
Automated Salamander Recognition
Using Deep Neural Networks and Feature

Extraction

Author(s)

Jørgen Bakløkken
Felix Schoeler
Hugo Nørholm

Bachelor of Science in Engineering - Computer Science
BIDAT39

Department of Computer Science
Norwegian University of Science and Technology,

20.05.2019

Supervisor Sony George
Marius Pedersen

Automated Salamander Recognition Using Deep Neural Networks and Feature Extraction

Sammendrag av Bacheloroppgaven

Tittel: Automatisert salamander identifisering ved bruk av dype
kunstige nevrale nettverk og feature extraction

Dato: 20.05.2019

Deltakere: Jørgen Bakløkken
Felix Schoeler
Hugo Nørholm

Veiledere: Sony George
Marius Pedersen

Oppdragsgiver: Norsk institutt for naturforskning - NINA

Kontaktperson: Børre Dervo

Nøkkelord: Salamandere, Mønstergjenkjenning, Dyp læring, Nevrale
nett, Maskinlæring

Antall sider: 49
Antall vedlegg: 3
Tilgjengelighet: Åpen

Sammendrag: Hensikten med dette prosjektet er å utvikle et automatisert
verktøy og metode som kan identifisere salamandere ved å
bruke deres individspesifikke bukmønstre. Vi har undersøkt
en rekke med forskjellige eksisterende metoder for og oppnå
dette. Mens de tradisjonelle metodene krever tidskrevende
manuel retting av salamandrene, foreslår vi et system som
gjør dette helautomatisk. Vi undersøker en rekke forskjel-
lige metoder for å oppnå dette. I tillegg oppnådde vi en
god gjenkjenningsrate. Den endelige versjonen bruker det
foldbare nevrale nettverket ResNet50 og kubisk kurve in-
terpolasjon for bukmønster lokalisering, og sammenlikner
bildenes tette scale-invariant feature transform (DSIFT) for
gjenkjenning.

i

Automated Salamander Recognition Using Deep Neural Networks and Feature Extraction

Summary of Graduate Project

Title: Automated Salamander Recognition Using Deep Neural
Networks and Feature Extraction

Date: 20.05.2019

Authors: Jørgen Bakløkken
Felix Schoeler
Hugo Nørholm

Supervisor: Sony George
Marius Pedersen

Employer: Norsk institutt for naturforskning - NINA

Contact Person: Børre Dervo

Keywords: Salamanders, Pattern recognition, Deep learning, Neural
networks, Machine learning, Feature extraction, Pose esti-
mation

Pages: 49
Attachments: 3
Availability: Open

Abstract: The purpose of the project is to develop a automated tool
and a method that can recognize salamanders by using their
individual-specific body markings. We have investigated a
number of different methods to accomplish this. While tra-
ditional methods require time intensive manual straighten-
ing of the salamanders, we propose a system that does this
fully automatically. Additionally, we achieved a good recog-
nition rate. The final implementation of the software uses
the convolutional neural network ResNet50 and cubic curve
interpolation for belly pattern localization, and compares the
images dense scale-invariant feature transform (DSIFT) for
recognition.

ii

Contents

Contents . iii

List of Figures . vi

List of Tables . viii

Preface . ix

1 Introduction . 1

1.1 Background and motivation . 1

1.1.1 Capture-recapture . 1

1.1.2 Overview of existing software . 2

I3s . 3

Wild-ID . 3

AmphIdent . 3

Aphis . 4

Conclusion . 4

1.2 Our dataset . 4

1.3 Tools and hardware . 4

1.3.1 Hardware system . 4

1.3.2 Software tools . 5

1.4 Report overview . 5

1.4.1 Project pipeline . 5

2 Project fundamentals . 7

2.1 Digital image processing . 7

2.1.1 Feature extraction . 7

2.1.1.1 Thresholding . 8

2.1.1.2 Blurring . 9

2.1.2 ORB . 9

2.1.3 SIFT . 9

2.1.4 SURF . 10

2.2 Neural network fundamentals . 10

2.2.1 Neurons . 10

2.2.2 Layers . 11

2.2.3 Loss Function . 11

2.2.4 Backpropagation . 11

2.2.5 Gradient Descent . 11

2.2.6 Convolutional Neural Networks . 12

3 Methods and Implementation . 14

iii

Automated Salamander Recognition Using Deep Neural Networks and Feature Extraction

3.1 Pattern extraction . 14

3.1.1 Extraction methods . 14

3.1.2 Manual pose labeling . 15

3.1.3 Segmentation and Skeletonization . 15

3.1.3.1 Segmentation . 16

3.1.3.2 Skeletonization . 16

3.1.3.3 Downsides of the method . 17

3.1.4 Data preparation for neural networks . 18

3.1.5 Pose estimation using LEAP . 18

3.1.5.1 Network architecture . 19

3.1.5.2 Results . 20

3.1.5.3 Discussion . 20

3.1.6 Pose estimation using DeepLabCut . 21

3.1.6.1 Overview . 21

3.1.6.2 Network architecture . 21

3.1.6.3 Results . 23

3.1.6.4 Discussion . 23

3.1.7 Straightening . 24

3.2 Image processing . 25

3.2.1 Feature based method . 25

3.2.1.1 ORB, SIFT and SURF . 25

3.2.1.2 DSIFT . 26

3.2.1.3 HOG . 26

3.2.2 Preprocessing for pixel based method . 29

3.2.2.1 Resizing . 29

3.2.2.2 Thresholding . 29

3.2.2.3 Blurring . 30

3.3 Matching . 31

3.3.1 Brute force matching . 31

3.3.2 Pixel based matching . 31

4 Implementation and results . 33

4.1 System implementation . 33

4.2 Results . 33

4.2.1 Belly localization . 34

4.2.2 Matching results on test data . 38

4.3 Failed cases . 39

4.3.1 Belly localization . 39

4.3.2 Matching . 40

5 Discussion . 42

5.1 Belly localization . 42

iv

Automated Salamander Recognition Using Deep Neural Networks and Feature Extraction

5.2 Matching . 42

5.2.1 Pixel by pixel method . 42

5.2.2 Brute force matching . 42

6 Conclusion . 44

6.1 Summary of the project . 44

6.2 Future Work . 44

Bibliography . 46

A Project Agreement . 50

B Projectplan . 54

C Meeting Logs . 67

C.1 Temporal record of meetings . 67

v

List of Figures

1 Example of salamander 1 . 2

2 Example of salamander 2 . 2

3 Chart showing the complete process from an input image, through all prepro-
cessing steps until it is matched . 6

4 Fundamental steps in digital image processing . 7

5 Simple thresholding example . 8

6 Neuron with multiple input weights . 10

7 Convolutional layer, image from Stanford Lecture [1] 12

8 Convolutional neural network, image from Stanford Lecture [1] 13

9 Same salamander posing differently . 14

10 Mechanical model of salamander . 14

11 Example of manually labeled salamander . 15

12 Salamander after manual segmentation and skeletonization 17

13 Consequences of minor segmentation errors . 18

14 Network architecture of LEAP . 19

15 ResNet network architectures . 22

16 First residual block used by the 50, 101 and 151 layer ResNet models 22

17 Straightening using DeepLabCut and the derivative of the interpolated spinal
curve . 24

18 ORB keypoints . 25

19 Two images from same individual but different amount of keypoints and loca-
tions. 25

20 SURF keypoints . 26

21 DSIFT keypoints . 26

22 Gradient directions example . 27

23 HOG algorithm . 27

24 Gradient orientation to vector example . 28

25 Resize examples . 29

26 Simple binerization examples . 30

27 Adaptive examples . 30

28 Otsu examples . 30

29 Binarized blurred images. 31

30 Our software in action . 33

31 Example of failed pose estimation by DeepLabCut 39

vi

Automated Salamander Recognition Using Deep Neural Networks and Feature Extraction

32 Example images that’s too dark for matching . 40

vii

List of Tables

1 Hardware system used for testing in this thesis . 5

2 Labeled points on salamander . 15

3 LEAP testing results . 20

4 DeepLabCut testing results . 23

5 Match rates on DSIFT and pixel based method . 32

6 Speed of all pre-matching steps in our system . 33

7 Time required for preprocessing . 34

8 Comparison between existing software and our software 34

9 Comparison of belly localization methods . 35

10 Matching results . 38

viii

Preface

This thesis report was written by a group of three computer science students at Norwegian
University of Science and Technology. We would like to thank NINA (Norwegian Institute for
Nature Research) and Børre Dervo for the interesting and challenging task.

We would also like to thank our supervisors Sony George and Marius Pedersen for help-
ing us with constructive feedback and their professional expertise and guidance during our
project.

ix

1 Introduction

1.1 Background and motivation

The goal for this project is to propose a solution which:

• Identifies salamanders based on pattern recognition with a high accuracy, comparable
to existing software.
• Reduces the amount of manual work required to match salamanders by automating

the workflow.

One of the fields of research at NINA (Norwegian Institute for Nature Research) is sala-
manders. Salamanders are a group of amphibian and are predators that hunt insects and
earthworms. In Norway there are two different species of salamander, the great crested newt
(Triturus crustatis) and the smooth newt (Lissotriton vulgaris). As the great crested newt
(Triturus cristatus), has the status NT (Near threatened) in Norways national red list, it is
crucial to know how it’s population is developing. When measures are taken to increase the
salamander population, the development of the population gives a good indicator for whether
the actions had a positive impact.

NINA are trying to learn more about their life cycle, living area and population. And to get
more knowledge they started a pit tagging project in 2010. This means that they have to
catch the salamanders in a gentle way, inject a pit tag in the salamander and document this
into their database. This pit tag is a small transponder contained in material that is harmless
to the salamander [2], this transponder is the placed in the salamander and responds to the
scanner by sending its id to the scanner allowing for identification of the animal. This is very
time consuming for NINA and also stressful for the salamander that should be handled very
carefully.

The great crested newt and smooth newt have body markings of small black patches that
are individual-specific [3] (see Figure 1 and Figure 2). These individual-specific body mark-
ings can serve as a natural mark for capture–recapture models for estimating population
demography. NINA would like a system or application that takes an input image of an sala-
mander, check the pattern, determines if the salamander is already in the database.

The purpose of the project is to develop a tool and a method that can estimate the popu-
lation demography for amphibian.

1.1.1 Capture-recapture

In order to estimate the population the capture-mark-recapture method is used. To calculate
the development of the population we look at the ratio between the individuals that have
been caught previously and the ones that have not. By using the Lincoln-Peterson method we

1

Automated Salamander Recognition Using Deep Neural Networks and Feature Extraction

Figure 1: Example of salamander 1

Figure 2: Example of salamander 2

can then estimate the population.

• N is the total number of salamanders in the population.
• n is the number of salamanders that were marked on the first visit.
• K is the number of salamanders that were captured on the second visit.
• k is the number of recaptured salamanders that were marked.

If we assume that the population is closed, meaning that no individuals die or emigrate be-
tween the visits, the ratios of the captured individuals in relation to the total population
should be equal to the ratio between the individuals that have a mark on recapture and those
that don’t.

N
n
=

K
k

(1.1)

If we rearrange, we see that we can estimate the total population N̂ using the following
equation:

N̂ =
Kn
k

(1.2)

1.1.2 Overview of existing software

In order to spark some ideas on how we were going to make the program we looked for
programs that tried to achieve similar things. We found an article [3] which describes four
different programs which attempts to aide with image identification of amphibians. The plan
is to try to use these different programs on some of our images in order to see how they work
and consider which of their features might be worth implementing in our project. We are
not going to look too much into how well the programs work and instead use the results the

2

Automated Salamander Recognition Using Deep Neural Networks and Feature Extraction

article found since some of them are very old and the images we have are not very high quality.

The programs have two main methods of comparison feature-based and pixel based. I3s
and Wild-ID both use a feature based methods which try to identify keypoints in the images
and compare them to the other image’s keypoint. While Aphis has both feature based and
pixel based methods we are only going to look at its pixel based implementation. Pixel based
matching is used by AmphIdent and Aphis, the method involves looking at the pixel similarity
of the two images and uses this to find the matches.

