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ABSTRACT: Gastrointestinal microbiota have an important impact on fish health and disease,
stimulating interest in a better understanding of how these gastrointestinal microbial communities
are composed and consequently affect host fitness. In this respect, probiotic microorganisms have
been extensively used in recent aquaculture production. To study the use of probiotics in the treat-
ment of infectious diseases, the establishment of a method of experimental infection to obtain con-
sistent results for mortality and infection in challenge tests is important. In pathogen-screening
tests, 4 candidate pathogenic bacteria strains (Edwardsiella ictaluri gly09, E. ictaluri gly10, E.
tarda LMG2793 and Streptococcus agalactiae LMG15977) were individually tested on xenic Nile
tilapia larvae. Only Edwardsiella strains delivered via Artemia nauplii, with or without additional
pathogen delivery via the culture water, led to increased mortality in fish larvae. A gnotobiotic
Nile tilapia larvae model system was developed to provide a research tool to investigate the
effects and modes-of-action of probiotics under controlled conditions. A double disinfection pro-
cedure using hydrogen peroxide and sodium hypochlorite solution was applied to the fish eggs,
which were subsequently incubated in a cocktail of antibiotic and antifungal agents. In the gnoto-
biotic challenge test, E. ictaluri glyO9R was added to the model system via Artemia nauplii and
culture water, resulting in a significant mortality of the gnotobiotic fish larvae. The developed
gnotobiotic Nile tilapia model can be used as a tool to extend understanding of the mechanisms
involved in host-microbe interactions and to evaluate new methods of disease control.
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INTRODUCTION

Tilapia Oreochromis spp. are an important group in
freshwater fish aquaculture due in part to their ease
of culture under a wide range of environmental con-
ditions and their relative resistance to environmental
stressors when compared to other cultured finfish
species (Welker & Lim 2011). However, significant
losses due to disease still occur, especially under in-
tensive culture where tilapia can become infected
with a wide range of viral, parasitic, fungal and, par-
ticularly, bacterial pathogens. Bacteria of the genus
Edwardsiella, including E. ictaluri and E. tarda, are
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very important bacterial pathogens that cause severe
economic losses in both freshwater and marine aqua-
culture in many countries (Ewing et al. 1965, Hawke
etal. 1981, Evans et al. 2011). E. ictaluri, the causative
agent of enteric septicaemia of catfish (ESC), also in-
fects and causes mortality in Nile tilapia fingerlings
(Hawke et al. 1981, Plumb & Sanchez 1983, Keskin et
al. 2004, Nagai et al. 2008, Soto et al. 2012). E. tarda,
which is a common bacterium in freshwater environ-
ments, infects and causes disease in red tilapia
(Iregui et al. 2012).

In some cases, the use of antibiotics for the control of
bacterial diseases in aquaculture has resulted in the

© Inter-Research 2014 - www.int-res.com



24 Dis Aquat Org 109: 23-34, 2014

development and spread of antibiotic resistance, lead-
ing to ineffective treatment for some diseases (Defoirdt
et al. 2011). This has lead researchers to examine other
mechanisms for the control of bacterial diseases in fish.
As gastrointestinal (GI) bacteria play important roles
in the nutrition and health of the host organism,
various means of altering the intestinal bacteria to
achieve favourable effects such as better resistance to
pathogens, enhanced growth and immune stimulation
of the host have been investigated in various species of
fish and shrimp (Yousefian & Amiri 2009, Sihag &
Sharma 2012). In this respect, the use of probiotics and
prebiotics is considered to be a sustainable and effec-
tive alternative to antibiotics for disease control in
aquaculture production (Gatesoupe 1999, Verschuere
et al. 2000). In order to be able to discover more effec-
tive probiotic bacteria, a better understanding of the
host-microbe interactions of several putative probiotic
microorganisms through in vivo experiments is essen-
tial and still needed (Tinh et al. 2008).

The composition of the GI microbial community
can be influenced by host genotype (Spor et al. 2011,
Kostic et al. 2013), environmental conditions and sto-
chastic factors (Verschuere et al. 1999, Fjellheim et
al. 2012). This complicates the study of host-microbe
interactions, as the structure of the GI microbial com-
munity of fish reared in conventional rearing systems
is very dynamic, often causing problems in experi-
ments such as lack of repeatability and reproducibil-
ity. Thus, a key strategy in studying host-microbe
interactions is to first determine interactions under
axenic conditions then further evaluate the effects of
a single or defined populations of microbes or speci-
fied compounds added under gnotobiotic conditions
(Gordon & Pesti 1971). The use of gnotobiotic organ-
isms leads to an increased control of variables,
enhanced reproducibility of results and more accu-
rate experimental designs (Coates 1975, Marques et
al. 2005) and thus can be an excellent tool to extend
the understanding of the mechanisms involved in
host-microbe interactions (Marques et al. 2006).

The aims of the present work were to (1) screen can-
didate pathogenic bacteria strains on xenic/conven-
tional Nile tilapia Oreochromis niloticus larvae, (2) de-
velop a standardized gnotobiotic Nile tilapia larvae
culture system to facilitate the study of host-microbe
interactions, and (3) develop a standardized bacterial
challenge test for gnotobiotic Nile tilapia larvae en-
abling further studies on the mode-of-action of putative
pre- and probiotics as new ways of disease control, es-
pecially in freshwater aquaculture. To our knowledge,
this is the first study of a gnotobiotic food chain consist-
ing of Nile tilapia larvae and Artemia nauplii.

