
June 2009
Yuming Jiang, ITEM
Jan Erik Wold, Ablemagic AS

Master of Science in Communication Technology
Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Telematics

Hybrid Peer-to-Peer Solution for
MMORPGs

Frode Voll Aasen
Tom-Christian Bjørlo Johannessen

Problem Description
This thesis will examine the challenges of developing massively multiplayer online games. It is
divided into a theoretical and a practical part.

The theoretical part will examine and discuss the various issues and difficulties in designing and
implementing MMO games, as well at the state of the art solutions. The focus will be on the
following areas:

- Performance
- Scalability
- Flexibility
- Functionality
- Distribution / Load

Using the theoretical analysis, the practical part will design and implement MMORPG network
functionality for Ablemagic’s game “‘tisu”. This task will consist of defining requirements,
implementation design and software implementation. The end product should be a demo showing
basic MMORPG functionality such as player movement and world state updates.

Assignment given: 14. January 2009
Supervisor: Yuming Jiang, ITEM

Preface

This thesis was carried out at the Department of Telematics at the
Norwegian University of Science and Technology (NTNU). It was written at
the request of Ablemagic AS, as research for the development of the
networking part of their upcoming game ’tisu.

We would like to thank our supervisor, Professor Yuming Jiang for his
guidance and advice. Also we would like to thank Jan Erik Wold and Nina
Fjelnset at Ablemagic for proposing a thesis within an exciting area of
research, and for great cooperation during our work.

i

Abstract

This thesis provides an introduction to the MMORPG genre, and the
challenges of engineering a networking system supporting these games, as
well as the state of the art titles that exist on the market today. Further it
describes the design and development of a peer-to-peer networking system
to support MMORPG games, and basic testing of this system.

It focuses on a broad theoretical approach to provide a solid background to
understand the options available and choices made in the design of the
system. The thesis presents a hybrid peer-to-peer concept that aims to
reduce costs of operating an MMORPG, allowing smaller game developers
to compete against major titles. It includes the main features that should
be enabled in a distributed MMORPG architecture.

The concept is designed to be flexible in terms of further development,
allowing new features to be added with ease and providing game designers
with multiple options. A proof-of-concept demo is implemented in Java,
displaying the features through a simple interface, and tests showed that
the concept has potential to challenge the client-server solutions that are
dominating the market today.

ii

List of Figures

2.1 Free format partioning . 11
2.2 Hexagon partitioning of game world 12
2.3 Square partitioning of the game world 12
2.4 Buffer size scenarios . 13

3.1 Ingame screenshot from World of Warcraft 29
3.2 Ingame screenshot from AoC 30
3.3 Ingame screenshot from EVE Online 31
3.4 Ingame screenshot from ’tisu 36

4.1 Topology layers of the concept 40
4.2 MSC diagram of client connecting 41
4.3 Zone borders and buffers . 41
4.4 Network between adjacent zone masters 42

5.1 Technology used in implementation 46
5.2 Top level SDL design of the system 47
5.3 SDL design of the Game Server block 50
5.4 Screenshot of GameServer with no clients connected 52
5.5 Screenshot of GameServer with 5 clients connected and zone

0 managed by a client . 53
5.6 Screenshot of GameServer when all zones managed by clients . 54
5.7 SDL design of the Client block 55
5.8 Screenshot of GameClient managing zone 0 57
5.9 SDL design of the ZoneMaster part of the top level blocks . . 58

6.1 Screenshot of clients gathered in the top buffer of zone 2 for
test 1e) . 69

iii

List of Tables

2.1 UDP Packet Structure . 23
2.2 TCP Packet Structure . 24

6.1 Test result scenario 1a . 67
6.2 Test result scenario 1b . 67
6.3 Test result scenario 1c . 68
6.4 Test result scenario 1d . 68
6.5 Test result scenario 1e . 68
6.6 Test result scenario 1f . 70
6.7 Test result scenario 2a . 70
6.8 Test result scenario 2b . 71
6.9 Test result scenario 2b . 71

iv

Abbrevations and Definitions

DEC - Digital Equipment Corporation
GUI - Graphical User Interface
LAN - Local Area Network
WAN - Wide Area Network
MMO - Massively Multiplayer Online.
MMOG - Massively Multiplayer Online Game
MMORPG - Massively Multiplayer Online Role Playing Game
MMG - Massively Multiplayer Game
Avatar [31] - An avatar is a computer user’s representation of
himself/herself or alter ego.
AOI - Area Of Interest
P2P - Peer-to-Peer
DoS - Denial of Service
DDoS - Distributed Denial of Service
SDL - Specification and Description Language
XML - eXtensible Markup Language
FIFO - First In First Out
UDP - User Datagram Protocol
TCP - Transmission Control Protocol
RPC - Remote Procedure Call
SDK - Software Development Kit
AoC - Age of Conan
API - Application Programming Interface

v

Contents

Preface i

Abstract ii

Abbrevations and Definitions v

1 Introduction 1
1.1 Introduction . 2
1.2 Motivation . 3
1.3 Objective . 4
1.4 Methodology . 4
1.5 Scope . 4
1.6 Related Work . 5
1.7 Document Structure . 6

2 MMORPG Design Considerations 7
2.1 Introduction/MMO/MMORPG 8

2.1.1 Massively Multiplayer Online game 8
2.1.2 Massively Multiplayer Online Role Playing Game . . . 8

2.2 Game Worlds and Load Distribution 10
2.2.1 Game World types . 10

2.2.1.1 Zoned Worlds 10
2.2.1.2 Seamless Worlds 11
2.2.1.3 Proxies . 15
2.2.1.4 Realms . 16

2.3 Game Synchronization . 16
2.3.1 Reliable State Synchronization 17
2.3.2 Unreliable State Synchronization 17
2.3.3 RPC . 17
2.3.4 Dead Reckoning . 18

2.4 Security and Cheating for MMOGs 18

vi

CONTENTS vii

2.4.1 Security issues regarding MMOGs 18
2.4.2 Cheating concerns regarding MMOGs 19

2.5 MMORPG Engineering . 21
2.5.1 Flexibility in MMORPGs 21
2.5.2 State Machines . 21
2.5.3 SDL and Real Time System Engineering 21

2.6 Protocols/Latency . 22
2.6.1 UDP . 22
2.6.2 TCP . 23
2.6.3 Transport Protocols and Game Development 23

2.7 Network Topologies in MMOGs 24
2.7.1 Centralized Networks 24
2.7.2 Decentralization . 25
2.7.3 P2P . 25

2.8 Mobile Terminals . 26

3 State of the Art MMO Solutions 27
3.1 State of the Art MMORPG solutions 28

3.1.1 State of the Art MMORPG Games 28
3.1.1.1 World of Warcraft 28
3.1.1.2 Age of Conan 30
3.1.1.3 EVE Online 31

3.1.2 Existing Server Software 32
3.1.2.1 SmartFoxServer 32
3.1.2.2 NetDog . 32
3.1.2.3 RakNet . 33
3.1.2.4 Project Darkstar 34

3.1.3 ’tisu requirements . 35
3.1.3.1 State Synchronization 37
3.1.3.2 Load Balancing 37
3.1.3.3 Mobile Terminals 37
3.1.3.4 Cheating . 37
3.1.3.5 Modularity 38
3.1.3.6 Cost . 38

4 The Concept 39
4.1 Concept . 40

5 Design and Implementation 44
5.1 Design and Implementation 45

5.1.1 System overview . 46

viii CONTENTS

5.1.2 GameServer . 50
5.1.2.1 Game Server implementation 52

5.1.3 GameClient . 55
5.1.3.1 Client implementation 57

5.1.4 ZoneMaster . 58
5.1.4.1 ZoneMaster implementation 60

5.1.5 Unimplemented features 60
5.1.6 Instructions for running 62

6 Testing and Evaluation 64
6.1 System Tests . 65

6.1.1 Environment . 65
6.1.2 Test Setup . 66

6.2 Evaluation and analysis . 72
6.2.1 Performance . 72
6.2.2 Scalability . 73
6.2.3 Flexibility . 73
6.2.4 Functionality . 74
6.2.5 Security . 74
6.2.6 Mobile Terminals . 74
6.2.7 Stability . 75
6.2.8 Integration . 75

7 Conclusion 76
7.1 Conclusion . 77

7.1.1 Future work . 78

A SDL Design of the ’tisu system 83

B Recommendation for Ablemagic 117

Chapter 1

Introduction

1

2 CHAPTER 1. INTRODUCTION

1.1 Introduction

One of the starting points for the computer game era was when Steve
Russel and his team developed Spacewar. The game was only functioning
on a PDP-1, an early DEC interactive mini computer which used a
cathode-ray tube type display and keyboard input [4]. Later, in the 1970s,
packet-based computer networking technology began to mature, allowing
the creation of LANs and WANs. With network services available for
commercial use, the computer game industry was quick to exploit the
opportunities. The network technology led to a rapid growth of the
popularity of computer games, because of the possibility to establish
connections with other hosts and set up multiplayer games. One of the most
important multiplayer games were MUD in 1978, which had significant
input into the development of concepts of shared world design, having
formative impact on the evolution of MMORPG’s [2]. From this point the
game industry has never looked back and evolved in great scale, and games
became more available, sophisticated, complex and graphical over time.

With the powerful development of the Internet, the opportunity to make
money from games became visible, and the rise of commercial MMORPG’s
started on the Internet. With the commercializing of games and the use of
Internet, the name MMORPG really got introduced, since earlier games
could not gather ”massive” numbers of players. In 1997, Ultima Online was
released and many claim that this game contributed strongly to the status
and popularity of the MMORPG genre. Ultima Online featured 3D
third-person graphics and was a more complex game than many of its
predecessors. The MMORPG entered a new generation based on the
development that games like Ultima Online strongly contributed to. So
when the game market entered the new century, many new game genres had
expanded from the MMORPG, and new game consoles such as PlayStation
2 and 3, XBOX and XBOX360, Nintendo Wii were invented. They quickly
became popular, giving even new possibilities to the already expanding
game market. The game companies wanted to exploit this expansion of
genres and consoles, and were eager to capitalize on the new market [32].

This expansion of the gaming market, and the requirements of the new
games led to enormous costs of running and maintaining the game. Millions
of players requires thousands of servers and a huge amount of bandwidth to
provide real-time interaction with the game world. Establishing new titles

1.2. MOTIVATION 3

in a market with such high starting costs requires either a lot of investors,
willing to take a risk or starting extremely small and expand very slowly. In
the fast-paced world that the gaming industry is, the game could be
obsolete before even reaching a profitable number of users.

Even with the introduction of new and popular consoles offering new types
of genres, the MMORPG stood firm and survived all the challenges from
the new consoles and genres. Today, the most played and popular game in
the world, World of Warcraft created by Blizzard, is the pioneer in the
market and has millions of players, making Blizzard a multi billion
company just based on this game. The MMORPG still appeals to the game
playing people out there, and stands as the most powerful multi billion
game market with unheard possibilities. The genre is still evolving and to
satisfy the ever growing demands, it’s getting even harder to enter the
market for new companies.

Ablemagic wants to enter the old and strong MMORPG market with their
ideas and concept of the game ’tisu. To be able to do so, they have to
establish a firm foundation that will be able to cope with the massive
number of players that is wanted. This foundation consists of the graphical
game client and the engine behind it, but also the network concepts and
architecture, making it ready to enter the MMORPG market. With an
architecture that contains the properties to be flexible, reliable, scalable,
functional and secure, the foundation for a good MMO-system is
established. With functionality that will ensure an approved performance
level, Ablemagic will stand prepared to conquer the MMORPG world and
market.

1.2 Motivation

The motivation for this thesis was to promote a cost efficient MMORPG
networking architecture. Ablemagic is a small company trying to take on
big market leaders that are running established titles. This highly
competitive industry requires a small developer to think and do things
differently to be able to enter, and we aim to present a solution able to
compete with the today’s existing standards while operating at lower costs.

4 CHAPTER 1. INTRODUCTION

1.3 Objective

The objective of this master thesis is to present a design for a cost effective
P2P networking solution for MMORPGs, and implement a working demo
to give proof-of-concept for it. A theoretical study must be performed to
achieve a solution that has the required features for a state of the art
MMORPG title today, and to present the reader with the background to
understand the challenges and choices made in the process. Additionally,
the design presented here should be able to function as a traditional
client-server scheme, making it usable for game developers who want this.

1.4 Methodology

During this work, we first did a theoretical study of both the technical
aspects of MMORPGs and some of the state of the art titles on the market
today. This was done as a foundation for specifying the functional
requirements of the system and was based on both scientific articles on the
subjects and books written by people with experience in the field. These
requirements along with non-functional ones were used to design an SDL
design for the system. Finally we implemented this design in Java and
performed a set of tests on the system, and evaluated the empirical results.

1.5 Scope

The number of aspects and challenges in a MMORPG networking solution
are numerous. Security, bandwidth and delay optimization, integration
with a graphics engine etc. are essential in a final product. However, the
development of functionality for making a playable game alone is a major
task. This thesis therefore focuses on the features that are required to make
the concept work, leaving the design open and flexible with regards to other
essential features.

The scope is to form a basis for further development of a multiplayer

1.6. RELATED WORK 5

network architecture for Ablemagic’s game ’tisu. This means to describe
and highlight essential requirements and functionality that should be
included to create a reliable and well functioning network architecture.
Because of the time limit of the work with this thesis, a full functional
solution integrated with the ’tisu demo will not be possible. The focus will
rather be to, based on the theoretical research, create a flexible design that
can be used as a foundation in the future and implement a proof-of-concept
for visualising our research and thoughts.

