

The Norwegian University of Science and Technology

Visualizing and Mapping Rendra’s 3D BIM Models to the

Real World Using Augmented Reality

Professional programming - Course Report

Authors
Bjarte Klyve Larsen
Morten Omholt-Jensen
Jørgen Hanssen

Programming
Department of Computer Technology and Informatics
The Norwegian University of Science and Technology, Gjøvik, Norway

Contents

1 Introduction 2

1.1 Project Description 2

1.2 Project Organization 2

1.2.1 Group Organization 2

1.2.2 Work Model 2

1.2.3 Architecture 3

1.2.4 Development Environment 4

1.3 Project Plan and Actual Milestones 5

2 Reflections on the Development Process 6

2.1 Perspective #1: Choice of the Rendering Method 6

2.1.1 Overall Reflection and Experience 6

2.1.2 Experience of Working With Sceneform and Scenekit 6

2.2 Perspective #2: Minimap and AR Mapping 7

2.2.1 Overall Reflection and Experience 8

2.2.2 Implementing a Minimap 8

2.2.3 Implementing World-Aware AR Mapping 9

3 Discussions and Conclusions 11

1 Introduction

The BIM standard is becoming increasingly popular in the construction industry, and it is therefore
essential for the workers on site to be able to use these models. StreamBIM is a mobile/web-based BIM
app developed by Rendra AS and is utilized by construction workers on a variety of different projects.
StreamBIM enables users to visualize and stream BIM models amongst many other features.

In our thesis, we are ascertaining how implementing Augmented Reality (AR) can benefit StreamBIM
and make it simpler for users to work with BIM models creatively.

1.1 Project Description

A finished AR feature would be implemented in the already existing StreamBIM app; however, for this
thesis, we are developing a separate app solely for AR. The reason for this is that the current platform
uses web technologies, which is suitable for StreamBIM's intended use, but an AR implementation
requires a native implementation, which also boosts the performance and creates a better experience for
the end user. The app is being developed for both Android and iOS and uses StreamBIM’s existing
infrastructure and data to render buildings over the real world in AR. There are a bunch of existing tools
to make the implementation more manageable, and we chose to use ARKit and ARCore for this project.

1.2 Project Organization

1.2.1 Group Organization

Due to us being three developers working on two different platforms and codebases, we split the group
into two teams; the Android team and the iOS team. The Android team consists of Hanssen and
Omholt-Jensen, and the iOS team consists of Larsen. We decided on this because of each developer’s
experiences with the platforms, as well as each platform’s complexity; Android is addressed more
developers due to being the most complicated platform.

1.2.2 Work Model

The work-model we chose to work with was Scrum with sprints lasting two weeks. At the start of a sprint,
we prepare the sprint's work by selecting tasks from the backlog and estimating each task's necessary
work. However, a sprint’s tasks are not static, which means we can add tasks as we go if we finish the
tasks faster. A good sprint for us will have some tasks left over since this indicates that we have been
productive as long as there are not too many unfinished tasks. At the end of each sprint, we conduct a
retrospective meeting which allows us to go through our execution of the sprint and highlight the good,
the bad, and any potential improvements for the next sprint. We also visit Rendra in Oslo to present the
completed sprint's work.

Furthermore, we conduct daily standups early each workday; allowing us to catch up to each other and
remove any blockages. We also implemented the spike pattern to give us extra material to write about in
the thesis. With spikes, every task that requires any research should have a small research paper written
with discussions and comparisons with other similar solutions.

1.2.3 Architecture

We follow best practices for both platforms and try to keep the code and structure as similar as possible
without breaking the best practices set. The architecture chosen for each platform was well defined and
researched before we started the project. We created a set of rules to follow during development to ensure
that the end product was compliant to the spec defined in the project plan.

Android
Apps developed for Android are encouraged to follow a predefined best-practice pattern, which we follow
alongside the MVC pattern to ensure that we are in spec and that onboarding new developers will be easy.
The android spec requires developers to follow a pattern that splits the entire application up into smaller
testable parts, which allows for simple integration- and functionality tests at a later stage.

iOS
The iOS platform also uses the MVC pattern but splits the modules differently to ease testing and
development. Also, there are no set guidelines on how to structure an iOS project, which is determined by
the developer. There are no clear winners when it comes to how to structure the iOS application; the
architecture was defined and created based on prior experience with iOS development. We modeled this
to follow as closely to the Android spec as we could while still keeping it “Swifty” in nature.

