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Abstract 

The objective of this thesis is to examine the effect hedging volumetric risk has on the operating 

income of a Norwegian energy producer, by using weather derivatives. The effect is evaluated 

based on changes in the volatility of operating income, as well as the profitability of the weather 

derivatives.  

 

As there exists little prior research concerning wind derivatives, we choose to research this 

topic. The power industry is sensitive to fluctuations in weather conditions. Thus, we aim to 

find out if TrønderEnergi can hedge the downside risk in their production of wind power. The 

study concerns three of TrønderEnergi´s wind mill farms and three independent weather 

stations. 

 

Due to weather derivatives not having a tradable asset as the underlying, methods used to price 

financial derivatives are not applicable. The most common underlying weather index is 

temperature, and consequently most pricing methods concerns temperature derivatives.  Few 

have been applied on wind speed options.  

 

In this thesis we will use some of the pricing methods that recur most often in previous 

literature. These are the historical burn analysis, the McIntyre method and the indifference 

pricing method. We will construct wind speed put options for the three wind mill farms and the 

three weather stations, for which we will apply these pricing methods.  

 

The indifference pricing method provides prices for both the seller and the buyer. The average 

of the seller´s and the buyer´s indifference prices functions as put option prices. Due to the 

necessity of independent weather measurements, only purchasing put options for the weather 

stations is realistic. The findings demonstrate that purchasing wind speed put options in the 

period 2013 to 2017 would be profitable in all cases where prices were found, while the effect 

on volatility in operating income is ambiguous. Hence, wind speed put options may be a good 

tool to hedge volumetric risk in some cases.  
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Sammendrag 

Formålet med denne oppgaven er å undersøke hvilken effekt sikring av volumetrisk risiko har 

på driftsresultatet til en norsk kraftprodusent, ved bruk av værderivater. Effekten er vurdert 

basert på endringer i volatiliteten i driftsresultatet, samt lønnsomheten av værderivatet. 

 

Siden det er lite tidligere forskning om vindderivater, velger vi å undersøke dette temaet. 

Kraftindustrien er sensitiv for svingninger i værforhold. Dermed ønsker vi å finne ut om 

TrønderEnergi kan sikre seg mot nedsiderisko ved produksjon av vindkraft. Studien gjelder tre 

av TrønderEnergi sine vindmølleparker, samt tre uavhengige værstasjoner. 

 

På grunn av at værderivater har underliggende som ikke er omsettelige, er ikke metoder som 

brukes til å prise finansielle derivater anvendelige. Den vanligste underliggende værindeksen 

er temperatur, og følgelig er de fleste prismetodene basert på temperaturderivater. Få metoder 

har blitt brukt på vindhastighetsopsjoner. 

 

I denne avhandlingen vil vi bruke noen av de prisingsmetodene som går igjen oftest i tidligere 

litteratur. Dette er historical burn analysis, McIntyre-metoden og indifferensprisingsmetoden. 

Vi vil konstruere vindhastighetsopsjoner for de tre vindmølleparkene og de tre værstasjonene, 

som vi vil bruke disse prisingsmetodene på. 

 

Indifferensprisingsmetoden gir priser for både selger og kjøper, og gjennomsnittet av selgerens 

og kjøperens priser fungerer som opsjonspriser. Da det er nødvendig med uavhengige 

værmålinger, er det kun realistisk å kjøpe opsjoner for værstasjonene. Resultatene viser at 

innkjøp av vindhastighetsopsjoner i perioden 2013 til 2017 ville vært lønnsomt i alle tilfeller 

hvor priser ble funnet, mens effekten på volatilitet i driftsresultatene er tvetydig. Derfor kan 

vindhastighetsopsjoner være et godt verktøy for å sikre seg mot volumrisiko i enkelte tilfeller. 

 

 

 

 





 IX 

Table of Contents 
 
Preface ...................................................................................................................................... III 
Abstract ..................................................................................................................................... V 

Sammendrag ........................................................................................................................... VII 
1 Introduction ........................................................................................................................ 1 
2 Weather and Wind Derivatives .......................................................................................... 2 

2.1 Weather Derivatives and Their Historical Development ........................................... 4 
2.2 Advantages and Challenges of Weather Derivatives ................................................. 5 
2.3 Wind Derivatives and Their Use in the Energy Sector .............................................. 6 

3 Data and Statistical Analysis .............................................................................................. 9 
3.1 Wind data ................................................................................................................... 9 

3.1.1 Valsneset .......................................................................................................... 11 

3.1.2 Bessakerfjellet .................................................................................................. 12 
3.1.3 Ytre Vikna ........................................................................................................ 13 

3.2 Financial data ........................................................................................................... 14 
3.3 Statistical Analysis of Price and Production ............................................................ 15 
3.4 Statistical Analysis of Operating Income and Wind Speed ..................................... 16 

4 Pricing Methods ............................................................................................................... 22 
4.1 The Actuarial Pricing Method .................................................................................. 22 
4.2 The Historical Burn Analysis ................................................................................... 23 
4.3 The Monte Carlo Approach ...................................................................................... 23 
4.4 The McIntyre Pricing Method .................................................................................. 24 
4.5 The Indifference Pricing Method ............................................................................. 25 

5 Empirical Analysis ........................................................................................................... 32 
5.1 Historical Burn Analysis .......................................................................................... 33 
5.2 McIntyre Pricing Method ......................................................................................... 35 
5.3 Indifference pricing method ..................................................................................... 36 

5.3.1 Results from Indifference Pricing .................................................................... 38 
5.4 Basis Risk ................................................................................................................. 45 

6 Conclusion ........................................................................................................................ 47 
7 References ........................................................................................................................ 49 

Appendix ............................................................................................................................... XIII 
A.1 AR(1) Models ............................................................................................................. XIII 
A.2 Indifference Pricing Method ...................................................................................... XIV 
A.3 McIntyre Method ..................................................................................................... XVIII 





 XI 

List of Tables 
 

Table 1: Correlation Between TrønderEnergi´s Wind Mill Farms .......................................... 10 

Table 2: Valsneset and Ørland III: Descriptive Statistics for DAWS 2013 – 2017 ................. 11 

Table 3: Bessakerfjellet and Buholmråsa Fyr: Descriptive Statistics for DAWS 2013 – 201713 

Table 4: Ytre Vikna and Nordøyan Fyr: Descriptive Statistics for DAWS 2015 – 2017 ........ 13 

Table 5: Descriptive Statistics for Daily Operating Income .................................................... 15 

Table 6: Correlation Between Daily Spot Price and Daily Production .................................... 16 

Table 7: Model Summary Valsneset ........................................................................................ 20 

Table 8: Historical Burn Analysis: Yearly Put Option Characteristics for Valsneset ............. 34 

Table 9: Historical Burn Analysis: Quarterly Put Option Characteristics for Valsneset ......... 34 

Table 10: Historical Burn Analysis: Yearly and Quarterly Option Prices ............................... 35 

Table 11: McIntyre Pricing Method: Yearly Put Option Characteristics for Valsneset .......... 35 

Table 12: Indifference Pricing Method: Common Yearly Put Option Characteristics for Seller 

and Buyer ................................................................................................................................. 38 

Table 13: Indifference Pricing Method: Individual Yearly Put Option Characteristics .......... 38 

Table 14: Indifference Pricing Method: Yearly Put Prices with Different Strike Levels ........ 39 

Table 15: Indifference Pricing Method: Quarterly Put Prices with Different Strike Levels .... 40 

Table 16: Indifference Pricing Method: Yearly Operating Income with and without Yearly Put 

Option ....................................................................................................................................... 41 

Table 17: Indifference Pricing Method: Quarterly Operating Income with and without 

Quarterly Put Option ................................................................................................................ 41 

Table 18: Total Payoff from Yearly and Quarterly Options 2013 – 2017 ............................... 42 

Table 19: Change in Standard deviation in Operating Income with Yearly and Quarterly 

Options ..................................................................................................................................... 43 

Table 20: Indifference Pricing Method: Yearly Option Prices ................................................ 44 

Table 21: Indifference Pricing Method: Quarterly Option Prices ............................................ 44 

Table 22: Model Summary Ørland III ................................................................................... XIII 

Table 23: Model Summary Bessakerfjellet ........................................................................... XIII 

Table 24: Model Summary Buholmråsa Fyr ......................................................................... XIII 

Table 25: Model Summary Ytre Vikna ................................................................................. XIII 

Table 26: Model Summary Nordøyan Fyr ............................................................................ XIV 

Table 27: Ørland III: Yearly Operating Income with and without Yearly Put Option ......... XIV 



 XII 

Table 28: Bessakerfjellet: Quarterly Operating Income with and without Quarterly Put Option

 ................................................................................................................................................ XV 

Table 29: Buholmråsa Fyr: Quarterly Operating Income with and without Quarterly Put 

Option .................................................................................................................................... XVI 

Table 30: Ytre Vikna: Quarterly Operating Income with and without Quarterly Put Option

 .............................................................................................................................................. XVII 

Table 31: Nordøyan Fyr: Yearly Operating Income with and without Yearly Put Option .. XVII 

Table 32: McIntyre: Individual Put Option Characteristics and Prices ............................. XVIII 

 

 
 
List of Figures 

 

Figure 1: Daily Average Wind Speed for Valsneset (a) and Ørland III (b) ............................. 11 

Figure 2: Histograms of Daily Average Wind Speed for Valsneset (a) and Ørland III (b) ..... 12 

Figure 3: Valsneset: Correlogram for Unstandardized Residuals for Model 1 ........................ 17 

Figure 4: Valsneset: Linear Model ........................................................................................... 18 

Figure 5: Valsneset: Quadratic Model ..................................................................................... 19 

Figure 6: Valsneset: Polynomial Model ................................................................................... 20 

Figure 7: Yearly Indifference Prices of Buyer and Seller ........................................................ 39 

Figure 8: Quarterly Indifference Prices of Buyer and Seller ................................................... 40 

 

 

 

 



 1 

1 Introduction 

Businesses around the world are exposed to increasingly uncertain weather conditions 

(Brockett, Wang & Yang, 2005). It is estimated that weather affects as much as 30 % of the 

economy and 70 % of companies in the U.S. (Alexandridis, 2013). Alaton, Djehiche & 

Stillberger (2002) present a list of industries that are, both directly and indirectly, affected by 

weather conditions. In this list they include, among others, energy producers, the leisure 

industry and the agricultural industry. 

 

However, it is the energy sector that has the highest demand for weather risk management, and 

thus has caused this industry to develop (Alaton, Djehiche & Stillberger, 2002). A relatively 

recent type of financial tool has been developed to hedge weather risk, namely weather 

derivatives. According to Alexandridis (2013), organizations or individuals can use weather 

derivatives as a part of their risk management strategy to reduce risk associated with adverse or 

unexpected weather conditions.  

 

The purpose of this thesis is to examine whether a Norwegian power producer can use weather 

derivatives to hedge volumetric risk and thus smooth their operating income. In this thesis we 

therefore analyze how TrønderEnergi´s revenues depend on weather, and how to hedge 

volumetric risk. Wind derivatives have received comparably little attention in the literature. We 

therefore look into different pricing methods for wind derivatives. Finally, we suggest how an 

energy producer can use wind derivatives to hedge against weather risk. 

 

The sequence of this thesis is structured as follows: In section 2 we will discuss the use of 

weather derivatives, and the motivation of energy producers to hedge volumetric risk. The 

characteristics of weather derivatives are also presented here. Section 3 presents daily average 

wind speed data and financial data for three of TrønderEnergi´s wind mill farms and three 

related weather stations. Further, different AR(1) models, which explain the relationship 

between wind speed and operating income, are proposed and statistical analyses are conducted. 

In section 4 we discuss positive and negative traits of different pricing methods. In section 5 

we calculate the prices of several wind speed put options for TrønderEnergi with three of the 

different pricing methods. The main focus is on the prices provided by the indifference pricing 

method, and basis risk is also discussed briefly here. Lastly, a conclusion is given in section 6. 
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2 Weather and Wind Derivatives 

In the following section we introduce weather derivatives and their traits. Weather derivatives 

are financial contracts with payoffs depending on future weather, such as temperature, rainfall 

or wind speed (Härdle, 2017). Alaton, Djehiche & Stillberger (2002) state that weather 

derivatives usually are structured as futures, options or swaps based on underlying weather 

indices, and that temperature is the most common underlying variable.  