For this reason, the aspects of security, details on mobile terminals and
optimization have not been prioritized in this thesis. Furthermore, the
hardware resources available makes thorough testing of the implementation
with a high number of users impossible.

1.6 Related Work

The Universities in Mannheim, Stuttgart and Hannover have in
collaboration performed research on Peer-to-Peer-based MMO gaming.
This work has been made generally for all types of MMO games, and is
based on a pure P2P topology. Their work outlines the requirements of
such a solution, in terms of consistency, persistency, scalability, security,
efficiency, etc. Their work is closely related to a project called peers@play
which attempts to create distributed interactive game worlds with P2P, but
the development is still in the prototype stage. [22]

There has also been developed a pure P2P MMO FPS game demo at the
University in Mannheim, utilizing Skype for the infrastructure. This work
is also planned to be used in evaluation of the peers@play project. [26]

Research at the University of Pennsylvania has been done to evaluate an
approach to support massively multiplayer games on P2P overlays. Their
research is on MMGs and therefore have lower requirements for persistency,
scalability and self-organization as an MMOG. However, their work on pure
P2P topologies and thorough testing concludes that the concept works in
massive scale, but more work beyond their demo is required. [16]

6 CHAPTER 1. INTRODUCTION

1.7 Document Structure

The thesis consists of seven chapters in addition to references and
appendices. The chapters of the thesis are structured as follows:

• Chapter 2: Describes different theoretical and technological aspects
from a top to bottom approach that may be included in a MMORPG
design.

• Chapter 3: Examines the requirements that should be considered
when designing the ’tisu system. The chapter also evaluates existing
MMORPG solutions, both server software and titles on the market.

• Chapter 4: Presents the proposed solution in detail.

• Chapter 5: Provides a walk-through of the SDL design and a
description of the implemented demo and includes a section on how to
run the software.

• Chapter 6: Describes the tests performed to evaluate the system and
presents the results and an analysis of these.

• Chapter 7: Conclusion and future work.

Chapter 2

MMORPG Design
Considerations

7

8 CHAPTER 2. MMORPG DESIGN CONSIDERATIONS

2.1 Introduction/MMO/MMORPG

2.1.1 Massively Multiplayer Online game

The Internet gave birth to massively multiplayer online games. MMOGs
are operating over the Internet and creating connections between the
different players participating, and are capable of supporting several
thousands of players simultaneously. This gives players the possibility to
socialize through the game and the Internet, and gives the MMOG concept
a great advantage over singleplayer games [1].

A typical MMOG consists of at least one persistent world where players can
cooperate and compete against each other on a large scale. The world will
continue being functional if a user leaves the world and game, and let
others continue their play unaffected by someone leaving. With the
development of the MMOG concept, several different kinds of MMOG
genres with different properties have evolved. Some of the most popular
types of MMOGs are as follows [29]:

• MMO Role Playing Game

• MMO First-Person Shooter

• MMO Real-Time Strategy

• MMO Sports Game

2.1.2 Massively Multiplayer Online Role Playing
Game

Since the explosion of popularity for the MMO games, it has been created
several sub-genres. One of the oldest and most popular genres is the
MMORPG. The MMORPG genre has been under constant changes since
the development and importance of PC’s, game consoles and the Internet.
From simple plots and 2D graphics, we now demand a complex and
meaningful story with rich and convincing 3D graphics. Today, the big

2.1. INTRODUCTION/MMO/MMORPG 9

leader in the MMORPG genre is Blizzards World of Warcraft, with millions
of players.

The main purpose in most of the MMORPGs is the progression and
development of your own avatar, to make it strong and ready to explore
new continents and areas of the total game world. The world can consist of
several ”continents” that are specific for some kinds of avatars, and you can
travel around as you build up the strength of your character. Players are
often allowed to choose how they want to improve their character’s
performance in terms of attributes, skills, special abilities, trade and buy
equipment from other players and earn experience points. One common
way to develop your character is that you need to socialize and cooperate
with other players to be able to defeat evil opponents around the world [30].

10 CHAPTER 2. MMORPG DESIGN CONSIDERATIONS

2.2 Game Worlds and Load Distribution

With the great evolution of MMOGs and an explosion of concurrent players
taking part, the game experience requires a server environment that
distributes game related computations across different units that can
process them. One well-used method for achieving this form for distribution
is by adding functionality into the game that divides the world into regions
that is managed by different server processes [1].

2.2.1 Game World types

Zoning is a term used for describing the dividing and distribution of
responsibility of the game world into different zones and server processes.
As the game evolves and gains more players it will be a functionality of
great necessity to distribute the responsibility and processing power, so
that the experience of the game continues to be at a valid level.

There are many different ways to zone the playing area of the game, and
some zone constructions give less inter-server communication, but the
downside could be a bigger complexity in the dividing-process and the
computations involving player crossing borders. Another issue that should
be counted for is the need for a contiguous game world or not.

2.2.1.1 Zoned Worlds

The term zoned worlds means that the game world consists of independent
geographical areas between which there is no contact between players at
different areas. This means that players only can interact with objects on
the same server. This is a far less complex way to design your game, and
creates less inter-server communication since players of different areas does
not have knowledge of each other at all. So the only time different zones
has to communicate with each other, are when players goes from one area
to another.

2.2. GAME WORLDS AND LOAD DISTRIBUTION 11

Figure 2.1: Free format partioning

This results in what
is know as a free-format. This is
an approach where there is no need
for a contiguous world, and the
different worlds and zones can be
abstracted into separate areas and
allows limiting the number of player
entering any partition. Figure
2.1 at the side shows a potential
free-format arrangement of
zones and the connections between
them. In this type of structure it is
not possible for players in different
areas to have any knowledge of each
other. This format is a much less
complex way to divide your game
if there is no need for a contiguous
world, but this is also a less flexible
one. It can work as a solution for
zoning players between continents or separate worlds within the game.

2.2.1.2 Seamless Worlds

The idea behind a seamless world is to divide the game world into different
zones, and add inter-server communication between neighboring zones that
allow each server to work as an autonomous unit. The way to achieve this
is by having servers notify the servers responsible for adjacent zones when
objects are close to the borders of the respective zones, such that each
server can interact with remote objects through their local proxies. Proxies
will be described in detail in a later section. [1]

How the seamless approach will work, depends on the results from different
decisions that has to be made. The zoning process affects the outcome of
the seamless solution, and this process is a very game specific issue. This
gives rise to the question of how to divide the world.

12 CHAPTER 2. MMORPG DESIGN CONSIDERATIONS

Figure 2.2: Hexagon partitioning of
game world

One method used when there is
a need for a contiguous game world,
is the division of zones into hexagon
shaped areas. The positive side by
using hexagons to divide the zones
is that you are creating smaller
maximal number of adjacent zones
at the edges. This means that
at most, the zone has to establish
inter-server communication with
two other zones when players are
entering the area around the sharp
edges of the zone. Figure 2.2 shows
a game world that is divided into
zones with a hexagon structure.
From player4’s perspective it
has an AOI that enters zone F and
G, but this is also the maximum
number adjacent zones that the
AOI can discover. This approach
of partitioning the game world will
have the benefit of less inter-server communication, but a disadvantage is
that the geometric calculations are more complex than in other schemes.

Figure 2.3: Square partitioning of the
game world

Another and commonly used
way to zone when there is a need
for a contiguous game world, is
squared structures. With the use of
squares it will be potential for more
inter-server communication at the
sharp edges of a zone than by using
hexagon structures. From figure
2.3 it is possible to see that player7
has a AOI that goes over zone
E,F,I and J and explores player9.
This means that the server process
in charge of zone J and player7
needs to establish inter-server
communication with zone E,F
and I to get information about the

2.2. GAME WORLDS AND LOAD DISTRIBUTION 13

content in the AOI of player7. This
scenario shows that with a squared
partitioning there will at most be needed to establish connection to three
other zones, and when this needs to happen with 100 different players it
would be generated great amounts of traffic between the respective zones.
One benefit with this structure of partitioning is the simpleness of the
calculation that has to be made when players move into borders.

Figure 2.4: Buffer size scenarios

The next thing to consider
is how large the shared boundaries
between the adjacent zones should
be. At a minimum, they need to be
as large as the client’s game world
or player’s AOI. By not keeping
this in mind when designing the
shared boundaries, the game will
be subject to cheating and exploits.
Figure 2.4 depicts this. Server
A and B are neighbors and share
a common border. P2 is inside the
shared buffer zone, as P1 is outside.
P1’s AOI contains P2 as can be
seen from the dotted circle. Since
P1 stands outside the shared buffer zone, it means that P1 is not visible for
server B, and then P1 will not be visible for P2 even though they have the
same AOI range. P2 will not get any information about P1 since server B
knows about the existence of P1. This scenario leads to the possibility that
P1 may be able to attack P2, but the reverse is not possible.

Another technical detail that has to be evaluated, is whether the server
boundaries should be soft or hard. A hard server boundary means that the
playing object will be transferred to the neighboring server as soon as it has
crossed, with no delay. A soft boundary allows an object to ”stray a little”
across the border before initiating a transfer. This is a technique that can
be a helping factor for minimizing the expensive inter-server
communication that is generated with object transfers, but is a more
complex solution to use.

Another major concern that should be evaluated, is whether the server
boundaries should be static or dynamic while the game is running. In a

14 CHAPTER 2. MMORPG DESIGN CONSIDERATIONS

dynamic scheme, the size of the zones will dynamically change based on the
game load while the game is running, causing the zone borders to be
redefined. With a game that assumes dynamic adjustable server
boundaries, gives a significantly more complex design and implementation.
Dynamic borders can lead to transfer of large groups of players that should
not cause any noticeable delay for the specific player. If the method itself is
given, all the regulations that have to be established to determine when and
how to adjust the server boundaries may be a complex task. With an
algorithm that too frequently changes the borders can lead to a lot of
overhead, and with an algorithm that changes the borders to infrequently
can lead to overburdened servers. An example of the latter case would be if
a lot of players gathered around the same place due to some new
functionality being added to the game in this area. So the algorithm for
borders changes at use should ensure a balanced load between servers.

With all these aspects in mind when choosing a solution of a seamless
world, it is clear that there are challenges regarding design and
implementation of MMORPGs.

An obvious advantage of a seamless world is the possibility to have larger
contiguous areas to play the game. With a zoned solution, the server
responsible for the zone can only support an area as large as the number of
players it is capable to handle. Seamless worlds give a feeling of an artificial
reality and a more real simulation for the players participating in the game.
Another and crucial advantage with the choice of using a seamless world is
the increased scalability. As the world grows in popularity and becomes
more populated, the servers can adjust to handle the increased load. If
dynamic borders are adopted into the game design, the case above can be
treated at run time with a well working self-balancing algorithm. This also
shows the multi-functionality a seamless approach can have on a MMOG.
The result of a seamless approach is the potential for higher reliability.
With a seamless solution, it will be possible to treat a breakdown from a
server or server process, then the server boundaries can be adjusted to
spread the load over the remaining servers. An extra-strength, dynamic
server boundary implementation might even do this automatically when it
detects a server crash. Dynamic server boundaries can give an extra benefit
in the way that they can contribute factors for preventing the ability to
exploit the extensive classes of bugs that involve moving data back and
forth between severs. The reason for this, is that the players do not have
knowledge about where the server boundaries are, and when they can be

2.2. GAME WORLDS AND LOAD DISTRIBUTION 15

found, the servers can readjust before an exploit can be triggered. Another
benefit caused by the choice of a seamless world is the minimization of the
loading time experienced when players change zones.

Even with so many obvious advantages of a seamless world, there will also
be some disadvantages connected to every technical solution. With a
seamless solution, the main problem will be the degree of complexity that a
seamless design entails. Seamless worlds will create great implications for
the design and implementation, and can be a source of error for many parts
of the game. In a multiplayer game, like MMOGs, there are always some
degree of inaccuracies from client to client. In a seamless server
environment, the same type of uncertainty also resides on the server side.
These proxies that are being created when players enter the shared buffer
between different zones, introduces inaccuracies for remote objects. These
proxies cannot be completely synchronized with adjacent zones without
generating large amounts of overhead.

2.2.1.3 Proxies

As mentioned in the section above, the border regions between different
zones contain objects that can interact across a server boundary. When a
player enters zone buffer, the controlling server sets up a communication
channel to its neighbors. With the information sent over the channel, the
neighbors can create proxies to represent the remote object. When a player
then crosses the border and enters an adjacent zone, the proxies are
destroyed so that the objects only exist like a normal object, and not as
proxies and objects. An issue that occurs with the generation of proxies
with a seamless solution, is the amount of information that a proxy object
should include. With the proxy object containing too little information, it
will be very difficult to write any game code that does not involve
asynchronous message-passing. The object containing too much
information will lead to a need for much more data to be kept in sync, and
the consequence is that large amounts of data can be out of sync [1]. With
the use of a seamless world and proxies, it will be generated more
inter-server communication. To minimize this sort of communication
generated from the proxies, a set of prioritized properties for the objects
could be established. That is, identify individual characteristics that need
to be mirrored, and decide how rapid the update should be based on the

16 CHAPTER 2. MMORPG DESIGN CONSIDERATIONS

characteristic that changes.

2.2.1.4 Realms

When the structure regarding zoning, game world types and corresponding
functionality of the game has been established, a well working instance of
the game can be created. However even with a well designed system there
are more issues that has to be considered. When the amount of players
increases in the instance of the game, the density of players eventually will
reach a maximum where the game experience will decrease dramatically.
With too many players gathered in the game world at the same time, it will
be a need to create new instances of the game world to spread players.
These different instances of the game are called realms. A Realm is a kind
of kingdom or domain in which something, like player characters, are
dominant [21].