I3s

The method for comparison used in this program involves you defining three homologous
reference points, in the case of the salamander one could choose front left leg, front right leg
and the beginning of the tail. It then identifies key points in the pattern e.g. the black dots on
the salamander and calculates a similarity score based on how close these key points are to
the key points from another image. For a more detailed look at the method look at [3]. This
program was found at[4],

Wild-ID

This was probably the simplest of the programs to use as all you had to do was select the
folder containing all the images, you then had to go through a list of potential matches for
each image and confirm whether or not they actually were the same. A bit tedious, but it
could be useful to show more than the highest match in case there are multiple high matches
above a threshold. The program has no way of qualifying images for a match it simply ranks
all the images by how similar they are to the image you are using. More about Wild-Id can
be found at[5].

AmphIdent

The only non open source program on this list, it is also the one with the most features and
support. There is even a plugin you can buy which directly relates to one of the species that
we are working with. However all of the versions use the same basic algorithm, what changes
is the algorithm it uses to binarize the images as different species have different colours which
means they need different thresholds to decide if a pixel is black or white, therefore we only
looked at the trial version. The way AmphIdent compares images is simply by adding up
the absolute difference of each pixel. Additionally in order to improve robustness against
small differences which might appear due to growth, camera faults or warping during the
preprocessing, AmphIdent scales and translates one of the images many different ways and
compares each of the resulting images and picks the best match for their comparison score.
AmphIdent’s store page where a free demo version is available[6].

3

Automated Salamander Recognition Using Deep Neural Networks and Feature Extraction

Aphis

Aphis works similarly to AmphIdent, but it separates itself by identifying the area where the
two images are most similar first before comparing just this area. This seems as it would
require a lot less processing power than AmphIdent’s compare the entire image approach,
but it also sounds a little less accurate. Aphis also doesn’t do the initial downscaling or the
differently scaled comparisons.[7]

Conclusion

The main takeaway from looking at these programs is that no matter what kind of method of
comparison we use, we need at least two pre-processing steps which are straightening and
snipping out the belly pattern. We are going to test out both methods of comparison before
and compare them to see which one we should use with our images. Another takeaway is that
they all require human input in order to achieve the pre-processing steps that are required,
we are going to attempt to automate these steps to reduce the need for human input as much
as possible. A comparison between these softwares and our system can be found in Table 8.
It is also worth mentioning that this article[3] was conducted by AmphIdent.

1.2 Our dataset

The dataset we received from NINA was a total of ~6700 images. The images were of the
northern crested newt (Triturus crustatis) and the smooth newt (Lissotriton vulgaris). The
resolution of these images is was 1240 x 1748 and they were provided in JPEG format. For
the salamanders that were PIT tagged and recaptured, we also received data on which images
are of the same salamander. All photographs were photographed using a passport-scanner.

Some of the images in this dataset were of low quality, including examples of:

• Partially or fully occluded belly pattern.
• Very dark images with low contrast, making the pattern unrecognizable.
• Salamanders were lying with a curved pose, some of them even in circles.
• Dirt and other noise added to the image.
• Varying background.
• The Salamander lying on one side of it’s trunk.
• Incorrectly focused photos.
• Overexposed photos.

Because of the varying quality in the dataset, and not all images could be used for matching,
we extracted parts of the dataset with acceptable quality for testing the different parts of the
system as it is outlined in Section 3.1.4 and Section 3.2.

1.3 Tools and hardware

1.3.1 Hardware system

The hardware used for computations in this thesis is outlined in Table 1.

4

Automated Salamander Recognition Using Deep Neural Networks and Feature Extraction

Component Model
GPU Geforce GTX 1060 6GB
CPU Intel Core i5-2310@2.9 GHz
RAM DDR3 8GB

Table 1: Hardware system used for testing in this thesis

1.3.2 Software tools

In this project we have used Python 3.6 as our programming language which is a popular
programming language and allows for fast prototyping. We chose Python because it has a lot
of good libraries, and is widely used, in the fields of machine learning and computer vision.

Python packages/libraries used in this project:

• Open Source Computer Vision Library - opencv-contrib-python==3.4.2.16
• Open Source Computer Vision Library - opencv-python==3.4.2.16
• Scientific computing package for python - numpy =1.16.1
• Scientific computing package for python - scipy =1.2.1
• 2D plotting package for python - matplotlib =3.0.3
• Image processing package for python - scikit-image =0.15.0
• Paralell computing package for python - dask =1.1.5
• Skeleton Network for python - https://github.com/yxdragon/sknw
• Complex network package for python - networkx==2.2
• JSON serialization module - jsonpickle==1.1
• Read and write HDF5 fileformat - h5py==2.9.0
• DeepLabCut - deeplabcut==2.0.6.3
• LEAP - https://github.com/talmo/leap

1.4 Report overview

This report includes some fundamental background in Chapter 2 that’s necessary to read the
whole report. Chapter 3 includes information and results about the methods we have decided
to use or not to use in our finalized software. Figure 3 shows which algorithms and methods
were used in the final software.

1.4.1 Project pipeline

Our project goal is to create a system that can identify salamanders based on pattern recog-
nition with the high accuracy. If we achieve this, this will make it easier for NINA to identify
salamanders. It will also reduce the amount of pit tags in salamanders.

Figure 3 shows our current methods. The techniques marked in red were tested and eval-
uated, but we decided not to use them. We found that the ones marked in blue were the best
ones for our use case and they were used in the final proposed software.

5

https://github.com/talmo/leap

Automated Salamander Recognition Using Deep Neural Networks and Feature Extraction

Figure 3: Chart showing the complete process from an input image, through all preprocessing steps

until it is matched

6

2 Project fundamentals

2.1 Digital image processing

Figure 4 shows the fundamental steps in digital image processing. In this project we will use
the representation and description section, which is also called feature extraction.

Figure 4: Fundamental steps in digital image processing [8]

More about digital imaging and digital image processing can be found in Digital Image Pro-
cessing [9].

2.1.1 Feature extraction

The goal with feature extraction is to transform the original data to a data set which contains
useful data that’s unique to one image. There are two aspects of feature extraction: feature
detection and feature description. Feature detection will decide if there’s an image feature in
a point of the image or not. Feature description will describe the image feature from feature
detection and this data can be used to separate images from each other.

There’s many different algorithms to use depending on what features you want from the
image:

• Edge detection [10]
• Corner detection [11]
• Oriented FAST and rotated BRIEF (ORB) [12]
• Scale-invariant feature transfrom (SIFT) [13]

7

Automated Salamander Recognition Using Deep Neural Networks and Feature Extraction

• Speeded up robust features (SURF) [14]
• Thresholding [15]
• Blurring [16]
• Hough transform [17]

These algorithms are the most popular ones for low-level and shape based features. In this
project we tested the thresholding, blurring, ORB, SIFT and SURF algorithms.

2.1.1.1 Thresholding

Thresholding is a very simple method for image segmentation. Thresholding takes a grayscale
or colour image and creates a binary image as seen in Figure 5. In addition we know that
AmphIdent[6] uses binary images for their pixel-based matching algorithm.

Figure 5: Simple thresholding example

• The simplest way of thresholding is to define the threshold as an arbitrary number and
then changing each pixel to be black or white depending on whether they are brighter or
darker then the threshold This method works quite well if you have the right threshold
value, however when applying this to a variety of images of varying lightning creates
a need for many different values as using a threshold value that works well on a bright
image will turn a dark image become way too dark.

• Adaptive threshold decides on a threshold on a per pixel basis based on the value of the
nearby pixels, the simplest one being the mean of the nearby pixels. This method works
very well when trying to highlight lines and other this details as while they might not
be too visible for us they are clearly darker or brighter than their surrounding pixels
to the computer. However this method was not very useful for our purposes as we are
trying to highlight bigger patterns which when using this method becomes fragmented
as pixels in the pattern that are slightly brighter the surrounding pixels become white.

8

Automated Salamander Recognition Using Deep Neural Networks and Feature Extraction

• Otsu’s binarization works very similarly to simple thresholding however instead of us-
ing an arbitrary value for the threshold Otsu’s method determines the threshold based
on the histogram of the image. This method only works well with images that consist
of two main colours also known as bimodal images. Our images of the pattern consist
mainly of black and orange and should therefore be suited for this method. The reason
Otsu’s method requires bimodal images is because these images histograms have two
distinct peaks around the image’s two main colors and calculates the value between
the two peaks and uses that to binarize the image.

2.1.1.2 Blurring

The main goal of blurring is to make each pixel more like the surrounding ones. This might
be useful for us as a lot of images contain a lot of noise and blurring them might help if the
noise becomes problematic.

• Gaussian blurring is a spin on the simplest method of doing blurring which is to make
each pixel the average of itself plus its surrounding eight pixels. The Gaussian way of
doing this is to use a box filter instead, this method is best when trying to remove Gaus-
sian noise.

• Median blurring instead of using the average value uses the median value. This helps
a lot with salt and pepper noise as this kind of noise deviates highly from the actual
image and would therefore affect the average too much to be used accurately. Instead it
uses the median value as this value is very likely not to be affected by extreme outliers.

• Bilateral filtering works like Gaussian filtering, however pixels that deviate too much
from the center are disregarded in order to preserve edges, This type of blurring is best
when you want to remove the texture of the items in the image while keeping edges
clear as it basically only blurs within the edges.

2.1.2 ORB

Oriented FAST and rotated BRIEF (ORB) is a fast robust local feature detector. ORB is based
on the FAST keypoint detector and the visual descriptor BRIEF (Binary Robust Independent
Elementary Features).

2.1.3 SIFT

Scale-invariant feature transform is a feature detection algorithm that is used to detect and
describe local features in images. SIFT has 4 key steps:

1. Scale-space extrema detection

9

Automated Salamander Recognition Using Deep Neural Networks and Feature Extraction

2. Keypoint localization
3. Orentation assignment
4. Keypoint descriptor

SIFT identifies points of interest (keypoints) using DoG (Difference of Gaussian Filtering) in
the first two steps and then uses HOG (Histogram of Oriented Gradients) to describe these
interest points to create a keypoint descriptor in the two last steps.

2.1.4 SURF

Speeded up robust features can be used for tasks such as object recognition, image registra-
tion and classification. SURF is built on SIFT and the same steps as SIFT but small details in
each steps are different. SIFT is faster and also claimed to be more robust against different
image transformations than SIFT.

2.2 Neural network fundamentals

2.2.1 Neurons

The layers in the neural networks consist of neurons that are interconnected using weights[18].
It is essentially a graph that has nodes with weighted edges that connect the nodes. The neu-
rons do a linear transformation based on the incoming weights and an additional bias. In
order to also be able to learn non-linear models, the neuron also incorporates what’s called
an activation function. If we call the input to the neuron x , the weight from the previous
neuron w, the bias b and activation function f . The output y of a neuron is calculated as you
can see in Figure 6.

Figure 6: Neuron with multiple input weights

The weight, w is essentially the coefficient, the bias, b is the additive constant of the of the
transformation. As you can see in Figure 6, neurons are interconnected with other neurons
and typically have a high number of weights connected to it. w and x are therefore often

10

Automated Salamander Recognition Using Deep Neural Networks and Feature Extraction

described as vectors.

2.2.2 Layers

Our neural network features a 3-layer architecture. Firstly there’s the input layer, this is the
layer we we receive our input data. In our case, this are the values of the pixels in the images.
The input layer will consist of all the pixels in the image, it will have input dimensions of w
x h. If the image is fed into the network in RGB colors, the input layer will have dimensions
of w x h x 3.

There’s also a layer called the output layer. This is where the final predictions are made.
This depends heavily on the goal of the network

There’s also the so-called hidden layer. This is where our network architecture is going to
vary down the road. The hidden layer can actually consist of multiple layers. The reason that
it’s called the hidden layer, is because of the fact that it’s not visible to the user of the network,
which only interacts with the input and output layers.

2.2.3 Loss Function

The loss function should be a measure of how far a prediction is from the correct value. When
training a neural network, the system tries to get as close to the correct solution as possible,
in other words, minimize the loss function.