 

In this thesis, we construct several wind speed put options. According to Alaton, Djehiche & 

Stillberger, (2002) weather options have the following characteristics: 

• The contract type (call or put) 

• The contract period 

• The underlying index (e.g. wind speed, rainfall, HDD) 

• An official weather station from which the weather data are obtained 

• The strike level 

• The tick size 

 

Options are common types of financial contracts and can be either a call or a put option. When 

a weather option contract is written, the buyer pays a premium to the seller. Then, depending 

on the type of contract, the buyer receives a payout if the weather index is above or below the 

predetermined strike level. Thus, the strike level determines whether the contract gives a payout 

or not. In addition to the strike level, the payout is also dependent on the tick size. The tick size 

defines the amount of money the buyer will receive for each unit the weather index is above or 

below the strike level (Alaton, Djehiche & Stillberger, 2002).  

 

The contract must also define the underlying weather index. This index could be rainfall, 

snowfall, wind speed or any other weather phenomenon. Compared to regular financial options, 

the underlying is the main difference between the two. As mentioned, temperature is the most 

common underlying variable for weather derivatives (Alaton, Djehiche & Stillberger, 2002). 

Between October 1997 and April 2001, more than 98 % of all weather derivatives were 

temperature related (Brockett, Wang & Yang, 2005). Contracts related to rainfall represented 

0.9 %, while snow represented 0.5 %, and wind represented as little as 0.2 % of all weather 

derivatives. 
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Lastly, the weather contract must define a certain period in which the underlying index is 

calculated. The length of this period can vary. However, since weather forecasts only predict 

weather for approximately a week ahead, weather options tend to have at least a month until 

maturity (Alexandridis, 2013). The weather station at which the weather index is measured 

must be an independent third party. As the payout of the contract is based on the data delivered 

from this third party, their reliability and whether they are open to tampering and fraud or not, 

should be considered (Berlage, 2013).  

 

When using weather records from an independent weather station as the underlying in a weather 

derivative, basis risk will in most cases occur. Basis risk represents risk due to the distance 

between the area the hedger wishes to cover and the location the contract is written on (Brockett, 

Wang & Yang, 2005). It may be that the weather is slightly different in two areas, even though 

they are relatively close and correlated. Thus, the hedger must bear the basis risk. To minimize 

basis risk, the weather data should be recorded at or as close as possible to the location one 

wishes to cover (Berlage, 2013).  

 

By looking at wind speeds measured directly at TrønderEnergi´s wind mill farms, we exclude 

the basis risk entirely. However, this leads to the issue of the measurements not being 

independent. For a counterparty to be willing to enter into a weather contract, there must be an 

independent third party providing the measurements so that they are reliable. Therefore, we 

have also retrieved wind measurements from three different weather stations located nearby 

each wind mill farm. By comparing weather derivatives written on both locations for each wind 

mill farm, the magnitude of basis risk can be examined. Hence, we can gain insight into the 

difference between contracts with and without basis risk.  

 

During the last decades, wind power has become an important source of renewable energy 

(Benth, Benth, 2012). Several power companies, such as TrønderEnergi, use wind mill farms 

in their production. Naturally, these wind mill farms are exposed to risk related to wind 

conditions (Caporin, 2012). Wind sensitive companies, especially energy producers, can use 

wind derivatives to hedge volumetric risk (Cao & Wei, 2004).  

 

The wind power production is dependent on the speed, duration and direction of the wind. All 

modern wind turbines have advanced control systems which rotates the blades to fully exploit 

the wind intensity (Norwea, 2012). Hence, wind speed is the most relevant measure of weather 
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exposure in practice. To reduce this risk, companies can use insurance contracts or wind 

derivatives. These types of derivatives are standardized products, which is only dependent on 

the daily average wind speed (Alexandridis, 2013). 

 

As mentioned, wind derivatives are not commonly used financial instruments. According to 

Alexandridis (2013), the slow growth in this particular market is due to difficulties in modelling 

wind accurately, in addition to the problems related to valuing related contracts. A reliable 

framework for valuation is missing, and therefore financial institutions are somewhat unwilling 

to quote prices on wind derivatives.  

 

 

2.1 Weather Derivatives and Their Historical Development 

The first official deal concerning weather derivatives was created in 1997 between Koch Energy 

and Enron (Cao, Li & Wei, 2003).  The market for weather derivatives expanded fast after this 

deal, and individually negotiated contracts started to be traded over-the-counter (OTC) (Alaton, 

Djehiche & Stillberger, 2002). The companies in the energy sector were the main driving force 

behind the growth in the OTC market. This growth led to the expansion of organized markets, 

such as the Chicago Mercantile Exchange (Cao, Li & Wei, 2003), which introduced its first 

futures and option contracts on temperature in 1999 (Benth, Benth, 2012).  

 

The market for weather derivatives is relatively widespread in the U.S. (Alaton, Djehiche & 

Stillberger, 2002), and the world´s largest weather derivatives exchange is the Chicago 

Mercantile Exchange (Thind, 2014). Compared to the U.S. market, the market in Europe has 

had a slower growth. One reason for this can be the early deregulation of the energy market in 

the U.S. However, Alaton, Djehiche & Stillberger, (2002) see a growth potential in the 

European market.  

 

According to the Ministry of Finance (2017), there is a growing need for weather derivatives 

in the power industry. Such contracts have emerged during the past few years due to the fact 

that strong incentive programs have reduced the price risk, while increased the volumetric risk. 

Therefore, the volatility in production of both wind and solar energy has created a greater need 

for hedging volumetric risk. The market for weather derivatives is expected to expand, also 



 5 

outside the power industry. Financial actors such as insurance companies may also have interest 

in this market (Ministry of Finance, 2017).   

 

 

2.2 Advantages and Challenges of Weather Derivatives 

A problem for businesses is coping with uncontrollable risks, and weather is one of the most 

significant uncontrollable risk factors (Sharma, 2007). In sectors like agriculture and power, 

conventional risk hedging instruments are insufficient to tackle this unpredictable risk. The 

introduction of weather derivatives means that unpredictable risk no longer equals 

unmanageable risk. The awareness of this weather risk management possibility has increased 

among actors like shareholders, analysts, lenders and rating agencies (Berlage, 2013). 

Companies are not expected to control the weather, but they are now expected to manage 

weather risk. Blaming poor performance on weather is no longer sufficient and is less and less 

accepted by stakeholders.  

 

Weather derivatives can be purchased to hedge smaller deviations in weather, while insurance 

is traditionally used to cover damages caused by catastrophic events (Bossley, 1999). The 

purchaser of insurance must demonstrate an actual damage or loss to be covered, whereas the 

payout from a derivative automatically depends on the actual weather outcome. As insurance 

policies are affected by asymmetric information and loss adjustment issues, weather derivatives 

can be considered more attractive as tools to manage weather risk (Sharma, 2007).  

 

Many researchers point out that moral hazard and adverse selection are sever problems 

concerning insurance policies (Sharma, 2007). Moral hazard is when a person with insurance 

increase their risk exposure to obtain a higher payoff from their insurance policy after buying 

insurance. Adverse selection describes a situation where the insured person possesses a larger 

amount of information and knowledge about the actual risk exposure than the insurance issuer. 

This implies that the insured party has a greater ability to evaluate the fairness of the terms and 

conditions. As the payout given by weather derivatives is determined by an unbiased weather 

report, weather derivatives can be seen as favorable since problems with both moral hazard and 

adverse selection is not present. 
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Weather derivatives may be beneficial for several reasons. Leggio (2007) mentions five reasons 

for hedging weather risk, including smoothing revenues, covering excess costs, reimbursing 

lost opportunity costs, stimulating sales and diversifying investment portfolios. According to 

Brockett et al. (2009), weather derivatives appear to have a low correlation with other financial 

instruments which make them fitting as diversification tools. High correlation between the 

different wind mill farms may indicate poor diversification within the company and may also 

point to the need for some sort of insurance against low wind speed and production.  

 

In spite of weather derivatives being flexible with limitless applications (Leggio, 2007), the use 

of weather derivatives is not particularly common, especially outside the U.S. (Alaton, Djehiche 

& Stillberger, 2002). This may be due to the fact that these instruments are relatively new, and 

the knowledge and awareness of them is still limited (Leggio, 2007). 

 

When pricing financial derivatives, the underlying is usually a tradable asset. (Brockett et al., 

2006). The market for weather derivatives is an incomplete market, which means that the 

underlying in these contracts is weather, which is not a tradable asset. Thus, traditional pricing 

methods are not suitable when pricing weather derivatives (Hamisultane, 2008). Quotations of 

liquid contracts suffice as bases when obtaining “fair” prices for the weather derivatives. 

However, an obstacle is the lack of liquidity in most of the quoted prices. Thus, the foundation 

for valuating weather derivatives based on such prices is limited.  

 

 

2.3 Wind Derivatives and Their Use in the Energy Sector 

Like other types of renewable energy, such as hydro and solar power, the cost structure of wind 

power is characterized by high investment costs and low operating costs. When the construction 

of a wind mill farm is finished, the farm can produce at low costs since the wind is free. 

Nevertheless, wind power needs a relatively high price for delivered energy, which can be 

achieved through high power prices or subsidies.  

 

Compared to most countries in Europe, Norway has a more complicated terrain and extreme 

climate. In addition, the distances between roads and power lines are longer and the Norwegian 

salary level is generally higher. This leads to a more expensive infrastructure in Norway 

compared to the rest of Europe (Norwea, 2012). The extreme weather also contributes to larger 
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maintenance costs and more expensive construction. The benefit of producing in Norway is that 

the extreme weather gives higher production, and renting land is less costly due to large 

uncultivated areas.  

 

The main drivers of operating costs in wind power production are related to operating and 

maintenance of the turbines (Norwea, 2012). These maintenance costs will usually increase as 

the turbines gets older. This evolution of operating costs shows that weather derivatives can be 

an attractive tool to smooth the results by hedging against low production. We know that the 

costs will increase, and it is important to secure future income independent of weather 

conditions.  

 

The income of a wind mill farm comes from selling the electric power delivered by the turbines. 

In addition, as of 2012, Norwegian renewable energy producers are receiving an electricity 

certificate per MWh delivered (Norwea, 2012). Both the electricity price and the price of the 

certificates are determined in a market based on supply and demand. The hourly price is called 

the spot price, which is the price a producer receives for selling electricity or certificates. The 

spot price varies continuously, but with financial instruments the spot price can be fixed up to 

several years ahead (Norwea, 2012). By hedging the spot price, one will reduce the risk related 

to the price through predictable income.  

 

However, income is a result of both production and price. Whereas 95 % of the power supply 

in Norway comes from hydropower, only 1 % comes from wind power (Huisman, Michels, 

Westgaard, 2014). Hydropower producers´ storability gives them the opportunity to decide 

when to produce hydropower. This is a decision between producing now, or later at a possibly 

higher spot price. Wind power producers do not have any storage possibilities. As wind power 

production contributes little to the total power supply, it is natural to assume that production of 

wind power affects the spot price to a very small extent. If this is the case, hedging volumetric 

risk in addition to price risk, may be a favorable solution for wind power producers.  

 

Today, wind power producers in Norway are dependent on subsidies to be profitable. In the 

meantime, it is being systematically worked towards reaching the so-called “grid parity”. This 

is the point at which the wind power producers can deliver electricity at the market price without 

the need for subsidies. As of 01.01.2022, new Norwegian wind mill farms will no longer receive 

these electrical certificates (Vindportalen, 2019). Thus, wind derivatives can be effective tools 
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to stabilize the transition to a situation without subsidies and also contribute to a more stable 

income. 
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3 Data and Statistical Analysis 

In this section, the data material is presented, and several statistical analyses are conducted. 

TrønderEnergi has supplied wind speed data, as well as production data, from three of their 

wind mill farms, namely Valsneset, Bessakerfjellet and Ytre Vikna. TrønderEnergi is a large 

energy company, which does not only produce wind power, but also produces hydropower 

(TrønderEnergi, 2019). As of May 2019, they have 18 hydropower plants, and only 5 wind mill 

farms. Because of this, we have not been able to retrieve financial data concerning the 

individual wind mill farms. We have solved this by calculating operating income using 

historical production data and spot prices from Nordpool.  

