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Abstract

Traditional methods of bedrock modeling from airborne electromagnetic data has previ-

ously relied on time-consuming manual labor. Novel techniques has introduced the aspect

of automation, but it has also presented a new challenge in uncertainty estimation of the

automated results. This thesis aims to further enhance the state of the art, by not only

proposing a new technique for automation, but also by evaluating the suitability of three

different construction techniques for prediction intervals as an uncertainty measure. A

case study shows how aspects from the academic field of computer vision can be used in

conjunction with more conventional machine learning techniques to improve the current

standard. The results from the case study shows how the approach brings reductions in

Mean Absolute Error and Root Mean Squared Error of bedrock predictions up to ∼ 50%

and ∼ 52% respectively, compared to a conventional neural network method. A separate

case study shows how different construction methods for prediction intervals fit different

situations depending on factors in the dataset such as the uncertainty distribution. The

thesis presents new knowledge in the still insufficiently explored intersection between ma-

chine learning and electromagnetic geotechnical data, and new knowledge in the feasibility

of prediction intervals as an uncertainty measure for bedrock depth interpretation.
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Chapter 1
Introduction

This chapter will introduce and present the main topics of interest for the thesis. Section

1.1 will provide the underlying motivation for working with bedrock modeling, Airborne

Electromagnetics (AEM), and automation of the related data interpretation. Section 1.2

provides an overview of the general problem statement. It offers a short summary of the

background, research questions, research methodology, research results, and the research’s

main contributions.

The chapter concludes with Section 1.3, which gives an overview of the thesis’ struc-

ture.

1.1 Motivation

The Norwegian Geotechnical Institute has in recent years been experimenting with novel

techniques for various kinds of interpretation of data obtained from use of airborne elec-

tromagnetic surveys. One such type of interpretation is mapping of Depth To Bedrock

(DTB), over large areas. Bedrock topography is deemed important for establishing knowl-

edge of subsurface stability and mass balance, which are important factors to be considered

in planning of large scale infrastructural construction projects [10].

The use of airborne electromagnetism for geotechnical purposes is not novel, and was

first used in the early 1950’s [29]. New use cases for AEM data has, however, emerged

1



Chapter 1. Introduction

over the years [4][35][10], and precise interpretation of AEM data used for DTB tracking

has remained a challenging task.

In the summer of 2018, NGI posted a proposal for a master thesis on the website of

the department of Computer Science at NTNU, (the Norwegian University of Science and

Technology), in Norway. The complete proposal can be found in Appendix A. The general

problem that was presented proposed that potential improvements and benefits could be

obtained with innovative use of data from AEM surveys for the problem of automated

DTB interpretation.

Manual techniques such as collecting depth related data from boreholes can, in com-

parison with AEM surveys, provide highly accurate data on DTB levels for single and

distinct locations. However, such boreholes are costly and as the survey area expands,

boring a large number of boreholes becomes necessary to obtain enough information to

construct and model a spatially continuous and complete picture of the area’s bedrock to-

pography. Hence, use of boreholes for bedrock modelling is certainly useful, but relying

solely on boreholes for mapping bedrock topography over large areas is infeasible with

respect to cost. Boreholes do arguably also impose a larger disturbance on the environ-

ment than AEM surveys due to both physical impact and noise. The need for a surveying

technique that can better scale with the size of the area may thus seem clear.

Airborne electromagnetic surveys can collect data for larger areas in a far less costly

manner than numerous boreholes. However, its measurements are far less precise than

those of ground based nature and confident automation of data interpretation has yet to be

firmly established in academia. The initial output from a single AEM sounding in itself

does not hold much computationally informative value. The complete process of interpret-

ing DTB values from data obtained from AEM can largely be thought of as a two phase

process, consisting of an initial inversion and a subsequent interpretation. The inversion

phase consists of converting the raw electromagnetic data, as obtained from the AEM

soundings, to discrete resistivity profiles which are more conveniently used for further

computational analysis. The geophysical process of conducting such inversion is com-

plex, and also out-of-scope for this thesis. However, the interpretation as described in the

later sections would not make much sense without the processed data to interpret. A brief

2



1.1 Motivation

introduction and description of the inversion process will therefore be given in Section 2.1

on Geotechnical Definitions.

The interpretation phase utilizes the resistivity profiles to approximate a best estimate

for the DTB at the location of a resistivity profile. This thesis will focus on automation

and technical aspects of the interpretation phase. In other words, the focus lies on the final

interpretation of the output data from the inversion.

The benefits of obtaining resistivity profiles in a continuous space are significant for

many use cases. Current and modern interpretation techniques allow geotechnical experts

to gain insight about DTB values across a spatial continuum by analyzing spatially contin-

uous sets of resistivity profiles. While resistivity profiles must be regarded as approxima-

tions, they can still yield highly informative and continuous models of bedrock topography

over large areas without the need for numerous and costly boreholes. The benefits of such

knowledge at early stages in expensive construction projects are significant, allowing for

extensive potential savings in the requirements for further detailed subsurface mapping.

The aforementioned benefits are, however, diminished by time-consuming and tedious

manual labor during the interpretation process [9]. The manual process relies on a single

geotechnical expert to interpret visualizations of obtained resistivity profiles along a flight

line. Upon completion of the interpretation, the goal is for the analyst to estimate a set

of DTB values along the flight line, which can ultimately be used as reliable point predic-

tions in the construction of a bedrock model. This manual interpretation does pose various

issues, which lays grounds for the first motivation of this thesis. The manual labor of

assigning DTB values is tedious, and for flight ranges spanning several hundreds of kilo-

meters, the time consumed is substantial. Moreover, a direct consequence of the resulting

DTB values being plain output of the geotechnical expert’s interpretation is that the result-

ing DTB values may also be drastically biased by the human analyst. Reproduction of the

results from the interpretation also becomes a difficult problem, potentially relying on a

single human resource. Thus, the underlying motivation for an automated and unbiased

approach for the interpretation phase is a combination of the challenges presented above.

The second motivator for the thesis is the industry’s desire for knowledge about the

uncertainty that comes with predictions of DTB levels from automated systems. In the

3



Chapter 1. Introduction

summer of 2015, NGI delivered a set of bedrock models to the Norwegian Railroad Asso-

ciation for early phases of a railroad construction project [10]. Such construction projects

require precision and certainty in knowledge of the subsurface topography, and corre-

sponding uncertainties relating to each DTB distance within the bedrock models were de-

livered accordingly. NGI utilized a semi-automated approach for prediction of the required

DTB levels, but the uncertainties corresponding to each prediction had to be manually reg-

istered and user-assigned [5]. This manual approach is not only time consuming, but it also

presents human bias and difficulties in reproduction of the results. Thus, the market has

shown a need for knowledge of the uncertainty that is related to the depth predictions in

DTB models. Based on the needs from the industry, a claim can be made that any poten-

tial benefits of automation of DTB prediction will be reduced if uncertainties related to the

output must be manually registered.

1.2 Problem Specification

Airborne Electromagnetism (AEM) has been used frequently in the past years to investi-

gate ground properties for planning and optimization of large road or railroad projects in

Norway. For each measurement along the AEM flight line, a resistivity profile is acquired

from aforementioned inversion techniques, which provides information about the geolog-

ical structure of the subsurface. In this thesis, the goal is to identify the boundary between

overburden and bedrock. Bedrock usually has a rather high resistivity, while most (but

not all) layers in the overburden have lower resistivities. The relation between resistivities

and geological material is complex and non-unique. Therefore, converting these profiles

into useful geotechnical information requires thorough interpretation. The general prob-

lem can be divided into two distinct problem areas. The research questions are explicitly

stated in Chapter 4, and a brief introduction follows here. The first problem area can be

described by the challenge of identifying an interpretation rule that can accurately inter-

pret the bedrock depth from resistivity profiles. The automation of this task presented in

this thesis is based on training data provided by resistivity profiles acquired from AEM

measurements and by borehole data. A sufficiently precise automated approach bears

the potential to significantly reduce the overall time that is required for the interpretation

4



1.2 Problem Specification

phase. Researchers at NGI has earlier proposed a novel solution utilizing an artificial neu-

ral network for automated interpretation [27]. However, the solution cannot account for

contextual information, as it solely analyses single resistivity profiles at distinct locations.

This thesis aims to propose a novel technique for interpretation inspired by state of the

art Machine Learning (ML) technology from the academic field of computer vision, and

the relating research question revolves around how such ML technology can best be used

in combination with data from AEM surveys. A case study is carried out with data from

historic surveys. The results from the case study shows significant potential for improved

DTB predictions with use of ML techniques from the field of computer vision, albeit along

a drastic increase in the required computational resources.

The second problem area is the identification and representation of the uncertainty that

comes with each prediction. As the measurements vary with geological complexity and

the consisting materials in the overburden, the interpretation will have a varying degree

of confidence. Thus, an uncertainty measurement is desired for the boundary, and is cur-

rently not accounted for in established academia, nor is it part of the current state of the

art industry approach. The aspect of uncertainty is therefore also considered. This the-

sis evaluates the industry’s current methodologies of uncertainty prediction, and proposes

new techniques where the final uncertainty values correlates directly to the ML model’s

confidence, as contrasted by the uncertainty of the geotechnical expert’s biased view on the

matter. The second research question therefore asks how prediction intervals can best be

computed for representing the confidence of DTB predictions from automated techniques.

A set of methods for construction of prediction intervals are compared and evaluated in a

case study, also using real-world data from historic surveys. The results from the evalua-

tion shows how each of the compared methods excel under different circumstances.

1.2.1 Scope

The entire process from the initial survey of an area to representation of a spatially con-

tinuous bedrock model is long, and it consists of multiple geophysical and mathematical

processes. The scope of this thesis only encompasses a fraction of the entire procedure.

Anything up until the resistivity profiles are acquired are considered out of scope. Further-
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more, anything after the production of DTB values and respective uncertainties will not be

accounted for.

1.2.1.1 Primary Contribution

The primary contribution of this thesis is the addition of new knowledge in the field of

automated AEM data interpretation. More specifically, the thesis provides new knowledge

in the area of contextually and spatially aware automated AEM data interpretation. The

intersection of AEM data and machine learning is novel and insufficiently explored and

established by current academia. The thesis will not propose a complete and automated

solution of bedrock modeling from raw AEM data, but rather focus on the automation of

contextual interpretation of DTB for a survey area. It is of importance to note that the goal

of the proposals presented in this thesis should not be seen as an attempt to remove the

need for human interpretation of the results, but it rather aims to empower the geotechni-

cal analyst by allowing more time spent on overall interpretation, as opposed to manual

analysis and interpretation of each and every measurement. The results from the research

show significant indications that the proposed approach bears the potential to improve cur-

rent state-of-the-art techniques, with reductions in Mean Absolute Error and Root Mean

Squared Error up to more than 49% and 52% respectively.

In addition to providing point predictions for bedrock depths, the characteristics of

a desired system include the ability to deliver uncertainties for each measurement. This

thesis provides a comprehensive study and evaluation of three separate methods for un-

certainty inference from regression type models. The research results presents findings

that shows that no single method proved inherently best, but rather that the distinct meth-

ods each excel under different circumstances dependent on factors such as the models

performance and the uncertainty distribution. The research illustrates how data analysis

thus becomes an important early factor for selecting the optimal technique for uncertainty

representation.
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1.3 Thesis Outline

1.3 Thesis Outline

Chapter 1 introduced you to the underlying motivation for the thesis. The problem speci-

fication, scope, and primary contribution of the thesis was established.

Chapter 2 will provide a deeper explanation on the background for the thesis, including

concepts and challenges that are considered relevant. The usefulness and context for the

current state of the technology will be stated, and a more thorough introduction to the

applicable technologies will be given. The relevant data will be discussed and accounted

for, and the chapter will conclude with a technical introduction to uncertainty estimation.

The state of the art and related work is covered in Chapter 3. This encompasses com-

mon current techniques for DTB interpretation, an introduction to the relevant technical

concepts from the academic field of machine learning, and established academic methods

for uncertainty inference.

Chapter 4 covers the research design and research implementation that was used for

conducting the research. The research motivation is stated alongside a set of research

questions, which accurately denotes what information this thesis aims to investigate. The

chapter describes how the research was conducted, and includes details on the technical

implementation. This includes not only the approach for production of predictions and

uncertainty estimations, but also the methods that were used to evaluate and compare the

results.

The immediate output and results from the research are somewhat complex. Chapter 5

presents and elaborates on the final data, and offers a numerical analysis of the results and

answers to the research questions.

Chapter 6 will present a discussion and an analysis of the complete research process.

The discussion explores the outcome of the research, compares the results to related work

and the current state of the art, and reviews the limitations of the research.

The thesis concludes with Chapter 7. This chapter aims to explore possibilities for

future work that has the potential to establish knowledge which could further improve the

current standard.
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Chapter 2
Background

This chapter introduces established theories, technical concepts, and challenges that are

relevant for the thesis.

The chapter begins with Section 2.1 which establishes and defines relevant geotechni-

cal concepts that the reader will encounter in the thesis. Section 2.2 aims to describe the

potential benefits of increased automation in DTB interpretation. Section 2.3 will delve

deeper into the challenges that automated solutions presents. Section 2.4 presents a set of

related software and tools, and offers a brief explanation of each.

The related data for the case study is explored in Section 2.5, while Section 2.6 pro-

vides an introduction to the problem of relating borehole data to resistivity profiles. This

step is required for obtaining training data for the ML approach.

The chapter concludes with Section 2.7 which addresses and considers the need for

uncertainty estimations for DTB predictions. It also addresses the challenges and potential

solutions in the pursuit of ranged DTB representations.

2.1 Geotechnical Definitions

Bedrock can in layman’s terms be defined as the rock foundation that lies beneath various

layers of softer geological material. The bedrock surface is defined as the uppermost layer

of the bedrock. DTB is the distance from the ground surface to the bedrock surface. These

9
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depths range from zero to hundreds of meters. Such cases, where bedrock is directly ex-

posed on the surface, is typically referred to as outcrop, or outcropping bedrock. As earlier

described, obtaining information about these depth values allows for improved planning

and execution of various large scale projects, often related to infrastructural construction

or maintenance.

A map of DTB levels over a spatially continuous area is commonly referred to as a

Bedrock Model. Bedrock models are highly useful in multitudes of settings. Infrastruc-

tural expansion is one example of an industry which commonly relies on solid under-

standing of the subsurface topology for proper planning and execution of projects. These

types of projects typically include construction of railways and highways, where large

bedrock depths can cause significant instability and difficulties during both construction

and maintenance. Obtaining descriptive models at early phases of projects may thus allow

for improved risk management and drastic reductions in the overall cost of further inves-

tigation phases. Greater knowledge of the subsurface topography can reduce the required

amount of necessary boreholes, and allow for smarter positioning.

In Norway it is not uncommon for such infrastructural projects to encounter complex

subsurface geological settings, due to demanding topography and geology [10].

Boreholes, as referenced in this thesis, are vertical shafts bored in the ground for

geotechnical investigations. Such boreholes can provide exact measurements for DTB

values at specific locations. However, the cost of the process of drilling holes and obtain-

ing such measurements are high. Boreholes play a significant role in the training phase

of the technical machine learning model as presented by NGI [27]. The approach uses

supervised training, where data from boreholes are used as labeled training data in the

training process. The process of extracting labeled training data from boreholes and AEM

data are, however, not straightforward. NGI’s proposal utilized a method known as Krig-

ing to address this issue [9]. Briefly described, the Kriging process allows for obtaining

an approximation of a single and initially unknown resistivity profile at some location in

a two-dimensional plane by weighted interpolation from surrounding and known resistiv-

ity profiles. The Kriging process carries many similarities to Inverse Distance Weighted

(IDW) interpolation, but differs in the calculation of the weights. A more concrete de-
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scription of this process is later described in Section 2.6.1.

AEM cannot currently supersede the accuracy of direct borehole sampling. However,

Christensen et al. concluded that it can drastically reduce the amount of required boreholes

for detailed surveying, by being able to yield models covering much larger areas than

ground based methods at much lower cost [9]. NGI has, in recent years, utilized AEM for

multitudes of projects [10][2][5].

AEM surveys are carried out by an airborne vessel, typically flying approximately 35

meters above the ground they survey. During an AEM survey, the airborne vessel carries

a transmitter loop which transmits a magnetic dipole field in pulses into the ground. Since

electrical conductivity is dependent on the matters composition and water content, the

response from the pulses can be processed to detect different types of subsurface matter.

Figure 2.1: Visualization of the AEM workflow. The figure is adapted from Ley-Cooper et al.
(2015) [26]

Figure 2.1 presents a visualization of the AEM workflow. Part A shows how an air-

borne vessel surveys the area, and part B shows a visualization of the raw electromagnetic

data that are collected. Part C shows a vertical visualization of the resistivity data which
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are obtained from inversion of the raw electromagnetic data from part B. Part D shows

how the resistivity data from C can be combined to form informative 3D resistivity by

depth maps.

Inversion of raw AEM data provide layered 3D data of resistivities in the subsurface

by transforming the collected raw data into the more useful form of resistivity profiles.

The output of an inversion of a sounding from a survey typically contains data of the

sounding’s geographic location, topography, and a number of layered resistivity values by

depth. Inversion is a complex topic within the academic field of geophysics, which is out

of scope for this thesis and thus, only a brief introduction will be provided here. Recall that

our desired output data from inversion of a single sounding is a layered resistivity profile.

Such a profile consists of a mapping of depths to respective resistivities. The data obtained

from a single AEM sounding can, in its most simplistic form, be regarded as a polynomial

curve. If d represents a sounding and m represents a resistivity profile, an operator F

can be defined such that d = F (m). The operator F represents the calculation of the

magnetic field d given a known resistivity model m, for which (in the 1D case) quasi-

analytical solution exists. Thus, d = F (m) can be calculated very efficiently. However, as

in our case the soundings are known and the resistivity models are unknown, the inverse

of F has to be found: m = F−1(d). The approach for finding an approximation of F−1

relies on making educated guesses on values in m and comparing the resulting sounding

to the actual known sounding. A gradient descent type of inversion (e.g. Gauss-Newton)

method is used to improve the guesses until a sufficiently matching sounding can be found.

Local minimums in the gradient descent can cause challenges, and various techniques such

as varying stepping sizes, spatial regularization, or randomizing values can be used as

mitigation.

Different techniques can be used for making the educated guesses. Simple techniques

relies on prior geophysical knowledge about the area of sounding, where assumptions can

be made for the number of layers in m corresponding to beliefs of their contents, e.g. sed-

iments, clay, etc. and their depths. However, this technique renders the post interpretation

somewhat useless, as it already assumes some knowledge of where the bedrock would be

found. Instead, more complex techniques rather assume a fixed number of layers with
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increasing sizes corresponding to increasing uncertainty of the sounding at deeper levels.

However, another challenge exists, where resistivities of nearby soil may interfere. Thus,

regularization is used to provide more soft transitions. Generally speaking, contextual

awareness may provide increasingly more accurate inversions. LCI (Laterally Constrained

Inversion) therefore also considers correlations between both vertically and horizontally

neighboring resistivity values. SCI (Spatially Constrained Inversion) also does this, but it

takes the whole process one step further by also correlating with further nearby values that

does not need to be exact neighbors.

Increasingly complex inversion techniques requires increasingly more time to be com-

pleted, at the higher end ranging close to weeks of computation time. Simpler techniques

are therefore normally used initially to obtain a general understanding before more com-

plex techniques are used.

Electromagnetic noise also poses a challenge in interpretation of AEM data. Chris-

tensen et al. noted in their paper on the Norwegian highway construction project, that

anthropogenic noise invalidated parts of the data obtained during their AEM survey [9].

Causes for such interference may stem from electrical transmission lines, as also exempli-

fied in the paper from NGI [9].

While the topic of this thesis is prediction of DTB values based on resistivity profiles,

AEM has also been proven useful in various other settings as well. In 2015, Anscütz et al.

proposed a system for mapping of hazardous landslide risks with use of AEM surveying

[4]. The case study presented in the paper allowed the researches to obtain information

about a sliding plane in a matter of weeks, where traditional methods would have required

many times both the time and cost. Pfaffhuber et al. presented in 2017 a demonstration

of how AEM could be used to detect quick clay, which can lead to landslides and in turn

result in massive damages [36]. A third article by Pfaffhuber et al. presented a use case

where AEM was used to detect alum shale [35]. Norwegian alum shale contains large

amounts of sulphides and Uranium, making it a potentially toxic mineral due to radon

gas. Thus, it can cause significant damage to building projects, as it generally has to be

excavated for construction projects to proceed.

13



Chapter 2. Background

2.2 The Usefulness of Automated DTB Interpretation

Linear infrastructure has in recent years become a significant focus area for the Norwe-

gian geotechnical industry [10, p 1]. Norwegian infrastructural organizations such as Bane

Nor and Vegvesenet are continuously carrying out multitudes of large scale construction

projects, with one of the recent ones being a combination project for railway and high-

way called Ringeriksbanen and E16 [6]. The project’s plan description, released in 2018,

estimated a total cost of 32 billion Norwegian kroner, and emphasized a determination to

work towards cost reductions and optimization over the span of a year [6, p 95].

Researchers from NGI underlined the potential cost benefits of early site investigations

with use of AEM in a paper written as part of a project planning phase for the Norwegian

Rail Administration, where more than 230 km of railway was planned for construction

around Norway’s capital. The investigation’s primary delivery was a descriptive model

of DTB, where the predictions were based on historically successful use of AEM for site

investigations [9][1].