2.2.4 Backpropagation

Backpropagation is the process of using human labeled data and then adjust the weights
connecting the neurons for better accuracy. Backward propagation is similar to forward prop-
agation which is used when predicting, but goes the other way. We compute a value δ which
can be viewed as the error for the given neuron. If x (i) is the input, y (i) is the provided cor-
rect prediction, l is the layer, j is the number of the node in the layer, z is the weighted sum
of inputs for a particular neuron, cost is the cost function that decides how good a certain
prediction is, then we define δ the following way:

δl
j =

∂

∂ z l
j

cost(i) (2.1)

2.2.5 Gradient Descent

δ becomes the amount that we want to change a certain neuron in order to get a better pre-
diction. We can think of it as the gradient for the neural network. When δ has been calculated
for all relevant neurons, we can use a gradient descent algorithm to find the minimum for
the cost function. Although there are many variations of gradient descent algorithms, they
usually try to use the gradient to determine the steepest direction that hopefully takes them

11

Automated Salamander Recognition Using Deep Neural Networks and Feature Extraction

closer to the global minimum of the loss function [19].

2.2.6 Convolutional Neural Networks

It is possible to send the input image into the input layer and process each pixel individually.
Thereby only relations to each pixels individually is learned. When recognizing features in an
image it might however be useful to also learn information about how pixels that are spatially
close to each other relate. In other words we want to learn further information by looking at
pixels that are close to each other.

One common way to do this is to use what is called a convolutional neural network. A convo-
lutional neural network creates a so-called kernel. This is a window of a certain size, typically
it’s square so it has a size of N × N , where N is odd. The pixels in the image layer then get
one weight to a neuron in the next layer for the pixels within it’s kernel. If we compare this to
a dense layer where every neuron in the input layer is also connected to every neuron in the
dense layer, we understand that it doesn’t suffer from the curse of dimensionality as much as
a dense layer does. The advantage of this is that special information about how pixels close
to each other relate is kept while the network still keeps a manageable size.

Figure 7: Convolutional layer, image from Stanford Lecture [1]

As you see in Figure 7, the convolutional layer is smaller than the input image. This is due
to the fact that a N ×N filter is used, and therefore cannot create corresponding neurons for
the edges. The dimension is reduced by N −1 neurons. In order to keep the same dimension
in the convolutional layer as in the input layer we can introduce a padding rule. We simply
say that for all the input pixels that are outside the input image, they have the same value as
their closest neighbour.

Figure 8 shows a typical convolutional neural network architecture with convolutional-,
subsampling- and fully connected layers.

12

Automated Salamander Recognition Using Deep Neural Networks and Feature Extraction

Figure 8: Convolutional neural network, image from Stanford Lecture [1]

13

3 Methods and Implementation

3.1 Pattern extraction

3.1.1 Extraction methods

In order to be able to compare patterns accurately some pre processing has to be done be-
forehand.

Figure 9: Same salamander posing differently

According to A.J. Ijspeert [20], the salamander can be modeled as having three joints in be-
tween the front legs and back legs, as demonstrated in Figure 10. This gets us to a total of
5 joints required to localize the trunk and belly pattern of the salamander. Based on this,
we defined the belly pattern to be from the point in between the frontlegs to the point in
between the backlegs. We tried to label these 5 points equidistantly along the spine. The the
spine will then be estimated using bicubic interpolation [21] of these five points. The five
points were defined as you can see in Table 2 and Figure 11. See the blue line in Table 9. We

Figure 10: Mechanical model of salamander [20]

14

Automated Salamander Recognition Using Deep Neural Networks and Feature Extraction

Figure 11: Example of manually labeled salamander

are presenting a number of different methods of varying speed and accuracy to localize and
straighten the belly pattern in order to prepare it for matching. In the end we concluded that
DeepLabCut [22, 23] (see Section 3.1.6) was the best suited solution in our situation.

Point Description Color
Front legs Point between the front legs Orange

Belly point 1 First intermediary point along the spine Yellow
Belly point 2 Second intermediary point along the spine Green
Belly point 3 Third intermediary point along the spine Turquoise

Back legs Point between the back legs Blue

Table 2: Labeled points on salamander

3.1.2 Manual pose labeling

The simplest method to locate the belly pattern is by manual labeling. A human labeler goes
through the images and selects a set of points along the spinal cord. With a large dataset, this
can take a large amount of time. Accurate manual labeling took us about 30 seconds, which
coincides with the findings of M. Matthé et. al. [3]. When using a dataset with 10000 im-
ages, you will have to spend 83.3 hours of manual labeling. Additionally the human labeler
is subject to bias and error rates may also increase when working on labeling for a prolonged
amount of time.

3.1.3 Segmentation and Skeletonization

This method works by first segmenting out the salamander from the background. And then
apply skeletonization, also referred to as a medial axis transfrom to estimate the salamanders
spinal cord.

15

Automated Salamander Recognition Using Deep Neural Networks and Feature Extraction

3.1.3.1 Segmentation

The method we initiallly tried was based on having a line that forms a loop surrounding the
object you want to create a contour of and then shrink this loop step by step until it forms a
contour of the object in the area. This method was found in this article [24].

This method is intended to be used by having user input making the initial line near the
object you want to create a contour of. We thought we could use this method by making the
line outline the entire image and then find the salamander that way. However this method
proved unsuitable for two reasons.

• The main reason was that the algorithm simply took too long since we outlined the
whole image, which caused the algorithm to have more points along the line to check
and more steps to go through. It usually took around 5-6 minutes to finish running the
algorithm with a step and a number of points that was needed in order to identify the
salamander. We used twenty points around the salamander this was necessary for the
algorithm to get into the nooks around the salamanders extremities. The step size we
kept at ten as increasing much beyond that would lead to the algorithm jumping past
the thinner parts of the salamander e.g. its tail.

• The other reason was that after the algorithm noise in the background made the con-
tour include much of the background, we tried a couple of methods to workaround
this namely blurring and thresholding. Thresholding did not do much as it only high-
lighted so the algorithm still got stuck. Blurring helped a little as it removed some of
the noise while still keeping the salamander distinct enough for the algorithm to stop
when the line touched the salamander, and through a lot of fine tuning we believe that
this method could have been used to outline the salamander but the time the algorithm
in combination with the terrible results we got we looked for other methods.

This method uses a function in openCV called findContours that finds all the contours in the
image and puts them into an array. The method also specifies that the images should be bi-
narized for better result so we used Otsu binerization to do so. We then look for the biggest
contour that takes up less than 90% of the image, this is because while the salamander is the
biggest real contour sometimes the function finds a contour around the edge of the image.
This method is further outlined in article [25].

3.1.3.2 Skeletonization

After the salamander is segmented out a medial axis transform is performed [26]. This con-
structs the skeleton image. After the skeleton image is constructed it is converted to a skeleton
network [27]. Additionally, we grouped vertices that are close to each other in proximity to-
gether to form the skeleton seen in Figure 12. Getting the belly line then simply consists of
extracting the longest edge that is not connected to any leaf vertex.

16

Automated Salamander Recognition Using Deep Neural Networks and Feature Extraction

Figure 12: Salamander after manual segmentation and skeletonization

3.1.3.3 Downsides of the method

The Segmentation-Skeletonization method however showed to be quite error-prone due to
a number of reasons.

One problem with the Segmentation-Skeletonization method is that it requires the segmen-
tation to be very accurate. If there are small errors in the segmentation, often caused by
shadows or other artifacts in the image, this causes the skeletonization to create additional
branches as you can see in Figure 13. In this case a part of the tail, marked in blue, is actually
erroneously identified as the belly pattern.

If we would be able to attain perfect smooth segmentation as in the example of Figure 12, the
same problem also occurs when the salamander does not have it’s feet perpendicular to it’s
body. This causes misalignemnt of the point between the feet which is used as the respective
start- and end-point of the belly pattern.

In Figure 12 we see that the salamander is bending and at the same time its’s laying down
further to one side. This causes the spinal cord and the belly pattern to not align with the
medial axis of the segmented salamander. It also causes the pattern to differ depending on
how the salamander poses on the image, which in turn negatively affects matching.

17

Automated Salamander Recognition Using Deep Neural Networks and Feature Extraction

Figure 13: Consequences of minor segmentation errors

These issues combined led us to look for other methods to automate the localization of the
belly pattern.

3.1.4 Data preparation for neural networks

To train the network we extracted 200 smooth newt (Triturus vulgaris) from our dataset (see
Section 1.2). As convolutional neural networks perform best when the resolution is as low as
possible, we cropped out a 512 x 512 square consisting of the main body of the salamander.
We cropped the images by using a laplace transform to get edges and use skin color detection
[28] to extract the right part of the image automatically.

3.1.5 Pose estimation using LEAP

In order to more accurately extract the belly pattern. We looked into a system called LEAP
[29]. This is a convolutional neural network developed to estimate pose quickly, to be used in
realtime applications. As the creators of the network recommended providing small grayscale
images of resolution 196 x 196 or 256 x 256, we converted the images to grayscale and re-
sized [30] them to 256 x 256 using bicubic interpolation. We split our labeled images into a
training set 90% and test set 10% we trained the network with a batch size of 16, and ran
50 batches per epoch, for a total of 15 epochs. We tried augmenting the data using random
rotations (+-45◦) and mirroring, which is not recommended if the data is not translationally
(which it was not in our case). We confirmed that the results were worse with these augmen-
tations as training loss plateaued already in the 2nd epoch. Therefore we did not do any data

18

Automated Salamander Recognition Using Deep Neural Networks and Feature Extraction

Figure 14: Network architecture of LEAP

augmentation. We used 10% of the images in each batch for batch-level validation, and used
10 of the 50 batches for epoch-level validation. The training finished in just under 5 minutes
using our hardware which is outlined in Table 1.

3.1.5.1 Network architecture

The network architecture, termed leap_cnn by it’s creators, is a convolutional neural network
architecture, see Section 2.2.6. The relatively simple network architecture of LEAP is demon-
strated in the summary shown in Figure 14 which is produced by Keras’ summary method
[31].

As we can see in Figure 14, LEAP starts with 3 consecutive convolution layers with kernels
3x3 and with a feature dimension of 32. After this a max-pooling layer with a stride of 2
is added, reducing the image dimension to 128 x 128 and. The same process is repeated to
reduce the dimension to 64 x 64 and the feature dimension is increased to 128. The image di-

19

Automated Salamander Recognition Using Deep Neural Networks and Feature Extraction

mensions are then increased to 128 again by a transposed convolution used for upsampling,
and a refinement layer in the end. The final layer in the model are the confidence maps pro-
duced for each of the five points that we want to predict. The maximum of these confidence
maps is the point that is predicted.

All layers use ReLU activation. For it’s gradient descent (see Section 2.2.5) the system uses
AMSGrad [32] which starts training with ADAM [33] and switches to the stochastic gradient
descent after some time. The entire network has a total of 594K trainable parameters.

3.1.5.2 Results

The error is calculated by taking the euclidean distance between the point predicted by LEAP
and the human labeled points. The system was evaluated on 10 randomly selected images
which you can see in Table 9.

Table 3: LEAP testing results
Metric Error mean Standard deviation

Front legs 106.9 px 103.8 px
Belly point 1 68.7 px 45.8 px
Belly point 2 37.2 px 26.3 px
Belly point 3 57.0 px 61.0 px

Back legs 65.4 px 96.4 px
All 66.0 px 72.8 px

LEAP was able to predict images at a rate of 107.3 FPS.

From Table 3 we see that error rates are relativelty high, with an average euclidean error of
66.0px which is about the width of a typical salamander in our images. As you can see in
Table 9, LEAP was able to generate useful results in only 1 out of our 10 testing images. Note
that test image 2 in Table 9 is labeled inversely. It is able to predict the location of the belly
pattern on some basic images, but fails quickly if there is rotation and/or bend in the images.

3.1.5.3 Discussion

As these results were not satisfactory for a production-level system, we had two options:

• Tweak the network and label more images to generalize.
• Look for another more flexible network architecture.

As the results of LEAP were as poor as they were, and they claim that "100 frames results in
308 85% of the frames within 2.5 pixel error", we concluded that the neural network was
not flexible enough for our data and use case.

There are multiple possible reasons why LEAP was not able to produce satisfactory results.