 

By using wind data from TrønderEnergi´s actual locations, we will get more exact estimates 

and eliminate basis risk completely. However, for a seller to be willing to enter into a weather 

contract, we need more reliable wind data from a trusted, independent third party (Berlage, 

2013). Therefore, we have also retrieved wind speed data from three weather stations located 

nearby each wind mill farm from the Norwegian Metrological Institute.  

 

 

3.1 Wind data 

In the following, the daily average wind speed data is presented. This includes correlations 

between the wind mill farms, as well as correlations between the wind mill farms and their 

related weather stations. Descriptive statistics for the wind mill farms and the weather stations 

are also included.  

  

We received hourly measurements of ten minutes from TrønderEnergi. This is the same type 

of wind data we retrieved from the Norwegian Metrological Institute. In accordance with 

Alexandridis (2013), we use daily average wind speed in our analysis. We have measurements 

of wind speed from 01.01.2009 to 31.12.2018 and production from 01.01.2009 to 31.12.2017. 

However, as historical spot prices from Nordpool only go back to 2013, our analysis covers the 

years 2013 to 2017. The descriptive statistics for each wind mill farm and weather station also 

describe this period.  
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In the data received from TrønderEnergi, there are several missing values and abnormalities. 

First of all, Bessakerfjellet has some cases of negative production. All of these cases occur on 

days with low wind speed and may be due to the turbines using power when starting up. 

Therefore, we did not remove any of these values from our dataset, as there is a reasonable 

explanation for them. 

 

Secondly, Ytre Vikna has days with missing values for wind speed. This may be due to 

maintenance, measuring errors or loss of data. We have chosen to remove these values for both 

wind speed and production. Alexandridis (2013) suggests replacing missing values with the 

average of the seven days before and after the missing data. However, some of the cases in 

which values are missing are up to 59 days in a row. Therefore, we have chosen to leave them 

as missing values and remove production for the same day.  

 

Lastly, we found some abnormal measurements for all of the wind mill farms. These were cases 

of very high production on days with low or zero wind speed. We have chosen to remove all of 

these cases with production above 20 MWh. Reasons for these abnormal measurements can be 

failures at weather stations or maintenance of measurement equipment. Keeping all of these 

data points could lead to erroneous correlations and models but removing all of them could lead 

to a narrow data basis. Therefore, we chose a production limit of 20 MWh in these cases. 

 

Correlations between the different wind mill farms are presented in the table below. 

 
Table 1: Correlation Between TrønderEnergi´s Wind Mill Farms 

 Correlation 

Valsneset – Bessakerfjellet 0.92 

Valsneset – Ytre Vikna 0.81 

Bessakerfjellet – Ytre Vikna 0.82 

 

 

Table 1 shows very high positive correlation between all of the wind mill farms. This indicates 

poor diversification in TrønderEnergi´s wind production and that there may be a need to hedge 

the volumetric risk.  
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3.1.1 Valsneset 

Valsneset wind mill farm is situated in Bjugn, Trøndelag and consists of five turbines. The farm 

has been operating since November 2006 and was officially opened 01.06.2007. The closest 

weather station is Ørland III, which is located approximately 12.6 km from Valsneset. The 

correlation between the wind speed measurements from these two locations is 0.95. The table 

below presents descriptive statistics for daily average wind speed (DAWS) for Valsneset and 

Ørland III from the period 2013 to 2017. 
 
 
Table 2: Valsneset and Ørland III: Descriptive Statistics for DAWS 2013 – 2017 

Variable Mean Std.dev Min Max N 

DAWS Valsneset 7.61 3.68 1.51 22.42 1 826 

DAWS Ørland III 6.08 2.83 1.42 17.54 1 826 

 
 
 

Figure 1: Daily Average Wind Speed for Valsneset (a) and Ørland III (b) 

 
(a)                                                                      (b) 
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Figure 2: Histograms of Daily Average Wind Speed for Valsneset (a) and Ørland III (b) 

 
                                     (a)                                                                                  (b) 

 

Table 2 contains descriptive statistics for daily average wind speed at Valsneset and Ørland III. 

The mean represents the average of the daily measurements of wind speed. The diagrams in 

figure 1 presents the daily average wind speed of Valsneset and Ørland III for the years 2013 

to 2017. Tendencies to seasonal fluctuations are observed in the line diagrams. From the 

histograms in figure 2, both kurtosis and skewness are observed as positive. It is also observed 

that the daily average wind speed is not normally or symmetrically distributed. 

 

For both Valsneset and Ørland III, the wind speed measurements range from 1.51 to 22.42 m/s 

and from 1.42 to 17.54 m/s, respectively. Further, table 2 shows that Valsneset has got a higher 

mean, standard deviation and min-max values than Ørland III. In correspondence with the very 

high positive correlation, the differences between the two are very small.   

 

 

3.1.2 Bessakerfjellet 

Bessakerfjellet wind mill farm is located in Roan, Trøndelag and consists of 25 turbines, which 

makes it the third largest wind mill farm in Norway. The construction was completed in the 

autumn of 2008. The closest weather station is Buholmråsa fyr, which is located approximately 

20.5 km from Bessakerfjellet. The correlation between the wind speed measurements from 

these locations is 0.89.  
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Table 3: Bessakerfjellet and Buholmråsa Fyr: Descriptive Statistics for DAWS 2013 – 2017 
Variable Mean Std.dev Min Max N 

DAWS Bessakerfjellet 8.12 4.11 1.23 23.77 1 826 

DAWS Buholmråsa fyr 7.44 3.53 1.47 21.44 1 826 
 
 

Table 3 contains descriptive statistics for wind speed at Bessakerfjellet and Buholmråsa fyr. As 

we can see from table 3, the measurements range from 1.23 to 23.77 m/s with a mean of 8.12 

m/s for Bessakerfjellet. The daily average wind speed measured at Buholmråsa fyr has a mean 

of 7.44 m/s and ranges from 1.47 to 21.44 m/s. It is observed that Bessakerfjellet has got higher 

mean, standard deviation and maximal value than Buholmråsa fyr. The minimum value is 

higher for Buholmråsa fyr than for Bessakerfjellet. However, the differences are not especially 

large. This is reflected in the high positive correlation between the two. 

 

 

3.1.3 Ytre Vikna 

The construction of Ytre Vikna wind mill farm was completed in October 2012. The wind mill 

farm is located in Vikna, Trøndelag and consists of 17 turbines (Multiconsult, 2019). We have 

measurements of wind speed from 01.10.2015 to 31.12.2018 from this wind mill farm. Hence, 

the descriptive statistics for this wind mill farm and related wind mill farm will be from the 

period 01.10.2015 to 31.12.2017. The closest weather station is Nordøyan fyr, which is located 

approximately 16 km from Ytre Vikna. The correlation between the wind speed measurements 

at these locations is 0.85. 

  
Table 4: Ytre Vikna and Nordøyan Fyr: Descriptive Statistics for DAWS 2015 – 2017 

Variable Mean Std.dev Min Max N 

DAWS Ytre Vikna 7.96 3.35 1.11 19.05 762 

DAWS Nordøyan fyr 8.98 3.95 1.01 21.38 815 

 

 

From table 4 we observe that Nordøyan fyr has a wider range in daily average wind speed, with 

a lower minimum value and a higher maximum value than Ytre Vikna. Nordøyan fyr also has 

a higher mean and standard deviation. The number of observations are uneven for the two 

locations, as there are several missing values for Ytre Vikna. 
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3.2 Financial data  

In the following section, an explanation of the calculations concerning operating income is 

given, and descriptive statistics for operating income are presented. Our focus is to examine if 

and in what scale operating income is affected by the wind speed. Thus, we calculate the 

operating revenue, as well as depreciation and operating expenses. We assume that revenue is 

a result of the amount of electricity sold and the daily spot price. The revenue is estimated by 

multiplying daily production by daily spot price for each wind mill farm.  

 

Daily electricity spot prices from 2013 to 2017 are retrieved from Nordpool. Prices from earlier 

years are not available, therefore, there are only five years of financial data for Valsneset and 

Bessakerfjellet. However, the wind speed measurements from Ytre Vikna begin on 01.10.2015, 

making this the wind mill farm with the least available data.  

 

When calculating operating income, depreciation and operating expenses are deducted from 

operating revenues. Although depreciation is not dependent on production, we choose to 

include this cost item in the calculation of operating income. One can argue that depreciation 

is unnecessary to include when hedging volumetric risk, as it can be interpreted as a fixed cost. 

Excluding this cost in the calculations of operating income could be an interesting approach to 

hedging with weather derivatives. However, depreciation is a part of the definition of operating 

income, and we choose to include it.  

 

According to Norwea (2012), the wind turbine constitutes approximately 70 – 75 % of the total 

investment costs. In our analysis, we choose to set the investment costs of the turbines to 70 %. 

Total investment costs for Valsneset and Bessakerfjellet are retrieved from TrønderEnergi´s 

websites, and were 110 million NOK and 500 million NOK, respectively. Sufficient 

information concerning investments costs for Ytre Vikna is not available. Thus, investment 

costs per wind mill at both Valsneset and Bessakerfjellet are calculated, and the average 

between the two is multiplied by the number of wind mills at Ytre Vikna. This results in total 

investment costs of 375 million NOK for Ytre Vikna.  

 

It is common to estimate a wind mill farm´s life to 20 – 25 years (Norwea, 2012). Yearly 

depreciation is calculated linearly with an expected lifetime of 25 years. Although degressive 

depreciation might have been preferable, sufficient information for the necessary calculations 
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is not available. Daily linear depreciation for Valsneset, Bessakerfjellet and Ytre Vikna is 

estimated to 8 439, 38 357 and 27 386 NOK, respectively.  

 

Norwea (2012) states that operating expenses usually lie between 120 and 180 NOK per MWh. 

We choose to set this rate to 135 NOK per MWh. This rate is set equal for all three wind mill 

farms and is multiplied by daily production to calculate daily operating expenses. We choose 

this rate to be below the average, due to the linear depreciation calculation. The daily 

depreciations are relatively high, and we choose a somewhat low rate for operating expenses to 

compensate for this.  

 
Table 5: Descriptive Statistics for Daily Operating Income 

Variable Mean Std.dev Min Max N 

OI Valsneset 1 956.77 11 219.35 – 16 563.28 46 835.40 1 826 

OI Bessakerfjellet 15 506.97 57 103.83 – 90 792.78 303 013.80 1 826 

OI Ytre Vikna 7 963.98 38 181.05 –63 646.32 197 231.50 762 

 

 

Table 5 contains descriptive data for daily operating income for each of the wind mill farms. 

As we can see there is a large span from the minimum value to the maximum value for all of 

them. Further, there are great differences between the means of the individual wind mill farms. 

Bessakerfjellet, which is the largest wind mill farm of the three, naturally has the highest mean 

for operating income, and also the highest standard deviation. Meanwhile, Valsneset has the 

fewest wind mills, and consequently it has the lowest mean, and also the lowest standard 

deviation.  

 

 

3.3 Statistical Analysis of Price and Production 

In what follows, we will shortly discuss the interrelation between the production and the energy 

prices. As mentioned above, wind power producers´ contribution to the total power supply is 

limited compared to hydropower producers. Therefore, we examine the correlations between 

production at each wind mill farm and the spot price. The table below presents correlations 

between daily spot price and daily production at each wind mill farm, as well as between the 

daily spot price and the total daily production. 
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Table 6: Correlation Between Daily Spot Price and Daily Production 
 Correlation 

Valsneset 0.07 

Bessakerfjellet 0.08 

Ytre Vikna 0.08 

Total 0.04 

 

 

From table 6, we observe a very low correlation between daily spot price and daily production 

at each wind mill farm and also the total production from all three. This indicates that supply 

of wind power has little effect on the spot price. This is in accordance with our expectations 

and implies that hedging volumetric risk may be beneficial.  