To understand why automation within the field of AEM data interpretation may present

potential cost benefits, it is of relevance to first understand and appreciate the benefits from

using airborne surveying techniques over its traditional ground based counterpart. A brief

introduction to AEM and its functionality was provided in Section 2.1. However, its pri-

mary benefits can briefly be described to be that the airborne vessel, e.g. helicopter or

plane, allows for mapping over large survey areas at low cost. Moreover does its non-

intrusiveness allow for large scale surveys to be conducted with little to no interference

with nature and wildlife [41]. Nevertheless, its disadvantages are also considerable. The

accuracy of the collected data is heavily dependent on the geological complexity of the

surveyed area. The interpretation of the collected data is also to be considered a chal-

lenging task, relying on complex geophysical and mathematical processes and thorough

analysis.

Sparsely distributed boreholes can provide accurate DTB measurements. However by

definition, a single borehole cannot present more than a single DTB level for a single

geographical point on the surface. Thus, they provide no contextual information about
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the DTB levels between them. Simplistic methods such as drawing straight lines between

DTB points provided by boreholes in a three dimensional space can construct spatially

continuous models. However, such models can not be claimed to be accurate when there

are considerable distances between the boreholes. In such cases these models can hardly be

considered useful. AEM surveys, on the other hand, can cover large areas with intervals

between each measurement as small as only a few meters [27, p 1]. Thus, processed

AEM data carries the potential of providing great benefits, because it has the potential to

construct much more spatially accurate continuous models.

An article from 2016 on the use of AEM in railway corridor mapping for a Norwe-

gian railway construction project found AEM to be a strong candidate for early phase

investigations due to its high efficiency, advantageous economic performance, and survey

robustness [10]. The same article also notes that resistivity profiles obtained from airborne

surveys are also comparable to those acquired from surface ERT (Electrical Resistivity

Tomography) techniques, though AEM profiles has a somewhat lower precision in the few

topmost meters. ERT provides similar measurements to AEM, but cannot cover equally

large areas, as it is ground based. Furthermore, the article emphasizes the significance of

accurate processing and inversion of the AEM data. In its closing statements the paper

notes the remaining challenge in quantification of depth uncertainties. This challenge of

performing automated interpretation in order to obtain bedrock models with uncertainty

in meters is, in NGI’s paper [10], stated to be missing from both state of practice and

established academia.

Traditional methods of obtaining DTB values from resistivity profiles have previously

relied on manual labor [5]. A field expert reviews the collected data while accounting for

the measurements context, surface observations, and geotechnical expertise [38] [32]. As

airborne surveys can cover several hundred kilometers, containing vast amounts of mea-

surements, such manual interpretation quickly becomes both a costly and time consuming

task. Moreover, the resulting extracted information may also be biased by the field expert

assessing the data.

Anschütz et al. noted in 2017 that automated approaches for AEM data interpreta-

tion are beneficial for providing first indications, but that they are unfit for engineering
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purposes that require high precision and accuracy [5, p 13]. The article proposed a novel

interpretation technique called Localized Smart Interpretation, henceforth referred to as

LSI. In short LSI can be described as an interpretation technique that relies on the ap-

proximation of a linear operator that can map any resistivity profile to a depth prediction

automatically. The paper emphasizes the benefits of the LSI technique to be the freeing

of time from manual interpretation, which allows the human interpreter to spend more

time on the overall interpretation. Nonetheless, this technique also requires some manual

interpretation in order to provide sufficiently precise results.

The industry now desires an investigation of novel automation techniques with the

hopes of further reducing the required amount of manual labor for DTB interpretation.

Based on the evidence provided in this section, a hypothesis can be declared that suf-

ficiently accurate automated techniques carry the potential to increase both the time and

cost efficiency, but also facilitate, to a greater extent, unbiased reproducibility of results.

Elimination of tedious manual work can be noted as a driving factor of the research, where

the time of geotechnical experts are considered more valuable if spent on verification,

or overall interpretation. Improved efficiency and accuracy of automation could in turn

allow for surveying of much larger areas with less requirements for time, effectively re-

ducing the geotechnical expert’s work from production and construction, to verification

and fine-tuning of results. While the LSI technique showed promising results, it cannot be

considered a fully automated approach. Furthermore, it can not provide any measurement

of uncertainty of its models, and it cannot account for contextual information for each

prediction, making it prone to noise in the data.

Based on the problems and drawbacks presented above, this thesis will focus on im-

proving the process of automated bedrock modelling from processed AEM data. A pro-

posal for an automated solution for contextual interpretation of DTB from sets of spatially

continuous resistivity profiles using modern techniques from the academic field of com-

puter vision will be presented and evaluated with a comparison to the current state of the

art. The solution is based on NGI’s initial work on an MLP regressor for the same pur-

pose [27]. The introduction of an ANN for addressing the problem by NGI was novel,

and yielded the benefit of achieving a non-linear interpretation rule, where previous tech-
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niques assumed that there existed a linear relationship between resistivity profiles and their

corresponding DTB levels [27]. Generally speaking, the introduction of neural networks

allowed for the automatic interpretation to account for more complex geological settings,

and further reduce the requirements for manual work in the interpretation process.

2.3 Challenges Related to Automated DTB Interpretation

from Resistivity Profiles

Resistivity profiles are noisy, and not an exact form of measurement. The data from inver-

sion can not be said to accurately depict the subsurface, it merely provide a set of approx-

imated resistivity values for increasingly deeper levels, with increasing uncertainty [27,

pp 1]. Various sediments, materials, and different combinations affect the electromagnetic

pulses from the survey differently. Furthermore, overlying sediments will greatly affect the

resistivity measure for underlying materials. Thus, there is no exact one-to-one correlation

between resistivity values and a given material, which poses challenges for automation.

In general, bedrock provides higher resistivity than sand, soil, and clay. Thus, a sim-

plistic method for attempting to extract DTB from resistivity profiles could simply be

looking for data-points with resistivity between some set threshold for which we would

denote that we have found bedrock. This method was evaluated by researchers at NGI

in collaboration with the Norwegian Railroad Administration in 2017, when they were

tasked with establishing DTB information for an area with little prior geotechnical knowl-

edge [5]. The investigation was necessary to facilitate the planning of a major expansion

of the railroads surrounding the Norwegian capital, Oslo, in order to more efficiently be

able to organize commuting from the surrounding municipals.

The threshold technique is described as a simplistic method where an upper and a lower

threshold value are set for expected resistivity of bedrock in the area under investigation.

The depth interval corresponding to the resistivity values which fall within the threshold

bounds are thus predicted to be bedrock.

The paper from NGI on automated bedrock mapping mentions an automated algorithm

from the software system Aarhus Workbench, which was used to obtain the values for the
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upper and lower resistivity threshold [5]. The technique benefits from being relatively

quick and simple to apply, and also being easily reproducible. However, the choice of

threshold is subject to individual bias by the geotechnical expert performing the analysis,

and the technique cannot cover complex geological settings where the geological topogra-

phy may vary to a larger extent.

While the method has commonly been used, it does present a set of challenges. Firstly,

the thresholds for which in between one could actually find bedrock varies extensively

from one geological area to another. Anschütz et al. also noted that threshold resistivity

can vary considerably over even small areas [2]. Thus, manual exploration of the geolog-

ical setting is still necessary, and manual intuition must be used to find valid thresholds

for the geological area and setting. Furthermore, the method breaks down under anything

else than what can be considered simplistic geological settings. The technique has, how-

ever, been used successfully under somewhat complex geological settings, albeit alongside

manual picking guided by data-points from boreholes, as documented for a Norwegian

highway project by Anscütz et al. [3] and Anschütz et al. [2].

To understand the circumstances for under which the simplistic threshold method will

not be sufficient, a closer look at the AEM data visualization presented in Figure 2.2 fol-

lows. The following paragraphs will provide a manual and human interpretation of the

figure, and denote where, and how, the threshold technique will fail to accurately convert

the measurements to DTB values. The goal of providing this interpretation is to present

the reader with an understanding of the intuition that geotechnical experts use when inter-

preting such resistivity profiles. It is exactly this intuition which is difficult to capture in

an algorithm or computer program, and makes the task difficult to automate.

The figure depicts resistivity profiles along the horizontal axis, where each resistivity

profile is layered down to a depth of approximately 400 meters below the surface. The ver-

tical axis represents the distance from the surface to the layered resistivity measurement.

The measurements are done for a straight line on a map, as covered by a flight-line. The

vertical bar on the far right provides a mapping from measured resistivity to color codes,

which allows for the visualization of the measurements.

An observant reader might note that there exists white gaps within the chart, also noted
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Figure 2.2: Visualization of AEM collected data.

in the chart by black triangles near the horizontal axis. These white gaps denote missing

resistivity profiles. The reason for why these gaps exist can be varying. For example

could it be that there was not taken any measurement at that exact location. However,

measurements can also be stripped away manually by the interpreter, if they do not seem

to provide accurate results. Inaccurate measurements can be caused by different scenarios,

but any electrical interference commonly presents inaccuracy. In the example of Figure

2.2, the gap within the range from 3450 to 3500 meters could for instance be caused by

the airborne vessel crossing over a high voltage power line. Missing resistivity profiles are

not uncommon, and thus the interpreter must be able to understand the context in order to

fill in the blanks.

Four black dots can be found within the chart, located at approximate distance values

of 600, 1400, 3100 and 4000 meters. The black dots represents true bedrock depths, with

accurate data obtained from boreholes close to the measurements’ geographical coordi-

nates.

A geotechnical expert can use both expert knowledge and human intuition to draw rela-

tively accurate conclusions on DTB provided AEM data and precise borehole information.

Where an automated algorithm might evaluate a single resistivity profile, a geotechnical

expert may consider contextual information that would influence the prediction. The DTB

on two sequential measurements within close proximity would for example probably not

vary more than a couple of meters, as steep drops in bedrock topology are extremely rare.
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For the manual interpretation of this figure, let’s start from the rightmost edge and

move towards the start. Remembering that solid bedrock typically yields high resistivity

values, one can quickly interpret the high resistivity at the surface in the range from 2500

to 4500 meters to represent bedrock near the surface and outcropping bedrock. The low

resistivity values between 100 meters and 300 meters depth at approximately 4000 distance

meters are most likely faulty and inaccurate values. A threshold technique would most

likely handle this exact range quite well, by simply denoting the uppermost part of each

resistivity profile where the resistivity was above 102Ω. However, the next range from

2500 to 500 meters shows how the technique breaks. A thin high resistivity layer is found

throughout the surface of this range, located above a 50 meter thick layer of low resistivity

sediments. These resistivity profiles are also increasingly difficult to interpret, as there is

no layer with clearly high resistivity values indicating bedrock, there are merely gradually

increasing resistivities topping at the green level around 100 meters depth. Such decreasing

resistivity values with depth are common whenever the overlying sediments, such as e.g.

clay or sand, provide low resistivity values. For such cases, exemplified by the range from

2500 to 500 distance meters, simple thresholds will not be sufficient to provide an accurate

prediction of the DTB, as the thresholds would be defeated by the top layer, which is not

true bedrock.

A human interpreter could quickly observe that the top layer would in fact not cor-

respond to bedrock. Such thin, high resistivity measurements at the topmost layers can

be caused by rocky surfaces or even bodies of water. While a single measurement within

this complex range might be challenging to interpret, its surrounding measurements and

the general context can provide intuitive clues allowing for smarter predictions. A human

interpreter could intuitively note the more clearly defined bedrock at the measurements

located at 550 and 2000 distance meters, and visualize a connection between these. Ad-

ditionally, a human interpreter could make use of the a priori knowledge of the boreholes,

providing accurate measurements at 550 and 1450 meters to guide their connection be-

tween these points in a curved manner.

The final range from 600 to 0 meters provides a more clear representation of bedrock

which can be easily plotted. Thus, a final interpretation for the DTB along the measured
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line could be visualized such as depicted in Figure 2.3.

Figure 2.3: Visualization of AEM collected data with DTB interpretation plotted.

In summary, the problems with automation discussed in this section are significantly

related to lacking use of expert knowledge, contextual awareness, offset measurements,

and human intuition. While there exist various other techniques for extracting DTB models

from AEM data, cognitive methods, manual labor, and handpicking has previously been

shown to provide accurate models [21][38].

Alternative and improved methods to the threshold technique exist and are currently

being used. Each does, however, have their benefits and downsides. These are further

discussed in Chapter 3 on State of the Art.

Deliveries of bedrock models typically require a certain degree of accuracy and cer-

tainty. There are many factors that can contribute to the uncertainty level of DTB predic-

tions for any given position. These factors may include the analyst’s previous experience

within the field, prior geotechnical knowledge about the contextual area, and distances to

boreholes with known DTB values within close proximity.

As new techniques are continuously emerging for increasingly automated conversion

of AEM data to DTB values [36][27], the industry is faced with new challenges in assign-

ing uncertainty values for each DTB value. Manual or semi-automated approaches allow

for manual assignment of uncertainty values for DTB predictions. The values, similarly to

manual DTB predictions, may be biased by the human behind the interpretations. Thus,

reproducibility of the results can become troublesome and can even be seen to rely on a

single person. Moreover, assignment of the uncertainty values are also a time consuming
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task.

Thus, the rules that guide a geotechnical expert’s interpretation of a spatially continu-

ous set of resistivity profiles are not straightforward. Firstly, when setting a new plot for a

resistivity profile, the expert does not solely consider the profile for which he is setting the

plot. Neither does he consider only the direct neighbors of that profile, but rather a wide

array of neighboring profiles. Thus, for an ANN to attempt to mimic this behavior of con-

textual interpretation, it would need to be able to account for some number of neighboring

profiles.

The problem of obtaining such DTB predictions can be approached in different man-

ners. Different types of ANNs are these days quite common tools for solving regression

problems [13] [14].

2.4 Software & Tools

There exist an abundance of different software and tools that provide frameworks and

approaches for analyzing and working with geotechnical data. Thus, only a selection of

the most relevant tools have been selected for investigation in this thesis.

2.4.1 Aarhus Workbench

Aarhus Workbench is a software package developed by the danish company Aarhus Geosoft-

ware. The most basic implementation consists of a framework that can house modules for

more specific operations. However, its core functionalities can be noted to be inversion

of EM data and visualization of geotechnical data. Visualization and geological interpre-

tation of inversion results are done via a GIS (Geographic Information System) interface.

For the sake of this thesis, it is only of importance to bear in mind that the original AEM

data is processed by this tool for construction of the resistivity profiles that are further used

in the experimental approaches.
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2.4.2 ArcGIS & ArcPy

ArcGIS is a location based analysis and visualization platform. Its main goal is to facilitate

extensive geographical analysis of data. ArcGIS is used within many different industries.

Basically, it seeks to provide a framework for working with any location based data. GIS

can allow data to easily be plotted onto maps to provide an intuitive interface for location

based analysis.

ArcPy is a python package that allows third parties to make use of functionality from

ArcGIS in their own software. ArcPy provides much functionality straight out of the

box, allowing the users to quickly make use of geographical algorithms and functionality

without having to start from a blank sheet. It contains modules, classes, and functions,

only a few of which is currently used for state of the art inversion data analysis. ArcPy is

closely related to ArcGIS, and their output formats are interchangeable.

2.4.3 NGI’s DTB Plugin

NGI has made use of ArcPy to implement their own module for depth to bedrock track-

ing from the inversion results from Aarhus Workbench’s inversion module. NGI’s module

covers several additional aspects, but only the functionality related to DTB tracking is fur-

ther covered in this thesis. The three core approaches for DTB tracking currently provided

by NGI’s modules are Manual Spline Interpolation, described in Section 3.1.1, Localized

Smart Interpretation, described in Section 3.1.2, and an ANN regressor, described in Sec-

tion 3.2.2.

2.5 Data Description

This section aims to provide the reader with an understanding of the raw data that is used

in the research. Several datasets are used in the case studies in this thesis. Each of these

were provided by NGI. One of the datasets originated from a Norwegian highway con-

struction project from 2013 [9]. The data in each of the provided datasets largely follows a

similar structure, and this section uses the highway construction project’s data to provide

the reader with a basic understanding of how the data is organized and what is represents.
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The data can largely be divided into two sets. The first dataset contains data from

boreholes that were conducted during the project. The second dataset contained a set of

resistivity profiles spatially mapped by corresponding coordinates.

2.5.1 Borehole Data

NGI stores data from known boreholes in a large database. The provided dataset contains

data from all known boreholes that were located within a 300 meter radius of any AEM

sounding from the resistivity profile dataset.

There are several different approaches for obtaining DTB values from borehole data,

and the degree of accuracy varies with the methods. Two of these methods are called Total

Soundings and Rotary Pressure Soundings, where Total Soundings are considered to be

highly accurate.

The data was provided in a Microsoft Excel format. Each data point contained much

meta data, but the relevant columns for each data point are listed and described below.

• FID: Identifier denoting the line number of the data point in the original dataset.

• Method: Identifier denoting the type of method used in the conduction of the bore-

hole. The identifier corresponds to the methods described in following sections.

• Stopcode: Identifier denoting what caused the boring to stop. This provides an

indication of the accuracy of the DTB estimate. The reasoning is further described

in the following sections on the different boring methods.

• Depth: Drilled depth in meters.

• X: Distance in the eastern direction in meters from a reference point.

• Y: Distance in the northern direction in meters from a reference point.

2.5.1.1 Rotary Pressure Soundings

The Rotary Pressure Sounding (RPS) method was developed by NGI and the Norwegian

Public Road Administration in 1967 [7]. The technique is modified to fit Norwegian soil

and subsurface conditions. The bit of a multipurpose drilling rig is forced through the
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soil at a constant penetration rate of 3 meters per minute and a constant rotation speed

of 25 rotations per minute. Depending on the soil and the various sediments that the bit

encounter, the thrust needed to maintain the constant penetration rate may differ. The

thrust versus depth profile is plotted for the entire depth of the borehole. The RPS method

cannot penetrate bedrock, and thus it assumes bedrock when it cannot further maintain

the penetration rate. The method is fairly accurate, however, subsurface obstacles such as

large boulders may also result in inability to maintain the penetration rate, and thus also

result in inaccurate measurements.

2.5.1.2 Total Soundings

Total Sounding is a more novel method, and it combines the aforementioned RPS method

with rock control drilling [16]. Where the RPS method is unable to penetrate bedrock, To-

tal Sounding excels in having that ability. Boreholes where total sounding is used can thus

verify bedrock depth by drilling an additional 3 meters into the bedrock, in order to en-

sure that the increased resistance does not stem from a subsurface obstacle. It may occur,

nonetheless, that this verification is not conducted. This may be the result of time restric-

tions or other interruptions. A stop code is recorded for every drilling, denoting whether

or not this verification has been executed. If the stop code represents that verification was

conducted, the DTB value can be recorded with a high degree of certainty.

2.5.1.3 The Borehole Dataset

The provided dataset contained the complete set of nearby boreholes with related data. The

set had been pre-processed by NGI to filter away bad data points and average duplicates

which might have occurred in the dataset.

The dataset contained a total of 1240 boreholes with relating DTB values. The table

below shows the distribution of the different methods and their related verification.

Figure 2.4 presents a 3D projection of the complete borehole dataset. Each data point

represents a DTB value at a given point in the survey area. The X and Y axis of the

plot denotes meters in the eastern and northern directions where the origo represents the

westernmost and southernmost location where an AEM sounding point was taken. This
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Borehole Type Assumed DTB Values Verified DTB Values Total
Total Sounding 16 120 136
Rotary Pressure Sounding 1097 0 1097
Other 7 0 7
Total 1120 120 1240

Table 2.1: Borehole Distribution

location will henceforth be referred to as the reference point. The Z axis represents meters

below surface.

The chart provides some general important information about the survey area and the

borehole data in general. A first note to make is the size of the survey area. The area as

seen in the plot below spans more than 20 kilometers in the eastern direction and more

than 15 kilometers in the northern direction.

Figure 2.4: Boreholes plotted by method

While the distances in the above figure are needed to present a plot containing all
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boreholes, they do not correlate to the actual size of the survey area. Figure 2.5 shows a

top down view of the boreholes on a map. As seen on this image, only a fraction of the

aforementioned area can be regarded as the actual survey area.

Figure 2.5: Boreholes plotted on map

2.5.2 Resistivity Profiles

Inversion data from the AEM soundings conducted in relation to the highway project were

also provided. The AEM data is the same as that which was used during the project,

however, the inversion data used in the project differs from the inversion data used in this

thesis. NGI has developed more accurate and precise inversion techniques since 2013.

New techniques were thus used to derive the inversions that were used for the sake of this

thesis.

The inversion of the soundings were done in Aarhus Workbench, and the data was pro-

vided in a proprietary data format as output from their software. Each data point contained
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much data and meta data, only some of which were used during this study. The relevant

fields for each data point are listed and described below.

• Line: Each sounding is related to a single flight line. Each flight line is generally

a relatively straight aerial line covering an arbitrary length and an arbitrary number

of soundings. Each sounding in a flight line is typically performed with 3̃0 meter

intervals.

• X: Distance in meters in the eastern direction from the reference point.

• Y: Distance in meters in the northern direction from the reference point.

• FID: Identifier denoting the line number representing the data point in the original

dataset.

• Topo: Surface elevation above sea level in meters.

• Alt: Altitude of the airborne vessel above the surface during the sounding.

• RHO I {i}: Resistivity measure for the i’th depth layer of the sounding, where i is

in the range 1-25.

• DEP TOP {i}Upper bound in meters for the i’th depth layer, where i is in the range

1-25.

• DEP TOP {i} Lower bound in meters for the i’th depth layer, where i is in the

range 1-24.