2.3 Game Synchronization

The main objective for the game server / game servers in an MMO is to
keep the game state synchronized for all players. This means that the
server needs to consider two scenarios that need synchronization:

• The server makes a change to the game state, such as adding a new
object to the game world.

• A client makes a change to the game state, such as dealing damage to
another clients avatar.

Both cases require that the server synchronizes the change with the clients
that are aware of the area where the change is made. There are numerous
ways of doing this, but the main objective in designing a synchronization
mechanism is to limit resource use (i.e. bandwidth or CPU usage). The
game state consists of all the dynamic objects in the game and the
parameters that define them. Not all parameters should be constantly kept

2.3. GAME SYNCHRONIZATION 17

synchronized, while others should. Keeping a parameter synchronized is
referred to as state synchronization. Other objects could be synchronized
using RPCs. State synchronization differs in reliability, whereas RPC
always is reliable.

2.3.1 Reliable State Synchronization

Reliable state synchronization is done over a reliable connection, meaning
lost packets will be resent. Resending packets will cause later packets to be
delayed, which could cause latency jitter for the game. Using reliable state
synchronization should therefore be limited to events that do not occur
often, or to critical events. This method also optimizes the game for
bandwidth, and causes potential latency issues.

2.3.2 Unreliable State Synchronization

Unreliable state synchronization causes potential packet loss. This could
again cause a client not to be made aware of a change in the game state,
but this potential loss can be compensated for if the state is synchronized
often. Information about an avatars position and rotation are examples of
such states. This will optimize the game for low latency, but use more
bandwidth.

2.3.3 RPC

For some actions, like adding and deleting objects in the game, there are no
parameters to synchronize. RPCs are commonly used for such actions,
allowing the game server to call procedures on the remote clients object
hierarchy.

18 CHAPTER 2. MMORPG DESIGN CONSIDERATIONS

2.3.4 Dead Reckoning

One problem that arises when using a fully authoritative game server is
that the game clients will only update their states when they receive states
from the server. This causes a delay from the player gives the game input
to the client actually renders the action. This delay will make the game
interaction feel very unnatural for the player. To avoid this problem most
networked games using authoritative servers incorporates dead reckoning.
This technique makes the client estimate the action as soon as the player
enters input, and then compare this estimate with the state update from
the server when it is received. Dead reckoning is applicable to other game
objects as well as the players avatar. By smoothing the correction, this
effect can often be unnoticeable to the player.

2.4 Security and Cheating for MMOGs

2.4.1 Security issues regarding MMOGs

The concept of a MMOG, is that a great amount of players around the
world can gather and play the game which is one of the strengths of
MMOGs. However, with this as basis the different involved players do not
necessarily know each other, and could potentially expose each other for
different kinds of treats. Players can be exposed for virtual crime, and
experience to be hacked by other players to gain advantage in the game. In
order to be a trustworthy game, the game developer must provide
mechanisms that ensures secure user accounts and safe payment options.
The consequence of players not trusting the operator to be able to keep
credentials and financial data secure will lead to players abandoning the
game.

Another choice that will affect the security level that the MMOG can
provide is the choice of what authority the servers should have. There are
two different server approaches that can be used; authoritarian and
non-authoritarian. A non-authoritarian solution gives the server no
authority, and brings the responsibility over to the clients. This is a

2.4. SECURITY AND CHEATING FOR MMOGS 19

non-implementable solution if the case is a MMOG. In a non-authoritarian
scenario the client will have the freedom to do whatever it wants, and will
be free to break the regulations of the game. It will be naive in a MMOG
scenario to believe that no client will exploit this freedom, and break the
regulations to their best. On the other side, the authoritarian alternative
will give the server or different responsible servers authority to correct
illegal actions clients perform. To have a MMOG that works as intended
with the best possible game experience, the servers should have large degree
of authority.

While the game is running, it is important for players to be anonymous for
other players, but the degree of anonymity will vary based on the game
design and architecture. With a client-server based architecture, the player
will only be registered on the controlling server, and the operator of the
game is the only unit that holds information about the different players.
The IP-address is the most essential information about a client, and should
be available for a minimum units taking part in the game. A solution based
on the client-server approach has the advantage of keeping the clients
IP-addresses only known to the operator of the game, who should be a
trusted party. The security aspect is a major concern when the architecture
of the game is based on P2P, as described later, and there should be carried
out thorough evaluations with the advantages and disadvantages it brings
along. A game constructed with P2P-architecture will expose the players
IP-addresses to units that are in control of the different zones the game
consists of. Because of this property, P2P will risk the clients anonymity,
and by sharing the IP-address between different zone masters, the clients
will be in danger of becoming a victim from different kinds of security
attacks, like DoS.

2.4.2 Cheating concerns regarding MMOGs

With the rise of MMOGs, the problem of online cheating has evolved.
Cheating in online games are activities that modify the game experience to
give one player an advantage over another player(s). There are several ways
to cheat, and some are more complex, comprehensive and harmful than
others. This section will highlight which challenges involving cheating that
comes along with developing an MMOG.

20 CHAPTER 2. MMORPG DESIGN CONSIDERATIONS

The potential and possibility to be exposed to cheating will increase as the
servers loose their authority. With an authoritative solution the IP-address
will not be exposed, and possibility of cheating over the network decreases.
With a P2P architecture as the foundation, the responsibility of the game
will be divided and distributed to different clients based on the
responsibility-scheme that has been established. This makes the game
prone to scenarios of cheating depending on the power each zone master is
in possession of. With a completely non-authoritative solution, all the
playing clients taking part in the game can abuse the power and knowledge
they possess. This allows them to perform illegal actions, like harming
other players, without the possibility to correct the actions because of the
missing authority of the main servers. At the same time players can take
advantage of the power they possess and cheat by causing updates to game
state that defy rules of the game or gains an unfair advantage [3]. With a
semi-authoritative solution, the clients that only act as players, have less
opportunities to perform different cheating scenarios, but will experience
the opportunity to be exposed for cheating. This is the case since the
different zone masters will be in possession of the name of the different
players staying in their zone. With this name they can identify where in the
zone the player stays and what kind of actions he performs. If the zone
master decides that it will deny a player the intended degree of freedom, it
has the potential of limiting the actions that the player tries to perform.
Another way to abuse the power that zone masters possess, is to
collaborate with other players, and tell them where objects of great benefits
lie in the zone.

To cope with the problem of cheating, there are some areas where it should
be put effort to minimize the damage caused. With a distributed solution
like the P2P alternative the clients with zone master responsibility
constitute the biggest threat to exploit any weaknesses of the architecture.
One way to avoid this will be to write code that executes the zone masters
tasks hidden behind a ”black box”, such that the clients with zone master
responsibility do not have any knowledge about what happens in the code
and are unable to take advantage of the information they possess. This
must be implemented in combination with encryption between the zone
masters and game servers. This will make it harder for a zone master to
understand what kind of information that enters and leaves the ”black box”.

2.5. MMORPG ENGINEERING 21

2.5 MMORPG Engineering

2.5.1 Flexibility in MMORPGs

To keep generating revenues after the growth phase, an MMORPG, like any
other service, needs to keep its users returning, and do so by adding new
content. Since the RPG genre is built around evolving an avatar, and
completing various goals and achievements while evolving it, the game will
run out of content at some point if no more is added. This means that an
MMORPG should be designed to allow easy adding of game content.
Making sure the game is modular will provide this flexibility, and the
components in both the server- and client- parts of the software should be
designed as separate modules.

2.5.2 State Machines

State machines contain a set of states, and actions cause transitions
between the states. This simple functionality makes state machines easy to
describe visually, and makes an application transparent and easy to develop.
It also provides a clear separation between modules in an application, since
state machines essentially just consumes signals describing an action. This
requires clearly defined communication between state machines. The
concept of state machines also suits the RPG genre well, since the player in
controlling his avatar is basically transitioning the avatar between states
(idle, moving, jumping, etc.) by performing input actions on the computer.

2.5.3 SDL and Real Time System Engineering

SDL is a language that is customized for designing systems that are:

• Reactive

• Concurrent

22 CHAPTER 2. MMORPG DESIGN CONSIDERATIONS

• Real-time

• Distributed

• Heterogeneous

SDL evolved from the need for a language to design new complex systems
with high traffic load, real time requirements and a high operational time
without malfunctioning. Because of this background, SDL has proved to
have a wide utilization potential even for systems outside the intended
purpose. The intentional use of SDL in system development is to specify
the required system behaviour, to design and generate an optimal
implementation and to document the provided behaviour. With the use of
SDL it will be possible to create implementation-independent specifications
of behaviour, but at the same time a description of the behaviour actually
implemented, hence the name Specification and Description Language. [5]

The problem that needs to be answered with the use of SDL is reactive
behaviour. The goal is to describe as little as possible about the internal,
physical construction of the systems, while telling the full story about how
external pressure and response are related at the interface. To achieve this
goal, SDL is constructed as follows:

• Systems and blocks composed from blocks and channels.

• Blocks composed from processes and signal routes.

• Process behaviours composed from sub-sequence called procedure.

2.6 Protocols/Latency

2.6.1 UDP

UDP is one of the protocols in the transport layer of the TCP/IP model.
UDP is a connectionless protocol, and requires no set up before
transmission of the message. This makes it an unreliable protocol. Packets

2.6. PROTOCOLS/LATENCY 23

can be lost, arrive out of order or become duplicated, but a packet is
guaranteed to be whole if it arrives. UDP assumes that error checking and
correction is done in the application layer, or is not needed by the
application. The nature of UDP gives it lower transmission times and less
overhead compared to TCP.

RUDP is an extension of UDP, providing additional features to gain
reliability. These are acknowledgement, congestion control, retransmission
and over-buffering. RUDP is not currently a formal standard.

Bits 0-15 16-32
0 Source Port (optional) Destination Port
32 Length Checksum (optional)
64 Data

Table 2.1: UDP Packet Structure

2.6.2 TCP

TCP is another transport layer protocol. Unlike UDP, TCP is
connection-oriented, providing a reliable service. TCP provides an ordered
stream of data, with acknowledgements, retransmission of lost packets,
discarding of duplicates, error checking, flow control and congestion control.
TCP also requires set-up to establish a connection. This is done using a
three-way handshake. TCP has the advantage over UDP in reliability, but
the cost of this reliability is bandwidth due to overhead and latency due to
the additional processing and controlling.

2.6.3 Transport Protocols and Game Development

The choice of protocol in a game depends on the game type and the design
of the game. Some games require reliability more than low response times,
and vice versa. Games requiring low response times include RTS games,
FPS games and some RPG games depending on combat systems, player
interaction, and other real-time requirements. Turn-based games however
will not have the strict real-time requirements, and reliability becomes more

24 CHAPTER 2. MMORPG DESIGN CONSIDERATIONS

Bits 0-3 4-7 8-15 16-32
0 Source Port Destination Port
32 Sequence Number
64 Acknowledgement Number
96 Data Offset Reserved Flag Window Size
128 Checksum Urgent Pointer
160 Options (optional)

160/192+ Data

Table 2.2: TCP Packet Structure

important. When running a server park, having thousands of simultaneous
connections, the bandwidth usage and hence the costs of operating can vary
a lot depending on the choice of transport protocol.

2.7 Network Topologies in MMOGs

2.7.1 Centralized Networks

A centralized topology is by far the most common in MMOGs. A
centralized server contains the game state, and the clients make requests to
change the state. The design of the server can be either authoritative,
non-authoritative or a hybrid. In the authoritative case the client is not
trusted to make changes in the game state, but rather tells the server what
actions it would like to take. The server then evaluates the request and
decides whether the action can be performed. This puts heavy load on the
server, particularly for 3D games, where the server is forced to perform
collision-detection for all objects for all clients. In the non-authoritative
case, the server allows the client to update the game state. The client can
perform the necessary checks, and send the result to the server. This design
causes a high risk of cheating clients. A hybrid scheme can therefore be an
effective solution, leaving checks that to a lesser degree affect cheating to
the client, while the server remains authoritative for important checks.

2.7. NETWORK TOPOLOGIES IN MMOGS 25

2.7.2 Decentralization

In a decentralized topology, there are several distributed servers connected
by a central server. Each distributed server keeps a part of the game state
and can act as an authoritative server regarding changes to the servers
state. In an MMORPG, where the game world typically is split into zones.
This means dividing the zones over a set of distributed servers and let each
server manage the game state for its zone or zones. Having a decentralized
system makes the game more scalable, both in terms of an increase in the
number of players in the game world, and in terms of adding more game
content (i.e. game expansions).

2.7.3 P2P

P2P topologies can be divided into two categories: pure and hybrid. A pure
P2P network has no central servers, and all clients store a part of the
service content and essentially act as both a client and a server. In a hybrid
P2P network a central server manages the network, and keeps track of who
is part of it and what content each client has stored. Also clients can be
classified in a hierarchy. Using pure P2P solution in an MMOG would
cause three critical problems:

• The game network could risk getting split up in smaller network, lose
parts of the game state or dissolve entirely.

• The clients would have no main point of connection, and hence have
no stable way of connecting to the game.

• The game would have no means of a central authority, meaning any
client would have potential to cheat.