1.2.4 Development Environment

Version Management
We chose to use GIT as our version control system, which is the industry standard and allowed us to use
particular tools alongside the development process. We run pre-commit hooks running our linting tools to
provide a consistent code layout alongside the tests making sure that everything passes before developers
are allowed to push something to the remote repository. By default, the master repository is set as a
protected branch. By doing this, nothing is pushed directly to master but added using pull requests from
each feature branch. The base branch is development and is the one we use when working on sprints.
Master thus being protected to releases, and only being pushed to at the end of the sprint. Alongside git
we use a pattern called GitFlow; this allows a cleaner branch structure which divides the branches into a
specific role, such as feature, bugfix or hotfix.

Development Tools
For Android development, we used Android Studio alongside Kotlin. Kotlin was chosen as a language
because it is more similar to Swift, thus making code sharing more straightforward between the two
platforms. Ktlint was chosen as the linting tool and is enforced with a pre-commit hook.

For iOS Development XCode was chosen alongside Swift. Swift is faster and easier to use than
Objective-C. SwiftLint is the lining tool chosen for swift and is enforced with a pre-commit hook.

We have tested the possibility of running a react-native interface on top of our existing native layers,
which will enable us to create a consistent user experience on both platforms. Although this is outside of
the project scope, it is something we will work on if we have the time to do so.

1.3 Project Plan and Actual Milestones

Milestone Description Tasks Sprint Significance

Project Plan An overview of the project
and its execution.

Planning

Writing

1 Critical

Rendering Engine Intermediate layers between
SceneKit and Sceneform for
rendering 3D models on each
of their respective platforms.

Download and parse manifest
and octrees

Build 3D objects from octrees

Implement Sceneform and
SceneKit for their respective
platforms

Render the 3D objects in a
scene

1 - 2 Critical

Thesis The document submitted for
candidature for an academic
degree.

Document pre-development
research

Document development
observations

Compose final report

2 - 6 Critical

Code Documentation General code documentation
for the bachelor thesis and for
Rendra to use for later
development.

Continuously document code 2 - 6 Major

Display 3D in AR Use models from rendering
engines to display 3D objects
in AR.

Find walls in the current room

Measure distance between
corners

Match measurement against
3D objects

Render 3D objects in AR
Scene

3 - 4 Critical

Camera Movement Rendering scenes based on
camera properties and
movement.

Anchor the 3D objects to the
corners and keep the closest
objects in memory

4 - 5 Major

Anchoring and Movement Generate anchor points for
ARK models thus enabling
the model's alignment while
moving the camera

Find corners

Match corners to 3D objects

Create anchor points

4 - 5 Major

Layers Ability to toggle between
different BIM structural
layers.

Toggle between different BIM
model layers

5 Minor

2 Reflections on the Development Process

2.1 Perspective #1: Choice of the Rendering Method

Our original planned method of rendering was to develop custom rendering engines from scratch for both
platforms. However, we deviated from our original plan and decided to use existing native rendering
libraries, mainly Scenekit for iOS and Sceneform for Android. These libraries integrate well with the AR
libraries for their respective platforms and save us time which we could spend on more critical problems
such as the AR implementation itself.

2.1.1 Overall Reflection and Experience

We started the development process by developing a rendering engine from scratch in iOS using Metal
and Swift during a hackathon hosted by the "Rapid Prototyping" class. The hackathon gave valuable
insight into how rendering works, the data formats we would need to account for from StreamBIM, and if
a custom rendering engine would be a viable option.

After the hackathon, we were able to render 3D objects using SceneKit and our custom rendering engine.
Knowing nothing about rendering beforehand, we made some very obvious mistakes with our rendering
engine, yet still, we realized how much more work it would take and how much time we had to spend
repeating the process for Android. Along with the time it would take developing a smooth transition to
AR from the 3D rendering environment, we decided that two custom rendering engines were far enough
out of our AR specific scope to implement in this project.

