
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f C

om
pu

te
r

Sc
ie

nc
e

B
ac

he
lo

r’
s

pr
oj

ec
t

Sindre B. Garvik
Haakon B. Aarstein
Eirik Hiis-Hauge

Learning in Virtual Reality

Bachelor’s project in Game Programming
Supervisor: Øivind Kolloen, Rune Hjelsvold

May 2019

Sindre B. Garvik
Haakon B. Aarstein
Eirik Hiis-Hauge

Learning in Virtual Reality

Bachelor’s project in Game Programming
Supervisor: Øivind Kolloen, Rune Hjelsvold
May 2019

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Learning in Virtual Reality

Author(s)

Sindre B. Garvik
Haakon B. Aarstein
Eirik Hiis-Hauge

Bachelor in Game Programming
20 ECTS

Department of Computer Science
Norwegian University of Science and Technology,

20.05.2019

Supervisor Øivind Kolloen
Rune Hjelsvold

Learning in Virtual Reality

Sammendrag av Bacheloroppgaven

Tittel: Læring i virtuell virkelighet

Oppgave no. 2
Dato: 20.05.2019

Deltakere: Sindre B. Garvik
Haakon B. Aarstein
Eirik Hiis-Hauge

Veiledere: Øivind Kolloen
Rune Hjelsvold

Oppdragsgiver: Norwegian University of Science and Technology

Kontaktperson: Erik Helmås, erik.helmas@ntnu.no, 61135000

Nøkkelord: IMT, Simulasjon, VR, Jernbane, Utdanning
Antall sider: 34
Antall vedlegg: 6
Tilgjengelighet: Åpen

Sammendrag: Norsk fagskole for lokomotivførere ønsker en utvidelse av
et eksisterende prosjekt via en prototype. Det eksisterende
prosjektet er en lokfører simulator, og utvidelsen vil gå ut på
å koble sammen tog i VR (Virtual Reality).

I

Learning in Virtual Reality

Summary of Graduate Project

Title: Learning in Virtual Reality

Project no. 2
Date: 20.05.2019

Authors: Sindre B. Garvik
Haakon B. Aarstein
Eirik Hiis-Hauge

Supervisor: Øivind Kolloen
Rune Hjelsvold

Employer: Norwegian University of Science and Technology

Contact Person: Erik Helmås, erik.helmas@ntnu.no, 61135000

Keywords: IMT, Simulation, VR, Railway, Education
Pages: 34
Attachments: 6
Availability: Open

Abstract: The Norwegian Railway School seeks to expand an existing
project through a prototype. The existing project is a train
driver simulator, and the expansion is for coupling trains to-
gether in VR (Virtual Reality).

II

Preface

We would like to thank our two supervisors for all their help, and the Norwegian Railway
School for giving us a interesting project to work with.

III

Contents

Preface . III

Contents . IV

1 Project Plan . 1

1.1 Project Description . 1

1.2 Project Modules . 1

1.3 Development Environment . 1

1.4 Background . 1

1.5 Development Goals . 2

1.5.1 Module 1: Coupling . 2

1.5.2 Module 2: Physics . 2

1.5.3 Module 3: Network Capabilities . 2

1.5.4 Module 4: 3D Models . 3

1.5.5 Module 5: Automated Scenarios . 3

1.6 Roles . 4

1.7 Routines and Rules . 4

1.8 Development Model . 4

1.9 Meetings and Decision-making . 4

1.10 Documentation and Source Control . 5

1.11 Risk Analysis . 5

2 Program Overview . 6

2.1 Program Structure . 6

2.1.1 Program . 6

2.1.2 VrPerson . 6

2.1.3 Vehicle . 7

2.1.4 SimSimpleVehicle . 7

2.1.5 Coupling . 7

2.1.6 Handle . 7

2.1.7 AirCoupling . 7

2.1.8 AirValve . 7

2.1.9 InverseKinematics . 7

2.1.10 VehicleBrakeSystem . 7

2.1.11 Guardrail . 7

2.2 VrPerson Interactions . 8

3 Final State of the Project . 11

3.1 Modules and Cuts . 11

IV

Learning in Virtual Reality

3.1.1 Module 1: Coupling . 11

3.1.2 Module 2: Physics . 11

3.1.3 Module 3: Network Capabilities . 11

3.1.4 Module 4: 3D Models . 12

3.1.5 Module 5: Automated Scenarios . 13

3.2 Summary . 13

4 jMonkeyEngine as an Engine . 14

4.1 Overview . 14

4.2 Editors . 15

4.2.1 jMonkey . 15

4.2.2 Unity . 16

4.3 Component Systems and Scene Graphs . 16

4.4 Asset Management . 17

4.5 Networking . 18

4.6 Conclusions . 18

5 Reorganizing the Existing Project . 19

5.1 Thoughts on the Existing Project . 19

5.2 Relocating VR Functions and Variables . 19

5.3 Rewriting the Coupling System . 19

5.4 Rewriting the Player Collision System . 22

5.5 Rewriting the Train Collision System . 23

6 Modelling . 25

6.1 Tools . 25

6.2 Process . 25

7 Networking . 27

7.1 Development . 27

7.2 Future Development . 31

7.3 Conclusions . 32

8 Conclusions . 33

8.1 Development Model . 33

8.2 Meetings and Feedback . 33

8.3 Development Process . 33

8.4 Final Thoughts . 34

Appendix . 35

A Project Plan . 36

B Status Report 1 . 44

C Status Report 2 . 46

D Meeting 1 . 50

E Meeting 2 . 53

F Project Agreement . 56

V

1 Project Plan

The original project plan was written in Norwegian, as such, this translation may somewhat
differ from the original one. Additionally, this version of the project plan has been slightly
changed to reflect the minor changes that have been done to the development goals during
the project. The original project plan (in Norwegian) will be appended.

1.1 Project Description

The Norwegian Railway School seeks to expand an existing project through a prototype. The
existing project is a train driver simulator, and the expansion is for coupling trains together
in VR (Virtual Reality).

1.2 Project Modules

The Norwegian Railway School detailed several modules they wished for us to implement
during the project:

• Coupling in VR.
• Physics on the train.
• Network capabilities connecting the existing part of the project with the new one.
• 3D models of the trains and train cars.
• Automated scenarios (has been dropped in favor of improving existing parts).

We were given quite a bit of leeway as to what had to be completed for the bachelor. The list
above is ordered by priority, and the two first modules, coupling and physics, are by far the
most important ones, while networking and modelling were given less priority. The automa-
tion module, as noted above, was dropped, and was something we planned to do if we had
enough time to spare.

1.3 Development Environment

The project was developed for Windows PCs with Virtual Reality headsets (more specifically
Oculus and Vive) in jMonkeyEngine using Java.

1.4 Background

The purpose of this project was to develop a near-life Virtual Reality experience that could
substitute the existing training for coupling trains. The current training is very costly, and po-
tentially very dangerous, and moving the training over to VR will nullify the risk and heavily
reduce cost, as well as increase availability.

1

Learning in Virtual Reality

1.5 Development Goals

We were given an extensive list of various features they wanted us to implement under each
module.
Some goals under Coupling and Physics were more closely related to another module, and
was therefore moved in this version.

1.5.1 Module 1: Coupling

• Locomotive is maneuverable.
• When one train car is next to another train car, they can be coupled by lifting a physical

coupling that can be tightened. Similarly, there are air hoses that can be coupled, with
air valves on each train car.
• When two train cars have been coupled, they are connected and will move together.

1.5.2 Module 2: Physics

What happens to a train, a train car, or a locomotive in various situations given certain con-
ditions:

• Train car starts rolling while on an incline without sufficient brakes active.
• What happens when a locomotive hits a train car that is standing still? Does it get

pushed away? Less so if the brakes are active.
• Brakes visibly move onto the wheel while active.
• The coupling of air hoses directly affects the braking system of the train, and determines

whether the train will be able to drive, start rolling, etc.
• Sound effects.

1.5.3 Module 3: Network Capabilities

• The program running on DeskSim and in VR is the same.
• Potential differences in the program should be applied through settings or automati-

cally by detecting VR equipment.

The two simulators are synced through an internal WiFi connection.

• The simulators are in the same scenario.
• When the two simulators are in the same scenario, one should be able to perceive the

other’s presence.
• If the locomotive is being moved in the DeskSim, one should be able to perceive this in

the VR simulator.
• There should be an avatar to represent the person in VR that is visible in the DeskSim.

The avatar should look like its wearing appropriate work attire.
• Actions taken in one simulator should be reflected in the other. For example, coupling

together train cars, changing tracks, or applying brakes.
• Mirrors on the locomotive will allow the train driver to observe the VR avatar moving

around the train, but not while it is between train cars.

Communication between train driver and shunter (switcher), DeskSim and VR.