A hybrid P2P solution changes this. A central server keeps track of the
clients which eliminates the risk of the network getting split up or
dissolving. It also provides a connection point and a potential authority.
However, the system would still be prone to losing data unless the central
server at all times keep a backup of the game state. Forcing all clients to

26 CHAPTER 2. MMORPG DESIGN CONSIDERATIONS

backup changes to a central authority would defeat the point of the P2P
network, hence the clients needs to be classified into different categories.
The result is a centralized and decentralized hybrid P2P network. By using
a selection algorithm to choose a client to serve as a master and authority
for a part of the game state, and have this client backup changes made to
the game state to the centralized server, the load on the centralized server
is reduced while the risk of losing game state changes is eliminated.

2.8 Mobile Terminals

Mobile devices, such as cell phones and WiFi enabled portable MP3 players
are becoming increasingly popular for gaming. These devices are
characterized by small screens, limited input options and limited hardware
resources (CPU, memory and battery). This often limits the games on such
devices to simpler games, but hardware is improving and will likely allow
more advanced gaming experiences in the future [27].

In addition to limited hardware, mobile devices often connect to the
Internet using mobile phone networks. The connection depends on the
device and the coverage of the operator. In Norway, Telenor covers most of
the country with EDGE, and has UMTS and HSDPA in most urban
areas [25]. This results in data transfer rates from about 200kbit/s to
3.6Mbit. Round trip delays average from 76ms (HSDPA R5) to about
120ms for EDGE. Both EGDE and UMTS have high variance for round
trip time, causing delay jitter [10], [14].

Since real time MMOGs require low latency and more importantly stable
latency, mobile devices are at the current time not well suited for real time
MMOGs, but with future mobile data technologies mobile devices could
prove usable. In this case for a peer-to-peer MMOG, mobile clients could
easily be excluded from zone management and preserve its resources.

Chapter 3

State of the Art MMO
Solutions

27

28 CHAPTER 3. STATE OF THE ART MMO SOLUTIONS

3.1 State of the Art MMORPG solutions

To understand the challenges of designing and implementing an MMORPG
game, and to understand the competition and costs of operating in the
business, the state of the art must be reviewed. Though most game
development companies are highly secretive about their products, some
knowledge can be gained from various sources. We chose to study some
popular titles in the genre:

3.1.1 State of the Art MMORPG Games

3.1.1.1 World of Warcraft

World of Warcraft is an MMORPG game in the fantasy genre released by
Blizzard in 2004. The game takes place in the world of Azeroth, which
consists of two major continents, and a set of minor islands. In December
2008, Blizzard claimed to have more than 11.5 million subscribers [9],
making it one of the most successful games of today.

Though Blizzard is sparse with details about the technical foundation of
the game, it is still known that the game is based on a client/server scheme,
and had in 2006 9000 servers supporting the roughly 6,5 million subscribers
it had at the time. As of May 2009, World of Warcraft has more than 200
realms for each of its three main regions: U.S., Europe and Asia. This is
more than 600 realms globally. Though the hardware of the servers is
unknown, it still means that each of the realms are supported by multiple
servers, in the area of 10-20 each [12], [28]. In addition to moving around in
the world along with all the other players, World of Warcraft has a concept
called ”instances”. This allows a group of players to enter a private area
where players outside of the group cannot enter. This separates the group
from the rest of the game world, and allows it to take on challenges
uninterrupted by others. World of Warcraft uses zoning when the player
moves between the continents, and when players enter ”instances”. This
provides effective load balancing as the game world can be split over several
server clusters. In addition to zoning, each of the continents are split into
smaller zones. These zones have seamless borders, though several zones are

3.1. STATE OF THE ART MMORPG SOLUTIONS 29

Figure 3.1: Ingame screenshot from World of Warcraft

likely run by one server. World of Warcraft relies on TCP transmission
unlike most real time applications. Latency is reduced by sending small
packets, which causes high overhead. The study shows median bandwidth
usage of 6.9 kbit/s and 2.1 kbit/s for the downlink and uplink
respectively [24].

30 CHAPTER 3. STATE OF THE ART MMO SOLUTIONS

3.1.1.2 Age of Conan

Age of Conan is a fantasy MMORPG released in 2008 by Funcom. Age of
Conan is an example of how hard it is to establish a game in this genre.
Only a short time after release, Funcom announced that one million copies
had been shipped [11], but shortly after release it also became apparent
that the game suffered from several problems, and many players claimed
the game simply wasn’t finished when released [19]. The problems didn’t
get fixed, and by early 2009, Age of Conan reduced the number of realms
from 48 to 16 [7]. Though World of Warcraft in its early days also had
issues such as server crashes, poor class balancing and lacking features,
Blizzard’s several years of development after release has improved the
game. This has made World of Warcraft the ”de facto” industry standard
of MMORPGs in the fantasy genre. Blizzard reported late in 2008 that 68
per cent of the players that left World of Warcraft in favor of Age of Conan
had returned [18].

Figure 3.2: Ingame screenshot from AoC

3.1. STATE OF THE ART MMORPG SOLUTIONS 31

3.1.1.3 EVE Online

EVE Online was released in 2003, and is an MMORPG in the science
fiction genre. EVE Online separates itself from a number of MMORPGs in
the sense that it does not have multiple realms. The game has about
250000 subscribers, and all players play in the same universe, consisting of
5000 unique solar systems. Since the game takes place in space, and travel
between the solar systems are done by going through ”wormholes”
eliminates the need for a seamless world. EVE Online is essentially a zoned,
single realm MMO game running on a single supercomputer called
Tranquility [20].

Figure 3.3: Ingame screenshot from EVE Online

32 CHAPTER 3. STATE OF THE ART MMO SOLUTIONS

3.1.2 Existing Server Software

Developing an MMO game can be an expensive project. Complex
multiplayer solutions take a lot of time to engineer, and require thoroughly
testing. Opting to use existing software can save a lot of time and money,
but can on the other hand also limit the flexibility in the game. Analyzing
the features of some potential server software is necessary for Ablemagic to
make a qualified decision on how to proceed with development of ’tisu.

3.1.2.1 SmartFoxServer

”SmartFoxServer is a multi-platform socket server designed to integrate
with Adobe Flash, enabling developers to rapidly develop multiuser
applications and games. The server was created with multiplayer games in
mind and provides powerful tools for creating a wide range of sophisticated
turn-based and real-time games. There’s really no limit to the number of
applications that can be created with it.”

However, SmartFoxServer lacks features needed for a large scale 3D
MMORPG. No support for seamless worlds, no mention of dead reckoning,
only client-server topology support and no unreliable data transfer options.
SmartFoxServer’s showcase of games only shows simpler web based online
games. Though SmartFoxServer can integrate with Unity using its .Net
API, this is more suited for such simpler games, such as 2D games with
”3D look”, not for an MMORPG like ’tisu. [13]

3.1.2.2 NetDog

”NETDOG is an out-of-the-box, highly scalable networking solution for
developers of Massively Multiplayer Online Games and Virtual Worlds.
NetDog is easy-to-use, flexible, and game-engine independent, helping
developers bring worlds to market faster, easier and cheaper by creating
scalable, high performance networks that support millions of users.”

NetDog is designed to support MMOGs and Virtual Worlds, and has a

3.1. STATE OF THE ART MMORPG SOLUTIONS 33

substantial set of features required for games, including:

• Both client-server and distributed topologies

• UPD and RUDP protocols

• Multi-zone worlds with dynamic resizing and seamless worlds

• Delta compression and dead reckoning

• Transparent encryption and iPhone support

• 3rd party game engine integration using C-bindings

NetDog appears to be a solid piece of software, and has all the main
features required for a large scale MMOG such as ’tisu. However, these
features come at a price. The Indie licence for NetDog costs 30000$ for a
title, and is intended for ”multiplayer and small MMO games” developed
by small independent studios. The Pro license is based on revenue sharing.
NetDog has only been on the market since early 2008, and at this time no
titles using it has been released. This makes it hard to evaluate the
stability and potential of the software. [15]

3.1.2.3 RakNet

”Raknet is a cross-platform C++ game networking engine. It is designed to
be a high performance, easy to integrate, and complete solution for games
and other applications.”

RakNet describes its major features as lobby system, autopatcher, object
replication system, RPCs, secure connections, voice communication, robust
communication layer and NAT punchthrough. These are features required
in many multiplayer games, however for an MMOG, there are no features
supporting massive worlds. No support for seamless worlds or zoning exists.
These features could be developed on top of RakNet, but again these
features which includes synchronization of objects over zone borders are
more complex features and would require a lot of development. The
licencing is practical for small developers. The ”Free Indy licence” is free

34 CHAPTER 3. STATE OF THE ART MMO SOLUTIONS

for developers with a gross revenue under 250000$. This licence can be used
while developing, until the revenue exceeds this amount, and then the
”Commercial Single Application Licence”, which allows the use of RakNet
as a single application on a single platform, is available for 5000$. [17]

3.1.2.4 Project Darkstar

”Project Darkstar is software infrastructure that aims to simplify the
development and operation of massively scalable online games, virtual
worlds, and social networking applications. Originally created by Sun
Microsystems, it is today advanced as an open source project through the
Project Darkstar Community.”

Project Darkstar is currently in version 0.9.9, which is not intended for
production. This version currently only supports client-server topology
with a single host. This limits the use of Project Darkstar at the moment,
but coming versions will support this. Project Darkstar offers core network
services, and a different approach to scaling. It supports use of zones and
realms, but the architecture is based on breaking down the game servers
work into small units, which each can be processed on the server-side
network. Each server on the network breaks down the the work unit for
parallel processing in multiple threads. The goal is to achieve near linear
scalability. The advantage of this approach is that no resources are wasted
on zones with low activity, but can be used to process activity in high
activity zones. But the architecture is limited to client-server, and Project
Darkstar is using TCP for transmission, limiting the flexibility in
development. But being open source is a huge advantage in that the
software is freely available. [23]

3.1. STATE OF THE ART MMORPG SOLUTIONS 35

3.1.3 ’tisu requirements

’tisu is a game in the MMORPG genre. The game is in a concept / early
development stage, which makes it hard to specify requirements for it.
There will exist a game client for PC/Mac where you play an avatar in a
3D world. Figure 3.4 shows an ingame screenshot of the single player
demo’s character ”Lube” and its interface. Players will in the final game
control avatars like this in a massive world together with other players.
These avatars will have the ability to interact with the environment and
other characters in the game, both friendly and hostile. The game world
will be huge, sustaining a large amount of players.

The bandwidth requirements of World of Warcraft are not significant in a
client-server solution, but in P2P, managing nodes need to be able to
sustain the accumulative bandwidth of all clients connected. Should a zone
contain 50 players, a roughly 3Mbit uplink is required to sustain the
median traffic, and more is required to sustain peak traffic. These are huge
requirements for a user to meet. However, bandwidth can be reduced from
the level of World of Warcraft by utilizing UDP or RUDP, and also by
engineering better compression for data transfer. Zone sizes can also be
adjusted to reduce bandwidth.

The number of users returning to World of Warcraft after initially leaving it
for Age of Conan, shows the importance of differentiation in the market. If
the game becomes a substitute for an existing title, loosing users can be a
major threat. This can be seen in the Age of Conan case where the
numbers of servers needed to be significantly reduced, which causes a major
cost for the developer.

It should, however, be noted that there are several sub-genres within the
MMORPG genre. Both World of Warcraft and Age of Conan are in the
fantasy genre, while EVE Online differentiates itself by being a
science-fiction game. This sort of differentiation is important for developers
to keep in mind. The similarities and differences of these games are
illustrated in figures 3.1, 3.2 and 3.3.

Since the single player demo already defines much of the functionality from
the users point of view, it will rather be from a developers in this section.
That is, networking functionality that are transparent to the end user, but

36 CHAPTER 3. STATE OF THE ART MMO SOLUTIONS

Figure 3.4: Ingame screenshot from ’tisu

will have a huge impact on the developers and game designers, such as
seamless worlds or not. Non-functional requirements will also be of high
priority, since the game is in an early stage, and much of the decisions
regarding functionality is yet to be decided. These are basic requirements
that are evaluated when considering the choice of networking system for
’tisu.

The single player demo of ’tisu has been developed using the game engine
Unity. The Unity engine comes with an integrated editor to design 3D
worlds, and supports various scripting languages. Development in Unity is
focused on visual design, and relies on the scripting engine to create game
events and behavior. Since Unity is used for ’tisu, a high priority
requirement for a networking solution is that it integrates with Unity.

3.1. STATE OF THE ART MMORPG SOLUTIONS 37

3.1.3.1 State Synchronization

Being a 3D world where the player is interacting with the environment in
real time, the game needs some form of state synchronization. It should
support decentralized solutions to provide low latency for a geographically
distributed mass of users.

3.1.3.2 Load Balancing

’tisu is a game that aims to support thousands of simultaneous players in a
realm. This requires some form of load balancing. The game needs to
support zoning between the different worlds in the game, but should also
support seamless worlds to provide extended load balancing. This will
provide a better experience for the end user as he will be able to traverse
entire continents without interruption, and the gaming experience will feel
more real.

3.1.3.3 Mobile Terminals

’tisu is a game that will focus on mobile clients. First out are simpler games
that can be supported by today’s mobile technology. These should allow
the player to improve his or her avatar by completing missions or
objectives. This requires the database to be accessible by simpler clients.

3.1.3.4 Cheating

’tisu aims to become an MMOG with thousands of players. This requires
the game to be cheat proof. The most common way of cheat proofing
multiplayer games is using authoritative servers. ’tisu should use
authoritative game servers to keep players from cheating. Using
authoritative servers will also require the game clients to have a prediction
mechanism such as dead reckoning.