MATERIALS AND METHODS

Experimental set-up for pathogen-screening test
with xenic Nile tilapia larvae

Nile tilapia Oreochromis niloticus that ranged from
120 to 150 g wet weight and 21 to 23 cm total length
were naturally bred in our laboratory. Larvae were
collected from the mouths of brooding females 3 d
after hatching (3 DAH) and pooled. Upon collection,
the pooled larvae were acclimatized in a 30 1 aquar-
ium for 6 d at a mean (+SD) temperature of 27 + 1°C
prior to bacterial challenge. Candidate pathogenic
bacteria strains were tested individually in triplicate
1.5 1 aquaria, each of which contained 10 larvae. All
aquaria were provided with gentle aeration and kept
in a heated room (constant air temperature of 29 +
1°C), and the water temperature was maintained at
26 + 1°C. Filtered standard synthetic freshwater con-
taining 96 mg 17! NaHCO3, 60 mg 1=! CaSO,-2H,0,
60 mg 1"! MgSO, and 4 mg 1" KC1 (USEPA 2002) was
used as fish culture water. To maintain the NH,* and
NO," levels below 0.5 and 0.2 mg 17!, respectively,
25 % of the culture water was renewed every 3 d dur-
ing the 12 d experimental period.

Bacterial strains and culture conditions

Streptococcus agalactiae LMG15977 and 2 strains
of Edwardsiella ictaluri, referred to as gly09 and
gly10, were tested in the first bacterial pathogen-
screening test (Expt la). Another Edwardsiella spe-
cies, E. tarda LMG2793, was tested along with the
2 E. ictaluri strains in the second pathogen-screening
test (Expt 1b). Both E. ictaluri strains were obtained
from the Laboratory of Aquaculture & Artemia Refer-
ence Center (Ghent University). These strains were
isolated from ichthyophthriasis (white spot disease)-
infected striped catfish Pangasius hypophthalmus.
S. agalactiae LM G15977, which was previously iso-
lated from Nile tilapia brain, was obtained from
BCCM/LMG (Belgian Co-ordinated Collections of
Micro-organisms, Laboratory of Microbiology, Ghent
University). An isolate of E. tarda, LMG2793 was pro-
vided by the Laboratory of Veterinary Bacteriology
and Mycology (Ghent University). This isolate was
obtained from human faeces.

The strains were stored in brain heart infusion
(BHI) broth (FLUKA, Sigma-Aldrich) supplemented
with 20% (v/v) glycerol at —-80°C. Edwardsiella
strains were grown in BHI broth and incubated on a
horizontal shaker at 160 rpm and 27°C. Streptococ-
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cus agalactiae LMG15977 was grown in BHI broth
and incubated on a horizontal shaker at 180 rpm and
37°C. The density of each bacterial culture was de-
termined by measuring turbidity with a spectropho-
tometer (Genesys 20, Thermospectronic) at 550 nm
and comparing to the McFarland standard (Bio-
Meérieux).

Bacterial challenge procedure with xenic
Nile tilapia larvae

Fish were challenged daily over the experimental
period using 3 challenge methods: (1) via culture
water, (2) via axenic Artemia nauplii, and (3) via both
culture water and axenic Artemia nauplii. For the
culture water challenges, bacterial suspensions were
harvested by centrifuging at 1000 x g for 10 min and
washed twice in their respective culture medium
then once in fish culture water. The density of bacte-
rial suspension was determined by measuring turbid-
ity with a spectrophotometer at 550 nm and compari-
son to the McFarland standard. Sufficient bacteria
were added to achieve a density of 10° colony form-
ing units (CFU) ml~! in the tank.

For the challenge via axenic Artemia nauplii, axe-
nic Artemia cysts were incubated and hatched fol-
lowing the procedure of Marques et al. (2004).
Axenic Artemia nauplii were harvested after 24 h
incubation at 27 + 1°C, washed using filtered auto-
claved synthetic freshwater and counted. Bacterial
suspensions were harvested by centrifuging at 1000
x g for 10 min, washed twice using their respective
culture medium and added to axenic Artemia culture
(100 Artemia ml™') at a final bacteria density of 108
CFU ml™'. Bacteria-loaded Artemia nauplii were
harvested after 1 h incubation and washed twice
using sterile saline solution (9 g 1"! NaCl), counted
and added at a density of 20 Artemia per fish. The
bacterial load of the Artemia nauplii in each treat-
ment was determined by the plate count method.
After rinsing and counting, subsamples of bacteria-
loaded Artemia were homogenized according to the
procedure described by Huys et al. (2001). Subse-
quently, 50 pl of the homogenized Artemia suspen-
sion was plated (Spiral plater™, Spiral Systems) on
Lysogeny broth (LB) agar.

For the challenge via both Artemia nauplii and cul-
ture water, larvae received a waterborne challenge
as well as a challenge via axenic Artemia adminis-
tered at the same time. These challenges were con-
ducted as described above. Mortality observation
and dead fish removal were done twice daily.