2

Learning in Virtual Reality

• Communication usually occurs through a radio (walkie-talkie). One form of simulated
radio communication should be available. Either by talking into a microphone, or by
sending predefined messages.
• There are a series of hand signals used for communication, this should be performed

by taking specific actions in the VR simulator.
• Communication must be available for both the person in the VR simulator and the per-

son using the DeskSim.

1.5.4 Module 4: 3D Models

Created in Blender, locomotive and train cars resemble their real world counterparts.

• 1 model of a Traxx locomotive.
• 1 model of a shunting locomotive.
• 1 model of a 6-axle container car (jointed).
• 4 models of containers in different colours. Should be placed on previously mentioned

train car.
• 1 tank car.
• 1 gravel car.
• 1 closed freight car with sliding doors.

• Components should resemble their real world counterparts.
• Readable labels must be included.
• The VR avatar should have hands that function with Oculus VR controllers.

1.5.5 Module 5: Automated Scenarios

This module has been dropped!
The program runs in a scenario where the program itself controls the locomotive and gives
messages to the VR person (the user) using the same kind of messaging system as previously
mentioned.

• The Locomotive should move based on messages given by the VR person, such as "move
back", "move forward", "stop", "slow down", "30 meters until impact", "15 meters until
impact".
• Voice recognition is likely too complicated for this project, so communication has to be

done using predefined messages.

The program runs in a scenario where the program controls the VR person and gives messages
to the train driver (the user).

• Reverse of the previously described mode.
• The program gives messages to the DeskSim so the user knows what to do.
• The shunting operation must be defined before starting the simulator.

3

Learning in Virtual Reality

1.6 Roles

Sindre has been chosen to be the group leader.
Haakon is responsible for 3D modelling, and texturing.

1.7 Routines and Rules

The routines and rules for this project were very relaxed. We had no set times we had to work
and we were free to choose when to work. The only rule for work time was how much we
should work and we chose to set 30 hours a week as our goal.

Another rule we had was that a person that did not work enough would be punished by
having to bake a cake for the rest, and also if it did not get better two weeks after this warn-
ing the issue would be brought to our supervisor, and then if it still was not better then the
person would have to leave the group.

When it comes to rules about pushing and committing we had a rule that said we should
not push something to master that was not working, and we had a rule that said we should
not commit something that was not completed. Our rule for commit messages was to follow
a set of rules we found. For commenting we had a rule that we should comment often and
follow a set of rules we found.

1.8 Development Model

This diagram could make it seem like we worked using a waterfall model. This is not entirely
correct, as the diagram only shows which modules we prioritized first. We have divided the
project based on these modules, and we used Trello to organize and plan tasks under each
module, and at what stage of development they are in.
This means we divided up tasks and placing them based on whether they’re on the backlog,
in development, under testing, or completed.
Therefore our development model was more similar to an incremental one.

1.9 Meetings and Decision-making

We planned to meet almost weekly with our supervisor at the university, and similarly with
our employer through online meetings.
We wrote a status report near the end of module 1, around 4th of March, and one around
the end of module 2, around 8th of April. If modules weren’t completed in time, or larger
amounts of work remain, we planned to cut modules of lower priority.

4

Learning in Virtual Reality

1.10 Documentation and Source Control

The project will be available through a git solution. The project will therefore be logged
through commits, which we then used to write the report. We’re thinking of making a class-
diagram to document the classes and files we have made during the project to better doc-
ument what we have been working on, and to give our employer a better overview of the
project’s structure.

We will be following a git commit standard similar to this. Which first specifies what kind
of change has been made; if it’s a bug fix, a new feature, or something else.
There should also be a short description of what has been done. It would be preferable if a rel-
evant scope is described, but this is not required. It is also highly preferred if there’s a longer
description detailing the changes under the initial message, but this is also not a requirement.

1.11 Risk Analysis

Security is of little relevance in this project. We’re producing a prototype in an existing project
for a product that will be used internally by our employer. There are no personal data in the
project, one achieves nothing by crashing the program, and there is nothing to be gained by
cheating in the simulator.

The networking component is really the only potential security risk, since it involves a net-
worked communication between two machines.
Because of this, the only security we have to prioritize during development is the networking
itself, which will include sanitation of input.

If someone wished to steal the project, one would have to either steal the prototype through
our private git repository, or copy over the files from the computers of our employer.

Illness is a risk that is difficult to foresee, but we see it as a small risk, and in the event
of one of our group members being absent the remaining group members will have to work
harder for a bit.

5

https://bitbucket.org/Haaki/digiskift/src/master/
https://www.conventionalcommits.org/en/v1.0.0-beta.2/

2 Program Overview

2.1 Program Structure

The project itself is available at https://bitbucket.org/Haaki/digiskift/src/master/, but it is
in a private repository.
Due to the sheer size of the original project and the amount of files not related to our ex-
pansion on it, the class diagram below only shows classes we have implemented ourselves or
done substantial changes to.

2.1.1 Program

The main file of the program, which is responsible for initiating, running, and stopping the
program. This class does a lot of different things, and was there when we started working on
the project. We have worked little in the main file itself, and most of the work done here has
been moving various functions and variables out of the file and into VrPerson.

2.1.2 VrPerson

This is the file we have primarily been working with. This class is a movable first-person
character that contains almost everything directly related to VR and interacting with objects
outside of the original train simulator.

6

https://bitbucket.org/Haaki/digiskift/src/master/

Learning in Virtual Reality

2.1.3 Vehicle

This is another class we have been working a lot with. The vehicle class contains the basis for
a train or train car, and contains a data file that determines everything from model compo-
nent placements to the size of its box collider. It also contains the function for colliding with
other vehicles, and several important components like the Coupling class.

2.1.4 SimSimpleVehicle

This class inherits from the Vehicle class. Its primary function is to add a user-interface to the
vehicle, so that it can be used as a controllable locomotive.

2.1.5 Coupling

The coupling system has been a vital part of the project. This class contains the logic needed
for the Vehicle class to know whether it has been connected or not, and have the functions
necessary for the VrPerson to interact with it. It also contains the Handle class.

2.1.6 Handle

Allows the VrPerson to tighten and loosen the middle section of the coupling.

2.1.7 AirCoupling

This class functions much like the Coupling class, the major differences being its Inverse Kine-
matics and having the AirValve class instead of the Handle.

2.1.8 AirValve

The air valve allows the VrPerson to turn on and off the air flow to the VehicleBrakeSystem.

2.1.9 InverseKinematics

This system allows one to move a segmented limb, such as a chain, using inverse kinematics.
This is used for the Coupling and AirCoupling, so that they behave in a semi-realistic fashion
while in VR.

2.1.10 VehicleBrakeSystem

This system was never completed, but was designed to control the vehicle’s brakes based on
air pressure, which could be changed based on many different factors. This is mainly con-
trolled by whether the vehicles air valves are open, and whether its air hoses were coupled
with another train car.

2.1.11 Guardrail

Allows the VrPerson to board and disembark vehicles that have guardrails. Currently, only
the shunting locomotive has this feature.

7

Learning in Virtual Reality

2.2 VrPerson Interactions

As shown in the diagram, the VrPerson is able to interact with a variety of objects. The VrPer-
son does so by checking its hands’ proximity to the objects it can interact with, and whether
it’s gripping or not.

The code below shows the basic way to interact with an object. If the conditions mentioned
above are met, it simply calls a function on the object itself, and leaves all the details to that
object.

// Interact with objects through grip
if (grip < 0.5f && prevGrip[index] > 0.5f)
{

for (Vehicle veh : stVehicleList)
{

for (int i = 0; i < 2; i++)
{

// Handles
if

(veh.getCoupling(i).getHandlePos().distance(rb.getPhysicsLocation())
< holdRange)
veh.getCoupling(i).interactMidOffset();

// Boarding with Guardrails
if (veh.getGuardrail(i) != null)

if
(veh.getGuardrail(i).getGuardrailPos().distance(rb.getPhysicsLocation())
< holdRange)
veh.getGuardrail(i).click();

// Air Valves
if

(veh.getAirCoupling(i).getAirValvePivot().getWorldTranslation().distance(
rb.getPhysicsLocation()) < holdRange)
veh.getAirCoupling(i).airValveInteract();

}
}

}
prevGrip[index] = grip;

8

Learning in Virtual Reality

Couplings work similarly, but require that the person is not already holding anything in the
hand it is using to interact with. The code below is the logic used to determine whether a
coupling should be held or not.

// Grabbing couplings
if (grip > 0.5f && !holding[index])
{

// Coupling
outerloop:
for (Vehicle veh : stVehicleList)
{

for (int i = 0; i < 2; i++)
{

if (veh.getCoupling(i).heldBy() == null)
{

// Couplings
if

(veh.getCoupling(i).getEndPivot().getWorldTranslation().distance(
rb.getPhysicsLocation()) < holdRange)

{
veh.getCoupling(i).hold(geo);
holding[index] = true;
break outerloop;

}
else if (veh.getCoupling(i).getState() !=

Coupling.CouplingState.Connected)
{

veh.getCoupling(i).setState(Coupling.CouplingState.Loose);
}

}
}

}
}

9

Learning in Virtual Reality

This code shows how the coupling itself happens. When a held coupling is released near an-
other coupling, it will attempt to connect to that coupling.