 

 

3.4 Statistical Analysis of Operating Income and Wind Speed 

In the following segment, statistical analyses of the relationship between operating income and 

wind speed are conducted. In our analysis, four different models have been proposed to explain 

the relationship between operating income and daily average wind speed. Because the analysis 

is focused on several different wind mill farms and weather stations, our discussion concerning 

the choice of model will deal with Valsneset. AR(1) models for the rest of the locations can be 

found in appendix A.1.   

 

Firstly, by using the ordinary least squares (OLS) method, a linear regression model is 

proposed: 

 

OI = – 16 271.10 + 2 395.67 * DAWS                                                                 

 

where OI is the dependent variable and represents daily operating income, and DAWS is the 

independent variable and represents daily average wind speed. This model has an R2 of 0.62. 

The linear model shows that a change of one m/s in wind speed will increase operating income 

with 2 396 NOK.  
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Figure 3: Valsneset: Correlogram for Unstandardized Residuals for Model 1 
 

 
 

From the correlogram in figure 3, significant autocorrelation is observed. This problem does 

not disappear when lagging the dependent variable. As no autocorrelation is a Gauss-Markov 

assumption for time series regression (Wooldridge, 2016), this model does not provide BLUE 

estimates. This is also the case for the two other wind mill farms and all of the weather stations. 

Thus, this model is in violation of the assumptions of OLS. Further, we therefore apply AR(1) 

models in our analysis.  

 

By using AR(1), a new linear model is proposed: 

 

OI = – 15 307.52 + 2 269.32 * DAWS                                                          (1) 

 

This model has an R2 of 0.81, implying that it has a very high degree of explanation. This means 

that 81 % of the variance in daily operating income can be explained by daily average wind 

speed. The linear model shows that a change in wind speed of one m/s will increase operating 

income with 2 269 NOK. Further, we observe that Valsneset and Bessakerfjellet have higher 

values of R2 than their corresponding independent weather stations, Ørland III and Buholmråsa 

fyr, respectively. However, Ytre Vikna has a lower R2 than Nordøyan fyr. This model has a 

Root Mean Square Error (RMSE) of 4 931.65 and a Bayesian information criterion (BIC) of 
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17.02. These values should be as low as possible. The linear model, as well as the scatter plot 

of data points, are illustrated by figure 4. 
 
 

Figure 4: Valsneset: Linear Model  

 
 

From figure 4, we observe that the data points are clustered around the linear line to some 

degree. However, a certain amount of observations are not located in accordance with the linear 

line. This indicates that another model may provide a better explanation of the relationship 

between operating income and wind speed. 

 

To examine if another model fits our data better, we suggest a quadratic model. Wind mills will 

cease to produce power when the wind speed exceeds a certain level. As operating income is 

affected by production volume and the spot price, it is natural to assume a decreasing effect of 

wind speed on operating income. The quadratic model can be written as: 

 

OI = – 16 805.06 + 2 678.19 * DAWS – 22.65 * DAWS2                            

 

This model yields an R2 of 0.81, which is the same as for the linear model. Also for this model, 

Valsneset and Bessakerfjellet have a higher R2 than their related weather stations, and Ytre 

Vikna has a lower R2 than Nordøyan fyr. This model has lower values for both RMSE and BIC 

than the linear model, which also is the case for Buholmråsa, Valsneset and Ørland III. For Ytre 
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Vikna and Nordøyan fyr, these values are higher for the quadratic model. This model is 

illustrated in figure 5, along with the scatter plot. 
 
 

Figure 5: Valsneset: Quadratic Model 

 
 

From figure 5, we observe a slightly decreasing effect of daily average wind speed on daily 

operating income. According to a report from Norwea (2012), production will stagnate when 

wind speed reaches 11 – 13 m/s and be constant until approximately 25 m/s. Therefore, we 

expect the curve to flatten a bit around 11 – 13 m/s. As the figure shows, the curve does not 

flatten to a noteworthy degree, due to the properties of the model.  

 

From the scatter plot, it seems that a different model than the first two, may be more suitable 

for the data. Therefore, our last proposed model is a third-degree polynomial model that can be 

written as follows: 

 

OI = – 6 156.84 – 1 749.29 * DAWS + 489.84 * DAWS2 – 17.13 * DAWS3 
 

This model has an R2 of 0.83, which is slightly higher than for the two previous AR(1) models. 

However, the difference is very small, and all three models have very high degrees of 

explanation. This model also has the same pattern for R2 for the wind mill farms and the weather 

stations. From graph 6 we observe that the regression line has a kind of S-shape. 
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Figure 6: Valsneset: Polynomial Model 

 
 

Figure 6 illustrates the polynomial model and the scatter plot. We observe that the pattern of 

this curve has a better fit to our expectations and the scatter plot. Compared to the other models, 

this model provides a more realistic picture of the relationship between operating income and 

wind speed. The polynomial model has a somewhat higher R2 than the other models. It also has 

the lowest values of RMSE and BIC among the three models. This is also the case for the other 

two wind mill farms and all of the weather stations. Hence, this model has the best fit to our 

data.  

 
Table 7: Model Summary Valsneset 

Models  R2 RMSE BIC 

OI = – 15 307.52 + 2 269.32 * DAWS 0.81 4 931.65 17.02 

OI = – 16 805.06 + 2 678.19 * DAWS – 22.65 * DAWS2 0.81 4 918.27 17.02 

OI = – 6 156.84 – 1 749.29 * DAWS + 489.84 * DAWS2 – 

17.13*WS3 

0.83 4 602.51 16.89 

 

 

Table 7 summarizes the different AR(1) models for Valsneset. Even though the polynomial 

model has the best fit to our data, it is important not to just choose the best fitting model, but a 

model that is applicable in pricing. Alexandridis (2013) argues that a common wind derivative 
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has a constant tick size, and that wind options have linear payouts. Therefore, we use the linear 

model for each location when choosing tick sizes.  
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4 Pricing Methods 

In the following section, different pricing methods are presented. Advantages and 

disadvantages of the methods are discussed, and two of the methods are derived thoroughly. 

We consider five different pricing methods that have previously been used on different kinds 

of weather derivatives, which may be fitting when pricing wind derivatives.  

 

When pricing financial derivatives, one usually applies pricing methods that are based on the 

assumption of no arbitrage (Brockett et al., 2006). A very common pricing method is the Black-

Scholes model which assumes that the payout of the option is dependent on an asset with a 

market price (McIntyre, 1999). McIntyre (1999) claims that a simple model based on Black-

Scholes can be suitable and give exact answers to pricing degree-day options. However, this 

method relies on restricting and unrealistic assumptions. Therefore, this kind of method may 

not be suitable for pricing weather derivatives because the market for weather derivatives is an 

incomplete market. That is, the underlying in these contracts is weather, which is not a tradable 

asset. (Brockett et al., 2006).  However, McIntyre (1999) and Leggio (2007) argues that it may 

be suitable when pricing options on heating degree days and precipitation, respectively.  

 

When choosing pricing methods, we will consider methods that have been proposed in earlier 

literature. Since there does not exist a lot of research on wind derivatives, we have also 

considered methods applied on other underlying variables, such as degree-days. This is the most 

common underlying variable (Alaton, Djehiche & Stillberger, 2002), and consequently there 

are more literature available for temperature derivatives.  

 

 

4.1 The Actuarial Pricing Method 

The actuarial pricing method uses past weather data to estimate the probability of future 

outcomes (Putnam, 2000). The objective is to simulate weather outcomes by using historical 

weather data. The method assumes that through independently repeating an experience many 

times, we obtain a more valid estimate of the expectation of the phenomenon that have been 

observed (Hamisultane, 2008). This is called the law of large numbers.  
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The actuarial method is widely used in different industries, such as health and life insurance 

and property (Cao, Li & Wei, 2003), and is also a common method used in practice when 

pricing weather derivatives (Brockett et al., 2006). However, due to the actuarial method being 

developed in a framework that does not account for financial markets, it is not very appropriate 

when pricing weather derivatives. According to Cao, Li & Wei (2003), this method is only 

favorable in cases with extreme weather conditions, since they do not occur in a certain pattern. 

Since we have observed seasonality in our data, this model is not suitable for our analysis.  

 

 

4.2 The Historical Burn Analysis 

Alexandridis (2013) argues that the historical burn analysis serves as a benchmark when pricing 

weather derivatives. The historical burn analysis is a method which assumes that on average 

the past reflects the future (Cao, Li & Wei, 2003). Following this method, you will see how the 

contract would have performed in the past and use the average of the realized payoffs as an 

estimate for the contract value. Historical burn analysis may be the easiest method to 

implement. According to Cao, Li & Wei (2003), this makes the method likely to cause large 

estimate errors.  

 

The assumption that the past distribution reflects the future distribution is not very realistic. 

Benth & Benth (2012) refer to issues concerning the use of historical burn analysis on 

derivatives with aggregated values as the underlying. This leads to a significant reduction in 

data points, which can give very few non-zero payoff data. This may result in an inaccurate and 

uncertain price estimate. However, our time series contain a sufficient amount of non-zero 

payoff data and we choose to apply this method in our analysis.  

 

When estimating a price by using the historical burn analysis, one calculates the average of the 

historical payoffs (Cao, Li & Wei, 2003). This average is considered the fair value of the 

weather derivative and serves as a benchmark price.  

 

4.3 The Monte Carlo Approach 

The concept behind the Monte Carlo approach is to create many simulations of the weather 

outcome and to calculate the payoff for each simulation (Putnam, 2000). These simulations 
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generate random numbers (Nelken, 2000). The advantage of this method is that there is no limit 

to the number of simulations, which is the case of the actuarial pricing method. However, this 

procedure is complicated, and it is necessary for the user to fully understand the simulations. 

Lack of understanding may lead to pricing errors (Putnam, 2000).  

 

Nelken (2000) argues that this method can be applied when pricing weather derivatives. 

Hamisultane (2008), however, states that this method may lead to unreliable prices due to 

illiquidity in already quoted prices. Our dataset is quite large, and numerous simulations would 

be complicated and time consuming. Therefore, we will not use this method in our pricing of 

weather derivatives.  

 

 

4.4 The McIntyre Pricing Method 

Although there have been several arguments against using Black-Scholes when pricing weather 

derivatives, McIntyre (1999) claims that his interpretation of Black-Scholes is sufficient for 

valuing these derivatives. The model assumes a normal distribution and is relatively simple to 

compute when compared to numerical methods, such as the Monte Carlo approach. Even 

though our dataset does not fit the assumption of normal distribution, we choose to calculate 

prices for the weather derivatives by using this model. The motive behind this is that the model 

is quite simple to compute and provides comparable prices. The model presented by McIntyre 

provides the price of a weather derivative 𝑊, and is given by: 

 

 𝑊 = 𝜑(𝑚 − 𝑘) ∙ 𝑁 +
𝜑(𝑚 − 𝑘)

𝜎 - + 𝜎/ ∙ 𝑃(𝑘) (2) 

 

 

where 𝜑	 = 	±1 for a call and a put, respectively. 𝑚 is the mean of the weather phenomenon 

(Leggio, 2007), while 𝑘 is the strike level and 𝜎/ represents the volatility. 𝑁(∙) is the cumulative 

standard normal distribution, while 𝑃 is the probability density function for a standard normal 

random variable.  
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We can write 𝑃(𝑘) as follows: 

 

 𝑃(𝑘) =
1

𝜎√2𝜋
𝑒8

(98:);
/<;  (3) 

 

 

The volatility in equation (3) stems from historical data, whereas the expected volatility of the 

price-maker is termed implied. This means that the implied volatility is subjective and 

dependent on the price-maker´s expectations concerning future trends and forecasts, as well as 

his or her position. Higher volatility implies greater risk and thus, a higher derivative price. 

Together with the implied mean, implied volatility represents the risk, and ergo the purchase 

price of the derivative.  

 

 

4.5 The Indifference Pricing Method 

Brockett et al. (2006) and Xu, Odening, & Mußhoff (2007) have presented the indifference 

pricing method, and our derivation of the indifference pricing formula is based on these two 

articles. The indifference pricing method is based on the principle of equivalent utility (Brockett 

et al., 2006). This approach deals with risk preferences and gives the indifference prices based 

on the expected utility arguments. When using this method, the investor´s objective is to 

maximize expected utility of his or her wealth.  