20

Automated Salamander Recognition Using Deep Neural Networks and Feature Extraction

LEAP was optimized for translationally and rotationally aligned datasets, which means that
all salamanders should be in the center of the image and be facing in the same direction.
They recorded a video and calculated the direction of movement and were thereby able to
extract rotationally and translationally aligned data. As we however only operate on single
images, this was no option for us. The fact that LEAP is "not robust to data variance such as
rotations" is also been confirmed by other sources [34]. Another reason is that LEAP is de-
signed to make fast predictions to be used in real-time high speed systems which run at 185
Hz. Achieving this speed, LEAP has a relatively small network size which sacrifices flexibility.
For these reasons we decided to look for deeper and more adaptable neural networks.

3.1.6 Pose estimation using DeepLabCut

3.1.6.1 Overview

Since the results we achieved with LEAP [29] were not satisfactory, we investigated the use-
fulness DeepLabCut [22, 23] for our case. DeepLabCut is a tool for markerless pose estima-
tion of user-defined body parts with deep learning. In the abstract of the paper it is claims
the following: "even when only a small number of frames are labeled (~200), the algorithm
achieves excellent tracking performance on test frames that is comparable to human accu-
racy.".

In order to test the accuracy of DeepLabCut, we provided it with the 200 labeled images
(see Section 3.1.4). We provided the images in a 512 x 512 RGB format. The labeled images
were split into 95% training and 5% testing sets. We did data augmentation by mirroring
the images, applying random rotations (+-30◦) and resizing (+-25%) the images and labels.
Additionally we used pretrained weights for the backbone, which is a deep residual network,
ResNet [35], that has run 5000 iterations on the ImageNet [36] dataset, which according to
it’s authors makes it able to accurately predict pose with only 200 labeled images [22].

It is recommended to train the network for at least 200 000 iterations in order to arrive at a
plateau of the loss function [23]. We trained the network for 350 000 iterations which took
12 hours using our hardware (see Table 1).

3.1.6.2 Network architecture

DeepLabCut uses Huber loss as it’s loss function (see Section 2.2.3). Huber loss is less sensi-
tive to outlier data than the mean-squared-error loss that is used in LEAP [29], as it is linear
instead of quadratic for large errors.

A residual block, as it can be seen in Figure 16, consists of 3 convolutional layers (see Section
2.2.6) with ReLU activation in between them. The arrow going outside the block in Figure
16 indicates the shortcut. If the block is not needed the weights can approach zero so the

21

Automated Salamander Recognition Using Deep Neural Networks and Feature Extraction

Figure 15: ResNet network architectures

Figure 16: First residual block used by the 50, 101 and 151 layer ResNet models [37]

22

Automated Salamander Recognition Using Deep Neural Networks and Feature Extraction

block uses the shortcut, also called the identity function, instead. These shortcuts allow the
gradients to propagate through unused blocks easily. This solves the vanishing and exploding
gradient problem which are common problems for neural networks of this depth [38, 39].
These residual blocks are then stacked on top of each other, as you can see in Figure 15, in
different ways depending on the network size you want. We used the 50-layer model which
we found to give a reasonable balance between speed and accuracy.

The ResNet architecture was originally proposed by Microsoft in 2015 [35]. It’s 50-layer ver-
sion, has a a total of 23.5M trainable parameters. Instead of a classification layer at the end of
ResNet, DeepLabCut uses "deconvolutional layers to upsample the layers and produce spatial
probability densities" [35], similarly to how it is done in LEAP (see Section 3.1.5.1).

3.1.6.3 Results

The error is calculated by taking the euclidean distance between the point predicted by
DeepLabCut and the human labeled points. The system was evaluated on 10 randomly se-
lected images which you can see in Table 9.

Table 4: DeepLabCut testing results
Metric Error mean Standard deviation

Front legs 6.4 px 2.9 px
Belly point 1 9.3 px 9.8 px
Belly point 2 10.5 px 5.8 px
Belly point 3 8.1 px 4.4 px

Back leg 3.3 px 1.9 px
All 7.5 px 6.2 px

DeepLabCut was able to predict images at a rate of 5.2 FPS.

3.1.6.4 Discussion

Although DeepLabCut at 5.2 FPS is considerably slower than LEAP at 107.3 FPS, we also
have a better accuracy with a significant margin. From the results we see in Table 4 that we
have a error mean of 7.5 px. We also observe that the endpoints have a considerably lower
error mean than the three belly points. In Section 3.1.1 we said that we tried to place the 3
points between the front legs and the backlegs equidistantly along the spinal cord. During
labeling there was no enforcement that made these points equidistant, it was just by eye. It
is therefore reasonable to assume that the labeled points where not perfectly equidistantly
aligned although they were relatively accurately placed on the spinal cord. This causes some
fluctuations along the spinal cord. This does increase the error mean, but does not affect
the resulting bicubic interpolation (see Section 3.1.1) as much. We could also validate this
by simple visual inspection by comparing the bicubic interpolation of the manually selected
points to the bicubic interpolation of the points selected by the neural network in Table 9.

23

Automated Salamander Recognition Using Deep Neural Networks and Feature Extraction

Figure 17: Straightening using DeepLabCut and the derivative of the interpolated spinal curve

After training for 350 000 iterations we had a big difference between our training loss and
testing loss which may indicate that the model was overfitting. One way to solve this would
be to supply more training data in the form of labeled frames. It could however also be a
consequence of human variability in labeling. In order to improve accuracy one could en-
force equidistant alignment of the points during labeling. Another thing that should increase
accuracy is to replace the ResNet-50 backbone with a ResNet-101 backbone [40]. ResNet-101
features 23 instead of 6 blocks in the conv4_x layer (see Figure 15), providing an even deeper
architecture. This would however come at the cost of prediction and training speed.

As the results however were of sufficient accuracy for our application, we decided to focus
our time in other parts of the project.

3.1.7 Straightening

As the input image was required to be a straight image, see Section 3.1.1, we had to convert
it into a rectangular image, with the spinal cord of the salamander in the center. In order to
achieve this, we implemented a nonlinear transformation based on the gradient of the inter-
polated curve.

The straightening works by using the remap method in OpenCV’s image processing module
[41, 42]. The remap function works by providing it with 2 maps, one for the x coordinate
and one for the y-coordinate. Assuming we’re doing a remapping from a source image with
dimensions ws ×hs to a destination image with dimensions wd ×hd . The maps describe the
floating point coordinates of the source image, xs and ys, correlating with the integer points
xd and yd . xd and yd are provided to the remap function as two separate wd ×hd maps. As
xs and ys are floating point numbers, we used bilinear interpolation to estimate their pixel
value.

24

Automated Salamander Recognition Using Deep Neural Networks and Feature Extraction

As we can see in Figure 17, the remapping is done by taking the derivative of the curve.
In order to form a rectangular image of the curved belly pattern, we’re using the derivative
d y
d x (red tangent line) as a reference for what is going to be straight for a particular vertical
fragment (green lines). The green line will be parallel to the y-axis in the target image while
the blue line will be parallel the x-axis. The area within the yellow boundary will effectively
be mapped to a straight rectangle as you can see in Figure 17.

3.2 Image processing

For testing the matching algorithms 49 images of the northern crested newt (Triturus crista-
tus) were extracted from the original dataset 1.2.

3.2.1 Feature based method

There are many different feature extraction method’s depending on the objective of the ap-
plication as described in 2.1.1. In this project we decided to test 4 popular feature based
methods, ORB [12] (Oriented FAST and rotated BRIEF), SURF [14] (Speeded up robust fea-
tures), SIFT [13] (Scale-invariant feature transform) and DSIFT (Dense SIFT). All of these
method’s are commonly used in computer vision to detect and describe local features in a
image.

3.2.1.1 ORB, SIFT and SURF

Figure 18: ORB keypoints

Figure 19: Two images from same individual but different amount of keypoints and locations.

25

Automated Salamander Recognition Using Deep Neural Networks and Feature Extraction

Figure 20: SURF keypoints

SIFT, SURF and ORB calculates keypoints based on a points of interest algorithms such as
DoG. The problem with these keypoints in images with repeated patterns is that the key-
points and their descriptors could be very similar to other individuals so the matching algo-
rithm cant tell them apart. Keypoints can have many different locations in the image even
if the images is from the same individual as seen in Figure 18 and 20. Figure 19 shows the
keypoints calculated from the SIFT algorithm and using these keypoints and their descriptors
could cause many false positives by the matching algorithm and therefore not suitable for this
type of project.

3.2.1.2 DSIFT

Dense SIFT, is basically the same as SIFT but instead of using DoG (Difference of Gaussian Fil-
tering) to find the keypoints you can specify the keypoints yourself. This method is especially
useful when the input image have repeated patterns and regular shapes. We specified how
many keypoints we wanted manually with the OpenCV function cv2.keypoint() before calcu-
lating the descriptors with the function cv2.xfeatures2d.SIFT_create.compute. This helped us
to have the same amount of keypoints and distance between them in every image as seen in
Figure 21.

Figure 21: DSIFT keypoints

3.2.1.3 HOG

This technique divides the input image into small square cells and then computes the his-
togram of gradient directions or edge directions. The gradient directions is the directional
change in the intensity or color of the image as seen in 22.
The HOG technique is a fast technique compared to other techniques because of simple com-
putations. The output will be a vector that contains all of the important information about
the input image.

Intel describes the implementation of the HOG algorithm as follow [44]:

26

Automated Salamander Recognition Using Deep Neural Networks and Feature Extraction

Figure 22: Gradient directions example, image from Wikipedia [43]

1. Divide the image into small connected regions, this is called cells. For each cell compute
a histogram of gradient directions or edge orientations for the pixels within the cell.

2. Discretize each cell into angular bins according to the gradient orientation.
3. Each cell’s pixel contributes weighted gradient to its corresponding angular bin.
4. Groups of adjacent celled are considered as spatial regions. This is called blocks. The

grouping of cells into a block is the basics for grouping and normalization of histograms.
5. Normalized group of histograms represents the block histogram. The set of these block

histogram represent the descriptor.

Figure 23 shows the HOG algorithm implementation.

Figure 23: HOG algorithm [44]

When using a HOG function in any programming language the function will return a feature
vector 24.

27

Automated Salamander Recognition Using Deep Neural Networks and Feature Extraction

Figure 24: Gradient orientation to vector example [45]

The HOG divides the input into smaller cells and computes a gradient direction histogram
with different directions and returns a vector that contains all of this data as shown in Figure
24. This vector will be the descriptor for one keypoint in the input image.

28

Automated Salamander Recognition Using Deep Neural Networks and Feature Extraction

3.2.2 Preprocessing for pixel based method

The pixel method was one of the two main methods of comparing amphibians that we could
find, in addition it is the method used by AmphIdent the only one we could find that is com-
mercially available. The method itself revolves around comparing the images pixel by pixel
and looking at the difference to make an average pixel difference between the images to find
matches. But before one starts comparing the images they go through two main prepossess-
ing steps, namely resizing and thresholding, which we are going to copy.

3.2.2.1 Resizing

In order to use this method of comparison the images need to have the same number of
pixels, therefore we resized them to 80x280 using OpenCV’s cv2.remap method [41] with
bilinear interpolation. In addition to making the images the same size this also shrinks them
by roughly 75% which makes the comparison algorithm faster. AmphIdent uses images of
size 80x320, however we found that this was a bit too long for our images.

(a) Resize example 1 (b) Resize example 2

Figure 25: Resize examples

3.2.2.2 Thresholding

One thing we do to increase the spread of the algorithm is binarize the image, this makes it
so there is only one colour channel instead of three. We do not lose anything by doing this
because the only difference we care about between the images is whether its a spot from the
pattern or not. Thresholding is a very simple method for image segmentation. Thresholding
takes a grayscale or colour image and creates a binary image as seen in Figure 5.

We do not know what method AmphIdent uses for their binarization so we tried th different
methods we outlined in 2.1.1.1.

• Simple thresholding works well, however with the variety if lighting we have in our
images it proves hard to find a good value for the threshold that works for all of the
images. Images 26a and 26b were made using a threshold value of 120

29

Automated Salamander Recognition Using Deep Neural Networks and Feature Extraction

(a) Simple binarization example 1 (b) Simple binarization example 2

Figure 26: Simple binerization examples

• Adaptive thresholding was not useful for this purpose as we are trying to highlight
bigger patterns which when using this method becomes fragmented as pixels in the
pattern that are slightly brighter the surrounding pixels become white as can be sees
in figure27.