// Releasing and connecting couplings
if (grip <= 0.5f && holding[index])
{

for (Vehicle veh : stVehicleList)
{

for (Vehicle veh2 : stVehicleList)
{

if (veh == veh2) // Don’t check vehicle with itself
continue;

for (int i = 0; i < 2; i++)
{

if (veh.getCoupling(i).heldBy() == geo)
{

// Check Coupling on other vehicle
for (int j = 0; j < 2; j++)
{

if
(veh.getCoupling(i).getEndPivot().getWorldTranslation().distance(

veh2.getCoupling(j).getConnectPivot().getWorldTranslation()
) < holdRange)

{
// Connect
veh.getCoupling(i).connectTo(veh2.getCoupling(j));
holding[index] = false;

}
}
if (veh.getCoupling(i).getState() !=

Coupling.CouplingState.Connected)
{

veh.getCoupling(i).release();
holding[index] = false;

}
}

}
}

}
}

The same logic is applied for AirCoupling, but it still works a bit differently. The AirCoupling
requires one to connect the ends of both couplings, rather than the end of one coupling being
attached to a hook on the other.

10

3 Final State of the Project

3.1 Modules and Cuts

We have colour-coded the points below based on how complete or incomplete they may be.
Red means it is untouched, green means it is finished, and yellow means it is incomplete.

3.1.1 Module 1: Coupling

• Locomotive is maneuverable.
• When one train car is next to another train car, they can be coupled by lifting a physical

coupling that can be tightened. Similarly, there are air hoses that can be coupled, with
air valves on each train car.
• When two train cars have been coupled, they are connected and will move together.

The coupling module was fully implemented, and should be working as intended.

3.1.2 Module 2: Physics

What happens to a train, a train car, or a locomotive in various situations given certain con-
ditions:

• Train car starts rolling while on an incline without sufficient brakes active.
• What happens when a locomotive hits a train car that is standing still? Does it get

pushed away? Less so if the brakes are active.
• Brakes visibly move onto the wheel while active.
• The coupling of air hoses directly affects the braking system of the train, and determines

whether the train will be able to drive, start rolling, etc.
• Sound effects.

Physics have for the most part been implemented, what hasn’t been completed is mostly di-
rectly related to the advanced braking system. We also did not add any more sound to the
project, as we saw this as a very low priority.

3.1.3 Module 3: Network Capabilities

• The program running on DeskSim and in VR is the same.
• Potential differences in the program should be applied through settings or automati-

cally by detecting VR equipment.

The two simulators are synced through an internal WiFi connection.

• The simulators are in the same scenario.
• When the two simulators are in the same scenario, one should be able to perceive the

other’s presence.
• If the locomotive is being moved in the DeskSim, one should be able to perceive this in

11

Learning in Virtual Reality

the VR simulator.
• There should be an avatar to represent the person in VR that is visible in the DeskSim.

The avatar should look like its wearing appropriate work attire.
• Actions taken in one simulator should be reflected in the other. For example, coupling

together train cars, changing tracks, or applying brakes.
• Mirrors on the locomotive will allow the train driver to observe the VR avatar moving

around the train, but not while it is between train cars.

Communication between train driver and shunter (switcher), DeskSim and VR.

• Communication usually occurs through a radio (walkie-talkie). One form of simulated
radio communication should be available. Either by talking into a microphone, or by
sending predefined messages.
• There are a series of hand signals used for communication, this should be performed

by taking specific actions in the VR simulator.
• Communication must be available for both the person in the VR simulator and the

person using the DeskSim.

The networking module is largely incomplete; We managed to implement a rudimentary sys-
tem that could connect to another computer using a local IP address, but we had difficulties
expanding this to a LAN network.
Additionally, we did not fully implement a consistent world across the networked simulators,
but this was mostly due to time restraints.
We have written more about the networking under the Networking chapter.

3.1.4 Module 4: 3D Models

Created in Blender, locomotive and train cars resemble their real world counterparts.

• 1 model of a Traxx locomotive.
• 1 model of a shunting locomotive.
• 1 model of a 6-axle container car (jointed).
• 4 models of containers in different colours. Should be placed on previously mentioned

train car.
• 1 tank car.
• 1 gravel car.
• 1 closed freight car with sliding doors.

• Components should resemble their real world counterparts.
• Readable labels must be included.
• The VR avatar should have hands that function with Oculus VR controllers.

We focused on completing the shunting locomotive and some basic wagons before the other
models, and we have one locomotive and a wagon that is pretty much done, only missing
some of the finer details and texture. The modelling has been challenging due to poor or
lacking reference.

12

Learning in Virtual Reality

3.1.5 Module 5: Automated Scenarios

This module has been dropped!

We decided before we started on networking that we should cut automation, and we did
so because we thought it would be too much work for the time we had left and too much
work compared to how important the module is. We instead chose to cut this module and for
the end of the project focus on perfecting modules and bug-fixing instead of adding features.

3.2 Summary

In the project plan we stated that Module 1 and 2 (Coupling and Physics) were the two most
important modules, and took priority over everything else. At the end of this project those
two modules are mostly complete, and the two most important models have also been com-
pleted, while networking only has the most basic implementation.

It is regrettable that we have not been able to fully complete the first four modules, but our
progress was slowed due to various issues, including issues caused by the existing project
itself, as well as with jMonkey.

13

4 jMonkeyEngine as an Engine

4.1 Overview

In this section we will discuss jMonkeyEngine, and compare it to Unity, a newer and more
popular engine.
jMonkeyEngine is an open source Java engine originally developed in 2003. jMonkey’s core
development team stepped back from the project in 2008, and core support stopped com-
pletely in 2016.
Unity is an engine written in C++ with C# as its scripting API, originally developed in 2005.
Unity is arguably the most popular game engine in the world as of this report, and is updated
frequently with a major update every year.

Here is an overview of a basic feature comparison between the two:

Engine: jMonkey Unity
Open Source Yes No
Scene Editor Yes Yes

Component System No Yes
Asset Viewer No Yes
Asset Store No Yes
Platforms 5 25+

Now before we continue, we feel it is important to clear up some biases. All three group
members have extensive experience with Unity; We have used it for several years, and for
several major projects. Regardless of how good of an engine jMonkey is, we would have been
able to work better and more efficiently in Unity. With that out of the way, it must be said that
we do believe that Unity is overall a far better engine for game and simulator development,
and we will be exploring why in the following sections.

14

https://itch.io/game-development/engines/most-projects

Learning in Virtual Reality

4.2 Editors

4.2.1 jMonkey

Given how little time we’ve had to work with and explore jMonkey, there are obviously many
aspects of the editor that we have not been familiarized with yet, and as such, there will be
notable holes in our knowledge of the engine’s full capabilities.

jMonkey’s editor consists for the most part of the Java file directory, an IDE, an output log, and
a more standard file directory. Overall, the editor is not too different from a multi-purpose
IDE, such as Visual Studio.
jMonkey also has one other very important feature, and that is the scene viewer. Scenes can
be saved, loaded, viewed, and edited in the editor itself. This is a very useful tool that allows
for much faster debugging and fine-tuning of values. However, the existing project we have
been given was written as a standalone application, and does not integrate the scene system,
rendering this feature unusable.

15

Learning in Virtual Reality

4.2.2 Unity

Unity’s editor has a scene view, game view, asset manager, inspector, output log, asset store, as
well as a lot of extra windows to cover everything from profiling to animation. Additionally,
the developer can program their own editor windows. In short, Unity’s editor has everything
jMonkey has, but with more prebuilt functions, and the ability to create custom windows.
Unity does not allow editing source code directly in the editor, but comes with Visual Studio
by default, and can be linked with a few other IDEs.

4.3 Component Systems and Scene Graphs

Unity has a component system, which in short, allows one to add an existing functionality
onto any object in the scene. This can be extremely useful, and allows one to very easily
create variations of the same object, or reduce clutter in the code.
jMonkey on the other hand has no such system, and is bound to the functionality and limi-
tations of Java. Java is of course fully capable of handling such a component system, but we
would have to implement that ourselves.

An example of how creating a rigidbody differs:

Unity and C#

GameObject go = new GameObject(); // Creates the GameObject
go.AddComponent<Rigidbody>(); // Adds the Rigidbody
go.AddComponent<BoxCollider>(); // Adds the BoxCollider

16

Learning in Virtual Reality

jMonkey and Java

Node node = new Node(); // Creates the Node or "GameObject"
rootNode.attachChild(node); // Attaches the Node to the SceneGraph
BoxCollisionShape shape = new BoxCollisionShape(); // Creates the

CollisionShape
RigidBodyControl rb = new RigidBodyControl(shape); // Creates the

RigidBody using the shape
node.addControl(rb); // Make the RigidBody control the node
bulletAppState.getPhysicsSpace().add(rb); // Add the RigidBody to the

physics space

As shown in the code above, jMonkey uses twice as many lines of code to achieve the same
thing, because there is no component system, and objects do not add themselves to the world
or physics space.
Additionally, jMonkey requires inclusion of 4 libraries for this basic functionality, and would
require manual initialization of the application, the BulletAppState, and needs to pass on
references of the BulletAppState and the RootNode.