Figure 2.6 presents a visualization of a subset of the data points from the original

dataset. Each vertical bar in the figure denotes a single inversion data point from a se-

lected flight line in the survey area. Each vertical bar consists of 25 smaller vertical color

coded bars. The 25 smaller bars are vertically distributed, each with increasing ranges.

The colors on these bars denote the degree of resistivity for that depth layer of the sound-

ing. The uppermost depth layers are smaller, starting with a range of 1 meter, while the

ranges increase with their respective depths. The gradually increasing ranges are set due

to increasing uncertainty at deeper subsurface levels. The color coded visualization is set
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at a logarithmic scale due to the large resistivity difference of subsurface sediments and

rocks.

Figure 2.6: Resistivity Profiles for a single flightline

2.6 Interpolation & Kriging

Any ML technique that uses a supervised learning approach requires a set of labeled data

points. In essence, this means that a data set must exist with normal input data, but the

value that we want to predict must also be known. For the sake of DTB interpretation, this

correlates to knowing the DTB level as mapped to resistivity profiles.

Thus, the aspect of obtaining labeled, or true data-points must therefore be considered.

Consider the example depicted in Figure 2.2. In this example, four black dots represent

known bedrock depths, as provided by boreholes. Assume now that an ANN model ex-

ists and accepts as input the single resistivity profile of evaluation. To perform supervised

training of this model, a dataset containing single resistivity profiles as input data with

respective true depth values is required. Using the resistivity profiles and borehole points

from Figure 2.2, one could quickly find the profiles where borehole points exist, label the

input with the depth of the borehole and use the obtained dataset as training data. Unfor-

tunately, such cases where boreholes are found directly under AEM measurements rarely,

if ever, happen in real world scenarios. In other words, there will not exist any labeled
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resistivity profiles, because no AEM sounding will have the exact same X and Y coordi-

nates as any borehole. Thus, there is a need for an approach which can map the known

depth labels to resistivity profiles that can be used in the derived model. Consider the map

presented in Figure 2.7 below. This figure depicts a top-down view of a map, where the

AEM soundings are plotted with black squares, and borehole locations are plotted with

red circles.

Figure 2.7: Example map of a surveyed area.

Recall that the goal is mapping the known labels which are plotted in red color, (bore-

hole depths), to resistivity profiles that could be used with the ANN model. A simplistic

approach could simply relate borehole depths with the nearest known resistivity profile,

such as depicted in Figure 2.8. This approach would provide a simple method for relating

a single resistivity profile for each borehole. However, much uncertainty is introduced

as the distance is not properly accounted for. A threshold technique where any relations

with distances larger than the threshold between them would be discarded may mitigate

this problem. Though, this would lead to much discarded data, and there is no contextual

awareness present.
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Figure 2.8: AEM data points related to boreholes by projection.

A better solution is the interpolation of multiple nearby resistivity profiles, resulting

in a single resistivity profile for each borehole by IDW, such as shown in Figure 2.9.

The number of nearby data points to use may be limited both by a distance threshold

and a maximum number threshold. Recall the layered structure of a resistivity profile,

each consisting of the same number of layers. To interpolate a single resistivity profile

from the nearby ones, a weighted average can be computed for each layer, weighted by

their distances. This approach can thus account for the distances between the data points.

Moreover, it can also consider contextual differences to some extent. However, exceptions

may occur, where also this approach may be biased and of poor accuracy. An example

may be a case where all nearby AEM soundings of a borehole may be located on a single

side of the borehole. For such a case, an interpolation of the nearby soundings will, to

some extent, consider contextual awareness as the resulting profile is an interpolation of

its surroundings. However, it can not be claimed to accurately represent the resistivity

profile of the point of interpolation if resistivity profiles on the other side present vastly

different values.
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Figure 2.9: AEM data points related to boreholes by interpolation.

Current state of the art takes this one step further with the use of Kriging for this

purpose [9]. This technique is further discussed and elaborated on in the next section.

The approaches presented in this section mitigates the problem of obtaining training

data for a model that takes as input a single resistivity profile. Consider now a contextually

aware model that provides DTB predictions from sets of neighboring resistivity profiles.

The problem of obtaining training data for such a model further complicates the issue, and

is central to the technique of automation presented in this thesis.

2.6.1 Spatial Data & Interpolation with Kriging

The First Law of Geography, according to Waldo Tobler, is ”Everything is related to ev-

erything else, but near things are more related than distant things.”

Recall from the previous section that the task of relating known DTB values from

boreholes to a single resistivity profile presents its own set of challenges. Furthermore is

also AEM data prone to noise [9], which effectively means that resistivity profiles obtained

from automated inversions of the raw data may contain inaccuracies.

NGI conducted a project in 2015 with the task of supplementing geotechnical investi-

gations for a highway construction project in Norway. A research was conducted in rela-

tion to the construction project, where the aim was to develop an automated algorithm for
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extracting DTB using data from both AEM surveys and boreholes [9]. The research pro-

posed and presented the use of the geostatistical spatial interpolation technique, Kriging,

for the problem of relating borehole depths to corresponding resistivity profiles.

The problem which Kriging attempts to solve in the aforementioned project is, in sim-

pler terms, to estimate an unmeasured resistivity profile based on spatially surrounding

measured samples. Kriging carries some similarities to the somewhat simpler technique

of IDW, as described in the previous section. Recall that in IDW a weighted average is

computed of the surrounding data samples, and the weighting correlates to the distance

from the data point of estimation.

Equation 2.1 describes the overarching problem which both IDW and Kriging solves,

where ẑ(xi, yi) is the predicted value at coordinates (xi, yi), N is the number of true

values as obtained by measurement, and λj is a weight that denotes the degree of which

the true value at j, z(xj , yj) should affect the prediction. Similar for both techniques is

that the weights sum to 1.

ẑ(xi, yi) =

N∑
j=0

λj(z(xj , yj)) (2.1)

IDW and Kriging differs, however, in the way they computes the weight parameters.

IDW sets the weight parameters corresponding to the spatial distance between the point

of prediction, (xi, yi), and the true data points, (xj , yj). Hence, IDW can be described

as a deterministic interpolation method, since the resulting interpolation is directly related

to the surrounding data points. Kriging, on the other hand, also adjusts the weights cor-

responding to spatial variance. A function is initially fitted to represent a generalization

of the spatial variance, which is later used for approximating ẑ(xi, yi). The fitting of this

model is done by analysis of a semivariogram. A semivariogram presents the semivariance

at incremental distances, or lags. The semivariance for each lag is half of the variance for

each pair of data points, where the distance between the two data points is less than the

number of lags multiplied by the lag distance. This is represented by Equation 2.2, where

SV (D, ld, l) denotes the semivariance for the data set D at the l’th lag where each lag is

of distance ld. P is the set of all pairs of data points in D, such that the spatial distance

between each pair, P i ∈ P , is less than the distance obtained by l · ld, but larger than the
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distance obtain by (l−1) · ld. N denotes the number of pairs in P , while z(P i0) and z(P i1)

represent the values of the two data points in in P i.

SV (D, ld, l) =
1

2
(

∑N
i=1(z(P i0)− z(P i1))2

N
) (2.2)

The X-axis on the semivariogram represents the distance, while the Y-axis represents

the semivariance. The lags effectively provide borders for the data samples to be included

in the calculation of the semi variance. The borders separate the data point pairs such that

the semivariance for the first lag is computed by only the pairs whose distance is less than

ld · 1. The semivariance at the second lag is computed solely by the pairs whose distance

is larger than ld · 1, but less than ld · 2, and so forth.

Figure 2.10 presents an example of such a semivariogram. The nearby points, which

corresponds to left on the X-axis, typically carries lower semivariances than pairs of points

with larger distances between them, (further right on the X-axis). This corresponds to

Waldo Tobler’s law, which emphasizes the fact that geographic data that are closely spa-

tially located tend to be more similar than ones that are further spatially distributed. Thus,

data points that are located at the high end of the X-axis should, by Tobler’s principle, have

higher Y-values.

Figure 2.10: Semivariogram with manually generated data

Recall that Kriging interpolation relies on a model that can represent the data that is

visualized in this diagram. The fitting of a such a generalized model consists of selecting

a model type to use for the modelling, before approximating the parameters. Some of the
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model types that can be used are listed below.

• Gaussian

• Exponential

• Spherical

• Linear

• Power

• Hole-Effect

The type of model that is most fit may vary depending on the problem, and experimen-

tation is commonly used to find the model that best represents the plotted data points in

the semi-variogram.

The parameters used to define the semivariogram models are the distance, d, the partial

sill, p, the range, r and the nugget, n.

The distance corresponds to the values on the X-axis in the semivariogram. The dis-

tance at which the model is flattening, or no longer increasing in the Y-axis, is known as

the range. The value of the Y-axis when the X-axis is at the range is known as the sill. The

nugget is the value of the semivariogram at d = 0. The partial sill is the sill minus n.

The gaussian model function is defined in Equation 2.3, and the exponential model

function is defined in Equation 2.4. Both equations assume d > 0.

gaussian(d, p, r, n) = p · (1− e
− d2

( 4
7
r)2 ) + n (2.3)

exponential(p, d, r, n) = p · (1− e−
d
r/3 ) + n (2.4)

By trial and error the parameters can manually be fine-tuned such that the chosen

model accurately represents a generalization of the data points in the semivariogram. How-

ever, manual trial and error may quickly become time consuming, and thus different forms

of gradient descent techniques minimizing some cost function for some loss, e.g. the Mean

Squared Error loss, can be used to automate the parameter approximation.

35



Chapter 2. Background

Interpolation predictions can then be made, after the semivariogram model has been

obtained by selecting a type and approximating the parameters. The process of producing

an interpolation for any geographic point is similar to that of IDW, but the weights for

the interpolation can now be obtained by the approximated model. Thus, consideration of

spatial variability is included in the predictions.

2.7 Representing the Uncertainty of Predictions

The added value that automated DTB predictions from AEM data presents are impeded by

the lack of automated computation of respective uncertainty values. This is because the

usefulness of any bedrock model is reliant on its accuracy and precision, as such models

are commonly used in projects that require high precision and accuracy. A bedrock model

with no knowledge of precision or certainty is thus less valuable.

2.7.1 Uncertainty in Regression Type ANNs

A theoretical limitation of standard regression type ANNs is that they do not provide any

information about how confident their predictions are, as they only output a prediction

based on a best fitting regression. The importance of quantification of such uncertainty is

not specific to geotechnical areas such as bedrock modeling, and are evidently present in

many other real world applications where ANNs or other ML techniques are used [12][24].

The uncertainty that is related to the depth predictions from artificial neural networks

can largely be split into two main categories. Since the resistivity profiles can be con-

sidered mere noisy approximations, the first category of uncertainty can be described

as aleatoric uncertainty, which represents the uncertainty that stems from the inherent

stochasticity in the data (resistivity profiles and DTB). The second category of uncertainty

is related to the misspesification of the model that is being used for estimating the depth

predictions. This category is typically referred to as epistemic uncertainty, and can in the-

ory be mitigated by expanding the size of the training data set. The epistemic uncertainty

is not solely determined by the misspecifications of the parameters, (i.e. weights and bi-

ases), in the model, but also the overall topology of the network. Epistemic uncertainty
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originating from a network’s topology may occur when the topology of a simplistic net-

work does not allow the network to attain the required level of complexity to solve a given

problem.

The combination of the two categories is exhaustive, and collectively they provide the

total uncertainty.

The numerical output of a regressor in itself may seem inherently precise, carrying

numerous decimals. However, a single regression model cannot provide any indication

of the model’s confidence for its prediction. Thus, an analyst solely taking into account

the output of such a regression network will have no way of differentiating between a

prediction which is confident, and a prediction which is not. This is simply because the

model does not know itself how confident it is. It is nothing more than a regression of

the input data, adapted to fit the training data as closely as possible. Since the model does

not compute any confidence in itself, obtaining uncertainty values for such a network is a

more challenging task.

Based on the discussion above, the industry’s desire can be said to be the acquiring

of depth interval predictions, rather than only single point predictions. It is of much

larger usefulness to provide a depth estimation saying, with 90% confidence we claim

the bedrock will lie between these boundaries, rather than a depth estimation saying; the

DTB probably lies at this depth, but we have no idea of how accurate that is. Such intervals

is known as prediction intervals (PI). The experimental approach of this thesis considers

and evaluates a set of approaches for construction of such intervals for the case of DTB

interpretation.

As discussed in this chapter, the introduction of uncertainty values related to each

prediction can ultimately allow a geotechnical expert to more efficiently perform complex

analysis and verification of automated bedrock models. Knowledge about the certainty of

each plot in a bedrock model is of high usefulness in planning and further execution of

projects that require precise awareness of the underlying bedrock of an area.
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2.7.2 Prediction Intervals & Confidence Intervals

A regression network is fit to provide predictions in a continuous output space. However,

it is a theoretical limitation that it lacks the benefit of being able to provide any form of

confidence level for its output. Still, the predictions will be less reliable and accurate if

the training data is limited or noisy, i.e. if the combination of epistemic and aleatoric un-

certainty is high. Thus, a more complex approach is needed for an ANN regressor to be

able to account for an uncertainty range. Recall that there is an industry desire for such an

uncertainty range, where predictions in the form of PIs could yield beneficial outcomes.

Previous research exist on PI construction for ANN regressors, since many industries com-

monly relies on information about the accuracy of point predictions for decision making

and risk management. By definition, PIs provide an interval for in which an observation

will fall by a certain probability given historic observations. It consists of upper and lower

bounds that contain the value of a future prediction with a probability known as the confi-

dence level, α, where 0 ≤ α ≤ 1, corresponding to some percentile. Knowledge of such

intervals allows the interpreters to consider best and worst case scenarios. By definition,

wide PIs represent high uncertainty, while narrow PIs represent low uncertainty for the

point prediction at that location. Consequently, this knowledge can allow decision mak-

ers to avoid selection of risky actions when the uncertainty is high, and allow for more

confident decisions when the uncertainty is low.

A few approaches for learning uncertainty in ANN’s have been proposed and well

established.

For any regression model, a data point at i can be modeled by Equation 2.5, where dpi

is the data point, yi is the true regression value at i, and εi is the error, or distance from the

actual regression value to the data point’s value.

dpi = yi + εi (2.5)

Using some model, an estimate of the true regression point at i, ŷi, can be obtained. For

a data point at i, we can model the discrepancy between the data point and the estimation

of the true regression point, stemming from the model, by Equation 2.6. If ŷi is 100%
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accurate in predicting yi, the left side of this equation would have the same value as εi,

and thus correspond to the error at i.

dpi − ŷi = (yi − ŷi) + εi (2.6)

CIs, (Confidence Intervals), represent that for some probability p, the best fit regres-

sion, y, for the complete dataset dp lies within its boundaries. Consequently, CIs quantify

the uncertainty between the prediction, ŷi and the true regression point yi.

PIs on the other hand represent that for some probability p, the true data point, dpi will

lie within its boundaries. Thus, PIs quantify the uncertainty between the prediction, ŷi,

and the actual data point dpi.

Whenever the errors are normally distributed around the true regression, prediction in-

tervals rely on the total variance at i, σ2
i , which can be divided into two distinct categories,

such that σ2
i = σ2

ŷi
+ σ2

εi .

σ2
ŷi

represents the uncertainty in the model, the epistemic uncertainty, which encom-

passes our ignorance in selecting a model that most accurately can explain the data, but

also parameter estimation errors. σ2
εi represents the uncertainty inherently in the data,

the aleatoric uncertainty, which can be exemplified with similar data points with differing

labels, or noisy data points.
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Chapter 3
Related Work & State of The Art

This chapter aims to establish and present related work and the current state of the art in

relation to interpretation of geotechnical resistivity profiles.

Section 3.1 covers current established techniques that have commonly been used for

interpreting DTB levels from AEM data.

Subsequently, Section 3.2 covers relevant concepts and definitions related to the aca-

demic field of machine learning and artificial neural networks. It establishes important

theory which is useful for understanding how ANNs are able to address the same problem

as the techniques from the previous sections. NGI’s ANN regressor is also presented and

covered in this section, after the relevant theories have been presented. The section lays

ground for important concepts that is used for a proposed new automation technique later

in the thesis.

Section 3.3 wraps up this chapter by presenting a set of established techniques for

construction of prediction intervals from regression type ANNs.

3.1 Interpretation Techniques

The following sections will provide an overview of two common techniques for DTB

interpretation from resistivity profiles.
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3.1.1 Manual Spline Interpolation

The manual spline interpolation approach is the most simplistic approach for DTB tracking

currently housed in NGI’s analysis module. A spline can be described as a polynomial

function that is piecewise defined. In basic terms this means that the complete interval of

the polynomial can be split into sub-intervals, where each interval can be defined by its

own distinct polynomial function. The benefits of using a spline approach over a high order

polynomial approach for interpolation problems are illustrated in the two plots in Figure

3.1. The problem with the higher order polynomial interpolation can be seen between the

two final plots, where the high order polynomial oscillate, resulting in a deep curve. This

behavior is commonly known as Runge’s phenomenon, and is perhaps the main reason

why spline is commonly preferred over high order polynomials for interpolation problems,

where the goal is to find an initially unknown value between two points.

Figure 3.1: Example of regression using 4th Order Polynomial (left) and Cubic Spline (right).

Recall that boreholes are commonly sparsely distributed at early phases of geotechnical

site investigations. Assume now that the X-axis in in Figure 3.1 represents an AEM flight

line, the Y-axis represents depth, and the red dots depict known depths to bedrock provided

by boreholes. In such a case, it might be simple to see that the interpolation provided by

the Spline more accurately represents a potential one-dimensional bedrock model for the

flight line.

However, an observant reader might again spot that there is a discrepancy between

known data and the data used in this approach, as the described process does not account

for the AEM soundings’ resistivity profiles. Rather, it only uses the bedrock depths at cer-

tain locations. This is correct, and also considered a significant drawback of this method.

However, the approach as implemented in NGI’s plugin takes the process one step fur-

ther by allowing for further manual interpretation and analysis. It does this by displaying

42



3.1 Interpretation Techniques

the resistivity profiles behind the interpolation. This allows a geotechnical expert to iden-

tify correlations between the known DTB values from the boreholes and the values in the

resistivity profiles.

The regression is typically initially constructed by data from boreholes. However,

the expert may introduce new data points to more accurately fit the spline in order to

account for the resistivity profiles as displayed in the background. This is an example of

introduction of bias in the process, as various experts may interpret the resistivity models

slightly differently, resulting in potentially varying interpolations. Reproducability is also

significantly damaged by this last step.

An uncertainty measurement for each interpolation point can be computed by a similar

spline interpolation from uncertainty values along the X-axis, where the uncertainty values

correspond to some uncertainty range for that point, as predicted by experts.

3.1.2 Localized Smart Interpretation

Localized Smart Interpretation is an interpretation technique that takes the resistivity pro-

files into consideration when computing the DTB values. The technique was first proposed

by Guldbransen et al. in 2015 [15]. The overarching aim of this technique is to construct

a statistical model that can describe an assumed linear relation between some arbitrary

quantifiable data and some arbitrary geological interpretation (for the sake of this thesis,

DTB). This can be written as a function of d and M , f(d,M) which results in a proba-

bility distribution that can describe the relation between the quantifiable data M and the

interpretation d.

In the case of DTB tracking from AEM inversion results, M would correspond to the

resistivity profiles, while d would correspond to DTB values. Thus, d can be seen as a

vector of DTB values and M can be regarded as a matrix, where each row represents a

vector describing a single resistivity profile. A larger set of boreholes with known DTB

values can provide the statistical model with more data, which in turn can be used to

improve the parameters of the probability distribution. Essentially this mean that more

valid data leads to improved predictions. Current use of this technique may also rely on a

geotechnical expert to enter some manually interpreted data points, M to d mappings, as
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the number of boreholes may not be sufficient.

The underlying assumption is that there exist a linear relation between d and M , such

that finding an unknown value di ∈ d from known values m ∈ M corresponds to pick-

ing the most likely value from the probability distribution di|m, which is given by the

statistical model f(d,M).

In turn, this means that after the model has been inferred from the aforementioned data

points, it can be fed a single instance of quantifiable data that was not known during the

inference of the statistical model m, and provide a prediction of DTB di. This can be

written as di = mg where g describes the linear operator connecting them. A concrete

approach for computing g can be found in Guldbrandsen et al. 2015 [15].

The assumption of a linear relation means that the same rule for interpretation is used

regardless of the context and the geological setting of the area. While this provides a

well suited approach for interpretation of surveys where the geological setting does not

drastically change, it cannot properly account for flight lines where the geological setting

change within the area of investigation [27, p 2].

3.2 Machine Learning & ANN Definitions

NGI has previously experimented with the use of simplistic artificial neural networks for

automated DTB interpretation of resistivity profiles obtained from AEM data. This section

aims to provide the reader with a brief introduction to feedforward regression type artificial

neural networks. The introduction provided here is vastly limited. A thorough introduction

to the concepts that are briefly described here can be found in the book Deep Learning by

Goodfellow et. al [13].

Massive amounts of neurons are connected in complex networks inside the human

brain. ANNs, or Artificial Neural Networks, are highly simplistic computational represen-

tations of such networks. These are commonly used for approaching both classification

problems and regression type problems. While standard algorithmic approaches require

the programmer to explicitly state the rules of which the algorithm is to follow, ANNs are

able to independently learn approximations of these rules.

An artificial neural network consists of layers of connected artificial neurons. Each
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artificial neuron in the connected network can receive input signals from its input con-

nections, do some processing on that data and then pass a new signal further to its output

connections. The signals that each neuron sends are typically real numbers, and the pro-

cessing done within each neuron is commonly some aggregation of the input numbers.