 

To maximize an investor´s wealth, we need to model the investor´s risk preferences (Xu, 

Odening, & Mußhoff, 2007). This is usually expressed with an exponential utility function 

which is used to derive the indifference pricing formula. The utility function is expressed as: 

 

 𝑈(𝑋) = 1 − 	𝑒8?∙@ (4) 

 

 

where γ is the absolute risk aversion parameter, which is greater than zero. X represents the 

investor´s wealth. We assume an economic actor to have a positive utility of wealth. Therefore, 
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we insert the number 1 in front of the negative exponential function presented by Xu, Odening, 

& Mußhoff (2007).  

In the following we assume two market participants, a seller and a buyer, and a two-date 

economy. In order to maximize their wealth at time T, both market participants optimize their 

investments at time t = 0. A two-date economy implies that no adjustment or trading is allowed 

between these two points. We will examine the decision-making process of both the seller and 

the buyer.  

 

The seller´s initial wealth is denoted by 𝑥B,  at time t = 0. He has to consider the amount, 𝛼B, of 

capital to invest in a risky portfolio, in addition to selling 𝑘B shares of a weather derivative at 

the price 𝐹B(𝐼). The return of the capital market investment is denoted by 𝑟B. The remaining 

wealth is invested in a risk-free asset, with return 𝑟G. If selling shares of weather contracts is 

not an option, the wealth of the seller will be: 

 

 𝑋BHI = 	 (𝑥B −	𝛼B) ∙ J1 + 𝑟GK + 𝛼B ∙ (1 + 𝑟B) (5) 

 

 

If selling the weather derivative is possible, the wealth of the seller is: 

 

 𝑋BH = 	 (𝑥B − 𝛼B + 𝑘B ∙ 𝐹B) ∙ J1 + 𝑟GK + 𝛼B ∙ (1 + 𝑟B) − 𝑘B ∙ 𝑊L (6) 

 

 

where 𝑊L is the payoff related to the predetermined weather index. For simplicity, we hereby 

refer to (1 + 𝑟G) and (1 + 𝑟B,) as 𝑞G and 𝑞B, respectively. The payoff of the weather derivative 

depends on the tick size 𝐿, and is calculated as follows: 

 

 𝑊L = 𝑚𝑎𝑥(0, 𝐾 − 𝐼L) ∙ 𝐿 (7) 

 

 

where 𝐾 and 𝐼L represent the strike level and the weather index at time t = T, respectively. 

Equation (7) represents a put option, where the buyer receives a payout if the weather index is 

below the strike level.  
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The decision-making process of the buyer is similar to the one of the seller. The difference is 

that the buyer spends an amount of capital, 𝛼S, on a risky production activity. This activity is 

to some degree dependent on weather conditions. In addition, the buyer has the opportunity to 

purchase 𝑘S  units of a weather derivative. As for the seller, the remaining wealth of the buyer, 

is invested in a risk-free asset. The return on production is denoted by 𝑟S. The initial wealth of 

the buyer is denoted 𝑥S, and also here, (1 + 𝑟S) we refer to as 𝑞S. The terminal wealth of the 

buyer without investing in the weather derivative is: 

 

 𝑋SHI = (𝑥S − 𝛼S) ∙ 𝑞G + 𝛼S ∙ 𝑞S (8) 

 

 

Including the opportunity to purchase the weather derivative, the wealth of the buyer is: 

 

 𝑋SH = (𝑥S − 𝛼S − 𝑘S ∙ 𝐹S) ∙ 𝑞G + 𝛼S ∙ 𝑞S + 𝑘S ∙ 𝑊L (9) 

 

 

Further, we derive the indifference price of the seller and the buyer in accordance with this 

framework. The seller´s optimal amount invested in the risky asset, 𝛼B, is found in the 

intersection where the seller is indifferent between including the weather derivative in his 

portfolio or not. This is given by: 

 

 𝑠𝑢𝑝WX	𝐸[𝑈(𝑋B
H)] = 𝑠𝑢𝑝WX𝐸[𝑈(𝑋B

HI)] (10) 

 

 

The next step in the process of Xu, Odening, & Mußhoff, (2007) is to approximate the certainty 

equivalent (CE) of the indifference price by using Pratt´s Theorem. Further, they replace the 

expected utility in equation (4) with the CE in order to get a closed form solution of the 

indifferent price. The CE can be written as follows: 

 

 𝐶𝐸 = 𝐸(𝑋) −
𝛾
2 ∙ 𝜎

/(𝑋) (11) 
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where 𝐸(𝑋) represents the expected value of terminal wealth and 𝜎/(𝑋) represents the variance 

of terminal wealth. Replacing the expected utility with the CE gives a new expression of the 

indifference price: 

 

 𝑠𝑢𝑝WX	𝐸 ^𝑈(𝑋B
H) −

𝛾B
2 ∙ 𝜎

/(𝑋BH)_ = 𝑠𝑢𝑝WX𝐸 ^𝑈(𝑋B
HI) −

𝛾B
2 ∙ 𝜎

/(𝑋BHI)_ (12) 

 

 

Inserting the equations for wealth of the seller without and with the weather derivative, 

produces explicit expressions for the CE of the wealth at time t = T for both cases: 

 

 𝐶𝐸HI = `𝑥B ∙ 𝑞G + 𝛼B ∙ J𝐸(𝑞B) − 𝑞GK −
𝛾B
2 ∙ 𝛼B

/ ∙ 𝜎aX
/ b (13) 

 

 

 
𝐶𝐸H = +𝑥B ∙ 𝑞G + 𝑘B ∙ 𝐹B ∙ 𝑞G + 𝛼B ∙ J𝐸(𝑞B) − 𝑞GK − 𝑘B ∙ 𝐸(𝑊) −

𝛾B
2 ∙ 𝛼B

/ ∙ 𝜎aX
/

−
𝛾B
2 ∙ 𝑘B

/ ∙ 𝜎c/ + 𝛾B ∙ 𝛼B ∙ 𝑘B ∙ 𝐶𝑂𝑉(𝑞B	,𝑊)- 
(14) 

 

Here, 𝐸(𝑊) represents expected payoff of the weather derivative, while 𝐸(𝑞B) represents 

expected 𝑞B. The corresponding variances are given by 𝜎aX
/  and 𝜎c/  and 𝐶𝑂𝑉(𝑞B,𝑊) denotes 

the covariance between 𝑞B	and 𝑊. The optimal amount of capital to invest in a risky portfolio 

is found via the first order conditions, and give the following solutions: 

 𝛼B∗HI =
𝐸(𝑞B) − 𝑞G
𝛾B ∙ 𝜎aX/

 (15) 

 

 𝛼B∗H =
𝐸(𝑞B) − 𝑞G + 𝛾B ∙ 𝑘B ∙ 𝐶𝑂𝑉(𝑞B,𝑊)

𝛾B ∙ 𝜎aX/
 (16) 
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Furthermore, we insert these optimal amounts of capital shares into (13) and (14). By putting 

the equations equal and solving 𝐹B, we obtain an expression for the price of the weather 

derivative of the seller: 

 

 𝐹B =
1
𝑞G
∙ (𝐸(𝑊) + 𝜋B) (17) 

where: 

 𝜋B = −
𝛾B
2 ∙ 𝑘B ∙ 𝜎c

/ ∙ J𝜌aX,c
/ − 1K −

𝜎c
𝜎aX

∙ J𝐸(𝑞B) − 𝑞GK ∙ 𝜌aX,c (18) 

 

Here, 𝜌aX,c	represents the correlation between the return of the capital market investment and 

the payoff of the weather derivative. 𝜋B	represents a risk premium which can be either positive 

or negative. The price is a result of the expected payoff of the weather derivative, in addition to 

this risk premium, discounted by the risk-free rate.  

By following a pattern similar to the one of the seller, we can calculate the optimal amount of 

capital to spend on risky production activity without using the option, 𝛼S∗HI, and with using the 

option, 𝛼S∗H, for the buyer. The optimal amounts of capital for the buyer are calculated as 

follows: 

 𝛼S∗HI =
𝐸(𝑞S) − 𝑞G
𝛾S ∙ 𝜎ah/

 (19) 

 

 𝛼S∗H =
𝐸(𝑞S) − 𝑞G − 𝛾S ∙ 𝑘S ∙ 𝐶𝑂𝑉(𝑞S,𝑊)

𝛾S ∙ 𝜎ah/
 (20) 

 

Here, 𝐸(𝑞S) represents the expected value of 𝑞S while 𝜎ah
/  represents the variance of the return 

on production. 𝐶𝑂𝑉(𝑞S,𝑊) represents the covariance between 𝑞S	and 𝑊. As for the seller, we 
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use these optimal amounts of capital shares to find the price of the weather derivative for the 

buyer: 

 𝐹S =
1
𝑞G
∙ (𝐸(𝑊) + 𝜋S) (21) 

where: 

 𝜋S = −
𝛾S
2 ∙ 𝑘S ∙ 𝜎c/ ∙ J𝜌ah,c

/ − 1K −
𝜎c
𝜎ah

∙ J𝐸(𝑞S) − 𝑞GK ∙ 𝜌ah,c (22) 

 

The structure of the indifference price for the buyer is similar to the one for the seller. Here, 

𝜌ah,c represents the correlation between the return of the risky production and the payoff of the 

weather derivative. The risk premium for the buyer, 𝜋S, can also be either positive or negative. 

In this framework, a trade of a weather derivative between buyer and seller will only take place 

if the buyer is willing to pay a greater price than the seller is willing to sell for. This condition 

is expressed as follows: 

 −
J𝐸(𝑞S) − 𝑞GK ∙ 𝜌ah,c

𝜎ah
> −

J𝐸(𝑞B) − 𝑞GK ∙ 𝜌aX,c
𝜎aX

 (23) 

 

Xu, Odening, & Mußhoff (2007) argues that indifference pricing unites the financial and the 

actuarial approaches used for pricing non-tradable assets, such as weather. This method can be 

categorized within the framework of financial pricing of derivatives. Thus, it has a significant 

theoretical foundation. However, because of the assumptions that have been made, the method 

is quite simple with an actuarial interpretation.  

There are several advantages concerning this valuation method. One of them is the fact that it 

evades the challenge of determining the market price of risk. This implies the cost of specifying 

a utility function. However, this is a necessary cost when no-arbitrage arguments are 

insufficient in the process of determining a price. Further, it considers individual risk and 

estimates its impact on the buyer´s willingness to pay for the weather derivative. 
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5 Empirical Analysis 

In the following section, we will apply the indifference pricing method and the McIntyre 

method to find prices for our constructed wind speed put options. Weather derivatives with 

wind as the underlying are not very widespread (Brockett, Wang & Yang, 2005). To our 

knowledge, the application of wind derivatives has not been used in the energy sector earlier.  

Hence, we choose to apply pricing methods that mostly have been used when pricing 

temperature derivatives.  

We construct both a yearly wind speed put option and a quarterly wind speed put option for 

each wind mill farm and weather station. All the constructed put options have strike levels of 

3.5 m/s. We choose this strike level since power production starts when the wind speed exceeds 

3 – 4 m/s. This strike level implies that the options give the buyer a payout each day the average 

wind speed is below 3.5 m/s. The payout is dependent on both the tick size and the difference 

between actual daily average wind speed and the strike level. The yearly options span over a 

year, while the quarterly options span over a quarter.  

First, we use historical burn analysis to find prices for the different put options. Then, we find 

the related prices by using the McIntyre method. Furthermore, the indifference pricing approach 

is used to find both TrønderEnergi´s and the seller´s willingness to buy and sell the weather 

derivatives. Both the McIntyre method and the indifference pricing method have their basis in 

financial frameworks. The indifference pricing method is based on utility maximization 

(Alexandridis, 2013), whereas the McIntyre pricing method is based on the Black-Scholes 

model (McIntyre, 1999). Finally, we use the prices we have found to examine if TrønderEnergi 

can smooth operating income and gain extra profit by purchasing wind speed put options.  