2.1.2 Existing Rendering Engines

After having experienced the development process of creating a rendering engine from scratch it would be
useful to analyze already existing rendering engines and whether or not they would suit our needs. The
main problem or skepticism we had when it came to using existing rendering engines is that they are
primarily suitable for games. This would not necessarily have been a huge issue, but it would entail
building on top of a very large and complex rendering engine, with various features we would not have
any use of such as different types of lighting, textures, and physics. Therefore it would seem logical to
develop a rendering engine from scratch which only handles our specifics needs which can scale and be
extended as feature needs arise. Keeping that in mind, there are a few rendering engines which could have
been relevant for us to use.

For Android, there would be one obvious choice which we in some ways already use in our current
implementation. This is the rendering engine developed by Google called Filament. Filament is a highly
performant rendering engine which has a lot of focus on rendering techniques such as lighting, textures,
and materials. The reason we are already using this engine on Android is that Sceneform is a high-level
scene graph library which builds on top of Filament. Therefore this would be a good choice for us if we

had decided to use a rendering engine. The disadvantages of using this engine instead of using Sceneform
is that it would take longer to implement and it would increase the complexity of the project. Sceneform is
quite performant, and since it is, in its essence, a high-level API for Filament it performs similarly to the
rendering engine.

While Google has been pushing their own rendering engine for Android rendering, Apple has only been
recommending SceneKit for iOS rendering. It is possible to use Filament on iOS also but this is very
experimental. This is mostly because Apple has dropped all support for OpenGL ES on iOS in favor of
their own library called Metal. Excluding Filament, there are a few free options for cross-platform and
iOS development such as Antiryad Gx, BatteryTech, Corona SDK and EdgeLib. The main disadvantages
with these engines are that they are primarily optimized for game development and as we discussed
earlier, this would entail including a large library with a lot of unnecessary features into our project.

If we, at a later date, decide to continue this project and would like to stop using Sceneform and SceneKit,
we would look further into other available engines. The discussion then would regard how long it would
take implementing a custom rendering engine which both suits our specific needs and can compete,
performance wise, with the other available rendering engines. We predict that it would be more
advantageous for us, developing a custom engine because it would be more light-weight and customized
for our needs than the other.

2.1.3 Experience of Working With Sceneform and Scenekit

Working with Sceneform and Scenekit has been a lot easier and less time-consuming than developing
rendering engines from scratch. Scenekit has been working great, is very mature for its intended use, and
has been working excellent for our project. Sceneform, on the other hand, seems to be intended for much
simpler use cases than ours; Sceneform was initially intended to be a rendering tool for ARCore and was
not able to render a 3D environment on its own until late September 2018.

While Sceneform was made for loading static object files, what we needed to achieve was dynamic
rendering based on vertices with indices and with material properties. This functionality was poorly
documented, and it seemed like no one else in that community had done anything similar to us. We had to
figure everything out ourselves using the little documentation that we had available, but we managed to
get there in the end. In addition to poor documentation, some features for 3D graphics were missing or not
yet implemented in the Sceneform library. Early on, we had several issues regarding free camera
movement and other simple 3D graphics functionality, but we managed to get all the functionality we
wanted in the end.

The nature of Sceneform and JVM combined results in high-level code complexity which is not a
problem for an end user, but our team’s initial requirement was to have some level of code similarity
between iOS and Android. The immaturity of Sceneform combined with our specific use case leads to
some significant differences in the rendering method on iOS and Android.

Even though Sceneform seems a bit immature for our requirements, we have been able to solve all of
these issues in a reasonable manner, but the one problem we have had on Android with Sceneform is the

Android heap size limit. The Android heap as a hard limit which is different across devices, and since we
do not have the time to implement streaming in our AR implementation, we have a significant memory
problem since we, on both platforms, load entire BIM models in memory. On iOS, apps can allocate most
of the memory, but this is sadly not possible on the Android platform.

There are mainly two practical solutions to this problem when developing apps on Android that require a
large amount of memory. The first one is to split the rendering into different processes. A process on the
Dalvik (Android’s VM which executes applications) has a small heap limit, but if we could make several
of them to handle the rendering together, we would solve the memory issue. The problem with this
solution is how to pass renderable nodes through IPC (Interprocess communication) pipes. For this to be
possible, we would have to serialize the Sceneform nodes which would be a huge task because of the
complexity of these nodes.