This of course does not mean that jMonkey is necessarily worse, but it shows how much
extra work is required to accomplish the same thing in jMonkey. On the other hand, jMonkey
allows omitting the physics space entirely, which will add a minimal improvement to perfor-
mance if the program won’t be using it.

4.4 Asset Management

In jMonkey assets are managed using the AssetManager. It allows loading assets from code,
and keeping the path to the assets consistent on all platforms. It handles caching and opti-
mization of OpenGL objects. By default assets are bundled into the executable.

In Unity the main way of using assets is by drag and drop in the editor, using the compo-
nent system. Additionally the resource system allows for loading assets in code.
Unity also has a lot of additional systems for assets in the editor, allowing things like chang-
ing format, compression, mip-maps, LOD, color-depth, and more. In general, assets can be
previewed in the editor itself, and do not need to be put into the scene to do so.

Unity’s prefab system allows one to take any part of the scene graph and save it as an object.
The prefab can then be copied into the scene or added through code, and allows reuse of
bigger and more complex systems and objects.
The Asset Store is another very useful tool where one can download any kind of asset from an
online community for Unity. Assets vary from animated models, to props, to environments,
code, shaders, and whatever else needed for a projet. A lot of the more complicated assets
cost money, but there are plenty of free assets available as well.

17

Learning in Virtual Reality

4.5 Networking

Both jMonkey and Unity have built in support for networking, but the system for jMonkey
requires a lot more work on the developer’s end.
The group did not have a lot of experience with Unity’s networking, but the little we have
done helped little to nothing when implementing the system in jMonkey, which requires a lot
more setup from the developer in code.

The system in Unity also has functionality for match-making which would have helped a
lot when developing networking in jMonkey.
We had to learn how to use the system in jMonkey, then how to connect to a server, and lastly
how to construct messages, send them and how to deal with them when they are received at
the other end.

4.6 Conclusions

Unity and jMonkey have two fairly different approaches to game engines. jMonkey allows
one to control more of the engine itself, and at a lower level, and because it is open source,
a developer could potentially rewrite the entire engine if needed.

Unity does not allow for the same level of control, and handles a lot more behind the scenes.
This could potentially lead to issues the developer can’t solve by themselves because it is
engine related, or cause the program to be less optimized, but allows for a much faster and
more streamlined development process.
Additionally, Unity has a much larger userbase, and it is therefore much easier to get help,
solve specific problems, or download existing code or assets for a project.

18

5 Reorganizing the Existing Project

5.1 Thoughts on the Existing Project

In short, the existing project we were given for this project had a lot of flaws. There was no
documentation for the project, the code had a minimal amount of comments, many of which
didn’t really help us, and both names and comments were a mix of Norwegian and English.

One of the most obvious issues we encountered was the sheer amount of code located in
the main file (Program.java). Everything from initializing the project, to creating lighting,
and controlling the user’s character was handled in the same file, amounting to over 4000
lines of code.

There were also other aspects of the project we would have liked to improve, but the ex-
isting project is spread over almost 400 files, and we did not have the time or resources to
look into all of the files and figuring out what they all did.
An example of a minor improvement we could have made is adding colliders to more of the
environment, as the two only things the user can collide with as of now is the ground itself
and the trains.

5.2 Relocating VR Functions and Variables

Since the controllable character and VR are the two most important aspects of this project for
us, we had to locate every single related function and variable in the Program.java file. Then
we had to decide whether it would be best to access them as public static variables/functions,
get functions, or move them to another file entirely.

For the most part, we extracted out as much code as possible from the Program file into
the new VrPerson file. This included everything from movement, to collision, to interacting
with objects in and out of VR.
However, some variables are intrinsically linked to the Program class, and have to be passed
on. This includes the AssetManager, RootNode, Camera, BulletAppState (Physics), VrApp-
State, Settings, as well as several other variables, such as movement input.

After finally getting all that over to a separate file, the new file is about 750 lines of code
long, which is a lot to have directly in a main file.

5.3 Rewriting the Coupling System

The original coupling system we were given with the existing project was a temporary system
that needed to be replaced.
The original system allowed aiming at a cube connected to each end of the train, and then

19

Learning in Virtual Reality

connect the train cars together utilizing a raycast check.
This system had some issues, relying on a lot of code from different files to function, and
using many lines of code to move the cubes around properly.

As such, we thought it best to rewrite the entire class. We wanted the coupling to function
as closely to real life as possible, as this was one of the most important aspects of the entire
project.
When coupling a train in real life, one has to walk up to the end of the train car, pick up the
segmented chain, connect it to the hook of a nearby train car’s coupling, and tighten it with
the handle on the middle-segment.

With this in mind we decided that the chain itself could be in one of three states:

• Coupled or fastened to an object.
• Held by a person.
• Hanging loosely.

Since the chain would have to be very movable in order to be held by a hand and moved
around, but also restricted by physical properties, we thought the best solution for this prob-
lem would be inverse kinematics.

Source: medium.com/unity3danimation

Inverse kinematics is a system which aims to rotate a segmented limb so that the outer-
most part of it reaches a given position.
In this project we utilized this so that the segmented coupling chain would follow the user’s
hand around as they carried it, and it would automatically adjust for positional changes in
case the hook it was connected to moved around.

Implementing the inverse kinematics was not much of an issue; it’s a well known system
that is used for all kinds of robotics as well as digital animation, and we even found an
implementation for jMonkey (albeit an outdated one). We did however encounter one prob-
lem; The chain itself is comprised of several interlocked parts, many of which can only rotate
around one local axis. The inverse kinematics system we implemented did not take this into
account.

The ideal solution would just be to lock the rotational axis of each segment, but jMonkey
does not support this.
We attempted to manually rotate each segment back into place after the inverse kinematics

20

https://medium.com/unity3danimation/overview-of-inverse-kinematics-9769a43ba956

Learning in Virtual Reality

each frame, but we could not get this to work.
Eventually we found a solution that involved moving the inverse kinematics goal onto a
forward line in local space from the coupling’s perspective. Essentially causing the inverse
kinematics system to be in 2 dimensions rather than 3.

We are quite content with how the coupling system worked out, and we reused the code
for the air hoses or "AirCouplings" as they are named in the project. The couplings’ move-
ment is generally quite natural, and it feels as if they are actually connecting in VR.

The only big downside with the inverse kinematics system is that we do not account for
gravity; When a chain/hose is hanging loosely, the middle segments should hang towards
the ground, with enough fine-tuning we could probably have made this work, but we priori-
tized other systems.

We also had to rewrite how the train handled coupled carts, the way it was when we started
the project was that the train set the position of all connected carts. This was the same system
as for pushing the other carts when connected. We decided to have those as two different
functionalities, as in the train can push other carts whether they are connected or not, and
coupling only affects the dragging of carts.

For dragging carts we check each coupling on the train if they are connected to anything,
then we check which direction the train is going. If the train is going away from the cart it
is connected to and has higher speed than the cart it will set the speed and direction of that
cart and then run a smaller update function on that cart that does this again but only for one
of the couplings, checking the same coupling that is connected to the one we just checked
would be problematic.

Then if the direction is going towards the cart it is connected to and the speed of the cart is
higher than the speed of the train it will again set the speed and direction for the cart, which
has the effect of braking the cart, before we again run the other smaller update function.

The final thing we do is if a coupling is not connected but the air coupling is connected
and the train and cart are going away from each other, then we will disconnect the air cou-
plings because they are not strong enough to stay connected.

The way the couplings work is that they start at the locomotive and then checks connected
trains, this should have been more like the system for collision in that every cart checks itself
even if it is not connected to the locomotive.
This would have been better but it would be a big change and would likely require a rewrite
of the most of the system we made, and it would not give much benefit because at the cur-
rent state there is not often a moment where a cart is dragging another cart without being
connected to the locomotive, but for more physical accuracy and more accuracy in general
in unforeseen events.