The connections between the artificial neurons are typically referred to as edges. Each

edge in the network has its own weight, which amplifies or weakens the output of its initial

artificial neuron. The weights are adjusted during training of the network, which is how

the network is able to adapt to different computational problems.

The processing that is done in each artificial neuron is obtaining the weighted sum of

its input, x, followed by performing some activation function on x. There exist a vast

number of different activation functions. A quite commonly used activation function is

the rectified linear unit (ReLU), where the output is 0 if x is less than 0, and x otherwise,

as shown in Equation 3.1a. Another approach, albeit not as commonly used, is to use

some activation function that normalizes the output value, such that the output will always

represent a value between some interval, e.g. [0, 1]. This is exemplified by the Sigmoid

activation function as presented in Equation 3.1b.

ReLU(x) =

0, if x ≤ 0

x, else
(3.1a)

Sigmoid(x) =
1

1 + e−x
(3.1b)

Furthermore comes the aspect of biases. Biases in ANNs are single values in each

artificial node in the network. The bias affects the activation function similarly to each

of the artificial node’s inputs. However, the bias is not weighted, and it is not affected by

anything earlier in the network. In other words, they provide biased values.

Thus, for any artificial neuron in a densely connected artificial neural network, its out-

put can be written as presented in Equation 3.2, where α represents an arbitrary activation

function, n represents the number of neurons in the previous layer, ai represents the ith

artificial neuron in the previous layer, and b represents the bias in the neuron. The fact that

the network is dense means that any artificial neuron in any layer is connected to every
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artificial neuron in the previous layer.

out = α(

i=n∑
i=1

(wi · ai) + b) (3.2)

An ANN can consist of infinitely many layers, but will always have (at least) one in-

put layer and one output layer. Any layers located between the input and output layers

are commonly referred to as hidden layers. The number of neurons in the output layer

generally varies depending on the networks task. For classification problems the number

of neurons in the output layer generally corresponds to the number of possible classifica-

tions. For regression problems the output layer typically consists of only a single neuron

providing the resulting prediction from the regressor.

To put all of this in perspective, assume an artificial neural network takes as input a

vector of 125 numbers, resulting in 125 artificial neurons in the input layer. Assume the

network has two hidden layers of sizes 50 and 20, and an output layer consisting of a

single neuron. The total number of parameters that needs to be optimized in this network

is the total amount of weights and biases that exist in this network. The total number of

weights are (125 · 50) + (50 · 20) + (20 · 1) = 7270, and the total number of biases are

50 + 20 + 1 = 71, resulting in a total of 7341 parameters for optimization.

Before the ANN is trained, all of its weights and biases are initialized with random

values. An ANN with only random parameters are, unfortunately, not very useful. In

order for the networks to learn to produce sensible predictions, a training phase must first

be conducted. So how does an artificial neural network learn to make sensible predictions?

In a lecture held by Jordan Peterson at the University of Toronto, he claimed that ”Every

time you learn something, you learn because something you did didn’t work[...]” [34].

This quote also applies to how ANNs can iteratively become better by learning from trying.

Different types of learning exist, however, only supervised learning is of significant

interest for this thesis, and thus only this is briefly introduced here. During supervised

learning, a data set of labeled input data D1 must be provided, such that Dx
1 represent the

input data and Dy
1 represent the labels for each element in Dx

1 . The goal of the process is

to adjust each of the edges’ weights and neurons’ biases, such that the network as a whole

is able to predict results that are as close as possible to the labeled data by approximating
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some function of the input data, F (x), where x ∈ Dx. The ultimate goal of the training

phase is for the model to both fit to the training data, but also to generalize, such as to

perform well on data points that was never seen during the training phase. This can be

tested after training, by providing the network with a second labeled dataset, D2, and

comparing the ANN’s predictions with the labels in Dy
2 .

While attempting to find the best values for the weights and biases may initially seem

daunting due to the sheer number of parameters. It can, however, be simplified a whole

deal by breaking down the entire process into smaller sub-processes. The supervised train-

ing phase for a regressor contains many cycles where the network first produces a predic-

tion, ŷi for each input data xi ∈ Dx, then compares the predictions with the labeled value

for that prediction, yi ∈ Dy . After the comparison has been made, an error, εi, is com-

puted, which represents the deviation from yi to ŷi. εi can be computed in different ways,

varying with the objective of the network. The function that is used to compute εi is com-

monly referred to as the loss function. The square loss, as presented in Equation 3.3, is an

example of a loss function which is often used for regression problems.

εi = (ŷi − yi)2 (3.3)

The Cost function computes a metric of the loss after training over some number of

data points. Goodfellow et. al notes in his book on Deep Learning [13], that the terms

objective function, criterion, cost function, loss function, and even error function are used

interchangeably in his book, which is a statement that is often true in the wild as well,

though it is mentioned that some publications assign special meanings to some of the

terms. Why no single phrasing for the computation has stuck, one can only wonder. A

simple man may be inclined to believe that computer scientists have a tendency to over-

complicate simple terminology. Nonetheless, the metric provides a single value, denoting

how good (or bad), the network is currently performing. The cost function can thus also

be described as a function of all the parameters in the network, which yields a score for the

network as a whole based on the performance of the training data. In mathematical terms,

the cost function of the weights and biases in the network can be written as presented in

Equation 3.4, where C is the cost function, w is the weights in the network, b is the biases,
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N is the number of losses that has been computed, and εi is the loss at i, or, if MSE is used

as the loss function, the squared residual, as from Equation 3.3.

C(w, b) =
1

N

i=N∑
i=1

εi (3.4)

In short, if the output ofC is low, the network is performing well. On the other hand, an

increase in the output of C means that the network is performing worse. Thus, the goal of

optimizing the model can be described as the equivalent of minimizing the cost function. In

other words, the goal is to find the set of parameters, i.e. weights and biases, that produces

the lowest value for C. Achieving this is done by an approach called gradient descent,

where the parameters of the model are iteratively tuned, each step aiming to reduce the

output ofC. The most common learning algorithm, which incorporates the idea of gradient

descent, is the backpropagation algorithm. In the backpropagation algorithm, each weight

and bias in the network is evaluated as to whether it should increase or decrease, and also

with which magnitude, as to improve the model’s performance. The desired changes for

each weight and bias are averaged after all the data points have been checked.

Modern approaches rarely iterate over the entire training data set for each computation

of the gradient, as it would take rather long time with complex models and large data sets.

Instead, the training data set is often shuffled, then split into smaller batches, and each

batch is evaluated before the gradient is computed and the parameters shifted. While this

approach does not find the optimal shift after each batch, it generally allows the models to

converge much faster.

3.2.1 Deep Learning & Deep Neural Networks

Deep learning has, in the later years, dramatically improved the state of the art in many

technological areas [25]. Deep learning is a broad subset of all machine learning tech-

niques. With respects to neural networks, a network is by definition considered deep if

it consists of more than one hidden layer, excluding the input and output layer. The best

number of hidden layers to include in any model may vary with the network’s objective

and the complexity of the task. Too many hidden layers may lead to overfitting, while too

48



3.2 Machine Learning & ANN Definitions

few layers may result in the network not being able to learn the required ”rule-set”. In

layman’s terms, one could say that deeper neural networks are able to use more rules to

analyze its input than shallower ones.

3.2.1.1 Convolutional Neural Networks

Convolutional neural networks, (CNNs), are a subset of all deep neural networks, which

has played an integral part of recent progress in computer vision problems [25]. CNNs are

perhaps most commonly used in image classification problems, where layering of convolu-

tions may allow a network to account for increasingly more complex patterns. In a layered

CNN consisting of three convolutional layers, the complex problem of classifying a digit

may be realized by each layer performing a different, and increasingly complex task. The

first convolutional layer may only detect lines and edges. The second layer may identify

combinations of the lines and edges detected in the first layer, allowing it to identify more

complex shapes such as corners or curvatures. The last convolutional layer may then be

able to identify combinations of the shapes from the second layer, corresponding to digits.

Assume an image is represented by a matrix, and each cell in the matrix is representing

a color value. The mathematical operation of a single convolution would then consist of

two input matrices, one being the original input image, and the second being the kernel. A

single matrix is computed and output, typically referred to as a feature map of the original

image by the kernel. The kernel is a matrix containing a small pattern. The kernel is then

matched with patches of the original image to produce the product of the convolutional

operation. This process is visualized in Figure 3.2, where the colored cells corresponds to

ones, and white colors correspond to zeros. The product, as output in the output filter, or

feature map, is the element-wise product and sum of the kernel and the patch of the input

image.
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Figure 3.2: Visualization of convolution for a single kernel over two different patches of the input
image (Not two subsequent patches)

The approach presented in Figure 3.2 shows how one kernel affects one cell in the

feature map based on the input image. Let I denote the complete image, and Ii,j represent

a 3 by 3 patch of the image, centered around the ith cell from the top, and the jth cell

from the left. In the first example from the figure, the convolution operation is performed

on the patch I1,1 by the kernel, k. The result of the convolutional operation, following

element wise multiplication and sum, is 0. The value for the second example is 3. The

same procedure is followed for every individual patch in the input image. The resulting

feature map thus provides a map where each cell in the map reports the degree of match in

the input image, at a single location, for a single feature.

There can exist many different kernels in a feature set. The process described above is

repeated for each feature in the feature set, each resulting in a different feature map. The

values of the feature matrices are learned during the training phase in the same way as the

weights and biases in the model.
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Straight forward convolution will, by definition, shrink the size of the original image.

This is a direct consequence of the process requiring surrounding values for computation

of the value of a cell in the feature map. This is fine for some use cases, but other cases

may rely on retaining the original size of the input data, or desire to retain as much data

as possible. For such cases, padding extra layers on each edge of the input data allow for

convolution over the outermost cells. Thus, allowing for the retention of the original size.

Pooling is an additional layer that is often used alongside convolutional layers. Pooling

effectively reduces the resolution of a feature map, by computing some aggregation over

patches in a feature map. The most common type of pooling is perhaps max pooling,

where only the cell with the highest value is retained in the output of the pooling layer.

3.2.2 ANN Regressor

A study published in 2018 by researchers from NGI presents and evaluates an approach

for predicting DTB by use of a multi-layered artificial neural network regressor [27]. This

approach produced improved results in settings where the geological setting is varying and

complex, compared to the LSI method, described in Section 3.1.2, where a linear function

approximator algorithm is used.

The data from inversions of AEM survey data can be described as a matrix of N

rows and M columns, where N denotes the number of measurements (soundings), and M

represents the layered resistivities at increasing depths, (resistivity profiles). Each row can

also be enriched to contain coordinates , elevation or any other relevant information.

The aim of the proposed ANN approach is to mitigate the problem that arise in use of

the LSI approach, as it would use the same rule for every sounding, regardless of location.

As subsurface topography is heavily dependent on the geological setting at the sounding’s

location, it can drastically affect actual DTB values.

3.2.2.1 Description of Method

Non-linearity is achieved in the ANN approach by the inclusion of a hidden layer in the

network. The ANN is built on the Scikit-Learn framework for the programming language

Python.
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The training data for the model can be obtained from known DTB values from bore-

holes or expert manual interpretation of the resistivity profiles. Thus, training points do not

necessarily always exactly match the actual DTB, but rather provide meaningful represen-

tations. The study presented in NGI’s paper found that the required number and density

of the training points needed to obtain good predictions were largely dependent on the

complexity and the size of the surveyed area [27]. As AEM data resolution decreases with

depth, larger uncertainty in predictions are expected at deeper layers.

The method also allows for a type of representation of uncertainty, where a second

network is labeled with manually assigned uncertainty values measured in meters. This

allows the first network to predict a depth, and the second network to predict an uncertainty

range.

3.2.2.2 Result Comparison with Traditional Method

NGI compared the ANN approach with the somewhat simpler LSI method for DTB pre-

diction in two different projects and geographic areas. The two locations differed in com-

plexity and size, with one being smaller and of a simpler, and more consistent nature than

the other. Both methods proved viable, increasing their accuracy with more training points

and converging at approximately 3.5 meters of average mismatch. Most predictions did

actually have smaller mismatches, but some data-points where bedrock could be as deep

as 70 meters had large mismatches resulting in a higher average.

The more complex area required more training data for achieving an average mismatch

of about 8 meters. The ANN approach provided improved results by approximately 30%

compared to the non-linear algorithmic approach.

NGI’s article concludes that further work should evaluate different regularization schemes

and solvers as well as different AEM inversion schemes for improving the method. They

also mention that smarter training sets and inclusion of geologic information in the ANN

could improve the predictions.
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3.3 Uncertainty in ANN’s and Prediction Interval Con-

struction

Recall from Section 2.7 that there is a desire from the industry to retain some sort of

knowledge about the uncertainty for predictions in automated approaches. While NGI’s

ANN proposal can produce both DTB predictions and a form of uncertainty range, the

uncertainty is still user-assigned [5]. Moreover, it is not entirely clear what the uncertainty

range covers, whether it denotes a confidence interval or a prediction interval, and what

level of confidence it holds. The uncertainty values are effectively prone to human bias,

since they are user-assigned. In turn, this also makes the ANN predicting biased values,

as it approximates a function that fits the training data. Thus, the current industry standard

does not provide automated uncertainty values for the model’s predictions. Rather it pro-

duces predictions of biased human assigned estimations. The fact that the problem is one

of regression makes the problem more difficult. Section 2.7.2 provided a brief introduc-

tion to the aspect of prediction intervals. This section presents a set of techniques that have

commonly been used for construction of such intervals. These techniques are important

for the methods which will be compared and evaluated in the case study presented later in

the thesis.

3.3.1 Mean Variance Estimation

Nix & Weigend proposed an approach which allows for the estimation of data noise vari-

ance, or aleatoric uncertainty, as a function of the input for the regression [30]. The ap-

proach relies on a single ANN with two output nodes, where the first node outputs the

prediction for the regression, which is also the true mean of the target distribution, and

the second output node predicts the variance of the same distribution. The method can

largely be thought of as a combination of a standard regression network and a maximum

likelihood estimator for the aleatoric variance of its prediction.
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3.3.2 The Bootstrap Method

The bootstrap method was originally proposed by Heskes in 1996 [17]. The method

presents an approach for obtaining model uncertainty, or epistemic uncertainty, by train-

ing an ensemble of many networks on a set of random sampling from the original training

data. Each trained model will thus be slightly different as a result of random initialization

of weights and biases, but also as a result of somewhat differing perspectives on the data.

An estimation of the epistemic variance for any point in the regression can thus be found

by the distribution of predictions for that regression point.

Heskes also proposes in his paper from 1996 [17] a method that incorporates some

aspects of Nix & Weigend’s MVE technique, allowing for a method that can combine

estimations of both epistemic and aleatoric uncertainty. Effectively, this technique allows

for estimations of the total uncertainty of a regressor’s predictions.
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This chapter will provide the reader with a description of the approach of the conducted

research for the thesis.

Section 4.1 will present the two fundamental motivations that are core to this thesis.

The section concretizises the motivation in the form of a set of research questions, which

accurately denote the exact information that the research aims to uncover.

Section 4.2 delves deeper into the data sets, and establishes a more thorough under-

standing of the data that was provided for the case study.

Section 4.3 proposes a new technique for automated DTB interpretation, inspired by

novel technology from the academic field of computer vision. The section begins with a

thorough explanation and description of the method. This includes a proposed solution

to a new problem that arises with the automated technique, encompassing the obtaining

of valid training data. The section concludes with a section on the approach used for the

evaluation of the method.

Section 4.4 describes three different techniques for the construction of prediction in-

tervals for regression type ANNs. The descriptions thoroughly inspect both technical and

non-technical aspects of each of the techniques’ functionalities and requirements. After the

methods have been established, the section concludes with a description of the approach

used for evaluating and comparing the techniques.
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4.1 Research Motivation

The underlying motivation for the research is twofold.

Firstly, the research aims to understand how AEM data can be used in combination

with machine learning techniques to produce accurate predictions of distance from soil

to bedrock. The research initially aims to firmly establish both the practicality and added

value of inclusion of ML techniques in DTB interpretation. Cost reduction and elimination

of tedious manual labor in the interpretation process is a driving factor, where time spent

by geotechnical experts is considered more valuable when used on other problem areas

such as verification of results and overall interpretation.

The second motivator addresses the issue of confidence related to automated DTB pre-

dictions. The added value of simplistic point predictions, where no notion of confidence

in the predictions are present, are considered little. Thus, to adhere to the industry’s de-

sire, the research aims to uncover a practical method for quantification of confidence for

automated predictions.

4.1.1 Research Questions

This sections concretizises the motivation by establishing a set of research questions that

clearly states the aims of the research.

• RQ1 What machine learning technique could increase performance for the prob-

lem of DTB predictions from AEM data, compared to NGI’s current MLP regressor

approach?

• RQ2 What method of constructing prediction intervals for representing uncertainty

in automated regression point predictions for DTB levels is most fit for the problem?

Research Question 1 strongly correlate to the thesis’ primary contribution as described

in Section 1.2.1.1, and can be seen as the thesis’ focal research question which provides

the overarching direction of the research. It covers the considerable challenges in the un-

explored territory of the intersection between AEM data and machine learning. Research

Question 1 presents a problem where a number of ML techniques and models can be used
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for solving the problem. An evaluation two methods is covered in the experimental ap-

proach of the thesis.

Research Question 2 addresses the next step of quantifying and intuitively representing

the confidence of the predictions as provided by some regression type predictor. While a

resulting ML regressor from Research Question 1 could provide such predictions, the PI

construction methods do not require the predictions to stem from a ML technique, and the

two questions are therefore distinct. In the case study presented in this thesis, a proposed

ML technique is, however, used. A selection of approaches are evaluated in the thesis’

approach. The question concretizises the problem of representing prediction results in a

manner that provides domain experts with knowledge that goes beyond the standard point

predictions from regression models by including the metric of uncertainty.

4.2 Exploratory Data Analysis

An initial exploratory data analysis was done to gain an improved understanding of the data

related to the case study where the data was provided by NGI. The exploratory analysis

presented here relates to the same dataset as discussed in Section 2.5 and from NGIs paper

[9].

A large set of 3D scatter plots such as presented in Figure 2.4 were used to gain a

visual understanding of how DTB values tend to vary with distances. Figure 4.1 shows

such a variogram with 50 lags. The variogram attempts to describe the degree of spatial

dependence of the DTB values. In general, geological data tend to vary more at increasing

distances, resulting in a logarithmic curve. However, analysis of the produced variograms

reveal that this assumption only holds true for the surveyed area for a short initial distance.

From the 3D visualization in Figure 2.4 this can be understood by noting the ’dip’ at

approximately 10000 meters easting and 5000 meters northing. The vast majority of the

boreholes are located around this dip, resulting in large variances at close distances for

these boreholes. Additionally, a note should be made of the sparsity in the coverage of the

area, as there exist considerable gaps.
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Figure 4.1: Variogram for borehole depths of the complete survey area

The variance of the resistivity profiles seem to increase at deeper levels. Another in-

teresting observation is the hole-effect drop that appears at approximately 4000 distance

meters [37]. This is caused by the dataset containing much data from two river valleys,

which are quite similar, and spaced approximately 4000 meters apart, and cause the vari-

ance to decrease. Figure 4.2 shows the variograms for the uppermost and deepest inversion

layers respectively.

(a) Variogram for the uppermost inversion layer (b) Variogram for the deepest inversion layer

Figure 4.2: Variograms for two layers of the sounding inversions.

4.3 Convolutional ANN Proposal

This section presents the proposal for a new approach for DTB prediction, and relates

to the previously defined Research Question 1. Section 4.3.1 presents a description of the
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intuition behind the approach, before a detailed explanation of the neural network model is

presented. Section 4.3.3 presents the method that was used for comparison and evaluation

of the new approach and the already established MLP regressor approach from NGI [27].

4.3.1 Description of Approach

Section 2.3 described the intuition that a geotechnical expert makes use of during manual

interpretation of resistivity profiles in a continuous space. From the description of the

process, it can quickly be established that contextual patterns play an important role in the

interpretation process, as such patterns may influence the interpreters predictions. Since

the MLP proposal from NGI, which is described in Section 3.2.2, only accounts for a

single resistivity profile during processing, no patterns crossing the horizontal spectrum

can be claimed to be accounted for in its predictions.

To account for the contextual information that exists in the spatial continuum of the

resistivity profiles, a Convolutional Neural Network, (CNN), is proposed. The idea behind

the proposal is that allowing the neural network to view the input as a two dimensional

image could allow it to detect patterns such as slants, peaks and valleys that may influence

it’s predictions, somewhat similarly as it would influence a human interpreter’s predictions.

More specifically, the pattern detection is done in a convolutional layer by the use of filters.

Let rp denote a resistivity profile consisting of some number of layers. A logarithmic

transformer, L, is used to transform the resistivity values in each layer of rp into values

that would correspond to the colors, similarly as done in Figure 2.2. The transformation

by L is performed by taking the base 10 logarithm of the resistivity value, as the original

values grow exponentially with denser materials.

Single noisy resistivity profiles would also pose far less disturbance to the predictions,

as data from its neighboring resistivity profiles could alleviate the discrepancy in the input

data.

Let M denote the convolutional neural network and X represent a complete dataset

consisting of elements where each element is an array of 5 logarithmic transformed neigh-

boring resistivity profiles, which represents an image. Let Y denote the depth labels for

each image in X , such that Yi is the depth label corresponding to Xi. A visualization of
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one such element with the depth label displayed as a horizontal black line is presented in

Figure 4.3. Note that the goal is to identify the depth at the horizontal center of the image.