The other popular solution for a fixed heap size is to use Android NDK (Native Development Kit), which
gives applications access to unlimited memory, which was our initial plans for rendering. The problem
with this solution is that Sceneform implementations do not support the use of NDK. Using NDK to store
model data would solve the memory issue, but this would be hard to do alongside Sceneform.

In this stage of the thesis, we will not prioritize fixing the memory issue on Android as we can load in
decently sized models, such as the Smaragd building on the NTNU campus. The problem only arises
when trying to load in every layer of a complex building. To showcase our AR implementation we do not
need to resolve this issue right now, but if there is ample time at the very end of the thesis we will try to
implement a viable solution if possible.

2.2 Perspective #2: Minimap and AR Mapping

Our decision to use scene graph libraries for rendering advanced our progress, and within the first week,
most of the rendering was complete. However, we used a significant amount of time-solving issues with
the minimap and the mapping of models to the real world in AR. Due to these time-consuming issues, our
head-start gradually decreased; which is unfortunate, as we have been ahead of the planned schedule
throughout most of the project. Nevertheless, this has not been a significant issue yet, as we decided on an
agile work methodology that allows us to deviate from the original plan and still keep the end product in
mind.

2.2.1 Overall Reflection and Experience

The process of making the minimap and AR mapping work has been tedious and frustrating as they
caused unanticipated and time-consuming problems. However, both tasks have advanced significantly and
are nearly finished, but they have required much redundant work that we wish we could apply to other
tasks instead.

Both tasks seemed pretty straightforward, and we thought that we solved them within a reasonable
timeframe. However, our implementations did not work, and days of testing and failing reminded us that
debugging such a complex AR application would be extremely tedious.

2.2.2 Implementing a Minimap

Tilemap
A tilemap is a collection of tiles mapped in a specific order. StreamBIM uses their API to get tiles for
floors in buildings and then uses the OpenLayers map library to stitch the tiles together and handle
navigating using the minimap. In our project, we chose not to use a map library, mainly because
OpenLayers does not exist for mobile development and we did not want to include a more extensive map
library for handling tiles. Therefore we implemented a tile service on Android and a tile module on iOS
which has three main tasks to do. Firstly, they fetch the correct tiles for the current floor in the current
building in the project. Then they stitch the tiles together to form a minimap with the tiles. Lastly, they
create render nodes with the 2D tilemap which is later used to render the minimap to a scene graph. This
part of the minimap implementation was developed in a short time without any significant problems.

Minimap Controlling the 3D Camera
The next step in the process was to enable touch events on the minimap to control the 3D rendering
camera, and enabling the 3D camera to move the minimap. The camera implementation on iOS was
straight forward, we use events to pass state between the main camera and the minimap camera. These
events are handled within the camera controller class itself thus keeping the two cameras separated. To
accomplish the same effect on Android, we first had to rewrite the structure of the camera handling
differently. Where we before had one rendering manager class which handled the cameras, we now had a
camera class which handles the main camera methods along with two subclasses: a ​main ​(3D) camera
class and a ​minimap ​(2D) camera class.

We implemented the minimap in such a way that the minimap is a SceneView with its dedicated camera.
This method allows us to move the minimap camera in relation to the 3D camera instead of moving the
minimap in opposite relation to the main camera. This rewrite on Android took a bit longer than expected
because of some mathematical and logical errors in the camera translation and rotation handling mainly
caused by complicated mathematical concepts such as quaternions.

The next step was to implement methods for handling the translations between the 2D minimap and the
3D main view. Firstly, we tried to implement an algorithm to calculate how much the cameras had to
move in relation to the other. The problem was that different floors and different buildings might have
different sized minimap tiles, which made the current solution useless as it only worked for two buildings.
After a chat with the product owner, they referred us to their current web solution and explained some
more endpoints which we could use.

The next solution we tried to implement was using a transformation matrix supplied by StreamBIM's API
for each floor. To do this, we had to implement a few mathematical algorithms to use the new matrices.
After fixing some logical and mathematical errors, the solution worked across every project as long as the

transformation matrices were correct. The last step was then handling the different resolutions the
different buildings' tilemaps had.