21

Learning in Virtual Reality

if (coupling1.getConnectedTo() != null) {
if (direction > 0 && speedKmh >

coupling1.getConnectedTo().getVehicle().getSpeedKmh()) {
// If dragging a cart
coupling1.getConnectedTo().getVehicle().setSpeedKmh(speedKmh);
coupling1.getConnectedTo().getVehicle().setDirection(direction);
coupling1.getConnectedTo().getVehicle().tick1();

} else if (direction <= 0 && speedKmh <
coupling1.getConnectedTo().getVehicle().getSpeedKmh()) {
// If braking a cart
coupling1.getConnectedTo().getVehicle().setSpeedKmh(speedKmh);
coupling1.getConnectedTo().getVehicle().setDirection(direction);
coupling1.getConnectedTo().getVehicle().tick1();

}
} else if (air1.getConnectedTo() != null && this.speedKmh > 0

&& ((direction > 0 && speedKmh >
air1.getConnectedTo().getVehicle().getSpeedKmh())

|| (direction <= 0 && speedKmh <
air1.getConnectedTo().getVehicle().getSpeedKmh()))) {

air1.disconnect();
// Disconnects air if it is connected to a cart going away from it

}
// Should do something else in the future, maybe disconnecting violently
if (coupling2.getConnectedTo() != null) {

if (direction <= 0 && speedKmh >
coupling2.getConnectedTo().getVehicle().getSpeedKmh()) {
// If dragging a cart
coupling2.getConnectedTo().getVehicle().setSpeedKmh(speedKmh * 1);
coupling2.getConnectedTo().getVehicle().setDirection(direction);
coupling2.getConnectedTo().getVehicle().tick2();

} else if (direction > 0 && speedKmh <
coupling2.getConnectedTo().getVehicle().getSpeedKmh()) {
// If braking a cart
coupling2.getConnectedTo().getVehicle().setSpeedKmh(speedKmh);
coupling2.getConnectedTo().getVehicle().setDirection(direction);
coupling2.getConnectedTo().getVehicle().tick2();

}
} else if (air2.getConnectedTo() != null && this.speedKmh > 0

&& ((direction <= 0 && speedKmh >
air2.getConnectedTo().getVehicle().getSpeedKmh())

|| (direction < 0 && speedKmh <
air2.getConnectedTo().getVehicle().getSpeedKmh()))) {

air2.disconnect();
// Disconnects air if it is connected to a cart going away from it

}

5.4 Rewriting the Player Collision System

The original collision system was quite rudimentary. When the user wanted to move, the sys-
tem would make a ray cast collision check starting a short distance above the user’s head, it
would then move them in the direction they wanted across the plane, and adjust their height
based on height differences found with the ray cast.

This system worked without issue at the time, but it only accounted for the static terrain.
Since the only other thing we needed the player to collide with was the trains, we decided

22

Learning in Virtual Reality

to expand on the existing collision system rather than rewrite it entirely.
This however proved to be a challenge. 3D collisions are innately complex, and while we
did get a fairly well-functioning system in place, it wasn’t good enough. We had issues with
inconsistent movement when attempting to move through the trains, as well as inconsistent
behaviour when the trains were in motion.

With that in mind we decided to look more closely at jMonkey’s existing solutions for physics.
With such an old engine, and such a sparse community, it can often be difficult to find the
relevant documentation. This was one of the main issues we encountered when applying
physics to the player character.

Like most player characters, we used a capsule collider for collisions. However, unlike other
engines, the rotational axis of the standard physics objects can’t be locked. We tried finding
alternate solutions, but only came up with a handful of slightly related posts, many of which
contained outdated code.

Eventually we found the BetterCharacterController class, which was automatically locked
to only rotate around its own up-vector, but that was not an ideal solution either, as it lacks
some of the basic functions in the standard RigidBody class, which caused issues when try-
ing to sync up with the update loop. jMonkey also doesn’t have an easily accessible physics
update loop, which meant that our player character was now moving with a separate update
loop, causing a disconnect between the movement of the player and the trains.

This was an issue when the player boarded the train and the trains started moving. From
the player’s perspective, they ended up getting pushed farther and farther back as the train
went faster, and the train looked to be vibrating.
This was solved by having the player be locked in place during an update loop, and using the
guardrails as clickable objects to get on or off.
Since the user no longer needed to actively walk on the train, we replaced the train’s more
complex collision shape with a standard box collider.

5.5 Rewriting the Train Collision System

The collision system for the trains already in place at the start of this project was pretty ba-
sic; it checked the distance between two couplings, and if it was small enough it would just
stop the moving train. This system was also divided into three functions, one main one that
checked which direction the train was going, and one each for each direction.

The system when connected did not work the same, when the trains were connected they
would update the positions of connected carts by setting the position as the position plus the
half of the length of the train.

This system was changed to when detecting a collision it would update the speed of the
cart at the other end of the collision and the direction, but later we also updated it so it
would set the position so we would not have clipping. We also have variables for what cou-
pling the cart is pushed by and for what coupling the train is pushing. These are reset in the

23

Learning in Virtual Reality

update function for the carts when they notice that the coupling they are pushed by is too
far away to be able to be pushed by it.

if (speedKmh < 0.15f)
return;

Coupling coupling;
float spacing = vd.trainColliderLength;

if (direction > 0) {
coupling = getCoupling(1);

} else {
coupling = getCoupling(0);

}

for (Vehicle v : Program.stVehicleList) {
if (v != coupling.getVehicle()) {

for (int i = 0; i < 2; i++) {
if

(v.getCoupling(i).getBasePivot().getWorldTranslation().distance(
coupling.getBasePivot().getWorldTranslation()) < 0.83f) {

if (v.getSpeedKmh() < speedKmh) {
float totalSpeed = speedKmh + v.getSpeedKmh();
float dist = this.odometer - v.getOdometer();
System.out.println(dist);
spacing += v.vd.trainColliderLength;
if (direction <= 0)

spacing *= -1;
v.setOdometer(odometer + spacing);

v.setSpeedKmh(totalSpeed / 2);
this.setSpeedKmh(totalSpeed / 2);

v.setDirection(direction);

this.pushingCoupling = v.getCoupling(i);
v.setPushedBy(coupling);

}
return;

}
}

}
}

We also changed it so the the system for pushing carts was different and independent of the
system for dragging carts when they were connected to the train. Unlike the system for cou-
plings dragging carts, this system is ran on every cart on its own, and is not dependant on
being pushed by the locomotive.

24

6 Modelling

6.1 Tools

For 3D modelling the trains, blender was the tool of choice from the railway school. This is
helpful since jMonkey can import .blend files directly, which makes it easy to add and later
make changes to the 3D models. Blender is a tool that is relatively easy to start learning, yet
it still offers a wide variety of tools to increase modelling efficiency. The modeller had some
previous experience with Blender, and got to utilize that for this project.

The textures for the models were mainly created in Substance Painter. Substance is a 3D
painting program that has a suite of powerful tools for generating procedural textures. This
was one of the first projects the modeller used substance for, a lot of experimenting went into
making the textures.

6.2 Process

The process of modelling a piece of the train starts with gathering the necessary reference
material. The reference material consisted of images, and plans of the wagons. This proved
the most limiting factor in the modelling process since most of the people who were asked
for reference material seemed willing to share, but never delivered.

Reference for the Lgns wagon, from a material description provided by the Railway School.

For this particular wagon, and one other, the Railway School also provided a physical model.
Although lacking some important details it proved extremely helpful to the modelling process.

25

Learning in Virtual Reality

The finished model in Blender

Before texturing a model it needs to be UV-mapped, to make sure the faces don’t overlap
in the texture, this is done within blender itself. It is a tedious process that only gets more
time-consuming the more work is put into the model itself.

Inside Substance, the first step is to create the base material, then adding weathering like
dirt and rust, and finally going over and adding details by hand.

After texturing

After exporting the textures from Substance, they are put into the Blender project and are
imported with the model in jMonkey. Unfortunately jMonkey is too old to support the node
materials in Blender, or it’s the Cycles rendering engine. The legacy Blender render had to be
used for the material instead.

26

7 Networking

7.1 Development

The networking component of this project was not fully completed, but we did implement a
few basic networking components. There was a system in place from before to handle net-
working built in the jMonkey engine, and there were a few small tutorials on the topic.

The issue we encountered with the tutorials we found was that they were only for local-
host servers, so all we got out of the tutorials was how to send messages, and how to set up
the connection when we already know the IP address.

This means that the only way we have of connecting a client to a server is if we know the IP
of the server before we start the client and put it in the code. We could improve it by finding a
way to enter the IP while the program is running but it seems there is no way to automatically
find and connect to servers on the local network using the code exmaples we have found.
There also seemed like there was no way to find the IP of a server so that it could display it,
meaning we have to find the IP by other means; We used ipconfig in the terminal to find the
local IP.

Here is how we started the server and how we connected a client:

if(isServer)
{

try {
myServer = Network.createServer(6143);
myServer.start();
myServer.addMessageListener(new ServerMessageListener());

} catch (IOException ex) {
Logger.getLogger(Program.class.getName()).log(Level.SEVERE, null,

ex);
}

}
else if(isClient)
{

try {
// Works only with exact local ip address
// TODO: Find ip address automatically
// TODO: Enter IP here
myClient = Network.connectToServer("0.0.0.0", 6143);
myClient.start();
myClient.addMessageListener(new ClientMessageListener());

} catch (IOException ex) {
Logger.getLogger(Program.class.getName()).log(Level.SEVERE, null,

ex);
}

}

27

Learning in Virtual Reality

We have only basic networking where we update the position of the train and update the
position of the person in VR. This has been achieved by implementing two different types of
messages, one for updating position of the VrPerson and one for updating the position of the
train.