As mentioned, we have retrieved data from both TrønderEnergi´s own wind mill farms, in 

addition to independent weather stations located nearby. We use these related locations to 

examine if basis risk affects the profitability of the weather derivatives. This also provides 

insight concerning the decision making of actors considering buying weather derivatives. This 

can demonstrate in which degree the distance between the area the contract is written on and 

the location the buyer wishes to cover affects both price and profitability.  
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According to Alexandridis (2013), a common wind derivative has a constant tick size and strike 

level. This is a linear approach which implies that TrønderEnergi will receive a fixed amount 

of money per m/s the measured wind speed is below the predetermined strike level. In the same 

matter as Leggio (2007), we choose the tick sizes according to our linear AR(1) models. For 

the wind mill farm Valsneset, the AR(1) model shows that for each additional m/s the operating 

income increases by 2 269 NOK. Therefore, we choose this amount as the tick size. However, 

this tick size is only relevant for Valsneset. Each of the wind mill farms and weather stations 

have individual tick sizes that stem from their own linear AR(1) models.  

A wind turbine usually starts operating at 2 - 3 m/s, while production of electrical power is not 

activated until the wind speed reaches 3 - 4 m/s (Norwea, 2012). When the wind speed exceeds 

25 m/s, the turbine shuts down. Information from TrønderEnergi tells us that their turbines do 

not stop at 25 m/s, but gradually slows down until the wind speed reaches 34 m/s and the turbine 

and production is fully shut down. A wind speed of 25 m/s indicates full storm, and production 

is gradually or fully shut down to prevent damages. However, there are no cases of wind speed 

above 25 m/s for any of the wind mill farms or weather stations. Thus, we will not focus on 

hedging for extreme wind speeds, but rather on the downside risk. 

The payoff received from the put option at the expiration day T is dependent on the strike level 

K, the tick size L and the daily average wind speed index IT. 

𝑊L = 𝑚𝑎𝑥(0, 𝐾 − 𝐼L) ∙ 𝐿 

 

In the following sub sections, we find prices for our constructed wind speed put options by 

applying the historical burn analysis, the McIntyre method and the indifference pricing method.  

 

5.1 Historical Burn Analysis 

First, we use the Historical Burn Analysis to calculate yearly and quarterly prices for each wind 

mill farm and weather station. We choose to start with this method, as it provides a good 

indication for what the correct prices should be. These prices function as a benchmark which 

we can use for comparison when using other methods. Although this is a simple method with 
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possible errors, we still choose to calculate prices for the weather derivatives with this method. 

Characteristics for both yearly and quarterly put options are presented in the tables below.   
 
 
Table 8: Historical Burn Analysis: Yearly Put Option Characteristics for Valsneset 

Parameters 

Tick size L 2 269.32 NOK 

Strike level K 3.5 m/s 

Time to maturity T 1 

Expected payoff E(W) 59 838.55 NOK 

Standard deviation 𝜎w 21 913.55 NOK 

Contract size k 1 
 
 
 
Table 9: Historical Burn Analysis: Quarterly Put Option Characteristics for Valsneset 

Parameters 

Tick size L 2 269.32 NOK 

Strike level K 3.5 m/s 

Time to maturity T 1 

Expected payoff E(W) 15 114.66 NOK 

Standard deviation 𝜎w 14 368.03 NOK 

Contract size k 1 

 

 

The payout is based on a strike level of 3.5 m/s, which is the level used when calculating both 

yearly and quarterly payouts from historical data. These payouts are applied when finding the 

prices for the weather derivatives. Further, the averages of both yearly and quarterly payouts 

are calculated for each wind mill farm and weather station. These averages function as prices 

and are presented in the table below.  
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Table 10: Historical Burn Analysis: Yearly and Quarterly Option Prices 
Location Yearly Prices Quarterly Prices 

Valsneset 59 838.55 NOK 15 114.66 NOK 

Ørland III 127 257.66 NOK 31 899.01 NOK 

Bessakerfjellet 242 445.25 NOK 62 793.55 NOK 

Buholmråsa fyr 226 310.82 NOK 59 758.05 NOK 

Ytre Vikna 77 972.19 NOK 21 434.05 NOK 

Nordøyan fyr 132 725.70 NOK 44 241.90 NOK 

 

In table 10 the yearly and quarterly prices calculated with the historical burn analysis are 

presented. These prices represent the yearly and quarterly expected payouts for each location 

and suffice as bases for comparison with other methods.  

 

5.2 McIntyre Pricing Method 

As for indifference pricing, we set the strike level equal to 3.5 m/s. This is beneficial when 

comparing different prices. In accordance with Leggio (2007), we set implied volatility equal 

to historical standard deviation for daily average wind speed.  

 
 
Table 11: McIntyre Pricing Method: Yearly Put Option Characteristics for Valsneset 

Parameters 

Mean m 7.61 

Strike level K 3.5 

Time to maturity T 1 

Probability density function P(k) 0.06 

Standard deviation 𝜎H 3.68 

Type of option parameter 𝜑 – 1 

 

 

With the parameters in table 12 the price of the weather derivative for Valsneset is calculated 

to 0.24 NOK. The results are similar for the rest of the wind mill farms and the weather stations, 
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ranging from – 0.03 to 0.27 NOK. All results are included in appendix A.3. These prices seem 

unrealistic, as they are very low relative to expected payoff of the contracts. In addition, these 

prices are not in accordance with the benchmark calculated with the historical burn analysis.  

 

The two articles on which we have based our McIntyre pricing method, McIntyre (1999) and 

Leggio (2007), both state that the McIntyre pricing method is a satisfying method when pricing 

weather derivatives. However, the underlying variables used in their research, are heating 

degree days and precipitation. Based on our results, this method seems inappropriate when 

pricing weather option with wind speed as the underlying. Thus, we do not analyze these prices 

any further. 

 

 

5.3 Indifference pricing method 

Throughout this section, we apply the indifference pricing method to find the prices for the 

different wind mill farms and weather stations. As in the rest of the thesis, we present the 

calculations and results for Valsneset, while results for the other wind mill farms and weather 

stations are presented in appendix A.2.  

By using the following exponential function, the utility of operating income of Valsneset is 

maximized: 

 𝑈(𝑋) = 1−	𝑒8?∙@  

 

 

From historical data, the expected payoff 𝐸(𝑊) and its standard deviation 𝜎c are found. They 

are calculated to 202 354 and 56 682 NOK, respectively.  

 

Further, the risk aversion parameter 𝛾 must be defined. The relative risk aversion (RRA) 

represents the amount of risk a decision maker is willing to take on relative to his wealth, 

whereas the absolute risk aversion (ARA) measures risk aversion for a given level of wealth 

(Copeland, Weston & Shastri, 2014). Gandelman & Murillio (2014) estimates that RRA on 

country level varies between zero and three. In this article, a figure displays Norway´s RRA to 

be between –0.1 and 2.5. When determining the buyer´s RRA we choose the average of 1.2. 
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Operating income X is calculated to 714 611.08 NOK, which is the historical average of the 

period 2013 to 2017. The buyer´s ARA can be found by: 

 

 𝐴𝑅𝐴(𝑋) = 	
𝑅𝑅𝐴(𝑋)

𝑋 =
1.2

714	611.08 = 1.679 ∙ 108r  

 

 

According to Monoyios (2014), market participants typically have a risk aversion of 108r. 

Thus, we choose to set the seller´s ARA to this level. Jaggia & Thosar (2000) argues that when 

the risk horizon is longer, individuals tend to be more risk tolerant. However, the utility function 

used in this method does not take time into consideration. The objective of this thesis is not to 

focus on the time aspect of utility functions. Therefore, we choose a constant ARA measure 

when calculating both yearly and quarterly put option prices.  

 

When estimating the return on the capital market investment, Oslo Stock Exchange Benchmark 

from Share Indices Oslo Stock Exchange approximates as market portfolio. Yearly data from 

2013 to 2017 is obtained, and risky market return 𝑟B is calculated to 13 %. The corresponding 

standard deviation 𝜎sX is 0.08. The correlation between the market return and the payoff of the 

weather derivative is 0.31. This is, to some degree, in accordance with Brockett et al. (2009), 

who states that there is a low correlation between the payoff of weather derivatives and market 

return.  

 

Furthermore, the risk-free rate is based on a five-year Norwegian government bond quoted at 

1.44 % in 2018 (Norges Bank, 2019). We have adjusted this rate to 1.5 %, due to particularly 

low interest rates during the last couple of years. Additionally, Norges Bank increased the key 

rate from 0.75 % to 1.00 % on the 21st of March 2019, and further increases are expected 

(Winther & Christensen, 2019). Since our focus is on short term risk, the risk-free rate is set to 

1.5 %. When calculating the quarterly option prices, the risk-free rate is divided by four. 

 

When estimating the return on the production activity of the buyer, the return on net operating 

assets (RNOA) is used as measurement for TrønderEnergi´s production return. Power 

production is the main activity driving the wind mill farms´ revenues and RNOA reflects the 

return on TrønderEnergi´s assets that are generating revenue. RNOA is calculated as follows: 
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 𝑅𝑁𝑂𝐴 = 	
𝑂𝐼	 ∙ 100
𝐴𝑣𝑔.		𝑁𝑂𝐴 = 1.51	% 

 

 

Here, net operating income (NOA) is estimated by deducting operating liabilities from 

operating assets. The correlation between return on production 𝑟S and the weather derivative´s 

payoff W is 0.63. Operating assets and liabilities are retrieved from the balance sheets in the 

annual reports from TrønderEnergi. Both the common and individual characteristics of the 

yearly put option written on Valsneset are presented in the tables below.  

 
Table 12: Indifference Pricing Method: Common Yearly Put Option Characteristics for Seller and Buyer 

Parameters 

Tick size L 2 269.32 NOK 

Strike level K 3.5 m/s 

Time to maturity T 1 

Expected payout E(W) 59 838.55 NOK 

Standard deviation 𝜎H 21 913.55 NOK 

Risk-free rate 𝑟G 1.5 % 

Contract size k 1 

 

 
Table 13: Indifference Pricing Method: Individual Yearly Put Option Characteristics  

Parameters Buyer Seller 

Expected return on risky activity, E(𝑟S) & E(𝑟B) 1.51 % 13.00 % 

Standard deviation, 𝜎ah& 𝜎aX 2.02 % 8.14 % 

Correlation, 𝜌(𝑞S,W) & 𝜌(𝑞B,W) 0.47 – 0.17 

Absolute risk aversion, 𝛾S & 𝛾B 1.68 ∙ 108r	 108r 

 

 

5.3.1 Results from Indifference Pricing  

On the basis of the characteristics in table 12 and 13, the indifference price of the seller and 

buyer is calculated from equation (15) and (19). With the predetermined strike level of 3.5 m/s, 

the indifference price of the seller and the buyer are 49 517 and 58 667 NOK respectively for 

Valsneset. In table 14, yearly indifference prices of both the seller and the buyer with different 



 39 

strike levels are presented. As we can see, the price of the buyer exceeds the price of the seller 

in all cases. This is observed in figure 7 below. Thus, trading between TrønderEnergi and the 

seller is possible, as long as equation (23) holds.  

 
Table 14: Indifference Pricing Method: Yearly Put Prices with Different Strike Levels 

Strike level (m/s) Seller (NOK) Buyer (NOK) 

2.0 481.46 899.63 

2.5 5 369.34 6 034.95 

3.0 18 365.45 23 168.89 

3.5 49 517.11 58 667.32 

4.0 99 693.42 116 658.06 

4.5 170 263.09 197 395.40 

5.0 266 816.94 301 566.57 

 
Figure 7: Yearly Indifference Prices of Buyer and Seller 

 
 
As observed from table 14, a small change in the strike level leads to a large change in prices. 