Figure 4.3: Visual representation of one element from X

The proposed topology of M consists of an input layer, a single convolutional layer,

one flattening layer, and a densely connected output layer resulting in a single neuron.

Figure 4.4 presents a schematic visualization of the CNN’s proposed topology. Each of

the boxes after the input box represent a single layer in the network. The boxes on the left

side denote identifiers and names for the layers. The boxes on the far right denote the shape

of the numerical data in dimensions as it flows through the network. The first dimension

represents the number of data points that will flow through the layer. The fact that the

these dimensions are set to None represents that there is no limitation on the number of

data points that is used during training. In the input of the convolution layer, the second

dimension, set to 5, corresponds to the number of resistivity profile arrays that a single data

point consists of. The third dimension represents the number of resistivity values in each

of the 5 resistivity profiles. The last dimension, set to 1, simply states that each resistivity

value is a single number. The output of the convolution is a set of 20 feature maps, as the

result of convolution using 20 different kernels. The input and the output of the flattening

layer show how it reduces the dimensions to a single flattened dimension. The input and

the output of the densely connected layer show how the resulting 2500 neurons are reduced

to a single final output neuron.
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Figure 4.4: Schematic representation of the CNN model’s topology

Figure 4.5 presents a simplified graphic overview of the networks topology, and the

operations used within.

Figure 4.5: Graphic representation of shape changing operations in the CNN

The input layer takes a set of 5 neighboring resistivity profiles as input, which can be

thought of as an image, where each layer in each resistivity profile corresponds to a single

pixel that has some resistivity value. Another way to think about this input dimension is

simply as a matrix consisting of 25 rows and 5 columns. The first layer performs convolu-

tion over some number of filters, f . Each filter is a small matrix of width fx, and height fy .
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The filter size is also commonly referred to as the kernel size. Thus, a filter with fx = 3

and fy = 3 would have a total of fx · fy = 9 values. Initially, these values are randomly

set, but during training these converge at common patterns.

In the convolutional layer, for each filter fi, the filter is matched over the entire input

image in small sections, by sliding over the image, so that every block of pixels of the

same shape as the filter has been matched. The process of sliding the filter over the images

is commonly referred to as convolving. For each convolved block, the dot product of the

filter and the block from the input is retained as output. Thus, for each filter, fi ∈ f , a new

matrix is produced, consisting of a new representation of the input image as convolved by

the filter. The process is repeated for every filter. Padding is used to maintain the original

size of the matrix, such as discussed in Section 3.2.1.1. Hence, the final output of the

convolutional layer is a set of n new matrices, where n is the number of filters in f .

The flattening layer flattens the n matrices to a one dimensional array of neurons. A

dropout layer is placed between the densely connected layer and the single output neuron.

During training, the dropout layer randomly drops 10% of the neurons. This is done in

an attempt to avoid overfitting the network, due to the large amount of neurons in the last

layer. The value of 10% was set as it produced the best results after observing several tests

with different values. This technique was proposed by Srivasta et. al in 2014 [39], and has

proved to be successful in various use cases since [18][19].

Both the convolutional layer and the densely connected final layer both use the ReLU

activation function, carrying the benefits of being simplistic and non-linear, while at the

same time enforcing non-negative output.

Training of parameters in the network follows the same back-propagation procedure

as used in NGI’s proposed MLP regressor.

4.3.2 Spatially Distributed Kriging

The method of obtaining training data for the CNN model is based on the similar method

used for obtaining training data for the standard MLP approach. The two methods differ,

however, in that the standard approach only requires the approximation and interpolation

of a single resistivity profile for each borehole, whereas the CNN approach requires an
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array of neighboring resistivity profiles. This additional demand for neighboring resistivity

profiles poses further requirements for the interpolation process. The same method of

interpolation is used, such as described in Section 2.6.1, with some additional steps.

Similar for both is that the interpolation approach uses the base 10 logarithmic values

of the original resistivity values in the layers of each resistivity profile. Essentially, this

means that the resulting interpolations will be the base 10 logarithm of the original values,

and it is the reason for why the ANN models use base 10 logarithmic values as their input

data.

The method of layered 2D Kriging was selected for interpolation. Thus, interpolating

a single resistivity profile for a single point requires 25 individual Kriging models, one for

each layer in the resistivity profile. 25 distinct semi-variograms were initially produced

from all resistivity profiles in the dataset, each using the resistivity values located at the

same depth. A visualization of the semi-variograms can be found in Appendix D, Figure

7.17. The gaussian function was selected as the model type, as it provided the best general-

ization of the data points after a manual inspection. The model parameters, the sill, range,

and nugget were automatically fitted using a soft L1 minimization scheme as implemented

in the open source Python library PyKrige [28]. This essentially fits the selected model

such that the MAE loss is attempted minimized for the known points.

Figure 4.6 displays the kriged interpolations of two resistivity profiles, colored in blue,

located evenly spaced between two known resistivity profiles, colored in red. The Y-axis

represents the depth below the surface. The X-axis represents the base 10 logarithm of the

resistivity value at the depth provided by the Y-axis.

63



Chapter 4. Research Design & Implementation

Figure 4.6: Visualization of interpolations between two known points

The layered Kriging approach allows for approximation of a single resistivity profile

Âx,y by individually computing âlx,y ∈ Âx,y for each layer in Âx,y , where x and y rep-

resent easting and northing on a map. Let bx,y represent a borehole at a given location,

and K(i, j,ml) represent the method of Kriging a single layer for a resistivity profile at a

specific location, where i represents the easting, j represents the northing, and ml is the

Kriging model that has been produced for the layer l.

Obtaining the interpolation of a full resistivity profile Âi,j , assuming the 25 Kriging

models already exist, corresponds to combining the results ofK(i, j,ml) for eachml ∈M

where M is the collection of Kriging models, organized by layers.

Thus, the resulting Âi,j for i = x and j = y provides the approximation of a single

resistivity profile on the exact same location as the borehole. The standard MLP approach

requires only a single resistivity profile for each borehole value. The depth value from the

borehole can then be related to the interpolated resistivity profile and used as training data.

However, as the CNN model is reliant on an array of n consecutive resistivity profiles,

an additional set of resistivity profiles related to each borehole need to be approximated to

produce valid input training data for the borehole depths. The following exemplification

assumes that n = 5, such as represented in the model in Section 4.3.
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Figure 4.7 shows how an additional 16 resistivity profiles, (red and blue dots), could

be located around a borehole at the green dot. Four straight lines can then be drawn to

cover n resistivity profiles such as to produce a valid array which can be used as training

data for the CNN model. An important note is that the order of the profiles must be

maintained within each array for the input to be valid. Essentially, this means that for

any data point that can be extracted, the resistivity profiles in the resulting array must be

indexed corresponding to their order of appearance on the drawn line. Consequently, each

of the black lines can produce two distinct arrays of input data, one for each direction.

This means that a total of 4 · 2 = 8 input data points can be produced for each borehole.

Table 4.1 presents an exemplification of the two valid data points that may be extracted

from the horizontal line in Figure 4.7, maintaining the correct order.

Figure 4.7: Visualization of resistivity profile approximations by location
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Index 0 Index 1 Index 2 Index 3 Index 4

Array

Left to Right
(-70, 0) (-35, 0) (0, 0) (35, 0) (70, 0)

Array

Right to Left
(70, 0) (35, 0) (0, 0) (-35, 0) (-70, 0)

Table 4.1: Example of valid indexing of resistivity profiles which maintains the order of appearance
for the profiles in the horizontal array from Figure 4.7

It may seem like a drastic extrapolation for a single known value to produce 8 input

data points, but the resulting arrays of resistivity profiles may be vastly different. If one

of the arrays represents a slant in one direction, including a reversed copy of it allows

the CNN model to see the slant from both directions which again allows it to gain more

insight. This can be explained in that the depth would not differ, no matter what direction

the airborne vessel conducting the soundings came from.

Table 4.2 presents a similar, top-down view of the grid, where the borehole is located

in the center cell. Each cell contains a tuple representing the distance offset from the

borehole in meters, in the form of easting and northing respectively. The distance of 35

meters between each point was selected as it is the average distance between consecutive

sounding measurements as conducted by the airborne vessel for the provided dataset. The

black lines from Figure 4.7 are represented by colored table cells. The horizontal and

vertical points can be obtained by simple shifting of the boreholes easting and northing

respectively by 35 meters. The points for the diagonal lines are obtained by shifting of

both the easting and the northing by the distance as obtained by the Pythagorean Theorem

such as shown in Equation 4.1, where d represents the desired distance between the points

and ∆x,y represents the offset in the easting and northing. d = 35 then yields a diagonal

offset of ≈ ±24.75 meters.

d = ±
√

2 ·∆2
x,y (4.1)

Knowledge of the spatial difference allows for Kriging of the required surrounding

locations, as the actual spatial position can be obtained by adding the easting and northing
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differences to the respective values for the borehole.

(-49.5, 49.5) (0, 70) (49.5, 49.5)

(-24.75, 24.75) (0, 35) (24.75, 24.75)

(-70, 0) (-35, 0) (0, 0) (35, 0) (70, 0)

(-24.75, -24.75) (0, -35) (24.75, -24.75)

(-49.5, -49.5) (0, -70) (49.5, -49.5)

Table 4.2: Offset in meters, (easting, northing), for obtaining surrounding locations of a borehole

4.3.3 Evaluation & Comparison

The following section covers the implementation and design of the approach used for

testing, evaluating, and comparing NGI’s MLP regressor and the proposed CNN approach.

The approach for the evaluation is separated into two distinct conceptual techniques of

analysis.

The first concept is a purely numerical measurement of the model’s performance as

measured by a set of performance metrics. This technique is explained and concretized for

this case in Section 4.3.3.1.

The second evaluation concept is a visual inspection and evaluation where both in-

terpretation methods performs predictions across a spatially continuous flight-line, as ob-

tained from the real case study. The visual evaluation concept is further explained and

concretized for this case study in Section 4.3.3.2.

4.3.3.1 Numerical Metrics Analysis

The numerical metrics analysis is based on a set of well established metrics for perfor-

mance measurement of regression models. The time consumed for training was also

tracked and stored, in addition to the metrics defined and described in the following para-

graphs.

In supervised learning ANN regression models are trained to fit labeled data as ac-

curately as possible while attempting to generalize to unknown data and also to avoid

overfitting. The models are continuously evaluated, and their parameters are modified in
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attempts to improve the ongoing evaluations during training. Similar evaluations can also

be performed after the training has completed, to evaluate how well the model is perform-

ing. Below follows an explanation of the error metrics that were considered in the final

evaluation that took place after the training phase was completed.

4.3.3.1.1 Mean Absolute Error

The AE (Absolute Error) is defined as the absolute value of the predicted value subtracted

by the labeled value. The MAE (Mean Absolute Error) is obtained by taking the average

over the AE for all predictions as presented in Equation 4.2, where n represents the number

of predictions, yi represents the true value at i, and ŷi represents the predicted value at i.

During training n corresponds to the number of data points that were considered in a single

training batch, while during evaluation of a model, n typically corresponds to the number

of data points in the testing set.

MAE = (
1

n
)

n∑
i=1

|yi − ŷi| (4.2)

The mean absolute error is thus the mean of the sum of the absolute differences be-

tween predictions and known values. Hence, it provides the interpreter with an idea of

how wrong the predictions are on average. Higher MAE values correspond to increasingly

erroneous predictions, while a score of 0 means totally accurate predictions. The scores

are absolute values, and thus this metric cannot yield the interpreter information about the

direction of the error, e.g. in the case of DTB levels, if the predictions were too shallow

or too deep. However, since the output is presented in meters below the surface, the MAE

metric provides a sensible and intuitive measure in terms of meters as to the average error

of the predictions.

4.3.3.1.2 Mean Squared Error & Root Mean Squared Error

The model’s robustness can also be measured by the MSE (Mean Squared Error) for all its

predictions. The SE (Squared Error) for a single measurement is obtained by subtracting

the actual value from the predicted value and then squaring it. Thus, a squared error of

0 corresponds to perfect predictions, and higher values correspond to less ideal accuracy.
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To obtain the Mean SE over multiple predictions the average over each prediction’s SE

is computed. The formula for obtaining the MSE is presented in Equation 4.3, where n

represents the number of predictions, yi represents the true value at i, and ŷi represents the

predicted value at i. Similarly as to MAE does n correspond to the number of data points

considered in the respective training batch, or the number of data points in the testing set

when used for a final evaluation of performance.

MSE = (
1

n
)

n∑
i=1

(yi − ŷi)2 (4.3)

The Root Mean Squared Error (RMSE) provides a more sensible error measurement

than MSE in the sense that it returns the error to the actual unit size, (meters in the case of

DTB interpretation), by returning the square root of the MSE. The fact that the residuals

are squared makes large residuals affect the RMSE to a vastly greater extent than smaller

residuals.

RMSE =
√
MSE (4.4)

4.3.3.1.3 Consumed Time During Training

The network topology in ANNs greatly affects the required time for a model to converge

at an optimal approximation. A reasonable argument can be made that any ANN model

is of little use if its resource demand exceeds that which is available to the user. The

time consumed by each model for reaching convergence is therefore also evaluated and

considered in this approach.

4.3.3.1.4 Approach

Two separate datasets were considered during the comparison, divided into 5 distinct cases.

The first four cases uses data derived from the highway construction project dataset de-

scribed in Section 2.5. The fifth case uses data from a more recent highway and railroad

project (Ringeriksbanen & E16)1. This second dataset presented a significantly more com-

plex subsurface topography.
1See project description at: https://www.banenor.no/Prosjekter/prosjekter/ringeriksbanenoge16/
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The first case uses data points where depth levels have been manually assigned to a

subset of the resistivity profiles from a small survey area. In this survey area the subsurface

topography can be considered rather simplistic. The survey area for the first case spans a

flight range covering approximately 1900 meters. The second dataset also uses manually

selected depth labels, where the data points are obtained from a larger survey area with a

vastly more complex subsurface topography. The distance of the flight range for the second

case spans more than 16 kilometers, with a gap covering approximately 6 kilometers where

no data exist. The third case uses data points where the depth labels are directly retrieved

from the TS boreholes. The resistivity profiles for this case are obtained using the Kriging

method as described in Section 4.3.2. The fourth case is similar to the third, but also

includes the RPS boreholes. The fifth case applies the same test to a different dataset

containing survey data from another geographical region in Norway. A total of 431 TS

boreholes was included in the second dataset.

Where Case 3, Case 4 and Case 5 uses data points obtained from the Kriging technique,

an additional step was included to filter away any boreholes that had no AEM soundings

within a 30 meter distance. This was done as interpolating data points with no reasonably

close soundings was deemed to not yield the training process any significant benefit.

Figure 4.8 presents the approach used to evaluate the metrics in the comparison.
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Figure 4.8: Visualization of the approach for metric comparison

The metrics were computed using cross-validation to most accurately assess how the

results would generalize to an independent dataset. Cross-validation is a very common

technique used when evaluating and validating how well a model would generalize to an

independent dataset.

K-fold Cross validation consists of performing some number, r, of distinct validations
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on r trained instantiations of the same model, M , where each instantiation of M have a

somewhat differing perspective on the data. Each round (or fold) of cross validation uses

the complete labeled dataset, D, from the respective case of validation. In each round the

complete dataset, D is randomly split into two smaller datasets, Dtrain and Dtest. Dtrain

corresponds to the portion of the data that is used to train each model. Dtest corresponds

to the validation set. The datasets are randomly split such that 70% of the complete dataset

will reside in Dtrain and the remaining 30% will reside in Dtest. The models will thus

not have seen any of the the data points in the validation set during training. In each

round, after both models are trained, the MAE and RMSE metrics is computed from the

predictions of the data points in Dtest. After each round two new datasets are derived

from D and the process is started anew. In this case study, a total of r = 50 rounds of

cross-validation are performed for each case.

The RMSE and MAE metrics are stored for each round, and used to derive three met-

rics each after the completion of all 50 rounds. The three metrics that are finally presented

are the mean, max, and minimum of the metrics that are produced during the 50 rounds.

The consumed computation time is also stored for each round of training for each

model. The averaged training time can then be presented as a separate metric in the com-

parison. The computation time is recorded in seconds as performed on a single Intel Core

i7-2600 CPU running at 3.40GHz.

Both models use the MSE metric as cost function for optimization during training.

However, the training phase for each of the methods differ in the selection of the opti-

mization algorithm. The CNN method used the stochastic Adam optimizer [22], while the

standard MLP approach used L-BFGS [31, Sec. 7.2]. The L-BFGS optimizer was selected

for the standard MLP approach to most accurately provide a similar model to NGI’s pro-

posal [27], where the same optimizer was used. The standard non-linear MLP regressor

is also implemented using the SciKit learn framework [33], whereas the CNN method is

implemented using Keras [8]. In short, the standard MLP consists of an input layer that

takes a single transformed resistivity profile as input followed by a single hidden layer

consisting of 20 neurons. The hidden layer uses the non-linear ReLU activation function.

The output layer consists of a single neuron that outputs the depth prediction.
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4.3.3.2 Visual Analysis

Alongside the metrical comparison described in the previous section, a visual analysis

was conducted in collaboration with geotechnical experts for each of the cases to provide

a qualitative performance measure.

The visual analysis was deemed necessary to provide an additional layer of understand-

ing of how well the models were able to adapt and generalize to unknown data points. The

manual approach of depth interpretation has previously relied on geotechnical experts to

visually analyze a set of spatially continuous resistivity profiles as obtained from a flight

line. Thus, geotechnical experts may provide an indication on how well the depth predic-

tions would correspond to their own judgment and domain expertise.

4.3.3.2.1 Approach

The visual analysis uses the same cases as described in the approach for the numerical

metrics in Section 4.3.3.1.4. For Case 1 and Case 2 the produced visualizations correspond

to the same flight lines from which the training points were collected. This allows the

interpreter to also see which data points were used during training of the model.

For Case 3, 4 and 5, the visualization process is somewhat different, as the data points

in Dtrain are selected from the entire dataset containing all flight lines for the survey area.

Thus, random fight lines were selected for the model to perform depth predictions.

4.4 Prediction Intervals Construction & Evaluation

This section aims to discuss and account for a set of procedures for computing and evalu-

ating the degree of successfulness of prediction intervals in the use of DTB interpretation,

and thus relates to Research Question 2. The evaluation of the PIs is a necessary step, as it

will inform us on how well any individual approach is able to solve the problem.

The initial sections provide an overview of the approaches that are evaluated in the ex-

perimental approach. Each of the approaches described in the following sections assumes

that there exist some model, M , that can produce predictions for some input data. Each of

the methods also assumes that there exist a labeled dataset, D, which can be used to train
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M . For the following sections, let X represent the input data in D, and Y represent the

labels for X such that any label yi ∈ Y provides the corresponding label for xi ∈ X .

4.4.1 Ensembled PI Construction Assuming Fixed Aleatoric Uncer-

tainty

The first method of PI construction can be regarded as the most simplistic method eval-

uated in this thesis. Two core assumptions lay grounds for the approach. Firstly, the

residuals, ε, are assumed to be normally distributed around the true values in Y , and are

independently and identically distributed. This means that for any prediction, ŷi, with a

related total uncertainty variance, σ2
i , a boundary for a prediction interval covering some

percentile of the normal distribution can be obtained from ±k ·
√
σ2
i , where k is a scalar

value based on the desired coverage. Thus, there is assumed to be an equal probability of

the deviation occurring in both directions. This can be visually interpreted by Figure 4.10.

Thus, if an approximation exist for the uncertainty variance at a single point, σ2
i , along

with a point prediction for the same point, ŷi, a prediction interval can be inferred for any

percentile by inferring two new points on each side of ŷi respective to σ2
i . Recalling that

σ2
i = σ2

ŷi
+ σ2

εi , the problem of finding an approximation for σ2
i can be simplified into

finding best estimates for σ2
ŷi

and σ2
εi .

According to the second core assumption, the aleatoric uncertainty is assumed to be

fixed and constant.

Initially, before M is trained, D is randomly split into two new datasets, Dtrain and

Dtest, N times. In the research implementation for this case study the value of N = 20

was used. Generally speaking, higher values for N would yield more reliable results. The

selected value was, however selected due to it providing a good compromise between the

required computation time to train N separate models and the data point coverage. This

process results in N sets for Dtrain and N sets for Dtest, such that the union of the two

relating sets is the complete set D, such as shown in Equation 4.5, and the intersection of

the two relating sets is an empty set, as shown in Equation 4.6.

Dtrain
i ∪Dtest

i = D (4.5)
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Dtrain
i ∩Dtest

i = ∅ (4.6)

The ensembled approach of repeating this process N times is done as a measure to

account for the aleatoric uncertainty, σ2
ε̂i

, to a greater extent, as this will be fixed for any

future predictions where the label is unknown. The N random splits also allow each of the

models to have a slightly different perspective on the data.

Furthermore, it allows for the obtaining of an approximation for the epistemic uncer-

tainty, σ2
ŷi

, as proposed by Tom Heskes [17, p. 178]. By proxy this also means that the

aleatoric uncertainty can be approximated. Assume that an approximation for σ2
ŷi

exists,

as well as a residual from a prediction made on a data point that was not seen before the

obtaining of the approximation of σ2
ŷi

. It then follows from the aleatoric and epistemic

distinctness that the remainder of the squared residual when σ2
ŷi

is subtracted can only be

explainable by σ2
ε̂i

.