The message for updating the position of the VrPerson is set up to send the rotation and
the position of the VrPerson so that we can update where they are and what direction they
are facing, and the client sends this message every time there is a change in either of them,
it also sends a message every half second.

public static class VrPersonMoveMessage extends AbstractMessage
{

private Vector3f pos;
private Vector3f rot;

public VrPersonMoveMessage(){}

public VrPersonMoveMessage(Vector3f p, Vector3f r)
{

pos = p;
rot = r;

}

public Vector3f getPos()
{

return pos;
}

public Vector3f getRot()
{

return rot;
}

}

This message also only sends part of the VrPerson’s look direction, it does not include where
the VrPerson is looking on the vertical axis, meaning one would not be able to tell if the
person is looking up or down.

Messaging for updating the position of the train contains its speed, direction, and position
on the track. This message is sent whenever there is a change in any of the components or
every half second, just like the messages for VrPerson.

28

Learning in Virtual Reality

public static class TrainMoveMessage extends AbstractMessage
{

private float speedKMH;
private float odom;
private int dir;

public TrainMoveMessage(){}

public TrainMoveMessage(float sKMH, float o, int d)
{

speedKMH = sKMH;
odom = o;
dir = d;

}

public float getSpeed()
{

return speedKMH;
}

public float getOdom()
{

return odom;
}

public int getDir()
{

return dir;
}

}

The server has one listener that waits for messages from the client about a movement for
the VrPerson, and likewise the client has one listener that waits for messages from the server
about movements for the train.

29

Learning in Virtual Reality

public static class ClientMessageListener implements
MessageListener<Client>

{

@Override
public void messageReceived(Client source, Message m)
{

if (m instanceof TrainMoveMessage)
{

TrainMoveMessage message = (TrainMoveMessage) m;
Program.trainMoveQueue = message;

}
}

}

public static class ServerMessageListener implements
MessageListener<HostedConnection>

{

@Override
public void messageReceived(HostedConnection source, Message m)
{

System.out.println("Message Recieved");
if (m instanceof VrPersonMoveMessage)
{

VrPersonMoveMessage message = (VrPersonMoveMessage) m;
Program.vrPersonMoveQueue = message;

}
}

}

How the server sends and handles recieved messages:

if(myServer.hasConnections())
{

timeSinceUpdate += tpf;
float newSpeed = simVeh.getSpeedKmh();
float newOdom = simVeh.getOdometer();
int newDir = simVeh.getDirection();
if(!(newSpeed == lastSpeed && newOdom == lastOdom && newDir == lastDir)

|| timeSinceUpdate > 0.5f)
{

timeSinceUpdate = 0;
myServer.broadcast(new TrainMoveMessage(newSpeed, newOdom, newDir));
lastSpeed = newSpeed;
lastOdom = newOdom;
lastDir = newDir;

}
}

VrPersonMoveMessage m = vrPersonMoveQueue;
if(m != null)
{

vrPerson.setPos(m.getPos());
vrPerson.setRot(m.getRot());
vrPersonMoveQueue = null;

}

30

Learning in Virtual Reality

How the client sends and handles recieved messages:

if(isClient)
{

if(myClient.isConnected())
{

timeSinceUpdate += tpf;
Vector3f newPos = new Vector3f();
Vector3f newRot = new Vector3f();

newPos.set(vrPerson.getPos());
newRot.set(vrPerson.getRot());
if(!(newPos == lastPos && newRot == lastRot) || timeSinceUpdate >

0.5f)
{

timeSinceUpdate = 0;
System.out.println(lastPos);
myClient.send(new VrPersonMoveMessage(newPos, newRot));
lastPos.set(newPos);
lastRot.set(newRot);
System.out.println(lastPos);
System.out.println("Message sent");

}
}

TrainMoveMessage m = trainMoveQueue;
if(m != null)
{

simVeh.setSpeedKmh(m.getSpeed());
simVeh.setOdometer(m.getOdom());
simVeh.setDirection(m.getDir());
trainMoveQueue = null;

}
}

7.2 Future Development

In this section we would like to discuss what we would have liked to do with the networking
if we had had the time to develop it further. Its current state is clearly not ideal, and needs
further enhancements to function according to its original purpose.

First of all, the current solution for connecting server and client is simply not good enough.
We would want to implement a way for a client computer to search the LAN to connect to
the server computer.

Additionally, we would want to implement synchronization for more objects, so that all object
interactions are consistent across all networked computers. This is not in any way difficult,
and would only require more time.

And the last thing we would need to implement would be communication between the two
users. Part of this would be to give an avatar to the VrPerson, and give mirrors to look through
for the person controlling the locomotives. The other and more complex part of this would
be the voice communication feature.

31

Learning in Virtual Reality

None of us have ever implemented anything more than the most basic of networking fea-
tures, so unless we could find an available library written in Java, this could prove to be
quite challenging.

7.3 Conclusions

The networking has been harder than we thought and we still haven’t found a great way of
setting up the connection. Currently we connect to a specific IP, but we would like to search
the local IPs and connect to a server or at least give the user the possibility to enter the IP
themselves, but we have not found a way to find the IP on the server, nor a way for the user
to input the IP themselves.

This would be a problem when the railway school is going to use it themselves, because
they will have different machines that will function as the servers and different machines
that will function as clients, so we need a way to allow connecting to different machines
without having to hardcode whatever IP address it may have.

32

8 Conclusions

8.1 Development Model

As described earlier in the report, we have been developing with an iterative process with
modules taking focus at different times based on priority. This has worked quite well for our
group, and has allowed us to finish the most important parts first, and to go back and iterate
on said parts when necessary.

8.2 Meetings and Feedback

We ended up with a lot fewer meetings than initially planned. We have for the most part
kept up with meetings with our supervisor, having meetings weekly in the beginning and less
frequently when it proved unnecessary to meet that often.

We did however not have nearly as many meetings with our employer. While we didn’t need
as many meetings as we originally planned due to progress going smoothly, we would have
liked to have more towards the end of development to better discuss what was most impor-
tant to finish for the project.

As planned, we did write reports on the state of development around 4th of March and 8th
of April. These reports will be appended.

8.3 Development Process

In short, we have not worked as much nor as hard as we should have. While we initially made
good progress and kept up with our planned schedule, as we approached Easter we were no
longer up to speed, and issues with both the advanced braking system and networking made
us slow down further.

Because of this, we have a fair few incomplete parts related to braking and networking,
leaving us with an unfinished product.
This is however not a massive issue, as the project was meant to be something our employer
could build upon, rather than a complete entity.

33

Learning in Virtual Reality

8.4 Final Thoughts

Overall the main hurdles in the project have been rooted in working with the existing project
and jMonkey. A lot of time has been wasted on understanding the code and getting used to
working with jMonkey. This is, of course, what we expected at the start of the project, and
despite those challenges we have for the most part managed to stay reasonably on schedule.
We are also fairly content with what we have managed to achieve during the project, as is
the Norwegian Railway School, even if we haven’t reached our proposed work hours, nor all
of our milestones.

34

Appendix

Appended documents are in Norwegian.

35

A Project Plan

36

Prosjektplan, Gruppe 2
Sindre B. Garvik
Haakon B. Aarstein
Eirik Hiis-Hauge

1. MÅL OG RAMMER

1.1. Bakgrunn
Norsk fagskole for lokomotivførere ønsker en utvidelse av et eksisterende prosjekt via en
prototype. Det eksisterende prosjektet er en lokfører simulator, og utvidelsen vil gå ut på å koble
sammen tog i VR (Virtual Reality).

1.2. Prosjektmål
Vi har fått en rekke moduler vi kan implementere, og har blitt enige om prioriteten for hver av de
sammen med oppdragsgiver:

1. Sammenkobling av vogner i VR
2. Fysiske egenskaper på vognene
3. Samkjøring mellom den eksisterende simulatoren og dette prosjektet
4. 3D-modellering av tog/vogner

5. Datastyrte scenarioer for sammenkobling

Målet er å få de to første modulene til å funke godt, modul 3 og 4 er høyst ønskelig å få til, og
modul 5 er noe vi kan gjøre om vi får ekstra tid, men er ellers lite prioritert.

1.3. Rammer
Siden vi jobber med et eksisterende prosjekt er vi nødt til å jobbe med samme engine og språk
som det originale prosjektet. Dette er da jMonkeyEngine og Java. Tidsrammen vår er bachelor
perioden, og vi er tre studenter som jobber på prosjektet.

2. OMFANG ved programvareutvikling

2.1. Fagområde
En av tingene de lærer på jernbaneskolen er skifting, som betyr å flytte og koble sammen
lokomotiv og vogner. Opplæringen for dette er både komplisert, tidkrevende og kostbar. De vil
derfor flytte den inn i en virtuell verden.