(a) Adaptive example 1 (b) Adaptive example 2

Figure 27: Adaptive examples

• Otsu binarization worked very well across the images we tested as our images are bi-
modal, which makes it easy for the algorithm to calculate a good threshold value.

(a) Otsu example 1 (b) Otsu example 2

Figure 28: Otsu examples

3.2.2.3 Blurring

There were some inaccuracies in the binarized images caused by noise in the original image.
This noise would appear as white or black dots where there should not be any. In order to
reduce this we tried to blur the images to smooth out the noise, however there is a real pos-
sibility that blurring the images would compromise the edges of the pattern. We therefore
tested and compared the methods of blurring from section 2.1.1.2 with the goal of reducing
as much noise as possible without compromising the pattern quality. In addition blurring the
image would make the peaks in the histogram more distinct which should make the thresh-
olding algorithm yield better results.

• Image 29a is the result of using Gaussian blurring with a kernel size of five.
• Image 29b is the result of using Median blurring also with a kernel size of five.
• Image 29c is the result of using bilateral filtering using sigma colour of twenty and

sigma space of seventy five.

30

Automated Salamander Recognition Using Deep Neural Networks and Feature Extraction

While all of these methods helped to some degree we would say that the median blur re-
moved the most noise with the least effect on the detail of the pattern. However even this
method resulted in minimal gain and given the evident loss of detail seen in figure 29, it
might not be worth using.

(a) Gaussian blur (b) Median blur (c) Bilateral filtering

Figure 29: Binarized blurred images.

3.3 Matching

3.3.1 Brute force matching

This is a very simple but fast matching method. The function cv2.BFMatcher() from OpenCV
[46] takes two set of data, in this case two descriptors. The function will use the first descrip-
tor as a "template" and then try to find the closest one in the second set. It will then return
two objects, the template and the closest one. In these two objects there’s something called
distance and this will tell us the distance between the two matched points. If the distance
are within a certain number (in our case 0.75, this number is commonly used for ratio tests)
its a match. In this project we have set a minimum number of matches before we can be
sure its a match. This is because of the images are very similar so its possible to get a match
even though the two descriptors are from two different animals. We tested many different
numbers and with some bad images we will get a low amount of good matches. Since the
lowest number in our test set was 15 we have chosen to use this as a minimum. This means
the two descriptors needs at least 15 matches before we can be sure the pattern belongs to
the same individual animal. Our results using feature descriptors can be found in Table 5 and
10.

3.3.2 Pixel based matching

The method for matching in the pixel based method is really simple. You calculate the aver-
age pixel difference adding up the differences of all the pixels and dividing by the dimensions
of the image. This gives a value between 1 and 255 as these are the two values in our binary
images by dividing this value by 255 we get the percentage difference between the two im-
ages based on pixels.

One issue with this method is that if the pattern is shifted a little in one of the images which
can drastically increase the difference between the images. To solve this AmphIdent trans-
lates the image little by little in each direction and then runs the comparison algorithm over
and over again and picks the best score. We used the same approach and shifted our image 20
pixels left and right with a step size of 2 and up and down 10 pixels and picking the best result.

31

Automated Salamander Recognition Using Deep Neural Networks and Feature Extraction

In order to avoid finding false matches we had to set a threshold for how much similarity
would be considered a match, the number we ended up with was 75% as when testing the
algorithm 72.7 was the lowest result that was given of a true match. In other words the al-
gorithm finds the best match above 70 percent to find a match.

Correct result Match not found False positive Potential false positives
DSIFT 45 4 0 0
% 91.84% 8.16% 0.00%
Pixel 21 9 19 511
% 42.86% 18.37% 38.78%

Table 5: Match rates on DSIFT and pixel based method

With the good results using descriptors from DSIFT and brute force matcher compared to the
pixel method as seen in Figure 5, we decided to use DSIFT and brute force matching in the
final implementation.

32

4 Implementation and results

4.1 System implementation

To demonstrate the usability of these methods, we wrote a command line interface applica-
tion i Python. The program reads images from an input folder, trying to match them by all
individuals that are inside it’s database. The database is saved and loaded from a JSON file.
When provided with images, it either tells you the ID of the salamander you tried to match
and adds the image to the salamander in the database. If no match is found, the user is asked
to provide the system with a unique ID. A new salamander is then created and the image is
imported into the database.

Figure 30: Our software in action

In Figure 30 the command line interface is used to first match a salamander that is already
in the database. Secondly a new salamander, that has not been seen by the system before, is
provided.

4.2 Results

In Table 6 we summarize the total speed of all preprocessing steps for a single image for the
system as a whole. From a raw image provided until it is inserted into the database ready
for matching. This was evaluated on a GTX 1060 6GB GPU, using a more powerful GPU may
increase performance. Additionally these steps can be run in parallel by running them on
different cores and GPUs, yielding 4x a speed increase.

Table 6: Speed of all pre-matching steps in our system
Process Time required

Automated Cropping (smartcrop.js) 20 ms
Belly localization (DeepLabCut) 192 ms

Straightening 250ms
Extract feature descriptors 45 ms

Total 507 ms

33

Automated Salamander Recognition Using Deep Neural Networks and Feature Extraction

Table 7: Time required for preprocessing
of images 5 000 images 10 000 images 20 000 images

Manual (existing software) 41.6 hours 83.3 hours 166.6 hours
Automated (1 GPU) 42 minutes 1.4 hours 2.8 hours
Automated (4 GPUs) 10.5 minutes 21 minutes 42 minutes

Table 7 shows the time required to preprocess images before the matching can begin. We’re
assuming that it takes 30 seconds to do manual straightening, which is a metric also used by
M. Matthé et al. [3].

Software Matching Straightening Licensing
Aphis Pixel-based method and SURF[14] No Open Source

AmphIdent Pixel-based method Manual Commercial
Wild-ID SIFT [13] No Open Source

I3S Pattern SURF [14] Manual Open Source
Our system DSIFT Automatic Open Source

Table 8: Comparison between existing software and our software

4.2.1 Belly localization

34

Automated Salamander Recognition Using Deep Neural Networks and Feature Extraction

Table 9: Comparison of belly localization methods

Manually labeled LEAP DeepLabCut

1

2

3

4

5

35

Automated Salamander Recognition Using Deep Neural Networks and Feature Extraction

6

7

8

9

10

Table 9 compares manually labeled images with the labeling from LEAP and DeepLabCut.
These images are from the test set and have not been seen by the neural networks before.

36

Automated Salamander Recognition Using Deep Neural Networks and Feature Extraction

While DeepLabCut is able to give a good estimation the spine on every image, LEAP is only
able to label one image correctly.

37

Automated Salamander Recognition Using Deep Neural Networks and Feature Extraction

4.2.2 Matching results on test data

ID Result using Features Potential bad matches Result using pixel Potential bad matches
120 Found 0 Found 0
120 Found 0 Not found 0
120 Found 0 Found 0
150 Found 0 Found 7
150 Found 0 Found 8
160 Found 0 Found 9
160 Found 0 Found 15
238 Found 0 Bad match 2
238 Found 0 Bad match 9
238 Found 0 Bad match 0
244 Found 0 Bad match 26
244 Found 0 Found 26
245 Found 0 Found 23
245 Found 0 Found 25
246 Found 0 Found 17
246 Found 0 Found 17
247 Found 0 Bad match 27
247 Found 0 Bad match 29
248 Found 0 Bad match 13
248 Found 0 Bad match 9
249 Found 0 Found 12
249 Found 0 Found 15
251 Found 0 Not found 22
251 Found 0 Not found 0
252 Found 0 Bad match 23
252 Found 0 Bad match 17
253 No match to find 0 Bad match 11
255 Not found 0 Bad match 19
255 Not found 0 Bad match 27
256 Not found 0 Bad match 28
256 Not found 0 Bad match 17
260 Found 0 Bad match 13
260 Found 0 Bad match 9
268 Found 0 Not found 0
268 Found 0 Not found 0
271 No match to find 0 No match to find 0
274 No match to find 0 No match to find 0
280 No match to find 0 No match to find 0
285 No match to find 0 No match to find 0
287 No match to find 0 No match to find 0
293 No match to find 0 No match to find 0
294 Found 0 Not found 8
294 Found 0 Not found 17
295 Found 0 Found 1
295 Found 0 Found 1
63 Found 0 Not found 0
63 Found 0 Not found 0
64 Found 0 Bad match 5
64 Found 0 Bad match 4

Table 10: Matching results

38

Automated Salamander Recognition Using Deep Neural Networks and Feature Extraction

Table 10 aggregates the result from running pixel-based and feature-based matching algo-
rithms. Each line is the results from one image it includes the id of the salamander in the
image, the result of the algorithm and how many potential bad matches the algorithm found
for the image.

• Found means that the algorithm found the correct match.
• No match to find means that there is no match in the system and the algorithm found

no match which is correct
• Not found means that the algorithm did not find any match even though one or more

exists in the system
• Bad match means that the algorithm found a match of an image of a different salaman-

der.

4.3 Failed cases

4.3.1 Belly localization

Figure 31: Example of failed pose estimation by DeepLabCut

Figure 31 shows a salamander where the belly pattern is occluded by the salamanders feet,
and the pose estimation by DeepLabCut is incorrect.

39

Automated Salamander Recognition Using Deep Neural Networks and Feature Extraction

4.3.2 Matching

Figure 32: Example images that’s too dark for matching

40

Automated Salamander Recognition Using Deep Neural Networks and Feature Extraction

Figure 32 shows images that’s too dark. With our implementation of the brute force matcher
these images wont get a match because they’re too dark. We did not have access to the RAW
files during this project to experiment with the brightness etc. to see if that would help getting
a match on these images.

41

5 Discussion

5.1 Belly localization

From the results in Table 3, Table 4 and Table 9 we get an indication that DeepLabCut is
far superior to LEAP. This is probably because of the considerably larger neural network that
DeepLabCut. While LEAP has 594K trainable parameters, DeepLabCut has a total of 23.5M
trainable parameters. That is a 40 fold increase in number of parametrs. This is reflected
in the speed with LEAP at 107 FPS while DeepLabCut can only do 5.2 FPS. The accuracy
however also mirrors this with respectively 66.0 px error for LEAP and 7.5 pixels error for
DeepLabCut. Some of the error may also come from human variability in the labeled data as
the spots are not always exactly markable.

Although DeepLabCut reports relatively low error we observe in Figure 31 that it cannot
correctly estimate pose on all images. When the neural network is provided with very con-
fusing images, like occlusion of the belly pattern by the feet of the salamander, it is not able
to estimate pose correctly. This can however be solved by training the neural networks on
these tricky images specifically so it can also learn these cases. In this specific case we will
not be able to use the belly pattern for reliable matching as big parts of the belly pattern are
occluded.

5.2 Matching

5.2.1 Pixel by pixel method

This method showed a lot of early promise as the first test was to find matches for ten images
from a pool of another ten images consisting of of pairs of the original ten. When we moved
to a bigger pool trying to find the same 10 matches in a pool of 48 images the best match
of each image was still a real match, however when we looked at all the the match numbers
there were plenty of images that gave potential matches meaning that if there had been no
match in the system it would have given a false match as a result. These false positives var-
ied in severity and we consider increasing the threshold in order to filter more of them out.
However some of the false positives reached as high as 92%, and moving the threshold that
high would result in most of the true matches as not good enough.

5.2.2 Brute force matching

Our results with brute force matching have been higher than expected. As shown in Table
10 we have achieved a high accuracy. In some of our test data we only have one image of
an individual and this is marked as No match to find in the table. Some of the images that
we got from NINA had very bad quality in terms of image brightness and overall quality as
seen in Figure 32 and were almost impossible to identify. With our method it is possible to

42

Automated Salamander Recognition Using Deep Neural Networks and Feature Extraction

identify these images but because of the minimum limit of good matches we decided not to
let these images go through. This is because if we lower the limit its a higher chance that we
get a false positive match on the other images. We decided that its better to have a higher
limit so we’re completely sure its a match and rather increase our requirements (brightness
and one coloured background) for the images .

In the end of our project NINA have been out in the field taking new images. According
to NINA these images will have a much better quality than the images we have used in our
project and hopefully match our updated image requirements will increase our matching ac-
curacy.