The optimal size of the split is not straight forwardly decided. A larger training set

allows the models to more accurately fit the known data. A larger testing set, on the

other hand, allows for a more accurate prediction of the aleatoric variance, σ2
εi , which will

remained fixed after the testing phase. The best split generally depends on the original

size of the labeled dataset. The case study data presented by NGI contained a relatively

small amount of labeled data. In such cases, where the size of the known data can be

considered small, a larger portion of the data should be assigned to training of the model,

as the accuracy of the PI is of little usefulness if the model’s predictions are poor. For the

research implementation of this case study the split was set such that Dtrain contains 60%

of the available data points, and Dtest contains 40% of the available data points.

A two phased process is then carried out. In the first phase, N models are trained on

each of the randomly sampled training sets. After each model has gone through the first

phase of training, the second phase is carried out.

The second phase consists of each model making a prediction for each data point

dpi ∈ D, if the model in question did not see dpi during its training. For each dpi an

estimation of the epistemic variance at i is found by taking the variance of all predictions

made for dpi. The point prediction is found by taking the mean of all predictions. The
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remainder of the squared residual, r2
i , when the epistemic uncertainty is subtracted, is

then not explainable by the epistemic uncertainty. Since the true label ti is known, this

remainder can found by Equation 4.7. A second note to make regarding the equation

is that negative remainders are set to 0, as negative values should not further affect the

estimation for σ2
εi to less than 0, as it cannot be negative. A value of 0 is, however, valid,

as a perfect dataset with no noise holds no aleatoric uncertainty.

r2
i = max[(ti −m(dpi))

2 − σ2
ŷi , 0] (4.7)

Obtaining r2
i is, however, not a straight-forward task for any dpi where the true label,

ti, is unknown, which is what happens whenever the network makes an actual prediction

after the training phase is completed. However, since the approach carries the assumption

of a fixed aleatoric variance, σ2
ε , an approximation of this fixed uncertainty can be com-

puted and stored directly after the training phase. After a prediction has been made for

each dpi ∈ D, the mean of all the remaining squared residuals are stored as an approxi-

mation of σ2
εi for any new input where the true value is unknown. Notably, this is the crux

of the method, and what the next method attempts to improve.

To summarize, an estimation of the epistemic uncertainty is found by the variance of

N predictions by the ensembled approach. Since the total uncertainty can be written as the

sum of epistemic and aleatoric uncertainty, an approximation of the aleatoric uncertainty

can be found by the discrepancy of the squared total residual and the epistemic variance.

Figure 4.9 presents a visualization of the overarching approach for setting up the

method for computing the point prediction and the width of PIs.
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Figure 4.9: Overarching approach for setting up the method where sr denotes the squared residual
and ev denotes the epistemic variance

After obtaining the estimation of the aleatoric variance, the ensembled method is ready

to make predictions for unknown data points. Recall that the total variance, σ2 is required

for the construction of prediction intervals when the target distribution is assumed gaus-

sian, and that the total variance can be written as the sum of σ2
ŷi

and σ2
ε̂i

.
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For any new input where the goal is to construct a prediction interval, a total of N

predictions can be made, one for each of the trained models, such that each prediction

from a single model, ŷi ∈ Ŷi, and |Ŷi| = N . The mean value of the N predictions

is considered to be the single point prediction, and the variance of the N predictions Ŷi

corresponds to σ2
ŷi

.

Thus, the total variance, σ2, can be obtained by adding the fixed aleatoric variance

σ2
ε̂ . Using σ2 to compute the distance from the single point prediction to the the upper

and lower PI boundary is a relatively straightforward task, and it corresponds to solving

the inverse of the cumulative distribution function. The Python library SciPy provides a

simplistic function for this exact problem, the percent point function. In simpler terms this

can be described as obtaining the point on the x-axis of the normal distribution that covers

some percentile of the same distribution from the mean2 [20].

Figure 4.10 presents a normal distribution curve that illustrates the correlation between

the coverage of the distribution and σ.

Figure 4.10: Standard deviation diagram[40]

Let α denote some probability, represented as a number such that 0 ≤ α ≤ 1. The

percent point function for α = 0.5 would then be 0, as it would correspond to the mean

of the normal distribution. Thus, Equation 4.8 and Equation 4.9 show the functions for

obtaining the upper and lower scalar values, sα, where pp() corresponds to the percent

point function, such that the covered area is centered around the mean.

sαupper = pp(.5 + (
α

2
)) (4.8)

2See Percent point function; https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.norm.html
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sαlower = pp(.5− (
α

2
)) (4.9)

The scalar values must then be multiplied with the standard deviation of the distribution

for obtaining the actual distances from the distribution’s mean to the upper and lower

boundaries for the prediction interval such that α of the distribution is covered. In essence,

it is approximating the distance from the distribution’s mean to the boundaries for the

approximated uncertainty, bearing in mind that the mean of the distribution corresponds to

the point prediction.

Since the point prediction corresponds to the mean of the normal distribution, it suf-

fices to compute only one of the scalar values, as the distances on each side of the mean are

equal, albeit of the opposite direction. Let sα denote the absolute value of the scalar value.

The values for the boundaries can then be computed by Equation 4.10 and Equation 4.11,

where ŷαupperi and ŷαloweri correspond to the upper and lower boundaries at i respectively.

When dealing with the case study of DTB interpretation, this wording might seem a bit

curious, with the upper boundary being of less numerical value than the lower boundary.

This is simply due to the nature of the case study. Recall that the boundaries represent

distances below the surface level, and thus smaller values denote boundaries closer to the

surface, thus upper boundaries, while higher distance values represent increasingly deeper

distances, and thus lower boundaries.

ŷ
αupper
i = ŷ − (sα ·

√
σ2) (4.10)

ŷαloweri = ŷ + (sα ·
√
σ2) (4.11)

Figure 4.11 presents a visualization of the complete approach for computing the pre-

dictions and the width of the PI for any data point, dpi, where the true value is unknown.
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Figure 4.11: Overarching approach for computing point predictions and PI

The assumption of normally distributed errors lays ground for the simplicity of the

method, however, it does also present significant drawbacks. In practice this means that

the upper and lower boundaries of the constructed PI will be of equal distance from the

actual prediction. Thus, if during testing the model tends to predict deeper DTB levels

80



4.4 Prediction Intervals Construction & Evaluation

than the labeled depth, the PI will not only grow in the deeper direction, but also in the

opposite direction.

The assumption of the aleatoric uncertainty being constant, independent of the input

data, allows for a simpler implementation. However, it is perhaps also the most significant

drawback. Consider a model being able to accurately predict DTB values for a large

portion of the resistivity profiles in its testing set. If the same model produce large residuals

on only a small subset of the testing data σ2
ε grows, and results in a drastic increase of the

width for all future intervals. This loss of precision is due to the PIs boundaries being

affected by the large residuals of the noisy profiles, even when simple and clean input data

is being processed, as the approach assumes a fixed aleatoric variance.

Much valuable information is also unarguably lost if the majority of the uncertainty

stems from the aleatoric portion.

4.4.2 Ensembled PI Construction with Variable Aleatoric Uncertainty

The second approach for PI construction is similar to the first, but differs in the way that

it does not assume that the aleatoric variance, σ2
εi , is independent of the input data, xi.

Rather, it assumes that there exist a relation such that some function, σ2
εi(xi), yields the

aleatoric variance from the input data. The assumption of the errors being independent

and identically normally distributed, however, still holds true for this approach.

The method of obtaining the epistemic uncertainty is exactly the same as in the pre-

vious approach, randomly sampling N training sets and N testing sets from the origi-

nal dataset, D. Thus, the first phase of training is similar, where N distinct models are

trained. For the research implementation in this case study, the values for N and the size

of the dataset split was set similarly as to the previous approach, such that Dtrain contains

60% of the available data points, and Dtest contains 40% of the available data points, and

N = 20.

Tom Heskes proposed a method in his paper on Practical confidence and prediction

intervals [17], where the assumed function σ2
εi(xi) for the aleatoric variance could be

estimated by the inclusion of an additional ANN. Heskes does not impose any rules or

limitations for the topology of the ANN, other than requiring an activation function that
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imposes a positive value for the final regression neuron. In the approach presented here,

the topology is set to be exactly the same as the topology for the networks that are used

for obtaining the point predictions, with an exponential final activation function.

For any data point, dpi, a total ofN predictions can be made, allowing for the obtaining

of a single point prediction, the mean, m(dpi) = 1
N

∑N
n=1 ŷ

n
i , where n is the n’th model

in the set of trained models. The estimate of the epistemic variance, σ2
ŷi

is still obtained

from the variance of the N predictions. If the data point is labeled, the part of the total

squared residual that cannot be explained by the estimated epistemic variance can then be

found by Equation 4.7, where ti is the true, labeled value for the data point dpi. Similarly

as to the previous approach, r2
i yields the remaining squared residual after the estimation

of the epistemic variance has been subtracted.

From the assumption of normally distributed errors, the aleatoric gaussian probability

distribution for the true value ti, given the input data xi, is represented by Equation 4.12,

which can also be written as in Equation 4.13.

p(ti|xi) =
1√

2πσ2
εi

(− 1
2

((ŷi−ti)
2−σ2

ŷi)

σ2εi

)

(4.12)

p(ti|xi) =
1√

2πσ2
εi

(− 1
2

r2i
σ2εi

)

(4.13)

Finding the value for σ2
εi which maximizes Equation 4.13 corresponds to finding the

value for σ2
εi which makes ti the most likely value for the depth prediction, or in other

words, the mean of the normal distribution. To find the best approximation for σ2
εi a maxi-

mum likelihood scheme can thus be used. In order for the new ANN to adapt according to

this objective during training, the network attempts to maximize the log-likelihood func-

tion shown in Equation 4.14, which can be simplified to Equation 4.15.

ln p(ti|xi) = ln [
1√

2πσ2
εi

− r2i
2σ2εi ] (4.14)

ln p(ti|xi) = −1

2
ln(2π)− 1

2
ln(σ2

εi)−
r2
i

2σ2
εi

(4.15)
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Maximizing the log-likelihood function can also be described as an attempt to find the

value for σ2
εi which leaves the minimum value for the combination of the negative terms

from Equation 4.15. Ignoring the constant term occurring first on the right hand side of

Equation 4.15 yields the cost function shown in Equation 4.16, which is used as the cost

function to train the new ANN, where b is the number of data points in each batch.

C =

b∑
i=1

ln(σ2
εi)

2
+

r2

2σ2
εi

(4.16)

Thus, during training the network requires the input data X along with the remaining

residuals from 4.7. It may seem curious to the reader that there is a mismatch between

the ANN’s input labels and the variable it attempts to predict. This is, however, simply

because the cost function which is used during training does not report loss respective to

the deviation from the label, but rather uses the label to perform gradient descent in order

to maximize the likelihood, which is ultimately the goal.

Technical implementation of the maximum likelihood estimator ANN is not all that

trivial. Few, if any high-level neural network APIs such as e.g. the open source python li-

brary Keras3, comes with a log-likelihood cost function out-of-the-box. Custom cost func-

tions are, however, possible to write with high level programming languages, even if the

high level ANN API runs its networks on a computational graph on a C-based back-end,

which is most often the case due the drastic efficiency requirements. Generally speaking,

any such components that are meant to be run as part of the network must be vectorized in

order to be able to run on the highly efficient back-end interfaces.

Another technical oddity of the implementation is the proposal of a summed cost func-

tion rather than the far more common mean version. The minor benefit of using a mean is

perhaps most evident when dealing with relatively large data sets, as in the case study for

this thesis. The reasoning behind this is that using a summed cost function would only per-

form optimally if the batch size remained constant during training. If the batch size were

to change within an epoch, (a full run over the training dataset), it would cause skewed step

sizes for the gradient descent. Such changes in batch sizes may occur when the remaining

data points in an epoch is less than the normal batch size. Using the mean is then more

3Documentation for the library can be found at https://keras.io/
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applicable and provides similar derivative values for the optimization algorithm, which is

used to compute the step size. Moreover, the summed cost is of considerably larger nu-

merical value than the mean, which again results in an even more significant numerical

difference in the computed gradient. If the optimization algorithm does not properly ac-

count for this through the use of learning rates and decay, it could potentially result in too

large step sizes, making convergence more difficult to achieve. To prove why these can be

used interchangeably with respect to the computation of the gradient, consider the cost of

a single batch containing a total of b data points. The total loss for a summed and mean

cost would then be connected by the relation that the summed cost is equal to the averaged

cost multiplied by b. The derivative, or the gradient, which is used in the optimization

algorithms, is defined by Equation 4.17.

dL

dx
= lim

∆→0

L(x+ ∆)− L(x)

∆
(4.17)

Multiplying the loss in Equation 4.17 with some constant, c, yields Equation 4.18.

Simplifying this equations gives Equation 4.19, which shows that the same scaled rela-

tion holds for the losses respective derivatives as well. Effectively, this means that both

computed gradients are in the same direction for any x.

d(c · L)

dx
= lim

∆→0

c · L(x+ ∆)− c · L(x)

∆
(4.18)

c · dL
dx

= c · lim
∆→0

L(x+ ∆)− L(x)

∆
(4.19)

Nonetheless, the training of the new ANN then relies on a set of labeled data points

from D, containing the labeled depth, ti, the input data, xi, and the remaining squared

residuals, r2
i , which is obtained from Equation 4.7. However, to generalize to unseen data

points, any model from the N originally trained models that used dpi during training is

not used in the obtaining of r2
i . However, for each data point dpi ∈ D, we can obtain a

reasonable estimate of the point prediction, ŷi, which we previously defined to be the mean

of the predictions of all models, by taking the average of the predictions for all models that

did not use dpi during training. Effectively, this allows for the new maximum likelihood
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estimator ANN to train on all data points in D, provided there exist at least one model for

each dpi that did not use dpi during its training. On the off chance that some data point

was seen by all models during their training, the data point should be skipped.

Figure 4.12 presents a visualization of the overarching approach for setting up the

method for computing the point prediction and width of PIs.
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Figure 4.12: Overarching approach for setting up the method where sr denotes the squared residual
and ev denotes the approximated epistemic variance

After the maximum likelihood estimator for the aleatoric variance has been trained, an

estimated total variance can be computed for any new data point by σ2
i = σ2

ŷi
+σ2

ε2i
. After

obtaining the estimated total variance, prediction intervals can be computed similarly as
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to the first approach, treating ŷi as the single point prediction, and obtaining the PI width

using the inverse of the cumulative distribution function.

Figure 4.13 presents a visualization of the approach for computing the prediction and

the width of a PI for any data point, dp, where the true value is unknown.

Figure 4.13: Overarching approach for computing point predictions and PI
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4.4.3 Quantile Regression

The Mean Absolute Error is a very common cost function used to train regression type

ANNs. The approach as presented here does not account for epistemic uncertainty, and

thus only the aleatoric uncertainty is accounted for. This is a significant drawback of this

method.

Recall that the MAE cost function is a direct measure of the average of the absolute

values of each residual in a training batch, and that it is used to optimize the parameters of

a network with the goal of minimization.

A quantile function for some variable v, and some probability p computes the value

q(v) such that the probability of v ≤ q(v) = p.

With quantile loss functions the aim is not to predict the most likely value, (the value

that yields the minimal absolute error), but rather the value of a quantile for some per-

centile α. α denotes a number such that 0 ≤ α ≤ 1 and represents the percentile for

which the single quantile covers. An α value of 0.5 corresponds to minimizing the MAE

cost function, which also corresponds to learning the mean of the target probability dis-

tribution. An α value of 0.1 corresponds to the value that covers the lowest 10% of the

target probability distribution. Thus, intuitively, a prediction interval can be said to be the

product of two quantiles centered around a regression for the mean of the target probability

distribution, (such as with MAE used as cost function).

However, the function for obtaining some quantile for DTB predictions provided some

input X , is initially unknown. Essentially this means that the function Q(yi|xi ∈ X,α)

for obtaining the desired quantile value for the α percentile is unknown. The goal then

becomes to fit a regression to an arbitrary quantile, provided the known and labeled dataset.

This is what is referred to as quantile regression.

If we assume that M is a fully trained model optimized with respect to MAE as the

cost function, then any predictions made by M would be predictions corresponding to the

mean of the target probability distribution, which corresponds to the quantile for α = 0.5.

Koenker et al. explained in 2001 how arbitrary quantiles could be constructed via the

solving of a weighted and parametric optimization problem [23, pp. 145-146].

In the approach for training a quantile regressor, a customized cost function is used to
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train the network. Recall that α represents a number such that, theoretically, 0 ≤ α ≤ 1

and that the value of α · 100 denotes the percentile of coverage for the quantile. The loss

function for a single prediction for a quantile that represents some coverage of the target

probability distribution is defined by Equation 4.20, where εi is the residual of the predic-

tion at i that occurred during training and 1 is an indicator function such that 1(ε>0) = 1

if ε > 0 and 0 otherwise. Thus, Equation 4.21 is a simplified version of the same loss

function, somewhat more easily readable for computer scientists.

L(εi|α) = ε(α− 1(ε<0)) (4.20)

L(εi|α) =

αεi ifεi ≥ 0

(α− 1)εi otherwise
(4.21)

Recalling the earlier statement that α theoretically can have values such that 0 ≤ α ≤ 1

may now seem somewhat odd to the observant reader. This is because if α = 0 and ε ≥ 0

at the same time, the loss would be 0 no matter the size of εi. The same phenomena would

also occur for any situation where α = 1 and εi ≤ 0. While it does not defeat the quantile

properties, it cannot reasonably be claimed to be the desired effect for a prediction interval,

as it would allow the quantile regressions to grow infinitely far beyond the uppermost

and lowermost points in the dataset for any input. Thus, in practice whenever quantile

regression is used for the specific goal of constructing prediction intervals, the valid value

interval for α should be < 0, 1 >.

From Section 4.4.2 the reader may recall that technical implementations of custom loss

functions are typically required to be of a vectorized format. This makes Equation 4.21

somewhat tough and troublesome to work with. However, considering the two conditional

functions in the same equation, one can deduce that for any α such that 0 < α < 1 and

a residual, εi which may be of either a positive or negative value, the maximum of the

two conditional statements will always correspond to the true condition. Any positive εi

would by the conditional function αεi yield a positive loss, whereas the other conditional

function, (α − 1)εi, would yield a negative loss. Any negative value for εi would yield

the same effect in the opposite manner. For the perfect case where εi = 0 the conditional
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function would not yield any difference, as both conditions would yield the same loss of

0.

Thus and by proxy, for a technical and vectorized implementation of the loss func-

tion, a simple maximum function of the two conditional functions would be sufficient.

Consider the cost function calculation for a single training batch. Let y true represent the

vector containing the true labels for the data points in the batch and y pred represent the

vector containing the predicted values, such that residuals is the vectorized result of the

vector subtraction operation performed on y true and y pred. Let q represent the percentile

for the desired quantile of the regressor. The python code in Listing 4.1 then presents a

python implementation of such a vectorized loss function, where y true and y pred are the

provided parameters.

Listing 4.1: Python code for the quantile cost loss function

def quantile_loss(y_true, y_pred):

residuals = y_true - y_pred

loss = K.mean(K.maximum(self.q * residuals, (self.q -

↪→ 1) * residuals))

return loss

The important note to make for the loss function is that the computed loss for any in-

dividual prediction is dependent on the signum of the predictions residual. To exemplify

why this matches the desired behavior, consider an α value of 0.1 and a training set con-

sisting of only a single data point a, with a true label of ya = 0. Let M represent a model

under training. Assuming now that during training M overshoots and predicts ŷa = 1,

which yields a residual value of εa = 1. Now, the perfect quantile for α with respect to ya

and ŷa corresponds to the value which lies between the two points, placed (α · 100)% of

the distance between the points from ya, which would be the value of 0.1. Let Q(ya|ŷa)

denote this optimal quantile value. The distance from ŷa to Q(ya|ŷa) is what is denoted

as the loss of an individual prediction, and is also the result of the loss calculation rule

α · εa when the residual, exemplified by εa here, is positive. Consider now the case where

ŷa = −1, which yields the residual value of εa = −1, with an emphasis on the negative
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signum. The optimal quantile value for α of ya and ŷa, Q(ya|ŷa), would then be −0.1,

being located (α · 100)% of the interval between the two points from ya moving towards

ŷa. Thus, whenever the residual, exemplified by εa in this case, is negative the distance

between Q(ya|ŷa) and ŷa is found by (α− 1) · εa.

Averaging Equation 4.20 over some batch, where b denotes the batch size, gives the

cost function presented in Equation 4.22, which is used to train the ANN in this approach.

C =

∑b
i=1 L(εi|α)

b
(4.22)

Thus, to obtain the upper and lower boundaries, two copies ofM , M1 andM2 must be

separately trained with alpha values α1 and α2. LetM1 now represent a model that is fully

trained with α1 = 0.05, and M2 represent a model that is fully trained with α2 = 0.95.

Let ŷ1
i represent a prediction from M1 and ŷ2

i represent a prediction from M2 for some

input xi. The final output would then be lower bound by ŷ1
i and upper bound by ŷ2

i to

construct a prediction interval with a confidence of 90%.

4.4.4 Evaluation

Cross validation is, again, a tried and tested approach that is suitable for testing the per-

formance of models with respect to both accuracy and precision. The separation of the

dataset into training and testing sets is therefore necessary. However, a success criterion

must still be established.

Establishing such a success criterion is relying on a thorough understanding of what

the objective for the models actually is. The objective of the proposed approaches is to

obtain a prediction interval of depth that should provide a realistic estimate of the actual

DTB at the location of the measurement. Thus, the accuracy is of importance. An intuitive

measurement of success for a typical regression model is the deviation from the predicted

depth to the actual, labeled depth. Since the final output of the proposed approaches is

not a single point, but rather an interval, such a measurement would, sadly, fall short. For

PIs, one measurement of accuracy can be described as to what extent the model is able to

provide true estimations in the sense that its estimation boundaries cover the actual, labeled

DTB. This is more formally known and referenced as PI Coverage Probability, or PICP.
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This metric alone has frequently been used to assess the quality of prediction intervals [11,

p 6].