2.2. Avgrensning
Oppgaven vil i stor grad gå ut på kobling av tog spesifikt, andre relaterte problemstillinger som
for eksempel innebærer lokfører vil ikke være relevant med mindre det er viktig for samkjøringa.
Mange av de utfordringene vi potensielt kunne hatt, som grafikk eller hvordan programmet
laster inn miljøet, har allerede blitt gjort i det eksisterende prosjektet.

2.3. Oppgavebeskrivelse
Oppgaven går ut på å utvide / videreprogrammere eksisterende programvare til
desksimulatorene ved Norsk Fagskole for lokomotivførere. Det som ønskes utført er delt inn i
moduler.

Modul sammenkobling
Lok kjøres inntil vogn. kobling av kobbel på krok, kobling av luft, evt kobling av UIC kabel
foretas i VR miljø. Lok og tilkoblet vogn "oppfører seg" i forhold til dette eks. vogn henger med
loket. Lok / vogn flytter seg ikke dersom brems er tilsatt. Luft fra lok fyller systemene på vogna
og bremser oppfører seg i forhold til dette.
o Lok manøvreres.
o Når lok er inntil vogn (vogn er inntil vogn) kan de kobles sammen. Dette er fysisk kobbel
som hektes på krok og skrues / strammes til. Det er luftslange (hovedledning) - en på hver
lok/vogn som kobles sammen - luftkraner - en på hver lok/vogn som kan åpnes. En avatar skal
ikke være synlig for lokomotivfører i (eventuelle) speil når skifteren er i mellom vognene og
ufører dette. Synlig igjen når skifteren går ut av koblingsrommet.
o Når to vogner er koblet henger de sammen.
o Denne sammenkoblingen av luftslangene medfører at luftforbindelsen mellom lok/vogn og
neste lok/vogn opprettes. Dette har mye å si for bremsesystemet i toget og dermed hvorvidt
toget vil flytte på seg ved kjøreforsøk, begynne å trille osv.

Modul fysiske egenskaper
Hva som skjer med et tog, en vogn, et lok i ulike situasjoner er avhengig av en rekke fysiske
forhold.
o Vogn triller når den står i fall uten brems på.
o Vogn triller ikke dersom den står i fall med tilstrekkelig brems på.
o Hva skjer dersom et lok kjører mot en vogn som står stille, dyttes den avgårde? I liten grad
dersom bremsen er på, i større grad dersom bremsen ikke er på.
o Bremseklosser går mot hjul når brems blir tilsatt.
o Kobbel kan løftes av og på krok og strammes.
o Luftslanger kan løftes sammen og kobles.
o Luftkraner kan åpnes.
o Lyd.

Modul samkjøring
Programvaren som kjøres på DeskSim og på VR-stasjon er den samme.
o Evt ulik "oppførsel" i programmet fra DeskSim til VR settes gjennom
konfigurasjonsparametere eller gjennom detektering av VR utstyr.

Via intern WiFi samkjøres disse slik at de jobber i samme scenarie
o Simulatorene jobber i scenarier.
o Når det samme scenariet lastes på både DeskSim og VR stasjon skal det oppleves at man
er i samme "verden".
o Dersom loket flyttes på i DeskSim, ser man at loket flytter seg i VR miljøet dersom det skjer
innenfor synsfeltet til VR-personen.
o Dersom man flytter seg eller utfører ting i VR miljøet ses dette fra DeskSim dersom det skjer
innefor synsfeltet til DeskSim-føreren. Det bør være i form av en verne-kledd avatar.
o Handlinger som utføres gjenspeiles / utføres begge steder. Eksempelvis kobles lok og vogn
henger de sammen begge steder, Endres et signalbilde endres det begge steder, legges en
sporveksel over skjer det begge steder.

Kommunikasjon mellom skifter og fører (DeskSim og VR-miljø).
o Kommunikasjon foregår normalt gjennom en skifteradio (walkie talkie).
o Det finnes også håndsignaler. Avataren utfører et utvalg av håndsignaler som et resultat av
at den med VR-briller foretar en bevisst handling for å gi riktig signal.
o En form for simulering av skifteradio må være en del av systemet. Det kan være å prate, det
kan være å velge fra en meny av meldinger.
o Kommunikasjonen må kunne gå begge veier på en håndterbar måte både for den med VR
briller på og den som sitter i DeskSim.
o Simulering av håndsignaler er også ønskelig, men lavere prioritert Avataren utfører et utvalg
av håndsignaler som et resultat av at den med VR-briller foretar en bevisst handling for å gi
riktig signal.

Modul modeller
Lages i Blender, lok og vogner ligner virkeligheten.
o En modell av Traxx lok.
o En modell av skiftelok.
o En modell av 6 aksla containervogn (leddet).
o 4 modeller av containere, ulike farger. Skal kunne settes på forrige nevnte vogn.
o En tankvogn.
o En pukkvogn.
o En lukka godsvogn med skyvedører.

Komponenter ligner virkeligheten.
o Styreventil.
o Bremsegruppestiller.
o Parkbremsbetjening.
o Manuell lastveksel.

Lesbare påskrifter skal være med.
VR person skal ha hender som oppfører seg i samsvar med betjening av håndkontrollere til
Oculus.

Modul automasjon
Programvare kjører med et scenario der "programmet er fører" og flytter toget i samsvar med
meldinger fra skifter / student - "trekk fram, kom bak, sakte, stopp osv". Samme løsning som å
få avataren til å utføre/gi meldinger, men denne gangen uten synlig avatar.
o Vedkommende som har på seg VR-briller er skifter, går på bakken.
o Programvaren skal i denne modusen "spille" rollen som fører
o Lok (og det som er tilkoblet loket) skal bevege seg i forhold til meldinger fra skifter av type
"kom bak", "trekk fram", "stopp", "sakte", "30 meter igjen til butt","15 meter igjen til butt".
o Talegjenkjenning er antagelig i overkant for dette prosjektet så vi ser for oss at dette utføres
ved hjelp av en meny av meldinger på en eller annen måte tilgjengelig for den som er i VR
miljøet samme løsning som å få avataren til å utføre/gi meldinger, men denne gangen uten
synlig avatar.

Programvare kjører med et scenario der "programmet er skifter" og gir meldinger til fører/
student ser helt lik ut som avataren.
o Motsatt modus av modulen over.
o DeskSim opereres av deltager, programvaren utfører skifteoperasjonene.
o Loket manøvreres i henhold til meldinger fra "skifter" som er programvaren i denne
modusen.
o Skifteoperasjonen som skal utføres må defineres i scenariet.

3. PROSJEKTORGANISERING

3.1. Ansvarsforhold og roller
Sindre har blitt valgt til å være gruppeleder.
Haakon har hovedansvar for 3D-modellering i prosjektet.

3.2. Rutiner og regler i gruppa
Arbeidsmengde:

● 30 timers arbeidsuke
● Sanksjon om arbeidsmengde ikke er nådd er å bake kake til resten

Arbeidsvaner:
● Ikke push ting som ikke funker til master
● Commit fullstendige enheter
● Kommenter koden godt og ofte

Problemløsning:
● Ved større problemer, for eksempel at vedkommende ikke har bidratt i løpet av 14

dager, får vedkommende advarsel, og gruppa har møte med veileder. Om ingenting blir
gjort 7 dager etter møtet må potensielt vedkommende forlate gruppa om ingen annen
løsning er nådd.

4. PLANLEGGING, OPPFØLGING OG
RAPPORTERING

4.1. Hovedinndeling av prosjektet - Valg av
SU-modell/prosessrammeverk med argumentasjon - Valg av
Metode og tilnærming (avklare Teori- og Metodebruk)
Gantt-diagrammet senere i planen kan få det til å se ut som om vi bruker fossefallsmodellen.
Dette stemmer ikke helt siden diagrammet i stor grad er ment for å vise hvilke moduler vi
prioriterer først. Vi har inndelt oppgaven som vist i 1.2. Prosjektmål, og vi kommer til å bruke
Trello til å organisere og planlegge oppgaver under hver modul, og hvor de er hen i utviklinga.
Dette vil tilsi at vi inndeler oppgaver med en backlog for hver modul, en rekke oppgaver som er i
utvikling, en liste over ting som må testes, og en liste med ferdige oppgaver.
Vi jobber derfor etter en mer inkrementell modell.

4.2. Plan for statusmøter og beslutningspunkter i perioden
Vi har avtalt å møte omtrent ukentlig med veileder på universitetet, og tilsvarende med
oppdragsgiver over nett. Møtene med veileder er for øyeblikket satt til å være hver Mandag.
Vi har som plan å skrive en statusrapport nær slutten av første modul, da rundt 04. mars, og en
ved planlagt slutt av andre modul, da 08. April. Om moduler ikke er ferdig etter planen og en
større mengde arbeid gjenstår planlegger vi å kutte mindre prioriterte moduler.