43

6 Conclusion

6.1 Summary of the project

As outlined in the Section 1.1, the goal of the project was to propose a solution which:

• Identifies salamanders based on pattern recognition with a high accuracy comparable
to existing software.
• Reduces the amount of manual work required to match salamanders by automating

the workflow.

To begin with we investigated a range existing softwares that are available, commercially
and open source, and outlined their differences and individual advantages and disadvan-
tages. We also got an overview of the state of the art methods and techniques used to solve
the problem of matching salamander patterns. Based on the background study conducted, we
formulated a problem definition which we were going to solve. Furthermore, we proposed a
range of different solutions to the formulated problems with their own advantages and disad-
vantages. These methods were then evaluated to mitigate to obtain an optimal solution with
regard to the project goals. Based on the evaluation the set of methods which best served
the project goals, were selected for implementation. The methods selected were the neural
network DeepLabCut [22] for pose estimation and Dense SIFT [13] for pattern recognition.
Finally, we implemented a software solution using the selected methods.

One contribution of our system is that it uses a matching methods that has a high accuracy
on our dataset specific. The main contribution of our system however, contrary to exist-
ing software, is that the system provides a fully automated workflow. To the best of our
knowledge, nobody has proposed this kind of automated solution for salamander recognition
before. Recent advancements in deep neural networks allowed us to create this automated
solution. Although there is room for improvement, and some cases of failure, we showed evi-
dence that the automated recognition system works on the majority of cases. These methods
have been bundled together in a software application that will hopefully serve NINA, and
potentially others, in their ongoing research regarding the salamanders.

6.2 Future Work

New features ideas:

Create a GUI (Graphical user interface) and optimize the system for NINA’s new RAW images.

Add another method to find and match the descriptors such as SLAM based methods [?]
which simultaneously localizes and maps the salamander in real time to create a more accu-
rate and faster matching, even though our solution is performing pretty well.

Also it is possible to add a classification step in the beginning of the pipeline. This would make
it possible to classify salamanders into species and gender. This information would then no

44

Automated Salamander Recognition Using Deep Neural Networks and Feature Extraction

longer need to be manually provided but can be automatically saved to the database. Addi-
tionally it would decrease matching time and increase accuracy as it only has to match with
salamanders of the same species and gender. This could be implemented using ResNet [35]
which we already use for pose estimation, but was originally built for image classification.

As our proposed solution is a fully automated system, it is also possible to record a video
feed using a camera that is installed in a salamander habitat to detect and recognize sala-
manders in real time.

Another possibility would be to convert the system into a REST Api in order to be able to
predict photos from your mobile phone. This would give NINA instant feedback on whether
the salamander has been catched before.

This software should work with other species as well, if we insert images of other species
the program should be able to extract the patterns of other species. The matching should
also be able to handle other species because of the way DSIFT works.

45

Bibliography

[1] Stanford university: Cs2315 - lecture 6: Training networks part 1. Available at http:
//cs231n.stanford.edu/slides/2018/cs231n_2018_lecture06.pdf,
Accessed 17:30, 18 May 2019.

[2] Gibbons, W. J. & Andrews, K. M. 2004. Pit tagging: simple technology at its best.
Bioscience, 54(5), 447–454.

[3] Matthé, M., Sannolo, M., Winiarski, K., Sluijs, A. S. V. D., Goedbloed, D., Stein-
fartz, S., & Stachow, U. 2017. Comparison of photo-matching algorithms com-
monly used for photographic capture-recapture studies. Ecology and Evolution,
7(15), 5861–5872. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC5552938/, doi:10.1002/ece3.3140.

[4] Management, R. URL: http://www.reijns.com/i3s/download/I3S_
download.html.

[5] Bolger, D. T. URL: https://home.dartmouth.edu/faculty-directory/
douglas-thomas-bolger.

[6] Amphident. URL: http://www.amphident.de/en/pages/download.html.

[7] d’Estudis Avançats, I. M. URL: http://imedea.uib-csic.es/bc/ecopob/
index.php?option=com_content&view=article&id=73&Itemid=89&lang=
en.

[8] Ribeiro, S. 04 2014. Using simplecv for seed metadata extraction into xml document.
Iberoamerican Journal of Applied Computing, 4, 29.

[9] Gonzalez, R. C. & Woods, R. E. 2006. Digital Image Processing (3rd Edition). Prentice-
Hall, Inc., Upper Saddle River, NJ, USA.

[10] Edgedetection. Available at https://en.wikipedia.org/wiki/Edge_
detection, Accessed 18:04, 19 May 2019.

[11] Corner detection. Available at https://en.wikipedia.org/wiki/Corner_
detection, Accessed 18:05, 19 May 2019.

[12] Rublee, E., Rabaud, V., Konolige, K., & Bradski, G. R. 2011. Orb: An efficient alternative
to sift or surf. In ICCV, volume 11, 2. Citeseer.

[13] Lowe, D. G. et al. 1999. Object recognition from local scale-invariant features. In iccv,
volume 99, 1150–1157.

[14] Bay, H., Tuytelaars, T., & Van Gool, L. 2006. Surf: Speeded up robust features. In
European conference on computer vision, 404–417. Springer.

46

http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture06.pdf
http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture06.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5552938/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5552938/
http://dx.doi.org/10.1002/ece3.3140
http://www.reijns.com/i3s/download/I3S_download.html
http://www.reijns.com/i3s/download/I3S_download.html
https://home.dartmouth.edu/faculty-directory/douglas-thomas-bolger
https://home.dartmouth.edu/faculty-directory/douglas-thomas-bolger
http://www.amphident.de/en/pages/download.html
http://imedea.uib-csic.es/bc/ecopob/index.php?option=com_content&view=article&id=73&Itemid=89&lang=en
http://imedea.uib-csic.es/bc/ecopob/index.php?option=com_content&view=article&id=73&Itemid=89&lang=en
http://imedea.uib-csic.es/bc/ecopob/index.php?option=com_content&view=article&id=73&Itemid=89&lang=en
https://en.wikipedia.org/wiki/Edge_detection
https://en.wikipedia.org/wiki/Edge_detection
https://en.wikipedia.org/wiki/Corner_detection
https://en.wikipedia.org/wiki/Corner_detection

Automated Salamander Recognition Using Deep Neural Networks and Feature Extraction

[15] Unknown. Thresholding lecture. Available at http://cs.haifa.ac.il/hagit/
courses/ip/Lectures/Ip12_Segmentation.pdf.

[16] Blur. Available at https://en.wikipedia.org/wiki/Gaussian_blur, Accessed
18:06, 19 May 2019.

[17] Hough transform. Available at https://en.wikipedia.org/wiki/Hough_
transform, Accessed 18:07, 19 May 2019.

[18] Fausett, L., ed. 1994. Fundamentals of Neural Networks: Architectures, Algorithms, and
Applications. Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

[19] Rojas, P. D. R., ed. 1996. Neural Networks: A Systematic Introduction. Springer-Verlag.

[20] Ijspeert, A. 06 2001. A connectionist central pattern generator for the aquatic and
terrestrial gaits of a simulated salamander. Biological cybernetics, 84, 331–48. doi:
10.1007/s004220000211.

[21] scipy.interpolate.interp1d.

[22] Mathis, A., Mamidanna, P., Abe, T., Cury, K. M., Murthy, V. N., Mathis, M. W., & Bethge,
M. 2018. Markerless tracking of user-defined features with deep learning. arXiv preprint
arXiv:1804.03142.

[23] Nath, T., Mathis, A., Chen, A. C., Patel, A., Bethge, M., & Mathis, M. W. 2018. Using
deeplabcut for 3d markerless pose estimation across species and behaviors. bioRxiv.
URL: https://www.biorxiv.org/content/early/2018/11/24/476531,
arXiv:https://www.biorxiv.org/content/early/2018/11/24/476531.
full.pdf, doi:10.1101/476531.

[24] Pandey, P. Feb 2019. Image segmentation using python’s scikit-
image module. URL: https://towardsdatascience.com/
image-segmentation-using-pythons-scikit-image-module-533a61ecc980.

[25] Ghoneim, S. Apr 2019. Object detection via color-based image seg-
mentation using python. URL: https://towardsdatascience.com/
object-detection-via-color-based-image-segmentation-using-python-e9b7c72f0e11.

[26] Scikit image documentation morphology.skeletonize. Available at https:
//scikit-image.org/docs/0.15.x/api/skimage.morphology.html#
skimage.morphology.skeletonize, Accessed 08:58, 12 May 2019.

[27] Build network from skeleton image (2d-3d). Available at https://github.com/
yxdragon/sknw, Accessed 09:05, 12 May 2019.

[28] Content aware image cropping. Available at https://github.com/jwagner/
smartcrop.js/, Accessed 10:36 12 May 2019.

[29] Pereira, T., Aldarondo, D., Willmore, L., Kislin, M., Wang, S., Murthy, M., & Shaevitz,
J. W. 2018. Fast animal pose estimation using deep neural networks. bioRxiv.
URL: https://www.biorxiv.org/content/early/2018/05/25/331181,
arXiv:https://www.biorxiv.org/content/early/2018/05/25/331181.
full.pdf, doi:10.1101/331181.

47

http://cs.haifa.ac.il/hagit/courses/ip/Lectures/Ip12_Segmentation.pdf
http://cs.haifa.ac.il/hagit/courses/ip/Lectures/Ip12_Segmentation.pdf
https://en.wikipedia.org/wiki/Gaussian_blur
https://en.wikipedia.org/wiki/Hough_transform
https://en.wikipedia.org/wiki/Hough_transform
http://dx.doi.org/10.1007/s004220000211
http://dx.doi.org/10.1007/s004220000211
https://www.biorxiv.org/content/early/2018/11/24/476531
http://arxiv.org/abs/https://www.biorxiv.org/content/early/2018/11/24/476531.full.pdf
http://arxiv.org/abs/https://www.biorxiv.org/content/early/2018/11/24/476531.full.pdf
http://dx.doi.org/10.1101/476531
https://towardsdatascience.com/image-segmentation-using-pythons-scikit-image-module-533a61ecc980
https://towardsdatascience.com/image-segmentation-using-pythons-scikit-image-module-533a61ecc980
https://towardsdatascience.com/object-detection-via-color-based-image-segmentation-using-python-e9b7c72f0e11
https://towardsdatascience.com/object-detection-via-color-based-image-segmentation-using-python-e9b7c72f0e11
https://scikit-image.org/docs/0.15.x/api/skimage.morphology.html#skimage.morphology.skeletonize
https://scikit-image.org/docs/0.15.x/api/skimage.morphology.html#skimage.morphology.skeletonize
https://scikit-image.org/docs/0.15.x/api/skimage.morphology.html#skimage.morphology.skeletonize
https://github.com/yxdragon/sknw
https://github.com/yxdragon/sknw
https://github.com/jwagner/smartcrop.js/
https://github.com/jwagner/smartcrop.js/
https://www.biorxiv.org/content/early/2018/05/25/331181
http://arxiv.org/abs/https://www.biorxiv.org/content/early/2018/05/25/331181.full.pdf
http://arxiv.org/abs/https://www.biorxiv.org/content/early/2018/05/25/331181.full.pdf
http://dx.doi.org/10.1101/331181

Automated Salamander Recognition Using Deep Neural Networks and Feature Extraction

[30] Opencv documentation - cv2.resize.

[31] Keras - deep learning for humans. URL: https://github.com/keras-team/
keras.

[32] Wang, Yijun, Zhou, Pengyu, & Zhong, Wenya. 2018. An optimization strategy
based on hybrid algorithm of adam and sgd. MATEC Web Conf., 232, 03007.
URL: https://doi.org/10.1051/matecconf/201823203007, doi:10.1051/
matecconf/201823203007.

[33] Kingma, D. P. & Ba, J. 2014. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

[34] Graving, J. M., Chae, D., Naik, H., Li, L., Koger, B., Costelloe, B. R., & Couzin,
I. D. 2019. Fast and robust animal pose estimation. bioRxiv. URL: https:
//www.biorxiv.org/content/early/2019/04/26/620245, arXiv:https://
www.biorxiv.org/content/early/2019/04/26/620245.full.pdf, doi:10.
1101/620245.

[35] He, K., Zhang, X., Ren, S., & Sun, J. 2016. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition, 770–
778.