Disinfection protocol to obtain axenic
Nile tilapia larvae

Nile tilapia were naturally bred in our laboratory
and 3 d post fertilization (3 DPF) eggs were collected
and pooled following the procedures described
above for the xenic pathogen-screening tests. Upon
collection, eggs were put on a sterile nylon sieve
(mesh size 300 um) and washed 4 times with 250 ml
0.2 pm-filtered autoclaved standard synthetic fresh-
water (USEPA 2002) at 25 + 1°C to remove loose bac-
teria. Unfertilized eggs, dead eggs or eggs with rup-
tured yolk were discarded prior to the disinfection
procedure. A double disinfection procedure was ap-
plied for the remaining eggs at the eyed egg stage
(3 DPF or stage 14 to 15) (Fujimura & Okada 2007).
In the first disinfection procedure, eggs were immer-
sed in diluted 30% hydrogen peroxide (MERCK-
Schuchardt 386790) with a final active peroxide con-
centration of 2000 mg 17! for 10 min at 25 + 1°C.
During disinfection, eggs were gently agitated to
ensure that all eggs had equal contact with the disin-
fecting agent. Subsequently, the eggs were rinsed
4 times with 250 ml 0.2 pm-filtered autoclaved syn-
thetic freshwater. Following the first disinfection,
eggs were incubated in an axenic incubation me-
dium which consisted of 0.2 pm-filtered autoclaved
standard synthetic freshwater containing 10 mg 17!
each of ampicillin (Sigma-A0166), rifampicin (Sigma-
83907), trimethoprim (Sigma-T7883) and gentamycin
(Sigma-G1264), and the antifungal agents Ampho-
tericin-B (Sigma-A9528) and Fluorescent Brightener
28 (Sigma-F3543) at concentrations of 0.5 mg 1! and
25 mg 17}, respectively.

The second disinfection procedure was done 24 h
after the first. A 75 mg 17! active chlorine solution was
prepared using sodium hypochlorite technical grade
(Sigma Aldrich 425044) and 0.2 pm-filtered auto-
claved synthetic freshwater. Eggs were immersed in
this solution for 2 min at 25 + 1°C. The concentration
of active chlorine in the sodium hypochlorite solution
was determined 24 h prior to use by a standard
iodine/thiosulfate titration method (Lavens & Sorge-
loos 1996). Following disinfection, eggs were rinsed
4 times with 250 ml 0.2 pm-filtered autoclaved syn-
thetic freshwater. All disinfection procedures were
performed in a laminar flow hood.

Disinfected eggs were aseptically distributed to
500 ml sterile glass bottles containing 200 ml incu-
bation medium and incubated at a density of 500
eggs 1”1, Fish were maintained in the axenic incuba-
tion medium throughout the non-feeding larval
stage. Eggs of the control group underwent the
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same incubation procedure; however, they were not
surface disinfected or treated with antibiotic and
antifungal agents. Each incubation bottle was
equipped with 2 sterile 0.2 pm filters (Sartorius) for
the aeration in- and outlet to provide gentle sterile
aeration during the egg incubation and larval stage.
Eggs hatched after 3 d incubation following the dis-
infection procedure. The effect of the disinfection
procedure on egg hatching was evaluated using the
egg hatching percentage, which was measured as
the proportion of the total number of eggs incubated
that hatched, regardless of their viability (Komar et
al. 2004). The hatching percentage was determined
1 DAH.

Tests for axenity

Axenity was checked at several crucial steps dur-
ing the experiments. After 24 h following the disin-
fection procedure, 5 eggs were aseptically sampled
from each incubation bottle, individually homoge-
nized and plated on LB medium + 15 g 1! agar (LB
agar; bacteriological grade, MP Biomedicals). In
addition, 1 ml water from each incubation bottle was
added into a sterile tube containing 9 ml LB broth
(10 %). After determination of the larval survival, the
fish larvae from the axenic treatments were checked
for bacterial contamination using the plate culture
method. From each incubation bottle, 2 larvae were
euthanized using 1 g 1"! benzocaine and 1 g 1! ben-
zalkonium chloride before being rinsed and homoge-
nized in sterile saline solution (9 g 1"! NaCl). Subse-
quently, 50 pl of the homogenized fish suspension
was plated (Spiral plater™, Spiral Systems) on LB
agar plates. The inoculated plates were incubated at
27 + 1°C for 96 h. At stocking of the larvae (6 DAH)
and at the end of the gnotobiotic challenge test, the
fish larvae from the axenic treatments were checked
for bacterial contamination using the above-men-
tioned procedure.

Bacterial challenge procedure with gnotobiotic
Nile tilapia larvae

Along with the antifungal agents (0.5 mg 17!
Amphotericin-B and 25 mg 17! Fluorescent Bright-
ener 28), a mixture of antibiotics containing ampi-
cillin, rifampicin, kanamycin, trimethoprim and gen-
tamycin (each at 10 mg I7!) was used in the larvae
medium throughout the gnotobiotic challenge tests.
Therefore, it was necessary to identify antibiotic

resistant mutants that could be used for challenge.
We investigated Edwardsiella ictaluri gly09 resist-
ance to the different antibiotics by inoculating an
overnight E. ictaluri gly09 culture into sterile tubes
containing BHI broth and 1 of the 5 antibiotics at a
concentration of 10 mg 1!, These cultures were incu-
bated overnight on a horizontal shaker at 160 rpm at
27°C. Growth, determined by the presence of turbid-
ity, was obtained in the presence of 10 mg 1! ampi-
cillin, trimethoprim and gentamycin, suggesting that
E. ictaluri gly09 is intrinsically resistant to these
antibiotics. No growth occurred in the presence of
10 mg 17! rifampicin or kanamycin.