Due to the large amount of data points, an increase of 0.5 m/s gives many additional non-zero 

payout data. This leads to a considerable increase in expected payout, and thus, in the price as 

well. Figure 7 illustrates the indifference prices with different strike levels. A range of possible 

prices is reflected by the area between the two lines. The yearly indifference price of both the 

buyer and the seller increases as the strike level increases. Further, we will show quarterly prices 

with different strike levels 
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Table 15: Indifference Pricing Method: Quarterly Put Prices with Different Strike Levels  
Strike level (m/s) Seller (NOK) Buyer (NOK) 

2.0 121.71 232.19 

2.5 1 356.84 1 521.22 

3.0 4 688.00 5 824.42 

3.5 12 756.32 14 439.24 

4.0 25 965.81 27 774.22 

4.5 44 873.98 45 072.26 

5.0 71 140.63 65 383.14 

 

 
Figure 8: Quarterly Indifference Prices of Buyer and Seller 

 
 

Table 15 shows indifference prices with different strike levels. We observe that the price 

changes are smaller for quarterly put options than for yearly. This indicates that the prices are 

less sensitive to changes in the strike level. The reason for this is that an increased strike level 

gives fewer additional non-zero payout data points, as the period is shorter. As one can observe 

from both figure 8 and table 15, when the strike level exceeds 4.5 m/s, equation (23) is violated, 

as the seller´s indifference price will be higher than the buyer´s. Transactions will not take place 

in such cases.  

 

In the tables below, the effect of both yearly and quarterly put options on operating is presented. 
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Table 16: Indifference Pricing Method: Yearly Operating Income with and without Yearly Put Option 

Year Payout (NOK) OI without option (NOK) OI with option (NOK) Change 

2013 85 502.15 1 497 707.55 1 529 117.49 2.10 % 

2014 80 699.89 880 840.79 907 448.47 3.02 % 

2015 36 121.92 – 623 696.36 – 641 666.68 – 2.88 % 

2016 46 949.41 149 631.33 142 488.53 – 4.77 % 

2017 49 919.39 1 668 572.11 1 664 399.29 – 0.25 % 

Average 59 838.55 714 611.08 720 357.41 0.80 % 

 
 
 
Table 17: Indifference Pricing Method: Quarterly Operating Income with and without Quarterly Put Option 

Quarter Payout (NOK) OI without option (NOK) OI with option (NOK) Change 

Q1 2013 10 602.00 511 908.24 508 618.98 – 0,64 % 

Q2 2013 28 295.85 53 491.27 67 895.86 26.93 % 

Q3 2013 35 139.49 – 127 334.53 – 106 086.30 16.69 % 

Q4 2013 11 464.80 1 059 642.58 1 057 216.11 – 0.23 % 

Q1 2014 9 875.33 840 853.92 836 837.99 – 0.48 % 

Q2 2014 19 622.06 – 332 351.58 – 326 620.78 1.72 % 

Q3 2014 51 202.50 – 349 391.84 – 312 080.60 10.68 % 

Q4 2014 0.00 721 730.30 707 839.03 – 1.92 % 

Q1 2015 3 625.24 662 522.65 652 256.63 – 1.55 % 

Q2 2015 10 657.30 – 399 995.38 – 403 229.35 – 0.81 % 

Q3 2015 14 962.39 – 808 659.36 – 807 588.23 0.13 % 

Q4 2015 6 876.99 – 77 564.30 – 84 578.57 – 9.04 % 

Q1 2016 2 094.39 – 48 982.48 – 60 779.34 – 24.08 % 

Q2 2016 41 754.56 – 402 630.22 – 374 766.92 6.92 % 

Q3 2016 3 100.46 – 433 840.99 – 444 631.79 – 2.49 % 

Q4 2016 3 100.46 1 035 085.02 1 024 294.21 – 1.04 % 

Q1 2017 2 055.63 – 48 982.48 – 60 818.11 – 24.16 % 

Q2 2017 14 661.70 – 43 040.06 – 42 269.62 1.79 % 

Q3 2017 25 890.12 – 7 763.76 4 235.09 154.55 % 

Q4 2017 7 311.94 955 437.57 948 858.25 – 0.69 % 

Average 15 114.66 138 006.73 139 230.13 0.89 % 
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Table 16 and 17 shows what historical operating income would be with and without hedging 

with yearly and quarterly put options, respectively. Hedged operating income is calculated as 

follows: 

 

𝐻𝑒𝑑𝑔𝑒𝑑	𝑂𝐼	 = 	𝑂𝐼	𝑏𝑒𝑓𝑜𝑟𝑒	𝑡ℎ𝑒	ℎ𝑒𝑑𝑔𝑒	– 	𝑃𝑢𝑡	𝑜𝑝𝑡𝑖𝑜𝑛	𝑝𝑟𝑖𝑐𝑒	 + 	𝑃𝑎𝑦𝑜𝑢𝑡 

 

 

From table 16 we observe that using a yearly put option has a positive effect on operating 

income in 2013 and 2014. For the years 2015 to 2017, the effect is negative. During the five-

year period, the operating income of Valsneset would increase by 28 732 NOK in total, if a 

yearly put option had been purchased. Table 17 shows tendencies to positive effects of the 

hedge in quarters two and three, and negative effects in quarters one and four. This is in 

accordance with the observed seasonality.  

 

For a counterparty to be willing to sell these options, there must be a possibility to gain profit. 

We observe that the payout varies from year to year and quarter to quarter. As the buyer gains 

a profit in some periods and loses in others, there is an incentive for both the buyer and the 

seller to enter into these contracts.  

 

In the table below, an overview of the buyer´s total profitability of both yearly and quarterly 

put options for all wind mill farms and weather stations is presented. There are some cases 

where the price of the buyer does not exceed the price of the seller. This implies that equation 

(23) does not hold, and finding prices are not possible by using this method. In tables 18 and 

19, such cases are described as not feasible.   

 
Table 18: Total Payoff from Yearly and Quarterly Options 2013 – 2017   

Location Yearly options (NOK) Quarterly options (NOK) 

Valsneset 28 731 24 468 

Ørland III 18 342 Not feasible 

Bessakerfjellet Not feasible – 162 482 

Buholmråsa fyr Not feasible 55 184 

Ytre Vikna Not feasible 32 159 

Nordøyan fyr 29 159 Not feasible 
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Table 18 presents the total payoff from purchasing yearly and quarterly put options throughout 

the five-year period. The total payoff (TP) is calculated as the sum of the difference between 

operating income with and without hedging, as shown below: 

 

𝑇𝑃 =�(𝐻𝑒𝑑𝑔𝑒𝑑	𝑂𝐼� − 𝑂𝐼	𝑏𝑒𝑓𝑜𝑟𝑒	𝑡ℎ𝑒	ℎ𝑒𝑑𝑔𝑒�)
�

 

 

 

Valsneset is the only wind mill farm where prices were found for both yearly and quarterly 

options. From table 18, it can be observed that purchasing yearly options are more profitable 

than quarterly options in the period 2013 to 2017. When the payout from the options exceeds 

the price, the buyer gains a profit. This is the case for all locations during this period, except 

for Bessakerfjellet. For Bessakerfjellet it is not profitable to purchase options, as the price 

exceeds the payout in this period.  

 

An objective when purchasing a wind speed derivative, can also be to smooth operating income. 

We examine the effects the hedge has on the volatility in operating income. The standard 

deviation functions as a measure for volatility, and we calculate the percentage change in the 

standard deviation in operating income with and without hedging. The desired effect is a 

decrease in standard deviation. 

 
Table 19: Change in Standard deviation in Operating Income with Yearly and Quarterly Options 

Location Yearly options Quarterly options 

Valsneset + 1.47 % – 1.07 % 

Ørland III + 0.30 % Not feasible 

Bessakerfjellet Not feasible – 0.89 % 

Buholmråsa fyr Not feasible – 0.89 % 

Ytre Vikna Not feasible – 0.34 % 

Nordøyan fyr – 0.80 % Not feasible 

 

 

In table 19 we see the percentage changes in standard deviation in operating income for all 

locations by purchasing yearly and quarterly options. As we observe, purchasing yearly put 

options for Valsneset and Ørland III leads to an increase in standard deviation. Furthermore, 



 44 

purchasing quarterly options would lead to a decrease in standard deviation in all cases that are 

feasible. In addition, the effect on standard deviation would also be positive if TrønderEnergi 

purchased yearly put options for Nordøyan fyr during the five-year period.  

 

In the tables below, the yearly and quarterly indifference prices of the seller and the buyer are 

presented for all locations with both yearly and quarterly options. In addition, the price of the 

put option is set to the average of the seller and the buyer´s prices. In the cases where equation 

(23) does not hold, a transaction will not take place and there is no feasible price. 

 
Table 20: Indifference Pricing Method: Yearly Option Prices 

Location Seller Buyer Price 

Valsneset 49 517.11 58 667.32 54 092.21 

Ørland III 122 638.41 124 539.97 123 589.19 

Bessakerfjellet 263 012.45 201 674.37 Not feasible 

Buholmråsa fyr 201 408.10 192 137.09 Not feasible 

Ytre Vikna – 14 359.31 56371.40 Not feasible 

Nordøyan fyr 112 344.45 133 667.49 123 005.97 

 

 
Table 21: Indifference Pricing Method: Quarterly Option Prices 

Location Seller Buyer Price 

Valsneset 12 756.32 15 026,21 13 891.26 

Ørland III 31 641.94 29 620,90 Not feasible 

Bessakerfjellet 70 303.70 71 531.61 70 917.66 

Buholmråsa fyr 55 446,98 64 621.76 60 034.37 

Ytre Vikna 12 874.31 22 847.44 17 860.87 

Nordøyan fyr 90 503.38 46 048.29 Not feasible 

 

 
From tables 20 and 21, it is observed that the prices calculated with the indifference pricing 

method are in compliance with the prices calculated by using the historical burn analysis. The 

latter is consistently a bit higher than the former, but in general the indifference prices are close 

to benchmark. Thus, we consider these prices to be quite reliable. 
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Table 20 presents indifference prices for both the seller and the buyer, as well as the prices of 

the yearly put options. In accordance with equation (23), we observe that it is possible to write 

yearly contracts for Valsneset, Ørland III and Nordøyan fyr. All these contracts would be 

profitable for TrønderEnergi to enter into. Further, table 21 presents indifference prices for 

quarterly put options, in addition to actual prices of the put options. For the quarterly put 

options, transactions are possible for Valsneset, Bessakerfjellet, Buholmråsa fyr and Ytre 

Vikna. However, it would only be profitable to enter into contracts written on Valsneset, 

Buholmråsa fyr and Ytre Vikna. Purchasing quarterly put options to hedge operating income 

for Bessakerfjellet would be unprofitable for TrønderEnergi.  

 

 

5.4 Basis Risk 

One aspect of weather derivatives we wish to examine in our thesis is basis risk. By finding 

prices as well as testing the effects of the wind derivatives on operating income for both the 

wind mill farms and their closest weather station, we gain insight into the basis risk. The 

indifference pricing method does not provide prices for both quarterly and yearly options for 

all locations. Therefore, our base for studying the basis risk is limited. 

 

Valsneset is the only wind mill farm for which we find a price for yearly put options for itself 

and its related weather station, Ørland III. Even though the distance between them is only 12.6 

km, the difference between the prices is quite large. The price of a yearly put option written on 

Ørland III is more than twice the price of the same option written on Valsneset. This 

demonstrates how basis risk can affect the price level of a weather derivative. 

 

For quarterly options, we find a price for Bessakerfjellet, as well as its related weather station, 

Buhomlråsa fyr. Buholmråsa fyr is located 20.5 km from Bessakerfjellet, but the difference 

between these two prices is not very large. Here, we observe that a put option written on 

TrønderEnergi´s own wind mill farm has the higher price, and also a negative payout in total 

during the period. 

 

Based on theory, we assume that TrønderEnergi cannot purchase a put option written on their 

own wind mill farms. This means that if TrønderEnergi wishes to hedge operating income for 

Valsneset and Bessakerfjellet, they have to purchase options written on Ørland III and 
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Buhomlråsa fyr, respectively. We observe that this results in a much higher price, and a lower 

total payoff during the five-year period for Ørland III compared to Valsneset.  Thus, according 

to our calculations, TrønderEnergi would have been better off writing a put option on Valsneset, 

if this was a possibility. 

 

However, purchasing put options written on Buholmråsa fyr in order to hedge operating income 

for Bessakerfjellet, results in a lower price and a much higher total payoff for the five-year 

period. In this case, TrønderEnergi would have been better off purchasing put options written 

on the independent weather station Buholmråsa fyr. 

 

These two cases demonstrate that basis risk affects the price and payoff of weather derivatives. 

