteorological

Year (TMY) [21]. This method selects twelve typical meteorological

months from the basis years to create TMY. The conventional period for

the basis years is 30 years, as defined by the World Meteorological

Organization (WMO) [59]. In the following section, the approaches that

follow the above methods plus some approaches for generating extreme

weather years are introduced briefly. All of these approaches are used

in this study.

2.2. Generating future weather files ready to use in BPS

2.2.1. Typical future weather data sets

Hall et al. [21] in 1978 developed a method for creating TMY,

which is one the most commonly used methods for creating typical

weather years. The method selects the most representative month from

several years of observed data for a location, for each of the twelve

months of a year, based on Finkelstein–Schafer (FS) statistics. It then

combines these into one year that is called TMY. It relies on statistical

measures of the similarity of the distributions of daily indices such as

minimum, mean, and maximum for four climate variables: dry-bulb

temperature, dew-point temperature, wind speed and solar radiation

[33].

As mentioned before, it is common to use the TMY method to create

future typical weather data sets from many years of GCM or RCM

generated data. The advantage of using TMY is a decrease in the cal-

culation load (one year represents 30 years) whilst the most re-

presentative conditions are taken into account. However, the main

disadvantage is neglecting (or underestimating) extreme weather con-

ditions because of the averaging nature of the process [46]. The in-

creasing recognition of climate change, that not only includes changes

in average conditions, but also weather extremes [60], also means

events such as hurricanes, heat waves and cold snaps will be more

frequent and stronger. This phenomena has been studied at several

locations around globe including Australia [61], Russia [62], UK [63]

and south-east Europe [64]. Existing and new buildings will therefore

face more extreme conditions more frequently and at higher intensities

than those used to inform their design. As a result, designers should be

equipped with methods that allow them to test their design even under

extreme conditions.

2.2.2. Future weather data sets taking account of extreme conditions

As previously discussed, buildings should be assessed for more fre-

quent and stronger future extreme weather conditions [65]. It is

therefore important to take into consideration these extremes, even

from the early design stage. The averaging process in creating TMY files

based on 20–30 years of historical data or of future generated weather

data, results in a mild year that usually excludes extreme values. Sev-

eral researchers have suggested using extreme weather data sets rather

than just one typical set in building simulations, to ensure that extremes

and the probable impacts of climate change are not underestimated. For

example, Crawley et al. [3] propose the use of more than one weather

file in building simulation. They began, in their study, with four com-

binations of extremes to create Extreme Meteorological Year (XMY):

daily maximum, daily minimum, hourly maximum, hourly minimum

for an initial set of variables of dry-bulb temperature, dew-point tem-

perature, solar insolation, precipitation, relative humidity, and wind

speed. They used two approaches to select the extreme months. Firstly

they looked at the daily maximum and minimum values for each day of

the month and selected the month with the highest daily maximum

value and the lowest daily minimum. Secondly they looked at the

average hourly value for the month and selected the months with the

highest hourly and lowest hourly average value. Using prototype

building models, they concluded that XMY based on hourly maximum

and minimum dry-bulb temperature best captured the range of energy

use for the XMY. They suggest that BPS users should use three weather

files, one TMY and two XMYs based on hourly maximum and minimum

dry-bulb temperature to induce a range of building energy perfor-

mance.

Another method for generating future weather files that can re-

present typical and extreme weather conditions was proposed by Nik

[46]. The method is based on synthesizing one typical and two extreme

(cold and warm) data sets: Typical Downscaled Year (TDY), Extreme

Cold Year (ECY) and Extreme Warm Year (EWY). The process for

creating a TDY starts by following the method for creating a TMY file,

except that just one climate variable (dry-bulb temperature) is con-

sidered in the selection of typical months instead of four. There are

different reasons for this, which includes the difficulties and un-

certainties in weighting the climatic variables, as climate change does

not equally affect all climate variables (refer to [46] for additional

details). A similar procedure is used to create ECY and EWY data sets.

However, instead of looking for the least absolute difference, the years

with the maximum (for ECY) and minimum (for EWY) absolute dif-

ference are selected as the years representing the extreme temperatures

for each month. Nik showed that by using the three data sets and

considering TDY, ECY and EWY together (which is called Triple), it is

possible to achieve a probability distribution of future conditions which

is very similar to the full set of 30 years RCM data.

It was mentioned in Section 2.1.1 that it is necessary to consider

several climate scenarios instead of just one scenario in the impact

assessment on buildings, due to significant uncertainties in climate

modeling. The method developed by Nik [46] was also used to over-

come the challenge of climate uncertainties, the method synthesizing

one set of representative weather files that takes into consideration

several climate scenarios (e.g. in [46], five climate scenarios were

considered – i.e. 5× 30 years of data for a 30-year time span – and

TDY, ECY and EWY were synthesized). This allows an impact assess-

ment to be performed under both typical and extreme conditions with a

minimum number of required simulation runs and in which climate

uncertainty is taken into account.

3. Methodology

A set of 74 weather files were generated to compare the different

approaches used in future climate projection. These combine all the

available approaches drafted in Fig. 2 for three different future time

ranges, as described in detail in Section 3.1.5. The city of Geneva,

Switzerland was used in this study as a reference location to generate

and compare different future weather data sets using these methods. All

data were formatted into the EPW weather file format.

16 reference commercial building models, as proposed by the

ASHRAE standard 90.1 [66], were simulated using EnergyPlus [67] to

assess the impacts of the typology of future weather data sets on

building energy simulations. The buildings cover a wide range of types,

from small office buildings to large energy intensive buildings such as

hospitals, building models being described in Section 3.2.1. The 16
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building models were furthermore used to build a virtual neighborhood

in the city of Geneva, to observe the impact at the neighborhood scale.

The neighborhood contains the same building typology split as the

canton of Geneva (see Section 3.2.2).

3.1. Future weather data for Geneva

The weather data sets that are used in this work were generated

using three future weather generator tools (CCWorldWeatherGen,

WeatherShift™, and Meteonorm) and one RCM (RCA4, the 4th gen-

eration of the Rossby Centre Regional Atmospheric Climate Model

[68]). RCA4 data, downscaling four different GCMs, was used in this

work.

3.1.1. The CCWorldWeatherGen tool

Jentsch et al. [55] in 2013 provided a methodology for generating

future weather data for different locations around the world. They

chose the output data of the HadCM3 [69], forced with IPCC A2

emission scenario and applied the morphing method to generate EPW

files. The HadCM3 A2 data provided by the IPCC data distribution

center (DDC) [70] simulated monthly values of relative changes in

climate between the 1961–1990 baseline climate and three future time

slices, the 2020s, 2050s and 2080s. They developed a Microsoft Excel

based tool called the ‘Climate Change World Weather Generator’, com-

monly referred to as CCWorldWeatherGen. This tool superimposes re-

lative change on the weather variables stored in an EPW file and is

freely available. It allows the user to generate future weather files for

worldwide locations within three time slices: 2011–2040 (referred as

‘2020s’), 2041–2070 (referred as ‘2050s’) and 2071–2100 (referred as

‘2080s’). It transforms an original EPW typical weather file into future

weather data, formatted in the EPW format and so ready for use in BPS

tools. Jentsch describes in detail the potential source of inaccuracy in

the outputs of the tool due to the possible difference in the reference

timeframe between HadCM3 and the EPW data [55]. For example, in

this study the original TMY file is an IWEC (International Weather for

Energy Calculations) data file for Geneva, derived from observations

collected in the period 1982–1999. As mentioned before, the HadCM3

A2 data are relative changes in relation to the 1961–1990 baseline

climate. Applying CCWorldWeatherGen to the IWEC weather file will

superimpose the relative changes from the 1961–1990 baseline on to

the data from 1982 to 1999. The latter period has higher temperature

levels than the 1961–1990 baseline. An overestimation of results in the

morphed data set is therefore expected. More details on the generation

of climate variables for future weather data are available in [54,47].

3.1.2. WeatherShift™ tool

Arup and Argos Analytics consulting firms developed a tool named

WeatherShift™ [71,72] based on the RCP4.5 and RCP8.5 emission sce-

narios of the IPCC Fifth Assessment Report (AR5). This applies the

morphing method on to the outcomes of 14 GCMs (out of approxi-

mately 40 models) available under AR5 [19]. The tool provides future

projection weather data for three time periods: 2026–2045 (referred as

‘2035s’), 2056–2075 (referred as ‘2065s’), 2081–2100 (referred as

‘2090s’). These are relative to the baseline climate of 1976–2005 and

under the two emission scenarios. WeatherShift™ moreover provides a

cumulative distribution function (CDF) that is constructed for each

variable using linear interpolation between the model values [71]. This

method was introduced earlier from the UK Climate Impact Programme

(UKCIP) for the UK Climate Projections [73]. The CDF enables users to

assign a probability to the projections, a sort of ‘warming percentile’.

For the purpose of this study, the 50th percentile and the RCP 8.5

emission scenario were chosen for setting the tool to generate future

weather data sets base on the IWEC weather file of Geneva for the three

available time periods.

3.1.3. Meteonorm

This tool is a combination of climate database, spatial interpolation

tool and a stochastic weather generator. Meteonorm can calculate ty-

pical years with hourly resolution for any site and can also be used for

climate change studies. This tool uses the GCMs under the IPCC fourth

assessment report (AR4) rather than climate data stored in typical

weather files. It can generate future weather files in different formats

and according to different IPCC emission scenarios (B1, A1B and A2) for

10-year bins between 2010 and 2100 [57]. The Meteonorm version 7.2

was used in this study to generate a typical weather file and three future

weather files for the A2 emission scenario and for the years 2020, 2050

and 2080 for the city of Geneva.

3.1.4. TDY, ECY and EWY out of RCA4

Part of the data from Nik’s work [46] is used in this study and

transformed into EPW format. The Rossby Centre Regional Atmospheric

Climate Model (RCA4) [68] is used to dynamically downscale weather

data from four GCMs (Table 2) to the spatial resolution of 12.5 km2 and

the hourly temporal resolution.

The adopted greenhouse gas concentration trajectories are RCP8.5

and RCP4.5 for CNRM and ICHEC, and RCP8.5 for IPSLm and MPIM.

This gives an ensemble of six GCM-RCM combinations. RCA4 outputs

were used to synthesize TDY, ECY and EWY for three future time per-

iods, 2010–2039, 2040–2069 and 2070–2099. This generated six sets of

representative weather data sets (each containing TDY, ECY and EWY)

for each time period, resulting in a total of 54 weather files. One group

of representative weather data (containing typical and extreme cold

and warm) was, furthermore, synthesized by considering all the six

climate scenarios at each time period (resulting in a total of nine

weather files for three time periods). These files are henceforth called

“Multi-Scenario” weather files (referring to the consideration of mul-

tiple climate scenarios). The three representative files in this group are

named TDYMultiple, ECYMultiple and EWYMultiple. For more details, refer to

[46].

3.1.5. Generated future weather data sets

Each of the aforementioned methods provide future weather files

for slightly different time slices. In the interests of harmonization, three

future projected periods namely near-term (NT), medium-term (MT)

and long-term (LT) were adopted. The expressions ‘Near-Term’ and

‘Long-Term’ are used in chapters 11 [74] and 12 [75] of IPCC AR5 to

refer to the time periods 2016–2035 and 2081–2100 respectively. The

term ‘Medium-Term’ is introduced in this work and follows the same

logic. Table 3 shows the alignment of the original output periods of the

files to the three identified time slices.

Weather files were grouped into two categories to distinguish be-

tween different generated future weather data. These were: typical

Table 2

The Global Climate Models (GCMs) used in the downscaling process by the Rossby Centre regional atmospheric climate model (RCA4).

Full name Short name Originating group Model version

Centre National de Recherches Météorologiques CNRM CNRM/CERFACS, Toulouse, France cnrm-cm5

Irish Centre for High-End Computing ICHEC EC-Earth Consortium, Europe ec-earth

Institut Pierre Simon Laplace IPSLm IPSL, Paris, France ipsl-cm5a-mr

Max Planck Institute for Meteorology MPIM MPIM, Hamburg, Germany mpi-esm-lr

A. Moazami et al.



weather data sets and extreme weather data sets. They include weather

files from statistical and dynamical data groups as shown in Fig. 3.

The data sets are grouped into three data groups:

• TMY data group: includes two weather files, the IWEC typical me-

teorological year (TMY) and a TMY generated by Meteonorm,

• Statistical data group: six weather files generated using the

morphing method through CCWorldWeatherGen and WeatherShift,

and three weather files generated using the stochastic method

through Meteonorm,

• Dynamical data group: 21 weather files generated using dynamical

downscaling that represent typical conditions and 42 weather files

generated using dynamical downscaling that represent extreme

conditions.

Typical weather data sets refer to the files that are generated

through statistical downscaling or dynamical downscaling (TDY series).

Extreme weather data sets refer to ECY and EWY files that represent

extreme cold and warm years (using the RCM dynamically downscaled

data). All the above methods provide 72 future weather files for the city

of Geneva as shown in Table 4. A total of 74 files were used in this

study, including two TMY weather files.

A2, RCP8.5 and RCP4.5 are the three future emission scenarios

present in the above list of weather files. According to IPCC fifth as-

sessment synthesis report [76]: RCP8.5 scenario is broadly comparable

to A2 scenario and both describe very high GHG emissions, and RCP4.5

is an intermediate scenario. The report further describes: “Relative to

1850–1900, global surface temperature change for the end of the 21st

century (2081–2100) is projected to likely exceed 1.5 °C for RCP4.5 and

RCP8.5 (high confidence). Warming is likely to exceed 2 °C for RCP8.5

(high confidence), more likely than not to exceed 2 °C for RCP4.5 (medium

confidence)”. The above weather data sets allow considering the un-

certainty of climate projections into energy calculations. The span of

values resulted from simulations under these weather files, shows the

uncertainty of buildings energy performances in future following IPCC

emission scenarios, and hence offer the opportunity to test a building

under the wide-expected range of climate uncertainty.

3.2. Simulation test bench

3.2.1. Building models

The ASHRAE standard 90.1 suite of commercial reference building

models was chosen to be used in this study [77] to assess the impact of

climate change on the energy performance of buildings. The commer-

cial reference building models were developed by Pacific Northwest

National Laboratory (PNNL), under contract with the U.S. Department

of Energy (DOE). These building models were originally derived from

DOE’s Commercial Reference Building Models with modifications from

the ASHRAE 90.1 committee, Advanced Energy Design Guide series,

and other building industry expert input. Detailed descriptions of the

reference model development and modeling strategies can be found in

PNNL’s reports [78,79]. The building models used in this study are

complying with ASHRAE 90.1-2013 standard. The suite is a collection

of standardized building models with realistic building characteristics

and includes 16 buildings of different types and dimensions (Fig. 4).