The implementation of the minimap took a lot longer than initially planned, which was caused by a few
factors: firstly, the first notable rewrite to improve how we handled the cameras took a long time. Next,
the solution which did not work across all buildings, and lastly, fixing some mathematical and logical
bugs which took a long time because of the difficulty debugging 3D translations.

2.2.3 Implementing World-Aware AR Mapping

AR Mapping
AR mapping is the process of finding a transformation to apply to a rendered model to make it seem
in-place with the real world in AR. In our case, we are mapping a room of a rendered BIM model to the
same room in the real world; a user can then move throughout a building under construction and see the
rendered building overlayed correctly over the unfinished building, which gives the impression of being
inside the rendered building. For such a transformation to work, it would need to contain information
about how to rotate and translate the rendered model to appear correctly overlayed with the real world.

The only mapping we have implemented up until now has been a direct camera-camera mapping; this
means that the user is required to position their phone's camera to the same position as the camera in the
"normal rendering" before going into AR mode. This method works but is very inaccurate, and a mapping
using information about the real world to align the BIM model would be considerably better. Fortunately
for us, ARCore and ARKit both retrieve information about all detected real-world surfaces, and BIM
models usually include information about a room's geometry. StreamBIM already parses this geometry on
their backend, and it is easily obtainable for us to parse to the same data as the detected surfaces by
ARCore and ARKit. From here, we tried several methods of obtaining a transformation using this
information.

The Brute-force Approach
This method first aligns the model to the same grid as the real-world, then rotates the model until it finds
the most likely rotation based on vectors between the room's corners. It then finds the same corner in the
real world and the model and translates the model to match the same corner in the real world. This
method is excellent as the user only needs to be in the same room in “normal rendering” before entering
AR without needing to worry about camera positions. However, the user also needs to scan multiple
surfaces before the transformation could be correct. Also, a room would have to be ​unique enough to only
be correct in one orientation; most rectangular rooms have the same shape when rotated 180 degrees.

The Camera-Aware Approach
This method is much like the brute-force method but uses information about the Scene camera and the
phone’s camera to determine the model’s rotation. This method rotates the model correctly, but the user is
still required to scan multiple surfaces before the transformation could be correct.

The Progressive Approach
This method finds a start-transformation and continuously maps the model as information about the world
is gathered. Our start-transformation is based on the first direct camera-camera transformation, and the
algorithm then loops over all AR planes and compares them with their nearest BIM model plane. It then
matches the rotation and translates the BIM model so that the planes match. This method required us to
implement the Observer pattern so that new mappings could be performed when new AR surfaces are
detected. Nonetheless, it allows the user to observe the building in AR without having to scan multiple
surfaces beforehand.

Addressing the Methods and the Implementation Problem
We considered all the methods and decided that progressive mapping allows for the best user experience
as well as being the simplest to implement. Moreover, we discarded the brute-force method due to its high
processing cost for complex rooms and its inaccurate rotation.

The main problem with the implementation was that we were unsuccessful in getting it to work, or rather
the translation of the model; we implemented all the solutions, but the problem persisted across all. The
algorithm consistently found the correct rotation for the building as well as the same corner in both the
room's geometry and the real world, but translating the model from point A to point B turned out to be a
struggle.

The Debugging Process and Solution
A fundamental difficulty of debugging AR is that it has to be done by using the app, which is very tedious
for our specific AR edge-case. The debugging cycle consisted of building a version of the mapping, trying
it, then interpreting logs and attempting to fix the problems. The cycle was very time-consuming as much
time was spent using the app and interpreting the vague logs containing geometry information.

After a prolonged period of debugging, we are approaching a working mapping using the progressive
method. The current solution maps the model correctly to the floor, however, we found that the mapping
of walls does not work due to StreamBIM's initial rotation of the building; StreamBIM rotates the model
by 180 degrees on the z-axis due to an old implementation mistake. Nevertheless, StreamBIM does not
flip the space geometry the same way as the model, which is why the mapping of the floor works and not
the walls. A working implementation should be implemented within a short time-period now that we
know the root of the problem.