However, the basis risk has an ambiguous effect for the two wind mill farms. Therefore, we 

can only say that basis risk affects the price of weather derivatives, but not in which direction 

or degree. 
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6 Conclusion 

The objective of this thesis was to find prices for constructed wind speed put options and 

examine if TrønderEnergi could smooth and increase operating income by purchasing these 

options as a risk management strategy.   

 

Even though we found prices for all locations, it is not realistic to assume that a counterparty is 

willing to sell a weather derivative written on the buyer´s locations. The buyer´s own 

measurements are not independent and thus, not reliable to a counterparty. Therefore, only the 

put options written on the weather stations are realistic to evaluate. 

 

Yearly prices were found for Ørland III and Nordøyan fyr. The price of a yearly wind speed 

put option for Ørland III was found to be 123 589 NOK. The total payoff during the period 

2013 to 2017 was 18 342 NOK, and the standard deviation of operating income was increased 

by 0.30 %. For Nordøyan fyr, the price of a yearly put option was found to be 123 006 NOK. 

During the five-year period, the total payoff was 29 259 NOK and the standard deviation was 

increased by 0,80 %. According to our calculations, TrønderEnergi would have increased 

operating income by purchasing one or both of these contracts. However, only the contract 

written on Nordøyan fyr would have decreased the standard deviation of operating income. 

 

A quarterly price was only found for Buholmråsa fyr among the independent weather stations. 

The price of the quarterly put option was found to be 55 184 NOK. According to our 

calculations, the total payoff during the period was 60 034 NOK, while the standard deviation 

was decreased by 0.89 %. Hence, purchasing this contract would have increased operating 

income while reducing the volatility in operating income. 

 

The objective of hedging with weather derivatives is to minimize downside risk, not to 

maximize profits. The results demonstrate that the downside risk is reduced by purchasing 

yearly put options each year written on Nordøyan fyr and purchasing quarterly put options each 

quarter written on Buholmråsa fyr from 2013 to 2017. This is not the case for Ørland III, as the 

standard deviation of operating income would increase.  

 

By purchasing one or several contracts, TrønderEnergi would have gained a profit during the 

five-year period. Although, the payoffs are positive, they are relatively small for a five-year 
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period. The same can be stated for the changes in the volatility. Therefore, TrønderEnergi would 

have to consider if getting acquainted with and purchasing the weather derivatives would be 

beneficial. 

 

For further studies, a larger dataset with a longer period could be applied. An alternative 

approach to retrieving information from historical data could be to model the dynamics of the 

wind speed process to simulate and forecast wind speed (Alexandridis, 2013). As a non-linear 

model fitted our data best, a non-linear approach when choosing the tick size should be 

considered. In addition, using the wind mill farm´s actual financial data, rather than estimates, 

would provide a more accurate analysis.  
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Appendix  

 
A.1 AR(1) Models 

 
Table 22: Model Summary Ørland III 

Models R2 RMSE BIC 

OI = – 14 733.42 + 2 743.82*DAWS 0.756 5540.433 17.252 

OI = – 17 147.63 – 54.59*DAWS2 + 3 544.79*DAWS 0.759 5515.217 17.247 

OI = – 6 457.18 – 30.57*DAWS3 + 687.59*DAWS2 –  

1 738.61*DAWS 

0.775 5323.979 17.181 

 
Table 23: Model Summary Bessakerfjellet 

Models R2 RMSE BIC 

OI = – 64 583.48 + 9 862.28*DAWS 0.803 25384.013 20.296 

OI = – 85 359.60 – 273.95*DAWS2 + 15 213.14*DAWS 0.812 24773.719 20.252 

OI = – 44 344.39 – 54.83*DAWS3 + 1 473.87*DAWS2 – 

891.34*DAWS 

0.828 23725.366 20.169 

  
Table 24: Model Summary Buholmråsa Fyr 

Models R2 RMSE BIC 

OI = – 54 254.58 + 9 382.70*DAWS 0.705 31031.332 20.698 

OI = – 67 103.26 – 201.85*DAWS2 + 12 947.96*DAWS 0.708 30871.647 20.692 

OI = – 31 864.61 – 61.69*DAWS3 + 1 580.54*DAWS2 –  

2 021.71*DAWS 

0.718 30353.993 20.662 

 
Table 25: Model Summary Ytre Vikna 

Models R2 RMSE BIC 

OI = – 52 050.69 + 7 514.01*DAWS  0.665 22144.373 20.037 

OI = – 52 439.89 – 5.54*DAWS2 + 7 614.94*DAWS  0.665 22157.789 20.047 

OI = – 6 014.69 – 77.67*DAWS3 +2 220.31*DAWS2 –  

11 276.62*DAWS 

0.684 21504.773 19.996 
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Table 26: Model Summary Nordøyan Fyr 

Models R2 RMSE BIC 

OI = – 52 428.64 + 6 823.46*DAWS 0.712 20573.723 19.890 

OI = – 53 304.75 – 10.43*DAWS2 + 7 033.11*DAWS 0.712 20582.976 19.900 

OI = – 16 164.40 – 50.76*DAWS3 + 1 559.08*DAWS2 –  

7 269.66*DAWS 

0.731 19904.163 19.841 

 
 
 
 
A.2 Indifference Pricing Method 

 
Ørland III: 
 
Table 27: Ørland III: Yearly Operating Income with and without Yearly Put Option 

Year Payout (NOK) OI without option (NOK) OI with option (NOK) Change 

2013 159 976.023 1 497 707.55 1 534 094.39 2.43 % 

2014 145 936.82 880 840.79 903 188.43 2.54 % 

2015 104 916.741 – 623 696.36 -642 368.83 – 2.99 % 

2016 141 786.795 149 631.33 167 828.94 12.16 % 

2017 83 671.8983 1 668 572.11 1 628 654.82 – 2.39 % 

Average 127 257.66 714 611.08 718 279.55 0.51 % 
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Bessakerfjellet: 
 
Table 28: Bessakerfjellet: Quarterly Operating Income with and without Quarterly Put Option 

Quarter Payout (NOK) OI without option (NOK) OI with option (NOK) Change 

Q1 2013 61 996.76 3 568 736.30 3 559 815.41 – 0.25 % 

Q2 2013 50 137.36 1 303 353.85 1 282 573.56 – 1.59 % 

Q3 2013 101 589.70 627 883.82 658 555.86 4.88 % 

Q4 2013 20 805.30 5 770 405.56 5 720 293.21 – 0.87 % 

Q1 2014 28 604.72 4 904 908.87 4 862 595.93 – 0.86 % 

Q2 2014 94 431.33 – 1 069 581.72 – 1 046 068.04 2.20 % 

Q3 2014 239 135.64 – 729 661.89 – 561 443.91 23.05 % 

Q4 2014 6 570.74 4 137 187.48 4 072 840.57 – 1.56 % 

Q1 2015 2 724.45 3 849 502.09 3 781 308.89 – 1.77 % 

Q2 2015 57 571.06 – 1 640 992.95 – 1 654 339.55 – 0.81 % 

Q3 2015 43 435.13 – 3 568 577.74 – 3 596 060.27 – 0.77 % 

Q4 2015 29 973.11 – 503 936.52 – 544 881.06 – 8.12 % 

Q1 2016 0 222 754.56 151 836.90 – 31.84 % 

Q2 2016 211 328.12 – 1 771 623.99 – 1 631 213.53 7.93 % 

Q3 2016 43 644.70 – 1 722 992.45 – 1 750 265.41 – 1.58 % 

Q4 2016 43 644.70 5 703 236.73 5 675 963.77 – 0.48 % 

Q1 2017 8 822.63 222 754.56 160 659.53 – 27.88 % 

Q2 2017 71 694.67 – 88 987.40 – 88 210.39 0.87 % 

Q3 2017 96 362.69 459 588.83 485 033.87 5.54 % 

Q4 2017 43 398.14 4 509 853.33 4 482 333.82 – 0.61 % 

Average 62 793.55 1 209 190.57 1 201 066.46 – 0.67 % 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 XVI 

Buholmråsa Fyr: 
 
Table 29: Buholmråsa Fyr: Quarterly Operating Income with and without Quarterly Put Option 

Quarter Payout (NOK) OI without option (NOK) OI with option (NOK) Change 

Q1 2013 61 996.76 3 568 736.30 3 570 698.70 0.05 % 

Q2 2013 50 137.36 1 303 353.85 1 293 456.85 – 0.76 % 

Q3 2013 101 589.70 627 883.82 669 439.15 6.62 % 

Q4 2013 20 805.30 5 770 405.56 5 731 176.50 – 0.68 % 

Q1 2014 28 604.72 4 904 908.87 4 873 479.22 – 0.64 % 

Q2 2014 94 431.33 – 1 069 581.72 – 1 035 184.75 3.22 % 

Q3 2014 239 135.64 – 729 661.89 – 550 560.62 24.55 % 

Q4 2014 6 570.74 4 137 187.48 4 083 723.86 -1.29 % 

Q1 2015 2 724.45 3 849 502.09 3 792 192.18 -1.49 % 

Q2 2015 57 571.06 – 1 640 992.95 – 1 643 456.26 – 0.15 % 

Q3 2015 43 435.13 – 3 568 577.74 – 3 585 176.98 – 0.47 % 

Q4 2015 29 973.11 – 503 936.52 – 533 997.77 – 5.97 % 

Q1 2016 0.00 222 754.56 162 720.19 – 26.95 % 

Q2 2016 211 328.12 – 1 771 623.99 – 1 620 330.24 8.54 % 

Q3 2016 43 644.70 – 1 722 992.45 – 1 739 382.12 – 0.95 % 

Q4 2016 43 644.70 5 703 236.73 5 686 847.06 – 0.29 % 

Q1 2017 8 822.63 222 754.56 171 542.82 – 22.99 % 

Q2 2017 71 694.67 – 88 987.40 – 77 327.09 13.10 % 

Q3 2017 96 362.69 459 588.83 495 917.16 7.90 % 

Q4 2017 43 398.14 4 509 853.33 4 493 217.11 – 0.37 % 

Average 62 793.55 1 209 190.57 1 211 949.75 0.23 % 
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Ytre Vikna: 
 
Table 30: Ytre Vikna: Quarterly Operating Income with and without Quarterly Put Option 

Quarter Payout (NOK) OI without option (NOK) OI with option (NOK) Change 

Q4 2015 92.53 – 318 156.41 – 335 924.75 – 5.58 % 

Q1 2016 0 76 634.141 58 773.27 – 23.31 % 

Q2 2016 362.11 – 906 740.63 – 924 239.40 – 1.93 % 

Q3 2016 55 256.11 – 1 189 467.00 – 1 152 071.79 3.14 % 

Q4 2016 14 423.08 2 926 089.37 2 922 651.57 – 0.12 % 

Q1 2017 7 764.47 1 879 932.63 1 869 836.23 – 0.54 % 

Q2 2017 17 360.48 – 13 186.14 – 13 686.53 – 3.79 % 

Q3 2017 91 110.44 501 185.34 574 434.91 14.62 % 

Q4 2017 6 537.18 3 057 492.09 3 046 168.40 – 0.37 % 

Average 21 434.05 668 198.15 671 771.32 0.53 % 

 
 
Nordøyan Fyr: 
 
Table 31: Nordøyan Fyr: Yearly Operating Income with and without Yearly Put Option 

Year Payout (NOK) OI without option (NOK) OI with option (NOK) Change 

2015 0 – 318 156.41 – 441 162.38 – 38.66 % 

2016 341 115.94 906 515.85 1 124 625.81 24.06 % 

2017 57 061.15 5 425 423.92 5 359 479.10 – 1.22 % 

Average 132 25.70 2 004 594.45 2 014 314.18 0.48 % 
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A.3 McIntyre Method 

 
Common put option characteristics for all locations are the strike level of 3.5 m/s, time to maturity of 
one year and the option parameter of –1.  
 
Table 32: McIntyre: Individual Put Option Characteristics and Prices 

Location Mean P(k) Standard deviation Price 

Ørland III 6.08 0.09 2.83 -0.03 

Bessakerfjellet 8.12 0.05 4.11 0.27 

Buholmråsa fyr 7.44 0.06 3.53 0.23 

Ytre Vikna 7.96 0.05 3.35 0.14 

Nordøyan fyr 8.98 0.04 3.95 0.06 

 
 
 
 
 