The suite provides a simulation bench test to compare the relative

impact of using the generated weather files (in Section 3.1) on energy

performance of various building types. Technical descriptions of the

selected building envelope components, used in building models, are

given in Table 5.

ASHRAE 90.1 [66] defines U-factor (U-value) as: “heat transmission

in unit time through unit area of material or construction induced by a unit

temperature difference between the environments on each side.” and defines

solar heat gain coefficient (SHGC) as: “The ratio of the solar heat gain

entering the space through the fenestration area to the incident solar ra-

diation.”U-value and SHGC of glazing in Table 5 are independent of

frame material. Roof U-value of the prototype buildings varies between

0.15 and 0.20W/(m2 K) depending on the roof type. Wall U-value

varies from 0.30 to 0.59W/(m2 K) depending on the wall type. For

more details, please refer to PNNL’s technical report [80].

3.2.2. Virtual neighborhood of Geneva

A combination of the 16 buildings was used to virtually model a

neighborhood. We looked at the neighborhood of Champel in Geneva to

get an idea of the scale of such a neighborhood, which has a total

building area of 328 105m2 [81]. The distribution of the areas occu-

pied by the buildings in the canton of Geneva was used to distribute the

16 buildings based on type. In the canton, 64% of buildings are re-

sidential and 36% are non-residential and mixed-use buildings [82].

The above assumptions gave the virtual neighborhood created for this

study, which had a total energy reference area of 414 341m2, 64.3%

residential buildings and 35.7% non-residential buildings. The compo-

sition of the virtual neighborhood is presented in Table 6. This com-

position was used only to assess the magnitude of impacts at the

neighborhood scale. The spatial attributes of a neighborhood (organi-

zation of the buildings and infrastructure between) are not within the

scope of this paper.

3.2.3. Simulation workflow

A simulation workflow was implemented in the multidisciplinary

design optimization platform modeFRONTIER [84] coupled with MA-

TLAB for post-processing of the output data. This was used to simulate

the full set of 16 building models under the 74 generated future weather

files, giving a total of 1 184 simulation runs. modeFRONTIER used the

algorithm presented in Fig. 5 to perform the simulations.

The dynamic energy simulations of the building models were

Table 3

Adopted terms for the variety of time slices used by the different methods or tools.

Adopted Term CCWorldWeatherGen WeatherShift™ Meteonorm RCA4

Near-term 2011–2040 2026–2045 2011–2030 2010–2039

Medium-term 2041–2070 2056–2075 2046–2065 2040–2069

Long-term 2071–2100 2081–2100 2080–2099 2070–2099

Fig. 3. Weather files are grouped into two categories: typical weather data sets

and extreme weather data sets, which include weather files from statistical and

dynamical data groups.
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performed using the software EnergyPlus [67] version 8.5.0. Each re-

leased version of EnergyPlus undergoes two major types of validation

tests [85]: analytical tests according to ASHRAE Research Projects 865

and 1052, and comparative tests according to ANSI/ASHRAE 140 [86]

and IEA SHC Task34/Annex43 BESTest method. Heat conduction

through the opaque envelope was calculated via the conduction transfer

functions (CTF) with a 15-min time step. The natural convection heat

exchange near internal and external surfaces was calculated using the

thermal analysis research program (TARP) algorithm [87]. The in-

itialization period of simulation was set to the maximum option, which

is 25 days [88].

The output parameters that were obtained from EnergyPlus were

Table 4

Weather files generated for the city of Geneva and used in this study.

Method Tool/GCM/RCM Emission scenario Number of weather files Adopted term

Statistical CCWorldWeatherGen A2 3* CCW_a2

WeatherShift RCP 8.5 3 WSH_rcp85

Meteonorm A2 3 MTN_a2

Dynamical-typical MPIM-RCA4 RCP 8.5 3 MPIM_TDY_rcp85

IPSLm-RCA4 RCP 8.5 3 IPSLm_TDY_rcp85

ICHEC-RCA4 RCP 8.5, RCP 4.5 3× 2 ICHEC_TDY_rcp85

ICHEC_TDY_rcp45

CNRM-RCA4 RCP 8.5, RCP 4.5 3× 2 CNRM_TDY_rcp85 CNRM_TDY_rcp45

Multi GCMs-RCA4 RCP 8.5+RCP 4.5 3 TDYMultiple

Dynamical-extreme MPIM_RCA4 RCP 8.5 3× 2 MPIM_ECY_rcp85 MPIM_EWY_rcp85

IPSLm_RCA4 RCP 8.5 3× 2 IPSLm_ECY_rcp85 IPSLm_EWY_rcp85

CNRM_RCA4 RCP 8.5, RCP 4.5 3× 4 CNRM_ECY_rcp85 CNRM_EWY_rcp85

CNRM_ECY_rcp45 CNRM_EWY_rcp45

ICHEC_RCA4 RCP 8.5, RCP 4.5 3× 4 ICHEC_ECY_rcp85 ICHEC_EWY_rcp85

ICHEC_ECY_rcp45 ICHEC_EWY_rcp45

Multi GCMs_RCA4 RCP 8.5+RCP 4.5 3× 2 ECYMultiple

EWYMultiple

* Refers to three time periods; one weather file for each period.

High-rise Apartment 

Building01 

Mid-rise Apartment 

Building02 

Hospital 

Building03 

Large Hotel 

Building04 

Small Hotel 

Building05 Large Office 

Building06 

Medium Office 

Building07 

Small Office 

Building08 

Outpatient Healthcare 

Building09 

Restaurant Fast-food 

Building10 

Restaurant sit-down 

Building11 

Standalone Retail 

Building12 

Strip Mall Retail 

Building13 
Primary School 

Building14 

Secondary School 

Building15 

Warehouse 

Building16 

Fig. 4. Reference building models from the ASHRAE Standard 90.1. The total area of these building models and the number of their conditioned zones are presented

in Table 6.
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delivered energy for space heating and cooling, and delivered energy

for total electricity including electricity for heating, cooling, lighting,

fans, domestic hot water and appliances. Delivered energy is defined in

the ISO 52000-1:2017 standard [83] as: “energy, expressed per energy

carrier, supplied to the technical building systems through the system

boundary, to satisfy the uses taken into account (heating, cooling,

ventilation, domestic hot water, lighting, appliances, etc.) or to produce

electricity”.

In the next step, delivered energy is converted to primary energy

which is defined by the standard [83] as: “energy that has not been

subjected to any conversion or transformation process”.

Using primary energy allows comparisons of the energy perfor-

mance of several building types that use different technical building

systems supplied by different energy carriers. The primary energy

conversion factors stipulated in Swiss norm SIA 380/1:2009 [89] were

used. According to this standard, the factor for converting electricity to

primary energy is 2.97 kWhPE/kWhel and for converting natural gas to

primary energy is 1.15 kWhPE/kWhgas.

4. Results and discussion

The analysis uses graphical comparisons and statistical metrics to

characterize the differences between the future weather projections

generated using statistical and dynamical downscaling methods. For the

sake of harmonization, all the graphs in this section use the color black

for the TMY data group, green for the statistical data group, blue for

typical weather files (TDY series) and red for extreme weather files

(ECY and EWY series) of the dynamical data group. This section firstly

presents the distributions of values for hourly dry-bulb temperature in

all the weather files. Then the impacts of future weather data type on

the energy simulation of buildings are assessed using just typical

weather data sets. The final part of the results focuses on the im-

portance of considering extreme conditions in designing buildings and

energy systems for buildings.

4.1. Comparison of generated weather files

Each EPW weather file contains the hourly values for an entire year

for a number of weather variables, e.g. dry-bulb temperature, dew-

point temperature, direct and diffuse solar radiation, wind speed, and

wind direction. All the generated files that were used in this study

contained information on the effect of climate change on at least the

following climate variables:

• Dry Bulb Temperature

• Dew Point Temperature

• Relative Humidity

• Direct Normal Radiation

• Diffuse Horizontal Radiation

• Global Horizontal Radiation

• Wind Speed

All the above items are used directly in the EnergyPlus program,

which means that the results reported in this study are already affected

by changes to all these variables. Boxplots of the outdoor dry-bulb air

temperature, which are one of the key variables in energy simulation

[3], are plotted in Fig. 6. The effect of climate change on different

climate variables and the uncertainty of estimating these variables by

climate models are discussed in previous works of the authors

[14,32,46,90]. See Appendix B for boxplots of three other climate

variables, global horizontal radiation, relative humidity and wind

speed. There are boxplots for all the 74 weather files, all showing values

for near-term (NT), medium-term (MT) and long-term (LT) periods. The

distributions of the outdoor dry-bulb air temperature are compared

with the distribution of maximum and minimum daily values for ob-

served data for the period 1955–2017. These are used as a reference or

control sample. Observed data are based on weather data from the

Genève-Cointrin weather station obtained from National Centers for

Environmental Information (NCEI) [91]. The brown dashed lines pro-

ject lower and upper whiskers of daily minimum and daily maximum

distributions of temperature and the brown horizontal dotted line

marks the average daily temperature for the period of observed data.

Fig. 6 shows a pattern of continuous increase in the average dry-

bulb temperature from NT to MT and LT, and for all future weather

files. The slope of increase is greater for weather files with A2 and RCP

8.5 emission scenarios than for RCP 4.5, which is in agreement with the

GCM projections for these scenarios. An increasing trend exists for all

generated weather files. However, the maximum values of typical fu-

ture weather files only get close to the historical observed value of

maximum temperature under LT. This reveals the weakness of typical

weather files in representing extreme conditions, as is discussed in

Section 2.2.2. For extreme weather data sets, the distribution of EWY

series for the RCP8.5 scenario is close to the observed maximum daily

temperatures and the ECY series of RCP4.5 is close to the distribution of

observed minimum daily temperatures. Using Multi-Scenario files

therefore improves the coverage of both maximum and minimum

borders of the distributions for dry-bulb temperature. These files

Table 5

Technical description of building envelope components of reference building models.

Building Type U-value (W/(m2 K)) SHGC

Roof External Wall Glazing Glazing

I II III I II III IV Windows Skylight Windows Skylight

Apartment High-rise 0.18 – – 0.36 – – – 0.42 – 0.40 –

Mid-rise 0.18 – – 0.36 – – – 0.42 – 0.40 –

Hotel Large 0.18 – – – 0.51 0.59 – 0.42 – 0.40 –

Small 0.18 – – 0.36 – – – 0.42 – 0.40 –

Office Large 0.18 – – – – 0.59 – 0.42 – 0.40 –

Medium 0.18 – – 0.36 – – – 0.42 – 0.40 –

Small – 0.15 – 0.36 – – – 0.42 – 0.40 –

Health Hospital 0.18 – – – 0.51 0.59 – 0.42 – 0.40 –

Outpatient 0.18 – – 0.36 – – – 0.42 – 0.40 –

Restaurant Fast-food – 0.15 – 0.36 – – – 0.42 – 0.40 –

sit-down – 0.15 – 0.36 – – – 0.42 – 0.40 –

Retail Standalone 0.18 – – – – 0.59 – 0.42 0.75 0.40 0.6

Strip Mall 0.18 – – 0.36 – – – 0.42 – 0.40 –

School Primary 0.18 – – 0.36 – – – 0.42 0.75 0.40 0.6

Secondary 0.18 – – 0.36 – – – 0.42 0.75 0.40 0.6

Warehouse Warehouse – – 0.20 – – – 0.30 0.42 0.75 0.40 0.6
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approximately cover the distributions of all other dynamical data group

files. This means that it is possible to reduce the number of simulations

by using Multi-Scenario weather files instead of several weather files

(six in this case) with different climate scenarios, as was shown in [46]

and [90].

Climate change affects climate variables and their long-term and

short-term variations. Statistical data group weather files are only able

to capture information on the long-term changes that are provided by

the original GCM outputs (with monthly time resolution). These types

of files are generated under the assumption that short-term future

weather patterns will follow the same pattern and climate variability as

historical weather data. They therefore cannot represent probable fu-

ture extreme conditions due to climate change. Conversely, the weather

files of the dynamical data group are not constrained by historical data.

To better illustrate the difference between the two types of weather

data, the hourly outdoor dry-bulb temperature for one day (1st

February as an example) is plotted in Fig. 7 for statistical data group

weather files and one dynamical data group weather file under NT, and

compared with TMY IWEC.

As expected, the hourly temperature profiles of the CCW_a2,

WSH_rcp85 and MTN_a2 future weather files in Fig. 7, the statistically

downscaled type, have a very similar pattern to the TMY IWEC file with

a higher average temperature. The MPIm_rcp85 dynamical group file

does not, however, match the other profiles. This again points to the

fact that weather files generated using statistical methods cannot re-

present short-term variations of climate conditions induced by climate

change.

The annual and seasonal averages for dry-bulb temperature and

their monthly variations are compared in Table 7 for 14 cases to in-

vestigate the long-term changes of average values and variations of

climate variables. The 14 cases are: 30 years of observed data

(1961–1990), 12 typical weather files (TMY data group, the statistical

data group and TDY series of the dynamical data group) and “Tri-

pleMultiple” which is the average of values for TDYMultiple, ECYMultiple and

EWYMultiple, all under LT. The meteorological seasons were defined by

Palatine Meteorological Society (1780) as periods of three months:

winter starting on 1st December, spring on 1st March, summer 1st June

and autumn on 1st September [92]. The absolute difference between

weather files and the observed data is shown in Table 7 under “Absolute

change to the baseline period 1961–1990”, to help us better understand

the differences between the weather files and the observed data.

The annual average temperature shows an increase for all future

weather files under LT of between 0.2 and 5.2 °C in relation to the

1960–1991 baseline period. It can be highlighted that values of TMY

IWEC also show an increase in annual average temperature. This can be

the reason for relatively higher values of CCWorldWeatherGen and

WeatherShift outputs, as discussed in Section 3.1.1. The range of values

for different scenarios highlights the importance of considering several

scenarios for climate change impact assessment, as emphasized by IPCC

[93] and other studies (e.g., [94]).