[36] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., & Fei-Fei, L. 2009. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern
recognition, 248–255. Ieee.

[37] First residual block used by the 50, 101 and 151 layer resnet models. Avail-
able at https://www.jeremyjordan.me/convnet-architectures/, Accessed
10:52, 15 May 2019.

[38] Hochreiter, S. 1998. The vanishing gradient problem during learning recurrent neu-
ral nets and problem solutions. International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems, 6(02), 107–116.

[39] Pascanu, R., Mikolov, T., & Bengio, Y. 2012. Understanding the exploding gradient
problem. CoRR, abs/1211.5063, 2.

[40] Insafutdinov, E., Pishchulin, L., Andres, B., Andriluka, M., & Schiele, B. 2016. Deep-
ercut: A deeper, stronger, and faster multi-person pose estimation model. In European
Conference on Computer Vision, 34–50. Springer.

[41] Opencv: Geometric image transformations - cv2.remap. Accessed 11:13 8 May
2019. URL: https://docs.opencv.org/3.4.2/da/d54/group__imgproc_
_transform.html#gab75ef31ce5cdfb5c44b6da5f3b908ea4.

[42] Opencv: Remapping. Accessed 11:10 8 May 2019. URL: https://docs.opencv.
org/3.4.2/d1/da0/tutorial_remap.html.

[43] Image gradient. Available at https://en.wikipedia.org/wiki/Image_
gradient, Accessed 16:00, 15 May 2019.

48

https://github.com/keras-team/keras
https://github.com/keras-team/keras
https://doi.org/10.1051/matecconf/201823203007
http://dx.doi.org/10.1051/matecconf/201823203007
http://dx.doi.org/10.1051/matecconf/201823203007
https://www.biorxiv.org/content/early/2019/04/26/620245
https://www.biorxiv.org/content/early/2019/04/26/620245
http://arxiv.org/abs/https://www.biorxiv.org/content/early/2019/04/26/620245.full.pdf
http://arxiv.org/abs/https://www.biorxiv.org/content/early/2019/04/26/620245.full.pdf
http://dx.doi.org/10.1101/620245
http://dx.doi.org/10.1101/620245
https://www.jeremyjordan.me/convnet-architectures/
https://docs.opencv.org/3.4.2/da/d54/group__imgproc__transform.html#gab75ef31ce5cdfb5c44b6da5f3b908ea4
https://docs.opencv.org/3.4.2/da/d54/group__imgproc__transform.html#gab75ef31ce5cdfb5c44b6da5f3b908ea4
https://docs.opencv.org/3.4.2/d1/da0/tutorial_remap.html
https://docs.opencv.org/3.4.2/d1/da0/tutorial_remap.html
https://en.wikipedia.org/wiki/Image_gradient
https://en.wikipedia.org/wiki/Image_gradient

Automated Salamander Recognition Using Deep Neural Networks and Feature Extraction

[44] Hog algorithm. Available at https://software.intel.com/en-us/
ipp-dev-reference-histogram-of-oriented-gradients-hog-descriptor,
Accessed 15:02, 13 May 2019.

[45] Hog vector. Available at https://cbutkus.github.io/CS766/, Accessed 15:12,
13 May 2019.

[46] Opencv bfmatcher. Available at https://docs.opencv.org/3.0-beta/doc/py_
tutorials/py_feature2d/py_matcher/py_matcher.html, Accessed 16:19, 15
May 2019.

49

https://software.intel.com/en-us/ipp-dev-reference-histogram-of-oriented-gradients-hog-descriptor
https://software.intel.com/en-us/ipp-dev-reference-histogram-of-oriented-gradients-hog-descriptor
https://cbutkus.github.io/CS766/
https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_feature2d/py_matcher/py_matcher.html
https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_feature2d/py_matcher/py_matcher.html

A Project Agreement

50

B Projectplan

54

NTNU

Bachelor thesis

BIDAT39

Project plan

Author:
Jørgen Bakløkken
Hugo Nørholm

Felix Schoeler

Supervisor:
Sony George

Co-supervisor:
Marius Pedersen

May 9, 2019

Contents

1 Goals and frames 2
1.1 Background . 2
1.2 Project goals . 3
1.3 Project frames . 4

2 Scope 4
2.1 Problem area . 4
2.2 Limitations . 5
2.3 Task description . 5

3 Project organization 5
3.1 Responsibilities and roles . 5
3.2 Routines and group rules . 6

4 Planning, follow-up and reporting 6
4.1 Choice of system development model 6
4.2 Main division of the project 7
4.3 Plan for status meetings and decisions 7

5 Quality assurance 8
5.1 Standard tools . 8
5.2 Documentation . 8

5.2.1 Work process . 8
5.2.2 Meetings . 9
5.2.3 Code . 9
5.2.4 End product . 9
5.2.5 Testing . 9

5.3 Risk analysis . 9

6 Plan for execution 11
6.1 Gantt schema . 11

1

1 Goals and frames

1.1 Background

One of the fields of research at NINA (Norwegian Institute for Nature Re-
search) is salamanders. Salamanders are a group of amphibian and are preda-
tors that hunts insects and earthworms. In Norway there are two different
species of salamander: northern crested newt and smooth newt. And since
they both are a red listed specie its important to increase their population.

NINA are trying to learn more about their life cycle, living area and popula-
tion. And to get more knowledge they started a pit tagging project in 2010.
This means that they have to catch the salamanders in a gently way, inject
a pit tag in the salamander and document this into their database. This is
very time consuming for NINA and also stressful for the salamander that
should be handled very carefully.

Since salamanders almost have a unique abdominal pattern as seen in the
pictures below (1,2), NINA would like a system or application that takes an
input image of an salamander, check the pattern, determines if the salaman-
der are already in the database.

2

Figure 1: Example of salaman-
der pattern

Figure 2: Example of salaman-
der pattern

This system/application will be much quicker to identify and register
salamanders to their database. It will also be more gentle and safe for the
salamanders and reduce the amount of pit tags needed because they’re able
to identify the salamander based on pictures only.

1.2 Project goals

Result goals:

• Create a program that can identify salamanders based on pattern recog-
nition and with the highest accuracy that’s possible.

• Reduce the amount of pit tags in salamanders

Effect goals:

• Make it easier for NINA to identify salamanders using pictures only

• Faster identification

3

1.3 Project frames

NINA has not set any limitations on this project. See section 2.2 for our own
limitations on the project.

2 Scope

2.1 Problem area

As the salamander is a red listed species, it is crucial to know how it’s pop-
ulation is developing. When measures are taken to increase the salamander
population, the development of the population gives a good indicator for
whether the actions had a positive impact. In order to estimate the popu-
lation the capture-mark-recapture method is used. In order to calculate the
development of the population we look at the ratio between the individuals
that have been caught previously and the ones that have not. By using the
Lincoln-Peterson method we can then estimate the population.

• N is the total number of salamanders in the population.

• n is the number of salamanders that were marked on the first visit.

• K is the number of salamanders that were captured on the second visit.

• k is the number of recaptured salamanders that were marked.

If we assume that the population is closed, meaning that no individuals
die or emigrate between the visits, the ratios of the captured individuals in
relation to the total population should be equal to the ratio between the
individuals that have a mark on recapture and those that don’t.

N

n
=

K

k
(1)

If we rearrange, we see that we can estimate the total population N̂ using
the following equation:

N̂ =
Kn

k
(2)

4

2.2 Limitations

• Our project does not provide the infrastructure and hardware equip-
ment used for capturing salamanders or taking photographs.

• We are only going to identify the species Northern crested newt, also
called the great crested newt (triturus cristatus), and eventually the
smooth newt (lissotriton vulgaris).

• We will not take any pictures ourselves and are only going to use the
data provided by NINA.

2.3 Task description

NINA already has a solution for photographic identification called AmphI-
dent 1. The software works by letting the user mark the boundaries of a
salamander and first straightens the image of the salamander before apply-
ing pattern recognition. AmphIdent solves the same problem as we intend
to do with this project, the goal however is to see wether we can do better
than AmphIdent. There are mainly 2 areas where we could be better:

• Higher accuracy

• Reduced amount of manual work in selecting and straightening the the
belly pattern.

3 Project organization

3.1 Responsibilities and roles

• Project manager: Jørgen Bakløkken

• Bachelor students: Felix Schoeler, Hugo Nørholm and Jørgen Bakløkken

• Supervisor: Sony George

• Co-supervisor: Marius Pedersen

• NINA representative: Børre Dervo

1https://web.archive.org/web/20190128202817/http://www.amphident.de/en/

5

3.2 Routines and group rules

After every meeting there should be clear tasks that everyone has to accom-
plish by a set due date. In every meeting we look at the task every participant
was supposed to complete.

In addition to the minutes of meeting, a weekly status is written where
the current tasks in progress that week are recorded.

If a person cannot show up for a meeting, he should try to inform the
other meeting participants at least 2 hours in advance. If a person does
not show up or two times no actions will be taken. If however meetings are
dropped regularly, or there is a obvious lack of work invested by a person,
he should receive a warning. If there still is no improvement other penalty
measures, such as kicking from the group may be considered.

4 Planning, follow-up and reporting

4.1 Choice of system development model

In our project it is going to be critical to use an agile development model
instead of a plan driven one. This is primarily because this project is very
flexible, it has one primary goal which is to be able to find a salamander in
the database based on an image, because of this we will start by developing
code that will work on images with clear chest patterns, and then if we have
time work on methods that will allow for a wide array of image quality to
be used. We also do not really know how long it will take to implement
these methods making it hard to preplan every aspect of the project. In
addition the fact that we are a small team of three developers will make easy
to implement an agile model. The three agile models we considered for this
project were: Extreme programming (XP), Kanban and Scrum

XP might not be the best for our team as it has very strict rules on how
you are supposed to work with the project. It demands short cycles with
regular meetings with the customer something that might be difficult for us
as we do not work in the same area. It also favors highest priority first work
order to ensure the best possible product. This is something we will kind of
be using as we will start with core functionality and work our way out from
there.

Kanban is very simple as all it is is a visualisation of the workflow where
you have backlog of tasks on one end of the board and then the tasks make

6

their way through development to the other side of the board where you have
the completed tasks. Kanban in addition to giving you a better overview of
your tasks is supposed to help minimize how many wip tasks you have at
any given time, which in turn makes the project more manageable. Kanban
also tells you to measure time spent on each task so that you can use that
information to make your development more efficient.

Scrum very much revolves around the delegation of roles, you have the
product owner essentially the customer, the scrum master, one for each dev
team who is in charge of managing sprints and meeting and dev team mem-
bers. Scrum works well even with just one dev team but once again our
customer is not on-site so a slight downside. Scrum also relies heavily on
meetings in the dev team to increase productivity one before each sprint,
one short meeting, and a sprint review.

While the productivity increase in Scrum and XP are very enticing the
nature of the project as well as a consensus around how we work as a group
makes having so many meetings and strict rules about how we work seem a
bit redundant. We will derfor use a more kanban style development method
where we have a kanban board with all the current tasks. And regular meet-
ings to discuss what functions we should as the project develops.

4.2 Main division of the project

The project will begin with us getting acquainted with the database and the
pictures in the database. We will start by comparing the clearer images and
when we get that to work we will try to make the program work with more
varying image quality.

Describing a timeline for this project is kind of difficult as we are very
unsure about how much we will be able to do as this isn’t a case of imple-
menting existing technology in a new way we are creating a new algorithm
for comparing images of bio metrics. and the entire project rests on this core
functionality. We will write a report on the project no matter the outcome,
that is why it is important that we document all of our work and write what
we tried if it worked and if it didn’t and more importantly what we learnt.

4.3 Plan for status meetings and decisions

We have bi weekly meetings planned with our supervisors where we will
review our progress and ask for input. We will try to make it so that tasks

7

are completed in cycles around these meetings so that that can be more
helpful as we can discuss newly implemented functionality or in some cases
tings that do not function.

5 Quality assurance

5.1 Standard tools

• Latex will be used to write the pre-project and project report as well
as any other text based documents needed in the project. Due to its
configurability, which will enable us to create documents that look just
like we want them.

• Visio will be our go to program for creating figures, while Visio might
be a tad bit powerful of a tool for what we require in this project we
have access to it through NTNU and we have previous experience with
the program.