In order to obtain spontaneous rifampicin-resistant
and kanamycin-resistant Edwardsiella ictaluri gly09
mutants, wild type E. ictaluri gly09 was cultured
separately on BHI agar plates containing 2 mg 17! of
each antibiotic. Colonies appearing on the BHI-
rifampicin and BHI-kanamycin plates after an incu-
bation period ranging from 48 to 72 h at 27°C were
harvested, mixed and transferred into several tubes
containing BHI broth with 2 mg 17! of both anti-
biotics. Cultures were incubated on a horizontal
shaker at 160 rpm and 27°C overnight, after which
time 1 ml samples were transferred into new tubes
containing 9 ml BHI broth with a higher antibiotic
concentration of 5 mg 1. Following overnight incu-
bation, selected grown cultures (cultures with an
absorbance level higher than 0.5 at a wavelength of
600 nm) were then transferred into new tubes con-
taining 9 ml BHI broth with an even higher antibi-
otic concentration of 10 mg 1%,

Cultures of Edwardsiella ictaluri gly09 that were
resistant to 10 mg 1! rifampicin and kanamycin were
transferred and grown in BHI broth containing 10 mg
1! ampicillin, rifampicin, kanamycin, trimethoprim
and gentamycin. The resulting E. ictaluri strain
(referred to as E. ictaluri glyO9R) with multiple anti-
biotic resistance was used in gnotobiotic challenge
tests. Axenic fish larvae were challenged with E.
ictaluri glyO9R via both axenic Artemia nauplii and
culture water, following the procedures applied in
the pathogen-screening test on xenic larvae.

The gnotobiotic challenge tests were done in tripli-
cate (n = 3) in 500 ml sterile glass bottles containing
200 ml incubation medium with 10 fish per bottle.
Each incubation bottle was equipped with 2 sterile
0.2 mm air filters (Sartorius) to provide gentle sterile
aeration and a sterile septum for aseptic larval feed-
ing during the experimental period. An unchallenged-
axenic fish group was used as the control group for
the gnotobiotic system. In order to verify that there
was no effect of the culture system set-up on patho-
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gen virulence, in Expt 2a, the Edwardsiella ictaluri
glyO9R strain was also tested on xenic larvae using
the same culture system set-up but without the air
0.2 pm filtration or the use of both antibiotics and anti-
fungal mixtures. To maintain conditions in the exper-
imental system, 25 % of the incubation medium with
or without antimicrobials was replaced every 3 d.

The gnotobiotic challenge test was repeated twice
(Expts 2a and 2b). In Expt 2a, Edwardsiella ictaluri
glyO9R was tested on both the xenic and gnotobiotic
fish groups, while in Expt 2b, it was only tested on
the gnotobiotic group as there were insufficient num-
bers of xenic larvae due to a poor hatching of the
xenic eggs.

In order to determine larval bacterial load at the
end of the challenge test, surviving larvae were
killed using an overdose of benzocaine, surface-dis-
infected in a bath of benzalkonium chloride, rinsed
and homogenized according to the procedure de-
scribed by Huys et al. (2001). Subsequently, 50 ml of
the homogenized larval suspension was plated (Spi-
ral plater™, Spiral Systems) on BHI agar containing
10 mg 1! ampicillin, rifampicin, kanamycin, trimetho-
prim and gentamycin. The experimental designs for
bacterial challenge tests on Nile tilapia larvae were
approved by the ethical committee of Ghent Univer-
sity under file number EC2012/070 for the xenic chal-
lenge tests (Expts la and 1b) and EC2013/69 for the
gnotobiotic challenge tests (Expts 2a and 2b).

Statistical analysis

A chi-square test was used to detect significant dif-
ferences in the hatching percentage between the
xenic and the disinfected eggs. For comparison of the
cumulative mortality of fish larvae, data were arcsine
transformed before a 1-way analysis of variance
using the general linear model of STATISTICA 7.0
(StatSoft 2004) was performed. A Tukey test was per-
formed on the transformed data for multiple compar-
isons among means (Sokal & Rohlf 1955). All analy-
ses were run at a minimum level of significance
of 5%. Results are reported as mean * standard
deviation.

The relative percentage of survival (RPS), which is
the larval survival after challenge when compared to
control fishes (Amend 1981), was calculated to evalu-
ate the efficacy of xenic and gnotobiotic bacterial
challenge tests as RPS = [1 — (% mortality in chal-
lenged group/% mortality in control group)] x 100.
The RPS values obtained in the challenge studies
were analysed using a chi-square test.

RESULTS AND DISCUSSION

Pathogen-screening tests on xenic
Nile tilapia larvae

Streptococcus sp. and Edwardsiella sp. are the
common groups of bacteria reported to infect wild
and farmed tilapia (Plumb & Hanson 2010). E. tarda
infects and causes significant pathology in red tilapia
(Iregui et al. 2012). In the last few years, different
strains of E. ictaluri, which were already known as
etiological agents of ESC, have also been reported as
causative agents of morbidity and mortality in Nile
tilapia fingerlings (Soto et al. 2012). In this study, 4
candidate pathogenic bacteria strains representing
the 2 groups were screened for the development of a
bacterial challenge test for gnotobiotic Nile tilapia
larvae: E. ictaluri gly09, E. ictaluri glyl0, E. tarda
LMG2793 and S. agalactiae LMG15977.