It is also interesting to see the seasonal variations in the weather

files. Table 7 shows that the highest increase of temperature in relation

to the baseline for weather files and with A2 and RCP8.5 emission

scenarios is in summer (except for CNRM_rcp85). Interestingly, the

highest increase for weather files with RCP4.5 scenarios occurs in

winter. Another notable result for RCP4.5 weather files is the decrease

in temperature during spring.

TDYMultiple is generated to represent all the six climate scenarios in

the dynamical data group. The values of annual and seasonal averages

for this file are close to the mean of the other 6 scenarios. Comparing

TDYMultiple with TripleMultiple shows that considering TDYMultiple,

ECYMultiple and EWYMultiple together (Triple Multiple) results in higher

values of annual and seasonal averages rather when considering

TDYMultiple alone. Furthermore, these values show that the TripleMultiple

is more extreme, with warmer summers and colder winters than the

TDYMultiple.T
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4.2. Climate change impact assessment using only typical weather files

In this section, the hourly primary energy for space heating and

cooling (defined in Section 3.2.3) requirements per square meter for the

16 reference buildings are calculated for one year under typical weather

data sets. Fig. 8 shows the distribution of calculated values for all the

buildings.

The boxplots in Fig. 8 for both statistical and dynamical under all

Fig. 5. Configuration of simulation runs of 16 reference buildings under the generated future weather files. Simulation of building number 07, Medium Office, using

weather file ‘IPSL_EWY_rcp45_NT.epw’ is highlighted as an example.

Fig. 6. Boxplots of the outdoor dry-bulb air temperature for the weather files generated by three software tools–CCWorldWeatherGen, WeatherShiftTM, Meteonorm

–and six combinations of GCM-RCMs with different emission scenarios. The dashed lines show the lower w whiskers for minimum daily temperature and the upper

whiskers of the maximum daily temperature and the horizontal dotted brown lines show the average according to recorded data from 1955 to 2017 of Genève-

Cointrin weather station. (a) Historical observed data and typical weather data sets, (b) extreme weather data sets.
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NT, MT and LT of each building shows that the fast food restaurant has

the largest range of primary energy. The range of values for this

building is approximately 280–610 kWh/m2/a for space heating and

30–160 kWh/m2/a for space cooling. The reason for this can be the high

ventilation rate of restaurant buildings compared to other buildings.

The hospital has a relatively small range for primary energy for space

heating (∼85–130 kWh/m2/a) and space cooling (∼40–90 kWh/m2/

a). This is probably due to equipment energy use and other energy end-

uses than heating, cooling and ventilation predominating in this

building.

Overall, the shifting impact on primary cooling energy and primary

heating energy is present for all buildings except building number 16

(warehouse). This might show that climate conditions are not the

dominant force driving the energy performance of this building. A si-

milar conclusion was proved for swimming facilities [95]. For some

buildings, a heating-load dominated building under NT furthermore

becomes a cooling-load dominated building under MT or LT. Examples

of this are buildings number 14 and 15 (primary and secondary schools)

as discussed by Pagliano et al. [96]. This reveals that both methods are

able to provide enough information to show a shift in the energy use of

the buildings.

The cumulative distribution of primary energy for heating and

cooling for each building was calculated to show the impacts of weather

data typology on energy calculations, for both hourly and annual va-

lues. As an example, Fig. 9 presents these values for building number 7

(medium office) under NT, MT and LT periods.

Fig. 9 shows that the overall primary energy for cooling for

building07 (medium office) increases over time while the primary en-

ergy for heating tends to decrease moving from NT to LT. Furthermore,

the uncertainty associated with calculating the building’s primary en-

ergy using different weather files spreads consistently for space cooling

but remains quite constant for space heating. The shape and variation of

hourly values for cooling primary energy and heating primary energy

are very similar for the statistical data group and the TMY IWEC file.

This limitation of using the statistically downscaled method for dis-

cussing short-term variations has been previously discussed in the first

part of the results, Fig. 7 demonstrating that the hourly outdoor tem-

perature profiles of the statistical group have the same pattern as the

TMY IWEC file.

The extent of uncertainty for calculating primary energy presented

Fig. 7. Hourly outdoor dry-bulb temperature for one day (1st February as an example) are plotted for three weather files of statistical group (in green) and one

weather file of the dynamical group (in blue) under NT and compared to TMY IWEC (in black).

Table 7

Annual and seasonal averages of outdoor temperature (°C) under LT for typical weather data sets and TripleMultiple (the average of values for TDYMultiple,

ECYMultiple and EWYMultiple) and their absolute difference to the values of baseline observed period (1961–1990).

Mean of monthly values (°C) Absolute change to the baseline period 1961–1990 (°C)

Annual Seasonal Annual Seasonal

Period Type Spring Summer Autumn Winter Spring Summer Autumn Winter

1961–1990 Observed data 9.6 9.0 17.9 10.1 1.5 0.0 0.0 0.0 0.0 0.0

1982–1999 TMY IWEC 10.4 9.8 18.9 10.3 2.4 0.7 0.8 1.1 0.2 0.9

1961–1990 TMY Meteonorm 9.8 9.1 18.2 10.2 1.8 0.2 0.1 0.4 0.1 0.3

2071–2100 (LT) CCW_a2 14.9 13.3 25.2 15.1 5.8 5.2 4.3 7.4 5.0 4.3

2081–2100 (LT) WSH_rcp85 14.8 14.1 23.5 15.2 6.6 5.2 5.1 5.6 5.1 5.1

2080–2099 (LT) MTN_a2 13.3 11.9 22.7 13.8 4.6 3.6 2.9 4.8 3.7 3.2

2070–2099 (LT) MPI _rcp85 13.0 11.0 22.5 13.0 5.5 3.4 2.0 4.6 2.9 4.0

IPSL _rcp85 13.6 10.4 23.3 14.6 5.9 3.9 1.4 5.5 4.5 4.4

ICHEC _rcp85 12.2 9.8 21.7 12.7 4.5 2.6 0.8 3.9 2.6 3.0

CNRM _rcp85 11.6 9.5 20.2 12.1 4.5 1.9 0.4 2.3 2.0 3.0

ICHEC _rcp45 10.2 8.5 18.8 10.6 2.8 0.5 −0.5 0.9 0.5 1.4

CNRM _rcp45 9.8 7.9 18.3 10.3 3.0 0.2 −1.2 0.4 0.2 1.5

TDYMultiple 11.6 9.5 20.7 12.0 4.3 2.0 0.5 2.9 1.9 2.8

TripleMultiple 11.7 9.9 21.7 12.2 3.1 2.1 0.8 3.8 2.1 1.6
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in Figs. 8 and 9 substantiate previous proposals in the literature to

prefer the probabilistic approaches for predicting building performance

in the future [97] rather than the deterministic ones.

Total primary energy for space air conditioning, which is the sum of

both the primary energy for cooling and heating, was calculated for all

buildings under future typical weather data sets. Table 8 provides the

Fig. 8. The boxplots present the distribution of values for the calculated annual primary cooling energy (negative values) and primary heating energy (positive

values) under typical weather data sets for all 16 reference buildings. Values of the dynamical data group are presented in blue and the statistical data group in green.
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mean, median, minimum (min), maximum (max), range, and standard

deviation (StDev) values for total annual primary energy and compares

these values for the statistical and the dynamical data group.

Table 8 shows that the ranges of calculated annual primary energy

demand for the dynamical group are significantly higher than corre-

sponding values for the statistical data group. This can be due to the use

of both low emission scenarios RCP4.5 and high emission scenario

RCP8.5 in the dynamical data group. Sit-down and fast-food restaurants

have, according to StDev values of primary energy in Table 8, the

highest variation, which can and as mentioned before are probably due

to the high ventilation rate for these buildings. Small office has the

lowest variation, which can be due to a constant air volume ventilation

system type for this building.

4.3. Climate change impact assessment using both typical and extreme

weather files

It was mentioned in Section 2.2.2 that, due to the averaging nature

of the process for generating typical years, that this method is unable to

provide information on extreme weather conditions. This problem can

be illustrated by referring to the heat wave that hit Europe in the

summer of 2003. The heat wave caused the death of thousands of el-

derly and vulnerable people, caused power cuts and many other da-

mage [29]. Several studies have shown daily mortality during heat

waves is highly correlated to maximum daily temperature and night

temperature (e.g. in France [98,99] and in Switzerland [27]). The Swiss

Federal Office of Meteorology and Climatology (MeteoSwiss) provides

climate indicators that characterize the climate, indicators such as hot

days, frost days and tropical nights. These are also used to communicate

how climate is changing. Hot days are defined as “days in which the

temperature rises above 30 °C”, frost days are defined as “days on which

the temperature dips below 0 °C”, and tropical nights are defined as

“days on which the temperature does not dip below 20 °C”. Table 9

shows the numbers of hot days and tropical nights during 92 days of

summer in 2003 (1st June-31st August) for the city of Geneva. These

values were compared to calculated values for the same period for two

TMY weather files (IWEC and Meteonorm), two typical weather files

under NT from statistical and dynamical groups (CCW_a2 and

Fig. 9. Cumulative distributions of primary cooling energy (on the left) and primary heating energy (on the right) for building07 (medium office) under typical

weather data sets. Results of the dynamical data group are presented in blue color and the statistical data group in green.
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TDYMultiple) and one extreme warm weather file (EWYMultiple).

It can be highlighted from Table 9 that only the EWYMultiple weather

file value is comparable with the number of hot days that occurred

during the summer of 2003 in Geneva. The TMY file and future typical

weather file values are far from observed values. The above example

reveals how the averaging process can result in missing extreme values

and therefore shows how systems designed taking into consideration

only typical conditions could quickly become a costly mistake (due to

under-dimensioning). The 16 buildings models were simulated in this

section under both typical and extreme weather data sets for the dy-

namical data group, to assess the impact of extreme conditions on the

energy performance of buildings. Three sets of weather data were

considered for the purpose of this analysis; TDYMultiple, ECYMultiple and

EWYMultiple. These represent all six climate scenarios in the dynamical

data group. Fig. 10 represents the distribution of hourly energy de-

mands taking into consideration (i) only TDYMultiple (8760 values), and

(ii) all the three sets together, which is referred to as TripleMultiple

(3× 8760 values). Boxplots of hourly energy demand for cooling and

heating are presented for the buildings and three time periods. This

technique allows us to investigate the impact of taking into con-

sideration extreme conditions on the distribution of heating and cooling

demands for each building.

The most remarkable result to emerge from Fig. 10 is the impact of

taking into consideration extreme values on the distribution of cooling

demand, specifically peak values. Almost all the peak cooling demand

values of all buildings are considerably higher for the TripleMultiple case

than for the TDYMultiple case. This means that designing energy systems

based on peak values for typical weather conditions is not the most

reliable approach for future climatic conditions of stronger extreme

events. The ‘triple’ approach allows the assessment of building perfor-

mance not only under typical conditions, but also considering extreme

weather conditions. Actual energy demand in commercial buildings is

frequently demonstrated to be much greater than the expected energy

demand obtained from the energy modeling of the buildings. This dif-

ference, often referred to as the energy performance gap, means that

actual energy demand can be two to three times the modeled energy

demand [100]. Much of the focus in reducing the energy performance

gap is on post-construction elements such post-occupancy evaluation

and continuous commissioning. Improvements in the energy simula-

tion, such as the consideration of extreme weather conditions, however

play a key role for new builds and energy-focused refurbishments.

Table 10 presents the peak loads of the cooling demand with the

date and time of occurrence for each of the 16 buildings, typical and

extreme warm conditions taken into consideration. The magnitude of

the peaks and the time in which they occur are different for each

building. This is obviously due to the variance in the type of buildings,

their characteristics and their operation schedules. The peak values for

Table 8

Descriptive statistics of the total annual primary energy for heating and cooling of all 16 reference buildings calculated under typical weather data sets for the

statistical data group (9 weather files) and the dynamical data group (21 weather files).

No. Building name Downscaling method Total annual primary energy for space conditioning (kWh/m2)

Mean Median Min Max Range=Max-Min StDev

01 High-rise Apartment Statistical 61.2 60.6 57.4 67.0 9.6 3.65

Dynamical 56.2 55.3 51.2 69.4 18.2 4.477

02 Mid-rise Apartment Statistical 46.0 45.5 43.2 50.5 7.3 2.522

Dynamical 41.5 41.1 38.7 51.5 12.8 2.943

03 Hospital Statistical 172.5 171.6 169.9 176.8 6.9 2.593

Dynamical 161.8 160.5 155.2 178.2 23 5.65

04 Large Hotel Statistical 132.1 131.4 125.5 140.6 15.1 5.7

Dynamical 129.0 125.1 117.3 158.5 41.2 11.09

05 Small Hotel Statistical 76.5 75.6 73.1 81.3 8.2 2.812

Dynamical 73.4 72.8 70.1 85.7 15.6 3.273

06 Large Office Statistical 102.9 102.2 100.3 106.1 5.8 2.279

Dynamical 99.2 98.0 88.2 116.2 28 4.87

07 Medium Office Statistical 59.9 59.2 55.1 64.8 9.7 3.26

Dynamical 48.9 47.1 42.7 75.5 32.8 7.27

08 Small Office Statistical 26.1 26.0 24.2 28.4 4.2 1.641

Dynamical 25.6 25.3 23.9 31.4 7.5 1.537

09 Outpatient Healthcare Statistical 205.3 199.7 188.7 229.9 41.2 14.47

Dynamical 174.6 167.3 155.6 220.1 64.5 16.24

10 Restaurant Fast-food Statistical 492.5 499.6 411.4 549.3 137.9 43.4

Dynamical 563.9 560.1 467.8 645.5 177.7 47.9

11 Restaurant sit-down Statistical 307.7 314.9 266.3 334.4 68.1 21.88

Dynamical 339.4 334.8 291.4 382.5 91.1 25.57

12 Standalone Retail Statistical 67.2 66.2 64.2 73.5 9.3 3.2

Dynamical 62.2 61.0 57.0 81.7 24.7 5.3

13 Strip Mall Retail Statistical 72.2 73.3 66.8 76.2 9.4 2.907

Dynamical 64.5 63.5 57.8 79.8 22 4.88

14 Primary School Statistical 60.4 59.3 56.2 66.6 10.4 3.59

Dynamical 57.3 55.2 52.5 83.9 31.4 6.82

15 Secondary School Statistical 66.8 66.0 62.2 73.6 11.4 3.91

Dynamical 61.8 59.8 57.4 85.4 28 6.42

16 Warehouse Statistical 21.1 21.5 16.3 26.4 10.1 2.876

Dynamical 22.2 22.3 16.2 31.5 15.3 3.327

Table 9

Comparison of the number of hot days (Tmax≥30 °C) and tropical nights

(Tmin≥ 20 °C) for the extremely hot summer of 2003 in Geneva calculated

from different weather data sets.