• We will have a bitbucket-repository to store our code in through all
of the project as we also have access to this through NTNU and it
is something we are very used to from previous school projects. In
addition will we be using GitKraken to manage the repository as it
makes handling branches and commits more manageable.

• There is also a software that straightens the salamander and highlights
the chest patter we will try to use this software at least initially to
standardize the images.

5.2 Documentation

5.2.1 Work process

All work should be documented in one way or another, for example meetings
are recorded by writing a small report after the meeting and coding will be
recorded through the commit history. It is therefore imperative that you
commit regularly with good commit messages so that we will be able to to
reflect on it later. When it comes to logging time spent on research, we could
use a timer to record the time and write our findings, but that seems a bit

8

redundant so we are not going to be recording that in detail, however we are
saving all relative material for future use.

5.2.2 Meetings

There will be reports of all meetings which will be included in the final report
these will help make everyone remember what was discussed and what was
decided. In addition if a member is absent from a meeting the reports are
crucial in keeping them up to date.

5.2.3 Code

Well commented code is very important not just for the client, but also to
make sure that everyone in the work team understands your intentions and
your way of thinking. It is therefore required to describe what each function
does even simple ones and more complex code should have smaller comments
inside the function to help understand what it is doing if needed. The main
comment should be on the lines above where the function starts.

5.2.4 End product

Whatever the end product ends up being we will create manual/wiki so that
the user should be able to use the program properly. In addition it is quite
likely that the finished product wont be very user friendly making a manual
that much more important.

5.2.5 Testing

We will make unit tests for every function where it makes sense to have them.
This is important in case there is a need to change the function to make sure
that it will retain its use.

5.3 Risk analysis

To analyse risk we imagine a scenario give it a probability on a scale from
1-5, where 1 is nearly impossible and 5 is almost certain. And an impact
rating from 1-5, where 1 is negligible and 5 is disastrous. Then we calculate
our risk by multiplying. this works well as when the probability and impact
of a scenario goes up the risk increases exponentially. The risk then comes to

9

a scale of 1-25, the higher a risk is on this scale the more important it is to
have good plan to counter it. In our project there probably won’t be many
if any very high risks to consider as it does not carry much risk in failure.

• Scenario: One of the team members gets sick, and is unable to attend
for a short period.
Probability: 4 * Impact: 2 = Risk: 8
Countermeasure: Write reports of meetings and have options for when
someone cannot meet in person.

• Scenario: A team member becomes critically injured or sick resulting
in him being unable to continue being a part of the project
Probability: 1 * Impact: 5 = Risk: 5
There isn’t much to be done about this scenario, but to continue the
project with the remaining two members

• Scenario: The program ends up only working on really clear or edited
images
Probability: 3 * Impact: 2 = Risk: 6
Countermeasure: If this is the case then we must give clear instruction
of the limitations of the program to allow the customer to use it.

• Scenario: We don’t have enough images or enough usable to images to
test the program, which leads to difficulty with testing the program.
Probability: 3 * Impact: 4 = Risk: 12
Countermeasure: We don’t have any way to get more images of Nor-
wegian salamanders until next summer. If this happens to be the case
we will just have to make the best of what we have and ssee how it
turns out this summer.

10

6 Plan for execution

6.1 Gantt schema

Figure 3: Important dates for the gantt schema

Figure 4: Gantt-diagram

11

C Meeting Logs

You should include in the Appendix a log of your meeting.

C.1 Temporal record of meetings

1st meeting with supervisors

Date: 08.01.2019
Agenda: First meeting with supervisors, startup
Place: NTNU Gjøvik campus
Duration: 1 hour
Meeting content:
Meeting the supervisors, different information about the bachelor thesis

2nd meeting

Date: 18.01.2019
Agenda: Meeting with NINA (Børre)
Place: NTNU Gjøvik campus
Duration: 1 hour
Meeting content:
Meeting with Børre Dervo. Explained about the background for the project, how they catch
the salamanders, why do they want this type of software and explained how it should work
(ideally). Signed project agreement.

3rd meeting

Date: 21.01.2019
Agenda: Meeting with supervisor (Marius)
Place: NTNU Gjøvik campus
Duration: 1 hour
Meeting content:
Some ideas about what to include in the main report:

• Important to write about the motivation behind this project.
• Include a chapter about previous projects on salamander identification.
• Try the software NINA are using today to straighten and segment the salamander.
• We should focus on the identification part. Let NINA’s software do the segmentation?
• 25 hours per week per person. Roughly 500 hours per person.
• Majority decides since we’re 3 on the group.

Meetings with NINA : Meeting to get the licence to the software they’re using today(not
needed if we can use the trial version).
Meeting when we have something that works?.

67

Automated Salamander Recognition Using Deep Neural Networks and Feature Extraction

Tasks:

Felix:

• 3 Project organization
• 2 Scope - Our solution

Jørgen:

• 1 Goals and frames - Information from NINA
• 6 Plan for execution

Hugo:

• 4 Planning, follow-up and execution
• 5 Quality assurance

Should be finished with our tasks within Monday 28.January.
29.January - read through the project plan to check if there’s something that needs to be
changed.
30.January - send the project plan to Sony and Marius for feedback.

4th meeting with supervisors

Date: 04.02.2019
Agenda: Meeting with supervisor (Sony)
Place: NTNU Gjøvik campus
Duration: 1 hour
Meeting content:
Status so far. Talked about our previous meetings(we will now share our document with Sony
and Marius so they can read the meeting notes etc.).
Discussion about how we should proceed.
What should we do in sprint 1:

• continue literature survey
• create a plan for the sprints
• test the software NINA are using today. With different images (some with preprocessing

to check the accuracy.)
• Try to find other projects/code online.

Status meeting with group members

Date: 11.02.2019
Agenda: Meeting with group members
Place: Online (Discord)
Duration: 1 hour
Meeting content:

• Images have to be straightened before pattern recognition.
• It’s adventagous to covert the images to binary.

68

Automated Salamander Recognition Using Deep Neural Networks and Feature Extraction

• AmpIdent does:

1. Convert image to a small standard size.
2. Convert images to binary.

• Tasks

5th meeting with supervisors

Date: 18.02.2019
Agenda: Meeting with supervisor (Sony)
Place: NTNU Gjøvik campus
Duration: 1 hour
Meeting content:
Status so far:

• Existing paper and software review. Hugo reviewed 4 different softwares. Commonal-
ities include that straightening, cropping, rotation and tresholding are applied as pre-
processing steps. The difference is in the matching algorithm. Some use feature based
methods while others use pixel based comparison methods.

• Felix converted Access database to proper folder structure with unique id for every
salamander.
• Jørgen found tresholding methods that we can use.
• Hugo also worked on cropping and rotating of an image based on the four feet as

reference points.

Next Sprint

• Felix - straightening salamander image using belly line. Marius suggested to use some-
thing similar to control point registration (MatLAB function CPSelect.)
• Jørgen - Figuring out feet reference points after straightening for cropping and rotation.
• Hugo - Find applicable matching algorithm
• Future work chapter should be added where we outline what other steps can be done

after the bachelor thesis: |. Measuring length of salamander. 2. Determining the sala-
manders species.

Status meeting with group members

Date: 25.02.2019
Agenda: Meeting with group members
Place: Online (Discord)
Meeting content:

Status meeting with group members

Duration: 1 hour
Date: 14.03.2019
Agenda: Meeting with group members(Jørgen and Hugo)
Place: NTNU
Duration: 1 hour

69

Automated Salamander Recognition Using Deep Neural Networks and Feature Extraction

Meeting content: Discussion about our code and how we should proceed.

Status meeting with supervisors

Date: 18.03.2019
Agenda: Meeting with group members and supervisors
Place: NTNU
Duration: 1 hour
Meeting content: Status on feature extraction and the straightening.
Discussion about the final report (finished table of contents mid april?), a lot of theory in
this project so we should start working on the final report in april.

Things to do/keep working on:

• Continue working on the straightening
• Try DSIFT on the original pictures, thresholded pictures and pictures with different

lighting.
• Find a smart solution to store the features in some sort of a database.

Status meeting with supervisors

Date: 25.03.2019
Agenda: Meeting with group members and supervisors
Place: NTNU
Duration: 1 hour
Meeting content: Individual update from group members. Discussion about table of con-
tents.

Status meeting with supervisors

Date: 03.04.2019
Agenda: Meeting with group members and supervisors
Place: NTNU
Duration: 1 hour
Meeting content: Update from group members. Discussion about the report (mainly table
of contents.)

Status meeting with supervisors

Date: 12.04.2019
Agenda: Meeting with group members and supervisors
Place: NTNU
Duration: 1 hour
Meeting content: Discussion about the report.

Things we could consider to include:

• Show how much faster/better our solution is compared to other solutions
• Introduction - floatchart about what we’re going through in the thesis (this part-part is

discussed in this and this chapter)
• Include a subsection about other literature (one chapter or split it into other subsec-

70

Automated Salamander Recognition Using Deep Neural Networks and Feature Extraction

tions) - explain why we did this. Intended audience?

Status meeting with supervisors

Date: 23.04.2019
Agenda: Meeting with group members and supervisors
Place: NTNU
Duration: 1 hour
Meeting content: Meeting notes: Discussion about the next 4 weeks.
Include what we want to do in the start of the report (project goals).
More testing - false matching rate etc.
In discussion - image quality etc. (sharpness and contrast).
Include image requirements in report.

Status meeting with group members

Date: 23.04.2019
Agenda: Meeting with group members
Place: NTNU
Duration: 6 hours
Meeting content: Coding.

Status meeting with group members

Date: 26.04.2019
Agenda: Meeting with group memberss
Place: Discord
Duration: 1 hour
Meeting content:

Status meeting with group members

Date: 29.04.2019
Agenda: Meeting with group members
Place: Discord
Duration: 1 hour
Meeting content:

Status meeting with supervisors

Date: 07.05.2019
Agenda: Meeting with supervisors
Place: Gjøvik
Duration: 1 hour
Meeting content: Discussion about what to include in the report.
Feedback from supervisors.

Status meeting with group members

Date: 09.05.2019
Agenda: Meeting with group members
Place: Discord

71

Automated Salamander Recognition Using Deep Neural Networks and Feature Extraction

Duration: 1 hour
Meeting content: Update from Felix about the belly identification.
Discussion about the report.

Status meeting with group members

Date: 11.05.2019
Agenda: Meeting with group members
Place: Discord
Duration: 1 hour
Meeting content: Report discussion.

Status meeting with supervisors

Date: 13.05.2019
Agenda: Meeting with supervisors
Place: Gjøvik
Duration: 1 hour
Meeting content: Feedback on the current report from supervisors.

72

	Contents
	List of Figures
	List of Tables
	Preface
	Introduction
	Background and motivation
	Capture-recapture
	Overview of existing software
	I3s
	Wild-ID
	AmphIdent
	Aphis
	Conclusion

	Our dataset
	Tools and hardware
	Hardware system
	Software tools

	Report overview
	Project pipeline

	Project fundamentals
	Digital image processing
	Feature extraction
	Thresholding
	Blurring

	ORB
	SIFT
	SURF

	Neural network fundamentals
	Neurons
	Layers
	Loss Function
	Backpropagation
	Gradient Descent
	Convolutional Neural Networks

	Methods and Implementation
	Pattern extraction
	Extraction methods
	Manual pose labeling
	Segmentation and Skeletonization
	Segmentation
	Skeletonization
	Downsides of the method

	Data preparation for neural networks
	Pose estimation using LEAP
	Network architecture
	Results
	Discussion

	Pose estimation using DeepLabCut
	Overview
	Network architecture
	Results
	Discussion

	Straightening

	Image processing
	Feature based method
	ORB, SIFT and SURF
	DSIFT
	HOG

	Preprocessing for pixel based method
	Resizing
	Thresholding
	Blurring

	Matching
	Brute force matching
	Pixel based matching

	Implementation and results
	System implementation
	Results
	Belly localization
	Matching results on test data

	Failed cases
	Belly localization
	Matching

	Discussion
	Belly localization
	Matching
	Pixel by pixel method
	Brute force matching

	Conclusion
	Summary of the project
	Future Work

	Bibliography
	Project Agreement
	Projectplan
	Meeting Logs
	Temporal record of meetings