3 Discussions and Conclusions

General Progress vs. Expectations

We are pleased with the project's progression throughout the semester and are comfortable with its current
state. The head-start we received when deciding to use existing rendering frameworks has been crucial for
the project’s current state, as the unexpected problems introduced by the minimap and AR mapping was
very time-consuming. As of now, we are expecting a working minimum viable product (MVP) to be
finished before the deadline with a substantial margin, giving us time to focus solely on the thesis report.

Problems and solutions

Throughout development, we have had a few problems that have slowed down our overall progress. The
two main problems which have caused the most significant setback is the problems regarding the
minimap and the AR mapping. Regarding the minimap, we have found a suitable solution for the issues
that arose. The main downside with this issue is that it took a long time solving an issue for a feature
which is not crucial for the end product. However, we did get an early start so that we did have a buffer
for such problems to occur.

AR mapping has proved a difficult problem to solve, and as it is an essential feature for our end product,
it has been necessary to find a solution to this issue. Fortunately, we knew that this feature would be a
time-consuming problem and we planned consequently; even though it took longer than expected. We are
now confident that we have a robust solution for the issue and will have fixed the last remaining bugs
before user testing. In retrospect, we are glad that we chose to use existing rendering engines so that we
had the extra time to solve the AR mapping. It was also unwise of us to not consider the initial rotation of
the building, as well as trying to implement all the different solutions in the hope that one of the inferior
methods would work; we should have focused our work on getting the best solution to work.

As described earlier we have a memory issue on Android which is prominent for larger BIM models or
phones with limited memory. There are multiple solutions for this, but we have deprioritized the issue
temporarily as the current product is working fine with the issue present and our thesis highlights the AR
aspect of the product. However, we will be trying to implement a solution for this issue if there is
remaining time at the end of the assignment. As for now, we are satisfied with the current state of our
application.

Conclusion

Working on this project for a while has given us many learning experiences; it has not all been good, and
we have encountered several pitfalls along the way. If we had to do this over, we would most likely end
up structuring our applications differently. The Android architecture model is not suited for applications
like this and is more focused around common use-cases. We should have implemented a better testing
regiment to ensure that the two experiences are equal and spend time on testing features with code and
creating end-to-end tests to make sure the programs work as expected cross-platform. The software
development process and team communication have been on point. Our main issues were related to
Android and the way that Sceneform handles data, looking at this from the outside, rewriting the
rendering aspect of the Android application in NDK and C++ would have saved us several problems.
SceneKit seems more mature in its feature set than the Android equivalent. The overall experience with
ARCore and ARKit has been surprisingly good. We found some publications and tutorials helping us
along at the beginning. They both provide a decent interface to work with and iterating over the features
was quick.

We got a lot of support from the Rendra staff throughout the development process; they were always
available to chat about the features and discuss the implementation, and how to use their backend API. At
our regular meetings, we could demo the application and get feedback on the current progress. This in
return gave us a technical project owner for the scrum process.

We were pleased with the toolset we chose. Working with git hooks is tedious because they are not
committed to the remote repository, but once it was set up, they worked as a safety net and ensured that
our code was linted and up to spec. GitFlow gave us the benefit of structure within GIT. Branches were
no longer given random names, but instead, they had some meaning behind them. Scrum was important to
us, as it gave us the ability to hone in on specific areas within the sprint duration. Looking back we should
have gone for one-week sprints instead of two, allowing us to turn the “ship” at a quicker pace.

The last half year and the process we have been through, developing for and researching the construction
industry, has left us with a lot of positive experiences that we can bring with us in our careers. We are left
with a prototype of an application that could one day be in the hands of construction workers and ease
their day-to-day activities.

If we were to do such a project over again; We would spend more time in the planning phase and testing
the options we have on the Android platform and improve code sharing the platforms. IOS supports the
use of C, and with Android NDK using a low level language that works cross-platform could potentially
ease the process. With our main pain points came from memory management and this is something we
should have thought more through at the start of the project, and a solution would be NDK. Over all the
management of the project has gone well and we chose the correct work methodology and tools. Cross
platform AR solutions are not as mature as we need them to be, but i think we worked around the issues
we had at the time. As technology advances Flutter or React-Native can be viable in the future, and is
definitely worth looking at.