Number of hot

days

Number of tropical

nights

Observed data Summer 2003* 51 4

TMY IWEC 8 1

Meteonorm 4 3

Near-Term (NT)

future

CCW_a2 26 4

TDYMultiple 10 0

EWYMultiple 54 13

* Based on meteorological data from Genève-Cointrin weather station pro-

vided by National Centers for Environmental Information (NCEI) [91].
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EWYMultiple compared to TDYMultiple ranges from a 2% increase for the

hospital to a 28.5% increase for the sit-down restaurant. The findings

from Fig. 10 and Table 10 illustrate the importance of considering

extreme conditions and the usefulness of the suggested approach in

ensuring a robust design of buildings and energy systems for the future.

In the second part of our analysis on the impact of extreme

Fig. 10. Boxplot of hourly cooling demand and heating demand for all 16 reference buildings under Typical weather year (TDYMultiple) scenario in compare to

demand under TDY, ECY and EWY all together (TripleMultiple) scenario. Blue is used for TDYMultiple and red color is for TripleMultiple weather file.

Table 10

Value of Peak cooling demand and the date-time of occurrence under NT for all buildings and the virtual neighborhood, values for dynamical-typical and dynamical-

extreme are presented and compared.

Building name Dynamical-typical TDYMultiple Dynamical-extreme EWYMultiple Peak cooling load relative change

EWYMultiple to TDYMultiple (%)

Peak load for cooling (kW) Date-Time Peak load for cooling (kW) Date-Time

High-rise Apartment 59.97 19 Jul-17:00 62.27 24 Jul-19:00 3.8%

Mid-rise Apartment 18.76 19 Jul-15:00 21.22 27 Jul-15:00 13.1%

Hospital 235.01 20 Jun-15:00 239.67 24 Jul-15:00 2.0%

Large Hotel 147.61 28 Jul-19:00 172.21 19 Jul-16:00 16.7%

Small Hotel 34.71 19 Jul-16:00 38.06 27 Jul-16:00 9.6%

Large Office 430.21 20 Jun-17:00 453.95 24 Jul-15:00 5.5%

Medium Office 63.03 19 Jul-15:00 70.55 27 Jul-16:00 11.9%

Small Office 5.00 19 Jul-16:00 5.47 27 Jul-16:00 9.5%

Outpatient Healthcare 93.32 20 Jun-15:00 100.82 7 Jul-16:00 8.0%

Restaurant Fast-food 11.30 19 Jul-13:00 14.16 3 Jul-18:00 25.4%

Restaurant sit-down 17.96 19 Jul-12:00 23.08 3 Jul-18:00 28.5%

Standalone Retail 34.69 19 Jul-15:00 42.29 27 Jul-15:00 21.9%

Strip Mall Retail 30.57 19 Jul-15:00 38.64 27 Jul-15:00 26.4%

Primary School 97.27 20 Jun-15:00 109.06 13 Jun-15:00 12.1%

Secondary School 316.51 20 Jun-15:00 348.09 13 Jun-15:00 10.0%

Warehouse 5.54 19 Jul-16:00 6.78 27 Jul-17:00 22.5%

Neighborhood 3457.14 19 Jul-16:00 3753.82 27 Jul-16:00 8.6%
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conditions, we assess the impacts on high peak energy demand loads on

the virtual neighborhood defined in Section 3.2.2. The last row of

Table 10 presents the peak cooling demand load and the date and time

of occurrence for the entire neighborhood. The relative change of peak

load in extreme conditions compared to typical conditions is an in-

crease of 8.6%.

As shown in Table 10, the need for air conditioning increases drama-

tically during extreme hot conditions. This high demand can last for days

to weeks. Additionally, as mentioned before, the production capacity of

power plants can be affected during this period. For example, as described

by Ke et al. [101], heat waves are usually accompanied by stationary high

pressure zones, resulting in light winds at the surface and therefore re-

duced wind generation. Increased air temperature also causes a reduction

in capacity and the efficiency of gas-turbines. Even electricity transmission

line loss is affected by high ambient temperature. These chains of events

and high demands for a period of time implies high stress on the grid,

which can lead to the failure of the system, as in the 2006 heat wave in

New York City [102]. Electrical power demand of the virtual neighbor-

hood under typical and extreme conditions was calculated to illustrate

such risks at the urban scale. Fig. 11 shows the power demand for the

neighborhood during the week of the peak loads for EWYMultiple compared

to TMY and TDYMultiple under NT. Electric power demand was calculated

by adding up for each hour the delivered energy for total electricity (de-

fined in Section 3.2.3) for all the buildings in the neighborhood.

The minimum level of electricity demand required over a period of

24 h is referred as ‘base load’. For the virtual neighbourhood based on

Fig. 11, under TMY IWEC this value is around 4.5MW. This increased

throughout the five-day workweek, passing 9MW and during the

weekend remaining below 9MW at peak. Base load is the minimum

power generation requirement and is usually covered by dedicated base-

load power plants [103]. The criticality is during the peak load hours,

which are from 2 pm to 6 pm on weekdays and 4 pm to 9 pm during the

weekend, in the case of the virtual neighborhood. The so-called peak-

load power plants are usually used to cater for the demand peaks. They

have a relatively high fuel cost compared with base-load power plants

and they are started up whenever there is a spike in demand and stopped

when the demand recedes. For the neighborhood, the peak value for

TMY occurs on Friday 18 August at 5 pm, the value being 10.23MW.

This value for TDYMultiple is slightly higher than TMY and is 10.29MW on

Tuesday 20 June at 4 pm. The peak values for the extreme case

EWYMultiple is above 10.28MW for 4 days, the highest value being

10.64MW on Thursday 27 July at 4 pm. The hourly electricity demand

during the days of extreme conditions furthermore stays above values of

typical conditions for almost the whole week. The peak electricity de-

mand values for the neighborhood for EWYMultiple under MT and LT are

11.01MW and 11.95MW respectively. This means that the value of peak

electricity demand can increase by 4.0%, 7.6% and 16.8% for extreme

conditions under NT, MT and LT in relation to the TMY IWEC value.

Power plants can, as described before, suffer reductions in efficiency

during extreme conditions (heat waves), with a consequential reduction

in the capacity of the energy system to cover peaks. Taking into account

these issues and looking into the increase in electricity demand for the

virtual neighborhood under extreme conditions, it might become a

challenge for the energy system of this neighborhood to cover the

margin, especially in the likely event of a reduction in generation ca-

pacity. The simulation test bench used in this study is developed based

on 2013 version of ASHRAE 90.1 standard, which means the models are

compliant with a recent energy code. Therefore, the above impacts can

be magnified considerably if considering presence of older buildings with

envelopes that have lower thermal performance; hence their energy

performance is more sensitive to climate conditions. The single most

marked observation that emerges from data comparison is the im-

portance of considering extreme conditions to assure the robustness of

the designed buildings or energy systems.

5. Conclusions

In this work, the dynamical and statistical methods for downscaling the

outputs of GCMs were discussed and two approaches for preparing future

weather data for building energy simulations were investigated, one based

on using only typical weather conditions and the other based on using

typical and extreme conditions. 74 weather files for the city of Geneva,

Switzerland were generated using the methods and approaches considered.

These were used to understand and compare the assumptions, limitations

and advantages of the methods and approaches in predicting the future

energy conditions of buildings. According to the results, weather files of the

statistical data group are able to present the long-term impacts of climate

change on averages (e.g. a gradual increase in the average dry-bulb tem-

perature for Geneva). However, these files are not suitable for investigating

the short-term changes that induce extreme weather conditions.

The ASHRAE standard 90.1 suite for commercial buildings was used

to study the impacts of the future weather data type on the energy

Fig. 11. The electrical load profile of virtual neighborhood for a peak summer week in Geneva, considering historical typical weather year (TMY), future typical

weather year (TDYMultiple) and future extreme warm weather year (EWYMultiple) under NT.
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simulation of buildings. This suite of models allows reasonably realistic

building characteristics for small office buildings to large energy-in-

tensive buildings such as hospitals, and mid to high-rise residential

buildings. According to the results, all the considered types of typical

weather data sets provide enough information to study the log-term

shift in energy use of the buildings and using the weather files gener-

ated by statistical methods can be sufficient. Moreover, typical weather

files generated from dynamically downscaled data would also reveal

the shifting of energy.

This worked investigated the importance of considering extreme

conditions and the possible consequences of neglecting such conditions

in designing buildings at building level and neighborhood scale. The

approach proposed by Nik [46] was used to generate representative

weather files. This approach is based on synthesizing three weather

data sets for each 30-year period: typical downscaled year (TDY), ex-

treme cold year (ECY) and extreme warm year (EWY). Firstly, the

number of hot days and tropical nights were calculated for different

types of weather files according to the definitions of MeteoSwiss. These

values were compared to the values observed during the extreme heat

wave of the summer of 2003. The results showed only the value derived

from the extreme weather file is comparable with the number of hot

days that occurred during the summer of 2003 in Geneva. This number

is considerably small for the cases where only typical weather data sets

(TMY and TDY) are considered. Furthermore, a group of representative

weather data sets based on multiple climate scenarios (TDYMultiple,

ECYMultiple and EWYMultiple) were considered to evaluate the impacts of

extreme conditions on the energy performance of all 16 buildings and a

virtual neighborhood. According to the results, for the near-term future,

the range of relative change of peak load for cooling demand under

extreme conditions shows an increase of 2–28.5%, compared to typical

conditions depending on the building type. Furthermore, the analysis of

the virtual neighborhood revealed that the peak electric power demand

for the neighborhood can increase by 4.0%, 7.6% and 16.8% under

near-term, medium-term and long-term future for extreme conditions in

relation to the value calculated using the TMY file. These results un-

derline the importance of considering extreme conditions in studying

the impacts of climate change on larger spatial scales (e.g. urban and

city scales) and preparing urban energy systems for future conditions.

The focus of this paper was on the impacts of long-term patterns of

climate change and extreme weather conditions on the energy perfor-

mance of buildings. Future work should be undertaken using different

methods of generating future weather files to study the thermal stress

upon building occupants. It might, furthermore, be necessary to con-

sider the effects of urban/micro climate (depending on the case), as the

effects of climate change might be amplified or diminished at the urban

scale, especially for extreme conditions.

In conclusion, our work provided further evidence that proper

weather data sets based on high resolution data from climate models

and several climate scenarios, including extreme conditions, are re-

quired to empower building engineers and architects to test their design

solutions under future climate uncertainties. As discussed before, a

large part of literature with focus on the impacts of future climate

conditions on the performance of buildings are from the UK, where such

weather files are readily accessible for several locations. It shows that

the availability of such files is crucial and requires efforts at national

levels. Only this type of approach will involve more experts into the

discussion of finding solutions that guarantee a more robust and climate

resilient built environment in the future.
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Appendix A

No. Title Year Country

1 Climate change impacts on the thermal performance of Portuguese buildings. Results of the SIAM study 2002 Portugal

2 Climate change impacts on building heating and cooling energy demand in Switzerland 2005 Switzerland

3 The impact of climate change uncertainties on the performance of energy efficiency measures applied to dwellings 2005 UK

4 Climate change, thermal comfort and energy: Meeting the design challenges of the 21st century 2007 UK

5 Creating weather files for climate change and urbanization impacts analysis 2007 US

6 Embodied and operational carbon dioxide emissions from housing: a case study on the effects of thermal mass and climate change 2008 UK

7 Estimating the impacts of climate change and urbanization on building performance 2008 US

8 Beyond TMY: climate data for specific applications. 2008 Australia

9 Uncertainties in predicting the impact of climate change on thermal performance of domestic buildings in the UK 2008 UK

10 Climate change future proofing of buildings-Generation and assessment of building simulation weather files 2008 UK

11 Evaluating the potential impact of global warming on the UAE residential buildings - A contribution to reduce the CO2 emissions 2009 United Arab Emirates

12 Will future low-carbon schools in the UK have an overheating problem? 2009 UK

13 Resilience of naturally ventilated buildings to climate change: advanced natural ventilation and hospital wards 2009 UK

14 Identification of key factors for uncertainty in the prediction of the thermal performance of an office building under climate change 2009 UK

15 Assessment of climate change impact on residential building heating and cooling energy requirement in Australia 2010 Australia

16 The effects of future climate change on heating and cooling demands in office buildings in the UK 2010 UK

17 Predicting the performance of an office under climate change: a study of metrics, sensitivity and zonal resolution 2010 UK

18 Comparison of multi-year and reference year building simulations 2010 UK

19 Predicted changes in energy demands for heating and cooling of passive house due to climate change in Slovenia 2010 Slovenia

20 The role of adaptive thermal comfort in the prediction of the thermal performance of a modern mixed-mode office building in the UK under

climate change

2010 UK

21 Translating probabilistic climate predictions for use in building simulation 2010 UK

22 Climate change adaptation pathways for Australian residential buildings 2011 Australia

23 Developing future hourly weather files for studying the impact of climate change on building energy performance in Hong Kong. 2011 Hong Kong

24 A probabilistic analysis of the future potential of evaporative cooling systems in a temperate climate 2011 UK

25 The impact of the projected changes in temperature on heating and cooling requirements in Dhaka, Bangladesh 2011 Bangladesh

26 Longitudinal prediction of the operational energy use of buildings 2011 UK

27 Climate change, building design, and thermal performance 2011 Austria

28 Assessing the risk of climate change for buildings: A comparison between multi-year and probabilistic reference year simulations 2011 UK

29 Designing net-zero energy buildings for the future climate, not for the past 2012 Canada

30 Future energy demand for buildings in the context of climate change for Burkina Faso 2012 Burkina Faso

31 Generating design reference years from the UKCP09 projections and their application to future air-conditioning loads 2012 UK
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32 The natural ventilation performance of buildings under alternative future weather projections 2012 UK

33 Thermal mass in new build UK housing: a comparison of structural systems in a future weather scenario 2012 UK

34 Ranking of interventions to reduce dwelling overheating during heat waves. 2012 UK

35 Climate change influence on building lifecycle greenhouse gas emissions: case study of UK mixed-use development 2012 UK