38 CHAPTER 3. STATE OF THE ART MMO SOLUTIONS

3.1.3.5 Modularity

In a game that will evolve dynamically, new content must be possible to add
without changing the dynamics of the network system. It must be possible
to add new game objects, new events and expand the world in a separate
content system without making changes to other parts of the game.

3.1.3.6 Cost

As a small new company it can be hard to compete against established
games. Cost of operation can be devastating when releasing a new service,
and server maintenance and bandwidth costs can become huge. If these
costs were entirely variable, there would be no problem, but since servers
must be bought and bandwidth lease must be negotiated, these costs will
not be lowered immediately if the number of subscribers should fall,
whereas income will. The system should hence keep the cost of operation at
a level that makes it possible for a game title to dynamically expand into a
solid competitor.
From these requirements, the one of the most important objectives for a
small developer is to reduce costs and get an edge on the competition. To
be able to launch a product at all, the product certainly needs to satisfy the
user in form of functionality, but if the game is too expensive to maintain
and service, the title may never see the light of day. We therefore choose to
focus on a P2P concept solution, to evaluate how this performs. Since none
of the existing server software we reviewed has this feature, we will compare
the results of the work with existing software for Ablemagic in appendix B.

Chapter 4

The Concept

39

40 CHAPTER 4. THE CONCEPT

4.1 Concept

The main focus of the concept in this chapter is to present a cost saving
solution. By using P2P networking solutions in an MMORPG, huge
amounts could potentially be saved on maintainance and lease of servers
and bandwidth. The concept presented below ensures the requirements
highlighted for ’tisu, and could work as a basis for further development for
a functional full scale MMORPG platform.

Figure 4.1: Topology layers of the concept

This illustration shows the proposed concept. The game world is split into
zones, and each zone is managed by an authoritative unit called ”zone
master” that ensures that the players are not cheating. These zone masters
send backups to the game server containing the changes made to the world
state (i.e. delta compressed). This ensures no data is lost should a zone
master disconnect. The zone masters can either be run by the game server
itself or by connected clients. The game server manages the network,
deciding which clients should manage zones. It can change zone masters for
a zone at any time. When a new zone master is appointed, the game server
provides it with the game state of the zone. The game server also provides
zone masters with game objects of new avatars that enters the game when
clients connect, and has authorization information about clients. This
results in a hybrid P2P scheme. Some clients are ”super nodes” in the
network, and constitute the authoritative level in the structure. The top
level is basic clients, that still have the capability to act as zone masters,
while the bottom level manages the entire structure. The ability to run
zone masters on both dedicated servers and on the game server itself,
provides the flexibility to run the game both as a centralized or
decentralized scheme in addition to P2P.

4.1. CONCEPT 41

Figure 4.2: MSC diagram of client connecting

Figure 4.2 shows a client successfully connecting to the game, highlighting
the role of the game server as the network manager. The client first logs in
to the game server, which provides it with the IP address of the zone
master it should connect to based on the location of the players avatar.
The avatar game object is then sent to the zone master. The client now
connects to the zone master, which has the required information. To ensure
that the system is secure, clients should authenticate themselves with the
game server, and a challenge sequence should be issued for the zone masters
to authenticate clients.

Figure 4.3: Zone borders and buffers

The concept includes a seamless zoning approach of the game world. This
enables the players to see, and even do ranged actions across zone borders.
The concept therefore requires communication between the zone masters.
We choose a simple solution where the buffers are the size of the range a
player can see, and establish proxies on the adjacent zone masters when an
object enters the buffer. This increases complexity, and establishes a

42 CHAPTER 4. THE CONCEPT

network between zone masters for keeping proxies synchronized with their
real objects. Figure 4.4 illustrates this network.

Figure 4.4: Network between adjacent zone masters

Even though the requirements are fulfilled, we see that there exist
weaknesses compared to the commercial solutions used today. The main
weaknesses the concept faces is cheating and keeping the players
anonymous. To reduce cheating it is essential that a client that acts as a
zone master does not have conflicting interests. This would occur if a client
is playing in the same zone as it is managing as a zone master, or nearby
zones due to ability to alter objects through proxies. The concept therefore
requires the game server to swap zone masters should a client enter a zone
adjacent to the zone it is managing. Though it does not completely
eliminate cheating, it reduces the potential. As the priority has been to
develop a functional concept, the security issues have largely been left to
future work. End-to-end cryptography can improve security by disallowing
the zone masters insight into the data they are processing, but solutions for
keeping the clients anonymous in a P2P scheme does not exist as of today.
Security functions can, however, easily be implemented into an end product
without requiring major changes to the core functionality of the system.

As mentioned above, this solution is designed with cost saving in mind.
This is the main argument behind the choice of a P2P topology. Using true
P2P with no centralized server could cause loss of data when peers
disconnected, and would make it hard for the game producers to generate
revenue from the game. This is why a game server manages logins and
backs up the world state. The game server keeps the zone masters at a
”need to know” basis, providing them with only the necessary information
about the state in their zone. This is done to ensure limited possibilities of

4.1. CONCEPT 43

cheating, and also reduce the amount of data that needs to be transferred
to the zone masters at the time of establishment. Seamless zones are
required in a concept like this. Game clients run on typical consumer
computers with limited resources available for additional tasks. Bandwidth
are also often limited. This requires the size of the zones to be adjusted to
the resources a client has available, and this could mean small zones.
Loading a new zone often could greatly annoy the players and cause them
to abandon the game for competing titles, and it is therefore very
important to ensure a smooth transition between the zones in such a
concept. Even though the increased network traffic causes extra load on the
zone masters, it is required. It should however be noted that the concept
developed uses rectangular zones. Using different shapes such as hexagons
can reduce the number of connections to the hosts, but due to limited time
for development we had to choose the simpler implementation.

Chapter 5

Design and Implementation

44

5.1. DESIGN AND IMPLEMENTATION 45

5.1 Design and Implementation

To implement complex network software a solid design is required to
coordinate the process. A lot of signals are sent between the modules and
components in such a system, making it essential that all developers know
what input and output is sent to and from the software part he is working
on. To establish this, we chose to produce a detailed implementation design
in SDL. SDL has a lot of the required properties for a distributed real-time
system with high concurrency demands like ’tisu [6]:

• The functionality of the system can exist and be understood
separately from the implementation of the system.

• The functionality is independent and can be used for different
implementations.

• With a complete functional design a automated transformation to an
implementation is possible.

This allows the game developers to utilize the design to implement the
system in a different language than the conceptual demo we developed, and
provides an excellent overview of the signalling between the components.

As SDL is based on state machines, we implemented a simple run-time
framework for state machines in Java. State machines provides great
modularity, and implemented in an object-oriented language, each process
can easily be implemented in a separate class. This results in a transparent
solution that is easy to maintain and develop further. Java was chosen as
the implementation language as it has a range of useful libraries that makes
it easy and fast to develop. Swing was used for the simple GUI. Though
not an optimal solution, network communication was implemented using
Java sockets with TCP transmission which provides a stable transmission,
but consumes more resources than a solution utilizing UDP for certain
transfers. Where objects were needed to be sent, they were serialized to
XML, and sent as string arguments. XML causes a lot of overhead, and is
not suitable in a final product, but ease of implementation was prioritized.
State machines were implemented in an action oriented style and scheduled
in a separate thread, with a synchronized method ”addInput”, that allowed
other state machines to add signals to the machines FIFO queue.

46 CHAPTER 5. DESIGN AND IMPLEMENTATION

Figure 5.1: Technology used in implementation

5.1.1 System overview

The overview of the ’tisu implementation design is divided into two main
blocks. With these two blocks, a connection and different communication
channels can be established between the playing client and game server in a
way that the game will work as intended.

The client part of the system consists of two separate modules that will
make the client capable of taking on different roles depending on the need
of its processing power. The first module the client contains is the client
module. This is the part that establish the connection with the game
server, 3D engine and zone masters of the game. 1

The C-GS Connection channel and GS-C and C-GS ports, are generated to
initiate the authentication and login sequence, and hold the connection to
game server throughout the game. This connection enables the game server
to inform about architectural changes that happens during the game, like
information about new zone masters, new adjacent zone masters or that
you should take on the role as a zone master.

The Game channel with Gout and Gin as ports have the main function of
disclosing game information out to 3D engine. This means that game
related information like state changes and procedure calls that are being
performed, and affect the respective player or players in the AOI, are
distributed to the correct instances.

With connection sat up with 3D engine and game server, the next step for

1The figures showing the SDL design in this chapter are extracts from appendix A,
which contains the complete design. For greater detail, the appendix should be reviewed.

5.1. DESIGN AND IMPLEMENTATION 47

Figure 5.2: Top level SDL design of the system

a client will be to initiate contact with the zone master responsible for the
zone where the client’s character is staying. Before game information can
be shared between client and zone master, the client has to be
authenticated to show his/her trustworthiness. The authentication
challenge will go through the C-ZMCH and ZMCH-C ports and on the ZM
Connect channel. Depending on a successful authentication sequence the
client can start to initiate in-game exchange of information on the C-ZM
Connection through the ZM-C and C-ZM ports. The essential in-game
information to exchange with zone master is the change of states and

48 CHAPTER 5. DESIGN AND IMPLEMENTATION

procedure calls that will affect objects that are in one characters AOI, and
objects that need to be added to the AOI of a character, and general AOI
updates for a synchronised gameplay between different clients.

The second module that the client contains is the zone master module.
This is a more complex module, and gives the client the possibility to
function as a zone master when the game server is exposed to high
demands of processing power. The zone master module is not visible in the
system overview, but it is an integrated part of the client and game server.
From a client’s perspective it receives information that it should take on
the role a as zone master from game server, and then initiates a sequence of
processes to be able to function as a zone master. The first step is to
generate a new communication channel, ZM-GS Connection, with the game
server where zone critical information can be exchanged through the
GS-ZM and ZM-GS ports. The zone master module will receive
information about the zone that it shall control, arrival of new adjacent
zone masters or to stop functioning as a zone manager.

With the connection to the game server established, the next step will be to
initiate contact with the adjacent zone masters, such that in-game
information could be shared between zones. The ZM-ZM Connection
channel are constructed for this purpose and the ZMin and ZMout ports
will be able to distribute information about the creation, deletion and
updates of proxies. There have been added IP-notations to the system
illustration, these are meant to illustrate the possibility to differentiate
between which participating part in the game architecture that should
receive the information. The case with the ZM-ZM Connection is to differ
between which hosts with zone master responsibility that should get
information about proxies.

The game server side of the system overview also consists of two parts. One
module will contain the main game server properties, this includes the login
sequence for the clients, distribution of information about the zone that the
different clients should connect to, delegation of zone master responsibility
and keep a connection to every zone master. This module will establish
connection between clients and zone masters through already mentioned
channels and ports. C-GS Connection will see through the communication
for the login sequence. The ZM-GS Connection will distribute architectural
information to the correct zone master. ZM-GS Connection will distribute
architectural information and changes differentiated by zone master

5.1. DESIGN AND IMPLEMENTATION 49

IP-address during gameplay.

The second module of the game server is a zone master module equal to the
one that is integrated in the client. The only difference between these two
is the relationship that the zone master module needs to keep to the game
server module which is a part of the same unit. For the game server there
exists two channels with the name ZM-GS Connection. One of the channels
keeps the connection to external zone masters for exchange of architectural
information, the second channel will exchange the same type of
information, but to the zone master module in the game server that is in
control of a zone. The game server will be responsible for all the zones up
to a certain point where it needs more processing power and distributes
zone responsibility to external hosts. This is the reason why it needs to
have a connection between two internal but different modules. The C-ZM
Connection will exchange information about the changes that affect clients
during gameplay, and the ZMConnect channel will be the channel at use
when clients connect to the zone. The ZM-ZM Connection will be the
channel to communicate inter-zone information.

50 CHAPTER 5. DESIGN AND IMPLEMENTATION

5.1.2 GameServer

The GameServer block contains, in addition to the common ZoneMaster
processes which will be detailed below, the five GameServer types of
processes:

Figure 5.3: SDL design of the Game Server block

5.1. DESIGN AND IMPLEMENTATION 51

ClientConnection
The purpose of the ClientConnection is to maintain communication
between the gameserver and the clients. There is one process for each
connected client, and each process provides authentication of the client,
authorization for the chosen avatar and the following network messages:
ManageZone - Tells the client to start a zonemaster and manage a zone.
NewZoneMaster - Informs the client that it has a new zonemaster. This is
used when a zonemaster drops out suddenly. CannotConnectToZM - Used
for the client to inform the gameserver that it cannot connect to its
zonemaster. This is required to detect faulty zonemasters.

GameEngine
The GameEngine process is not described in detail because the inner
workings of it needs to be made by game designers. However, it has the
ability to send AddObject signals to both the Database and the
ZoneManager processes, which is the only signal required. The
GameEngine is intended to be the process where the game content is
managed, and should keep track of game world events that requires new
objects to be added to the world.

Database
The Database is a process that acts as an adapter to the underlying
database, which at all times contains the current state of the game world as
well as account information for clients. The process authentication and
authorization, stores the backups the gameserver receives from zonemasters
and provides the ZoneManager process with objects and zone information.

ZoneManager
The ZoneManager contains the mapping between clients, zonemasters and
zones. When a client connects, it provides it with connection information
about the zonemaster it should connect to. It selects clients to be
zonemasters, and replaces zonemasters when needed. When a zonemaster is
started, it connects to the gameserver, and the ZoneManager process
provides the zonemaster with the gameobjects that are currently in the
zone, and maps the zonemanager to the zone. Backups are then received
regularly from the zonemaster, and stored in the database by the Database
process. In addition, the ZoneManager receives notifications when a client
changes zonemasters or a zonemaster loses connection to a client.