The PICP can be computed by Equation 4.23 where ci is set to 1 if the PI covers the

testing point and set to 0 if the testing point lies outside the PI’s boundaries [11, p 6].

PICP =
1

ntest

ntest∑
i=1

ci (4.23)

Another important aspect is the precision of the estimations. Precision for prediction

intervals can intuitively be defined as the width of the predicted interval. A model that can

guarantee 100% accuracy can, nonetheless, hardly be considered useful if its boundaries

cover such a distance that it exceeds the required degree of precision for its use case. Thus,

smaller prediction ranges are considered beneficial, however, only to that extent that they

can still provide reasonable degrees of accuracy. None of the approaches proposed in this

thesis provide a consistently constant PI width. Rather, they produce varying PI widths

based on the confidence of not only the epistemic, but also aleatoric uncertainty. A mean

of the ranges can be used to evaluate and compare the precision of the approaches. The

mean of the ranges, or Mean PI Width (MPIW), can be computed as shown in Equation

4.24, wherewi denotes the range of the i’th PI, and ntest denotes the number of data points

used during testing.

MPIW =
1

ntest

ntest∑
i=1

wi (4.24)

Consideration of both metrics alone are definitively useful. However, since they are

averaged across a distribution of data points, they cannot give any indication as to how

often the true label falls outside the boundaries while considering the width of the interval

at the same time.

A combined index for evaluating the PIs using both PICP and MPIW is therefore nec-

essary. The CWC metric offers such a combined metric for evaluation. The metric, Cov-

erage Width-based Criterion, weighs PICP heavier than MPIW, and attempts to compute

a compromise metric of both metrics.

CWC can be computed by Equation 4.25, where µ is the PI’s coverage probability

92



4.4 Prediction Intervals Construction & Evaluation

and η is a control parameter which can be fine-tuned to provide the desired growth in the

metric when the desired PI coverage is not reached. γ(PICP ) is set to 0 if PICP ≥ µ,

or 1 if PICP ≤ µ.

CWC = MPIW (1 + γ(PICP )e−η(PICP−µ)) (4.25)

4.4.4.1 Approach

The experimental approach for the evaluation and the comparison of the three PI construc-

tion methods follows the same systematic procedure for each of the evaluated methods.

Two labeled datasets are used for evaluation of each of the methods. Since no true related

observed resistivity profile exists for any borehole location, Kriging is used to construct

estimations of the input data for the locations where bedrock depths are known from bore-

holes. The approach uses only the verified TS boreholes, as these provide the most accu-

rate DTB values, and most closely resembles real world situations. A five stage process is

followed to evaluate and compare the different methods. The process is repeated twice to

compute metrics for both a 90th percentile PI and a 50th percentile PI.

In the first stage, the dataset is split into a training set (70%) and a testing set (30%).

Where some of the models require splits in their training data during their internal training,

the split is done on the 70% training set provided for the entire training. Each method is

trained and tested on the same subset splits.

The second stage consists of training the models for each method. The training phase

differs for the different approaches, however, regardless of required time for training, each

method is allowed to train until convergence. The consumed time is stored for efficiency

performance evaluation, as performed on a single Intel Core i7-2600 CPU running at

3.40GHz.

After each method has completed their respective training phases, they produce predic-

tions for the data points in the testing set in the third stage. In the fourth stage the PICP ,

MPIW and CWC metric scores are calculated for each of the methods individual pre-

dictions. Each metric is then stored so that aggregates can later be computed.

The process then restarts from the first stage, until the process has been completed 10
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times. Upon completion of the 10th iteration, the mean, minimum and maximum value for

each methods’ metrics are aggregated and reported.
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Chapter 5
Research Results

This chapter presents the results from the research, and offers answers to the research

questions.

5.1 CNN Proposal

The following section covers the complete and comprehensive set of results from the eval-

uation of the proposed ML technique for DTB interpretation. Thus, the section relates to

Research Question 1. The obtained performance measurements for the CNN model are

evaluated and compared to the performance measurements of the standard MLP regres-

sor previously proposed by NGI [27]. The performance is measured by both numerical

metrics and a visual analysis.

5.1.1 Numerical Metrics Results

This section presents the comparable results of the proposed CNN model regressor and

the standard non linear MLP regressor as described in Section 3.2.2 with respect to the

numerical metric evaluation.
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5.1.1.1 Metrics & Comparison

Table 5.1a presents the metrics as obtained in Case 1, where a total of 15 data points

were selected from a single flight line. Table 5.1b presents the metrics obtained in Case 2,

where a total of 130 data points were picked from a single flight line. Table 5.1c presents

the metrics in the third case, where the data points were obtained from the Kriging method

of the TS boreholes. Table 5.1d presents the metrics from the fourth case, where the data

points were obtained from the Kriging method of all boreholes. Table 5.1e presents the

metrics from the fifth case, where the data points were obtained from the Kriging method

of TS boreholes using data from the more recent railroad & highway project.

The visualizations of the results for each dataset can be found in Appendix B, Section

7.7.

The metrics show that the CNN model’s predictions are superior in terms of error mag-

nitude. The only metric that benefit the MLP regressor was the minimum MAE achieved

for a single round in Case 1. Interestingly, this is not true for the minimum RMSE achieved

for any single round in the same case. This indicates that while the standard MLP regressor

was able to achieve a lower MAE for the round, it still had sporadic erroneous spikes with

magnitudes that exceeded those of the CNN model. The reasoning behind the deduction

is that RMSE penalizes larger errors to a greater extent.

An inspection of the metrics alone shows clear evidence that the CNN model outper-

forms the standard MLP regression technique for the survey area investigated in the case

study. The difference in performance is most clear for small data sets with manually se-

lected depth labels, such as provided in Case 1. In this case, the CNN model provides

a reduction in the mean RMSE of 52.6%, and a reduction in the mean MAE of 49.8%.

When the size of the training dataset increased, the performance differences was reduced.

However, for the largest dataset with manually assigned labels tested in this evaluation

(Case 2), the CNN approach produced a reduction in the mean RMSE of 25.1%, and a

reduction in the mean MAE of 27.3%, which can still be considered substantial.

Using the larger data sets, where the depth labels were obtained from boreholes, such

as with Case 3, Case 4 and Case 5, the CNN model still yields consistently improved

performance. Case 3 and 5 are perhaps the most important cases, as they most closely
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Metric MLP CNN
Training time (Seconds) 0.1 3.2
MAE (Mean) 8.20 4.12
MAE(Max) 19.13 7.67
MAE (Min) 1.43 1.69
RMSE (Mean) 11.71 5.55
RMSE (Max) 27.50 10.19
RMSE (Min) 1.58 1.28

(a) Metrics for Case 1

Metric MLP CNN
Training time (Seconds) 0.16 14.46
MAE (Mean) 5.52 4.01
MAE(Max) 8.04 6.17
MAE (Min) 4.24 3.19
RMSE (Mean) 8.12 6.08
RMSE (Max) 11.27 8.02
RMSE (Min) 5.65 4.09

(b) Metrics for Case 2
Metric MLP CNN
Training time (Seconds) 0.1 42.1
MAE (Mean) 2.31 2.12
MAE(Max) 2.51 2.30
MAE (Min) 2.15 1.94
RMSE (Mean) 3.03 2.69
RMSE (Max) 3.42 2.93
RMSE (Min) 2.73 2.42

(c) Metrics for Case 3

Metric MLP CNN
Training time (Seconds) .8 71.6
MAE (Mean) 4.76 3.95
MAE(Max) 5.04 4.42
MAE (Min) 4.43 3.94
RMSE (Mean) 6.33 5.49
RMSE (Max) 6.67 5.84
RMSE (Min) 5.81 5.37

(d) Metrics for Case 4
Metric MLP CNN
Training time (Seconds) .5 65.4
MAE (Mean) 5.78 4.19
MAE(Max) 6.51 4.39
MAE (Min) 4.59 4.01
RMSE (Mean) 7.53 5.30
RMSE (Max) 8.84 5.56
RMSE (Min) 5.91 5.12

(e) Metrics for Case 5

Table 5.1: Metrics obtained from Cross-Validation evaluation of each case

resembles real world situations. This is because TS boreholes are more common than RPS

boreholes in surveys conducted for mapping of bedrock topography.

Nonetheless, the CNN model requires significantly longer computation time for train-

ing the network, as visible on the metrics for the cases with the larger data sets.

5.1.2 Visual Results & Comparison

The complete set of visual representations that were produced during the experiment can

be found in Section 7.7 of Appendix B. In the visualizations for Case 1 and Case 2, the
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depth labels are marked by black dots on the chart. For simplicity, the elevation of the

ground surface has been flattened, such that the top of each vertical resistivity profile is

found at 0 depth meters. The input data for the standard MLP regressor for each depth

label is the single resistivity profile in which each depth label is found. This is also true

for the CNN model. However, the CNN model also requires the two nearest neighboring

profiles on each side of the profile containing the label. Thus, no prediction can be made

for the two outermost resistivity profiles on either side of the flight-line, as no valid input

data exist for the CNN model.

In each visualization, a white line with black borders represents the depth predictions

from the CNN model. A black line with white borders represents the depth predictions

from the standard MLP regressor.

Three visualizations of Case 1 is represented in Figure 7.1, 7.2, and 7.3. Each of the

visualizations contains a different, and increasing number of training data. The need for a

visual analysis may seem evident upon inspection of Figure 7.1 and Figure 7.2, where the

standard MLP regressor produces good results near the available training data points, but

the general predictions for the complete flight-line is far less than satisfactory. The same

phenomena is perhaps more visually evident in Figure 7.4 and Figure 7.5, where the input

data is varying to a much larger extent.

Figure 7.6 presents the second case with 130 data points used in the training phase.

The dots have been removed from the visualization to make it more clear.

Figures 7.7, 7.8, 7.9, 7.10, and 7.11 present visualizations of the models as performed

for Case 3.

Figures 7.12 and 7.13 present visualizations of the performances for Case 4.

Figure 7.14 presents a visualization of the performance for Case 5.

5.1.3 Analytic Conclusions

Research Question 1 ask the questions of what ML technique that may improve the re-

sults for automated DTB interpretation. The numerical metric analysis showed significant

potential for convolutional type neural networks for the task of DTB interpretation from

AEM data. The findings undoubtedly make it a possible candidate for automated DTB
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interpretation. The case study shows how techniques from the academic field of computer

vision can be used in combination with more conventional features from machine learn-

ing to approach the geotechnical problem of DTB interpretation. Allowing the model to

consider larger portions of the context yielded beneficial results.

5.2 PI Methods

This section covers the results as related to the experimental approach of evaluating the

PI construction methods for the problem of automated DTB interpretation, and it also

provides answers to Research Question 2.

Due to the long names of the proposed PI construction methods, a set of placeholder

names will be used in this section. Method 1 represents the ensembled method under the

assumption of a single fixed aleatoric uncertainty, as discussed in Section 4.4.1. Method 2

represents the slightly more advanced method where the aleatoric uncertainty is approxi-

mated from a separate maximum likelihood estimator ANN, as discussed in Section 4.4.2.

Method 3 corresponds to the Quantile Regression technique, as presented in Section 4.4.3.

5.2.1 Metrics & Comparison

The following section aims to present and evaluate the resulting metrics from the experi-

mental approach on the construction and evaluation of prediction intervals.

The numerical results from the approach is presented in Table 5.2 and Table 5.3 for

the 50% PI and the 90% PI respectively for the first dataset from the highway construction

project.

The metric referenced as Setup Time presents the average time in minutes that was

required for training and setting up the respective method.
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PI Size Metric Aggregation Method 1 Method 2 Method 3

50% PI

PICP

Max 0.677 0.571 0.688

Min 0.442 0.429 0.338

Mean 0.544 0.492 0.526

MPIW

Max 5.192 4.770 6.844

Min 4.654 4.122 4.020

Mean 4.938 4.438 5.173

CWC

Max 13.665 12.970 24.400

Min 4.655 4.269 4.605

Mean 6.409 8.243 8.267

Setup Time

(Minutes)
Mean 7.22 9.2 1.4

Table 5.2: Aggregation of the results for the 50% PI for the first dataset

PI Size Metric Aggregation Method 1 Method 2 Method 3

90% PI

PICP

Max 0.935 0.949 1.0

Min 0.845 0.792 0.812

Mean 0.901 0.895 0.912

MPIW

Max 12.530 14.132 14.550

Min 11.579 8.546 10.880

Mean 12.134 12.367 12.764

CWC

Max 32.0883 35.137 36.093

Min 12.154 11.930 12.046

Mean 19.471 22.293 20.590

Setup Time

(Minutes)
Mean 7.40 9.83 1.32

Table 5.3: Aggregation of the results for the 90% PI for the first dataset

The comparison of the mean PICP for each method for the first dataset shows that all

methods are close to the desired coverage of 50% for the first case. Method 2 seems to
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have a tendency to slightly under-predict the PI’s width, such that its mean coverage is less

than the desired coverage. This is seen by Method 2 having a mean PICP which is 0.8%

and 0.5% less than the desired coverage of 50% and 90% for the two cases respectively.

For the 50% PI, Method 2 does, however, seem to be the most stable of the three, with

a discrepancy from the max and min PICP of PICPmax(0.571) − PICPmin(0.429) =

0.142, as opposed to Method 1 with 0.235 and Method 3 with 0.350. The minimum PICP

values of 0.442 and 0.338 for Method 1 and Method 3 show that these methods also have

the potential to significantly under-predict the required width of the PIs, but judging from

the mean values this seems to be drastic exceptions. For the 90% PI, Method 1 provides

the most stable PICP results, and Method 3 still holds the largest discrepancy from the

maximum to the minimum.

An analysis of the MPIW reveals that there are larger deviations on average for the

methods when constructing large PIs. This may also seem intuitive, as such a large PIs

would require capturing drastic outliers, which often are irregularly distributed. For the

50% PI, Method 1 and 2 yields the lowest mean widths of their PIs, with 4.938 and 4.438

meters respectively. Method 3 yields somewhat larger widths with a mean of 5.173 me-

ters. The worst case (maximum value) scenarios for the MPIW for the 50% PI shows a

significantly worse result for Method 3 than Method 1 and Method 2. However, for the

90% PI the deviance in the maximum MPIW from Method 1 and Method 2 to Method 3

is drastically reduced.

Method 1 has, on average, more coverage than Method 2 while still being similar

in width. This is also reflected in the CWC metrics, where Method 1 has the lowest

mean for both the 50% and the 90% PIs. For the 50% PI, Method 3 yields a very high

maximum CWC. This large maximum seems reasonable, due to its very low minimum

PICP coverage, and the two are most likely related. For the 90% PI, the CWC scores are

much more similar across the three methods. While neither Method 2 or Method 3 come

close to the performance of Method 1, it is interesting to note how Method 3 surpasses

Method 2 in performance for the 90% PI, but not for the 50% PI. This seems to be a

direct result of Method 2 having a lower PICP on average, and thus being drastically more

penalized by the CWC, as it considers PICP to a larger extent than the MPIW.
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The difference in the computational demand is, nonetheless, significant. Method 1

and Method 2 requires the training of N = 20 and N = 20 + 1 separate models respec-

tively, bearing in mind that Method 2 requires an additional model for the prediction of

the aleatoric variance. On average, Method 1 used more time than Method 3 for setting

up the method by a factor of more than 5. Method 2, which is even more computationally

demanding requires more than 7 times the computational time of Method 3 for setting up

the method.

Table 5.4 and Table 5.5 presents the same results for the more recent railroad & high-

way project, which presented data with a vastly more complex geology.

PI Size Metric Aggregation Method 1 Method 2 Method 3

50% PI

PICP

Max 0.617 0.444 0.570

Min 0.565 0.388 0.523

Mean 0.591 0.416 0.547

MPIW

Max 10.703 7.684 12.986

Min 8.645 6.976 12.546

Mean 9.674 7.330 12.766

CWC

Max 10.703 28.387 12.986

Min 8.645 21.146 12.546

Mean 9.674 24.766 12.766

Setup Time

(Minutes)
Mean 10.12 13.60 2.0

Table 5.4: Aggregation of the results for the 50% PI for the second dataset
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PI Size Metric Aggregation Method 1 Method 2 Method 3

90% PI

PICP

Max 0.958 0.916 0.921

Min 0.939 0.907 0.883

Mean 0.951 0.911 0.901

MPIW

Max 34.404 30.234 41.740

Min 32.264 28.920 37.315

Mean 34.335 29.575 39.527

CWC

Max 36.403 30.233 81.466

Min 32.264 28.914 41.739

Mean 34.334 29.575 61.603

Setup Time

(Minutes)
Mean 14.51 17.13 2.63

Table 5.5: Aggregation of the results for the 90% PI for the second dataset

The more challenging geological topography in this dataset resulted in larger residuals

on the performance evaluation of the CNN (The previous dataset corresponds to Case 3,

while this dataset corresponds to Case 5 as presented in Table 5.1). Intuitively this should

result in wider prediction intervals for covering the same probability. While this is shown

to hold true for this test case, it is interesting to note the magnitude of the width increase,

and how the more complex geology affects the PI construction methods’ performance.

The average mean MPIW for all the methods increased from 4.85 meters to 9.92 meters

for the 50% coverage interval. The increase is much more significant for the 90% coverage

interval, where the average mean MPIW increased from 12.42 meters to 34.78 meters.

Method 2 again showed a tendency to under-predict the width of the PI, resulting in a

significantly lower PICP than the desired 50%. Method 1 and Method 3 both had higher

than expected PICP metrics, even for the lowest record of the 10 runs.

Method 2 constructed the intervals with the narrowest widths. However, by having

a too narrow interval, it is unable to cover the required percentage of testing points and

yields a drastic increase in the combined CWC metric. Method 1 was able to find the best

combination for width and coverage of the three methods, width a mean PI width of 9.674
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meters.

For the 90% PI of the second dataset the results shifts somewhat, where Method 2

yields the lowest mean CWC, even with the lowest mean PI width.

Table 5.6 presents an overview of the aggregated approximated variances for the pre-

dictions by Method 1 and Method 2 for the first dataset. The epistemic variance is shown

to account for a small fraction of the total approximated variance. Method 2 has a large

deviance from its minimum to its maximum approximation for the aleatoric uncertainty,

whereas Method 1 has very similar values. These are intuitive results, as Method 2 at-

tempts to approximate an aleatoric variance for each data point, whereas Method 1 com-

putes a fixed approximation, which is used regardless of the input during prediction.

Method Aggregation σ2
ŷi

σ2
εi

Method 1

Max 6.826 13.756

Min 0.030 10.828

Mean 0.636 11.939

Method 2

Max 5.519 27.480

Min 0.067 2.809

Mean 0.709 12.136

Table 5.6: Aggregation of approximated variances for Method 1 and Method 2 for the first dataset

Table 5.7 presents the same overview for the second dataset. The metrics shows how

the approximated uncertainty variances grows significantly with minor decreases in the

accuracy of the core regressor. The ratio between epistemic and aleatoric mean variances

has also shifted to become more even. Nonetheless, the inaccuracy of the models for

predictions made on this dataset is arguably too large for the intervals to be of significant

benefit.
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Method Aggregation σ2
ŷi

σ2
εi

Method 1

Max 61.609 33.517

Min 0.527 25.903

Mean 26.867 29.710

Method 2

Max 62.501 146.689

Min 0.296 0.107

Mean 23.830 28.456

Table 5.7: Aggregation of approximated variances for Method 1 and Method 2 for the second dataset

5.2.2 Analytical Conclusions

Research Question 2 asks how PIs can best be automatically computed for providing a

sense of uncertainty for regression point predictions for DTB levels. Based on the results

provided in the previous section, Method 1 is deemed the generally most successful of the

three evaluated methods. While all methods were able to produce intervals with close to

desired coverage, Method 1 produced the best combination between coverage and width

of the PIs for both small and large intervals for the first dataset. On the second dataset,

Method 2 produces the best intervals for 90% coverage.

Method 1 generally produced the best metrics. On the other hand, it yielded a large

increase in time consumption for the setup phase, compared to Method 3. Method 3 pro-

vided significantly less requirements for setup time, and thus it should also be evaluated as

a potential candidate when the computational resources are limited or whenever the data

sets grow to significant sizes. However, Method 3 seemed to produce much too wide inter-

vals in cases where the uncertainty was high, such as for the second dataset. Nonetheless,

this case study showed that the computationally demanding task of ensembled approaches,

such as with either Method 1 or Method 2, did provide increased precision.
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Chapter 6
Discussion

6.1 CNN Method Proposal Discussion & Evaluation

While NGI’s earlier proposal took the first step in uncovering the benefits of automated

predictions from ANNs in the field of DTB interpretation [27], the new CNN proposal

shows significant advances by approaching the problem as a computer vision problem,

and including a convolutional layer.

The CNN’s predictions proved superior to the standard MLP regression approach with

sole regards to the error metrics. The visual analysis revealed that when few data points

are available for training, the standard MLP approach is far less able to adapt to unseen

data points and provide desired and sensible predictions. This was seen, as the standard

MLP’s predictions contained large outliers. As the size of the training data set increases,

the standard MLP approach is increasingly able to generalize to the data, and provide

progressively better predictions, albeit never surpassing the CNN in terms of accuracy.

Case 5 uses data from an area with a vastly more complex geological setting than the

other cases. While the results from this case carried too much uncertainty for practical

use, the performance increase also holds true for this case, which yields evidence that the

approach is adaptable to different geological topographies.