36 Energy use, indoor temperature and possible adaptation strategies for air-conditioned office buildings in face of global warming 2012 Australia

37 Using UK climate change projections to adapt existing English homes for a warming climate 2012 UK

38 A proposed method to assess the damage risk of future climate change to museum objects in historic buildings 2012 Netherlands and

Belgium

39 Thermal comfort standards, measured internal temperatures and thermal resilience to climate change of free-running buildings: a case-study

of hospital wards

2012 UK

40 Assessment of hygrothermal performance and mould growth risk in ventilated attics in respect to possible climate changes in Sweden 2012 Sweden

41 Building characteristics as determinants of propensity to high indoor summer temperatures in London dwellings 2012 UK

42 A comparison of structural and behavioural adaptations to future proofing buildings against higher temperatures 2012 UK

43 Management of thermal performance risks in buildings subject to climate change 2012 UK

44 Simulating urban heat island effects with climate change on a Manchester house 2012 UK

45 Impact of climate change on thermal comfort and energy performance in offices - A parametric study 2012 Greece

46 Impact of climate change on comfort and energy performance in offices 2012 Greece

47 A comparative analysis of current and newly proposed overheating criteria for UK schools: A climate change aspect 2012 UK

48 Simulation of the impact of climate change on the current building's residential envelope thermal transfer value (ETTV) regulation in

Singapore

2012 Singapore

49 Summertime impact of climate change on multi-occupancy British dwellings 2012 UK

50 Climate data and climate change - Analysis of the influence on energy demand, performance requirement and thermal comfort of buildings

[Klimadaten und Klimawandel - Untersuchungen zum Einfluss auf den Energiebedarf, den Leistungsbedarf und den thermischen Komfort von

Gebäuden]

2012 Germany

51 Comparison of untypical meteorological years (UMY) and their influence on building energy performance simulations 2013 Poland

52 Energy simulation of sustainable air-cooled chiller system for commercial buildings under climate change 2013 Honk Kong

53 The effectiveness of retrofitting existing public buildings in face of future climate change in the hot summer cold winter region of China 2013 China

54 Modelling to predict future energy performance of solar thermal cooling systems for building applications in the North East of England 2013 UK

55 An investigation into future performance and overheating risks in Passivhaus dwellings 2013 UK

56 Transforming existing weather data for worldwide locations to enable energy and building performance simulation under future climates 2013 UK

57 Building envelope design for climate change mitigation: a case study of hotels in Greece 2014 Greece

58 Impacts of urban location and climate change upon energy demand of office buildings in Vienna, Austria 2014 Austria

59 Impact of climate change heating and cooling energy use in buildings in the United States 2014 US

60 An outdoor-indoor coupled simulation framework for Climate Change-conscious Urban Neighborhood Design 2014 Egypt

61 Risks of summertime extreme thermal conditions in buildings as a result of climate change and exacerbation of urban heat islands 2014 US

62 Effects of future climate change scenarios on overheating risk and primary energy use for Swedish residential buildings 2014 Sweden

63 Climate change simulation for intelligent green building adaptation design 2014 UK

64 Microclimate change outdoor and indoor coupled simulation for passive building adaptation design 2014 UK

65 Sampling-based sensitivity analysis of thermal performance in domestic buildings under climate change 2014 UK

66 Environmental benefits of sustainable chiller system under climate change 2014 Hong Kong

67 Double-skin façades in the context of climate change [Doppelfassaden im Zeichen des Klimawandels] 2014 Germany

68 Impacts of climate change upon cooling and heating energy demand of office buildings in Vienna, Austria 2014 Austria

69 Analysis of performance of night ventilation for residential buildings in hot-humid climates [Sicak-nemli iklimlerdeki konut binalarinda gece

havalandirmasi performansinin analizi]

2014 Turkey

70 Impact of building design and occupancy on office comfort and energy performance in different climates 2014 Creece, Germany,

Australia

71 Developing a probabilistic tool for assessing the risk of overheating in buildings for future climates 2014 UK

72 Near Future Weather Data for Building Energy Simulation in Summer/Winter Seasons in Tokyo Developed by Dynamical Downscaling

Method

2014 Japan

73 Generating near-extreme Summer Reference Years for building performance simulation. 2015 UK

74 Climate for Culture: assessing the impact of climate change on the future indoor climate in historic buildings using simulations 2015 Whole Europe

75 Energy demand for the heating and cooling of residential houses in Finland in a changing climate 2015 Finland

76 Impacts of climate change on energy consumption and peak demand in buildings: A detailed regional approach 2015 US

77 Preparing for climate change with computation and resiliency 2015 US

78 Study on the future weather data considering the global and local climate change for building energy simulation 2015 Japan

79 The potential of phase change materials to reduce domestic cooling energy loads for current and future UK climates 2015 UK

80 Future moisture loads for building facades in Sweden: Climate change and wind-driven rain 2015 Sweden

81 Vulnerability to climate change impacts of present renewable energy systems designed for achieving net-zero energy buildings 2016 US

82 Effect of climate change on building cooling loads in Tokyo in the summers of the 2030s using dynamically downscaled GCM data 2016 Japan

83 Future trends of residential building cooling energy and passive adaptation measures to counteract climate change: The case of Taiwan. 2016 Taiwan

84 Integrating climate change and energy mix scenarios in LCA of buildings and districts 2016 France

85 Modeling the long-term effect of climate change on building heat demand: Case study on a district level 2016 Portugal

86 Climate change future proofing of buildings—Generation and assessment of building simulation weather files. 2016 Italy

87 Future probabilistic hot summer years for overheating risk assessments. 2016 UK

88 Optimization of annual energy demand in office buildings under the influence of climate change in Chile 2016 Chile

89 Impact of climate change on heating and cooling energy demand in houses in Brazil 2016 Brazil

90 Residential buildings' thermal performance and comfort for the elderly under climate changes context in the city of Sao Paulo, Brazil 2016 Brazil

91 Analysis of the predicted effect of passive climate adaptation measures on energy demand for cooling and heating in a residential building 2016 Netherlands

92 The impact of regulations on overheating risk in dwellings 2016 UK

93 Impact of future climates on the durability of typical residential wall assemblies retrofitted to the PassiveHaus for the Eastern Canada region 2016 Canada

94 Impacts of climate change on U.S. building energy use by using downscaled hourly future weather data 2017 US

95 Prediction of the impacts of climate change on energy consumption for a medium-size office building with two climate models. Energy and

Buildings

2017 US

96 Climate Change Adaptation Pathways for Residential Buildings in Southern China. 2017 China

97 Influence of climate change on summer cooling costs and heat stress in urban office buildings 2017 Belgium

98 Making energy simulation easier for future climate – Synthesizing typical and extreme weather data sets out of regional climate models

(RCMs)

2017 Sweden

99 Application of adaptive comfort behaviors in Chilean social housing standards under the influence of climate change 2017 Chile

100 Cooling Energy Implications of Occupant Factor in Buildings under Climate Change 2017 South korea and Hong

kong
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101 Assessment of climate change impact on the required cooling load of the hospital buildings 2017 Malaysia

102 Adapting the design of a new care home development for a changing climate 2017 UK

103 The impact of climate change on the overheating risk in dwellings—A Dutch case study 2017 Netherlands

104 Energy Consumption Performance Considering Climate Change in Office Building 2017 China

105 Performance evaluation of well-insulated versions of contemporary wall systems-a case study of London for a warmer climate 2017 UK

106 Robustness of residential houses in Ecuador in the face of global warming: Prototyping and simulation studies in the Amazon, coastal and

Andes macroclimatic regions

2017 Ecuador

107 Effectiveness of passive measures against climate change: Case studies in Central Italy 2017 Italy

108 Energy efficiency and resilience against increasing temperatures in summer: The use of PCM and cool materials in buildings 2017 Italy

109 Should we consider climate change for Brazilian social housing? Assessment of energy efficiency adaptation measures 2018 Brazil

110 A dynamic modelling approach for simulating climate change impact on energy and hygrothermal performances of wood buildings 2018 Finland

111 Cooling and heating energy performance of a building with a variety of roof designs; the effects of future weather data in a cold climate 2018 Canada

Appendix B

Boxplots of the global horizontal radiation, relative humidity and wind speed as some of the key variables for energy simulation, are plotted in

Figs. A1, A2 and A3 respectively.

Fig. B1. Boxplots of global horizontal radiation for the weather files generated by three software tools–CCWorldWeatherGen, WeatherShiftTM, Meteonorm –and six

combinations of GCM-RCMs with different emission scenarios.
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Fig. B2. Boxplots of relative humidity for the weather files generated by three software tools–CCWorldWeatherGen, WeatherShiftTM, Meteonorm –and six com-

binations of GCM-RCMs with different emission scenarios.
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Abstract 

Neglecting extremes and designing buildings for the past or most likely weather conditions is not the best 

approach for the future, while robust design techniques can be a viable option to tackle the future 

challenges. Concept of robust design was first introduced by Taguchi in 1940s and result of the design 

process is a product that is insensitive to the effect of given sources of variability, even though the sources 

themselves were not eliminated. In this paper, for the first time a robust design optimization (RDO) 

method is proposed for supporting architects and engineers to design buildings with robust energy 

performance under climate change and extreme conditions. To test the effectiveness of the method, the 

primary energy use of an obtained optimum solution is calculated for 74 different climate scenarios 

including typical and extreme conditions. According to the results, the performance of the optimum 

solution not only has 81.5% lower variation (less sensitivity to climate uncertainty) but at the same time 

14.4% lower mean value of energy use in comparison to a solution that is compliant with a recent 

construction standard (ASHRAE 90.1-2016). Less sensitivity to climate uncertainty means better 

robustness against climate change and simultaneously keeping a high performance. 

1 Introduction 

In the design of buildings in recent years, the focus of building designers, architects and engineers, has 

been pointed toward minimizing the energy use in buildings or achieving a net zero energy balance (ZEB) 

at the building or neighborhood scale. Building performance simulation (BPS) has helped reaching more 

optimized solutions with better energy-efficiency. However, studies have shown that more optimal 

solutions can be achieved using automated optimization techniques [1]. Nguyen et al. [2] reviewed 

simulation-based optimization methods and concluded that a further reduction of 20- 30% can be achieved 

in the energy consumption of buildings using automated optimization. With the advancements in 

computational science and the desire for achieving  higher levels of energy optimality, the use of 

simulation-based optimization techniques in building sector is on the rise [3]. Such techniques allow 

designers to systematically explore a wider design space for better solutions. This is possible by coupling 

an automated mathematical optimization tool with a BPS program. During the building simulation 

process, many different design options are evaluated to obtain the optimum for a set of objectives (e.g. 

zero energy balance) [4]. While these promising technologies help to achieve designs with high 

performance solutions, the buildings that are constructed based on these design solutions are usually very 

sensitive to the changes in their operational conditions. Such a performance gap between the expected 

level of performance and the actual performance has been discussed and demonstrated in the literature [5-

7]. There are several factors influencing the discrepancy of performance of the buildings between the 

designed and constructed. In general, the sources of this discrepancy can be categorized in three types: 

epistemic uncertainties, aleatory uncertainties and errors. Epistemic uncertainty is defined as “a potential 

deficiency that is due to a lack of knowledge.” [8]. Examples of epistemic uncertainties can be 

simplifications and numerical approximations of physical processes that are considered in numerical 

models of BPS tools [9]. An error is defined as “the discrepancy between a computed, observed or 

measured value or condition and the trues, specified or theoretically correct value or condition” [10]. 

Examples for source of errors can be the discrepancy between constructed and simulated due to human 

errors during the construction and also poorer quality of construction materials than designed [11]. The 

third type are aleatory uncertainties which is the “uncertainty that is said to arise due to the inherently 

random or variable nature of a quantity, or the (usually unknown) system underlying it.” [9]. Examples of 

discrepancy due to aleatory uncertainties are the influence of occupants’ behavior and/or climate 



conditions on the performance of buildings. While the first two sources of discrepancy, epistemic 

uncertainty and errors, are reducible, the aleatory uncertainty is irreducible and cannot be eliminated due 

to its inherent randomness and natural variability [12]. Epistemic uncertainties in building modelling can 

be reduced by improvement of numerical models, calibration using additional experimental observations, 

and providing better information [13]. Errors can be minimized by the use of technological advancements 

such as Building Information Modelling (BIM) [14] and Augmented Reality (AR) [15], and offsite or 

prefabricated construction technologies [16]. Aleatory uncertainties cannot be eliminated and the common 

approach to deal with this type of uncertainty in BPS is to consider a most likely scenario. For example, 

occupants are normally simulated with a fixed schedule [17] as the most probable occupancy scenario. 

Using typical meteorological year (TMY) weather files is another example of counting for the most likely 

conditions [18]. This approach causes the final solution to be sensitive to the variations from the most 

likely conditions, which may results in malfunctioning during adverse conditions in real life. Kalkman 

[19]  showed in identically constructed buildings the energy use can be up to17 times bigger due to the 

influence of occupants.. Rastogi [9] thoroughly studied the sensitivity of buildings performance to climate. 

The best way to deal with these uncertainties is to evaluate and design buildings under presence of them. 

Designing under presence of aleatory uncertainties is not a new concept and has been in discussion in 

other fields of industry for a long time, but not yet been applied in buildings design. The idea of this 

concept is that instead of eliminating the source of uncertainty, this source is presented as noise during the 

design phase and the goal is to achieve a design solution which has its performance least sensitive to the 

presence of noise. This process is called “robust design” and was introduced first by Taguchi in the 1940s 

[20]. 

The aim of this work is to use the power of simulation-based optimization technology in discovering new 

areas of design space, and couple it with the experience of robust design from other industrial fields, in 

order to achieve building designs with robust energy performance against climate uncertainties. A robust 

design problem can also be formulated as an optimization problem. The concept of adding robust design 

to conventional optimization is called robust design optimization (RDO), where the idea is to achieve 

minimum performance variability under the presence of uncertainty. These concepts have been widely 

practiced and developed in various design areas from car manufacturing [21] and electronics [22] to 

medicine [23] and chemical productions [24]. In this study, for the first time an RDO technique for design 

of buildings with robust energy performance under typical and extreme condition conditions is proposed. 