ZoneMasterConnection

52 CHAPTER 5. DESIGN AND IMPLEMENTATION

Communication between the GameServer and zonemasters are done
through the ZoneMasterConnection processes. One process for each
connected zonemaster provides zone setup and transfers messages between
the zonemaster and the ZoneManager process.

5.1.2.1 Game Server implementation

Figure 5.4: Screenshot of GameServer with no clients connected

The GameServer initially defines a world map of 100x100, then defines four
zones of 50x50 and starts local zonemasters for these. Figure 5.4 shows a
Game Server started, with no clients connected and hence managing all
four zones itself. A window is displayed, showing the world map and where
the zone borders are. If the GameServer is managing any zones itself a
window with the dimensions of the zone is displayed for each, showing any
players connected. The zones were in the tests statically defined as 0 to 3.

5.1. DESIGN AND IMPLEMENTATION 53

The GameServer will manage these zones until 5 clients are connected.
When the 5th client is connected, a client is selected at random to manage
zone 0. When the 6th client connects, the process is repeated for zone 1, at
the 7th for zone 2, etc. This is done to set up the zonemasters gradually, as
we experienced some problems with setting up the connections between the
zonemasters if multiple adjacent zonemasters were started at the same
time. This could be solved by adding a delay between the establishment of
new ones, but gradually setting up the zone masters illustrated the concept
better, and was chosen as a solution in the demo. The GameServer will not
let a client manage more than one zone. When all the four zones are
managed by clients, the GameServer provides little interesting information
to the user except for the backups received by zonemasters and managing
clients connecting and disconnecting.

Figure 5.5: Screenshot of GameServer with 5 clients connected and zone 0
managed by a client

54 CHAPTER 5. DESIGN AND IMPLEMENTATION

Figure 5.6: Screenshot of GameServer when all zones managed by clients

5.1. DESIGN AND IMPLEMENTATION 55

5.1.3 GameClient

The blocktype Client in the system overview consists of three game client
related processes with different responsibility and tasks, but also consists
the zone master processes that will be described later. The three main
game client processes are divided into:

Figure 5.7: SDL design of the Client block

56 CHAPTER 5. DESIGN AND IMPLEMENTATION

GameServerHandler
The GameServerHandler is the process that maintains and manages the
connection to the game server, and will be generated at startup from the
GameClient process. It works like a router and forwards signals either to
the GameClient process or over the network to the game server, depending
on whether the signals are internal or not, through the communication
channels gameconnection and gameserver. The GameServerHandler are
responsible for seeing through the login sequence over the network with the
game server, forward information about new zone masters that are taking
control of the different zones and if the client itself should take on the role
as a zone master.

ZoneMasterHandler
The other router process that the client consists of is the
ZoneMasterHandler, and is also generated from the GameClient process.
This is a process that holds the connection between zone masters and the
client, through the validate and zoneconnection channels. Based on the
type and status of the incoming signal and the state machine
implementation, the ZoneMasterHandler decides whether it should forward
the signal to external zone masters, or the client. Setting up connections to
the different zone master throughout the game, forward updates on actions
performed that affect AOI for the respective players in the different zones,
are some of the main tasks performed by the ZoneMasterHandler.

GameClient
The GameClient process is the main process of the client and keeps a
connection out to the 3D engine and to the two other processes in the
Client block. The GameClient process functions as the brain of the Client,
and reacts depending on the signal and state machine implementation.
This is the process that initiates the different sequences for setting up valid
connections for the client. This include login to game server, establishing
connection to zone master, start up the integrated zone master module if
triggered and forward actions performed from either own player to zone
master or actions performed from external players that affect its own AOI.

5.1. DESIGN AND IMPLEMENTATION 57

5.1.3.1 Client implementation

The GameClient displays a window the size of the world map as illustrated
in figure 5.8. This size is defined in the client, and must be equal to the size
defined in the GameServer. The window implements a keyboard listener
that reacts to changes in the arrow keys. When an arrow key is pressed or
released, this changes the boolean value ”moving” for the players character
and a signal is sent to the zonemaster, notifying it of the state change. As
long as a characters ”moving” value is true, the GameClient will move the
character in the direction it is rotated every time it receives a
”CheckStates” signal. This signal is on a 20 ms repeating timer. The
distance of movement is based on the time elapsed since the last move. The
client accepts game objects from its zone master and displays the objects
that are within the players AOI. Any state changes, RPCs or AOIUpdates
received, updates the objects and keeps the client synchronized with the
zonemaster.

Figure 5.8: Screenshot of GameClient managing zone 0

58 CHAPTER 5. DESIGN AND IMPLEMENTATION

5.1.4 ZoneMaster

Both the GameClient and the GameServer blocks contain several common
processes. These are the ZoneMaster specific processes, which provides
both the server and the clients with the capability to be a zone master.

Figure 5.9: SDL design of the ZoneMaster part of the top level blocks

5.1. DESIGN AND IMPLEMENTATION 59

Both the GameClient and the GameServer blocks contain several common
processes. These are the ZoneMaster specific processes, which provides
both the server and the clients with the capability to be a zone master.

The GameServerConnection process is instantiated by either the
ZoneManager process in the GameServer or the GameServerHandler
process in the GameClient. The GameServerConnection then instantiates
the ZoneModel process, which instantiates the 3DUnit process. For each
client connected to the zone master a ZMClientConnection is started.

GameServerConnection
The GameServerConnection process establishes a connection to the
gameserver and sets up the zone. After setup, it transfers signals to and
receives signals from the gameserver. This includes authorization challenges
for clients, changes in adjacent zonemasters, backups, new objects and
client changes.

ZMClientConnection
ZMClientConnection processes maintain connections to the clients and
works essentially like the ClientConnection in GameServer, except for the
authorization, which is done by waiting for the challenge to be received
from the GameServerConnection before authorizing clients. The
ZMClientConnection receives changes to the game state from both the
client and the ZoneModel process. Client changes are forwarded to the
3DEngine for validation, and changes from the ZoneModel are directly
forwarded to the client.

3DUnit
3DUnit is a process to enable authoritative capabilities. Any signal that
causes change to the game state made by the client is forwarded to the
3DUnit, and evaluated. Only if the change is valid, will the change be
forwarded to the ZoneModel. An invalid change is simply ignored, and the
error synchronized by regular AOIUpdate signals from the ZoneModel.

ZoneModel
The ZoneModel is the heart of the ZoneMaster functionality. It keeps track
of connected clients, adjacent zonemasters, proxies in adjacent zones and all
game objects in the zone, and most importantly synchronizes all changes to
the zone state between the clients that are aware of the area where the

60 CHAPTER 5. DESIGN AND IMPLEMENTATION

change took place. The ZoneModel regularly checks states to determine if
players are entering buffers and proxies need to be created in adjacent
zones, or if clients have left the zone as well as to determine if there are new
objects in the players AOI. The ZoneModel notifies clients of their new
zonemaster, and also notifies the gameserver of the change when a client
leaves the zone. ZoneModels of different ZoneMasters communicate, and
update each others proxies to achieve seamless world functionality.

5.1.4.1 ZoneMaster implementation

The ZoneMaster code is common for both the GameServer and the
GameClient. The ZoneMaster displays a window showing the zone and all
players in it. It runs a repeating timer with 20 ms delay, sending a
”CheckStates” signal. On this signal, all connected players that are moving
are checked to see if they are entering the buffer at the edge of the zone in
which case the adjacent zonemaster is signalled to create a proxy of the
player object. Also connected, moving players are checked to see if they are
leaving the zone, in which case a ”ClientLeftZone” signal is added. Then
when the player has been moved, players and proxies within range of the
player is calculated, and any changes to other players a player can see are
signalled to both the player and the other players. Any changes to proxies
the player can see are only signalled to the player. The size of the buffers
are equal the distance players can see, avoiding complexity in the proxy
mechanisms. The 3D unit is not implemented, but just passes all signals
through to the ZoneModel, which makes the server less authoritative.
Players will still not be allowed to leave the edge of the world map.

5.1.5 Unimplemented features

Many of the features required to run a full scale MMORPG on this system
have not been implemented in the conceptual demo. This is a direct result
of limited time to implement, forcing prioritization of features. The
implementation design however, was made to be as specific as possible,
making sure the design supported all features required for a full scale game.
The result is that the Java implementation in some areas differs slightly for
the implementation design, and the design specifications have been replaced

5.1. DESIGN AND IMPLEMENTATION 61

by static code that allows the demo to run without the features
implemented.

Zone Master selection algorithm
This has simply been done by selecting a zone master at random, and
checking that it is not already managing a zone. An effective algorith
should be implemented in a final product. Making sure managing clients do
not have conflicting interests is a measure to limit cheating, and selecting
low-latency clients can improve performance greatly.

UDP
All network communication in the system have for simplicity been
implemented using TCP. This was a choice made because time was limited
and implementing the system using TCP sockets was the simpler choice.
However, messages transmitted between the clients and the game server are
limited, and should be implemented using UDP to reduce the number of
open connections on the server. As for communication between clients and
zone masters, this implementation sends changes to the object properties,
which if not received will cause the client and zone master to be out of
sync. This makes TCP a natural choice for its reliability. But state changes
could be sent using short interval updates, like the AOIUpdate signals but
sent every 100ms or more often, making lost or delayed packets useless, and
UPD a natural choice. An end product needs to incorporate both UPD and
TCP solutions for effective performance.

Dynamic zoning and zone shapes
The zones in the demo are implemented statically. Each zone is defined by
two-dimensional coordinates and its width and height. A dynamic solution
would move the borders, and repartition the zones while the game was
running. There was no time to implement this feature due to the extreme
complexity of it, but the signalling in the design would have no problems
supporting implementation of it. Also non-rectangular shapes are not
implemented. This would require more complex geometry in the
implementation of the Zone class.

Zone Edge Detection
Detection of players entering zone edges or buffers is implemented to
directly support the four zones set up in the demo. Changing the number
or size of the zones set up will require changing of this detection, again due
to lack of implementation time.

62 CHAPTER 5. DESIGN AND IMPLEMENTATION

GameEngine
The GameEngine process is as mentioned left to implement. This should be
implemented as a scripting engine to allow game designer to implement
scripted events in the game.

Client authentication challenges
Client authentication challenges are sent to the zone masters, but not
generated. A challenge generation algorithm must be implemented to
create unique challenges for each client.

Database communication
The Database class is not set up to read or write data to a database. All
game data is statically added in the class to allow the demo to run.

5.1.6 Instructions for running

The demo was implemented in Eclipse SDK, and run through the Eclipse
interface. Before running the demo it must be configured through the
following parameters:

• GameServer.java: The string localIP must be set to the IP address of
the desired network interface.

• GameClient.java: The string GameServerIP must be set to the IP
address of the game server.

• GameClient.java: The string CharacterName must be set to the name
of a valid character.

• GameClient.java: The integer CharacterID must be set to the
matching object ID of the character.

Valid characters can be found in Database.java in the class constructor at
line 110.

The characters are added with the following syntax:

5.1. DESIGN AND IMPLEMENTATION 63

this.characters.put(”CharacterName”, new PlayerCharacter(CharacterID,
30, 0, 10, 0, (((double)3/(double)4)*Math.PI), 0, ”CharacterName”));

For example:
this.characters.put(”Tom”, new PlayerCharacter(0, 30, 0, 10, 0,
(((double)3/(double)4)*Math.PI), 0, ”Tom”));

Every client must use a unique character.
The servers main method is located in GameServer.java, and the clients in
GameClient.java.

Chapter 6

Testing and Evaluation

64

6.1. SYSTEM TESTS 65

6.1 System Tests

The system was developed to test and research P2P possibilities in
MMORPGs. Basic testing showed that the system worked stable, enabling:

• User login

• Moving an avatar

• Moving between zones

• Updates of avatars in clients AOI

• Clients to manage zones

• Zones to receive new ZM when old ZM disconnects

To evaluate the system, performance must be evaluated. The goal is to
discover potential problems with the solution, and evaluate how it performs
under the stress we are able to put on it. However, it is important to note
that the system is not equal to a full MMORPG. A client running a 3D
accelerated game is consuming a lot of resources on its computer, leaving
less resources for running a zonemaster. Also an authoritative server will
consume more resources than this non-authoritative solution. We are in
other words not able to conclude whether the solution is capable to run on
an average personal computer in terms of CPU and memory. We will
evaluate how the system scales and the latency of the most critical tasks of
the solution: Changing zones and zonemasters disconnecting. The tests are
performed by measuring the clients perceived delay in the different
scenarios. This is important because it is the delay the player is
experiencing that determines the acceptable limits, and should be useful to
evaluate whether the system can perform sufficiently.

6.1.1 Environment

The tests were performed in the Sahara computer lab at NTNU, which
consists of Dell Optiplex GX620 computers with following specifications:

66 CHAPTER 6. TESTING AND EVALUATION

• 2 x Intel Pentium D CPU 3.00GHz

• 1,99GB of RAM

• Broadcom NetXtreme 57xx Gigabit Controller

The GameServer software ran on Ubuntu 8.04, in Eclipse 3.4.2 with javac
1.6.0 06. The GameClients ran on Windows XP SP2, in Eclipse 3.4.2 with
javac 1.5.0 06.

6.1.2 Test Setup

There were two main test cases defined, with several different
under-scenarios, to evaluate the system performance. Each test was carried
through with different amount of clients logged on, to experience if the
system’s behaviour differed with different stress levels. Each test scenario
was performed five times to reduce impact of random factors such as other
processes in the system to affect the results.

