
Attachment

Spike

Sceneform vs OpenGL ES as rendering methods on Android platform

The research conducted in this paper aims to conclude whether or not the Sceneform library is

more suitable than OpenGL ES as a rendering engine for the Android platform.

Android Rendering Spike 1
Sceneform 2
OpenGL ES 2
Difference between the two 2
Sceneform and performance 2
Development with Sceneform 2
Sceneform for StreamBIM AR 3
OpenGL ES and performance 3
Development with OpenGL ES 3
Conclusion 3
Sceneform Setup and Use 4

Setup 4
Creating the scene 5
Creating Objects Based on Vertices and Indices 6
Add vertices/nodes to scene 7
Using materials 7
Basic Camera Movement Based on Users Input 7

Attachment

Sceneform

Sceneform is a high level scene-graph based graphics API used to accomplish rendering tasks

without extended knowledge about OpenGL, which is generally a more low level API. It can be

used to render 3D graphics in both AR and non-AR mobile applications. Sceneform also

includes a realistic physically based renderer provided by Google’s Filament graphics API.

OpenGL ES

OpenGL ES is graphics API to achieve hardware accelerated rendering on embedded systems,

such as smartphones and consoles. OpenGL ES is considered a high-level API and is supported

on a variety of devices. The API is supported by Android by default; making it a popular tool for

Android developers.

Difference between the two

Sceneform can be considered a layer on top of OpenGL ES in some ways. It is based on a the

Filament rendering engine which is again based on top of various graphics APIs including

OpenGL. The main difference between the two would be that Sceneform is a high level scene

graph API while OpenGL ES is a low level graphics API using hardware accelerated rendering

to achieve high performance.

Sceneform and performance

Scenefor provides good performance because of the Filament rendering engine it is built upon.

The Filament rendering engine’s primary target is OpenGL ES 3, therefor Sceneform’s

performance is similar to OpenGL ES.

Development with Sceneform

The development process with Sceneform is more simple than using lower level APIs such as

OpenGL. Sceneform has several inbuilt methods and tools which makes implementations and

Attachment

optimization of the rendering process easier. The downside of a high level API is that there is

less control over the rendering process and there are fewer features available for specific needs.

Sceneform for StreamBIM AR

Sceneform can be easily integrated with ARCore; making in an easy way to render objects in AR

without having to use an extensive amount of time bridging a custom rendering engine written in

OpenGL ES and ARCore. Most of the current online examples and tutorials focuses around

pre-made 3D objects, luckily, Sceneform provides the ability to add custom shapes and objects

dynamically through the same data that StreamBIM uses, based on vertex-, index-, normal- and

material data.

OpenGL ES and performance

OpenGL ES is a higher level graphics API compared with other APIs available such as Metal

and Vulkan. This means that is less performant than the other lower level APIs, however

OpenGL ES is faster than using Sceneform if the user is sufficient using OpenGL ES. If the user

is not sufficient using OpenGL, they might lose performance which they could have achieves

using a higher level API such as Sceneform.

Development with OpenGL ES

Although OpenGL ES is more performant than Sceneform it has a considerable more complex

development cycle. OpenGL ES provides more control over the rendering process, but this

entails it taking more time and experience to achieve good performance in larger applications.

Conclusion

OpenGL ES provides greater performance than Sceneform but is considerable more complex as

a development tool. Sceneform has a smooth transition between 3D rendering while using

OpenGL ES would demand more research and a lot of time implementing AR. For the team’s

needs and deadline Sceneform proves the best alternative for implementing 3D rendering in AR

because of its ease of use and small performance loss over using OpenGL ES.

Attachment

Sceneform Setup and Use

Setup

Project Gradle File

Make sure that the google repository is included in the project gradle file

buildscript {

 ...

 repositories {

 ​google()​ ​<--
 ...

 }

 ...

}

allprojects {

 repositories {

 ​google()​ ​<--
 ...

 }

}

App Gradle File

Add the following blue lines to the app´s build.gradle file

...

android {

 ...

 ​compileOptions {
 sourceCompatibility JavaVersion.VERSION_1_8

 targetCompatibility JavaVersion.VERSION_1_8

 }

dependencies {

 ...

 ​implementation "com.google.ar.sceneform.ux:sceneform-ux:1.6.0"
}

Attachment

Add a Sceneview in an activity

<?xml ​version​=​"1.0"​ ​encoding​=​"utf-8"​?>
...