In the first pathogen-screening test (Expt 1a), mor-
tality was first observed in the group challenged with
Edwardsiella ictaluri gly09 via Artemia nauplii and
in the group challenged with E. ictaluri gly10 via the
culture water 6 d after challenge (6 DAC). With
respect to E. ictaluri gly09, there were no significant
differences between treatments (challenge routes
and control) until 11 DAC when significantly higher
levels of mortality were seen in the groups chal-
lenged via Artemia and via both Artemia and culture
water when compared to control and the groups
challenged via culture water (Table 1). A similar
result was observed for E. ictaluri gly10, with the
exception that the group challenged via both Arte-
mia and culture water had significantly higher
mortalities than all other treatment groups and the
control at 10 DAC. At 11 DAC, significantly higher
levels of mortality were observed in the groups chal-
lenged via Artemia and via both Artemia and culture
water when compared to the control and the group
challenged via culture water (Table 1).

The pathogenicity of both Edwardsiella ictaluri
strains for tilapia larvae was confirmed in Expt 1b
(Table 2), where oral and waterborne/immersion
exposure of larvae to either E. ictaluri gly09 or gly10
resulted in a significant mortalities of 93 + 11 to 100 +
0%, respectively when compared to the 40 = 17 %
mortality seen in the control group at 9 DAC. The
results of both pathogen-screening tests suggest that
both E. ictaluri strains can cause significant larval
mortalities when delivered orally through the feed-
ing of pathogen-loaded Artemia nauplii, with or
without additional pathogen delivery via the culture
water; while lower or no significant mortality was
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Table 1. Cumulative mortality (%, mean + SD) of control and challenged (Edwardsiella ictaluri gly09, E. ictaluri gly10 and Strep-

tococcus agalactiae LMG15977) xenic Nile tilapia larvae Oreochromis niloticus using different challenge methods in Expt 1a. Dif-

ferent letters within the same row denote significant differences (p < 0.05). Number of replicates = 3; initial number of fish
larvae per replicate = 10. DAC: days after challenge

Time Control Edwardsiella ictaluri gly09 Edwardsiella ictaluri gly10 Streptococcus agalactiae LMG15977
(DAC) via via via via via via via via via
culture Artemia  Artemia culture Artemia  Artemia culture Artemia  Artemia
water nauplii and water water nauplii and water water nauplii and water
6 0+0° 0+0° 4 +6° 0+0? 4 +6° 0+0° 0+0° 0+0° 0+0° 0+0°
7 0x0° 4 +6° 7 £ 6° 0=x0° 4+ 6° 4 +6° 0+0° 0+0° 0+0° 4 +6°
8 0x0° 33+29* 30+17* 18+6° 18 £ 13* 41 +28° 33 +29¢ 18 + 232 4 +6° 15+ 17°
9 26 +26° 44 +22*  56x11° 52+6° 41 + 6° 63 + 28¢ 74 + 6° 22 £29% 26 +28° 37 + 26%
10 37 +£23* 59 +6° 74 +13*  81x6° 48 + 6° 74+ 17¢ 85+ 6P 44 +22% 48 +28° 63 + 17¢
11 48 +13* 67+ 0° 81 +6° 81 +6° 70 + 6° 81 +13° 89 + 0P 67 £19° 70+ 13° 74 + 6°

Table 2. Cumulative mortality (%, mean + SD) of control and
challenged (Edwardsiella ictaluri gly09, E. ictaluri gly10 and
E. tarda LMG2793) xenic Nile tilapia larvae Oreochromis
niloticus via both Artemia nauplii and culture water in
Expt 1b. Different letters within the same row denote signif-
icant differences (p < 0.05). Number of replicates = 3; initial
number of fish larvae per replicate = 10. DAC = days after

challenge
Time Control E. ictaluri E. ictaluri E. tarda
(DAC) gly09 gly10 LMG2793
5 0+0° 3+6* 0+0° 0+0*
6 0+0° 17 + 6° 17 + 21° 3+6°
7 0+ 02 37 + 312 47 + 25° 60 + 17°
8 27 +23* 77 +6° 100 + 0° 83 + 15°
9 40+ 170 93+11®  100+0P 93 + 11

observed when the fish were only exposed to the
pathogens via the culture water. In the study by Soto
et al. (2012), tilapia fingerlings (~15 g) immersed in
10° CFU ml™! of tank water presented significant
100 % mortality events at 8 d post challenge. The
results of this current study suggest that bacterial
infection via water culture (immersion challenge)
in tilapia larvae culture is less likely than in adult
culture.

Due to the emergent nature of edwardsiellosis in
non-ictalurid fish, little is known regarding the
dynamics of Edwardsiella ictaluri infection in Nile
tilapia culture, especially during its larviculture
stage. To our knowledge, this is the first report of E.
ictaluri-induced mortality in Nile tilapia larviculture.
In a further study, Soto et al. (2013) increased our
understanding of the pathogenesis of E. ictaluri in
Nile tilapia fingerlings, suggesting that the cuta-
neous and oral routes were the main ports of entry for
the bacterium, which later spreads haematogenously
throughout the fish body, with the spleen and head

kidney as the main targets of infection. Their obser-
vations support the study by Li et al. (2012), which
suggested that E. ictaluri gains entry through the
intestinal epithelium, possibly using actin polymer-
ization and receptor-mediated endocytosis as mecha-
nisms of invasion.

Bullock & Herman (1985) suggested that E. ictaluri
is more pathogenic than E. tarda to channel catfish
Ictalurus punctatus fingerlings. In this study, a signif-
icantly higher larval mortality was observed in the
group challenged with E. tarda LMG2793 via
Artemia and culture water when compared to the
control group, starting from 7 DAC and with a the
final mortality of 93 + 11 % at 9 DAC (Table 2).