The main focus is to introduce a process that is relatively simple and can be used by architects and 

engineers from the early stage of design. The outcome of this process is a design that its energy 

performance is least sensitive to climate variations while its energy use is also minimum, i.e. it is energy-

robust and energy-efficient under climate change. 

With the occurrence of climate change, it is no more possible to design buildings only based on TMYs 

[25]. Climate conditions have changed and are going to change with more frequent and intense extreme 

conditions in near future [26]. A system that has been designed to meet required performance under 

typical or most likely conditions can be challenged up to its failing point under atypical or extreme 

conditions [27]. Examples are black outs or regional grid failures during heatwaves. One of the main 

reasons is the high sensitivity of buildings to the perturbation of external conditions, which causes their 

performance to vary significantly if the conditions fall out of typical range. For example, when the 

electricity demand soars during heatwaves, it is of consequence to buildings that are not designed for such 

conditions. Energy system failure may leave thousands of houses with no means of cooling that puts 



vulnerable people at risk of death in overheated buildings, as it happened during the 1995 Chicago 

heatwave [28], 2003 Europe heatwave [29] and 2006 heatwave in New York City [30]. Heatwaves are 

good examples of how underestimation during design can easily become very costly. Buildings of today 

need to be designed to not only perform optimal under typical conditions, but also show minimum 

variation under atypical conditions. One of the main challenges on achieving this target is to consider 

climate uncertainty in the optimization process. The climate uncertainty and challenges in considering 

them in simulation-based optimization process are discussed in section 2.2. Before that, the concept of 

robust design and its implication in built environment is described briefly in the following section. In 

section 3, the proposed RDO methodology for robust energy performance under climate change is 

described in detail. An approach to test the effectiveness of the method is presented in Section 4, where 

the solutions provided by the RDO method are tested under 74 climate scenarios. The results and 

conclusions are provided in section 5 and 6 accordingly. 

2 Background and concepts  

2.1 Concept of robust design optimization and its implication in built environment 

Since the introduction of robust design, this discipline has been adopted in a wide range of industries. 

Taguchi defined robustness as “the state where the technology, product, or process performance is 

minimally sensitive to factors causing variability (either in the manufacturing or user’s environment) and 

aging at the lowest unit manufacturing cost” [31]. In other words,  “a product or process is said to be 

robust when it is insensitive to the effect of source of variability, even though the sources themselves have 

not been eliminated” [32]. Further definitions for robustness from system engineering and product design 

are: insensitivity to anticipated risks [33], a measure of variation in performance [34], insensitivity to 

unforeseeable changes in the operating environment [35], insensitivity to both expected and unexpected 

variations [36], the ability of a system to continue to operate correctly across a wide range of operational 

conditions [37], the ability of a system to absorb change [38], the potential for system success under 

varying future circumstances or scenarios [39], and the ability of a system – as built/designed – to do its 

basic job in uncertain or changing environments [40]. 

Robust design of a product involves factors that are defined as follow [41]: 

Control factors (or Design variables), are variables that have to be specified by the designer; 

Noise factors, are uncertain parameters that designer cannot control (only the statistical 

characteristics of noise factors that are expected in production or in actual use of the product can 

be known or specified); 

Target value (Signal factor), is set by regulations or user of the product to express the desired 

value for the response of the product; 

Response is the output of the product with the presence of noise. 

One application of robust design is in car manufacturing and specifically in car packaging design, where 

the target is achieving high spatial and ergonomic efficiency for the cars. For example in a study [21] for 

an ergonomic robust design of car packaging, the seat cushion angle, steering-wheel-to-BOF (ball of foot) 

distance, etc. were considered as control factors, the anthropometric variability was considered as noise 

factor and the response was comfort loss of the occupants. The aim of a robust design is to set optimal 

control factors in which the variation of response from the target value to be minimum under presence of 



noise factors. To explain the procedure of the robust design, a block diagram representation of a product 

[41] is shown in Figure 1. 

 

Figure 1 Block diagram of a product: P diagram 

A robust design problem is a multi-objective optimization problem. The objectives are to reduce variation 

of the response while the mean is shifted to a target value (Figure 2). 

 

Figure 2: Robust design applied to buildings performance where the smaller mean and variation of response f is desired. 

Based on this process, Taguchi developed the signal-to-noise ratio (S/N) that is a key metric used to 

perform the first step of the optimization process. During this step, the S/N gets maximized that is 

equivalent to minimizing the sensitivity of the response to the noise factors [32].  

   (1) 

S/N is proportional to the base 10 logarithm of the ratio between the squared of the signal factors ( ) and 

the squared of the noise factors ( ). Adding logarithm to the metric was proposed by Taguchi and puts the 

S/N ratio into decibels units (dB) [32]. Taguchi described that a metric for robust design should have four 

properties [32]: 

1. The metric should reflect the variability in the response. 

2. The metric should be independent of adjustment of the mean. 

3. The metric should measure relative quality. 

4. The metric should not induce unnecessary complications, such as control factors interactions. 



A good S/N metric has all the above properties. Later on, in section 3.4, these properties are further 

discussed for the specific S/N metric that is developed for the purpose of this study. 

Robust design is a general concept applicable to all design procedures when uncertainty is taken into 

account. The aim is minimizing the sensitivity of product’s performance to the presence of uncertainties in 

real world conditions. This concept can be transferred from industrial product to buildings simply by 

considering the target value as any desired performance indicator (e.g., the indoor thermal comfort 

condition, the indoor daylight performance or the maximum delivered energy) and noise factor as any 

variable that cause deviations in the performance of a building during its operation. The concept of 

robustness has been discussed in the building engineering literature while taking into account variety of 

uncertainty sources. For example [42], [43] considered energy robustness of an office building against 

energy related occupant behavior. They conceptualized robustness as minimum variation in energy use 

despite of variable occupants’ behavior. Leyten and Kurvers [44] studied the indoor climate robustness of 

an office building. According to them, robustness is “the measure by which the indoor environment of a 

building lives up to its design purpose when it is used by occupants in a real life situation”. Palme  et al. 

[45], [46] proposed a concept for robustness of energy performance in buildings and related it to the 

ability of the building to mitigate the unpredictable variations induced by occupants or by external factors; 

Chinazzo et al. [47] assessed robustness of energy performance to the uncertainties in weather files; Hoes 

et al. [48] considered sensitivity of several performance indicators to the  effect of user behavior. They 

investigated several design cases to find the most robust (the least sensitive) case to user behavior. 

O’Brien [49] investigated the robustness of energy use for lighting under presence of occupant behavior 

uncertainty. Kotireddy et al. [50] developed a methodology based on scenario analysis to assess 

performance robustness of low-energy buildings. The mentioned studies demonstrate that the concept of 

robustness in buildings has different interpretations and has not been converged with a concise approach 

in this field of research. 

A non-exhaustive list of the built environment’s terms classified according to the factors represented in the 

P diagram is given in Table 1. 

Table 1: Built environment’s examples classified according to the factors of the P diagram 

Product Noise factors Control factors 

(Design variables) 

Responses 

Building scale: 

• components 

• systems  

• units/apartments 

Urban scale: 

• Building /Facility 

• Neighborhood 

• City 

• Region 

Climate conditions: 

• Changes in long-term and 

short-term patterns of 

climate 

Occupant behavior: 

• Operation of appliances 

• Manipulation of building 

control settings 

• Windows operation 

• Door operation 

• Vent operation 

• Use of domestic hot water 

Envelope Thermal properties: 

• Insulation thickness 

• U-value of glazing 

• G-value of glazing 

Building Geometry: 

• Air volume 

• Window-to-wall ratio 

• Net floor area 

Control settings: 

• Maximum solar irradiance to 

draw down solar shading 

devices 

• Set point temperature to open 

windows for enabling natural 

ventilation 

• Heating set point temperature 

• Cooling set point temperature 

• Energy use 

• Thermal discomfort 

• CO2 concentration 

• Visual discomfort (glare) 

• Noise level 



Robust design process originally was formulated in a way that the process can be performed with 

minimum cost and resources. This was due to high costs of experimental tests and also limited 

computational powers for running simulations. Taguchi used orthogonal array that is a method for setting 

experiments with only fraction of the full combinations [32]. But with the availability of better numerical 

models and high computational power, this concept was later introduced in simulation-based optimization 

process, and is referred to as robust design optimization (RDO) [51]. In other words, RDO is when the 

concept of robust design is added to the conventional optimization [52, 53]. In conventional optimization, 

the deterministic approach does not consider the impact of unavoidable uncertainties (noise factors) 

associated with the input design variables in real engineering environment. This results in optimum 

solutions that their performance measure is sensitive and can vary significantly due to distribution of noise 

factors. The design problems of buildings engineering also can be formulated as RDO problems, where 

the objective is to achieve a performance measure (e.g. energy) with minimum sensitivity to a noise factor 

(e.g. climate). 

For this study, a number of design variables for an office building are optimized to achieve a minimum 

variation of its energy performance under the disturbance of mutable climate variables. In this case, the 

noise factor is climate change and the objectives of RDO scheme are to minimize mean energy 

performance while minimizing energy performance variability under climate change. Inspired by the work 

of Taguchi, two metrics (two objective functions) were developed for an optimization process that results 

in solutions with minimum variation in energy performance of a building under presence of climate 

uncertainty. The first objective is a S/N ratio metric customize for the purpose of this study that fulfill the 

four properties described earlier. The second objective focuses on minimizing the energy use. These 

metrics are introduced in section 3.4.  

The first challenge in the intended RDO process is introducing climate change as noise factor into the 

optimization problem. The following section is dedicated to climate uncertainty and challenges to consider 

it in simulation-based optimization. 

2.2 Climate uncertainty and simulation-based optimization 

Detailed weather data with daily or hourly resolution are required to properly describe, through 

simulation, the dynamic energy behavior of a building [54]. Weather data defines the external boundary 

conditions for BPS. Current practice in BPS is using a typical meteorological year (TMY) weather files 

which represent the most likely climate conditions based on historical recorded data [18]. TMYs are one-

year weather files representing typical conditions of a 30-year period of measured data for a given 

location. One of the main disadvantages of this method is its averaging nature: the generation of a typical 

weather year neglects the extreme weather conditions. Apart from historical data, with today’s technology, 

climate models’ data: General Circulation Models (GCMs) and Regional Climate Models (RCMs), can 

provide information on possible future climate conditions. These models are able to generate years of 

future climate data based on different climate scenarios [55] for most  locations on the earth. Future 

climate data are then required to be transformed to suitable format for use in BPS. Moazami et al. [56] 

investigated available techniques to transform these data to suitable resolutions for BPS and design 

purposes. Theoretically, in order to take into account climate uncertainty, it is possible today to run a 

design under 100 of years of consistent climate data representing past recorded data and future possible 

climate scenarios. The availability of these data makes it possible to study the sensitivity of a design or to 

look for design alternative that demonstrate minimum sensitivity to climate conditions. However, this 



means that at each step of optimization, hundreds of simulation runs should be performed to be able to 

calculate the RDO objectives. The optimization scheme may therefore become infeasible due to high 

computational cost. The following example helps to grasp a feeling of the time and the computation 

resources that are required to consider all possible scenarios and minimize mean and variation of energy 

performance under these scenarios. Let’s consider 30 years of future climate data with an ensemble of 4 

scenarios (two GCM-RCMs and two emission scenario) are generated while 30 years of historical data are 

also available. These provide 150 years of climate data. In the case of running the optimization process, 

each optimization step will contain 150 annual simulations. In other words, for an optimization process of 

1000 evaluations, 150000 simulation runs are required. Considering that each simulation takes 1 minute 

and the possibility of four parallel simulations, the optimization process will take around 26 days. The 

required time-scale is not feasible in buildings design practice. 

To solve both issues with high number of simulations and exclusion of extreme conditions, a work by Nik 

[57] proposed a method to synthesize a set of representative weather data sets, including one typical year 

and two extreme cold and warm years, namely Typical Downscaled Year (TDY), Extreme Cold Year 

(ECY) and Extreme Warm Year (EWY). This method has the advantage of decreasing the number of 

simulations enormously, while considering extreme conditions and future climate uncertainties into 

account. The method for generating TDY, ECY and EWY is explained in detail in [57]. In short, the 

method is based on Finkelstein–Schafer (FS) statistics [18]; picking the months with the most similar 

cumulative distribution temperature to the whole data sets as the typical months and constructing TDY 

based on them. For ECY and EWY, those months with the largest differences are picked as the extreme 

cold and warm. The method and its usefulness have been verified in different applications [56-58]. The 

method for synthesizing representative weather data sets was developed further to track all the possible 

extremes at each time step for any desired climate variable. To do so, the typical and extreme values of a 

climate variable were picked according to the hourly (instead of monthly) distribution at each time step 

(hour) considering all the years and climate scenarios. This results in three time-series (with the length of 

8760 hours), each containing the most typical, the lowest and the highest values at each time step. These 

data sets are generated only for calculation purposes and they cannot be considered as weather data since 

they do not reflect the natural variations of the climate system (unlike TDY, ECY and EWY which are 

arranged based on monthly distributions and reflect natural variations). Nevertheless, each hourly value is 

a possible future condition that may challenge the designs. 

The above approach allows applying climate change as noise factor in simulations by only using three 

weather files (three-year of climate data). This means, the simulation runs of the mentioned example 

reduce to 3000 (1000 evaluation × 3 simulation runs using TDY, ECY and EWY weather files), and as a 

result optimization process will require 12.5 hours.  

In this study weather files generated for city of Geneva were used. Geneva was chosen due to the wealth 

of available data and the possibility of representing both cold winters and warm summers. The set of the 

representative weather files was synthesized in a previous study [56]. 

3 Simulation-based optimization method for design of energy-efficient 

buildings with robust energy performance  

In this paper, we specifically refer to a multi-objective RDO that identifies a set of optimal building design 

solutions to achieve robust energy performance with high efficiency. The set of design solutions make the 



buildings to have high energy efficiency and low performance-variability while noise factor is present. It 

implies low energy use and a minimum sensitivity to disturbances. This specific robust design 

optimization problem can be formulated as: 

  (2) 

  (3) 

  (4) 

where  is the vector of design variables, and  are the objective functions,  are 

inequality constraints subject to the uncertainty parameters that can take any arbitrary values in the 

uncertainty domain . Using this formalism, the goal of this robust design optimization problem 

is to find a set  (i.e. the set of the minimum-cost building variants) among all the available building 

variants which is feasible considering all the noises factors  

 . (5) 

The design effect of these two objectives , as shown in Figure 2, isa narrow distribution of primary energy 

with the mean value close to the target value (ideally zero). Optimizing  will minimize the 

sensitivity of performance to the noise and is a measure of robustness. Optimizing  will minimize 

the primary energy use and is a measure of energy-efficiency. These effects are visualized in Figure 3. 