The benefits from using the CNN model were more evident when the depth labels
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were manually assigned to resistivity profiles, rather than obtained from boreholes and

interpolation of resistivity profiles. This indicates that the method is increasingly more

beneficial when the training data contains less noise. The reasoning behind this is that

the methods where the resistivity profiles in the training data is interpolated are subject to

more noise than those where it is obtained directly from the inversion data. The additional

noise stems from uncertainty in the interpolation step.

The largest outliers in the standard MLP’s predictions occurred when the size of the

training sets were considerably small. This may be caused by the model overfitting to

the known data points. Figure 7.5 from Appendix B clearly strengthens this theory. The

figure shows that the standard MLP’s predictions are clearly good for the unknown data

points that are both similar, and in close proximity to the known data points. However,

the predictions are not remotely rational for a large portion of the data points that differ

from those seen during training. While the standard MLP regressor as implemented with

SciKit learns framework includes early stopping in an attempt to avoid overfitting, the

Dropout technique as included in the CNN model may make the CNN less prone to the

same type of overfitting. Moreover, the CNN has vastly more neurons in the last densely

connected layer, which allows it to learn a vastly larger ”rule-set” for its predictions. The

visualizations from Case 3 also revealed that with a training set of significant size, the two

methods did not differ drastically in their predictions.

Different topologies of the standard MLP such as increasing its depth or horizontal

size in the hidden layer(s) may be able to increase its accuracy and accountability. This

was not experimented with, explored, or accounted for during the evaluation.

The visualizations, nonetheless, also revealed sporadic spiking for the standard MLP’s

predictions, even when trained on the largest training set. Examples of these spikes can be

found in Appendix B in Figure 7.7 at approximately 1600 distance meters and in Figure

7.10 at approximately 1450, 1500 and 1700 distance meters. Similar spikes were far less

common for the CNN approach, even with smaller training sets. This discrepancy closely

matches the motivation behind the proposal, where single noisy resistivity profiles are

thought to cause larger irregularities when contextual interpretation is emitted from the

interpretation process.
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The perhaps most evident drawback of the CNN approach can be claimed to be the

difficulty in obtaining training data, as it relies on numerous interpolations of resistivity

profiles. An alternative method of obtaining training data could solely rely on expert pick-

ing, where a geotechnical expert selects depth labels for sets of 5 neighboring resistivity

profiles. The amount of work required for obtaining a sufficiently sized training data set

using such expert picking may vary with the size of the original dataset. However, as one

of the core motivations behind this research is to eliminate manual labor, this cannot be

regarded as anything less than a significant drawback. Furthermore, the loss of highly ac-

curate training data impacts the overall accuracy of the model’s predictions, which again

reduces the actual usefulness of the automated contextual interpretation technique.

The drawbacks presented above spiked the motivation for the parts of the thesis related

to valid training data for the CNN approach. A proposal for expansion on the conventional

Kriging interpolation system was presented to provide a method for automatic obtaining of

valid training data points. This spatially distributed Kriging technique, covered in Section

4.3.2, proved a viable solution. However, it also introduces new uncertainty sources in the

interpolation process, which may further weaken the final predictions.

The lack of predictions for the n = 2 outermost resistivity profiles is also worthy of

mentioning, where n denotes the amount of neighboring resistivity profiles included on

each side of the resistivity profile which is under interpretation. This limitation effectively

strips approximately 70 meters off each side of the distance of a flight line for in which

depth predictions can be made.

The case study utilized different frameworks and optimizers for the two methods. This

allowed for the testing of a model that was highly similar to NGI’s proposal [27]. However,

it also caused the training techniques of the two methods to differ slightly. The CNN

method used dropout for avoiding overfitting, whereas the standard MLP approach relied

on early stopping. Moreover, they also used different optimization schemes, which may

have influenced the convergence of the training.

The results stemming from the DTB predictions with use of ANNs are easily repro-

ducible. The parameters of any network can be stored and retained for later use. Thus,

when reproduction of the results are desirable, a new model can be instantiated with the
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stored parameters, and the exact same results can be provided by the new model when the

same input data is fed. This is a significant benefit that the automated approach presents

when compared to conventional techniques, where manual labor is a significant factor in

making the predictions.

A large portion of this thesis focuses on uncertainty estimation of predictions, and a

model is thus required for the experimental approach of uncertainty estimations. Based on

the discussion provided in this section, the CNN method was chosen for further evaluation

with respect to uncertainty. This decision was made with two core concepts as reasoning.

Firstly, the CNN model was able to produce significantly more accurate predictions. Sec-

ondly, even though the consumed computation time is significantly higher for the CNN

model, it does not pose any drastic risk for completion of the uncertainty evaluation, and

can thus be considered a valid trade-off.

6.2 PI Construction Methods Discussion & Evaluation

Each of the three methods proved viable solutions for construction of prediction intervals.

Below follows two visualizations of the prediction intervals that each of the three meth-

ods produced for a sample flight line. The flight line is a real world example from the

case study’s survey area, and Figure 6.1 and Figure 6.2 shows the constructed PIs which

represent 90% and 50% coverage respectively.
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Figure 6.1: Visualizations of Prediction Intervals for 90% Coverage for a sample flight line
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Figure 6.2: Visualizations of Prediction Intervals for 50% Coverage for a sample flight line

The visualizations show how the three methods are able to produce informative visu-

alizations for arbitrary PI percentiles. The simplicity of the visualizations can be deemed

an important factor of their usability, as geotechnical experts may use these for quickly

evaluating the confidence of any automated DTB interpretation model.

The ensembled approach, originally proposed by Heskes in 1996 [17], yielded a slight

benefit over the Mean Variance Estimation approach, as proposed by Nix & Weigend in

1994 [30]. The Mean Variance approach assumes the input dataset not only to be suffi-

ciently large, but also to have diversity of its elements such that the epistemic uncertainty

can be assumed reduced to 0. This assumption can not be said to hold true for the sake

of DTB interpretation, where the availability of boreholes, and in turn, the availability of
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labeled data points is often small, especially in the early phases of investigations. The

benefits of the ensembled approach were also evident in the research results in this thesis,

where the quantile regression technique did not prove superior with respect to mean CWC

for any of the test cases.

Moreover, the two ensembled approaches allow for even further analysis of the uncer-

tainty, by producing both aleatoric and epistemic uncertainty approximations at any point.

Analysts may use this information to increase their understanding on what should be re-

garded as bottlenecks for the accuracy of their predictions. High epistemic uncertainties

correlate to insufficient training data, and high aleatoric uncertainty values are indicators of

inherently noisy data. Thus, analysts may interpret the results to better understand where

to focus their efforts in attempts to improve a models accuracy.

Reproduction of the intervals are also easily reproducible, following the same logic

as described in the previous section. Storing the parameters of several models requires

very little disk space, and allows the interpreters to quickly load the previously trained

networks. Since each model will produce the exact same predictions for the same input

data, the same intervals can be reconstructed. This presents a great benefit, since the

traditional methods required a human interpreter to manually predict uncertainty values.

The predictions of a manual interpreter can also be stored. However, it is considerably

more challenging to store the reasoning, intuition, and expertise of a human interpreter.

The evaluated methods also have a clear definition as to exactly what they predict,

namely a prediction interval for some percentile. The prediction interval is also a measure

stemming from the previous preciseness of the predictor, whereas with manually assigned

uncertainty values there is no strict relation between the two. Nonetheless, this also yields

a slight drawback if the interpreter is not acutely aware of how the intervals are defined.

The intervals does not claim that the bedrock surface will definitively reside within its

boundaries for the percentage of confidence. Rather, it merely claims that the bedrock

surface will reside within its boundaries for the given confidence level based on its historic

observations. Essentially, this emphasizes the importance of noise reduction and filtering

of bad data points for the training phase.

In the case study provided in this thesis using the first dataset, the aleatoric uncertainty
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accounted for the largest portion of the total uncertainty. Thus, for the model to improve

its accuracy on DTB level predictions for these datasets, improving the preciseness of the

input data may seem an intuitive place to start.

This uncertainty distribution is perhaps to be expected, as the complete interpretation

process relies on several approximation and interpolation steps for the input data before

they are ultimately fed to the interpretation model, each including their own approximation

uncertainties. The different sources of uncertainty may stem from the inversion process, or

even from the interpolation of unknown resistivity profiles surrounding boreholes, which

are interpolated from the already approximated known resistivity profiles from the inver-

sion process.

The test on the second dataset, which contained much more complex input data, showed

a much more even distribution of the uncertainty variances. This may be partly explained

by the increased complexity in the relation between the input data and the labels. The out-

put space also range wider for this second dataset, which further increases the complexity.

This increase in data complexity may also be part of the reason for the superior perfor-

mance of Method 2 for the 90% PI. Method 2 may have have been more able than Method

1 to narrow the PI width where the aleatoric variance was approximated low, whereas

Method 1 assumes a fixed aleatoric variance for any data point. To obtain 90% coverage

Method 1 has to assume a high aleatoric variance, which damages the PI’s performance on

the data points where the aleatoric variance in reality is small.

The evaluation of the three different methods for construction of the intervals uncov-

ered both benefits and flaws for each of the methods. Depending on the use case, these

benefits and flaws can be evaluated such that a construction method can be chosen to yield

the best results based on the problem statement and the availability of computational re-

sources.

Method 1, using an ensembled method to account for the epistemic uncertainty, and a

single simplistic computation for the fixed aleatoric uncertainty generally yielded the best

results for this case study. A probable explanation for why this method performed better

than Method 2 on the first dataset is that the relation between the input data and aleatoric

uncertainty may have been too vague at each point for the maximum likelihood estimator
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to yield any significant difference. Thus, this estimator may have posed more noise than

explanation of the total uncertainty. Method 1 can thus be claimed to be a better option

when the point wise correlation between input data and aleatoric uncertainty is vague. It

also requires less computational resources than its counterpart of Method 2.

Method 2 is similar to the aforementioned Method 1 with its ensembled approach, but

it assumes a certain correlation between the input data and the aleatoric uncertainty at any

point. Knowledge of the degree of presence for this correlation is not straight forwardly

obtained, and relies on the fitting of some model to the data followed by a manual analysis

of the models performance. Whenever there exists a strong correlation between the input

data and the aleatoric uncertainty, Method 2 should theoretically be able to yield similar

coverage with smaller mean width of its interval. The reasoning for this is that it should be

able to reduce the PI width where the aleatoric uncertainty is small, and widen it where the

aleatoric uncertainty is large. The additional computational resource requirements from

the maximum likelihood estimator can be considered to be small, requiring the training of

only a single extra model. Regarded in relation to the requirement ofN separate models as

result of the ensembled approach, an increase from N to N + 1 is often insignificant. This

intuition holds true for this case study, where the number of training data points can be

regarded as relatively few, and of relatively small sizes, consisting of a mere 5 · 25 = 125

separate input neurons. Moreover, the topology of the ANNs is both small and simplistic.

However, if the training dataset grows much larger, and the topology of the networks grows

more complex, the addition of a single extra network may cause a considerable increase in

the computational resource requirements.

Method 3, using the quantile regression technique, is by far the least computationally

demanding of the compared approaches. Still, the approach did yield decent results, aver-

aging at above the desired coverage for both the 90% and 50% coverage tests, albeit with

higher mean widths of its intervals than the two ensembled methods. The quantile regres-

sion technique proved rather unstable, with high deviations from its maximum to minimum

PICP. This arguably stems from the methods inability to account for epistemic uncertainty,

and thus the degree of epistemic uncertainty that is accounted for in the resulting interval

may be largely random. The quantile regression technique can thus be claimed to be a
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good choice for uncertainty estimation, when the known dataset is of sufficient size and

variability, such that the epistemic uncertainty is insignificant, and when the availability of

computational resources are low.

Limited availability to computational resources enforced a somewhat strict restriction

on the number of separate models that were feasible to train for each of the ensembled

methods during the experimental approach. The number of 20 separate models allows

for 20 separate predictions, which cannot be claimed to be sizeable by any means. The

approximation of epistemic and aleatoric uncertainty could therefore potentially be some-

what biased towards some subset of the input data if the random sampling had a sizeable

portion of bad splits (many similar data points in the testing portion). The entire metrics

computation process was repeated in 10 iterations and the results were averaged in an

attempt to mitigate this limitation.

Table 6.1 shows a compressed presentation of the distinct methods with relating con-

ditions.
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Chapter 7
Conclusions & Future Work

This chapter concludes the thesis, and will discuss future work that bears potential of

further improving the DTB interpretation process for bedrock modelling.

7.1 Taking the Research Further

This thesis showed potential for convolutional neural networks in a domain outside of

what can strictly be defined as computer vision. However, it must not be considered an

exhaustive experimentation of the possibilities that CNNs introduce. A natural next step

may therefore be to conduct a more thorough investigation into different CNN approaches

for DTB predictions. A more exhaustive investigation could attempt to understand what

the optimal number of convolutional layers in the network is, what the optimal number of

filters in each convolutional layer is, and also if pooling layers could introduce new im-

provements. Such an investigation would benefit from exploring the domain in an attempt

to understand why some ANN methods supersede the performance of others.

7.2 More and Differing Data Sets

The case studies from this thesis presented an evaluation of the different methods using

data from two geographically separate survey areas in Norway. New investigations explor-
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Chapter 7. Conclusions & Future Work

ing the performance of the different methods for different survey areas altogether, (perhaps

across country borders), may also present new and important information, as geotechnical

data varies to a large extent with the geological complexity of the area. Knowledge of

why, how, and to what extent the automated methods are affected by the geological setting

are important factors for uncovering new understandings on how the DTB interpretation

process can be improved.

7.3 Interpolation of Prediction Data Points

The research results from the case study showed that the vast majority of the uncertainty

stemmed from aleatoric origin. Recalling that aleatoric uncertainty arise from stochastic-

ity and noise inherent in the data gives a strong indication on where the approach could

be further optimized. Further research could examine where the majority of the aleatoric

uncertainty stems from, and explore methods for reducing it. Future research could in-

vestigate different root sources for noise introduction. Such sources could be the original

soundings form the AEM vessel, anthropogenic noise, inversion, or from interpolation

of resistivity profiles for boreholes locations. Knowledge on where uncertainty is intro-

duced in the process can allow for more targeted investigations with the aim of noise and

uncertainty reduction.

7.4 3D Kriging

The method used for obtaining resistivity profiles at arbitrary locations in this thesis relied

on layered 2D Kriging. While the resulting interpolated data proved viable, a more thor-

ough examination could be done for the alternative 3D layering technique. The layered

2D technique can only interpolate values on a 2D plane, and thus a number of models are

required for interpolating a full resistivity profile, which requires values for several depths.

The 3D technique uses a single model that can account for semivariance in three axes, and

thus interpolate values in a 3 dimensional space. A comparative study evaluating the per-

formance of both techniques could allow for further improvements in the overall process

of bedrock modelling from AEM data.
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7.5 Intuitive Visual Representations

7.5 Intuitive Visual Representations

The visualizations of PIs in this thesis do not present the probability distribution within any

prediction interval. Rather, it merely presents an interval, with no notion of the distribution

within that interval. This statement is not entirely true, however, for the two ensembled

approaches, where the error distribution is assumed gaussian, such that the center of the

interval is always the distribution’s mean. Nonetheless, Being able to manually inspect and

analyze such intervals may also be highly beneficial for further analysis. Different types

of color coding could let manual interpreters quickly understand how the probability is

distributed, and allow for a more thorough analysis. A challenge occurs where displaying

overlaying information may interfere with-, or hide underlying information which may

also be of importance for the analysis.

Moreover, a feasibility study of probability distribution visualization of the concept

for quantile regression could provide a set of its own challenges. Since the distribution

is never assumed any type, e.g. gaussian, it is much more difficult to visualize its inner

probability distribution.

A thorough investigation into visual representations of probability distributions in DTB

predictions could further empower the human analyst, and improve the process of creating

bedrock model deliverables.
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Appendix A

7.6 Master Thesis Proposal

This section presents the master thesis proposal as presented to the students of NTNU

during the summer of 2018.

Automated interpretation of depth to bedrock from airborne electromagnetic

data using machine learning techniques

Airborne Electromagnetics (AEM) has been used frequently in the past years to inves-

tigate ground properties for planning and optimization of large road or railroad projects

in Norway. For each measurement along the AEM flight line, a resistivity vs. depth

profile is acquired, which provides information about the geological structure of the un-

derground. In this project, the goal is to identify the boundary between overburden and

bedrock. Bedrock usually has a rather high resistivity, while most (but not all) layers in the

overburden have lower resistivity. The relation between resistivity and geological material

is complex and non-unique. Therefore, converting these profiles into useful geotechnical

information requires a thorough interpretation and especially for large surveys with sev-

eral 100km of flight lines, this is a time consuming task, which potentially is biased by

the person doing the interpretation. The automation of this task is based on training data

provided by a geotechnical expert and/or by borehole data, where available. Depending

on the necessary size of the training data set, the time-complexity of the interpretation can

be reduced significantly and incorporation of borehole data can improve the reliability of

the results. However, simple statistical methods are not able to provide an accurate inter-

pretation in complex geological settings. In this project, potential deep learning pattern

recognition techniques should be identified and the most promising techniques will be im-
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plemented in the existing python framework. Performance of the implemented techniques

will be assessed on real data sets covering a range of geological structures. The project

will be suitable for one to two students. This proposal relates to the NFR project ”Revo-

lutionizing geotechnical site investigations for large infrastructure projects”, where NGI,

Skytem, BGC, JDSI, Statens vegvesen and BANE NOR are partners.

Co-supervisor: Dr. Andreas Aspmo Pfaffhuber, NGI
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Appendix B

7.7 Case Visualizations for Method Comparison

The following sections present the visualizations that were used for the visual analysis of

the methods as described in Section 5.1.1. The standard MLP regressor is displayed by the

black line, while the proposed CNN approach is displayed by the white line.

Case 1, 2, 3 and 4 relates to the highway construction project dataset described in Sec-

tion 2.5, while Case 5 uses the more recent highway and railroad project (Ringeriksbanen

& E16).

7.7.1 Case 1

The following visualizations are a single flight-line, where the training data consists of

manually assigned depth labels for resistivity profiles within the flight-line.
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Figure 7.1: Case 1 with 5 labeled training data points

Figure 7.2: Case 1 with 6 labeled training data points
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Figure 7.3: Case 1 with 11 labeled training data points

7.7.2 Case 2

The following visualizations are randomly selected flight-lines, where the training data

consists of manually assigned depth labels for resistivity profiles within the flight-line.

This case is vastly more complex than Case 1.
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Figure 7.4: Case 2 with 8 labeled training data points

Figure 7.5: Case 2 with 20 labeled training data points
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Figure 7.6: Case 2 with 130 labeled training data points, sparsely distributed over the flight-line
(Training dots removed for clarity)

7.7.3 Case 3

The following visualizations are randomly selected flight-lines, where the training data

consists of interpolated resistivity profiles and depth labels from TS boreholes.
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Figure 7.7: Flight-line visualization with training data from interpolated resistivity profiles and TS
boreholes

Figure 7.8: Flight-line visualization with training data from interpolated resistivity profiles and TS
boreholes
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Figure 7.9: Flight-line visualization with training data from interpolated resistivity profiles and TS
boreholes

Figure 7.10: Flight-line visualization with training data from interpolated resistivity profiles and TS
boreholes
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Figure 7.11: Flight-line visualization with training data from interpolated resistivity profiles and TS
boreholes

7.7.4 Case 4

The following visualizations are randomly selected flight-lines, where the training data

consists of interpolated resistivity profiles and depth labels from all boreholes.
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Figure 7.12: Flight-line visualization with training data from interpolated resistivity profiles and all
boreholes

Figure 7.13: Flight-line visualization with training data from interpolated resistivity profiles and all
boreholes

7.7.5 Case 5

The following visualization presents a randomly selected flight-line from the more recent

highway and railroad project (Ringeriksbanen & E16). The training data consists of inter-
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polated resistivity profiles and depth labels from TS boreholes within the survey area.

Figure 7.14: Flight-line visualization with training data from interpolated resistivity profiles and TS
boreholes
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Appendix C

7.8 Kriging and Boreholes

The training data for the CNN approach was derived using kriging for locations surround-

ing boreholes. As mentioned in Section 2.5.1, different types of boreholes present varying

degrees of certainty in their depth labels. Moreover are the known resistivity profiles of

varying certainty degree, with uncertainty stemming from the soundings and the inversion

process.

Figure 7.15 shows a sample of kriged resistivity profiles with labeled depth marked as

dots where the depths are provided by TS boreholes. Figure 7.16 presents a similar visual-

ization, although, in this chart, the depths are provided by the less certain RPS boreholes.

Figure 7.15: Sample of training data constructed from kriging of depth locations provided by TS
boreholes
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Figure 7.16: Sample of training data constructed from kriging of depth locations provided by RPS
boreholes
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Appendix D

7.9 Kriging & Interpolation

This appendix contains relevant resources for the Kriging and interpolation.

Figure 7.17 presents each of the semi-variograms that was used for the Kriging of each

layer in the interpolation of the resistivity profiles. The X-axis represents the distance

while the Y-axis represents the semi-variance. The semi-variograms are cut off at 5000

distance meters, as any information beyond this point was deemed irrelevant for the re-

sulting models. This is not to say that there will never exist any reasonable correlation

between any two points located with 5000 meters between them, which may often be the

case for geotechnical properties. However, for the exact case of DTB levels in the geo-

logical areas related to the datasets discussed in this thesis, inclusion of further distanced

pairwise points gave little valuable additional data for the model fitting.
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