In both of the pathogen-screening tests, the first
fish mortalities in the treatment group challenged
with Edwardsiella ictaluri occurred at 5 to 6 DAC.
However, the mortality from the challenges via both
Artemia and culture water in Expt la differed when
compared to Expt 1b, where significant differences
in mortality following challenge occurred as early as
7 DAC. The differences in the incubation period until
significant mortalities were observed could be
caused by the presence of other microorganisms be-
sides the tested pathogens or a difference in patho-
gen resistance between the different egg batches.

With respect to Streptococcus agalactiae LMG
15977, which was the only isolate actually isolated
from tilapia culture, there were no significant differ-
ences between treatments (challenge routes) and the
control group at 11 DAC. However, significantly
lower mortalities were observed when compared to
the groups challenged with Edwardsiella ictaluri
strains via Artemia and via both Artemia and culture
water (Table 1). It is possible that the pathogenicity of
S. agalactiae in this experiment was affected by the
water temperature, which was below the optimal
growth temperature for S. agalactiae culture. A study
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by Mereghetti et al. (2008) revealed that the tran-
scription of some important virulence factors by
human S. agalactiae increased at higher temperature
(40°C compared with 30°C). Our results are also sup-
ported by Rodkhum et al. (2011), who evaluated the
association between water temperature and suscep-
tibility of Nile tilapia to Streptococcus agalactiae
infection. In their study, Nile tilapia (100 g) were bath
challenged with 105, 107 or 108 CFU ml~! of S. agalac-
tiae serotype la and maintained at different water
temperatures (25, 30 or 33°C) for 1 wk. Cumulative
mortality of tilapia was positively correlated to higher
temperature, while no clinical signs of disease were
exhibited at 25°C. These results indicate that the sus-
ceptibility of Nile tilapia to S. agalactiae infection is
temperature dependent.

To study the use of pro- and/or prebiotics in the
prevention and treatment of infectious diseases,
establishing a method of experimental infection to
obtain steady results in mortality and infection in
challenge tests is important. The results of both
pathogen-screening tests showed that all Edward-
siella strains tested in this study can cause significant
mortality in tilapia larvae culture and can be used in
the development of bacterial challenge tests with
gnotobiotic Nile tilapia larvae, with the challenge
route via both Artemia and culture water as an effec-
tive challenge procedure.

Egg disinfection protocol for axenic
Nile tilapia larvae

The effect of the disinfection procedure on egg
hatching was evaluated by measuring the hatching
percentage at 1 DAH for the xenic and the disinfec-
ted eggs. There was no significant effect of the disin-
fection procedure on the egg hatching in both gnoto-
biotic experiments (mean + SD): 32 + 14 % or 23 +3%
and 20 + 7% or 11 £ 6% for the disinfected or the
xenic eggs of Expts 2a and 2b, respectively.

In order to obtain axenic larvae, artificial incubation
of surface-disinfected eggs in axenic conditions until
hatching is crucial. The efficiency of a tilapia egg in-
cubation system/incubator depends on its type, size
and shape, the developmental stages of the eggs, and
the water quality and flow (El-Sayed 2006). It is im-
portant that eggs are kept in gentle motion imitating
the natural incubation inside the mouths of female
broodstock (Rana & Beveridge 1989). In this study,
unlike in xenic incubators, egg incubation was done
under static conditions with periodic water renewal
using a series of autoclavable flat-bottom glass bot-

tles. As suggested by Rana (1988) and El-Sayed
(2006), in cases where eggs are not suspended in the
water by a current, they quickly sink and clump. This
may be the reason for the relatively low egg hatching
of the non-disinfected eggs, ranging from 11 to 27 %,
compared to hatching percentages of >60% using
down-welling round-bottomed incubators or up-
welling conical containers reported previously (Rana
1988, Rana & Macintosh 1988). With respect to these
design and operational requirements, there were
several constraints on the egg incubation system de-
sign for this research on the gnotobiotic Nile tilapia
larviculture. These included the need for a gentle mo-
tion of the eggs and the need for an axenic closed sys-
tem with easy access for removal of non-developing
embryos and also refreshment of sterile culture
medium. For both gnotobiotic challenge tests, a
higher (p > 0.05) egg hatching was observed in the
disinfected egg group compared to the xenic group,
indicating that the disinfection procedure improved
egg hatching in our experiments.

In gnotobiotic studies with fish, the common
method for obtaining axenic larvae is to collect fertil-
ized eggs, disinfect them and then incubate them in a
cocktail of disinfectants and antibiotics. Egg surface
disinfection protocols using glutaraldehyde, at differ-
ent concentrations and exposure times, have been
used successfully to produce axenic/gnotobiotic lar-
val marine fish, including turbot Scophthalmus max-
imus, Atlantic halibut Hippoglossus hippoglossus,
European sea bass Dicentrarchus labrax and Atlantic
cod Gadus morhua L. larvae (Munro et al. 1995,
Verner-Jeffreys et al. 2003, Dierckens et al. 2009,
Forberg et al. 2011). For the purposes of this study,
we chose not to use glutaraldehyde due to its high
diffusion rate over the range of water temperatures
used for tilapia culture (Salvesen et al. 1997).