 
Figure 3 visualization of the designed effects of the two objective functions 

3.1 Formulating the objective functions 

As mentioned before, the focus of this study is to achieve robustness against climate uncertainty. In this 

regard, the achieved distribution of energy performance (e.g. Figure 3) is only due to variations of climate. 

To apply climate as a source of performance variability, as described in section 2.2, the method suggested 

by Nik [57] is adopted; using one typical and two extreme weather files (to be called triple method 

hereafter). In this method, the distribution of climate scenarios is summarized into three weather files: 

TDY, EWY and ECY. Reminding that the TDY file represents the most likely climate evolution and 



EWY and ECY are the extreme warm and cold climate evolutions, ,  and  are the 

primary energy use (PE) calculated for the time-step  using the TDY, EWY and ECY weather files.  

To develop a custom S/N ratio for the specific task of this study, the four properties described in section 

2.1 were considered as a guideline. The first property is to define a metric that reflects the variability in 

the response. Accordingly, the mean squared deviation (MSD) is calculated, which is the average squared 

differences between  and  values with  as reference values. Considering  as 

reference values, this function can be used to measure how far the values of  and  are from 

these reference values as measure of variability. The second property requires the metric to be 

independent of adjustment of the mean. For this reason, a second objective function was introduced. In this 

objective, calculated value of  is separately minimized, which makes the first objective being 

independent of the adjustment of . For the third property, the metric should measure relative 

quality, the S/N is calculated as relative change of  squared to MSD. At the final step, adding 

logarithm to the metric was proposed by Taguchi and puts the S/N ratio into decibels units (dB) [32]. With 

this transformation, the multiplicative changes in the metrics are transformed to additive changes, which 

helps reduce the effect of interactions between the design variables. It means the influence of each design 

variable is independent of the effects of the other design variables, which fulfills the fourth property. This 

metric is formulated as objective function n.1 and is descried below. By minimizing the first objective, the 

difference of energy performance under extreme and typical is minimized, which means the sensitivity of 

response to the changing of climate is minimized, while simultaneously the second objective minimize the 

annual primary energy , which is the annual total primary energy required by the building under 

average conditions (TDY). These objectives are formulated as below: 

Objective function n.1: the purpose of f1(x, ui) is to squeeze the energy performances calculated using 

EWY and ECY towards the one calculated using TDY. In this regard MSD is defined as: 

  (6) 

Following Eq. (1) for S/N ratio and in order to maintain the usual convention according to which an 

optimization is a minimization process, S/N is negated when used as objective function. Therefore, f1(x, 

ui) is: 

 

(7) 

 

Where  is the the temporal resolution of data. For example, if one is interested in yearly energy 

performance and calculates it accumulating 12 monthly values, p has to be set at 12. If one is interested in 

the yearly energy performance calculated over hourly values, p has to be set at 8760; otherwise, for daily 

energy performance calculated over the 24 hours in a day, p has to be set at 24. Minimizing  



results in minimizing the sensitivity of the response (energy use) to the variability of noise (climate 

conditions). 

Objective function n.2: The purpose of  is to optimize building’s energy use under the most 

likely climate conditions. The objective functions can be formulated as: 

  (8) 

With the two objectives described above, it is now possible to conceptualize an RDO process in which 

climate uncertainty is introduced as noise factor in simulations by only using three weather files. In this 

process, objective function n.1 minimize the deviation between responses under extremes and average 

conditions. Objective function n.2 brings the primary energy with the mean value close to the target value 

(ideally zero). The above concept is visualized in Figure 4 for two time steps during heating period and 

cooling period. 

 

Figure 4 The concept of robust design optimization using three weather files: TDY, ECY and EWY 

The above formulation allows performing robust design optimization at different temporal resolutions. 

This feature is required because the effect of a noise factor on the performance variability of a building 

system varies according to its typical response time. For example, when optimizing building envelope 

properties, one would need to consider the seasonal effect of climate variation, so the monthly resolution 

might be appropriate; otherwise, if someone want to optimize building’s devices such as automated 

shadings, the temporal resolution of climate variation has to be finer, e.g. day or hour. For this reason, in 

the development of the optimization process, two set of design variables were considered: building 

envelope properties and control settings. Two configurations based on these two groups were designed for 

optimization process (see section 3.4). Before moving to the formulation of optimization process, in the 

following sections (section 3.2 and 3.3) the energy models and design variables that are considered for this 

study are described. 



3.2 Building models  

The commercial reference building models were developed by Pacific Northwest National Laboratory 

(PNNL), under contract with the U.S. Department of Energy (DOE) [59]. The package includes 16 

building types model. These models are provided in three categories: “new construction”, “post-1980” and 

“pre-1980” (existing buildings constructed in or after 1980 and before 1980). The new construction 

models are modified according to recent editions of ASHRAE 90.1 Standard [60]. Detailed descriptions of 

the reference model development and modeling strategies can be found in PNNL’s reports [61] [62]. For 

the purpose of this study, which is testing the proposed methodology for supporting the design of 

buildings with robust energy performance, the small office building model is used. Two base-case were 

considered; one from new construction category complying with ASHRAE 90.1-2016 standard and one 

from post-1980 category. These cases are called “2016-compliant base-case” representing a newly built 

building quality and “1980-compliant base-case” representing an existing building quality. It allows 

assessing energy robustness of models representing newly built and existing old buildings under climate 

uncertainty. This case-study also shows the potential improvement by “robustifying” the energy 

performance of buildings. The reference building models are also categorized based on ASHRAE climate 

zones [63]. The climate zones are classified according to calculated heating degree-day base 18°C 

(HDD18) and cooling degree-day base 10°C (CDD10). In order to find the model best suit for Geneva, 5-

year average (2013 to 2017) of degree-day values were calculated for Geneve-Cointrin weather station. 

The calculated values are 2831 for HDD18 and 1460 for CDD10, which is in accordance to Cold-Humid 

(5A) of ASHRAE climate zones. For this reason, the energy models base-case models are chosen from 5A 

climate zone. Summary of geometry description, thermal zones, envelope properties, and control settings 

of the building models are given in Figure 5, Table 2 and Table 3. 

 

Figure 5 Reference building model geometry and zone planning 

Table 2 Description of the thermal zones 

Zone 
Area 

(m
2
) 

Conditioned 

(Y/N) 

Volume 

(m
3
) 

Gross 

wall 

area 

(m
2
) 

Window 

Glass 

Area 

Lighting 

(W/m
2
) 

People 

(m
2
/person) 

Number 

of 

people 

Appliance 

(W/m
2
) 

CORE_ZN 149.7 Yes 456.5 0.0 0.0 10.8 16.6 9 6.8 

PERIMETER_ZN_1 113.5 Yes 346.1 84.5 20.6 10.8 16.6 7 6.8 

PERIMETER_ZN_2 67.3 Yes 205.3 56.3 11.2 10.8 16.6 4 6.8 

PERIMETER_ZN_3 113.5 Yes 346.1 84.5 16.7 10.8 16.6 7 6.8 

PERIMETER_ZN_4 67.3 Yes 205.3 56.3 11.2 10.8 16.6 4 6.8 

Attic 568.0 No 720.3 0.0 0.0 0.0 - 0 0.0 

Total 511.3  2 279.6 281.6 59.7   31  

The dynamic energy simulations of the building models were performed using the software EnergyPlus 

[64] version 8.5.0. Each released version of EnergyPlus undergoes two major types of validation tests 

[65]: analytical tests according to ASHRAE Research Projects 865 and 1052, and comparative tests 

according to ANSI/ASHRAE 140 [13] and IEA SHC Task34/Annex43 BESTEST method. Heat 



conduction through the opaque envelope was calculated via the conduction transfer functions (CTF) with 

a 15-minute time step. The natural convection heat exchange near internal and external surfaces was 

calculated using the thermal analysis research program (TARP) algorithm [66]. The initialization period of 

simulation was set to the maximum option, which is 25 days [67]. The primary energy use was calculated 

by converting the simulation outputs for delivered energy. The conversion factors specified in Swiss norm 

SIA 380/1:2009 [68] were used to convert delivered energy to primary energy, so that, the factor for 

converting electricity to primary energy is 2.97 kWhPE/kWhel and for converting natural gas to primary 

energy is 1.15 kWhPE/kWhgas. 

3.3 Design variables for optimization  

The considered input variables for the target building are divided into two groups: building envelope 

properties and control settings. Building envelope properties involves five categories: window properties, 

roof properties, wall properties, floor properties, and infiltration. The control settings include cooling, 

heating and shading setpoints. A total of 15 variables were finally determined. The considered design 

variables for the thermal properties of the building envelope were all assumed to be continuously uniform. 

The control settings were assumed to be discrete variables with integer values representing different 

assigned information as indicated in Table 3. 

Table 3 Design variables and their ranges for optimization and the values of base-cases 

Category Description of 

variables 

Variable 

names 

Unit of 

measure 

Type of 

variable 

2016-

compliant 

base-case value 

1980-

compliant 

base-case value 

Sampling ranges 

Properties of the building envelope 

Window 

properties 

U-value X01 W/(m2 K) Continuous 0.41 3.35 [0.20, 5] 

 SHGC X02 - Continuous 0.38 0.39 [0.10, 0.90] 

 Visible transmittance X03 - Continuous 0.49 0.80 [0.10, 0.90] 

Roof 

properties 

Solar absorptance X04 - Continuous 0.70 0.92 [0.10, 0.90] 

 Thermal resistence X05 (m2 K)/W Continuous 8.10 2.98 [0.20, 33.20] 

Wall Solar absorptance X06 - Continuous 0.70 0.92 [0.10, 0.90] 

 Thermal resistance X07 (m2 K)/W Continuous 3.07 1.34 [0.20, 33.20] 

Floor Thermal resistance X08 (m2 K)/W Continuous 0.22 0.22 [0.20, 33.20] 

Infiltration Flow per Exterior 

Surface Area 

X09 1/h Continuous 0.37 1.72 [0.04, 1] 

Daily control settings 

Cooling 

setpoint 

Setpoint temperature X10 °C Discrete 24 (whole year) 24 24, 24.50, 25…,27 

Heating 

setpoint 

Setpoint temperature X11 °C Discrete 21 (whole year) 21 19, 19.50, 20, 20.5, 21 

Shading 

setpoint 

Solar incidence on 

south window 

X12 W/m2 Discrete No shading No shading 200, 250, 300…, 1000 

 Solar incidence on 

north window 

X13 W/m2 Discrete No shading No shading 200, 250, 300…, 1000 

 Solar incidence on east 

window 

X14 W/m2 Discrete No shading No shading 200, 250, 300…, 1000 

 Solar incidence on 

west window 

X15 W/m2 Discrete No shading No shading 200, 250, 300…, 1000 



3.4 Formulation of optimization process 

As mentioned above, building systems are characterized by different response times, thus in order to 

identify reliable values for the input variables considering the appropriate time effect of the noise factor, a 

two-step optimization process was designed. First, a monthly resolution was used to account for the 

seasonal effect of climate variation, and yearly primary energy was used to optimize the building envelope 

properties. Second, an hourly resolution was used to account for short-term weather evolution, and daily 

primary energy was used to optimize building’s control settings such as the maximum irradiance incident 

on a window for lowering automated solar shadings. In addition, this two-step optimization process will 

provide an insight whether, to design an energy robust building, it is sufficient to apply only optimal 

control settings without improving the building envelope or vice versa, or whether both strategies were 

important, but there might be a priority option between them. Of course, in the context of a building 

refurbishment, the deployment of optimum control settings requires less interventions and costs, while the 

renovation of the building envelope may require a large capital investment. For the mentioned reasons, 

two different optimization configurations were developed. To conduct the optimization tasks, the dynamic 

energy simulation engine EnergyPlus [64] was integrated into the modular environment for process 

automation and optimization in the engineering design process modeFRONTIER [69], which embeds  a 

multi-objective optimization engine that integrates several optimization algorithms and sampling 

strategies. For the purpose of this work Genetic Algorithm (GA) is used for the multi-objective 

optimization. GA is the most common optimization strategy used in building performance analysis [2]. 

modeFRONTIER provides both Fast Non-dominated Sorting Genetic Algorithm (NSGA-II) algorithm 

[70] and Multi-Objective Genetic Algorithm (MOGA-II) [71]. MOGA-II is an improved version of 

MOGA [72]. To decide which optimization algorithm is best suited, in the first optimization process, both 

the algorithms were used with similar initial population. MOGA-II found providing better results and was 

chosen for the second optimization process. 

The multi-objective optimization process results in a two-dimensional solution space with a Pareto 

frontier. Figure 6 demonstrate the strategy used in this study for post-processing and selecting the Pareto 

optimal. In this method, the Pareto frontier is normalized to zero-one interval (0 ≤  ≤ 1) using 

following transformation [73]: 

  (9) 

 

With  and , the maximum and minimum of , . Then the closest point to the utopia 

point (  and ) is chosen as the optimal solution. This method was used because the 

significance of both objective functions was considered equal and also the values of the two objective 

functions were expressed in different orders of magnitude. 



 

Figure 6 The approach for selection of the best solution from the Pareto 

Configuration no.1: Optimization of the building envelope 

In this task, only input variables related to thermal properties of the building envelope are optimized for 

robustness. The noise factor applied is the weather file used for running the simulation. Two different 

weather files were used to represent the extreme climate conditions, specifically EWY and ECY. The 

optimization process was performed for both NSGA-II and MOGA-II. The parameter settings of the 

algorithms are important for their performance. Hamdy et al. [74] recommended that the minimum 

required number of evaluations for optimization of building energy models is 1400-1800. The population 

size for population-based optimizations is recommended to be 2-4 times the number of design variables 

[75]. Following the recommendations, for each algorithm 1620 evaluations were considered by using 

population size of 27 (3×9 design variables) and number of generations equal to 60. The initial population 

is generated based on random sequence. For the other settings, the default values were kept unchanged. 

These settings are reported in Table 4. During each evaluation, three energy simulations are run (using the 

EWY, ECY and TDY files) to calculate the two objective functions in Eq.  and Eq.(8). 