1. Measure delay when a client switches zones
Reason for test:
This test will give indications of how the system handles to be exposed to
different amounts of stress, and will give concrete response to how quick the
system responds to the actions performed. The results regarding the
system’s performance level of stress handling will give indication of where
to put an effort for further development and improvement.

How to perform test:
This was tested by moving a player from one zone to another, and
measuring the time from the client received NewZoneMaster to it received
ConnectZMOK. Also the time from NewZoneMaster to the last ObjectAdd
was received was measured. These times describe the latency the client
experiences when switching zones, and was measured for four scenarios:

Scenario:
1a) 10 clients connected, but not in the moving clients AOI when it entered
the new zone.

6.1. SYSTEM TESTS 67

Result:

1 2 3 4 5
1a 2046ms 2046ms 2046ms 2062ms 2046ms

Table 6.1: Test result scenario 1a

The average processing time for scenario 1a is 2049 ms. Table 6.1 shows no
major changes and indicates consistency in the system’s performance level
with 10 clients connected, but not affecting the moving players AOI when
switching zone.

Scenario:
1b) 10 clients connected, and all 10 in the moving clients AOI when it
entered the new zone. NewZoneMaster to ConnectZMOK.

Result:

1 2 3 4 5
1b 2077ms 2046ms 2062ms 2046ms 2046ms

Table 6.2: Test result scenario 1b

The average processing time for scenario 1b is 2055 ms. The results above
implies slightly more variation in the system’s performance when a client
connects to a new zone master, and the 10 clients affects the moving
players AOI.

Scenario:
1c) 10 clients connected, and all 10 in the moving clients AOI when it
entered the new zone. NewZoneMaster to last ObjectAdd.

Result:

The results from scenario 1c show an average processing time of 2421 ms,
and shows a rather markedly increase in time from just switching zone to

68 CHAPTER 6. TESTING AND EVALUATION

1 2 3 4 5
1c 2592ms 2327ms 2437ms 2359ms 2390ms

Table 6.3: Test result scenario 1c

add the 10 objects affecting the incoming client’s AOI. The time difference
between scenario 1b and 1c based on the average values are 366 ms.

Scenario:
d) 20 clients connected, but not in the moving clients AOI when it entered
the new zone.

Result:

1 2 3 4 5
1d 2093ms 2062ms 2062ms 2062ms 2077ms

Table 6.4: Test result scenario 1d

The average processing time for scenario 1d is 2071 ms. Even though the 20
clients connected do not affect the moving players AOI, the response from
the system shows an increase and larger variation in time when the system
gets stressed with the double amount of clients, but is not threatening.

Scenario:
1e) 20 clients connected, and all 20 in the moving clients AOI when it
entered the new zone. NewZoneMaster to ConnectZMOK.

Result:

1 2 3 4 5
1e 2061ms 2062ms 2061ms 2046ms 2046ms

Table 6.5: Test result scenario 1e

The results from scenario 1e show the same average processing time as
scenario 1b, 2055 ms, even though the amount of clients affecting the

6.1. SYSTEM TESTS 69

Figure 6.1: Screenshot of clients gathered in the top buffer of zone 2 for test
1e)

moving player’s AOI is doubled. This may indicate that the results from
scenario 1d were affected by some inner processes of the system, since it
indicated a lower performance level when 20 clients were logged in.

Scenario:
1f) 20 clients connected, and all 20 in the moving clients AOI when it
entered the new zone. NewZoneMaster to last ObjectAdd.

Result:

Scenario 1f shows an average processing time of 2555 ms, which is an
increase of 134 ms from scenario 1c which included just 10 clients. There is
also a noticeable increase in the time, 500 ms, between switching zone with

70 CHAPTER 6. TESTING AND EVALUATION

1 2 3 4 5
1f 2561ms 2515ms 2561ms 2624ms 2514ms

Table 6.6: Test result scenario 1f

20 clients affecting the AOI, scenario 1e, and add all objects affecting the
moving player’s AOI.

2. Measure delay when a zone master disconnects
Reason for test:
With a player switching zone in different scenarios above, the other main
interest to test with the P2P concept will be the experienced delay from a
clients point of view, when a zone master disconnects and the set up of a
new zone master gets initiated. This will give a concrete response how well
the system handles switching of zone masters with different amount of
clients connected, and can indicate where to put an effort to make future
improvements.

How to perform test:
This was tested by disconnecting the client that managed a specific zone.
Delay was measured from the client received NewZoneMaster to it received
ConnectZMOK. This describes the perceived delay the client experiences
when its zone master it swapped.

Scenario:
2a) 1 client in the zone.

Result:

1 2 3 4 5
2a 2062ms 2062ms 2061ms 2062ms 2046ms

Table 6.7: Test result scenario 2a

The average time to set up a new zone master with one client in the zone
was 2059 ms. The variation between the different results from this scenario
is at most 16 ms, and shows a consistent performance level.

6.1. SYSTEM TESTS 71

Scenario:
2b) 10 clients in the zone.

Result:

1 2 3 4 5
2b 2061ms 2062ms 2061ms 2062ms 2062ms

Table 6.8: Test result scenario 2b

With 10 clients connected to the zone that experiences a zone master
switch, the average processing time to set up a new zone master is 2062 ms.
The results from this test scenario show almost no variation internally and
from test scenario 2a, and thus strongly indicate a consistent performance
level.

Scenario: 2c) 20 clients in the zone.

Result:

1 2 3 4 5
2c 2062ms 2062ms 2046ms 2062ms 2077ms

Table 6.9: Test result scenario 2b

The test initiating a zone master switch with 20 clients connected, has an
average processing time of 2062 ms. It contains some internal variations,
but the total average is very close to scenario 2a and b. So when comparing
the three scenarios, the system shows no change in performance level
independently of the stress level put on it.

Main results from all scenarios:

The first scenario shows that the delay from the time the client receives
NewZoneMaster until it receives ConnectZMOK, isn’t affected by neither
the amount of clients connected nor the other clients in the clients AOI
when it enters a new zone. When measuring the delay until all objects in

72 CHAPTER 6. TESTING AND EVALUATION

the clients AOI are received (last ObjectAdd), the results show differences
based on number of players in the AOI when the new zone is entered. For
test 1c (10 clients) the average delay was 2421ms, for 1f (20 clients) the
average increased to 2555ms. An increase of 134ms.

The second test, when disconnecting zonemasters, shows that there is no
relation between the delay the clients perceive when a new zonemaster is
instated and the number of clients in that zone.

6.2 Evaluation and analysis

6.2.1 Performance

With regards to performance, our tests showed a constant delay of
approximately 2000ms. This delay is experienced in all clients, regardless of
the amount of stress put on the system. This is an unacceptable level for a
real time MMORPG. But the base delay is likely to be a result of the
implementation of our state machine run-time system, which causes too
much delay internally in each thread. Using a better framework for running
the state machines would likely provide increased performance. Also an
improved signalling system between the state machines would likely
increase performance. As for transferring objects to a client, this delay
increases with the number of objects a client receives, potentially giving the
client a high delay in highly populated zones in a game. This, however,
would likely be a problem in any topology, including client-server, and the
design of the game world should take into consideration these issues to
avoid high density populations of players. The tests performed are limited
due to the limitations of the test environment, and the nature of the
concept. With only a small computer lab available on a local network, the
environment is not comparable to a normal game setup, usually consisting
of a DSL link, and a computer with different specifications and players
spread geographically over a large area, causing high delays. The nature of
the concept, in lacking authoritative properties and not performing 3D
rendering reduces the stress of the clients dramatically, providing them with
more resources to manage zones than what would be the case with a full
game, both with regards to CPU and bandwidth (due to simple game

6.2. EVALUATION AND ANALYSIS 73

objects). A number of options exist, however, to increase performance:
Reduction of overhead by replacing XML with a proprietary format for
messages, and using UDP for data transfer would reduce overhead on the
network. Reducing the detail of proxies can also reduce traffic between
zonemasters.

6.2.2 Scalability

This system scales very effectively due to its decentralized nature. Allowing
for multiple realms, by keeping multiple gameservers. We did not have the
proper equipment to put a high amount (1000+) of connections on the
system, making us unable to conclude on how many connections the system
can handle. Also the issues with no authoritative properties would make it
hard to conclude how well a final product would scale even if we were able
to stress the system to this amount. But the system allows any machine to
run a zonemaster, creating several options for the game designers. Highly
populated areas can be run on dedicated hardware with high speed
connections to the game server, while sparsely populated areas can run on
P2P. The results show that the system seems to scale well with the
numbers of users put on it, when the population is well distributed over the
game world.

6.2.3 Flexibility

The use of state machines provides the system with a high degree of
flexibility. It provides the developers with a visual representation of the
signals, which means unexpected actions are unlikely as they would be
ignored by the state machines. Adding game content is done through the
game engine module, which easily could be realized as a scripting engine for
easy use for game designers. Flexibility is highly maintained in choice of
topology for the game by allowing hybrid P2P. The designers have the
options to run the entire system in a dedicated server network, or even on a
single centralized server.

74 CHAPTER 6. TESTING AND EVALUATION

6.2.4 Functionality

The system consists of a set of MMO server functions. These, have under
our tests performed very well. The seamless world is unnoticeable from the
clients perspective except for the delay that is experienced due to the state
machine run-time system. Also proxies provide the visibility of players in
adjacent zones. Despite the roughly 2 second delay in the system, the dead
reckoning functionality provides instant response at the client end, and
world updates correct the players position. The zones in these tests were
statically divided, but dynamic zones could be implemented and is
supported. The mechanism for choosing zonemasters is performing well, in
this test simply choosing a random client that is not already a zonemaster.
Zonemasters are effectively replaced, with clients experiencing no delay
except the 2 seconds.

6.2.5 Security

The conceptual demo was implemented without concern for security. Clear
issues arise when clients are given the responsibility of managing zones.
Main concerns are potential cheating by zonemasters, and the lack of
anonymity of clients. This causes potential direct attacks on the clients
computers. Anonymous P2P solutions exist, but have not been tested for
this purpose.

6.2.6 Mobile Terminals

The P2P solution has not been tested on mobile terminals, but as
previously mentioned, the mobile networks does not provide the necessary
stability in latency for real time games, and neither does mobile devices
provide the required computing power for 3D games like ’tisu. However
simpler games that allow the player to develop his avatar in the main game
through objectives on a mobile device would integrate easily through direct
modification of the database on the game server.

6.2. EVALUATION AND ANALYSIS 75

6.2.7 Stability

The P2P solution developed is highly redundant. As long as the gameserver
is running, each zone is managed by a new client as soon as the old
managing client disconnects. Should the number of clients get too low for
clients to run zones, the gameserver will have available capacity to manage
all zones itself. Backups of the game state in the zone are sent regularly to
the gameserver, ensuring that the game state is updated when a new client
becomes a zonemaster. However, when a zonemaster disconnects abruptly,
no backup is sent to the gameserver right before disconnect. This can cause
loss of game state changes, and when the new zonemaster starts managing
the game state in the zone will be that of the last received backup. Finding
an acceptable backup interval will be a challenge for developers. An issue
that can occur in a P2P solution is that when a zone contains a high
number of players and the zone is to receive a new zonemaster, the new
zonemaster will receive connection requests from all players in the zone at
the same time. This could in the worst case act as a DDoS attack on the
client, essentially blocking it and lead to a new client getting appointed to
managing the zone. Leading to a string of DDoS attacks. To combat this
issue, dynamic zones should be implemented. But in the case of very high
density populations of players, such zones should be managed by dedicated
servers as clients would likely not have the resources to manage them.
Another solution could be to implement a back-off algorithm to delay the
connections, but this would impose the same delay on the clients,
potentially disrupting gameplay.

6.2.8 Integration

Integration with the Unity 3D engine requires development of bindings to
one of Unity’s supported languages, like C# or ActionScript. This is
required to develop regardless of how the networking system is developed,
and is how other network engines are integrated with Unity.

Chapter 7

Conclusion

76

7.1. CONCLUSION 77

7.1 Conclusion

The work done in this thesis was made on behalf of Ablemagic, the target
was to create a foundation for an MMORPG networking engine that could
be developed further in the future. Our main focus, as Ablemagic is a small
company trying to enter a tough market, was to research a cost effective
solution based on P2P to give Ablemagic an edge on its competitors.

The concept the practical part of this thesis is based on was worked out
after a thorough study of the MMORPG genre, and the engineering
techniques of it. It incorporates an original, cost saving architecture based
on P2P, that still supports both centralized and distributed architectures.
The concept could help small game developers to release titles that using
the traditional thoughts of client-server would require huge investments in
bandwidth lease and server hardware, as well as maintenance of this.

Further, the thesis involved designing a network system for the MMORPG
’tisu. This design was based on the concept of hybrid P2P that is described
throughout this work. Using SDL as the design tool made the design
flexible and separated it from the implementation. This will allow
developers to utilize the design in future implementations, regardless of the
programming language chosen and the platform developed on. During
research and design of this system, it became clear that implementing all
desired features in a demo would be impossible due to the complexity of the
functionality and limited time for this work. However, the design supports
implementation of remaining features in the future. With ’tisu being in
early development stages, and no absolute requirements for functionality in
the game, the requirements for the system needed to be general and based
on similar games. This required a general design, with multiple options.
The proposed design should be able to support any design choices made.