A protocol to obtain bacteria-free zebrafish Danio
rerio for use in gnotobiotic studies has been estab-
lished, in which fertilized embryos are surface-
disinfected using 1000 mg 1" povidone-iodine (PVP-I)
solution for 2 min and 30 mg 1! sodium hypochlorite
solution for 20 min to 1 h (Pham et al. 2008). A higher
sodium hypochlorite concentration of 100 mg 1™ for
the disinfection of tropical marine red drum Sci-
aenops ocellatus eggs has been reported to increase
larval survival, while disinfection using a 5 min expo-
sure to 3% hydrogen peroxide resulted in bacteria-
free larvae (Douillet & Holt 1994). In terms of antifun-
gal treatment, the use of hydrogen peroxide at
various concentrations from 100 up to 6000 mg 17! has
been shown to also effectively control saprolegniasis
in cultured fish eggs, including rainbow trout Onco-
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rhynchus mykiss, common carp Cyprinus carpio and
channel catfish Ictalurus punctatus (Marking et al.
1994, Schreier et al. 1996, Barnes et al. 1998, Rach et
al. 1998, Small & Wolters 2003, Mitchell et al. 2009).

Samples of homogenized eggs that were taken 24 h
after disinfection never resulted in growth on LB
plates after 96 h incubation, indicating egg/larvae
axenity following the egg disinfection procedure.
Samples of the incubation medium or homogenized
larvae at larval stocking also did not show any
colonies on LB plates after 96 h incubation. This indi-
cated that the application of the double disinfection
protocol using hydrogen peroxide (2000 mg 17! for
10 min) and sodium hypochlorite (75 mg active chlo-
rine 17! solution for 2 min), followed by incubation in
medium containing antibiotics (10 mg 1! ampicillin,
rifampicin, trimethoprim and gentamycin) and anti-
fungal products (0.5 mg 1! Amphotericin-B and
25 mg 17! Fluorescent Brightener 28) was effective in
obtaining axenic Nile tilapia larvae.

To our knowledge, this is the first published proto-
col for generating axenic Nile tilapia larvae with con-
tinued exposure to antimicrobial agents throughout
the gnotobiotic experiment. In the course of the
experiment, fish samples were taken from the axenic
control treatment for bacteriology. No bacteria were
detected in the samples of the axenic fish at the end
of Expt 2a, as verified by fish homogenate plating on
the LB plates. A very low level of bacterial contami-
nation was observed in the axenic group at the end of
Expt 2b, as bacteria colonies grew on the LB plates
after 96 h incubation at a density of <30 CFU per fish.
This bacterial contamination might be related to the
technical complexity of the system (Marques et al.
2006) where handlings and manipulations, such as
the culture medium exchange and daily feeding dur-
ing the experimental period, might have resulted in
contamination.

Quantification of the bacteria load in Artemia
nauplii and Nile tilapia larvae

In Expt 1a, incubation of axenic Artemia nauplii
with Edwardsiella ictaluri gly09, E. ictaluri gly10
and Streptococcus agalactiae LMG15977 resulted in
densities of 7.8 + 0.2, 5.2 + 0.1 and 6.5 = 0.1 x 10?
CFU per Artemia nauplius (ind.™") after 1 h incuba-
tion, respectively. Similar results were observed in
Expt 1b, where incubation of axenic Artemia nauplii
resulted in densities of 6.9 £ 0.7, 5.1 + 0.4 and 7.7
0.2 x 10?2 CFU ind.™! for E. ictaluri gly09, E. ictaluri
gly1l0 and E. tarda LMG2793, respectively. In the

challenge tests using the gnotobiotic system, the E.
ictaluri glyO9R loaded onto the Artemia nauplii
resulted in densities of 4.5 + 0.9 x 10 and 8.8 + 0.5 x
102 CFU ind.™! after 1 h incubation in Expts 2a
and 2b, respectively.

Bacterial colonization of Arfemia nauplii could
occur externally, via attachment to the body surfaces
or internally by ingestion (Grisez et al. 1996). In this
experiment, however, only instar I Artemia nauplii
were used. The digestive system of instar I Artemia
nauplii is not yet functional (mouth and anus are not
open) so they do not take up food and thrive com-
pletely on their yolk reserves (Lavens & Sorgeloos
1996). Therefore, it is most likely that bacterial colo-
nization occurred externally, via attachment to the
body surfaces. It has been suggested that bacterial
content decreases rapidly after the nauplii are
removed from the bacterial suspension (Gomez-Gil
et al. 1998). This decrease might be due to the re-
moval of the external bacteria after the nauplii are
washed and placed in new sterile water. The bacte-
ria still detected are those colonizing the interior or
firmly attached to the external surfaces. The differ-
ences in bacteria load of Artemia nauplii between
treatments and between experiments may be
related to differences in bacterial attachment on
Artemia nauplii during incubation. Waltman et al.
(1986a,b) suggested that although both Edward-
siella ictaluri and E. tarda lack chitinase and chitin-
binding proteins, 100% and 56 % of 100 strains of
both E. ictaluri and E. tarda, respectively, degraded
chondroitin sulphate, which is also an important
structural component of Artemia nauplii (Forward &
Rittschof 1999). At the end of the gnotobiotic chal-
lenge test, the densities of E. ictaluri glyO9R inside
the surviving fish was 7.9 + 0.9 x 10* and 4.8 + 0.6 x
10® CFU per fish in Expts 2a and 2b, respectively.