Table 4 Parameter settings the selected optimization algorithms 

Optimization 

algorithm 

No. of 

evaluations 

Simulation 

resolution 

p No. of 

runs 

population 

size 

No. of 

generations 

Probability of 

cross-over 

Probability of 

mutation 

NSGA-II 1620 Monthly 12 1 27  60 0.9 1.0 

MOGA-II 1620 Monthly 12 1 27  60 0.5 0.1 

 

A workflow to perform the above optimizations was established in modeFRONTIER as illustrated in 

Figure 7 with a flowchart demonstrating the flow of information. 



 

F
ig

u
re

 7
 T

h
e 

im
p

le
m

en
te

d
 w

o
rk

fl
o

w
 o

f 
o

p
ti

m
iz

a
ti

o
n

 p
ro

ce
ss

 i
n

 m
o

d
eF

R
O

N
T

IE
R

 f
o

r 
co

n
fi

g
u

ra
ti

o
n

 n
o

.1
. 

T
h

e 
fl

o
w

ch
a

rt
 d

es
cr

ib
es

 t
h

e 
fl

o
w

 o
f 

in
fo

rm
a

ti
o

n
 d

u
ri

n
g

 t
h

e 
p

ro
ce

ss
.



Configuration no.2: Optimization of the control settings 

The second process involves optimization of daily control setting using TDY, ECY and EWY based on 

hourly typical and extreme values (see section 2.2). The configuration differs from the first because the 

input variables related to thermal properties of building envelope are excluded and only the control 

settings are considered in the optimization run that uses the same noise of the configuration no.1. The 

optimization is performed for each day of the year using MOGA_II algorithm, but the number of 

evaluations is now 48, while the probability of directional cross-over and the probability of mutation are 

kept the same. The initial population with 6 designs is generated using a random sequence and the number 

of generations is set to 8. These values were set using trials and errors to perform the process with an 

acceptable convergence level and feasible time. Figure 8 shows an optimization evolution for one day as 

an example. In each evaluation, 3 energy simulations were run under the three weather files. A total of 365 

optimizations were performed to find optimum control settings for each day of the year, with objective 

functions set according to Eq.(7) (p=24) and Eq.(8). The last solution at each optimization is considered as 

optimum control setting for that day. 

 

Figure 8 Evolution of objective functions. Example of optimizing control settings for a day. 

Figure 9 demonstrate the flowchart of the optimization process for the above configuration. 



 

Figure 9 Flowchart of the optimization process implemented in modeFRONTIER for configuration no.2 

3.5 Assessment of optimization strategies 

Six cases were designed to render the impacts of each group of design variables on the energy-robustness 

and energy-efficiency of base-cases. First on a newly built building, the aforementioned optimization 

process applied to the base-case building model compliant to the 2016 requirements. 

1. 2016-base: It is the 2016-compliant base-case model with fixed values of heating and cooling 

setpoints and no automated solar shadings. 

Three cases were developed to identify the most effective optimization strategy: 

2. 2016-EnvelopeOpt: The building envelope properties of the 2016-base model are changed to their 

optimum values, but the control settings are not optimized; 

3. 2016-ControlOpt: Automated solar shading is added to the 2016-base model and optimum daily 

values are used for setting the setpoint values for space heating and cooling and solar shading 

control; 

4. EnvelopeOpt+ControlOpt: Both envelope properties and control settings of 2016-base are 

replaced with optimum values. 



Afterwards, the existing building that we assumed to be compliant to 1980s quality standards considered 

for the purpose of optimization. It should be noted that the exclusive optimization of the building envelope 

without the upgrade of the HVAC systems may not be compatible with the latest legislative requirements 

(e.g., in Europe the Directive on energy performance of buildings), and the lifecycle of an HVAC system, 

in any case, is not longer than 30 years. Therefore, if we renovate a 1980-compliant base-case building by 

upgrading the HVAC systems to recent requirements (let’s say 2016) and optimize the building envelope 

to maximize its energy-robustness and energy-efficiency, we obtain the previously mentioned Envelope 

optimized-2015-case. Furthermore, if we optimize both the envelope properties and the control settings, 

we obtain the EnvelopeOpt+ControlOpt. Thus, we will study the case where an existing building gets 

enhanced by optimizing its control settings that would require a little investment. 

5. 1980-base: The building model has the same geometry of the 2015-base, but its constructions are 

set according to typical 1980s quality standards. 

Therefore, an additional case will be studied: 

6. 1980-ControlOpt: Automated solar shading is added to 1980-base model, and optimum daily 

values are used for setting the setpoint values for space heating and cooling and solar shading 

control. 

4 Robustness evaluation 

Finally, in order to test the effectiveness of the proposed method and demonstrate the most energy-robust 

building variant against climate change among the solutions, all of them are tested against a weather file 

dataset made of 74 representative weather files generated for the city of Geneva. The set of the 

representative weather files was synthesized in a previous study [56] in order to consider both extreme and 

typical climate conditions that represent a suitable test bench for investigating the energy performance of a 

building under a changing climate. In short the weather files are divided into three groups: 

• TMY group: includes two weather files, the IWEC typical meteorological year (TMY) and a 

TMY generated by Meteonorm, 

• Statistical group: six weather files generated using the morphing method through 

CCWorldWeatherGen and WeatherShift, and three weather files generated using the stochastic 

method through Meteonorm, 

• Dynamical group: 21 weather files generated using dynamical downscaling that represent typical 

conditions and 42 weather files generated using dynamical downscaling that represent extreme 

conditions. 

Typical weather files refer to the files that are generated through statistical downscaling or dynamical 

downscaling (TDY series). Extreme weather files refer to ECY and EWY files that represent extreme cold 

and warm years (using the RCM dynamically downscaled data). All the above methods provide 72 future 

weather files for the city of Geneva. More details are provided in [56]. 

This assessment methodology is applied to identify the most effective optimization strategy to render a 

new building with robust energy performance under against climate change and to measure the robustness 

potential.  



5 Results 

The first optimization round was performed to find optimal values for the building envelope properties 

(2016-EnvelopeOpt). The optimization parameters were set as described in section 3.4. Figure 10 shows 

the scatterplot of the simulated building variants using MOGA_II and NSGA_II algorithms, which are 

represented on the plan of the two objective functions. MOGA_II demonstrate a better performance by 

covering a larger area of the design space and providing Pareto frontier closer to the utopia point.  

 

Figure 10 Scatter plot for the optimization of building envelope properties (in orange are building variants using MOGA_II 

algorithm and in green the ones based on NSGA_II algorithm). 

The optimal solution is selected from the Pareto frontier using the approach described in section 3.4. In 

this approach, first the Pareto frontier is normalized to values between zero and one, and then the solution 

with minimum distance to ideal point is selected as optimal solution. The normalized Pareto frontier and 

the selected solution are shown in Figure 11. 

 

Figure 11 Normalized Pareto frontier with the selected optimal solution in black (in orange are normalized Pareto frontier using 

MOGA_II algorithm and in green the ones provided by NSGA_II algorithm). 



After finding the solution for 2016-EnvelopeOpt, the next step is to find solutions for 2016-ControlOpt, 

EnvelopeOpt+ControlOpt and 1980-ControlOpt using optimization configuration no.2.  

This configuration allows finding optimum daily values for heating, cooling and shading setpoints. For 

2016-ControlOpt case, the optimum values are found while the envelope properties remain as 2016-base 

case. Same process is applied for 1980-ControlOpt case by keeping envelope properties as 1980-base 

case. For EnvelopeOpt+ControlOpt case, these values are found while the optimum building envelope 

properties are set as according to 2016-EnvelopeOpt. This step is combination of configuration no.1 and 

no.2. The above mentioned process provides solutions for configuration of the six cases described in 

section 3.5. After performing all the optimizations, the six cases are assessed considering their robustness 

against climate change. Each case underwent 74 annual simulations using 74 representative weather files 

(described in section 4). 

 

Figure 12 Qualitative distributions comparison of the six cases. For better readability, the distribution of 1980-base is separated 

from other cases. 

 

Figure 12 shows the results of this assessment, which are distribution of 74 values of primary energy 

calculated for each case under 74 different weather files, including typical and extremes. It demonstrates 

the primary energy use of 1980-base case has significantly high sensitivity to the changing climate 

following by cases 1980-ControlOpt, 2016-base, 2016-EnvelopeOpt, 2016-ControlOpt and 

EnvelopeOpt+ControlOpt. The statistics calculated based on 74 values of primary energy calculated for 

each case are presented in Table 5. On the right side of the table the relative changes (%) of mean and 

standard deviation (SD) of all cases are compared to their values calculated for 1980-base and 2016-base 

cases.  

 



Table 5 Descriptive statistics based on 74 calculated primary energy use for each case.  

Cases 

Primary energy use (kWh/m2)  
Relative Change (%) 

to 1980-base value 

Relative Change (%) 

to 2016-base value 

Mean SD Min Median Max  Mean SD Mean SD 

1980-base 521.7 26.3 485.1 514.7 602.4  0.0% 0.0% 98.1% 354.5% 

1980-ControlOpt 301.8 21.4 275.4 296.5 363.5  -42.1% -18.7% 14.6% 269.6% 

2016-base 263.4 5.8 257.1 260.7 284.0  -49.5% -78.0% 0.0% 0.0% 

2016-ControlOpt 239.4 4.6 234.9 237.5 257.1  -54.1% -82.4% -9.1% -19.9% 

2016-EnvelopeOpt 246.7 2.1 244.2 246.2 254.6  -52.7% -92.1% -6.3% -64.0% 

EnvelopeOpt+ControlOpt 225.5 1.1 223.9 225.1 228.9  -56.8% -95.9% -14.4% -81.5% 

Looking deeper into the results, the distribution of 2016-CotrolOpt has lower mean than 2016-

EnvelopeOpt but with longer tail, that actually covers the distribution of 2016-EnvelopeOpt case. This 

means, although EnvelopeOpt case has higher energy demand but the demand is more predictable under 

extreme conditions than 2016-CotrolOpt case. Comparing 1980-base and 1980-ControlOpt, optimum 

control settings cause significant reduction in the mean of primary energy use, but the variation remains 

significantly high and unreliable during extreme climate conditions. However, the highest value of 1980-

CotrolOpt case is still lower than the lowest value of 1980-base case, which means a significant 

improvement only by applying minimum intervention using optimum control settings. 

EnvelopeOpt+ControlOpt case has very narrow distribution in compare to other cases and at the same 

time with the lowest mean value. 

Looking into statistics provided in Table 5, the calculated standard deviation of EnvelopeOpt+ControlOpt 

case, is around 5 times (81.5 %) smaller than 2016-base case and almost 24 times (95.9 %) smaller than 

1980-base case. It points to a significant reduction of variability in the primary energy use, while having 

the lowest mean value of primary energy use. This makes EnvelopeOpt+ControlOpt case not only the 

most energy-efficient case but also the case with most robust energy performance. It demonstrates the 

effectiveness of the proposed method for designing buildings with robust energy performance under future 

climate uncertainties. 

Furthermore, according to the results shading and control settings has the highest impact on energy-

efficiency. In other words, by adjusting the cooling- and heating-setpoints to optimum values as well as 

the solar incident setpoint for shading, it is possible to significantly reduce the primary energy use under 

typical conditions. While optimizing the building envelope properties effectively reduces f1, which means 

the solution has lower variability in its response when exposed to extreme conditions and as a result better 

robustness of energy performance.  

6 Conclusions 

This paper has given an account of several available technologies such as: building performance 

simulation tools, simulation-based optimization techniques, robust design approach and climate models 

data and delivered a method based on combination of them that allows designing buildings which have 



more robust and efficient energy performance in the face of climate change. The main goal of this study 

was to provide a computationally feasible and easy to understand method that can be used effectively by 

building designers, architects and engineers to improve the robustness of their designs against future 

climate uncertainties. 

In summary, our work propose a robust design optimization (RDO) workflow, where the aim is to achieve 

an optimum solution that it’s energy performance has minimum sensitivity to climate variations. The key 

to the feasibility of the method is considering climate variations by using only three weather files that 

represent, typical (TDY), extreme warm (EWY) and extreme cold (ECY) weather conditions. A multi-

objective optimization process was configured with two objective functions. Minimization of the two 

objective functions provided in this study, ensures having a building with low energy use under most 

likely conditions and minimum variation when the conditions change or become extreme. In the first step, 

building envelope properties of the 2016 compliant model (2016-base case) were optimized and the 

selected optimum solution is called 2016-EnvelopeOpt (Figure 10). In the second step performed, the 

building envelope properties of 2016-base case kept unchanged, while shading was added, and the daily 

control setting of heating, cooling and shading were optimized. The solution from this step is called 2016-

ControlOpt. The same process was performed on the 1980 compliant model (1980-base case), in which 

the envelope properties were kept unchanged and control settings were optimized and presented as 1980-

ControlOpt. 

Comparing these results allows: 

- Understanding the impact of different interventions, from deep and costly intervention on 

envelope properties to less costly intervention on shadings and control settings, on the energy-

robustness of the building. 

- Showing the impact of such intervention on a building that is built according to a recent energy 

code, and a building that is built according to 1980s construction quality. 

In the final step, optimization performed to find optimum control settings of heat, cooling and shading for 

the case with optimum envelope properties (EnvelopeOpt+ControlOpt case). This resulted as 

EnvelopeOpt+ControlOpt case, which both envelope properties and control settings are optimized. 

The results demonstrated that by having optimum daily setpoint temperatures for cooling and heating, and 

solar incident setpoint for shading, it is possible to reduce significantly the primary energy use under 

typical conditions (2016-ControlOpt and 1980-ControlOpt cases). While optimizing the building envelope 

properties (2016-EnvelopeOpt) reduce significantly the variability of performance under changing climate 

conditions including extreme. And finally, by optimizing both the envelope properties and the control 

settings, the most energy-efficient solution with robust energy performance is achieved 

(EnvelopeOpt+ControlOpt case). This case has considerably less sensitivity to climate conditions by 

having low-variability performance, while requiring minimum energy use.  

The simplicity and the low computational demand of the process ascertain the feasibility and applicability 

of this method. The approach can be used at any stage of design process and can help architects and 

engineers to improve robustness of their design against future climate uncertainties. The approach used in 

this study can be used as a guideline to develop further robust design methods for other sources of 

variations than climate and other target performances than energy. 
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