<com.google.ar.sceneform.SceneView

 android:​id​=​"@+id/sceneView"
 android:​layout_width​=​"match_parent"
 android:​layout_height​=​"match_parent"
 android:​background​=​"@color/colorPrimaryDark"
 app:​layout_constraintBottom_toBottomOf​=​"parent"
 app:​layout_constraintEnd_toEndOf​=​"parent"
 app:​layout_constraintStart_toStartOf​=​"parent"
 app:​layout_constraintTop_toTopOf​=​"parent"​ />

...

Creating the scene

class​ ​MainActivity​ : ​AppCompatActivity​() {
 ​private​ ​lateinit​ ​var​ scene: Scene ​<--
 ...

 ​override​ ​fun​ ​onCreate​(savedInstanceState: ​Bundle​?) {
 ​super​.onCreate(savedInstanceState)
 setContentView(R.layout.activity_main)

 scene = sceneView.scene ​<--​ ​// sceneView from layout

 ...

 }

 ...

}

override​ ​fun​ ​onPause​() { ​<--
 ​super​.onPause()
 sceneView.pause()

}

Attachment

override​ ​fun​ ​onResume​() { ​<--
 ​super​.onResume()
 sceneView.resume()

}

Creating Objects Based on Vertices and Indices

// Defining all the vertex data

val​ vertices: ArrayList<Vertex> = arrayListOf(
 Vertex.builder().setPosition(Vector3(​0​f, ​5​f, ​-10​f)).build(),
 Vertex.builder().setPosition(Vector3(​5​f, ​-5​f, ​-10​f)).build(),
 Vertex.builder().setPosition(Vector3(​-5​f, ​-5​f, ​-10​f)).build()
)

// Defining all the index data

val​ indices: ArrayList<​Int​> = arrayListOf(​2​,​1​,​0​)

// Bulding a mesh based on the above data

val​ submesh = RenderableDefinition.Submesh.builder()
 .setTriangleIndices(indices)

 .setMaterial(material)

 .build()

// Load vertices with submesh and add nodes to scene

ModelRenderable.builder()

 .setSource(RenderableDefinition.builder()

 .setVertices(vertices)

 .setSubmeshes(arrayListOf(submesh))

 .build()

).build()

 .thenAccept { model ->

 ​// use model here
 addNodeToScene(model)

 }

Attachment

Add vertices/nodes to scene

// Add model renderable to scene graph

private​ ​fun​ ​addNodeToScene​(model: ​ModelRenderable​?) {
 model?.let {

 modelNode = Node().apply {

 setParent(scene) ​// or a node parent
 localPosition = Vector3(​0​f, ​0​f, ​0​f)
 localScale = Vector3(​1​f, ​1​f, ​1​f)
 name = ​"Custom Name"
 renderable = it

 }

 scene.addChild(modelNode)

 }

}

Using materials

MaterialFactory

 .makeOpaqueWithColor(​this​, BLUE) // context, color
 .thenAccept { material ->

 ​// set material properties with setFloat(String, value)
 material.setFloat(MaterialFactory.MATERIAL_METALLIC, ​0.7​f)
 material.setFloat(MaterialFactory.MATERIAL_ROUGHNESS, ​0.3​f)
 material.setFloat(MaterialFactory.MATERIAL_REFLECTANCE, ​0.6​f)

 ​// use material here
 }

Attachment

Basic Camera Movement Based on Users Input

private​ ​val​ handleTouch = Scene.OnTouchListener { hitPoint, event ->
 ​when​(event.action) {
 MotionEvent.ACTION_UP -> { prevX = ​null​; prevY = ​null​ }
 MotionEvent.ACTION_MOVE -> {

 ​if​ (prevX != ​null​ && prevY != ​null​) {
 ​val​ dx = event.x - prevX!!
 ​val​ dy = event.y - prevY!!
 ​// pointerCount = amount of fingers touches the screen
 ​when​ (event.pointerCount) {
 ​1​ -> {
 ​// screen is rotated 90deg => x = y | y = x
 rotationX += dy/​10
 rotationY += dx/​10

 ​val​ rotX =

 Quaternion.axisAngle(Vector3.right(), rotationX)

 ​val​ rotY =
 Quaternion.axisAngle(Vector3.up(), rotationY)

 scene.camera.localRotation =

 Quaternion.multiply(rotX, rotY)

 }

 ​2​ -> {
 ​val​ forward = scene.camera.forward
 ​val​ scaledForward =
 Vector3(forward.x * -dy/​10​,
 forward.y * -dy/​10​,
 forward.z * -dy/​10​)

 ​val​ newPosition =
 Vector3.add(scene.camera.localPosition, scaledForward)

Attachment

 scene.camera.localPosition = newPosition

 }

 }

 }

 prevX = event.x

 prevY = event.y

 }

 }

 ​return​ ​true
}