Mortality of the gnotobiotic challenged
Nile tilapia larvae

In both gnotobiotic challenge tests, the mortality
of the fish group after challenge with Edwardsiella
ictaluri glyO9R was not significantly different (p >
0.05) from the unchallenged (axenic or xenic) fish
up to and including 9 DAC (Table 3). From 10
DAC onwards, significantly higher mortalities were
observed in this challenged group (p < 0.05) com-
pared to the unchallenged (axenic) group in both
gnotobiotic challenge tests, with a mortality at
12 DAC of 57 + 6% or 23 + 6% (challenged versus
axenic, Expt 2a) and 63 = 11% or 23 + 6% (chal-
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Table 3. Cumulative mortality (%, mean + SD) of xenic (not challenged or
challenged), axenic and gnotobiotic Nile tilapia larvae Oreochromis niloticus
challenged with antibiotic-resistant Edwardsiella ictaluri glyO9R via Artemia
nauplii and culture water in Expts 2a and 2b. Different letters within the same
row within 1 experiment denote significant differences (p < 0.05). Number of
replicates = 3; initial number of fish larvae per replicate = 10. DAC: days after

an additional cost for the strain that
can result in a longer generation time
and altered metabolic activity (Ander-
sson & Levin 1999, Levin et al. 2000,
McDermott et al. 2006, Feng & Rise

challenge 2010). This implies that a bacterial

strain with an introduced resistance

Time Expt 2a Expt 2b may behave differently than the orig-

(DAC) Xenic Xenic Axenic Gnotobiotic Axenic Gnotobiotic inal strain. However, the Edward-

E. ictaluri E. ictaluri E. ictaluri iella ict 1' i alvO9R ' trai d i

glyO9R glyO9R gly09R 51? a 1ctaluri gly . s rapp used in

this study resulted in significant mor-

5 0+£0* 3x6° 00 0+0° 00 00" talities in the gnotobiotic challenged

S g * ga g * g: 8 * 8: g * 8a 8 * 8: 8 * gd groups compared to the unchal-

+6° + + +0° + +0° . T

8 7+6° 10+10° 0400 040 7+ 6° 10 = 10 lenged/axgnlc groups, 1'nfhcat1ng that

9 7+6° 10+10° 0£0° 3+6° 13+6° 23+11° the bacterial pathogenicity was pre-

10 7+6% 13 +6° 0+0° 13 = 6° 20+ 0° 53 +15° served after the acquisition of antibi-
11 7 £ 6° 23 + 6ab 10 = 10“ 33 + 15b 20 = 0° 60 = 10b otic resistance.

12 13£6° 40£10° 23+6% 57+6° 23£6"  63x11° There was no significant difference

lenged versus axenic, Expt 2b) (Table 3). Challenge
with E. ictaluri gly0O9R under xenic conditions
resulted in a mortality (p < 0.05) of 40 + 10 %, sig-
nificantly higher than that of the xenic unchal-
lenged group, but no significant differences were
observed when compared to the gnotobiotic chal-
lenged group (12 DAC; Expt 2a).

In this laboratory test system, we relied on antibi-
otics to maintain gnotobiotic conditions. This resulted
in some limitations, as resistant spontaneous mutants
need to be isolated for use in challenge trials. Such
spontaneous mutations, however, have been found in
several Gram-negative bacteria, including Edward-
siella species (Ingham & Furneaux 2000, Sikorski &
Nevo 2005, Thavasi et al. 2007). E. ictaluri strains
have been reported which are naturally resistant
to rifampicin, macrolides, lincosamides, strepto-
gramins, glycopeptides, fusidic acid, oxacillin (Stock
& Wiedemann 2001) and gentamycin (Reger et al.
1993); and also E. ictaluri isolates displaying ac-
quired resistance to trimethoprim, streptomycin, oxy-
tetracycline (Dung et al. 2008), kanamycin (Russo et
al. 2009) and ampicillin (Russo 2011). In this study,
the multiple antibiotic resistance of E. ictaluri gly0O9R
resulted from both intrinsic mechanism (for ampi-
cillin, trimethoprim and gentamycin) and sponta-
neous mutation (for rifampicin and kanamycin). This
E. ictaluri glyO9R strain was used in both gnotobiotic
challenge tests (Expts 2a and 2b) and resulted in sig-
nificant larvae mortality.

When introducing antibiotic resistance to a strain
of bacteria, either via plasmids or by selecting spon-
taneous mutants, the acquired resistance represents

(p > 0.05) in mortality of the gnotobi-

otic group challenged with Edward-
siella ictaluri glyO9R when compared to the xenic
challenged group at 12 DAC (57 £ 6% vs. 40 + 10%;
Table 3). Similar results were also observed with
respect to RPS: values of 67 and 73 % (p > 0.05) were
obtained for the gnotobiotic and xenic challenged
groups, respectively. Several studies using gnoto-
biotic culture systems have suggested that the cellu-
lar and humoral defence systems of axenic animals
appear to be underdeveloped, hence making them
more susceptible to disease compared to xenic ani-
mals (Coates 1975, Marques et al. 2006). Unlike these
previous studies, the results of the current study did
not show that axenic Nile tilapia larvae are more
susceptible to pathogen infection compared to xenic
larvae, as indicated by the similar RPS values of the
gnotobiotic and xenic challenged groups. More
importantly, this study showed that the bacterial
challenge test in a gnotobiotic system allows a
similar/comparable result with a xenic/conventional
open system, but without uncontrolled interference.
In conclusion, the Nile tilapia gnotobiotic system
developed here is a useful tool for extending under-
standing of the mechanisms involved in host—
microbe interactions and evaluating new methods of
disease control in aquaculture production.
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