The implementation of the design incorporated many of the features of a
modern MMORPG. Zoning with seamless worlds, synchronization of
movements and objects. A simple state machine run-time framework was
implemented, and the processes from the design were implemented for
signalling. The implementation worked well, with some unexpected errors
occurring randomly, but overall performing excellent. The implementation
proves the stability and flexibility of the design, and that the concept
proposed works in practice. In our latency tests, however, we noticed a

78 CHAPTER 7. CONCLUSION

constant delay of roughly 2 seconds. This is unacceptable for any game, but
is not a flaw in the design. The framework for running the state machines is
largely based on actively checking the input queues with a minor delay for
every loop rotation, which caused on of the processor cores to work at
100%. It is most likely that this framework is causing the delay. This issue
should be solvable by improving the framework or utilizing an existing state
machine API.

As a final conclusion, the work done in this thesis should provide
Ablemagic with knowledge on the subject of engineering network systems
for MMORPGs. As well as provide a design, and proof-of-concept that
could be utilized in future research or as a base for development of ’tisu as
it stands today.

7.1.1 Future work

This study has revealed that P2P solutions for MMORPGs have a
promising potential, especially with the benefits it provides small
developers. But many challenges exist that needs more research before a
solution is usable in an end product.

A more complete solution than the one developed in this thesis should be
tested, and it should include both authoritative server properties and 3D
processing on the clients to gain better insight on how a more realistic
solution scales and performs. Solutions for managing high density
populations of players without using dedicated servers are also an area of
interest. Research into effective zone dividing and load sharing solutions
has shown great performance increase [8], and could be used in P2P
solutions. This area should be further researched in combination with P2P.

Security issues also require further work. Some work has been done to
develop cheat-proof protocols for online games [3].
However, to secure the solution enough for commercial use the following
areas require research:

• Evaluate the use of anonymous P2P solutions to protect clients from
direct attacks.

7.1. CONCLUSION 79

• Techniques to better hide the mechanism of a program from the users.

• Combine the above with strong encryption schemes to avoid
man-in-the-middle attacks.

Bibliography

[1] Thor Alexander. Massively multiplayer game development, November
2003.

[2] Richard Bartle. Early mud history.
http://www.mud.co.uk/richard/mudhist.htm, 1999.

[3] Nathaniel E. Baughman. Cheat-proof playout for centralized and
distributed online games. http:
//prisms.cs.umass.edu/brian/pubs/baughman.infocom01.pdf,
2001.

[4] Mary Bellis. Inventors of the modern computer.
http://inventors.about.com/library/weekly/aa090198.htm.

[5] Rolv Braek. Sdl basics.
http://www.cs.tut.fi/kurssit/TLT-9806/RolvBraekSDL.pdf.

[6] Rolv Braek and Oeystein Haugen. Engineering real time systems an
object oriented methodology using sdl.

[7] Frank Caron. Age of conan server merges more than half of server list.
http://arstechnica.com/gaming/news/2009/01/

age-of-conan-server-mergers-more-than-half-of-server-list.

ars, 2009.

[8] Jin Chen. Locality aware dynamic load management for massively
multiplayer games.
http://www.cs.toronto.edu/~jinchen/ppopp.pdf, 2005.

[9] Blizzard Entertainment. World of warcraft R© subscriber base reaches
11.5 million worldwide.
http://eu.blizzard.com/en/press/081223.html, 2008.

80

http://prisms.cs.umass.edu/brian/pubs/baughman.infocom01.pdf
http://prisms.cs.umass.edu/brian/pubs/baughman.infocom01.pdf
http://inventors.about.com/library/weekly/aa090198.htm
http://www.cs.tut.fi/kurssit/TLT-9806/RolvBraekSDL.pdf
http://arstechnica.com/gaming/news/2009/01/age-of-conan-server-mergers-more-than-half-of-server-list.ars
http://arstechnica.com/gaming/news/2009/01/age-of-conan-server-mergers-more-than-half-of-server-list.ars
http://arstechnica.com/gaming/news/2009/01/age-of-conan-server-mergers-more-than-half-of-server-list.ars
http://www.cs.toronto.edu/~jinchen/ppopp.pdf
http://eu.blizzard.com/en/press/081223.html

BIBLIOGRAPHY 81

[10] Ericsson. The evolution of edge. http://www.ericsson.com/
technology/whitepapers/3107_The_evolution_of_EDGE_A.pdf,
2007.

[11] Funcom. Age of conan reaches one million milestone.
http://www.funcom.com/wsp/funcom/frontend.cgi?func=publish.

show&func_id=1301&table=CONTENT&item=1004, 2008.

[12] Vivendi Games. Vivendi investor presentation, 2006.

[13] gotoAndPlay(). http://www.smartfoxserver.com/.

[14] Harri Holma. 3 gpp release 5 hsdpa measurements. http:
//ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=04022310,
2006.

[15] PX Interactive. http://www.netdognetworks.com/.

[16] Björn Knutsson, Honghui Lu, Wei Xu, and Bryan Hopkins.
Peer-to-peer support for massively multiplayer games, 2004.

[17] Jenkins Software LLC. http://www.jenkinssoftware.com/.

[18] Stein Jarle Olsen. 2 av 3 tilbake til wow.
http://www.tu.no/it/article188183.ece, 2008.

[19] Stein Jarle Olsen. Trøbbel for conan.
http://www.tu.no/it/article174004.ece, 2008.

[20] Eve Online. Eve online launches largest supercomputer in the gaming
industry running on ibm server technology. http://www.eveonline.
com/pressreleases/default.asp?pressReleaseID=25, 2006.

[21] Princeton.
http://wordnetweb.princeton.edu/perl/webwn?s=realm.

[22] Gregor Schiele, Richard Süselbeck, Arno Wacker, Jörg Hähner,
Christan Backer, and Torben Weis. Requirements of
peer-to-peer-based massively multiplayer online gaming, 2007.

[23] Inc. Sun Microsystems. http://projectdarkstar.com/.

[24] Philipp Svoboda. Traffic analysis and modeling for world of warcraft.
http://publik.tuwien.ac.at/files/pub-et_12119.pdf, 2007.

http://www.ericsson.com/technology/whitepapers/3107_The_evolution_of_EDGE_A.pdf
http://www.ericsson.com/technology/whitepapers/3107_The_evolution_of_EDGE_A.pdf
http://www.funcom.com/wsp/funcom/frontend.cgi?func=publish.show&func_id=1301&table=CONTENT&item=1004
http://www.funcom.com/wsp/funcom/frontend.cgi?func=publish.show&func_id=1301&table=CONTENT&item=1004
http://www.smartfoxserver.com/
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=04022310
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=04022310
http://www.netdognetworks.com/
http://www.jenkinssoftware.com/
http://www.tu.no/it/article188183.ece
http://www.tu.no/it/article174004.ece
http://www.eveonline.com/pressreleases/default.asp?pressReleaseID=25
http://www.eveonline.com/pressreleases/default.asp?pressReleaseID=25
http://wordnetweb.princeton.edu/perl/webwn?s=realm
http://projectdarkstar.com/
http://publik.tuwien.ac.at/files/pub-et_12119.pdf

82 BIBLIOGRAPHY

[25] Telenor. Dekningskart. http://www.telenor.no/bedrift/
produkter/mobil/dekning/dekningskart-mobildekning/.

[26] Tonio Triebel, Benjamin Guthier, Richard Süselbeck, Gregor Schiele,
and Wolfgang Effelsberg. Peer-to-peer infrastructures for games, 2008.

[27] Unity. Unity iphone 1.0.2.
http://unity3d.com/unity/whats-new/iphone-1.0.2.html.

[28] WoW Wiki. Realms list. http://www.wowwiki.com/Realms_list,
2009.

[29] Wikipedia. http://en.wikipedia.org/wiki/Massively_
multiplayer_online_game#MMO_role-playing_game.

[30] Wikipedia. http://en.wikipedia.org/wiki/MMORPG.

[31] Wikipedia. Avatar (computing).
http://en.wikipedia.org/wiki/Avatar_(computing).

[32] Wikipedia. History of massively multiplayer online games.
http://en.wikipedia.org/wiki/History_of_massively_

multiplayer_online_role-playing_games.

http://www.telenor.no/bedrift/produkter/mobil/dekning/dekningskart-mobildekning/
http://www.telenor.no/bedrift/produkter/mobil/dekning/dekningskart-mobildekning/
http://unity3d.com/unity/whats-new/iphone-1.0.2.html
http://www.wowwiki.com/Realms_list
http://en.wikipedia.org/wiki/Massively_multiplayer_online_game#MMO_role-playing_game
http://en.wikipedia.org/wiki/Massively_multiplayer_online_game#MMO_role-playing_game
http://en.wikipedia.org/wiki/MMORPG
http://en.wikipedia.org/wiki/Avatar_(computing)
http://en.wikipedia.org/wiki/History_of_massively_multiplayer_online_role-playing_games
http://en.wikipedia.org/wiki/History_of_massively_multiplayer_online_role-playing_games

Appendix A

SDL Design of the ’tisu system

83

84 APPENDIX A. SDL DESIGN OF THE ’TISU SYSTEM

85

86 APPENDIX A. SDL DESIGN OF THE ’TISU SYSTEM

87

88 APPENDIX A. SDL DESIGN OF THE ’TISU SYSTEM

89

90 APPENDIX A. SDL DESIGN OF THE ’TISU SYSTEM

91

92 APPENDIX A. SDL DESIGN OF THE ’TISU SYSTEM

93

94 APPENDIX A. SDL DESIGN OF THE ’TISU SYSTEM

95

96 APPENDIX A. SDL DESIGN OF THE ’TISU SYSTEM

97

98 APPENDIX A. SDL DESIGN OF THE ’TISU SYSTEM

99

100 APPENDIX A. SDL DESIGN OF THE ’TISU SYSTEM

101

102 APPENDIX A. SDL DESIGN OF THE ’TISU SYSTEM

103

104 APPENDIX A. SDL DESIGN OF THE ’TISU SYSTEM

105

106 APPENDIX A. SDL DESIGN OF THE ’TISU SYSTEM

107

108 APPENDIX A. SDL DESIGN OF THE ’TISU SYSTEM

109

110 APPENDIX A. SDL DESIGN OF THE ’TISU SYSTEM

111

112 APPENDIX A. SDL DESIGN OF THE ’TISU SYSTEM

113

114 APPENDIX A. SDL DESIGN OF THE ’TISU SYSTEM

115

116 APPENDIX A. SDL DESIGN OF THE ’TISU SYSTEM

Appendix B

Recommendation for
Ablemagic

117

118 APPENDIX B. RECOMMENDATION FOR ABLEMAGIC

Through our work in this thesis we have provided a design and an
implementation of an MMORPG network engine. This can be utilized
either as a hybrid P2P solution for cost saving, or as distributed
architecture. The main problems with the P2P today is that users gain
possibilities of cheating if the client software is modified and that their
identities (IP addresses) are disclosed. In our opinion this is a too high risk
to take when launching a new game. We believe that through research in
the areas of network security and topologies solutions can be developed
that solves these issues, but today we see no suitable solutions.

Our recommendation, based on Ablemagic being a newly started small
game developer is to either use the solution developed in a distributed
server architecture, or to utilize existing MMORPG networking software.
To research the required solutions to enable P2P will likely demand too
much resources to be a viable approach.

Of the existing software, Netdog and Project Darkstar appear to be the
best suitable solutions for ’tisu. However as of today no game titles have
been released using either of the engines, and neither have been tested
during this thesis. This recommendation is based on the features of the
engines, not on thorough analysis.
It should also be noted that the Java implementation of the design
performs poorly, and a final server based on the design should be developed
in another language like C++ which generally provides better performance.

We wish Ablemagic the best of luck with the further development, and the
release of ’tisu. We hope our work has been helpful for both
decision-making and as a base for development.

	Title Page
	Problem Description
	Preface
	Abstract
	Abbrevations and Definitions
	Introduction
	Introduction
	Motivation
	Objective
	Methodology
	Scope
	Related Work
	Document Structure

	MMORPG Design Considerations
	Introduction/MMO/MMORPG
	Massively Multiplayer Online game
	Massively Multiplayer Online Role Playing Game

	Game Worlds and Load Distribution
	Game World types
	Zoned Worlds
	Seamless Worlds
	Proxies
	Realms

	Game Synchronization
	Reliable State Synchronization
	Unreliable State Synchronization
	RPC
	Dead Reckoning

	Security and Cheating for MMOGs
	Security issues regarding MMOGs
	Cheating concerns regarding MMOGs

	MMORPG Engineering
	Flexibility in MMORPGs
	State Machines
	SDL and Real Time System Engineering

	Protocols/Latency
	UDP
	TCP
	Transport Protocols and Game Development

	Network Topologies in MMOGs
	Centralized Networks
	Decentralization
	P2P

	Mobile Terminals

	State of the Art MMO Solutions
	State of the Art MMORPG solutions
	State of the Art MMORPG Games
	World of Warcraft
	Age of Conan
	EVE Online

	Existing Server Software
	SmartFoxServer
	NetDog
	RakNet
	Project Darkstar

	'tisu requirements
	State Synchronization
	Load Balancing
	Mobile Terminals
	Cheating
	Modularity
	Cost

	The Concept
	Concept

	Design and Implementation
	Design and Implementation
	System overview
	GameServer
	Game Server implementation

	GameClient
	Client implementation

	ZoneMaster
	ZoneMaster implementation

	Unimplemented features
	Instructions for running

	Testing and Evaluation
	System Tests
	Environment
	Test Setup

	Evaluation and analysis
	Performance
	Scalability
	Flexibility
	Functionality
	Security
	Mobile Terminals
	Stability
	Integration

	Conclusion
	Conclusion
	Future work

	SDL Design of the 'tisu system
	Recommendation for Ablemagic