5. ORGANISERING AV KVALITETSSIKRING

5.1. Dokumentasjon, standardbruk og kildekode
Prosjektet vil være tilgjengelig via en git løsning. Utviklingen av prosjektet vil derfor være
loggført via commits, som senere kan brukes til å skrive rapporten i mai. Vi tenker å lage et
klassediagram for å dokumentere klassene og filene vi lager til prosjektet for å bedre
dokumentere det vi har jobbet med, og får at oppdragsgiver skal kunne få bedre oversikt over
strukturen til programmet.
Vi kommer til å følge en commit-standard ikke så ulik den her:
https://www.conventionalcommits.org/en/v1.0.0-beta.2/
Der grunntrekkene er at hver commit melding skal begynne med hvilke type endring som er
gjort, om det er en liten bug fix eller om det er en helt ny feature, eller andre ting. Det skal og
være en liten kort beskrivelse på hva har blitt gjort. Det er også bra hvis et relevant scope er
beskrevet, men dette er ikke et krav. Det er i tillegg bra hvis det blir lagt til en lengre beskrivelse
under det første, som da forklarer mer i detalj hva som er endret, men dette er heller ikke et
krav.

5.2. Risikoanalyse (identifisere, analysere, tiltak, oppfølging)
Teknologi, Forretningsmessig, Prosjektgruppemessig
Sikkerhet er veldig lite relevant til oppgaven. Vi produserer en prototype i et eksisterende
prosjekt for et produkt som egentlig bare skal brukes av oppdragsgiver internt. Det er ingen
personlige data i prosjektet, man får ingenting ut av å krasje programmet, du er alene inne i
simulatoren.

Samkjøringa er egentlig det eneste som kan være et sikkerhetsproblem på noe vis, siden det
krever at man kommuniserer mellom to datamaskiner.
Av den grunn er det hovedsakelig bare det å få til trygg nettverkstrafikk som blir en prioritet
under utvikling. Dette vil inkludere sanitering av input til programmet.

Om noen skulle ønske å stjele prosjektet så må de enten stjele prototypen vår via det private
git-repositoriet vårt, eller kopiere over filene fra PCene til oppdragsgiver. Risiko for svikt fra
gruppe medlemmer er svært liten men vi har på plass regler og prosedyrer i tilfelle det skal skje.
Sykdom er en risiko som er vanskelig å forutse men vi ser på den som veldig liten og i det tilfelle
vil resterende gruppe medlemmer måtte i verste fall jobbe litt ekstra i en periode.

6. PLAN FOR GJENNOMFØRING

B Status Report 1

44

Status Rapport 1

● Vi har fullført at lok kan manøvreres.
● Vi har nesten fullført at lok kan kobles med vogn, eneste som mangler er luft kraner

og synlighet gjennom speil. (mangler mer spesifikk info om hvordan luftkabler og
kraner fungerer) Lokfører er ikke enda i VR, dette blir ikke relevant før vi har
samkjøring, og derfor er heller ikke speil det.

● Vi har fullført at to vogner som er koblet sammen henger sammen.
● Vi har ikke fullført at luftslanger påvirker bremsing, dette skal ikke mye til, og er noe vi

enkelt kan legge til etter at luftslanger virker slik vi vil.

● Vi har ikke begynt at vogn triller i fall uten brems
● Vi har begynt at vogn triller om den står i fall uten nok brems. Samme som forrige?
● Vi har begynt på lok som kolliderer med vogn og dytter tog, vi mangler bremsing.
● Vi har ikke begynt på bremser synlig går inn på hjul, dette gjøres fort så snart hjul og

bremse modeller er inne.
● Vi har begynt på kobbel kan løftes av og på krok, Stramming fungerer, men kan ikke

interageres med enda.
● Vi har ikke begynt på luftslanger, dette kan gjøres fort, mye kan kopieres fra

lenke-logikken.
● Vi har ikke begynt på luft kraner, dette kan gjøres fort og enkelt.
● Vi har ikke begynt på å legge til mer lyd.

C Status Report 2

46

Status Rapport 2
Vi ligger generelt greit ann, mesteparten har blitt gjort etter planen.
Som nevnt under forrige møte har vi tenkt å droppe modul 5 (automasjon) fullstendig.
Noen punkter i Modul 1 og 2 er ikke helt ferdige, men det er i stor grad detaljarbeid som vi
itererer på videre.

Modul 1, sammenkobling
● Vi har fullført at lok kan manøvreres.
● Vi har nesten fullført at lok kan kobles med vogn, eneste som mangler er synlighet

gjennom speil. Lokfører er ikke enda i VR, dette blir ikke relevant før vi har samkjøring,
og derfor er heller ikke speil det.

● Vi har fullført at to vogner som er koblet sammen henger sammen.
● Vi har begynt på at luftslanger påvirker bremsing, vi har et fungerende system, men vi

ønsker å implementere et realistisk system, noe som vil kreve mange kompliserte
detaljer.

Modul 2, fysiske egenskaper
● Vi har begynt at vogn triller om den står i fall uten nok brems.
● Vi har begynt på lok som kolliderer med vogn og dytter tog, trenger litt justering.
● Bremser synlig går inn på hjul.
● Kobbel kan løftes av og på krok.
● Vi har begynt på luftslanger, vi ønsker mer detaljer på de.
● Luftkraner er ferdig.
● Vi har ikke begynt på å legge til mer lyd.

Modul 3, samkjøring
Programvaren som kjøres på DeskSim og på VR-stasjon er den samme.

● Påbegynt ulik "oppførsel" i programmet fra DeskSim til VR settes gjennom
konfigurasjonsparameter.

Via intern WiFi samkjøres disse slik at de jobber i samme scenarie

● Simulatorene jobber i scenarier.
● Påbegynt at når det samme scenariet lastes på både DeskSim og VR stasjon skal det

oppleves at man er i samme "verden", funker for øyeblikket bare hvis lokal ip adresse til
server er kjent fra før og lagt i koden.

● Dersom loket flyttes på i DeskSim, flytter det seg i VR miljøet.

● Påbegynt at dersom man flytter seg eller utfører ting i VR miljøet ses dette fra DeskSim.
Ingen avatar enda.

● Ikke begynt på at handlinger som utføres gjenspeiles / utføres begge steder.
Eksempelvis kobles lok og vogn henger de sammen begge steder, Endres et signalbilde
endres det begge steder, legges en sporveksel over skjer det begge steder.

Kommunikasjon mellom skifter og fører (DeskSim og VR-miljø).

● Ikke påbegynt.

Modul 4, modeller
● Et nesten ferdig lok, mangler en del detaljer + tekstur
● En 6-aksla containervong som bare mangler tekstur
● En to-akslet vogn som nesten er ferdig
● Kroken mellom vognene er helt komplett
● Luftkran og -slange er modellert men mangler tekstur og delvis implementasjon.

D Meeting 1

50

Referat Prosjektmøtemøte 6 Digiskift

 Side 1 av 2

Sted Debriefrommet

Dato 10.01.2019 kl 11:00 – 13:00

Tilstede Eirik Hiis-Hauge, Haakon Bjørnås Aarstein, Sindre Blomberg

Garvik, André Gustavsen, Hallgeir Olsen, Atle Schaathun, Ottar

Haslestad.

Fraværende

Sider (inkludert vedlegg) 2

- Veileder fra NTNU? Hvor mye og hvordan involveres?
Fått kontakt-info. Lokførerskolen tar kontakt

- Definering av oppgaven(e) + presentasjon av programmering (Hallgeir og André)

Modul «sammenkobling» som basis. Eventuelt utvide med «fysiske egenskaper» Hallgeir presenterer
litt om koder osv i programmet. Noe i dag og så mer etter hvert. Programmet er overlevert og Hallgeir
presenterte kort om programmets struktur (på kontoret)
Lokførerskolen skaffer tekniske tegninger på vogner.

- Lokasjon underveis.
Mest mulig fra Gjøvik. På lokførerskolen ved behov.

- Hvor ofte «møtes» vi?
En-to ganger i uka
Definere milepæler etter hvert. Lokførerskolen vil få tilgang til Git og Trello.
Kontrakt og plan med mål skal leveres NTNU 01.02.2019
Hele Bachelor-oppgaven(rapporten) skal være ferdig 20.mai. Presenteres i juni (4.,5. eller 6.)

- Skype (eller annen måte)? «Appear.in» prøves først. Haakon sender Link. Lokførerskolen kan dekke
betalingsversjon ved behov.

- Eventuelt
Reiseutgifter: Haakon har alle kvitteringer (hittil)
Lokførerskolen gir en kort «undervisningsøkt» i grunnleggende bremser godsvogner

 Side 2 av 2

Restanseliste

Tiltak Ansvarlig Frist

Kopiere programmet og gi veiledning (memory-stick) Hallgeir

Avklare vogntyper som skal modelleres André

Klargjøre program for «møter» Atle og Haakon

Undersøke/skaffe tekniske tegninger Ottar

Kontakte veileder NTNU Ottar

Sette seg inn i programmet Eirik, Haakon og

Sindre

Undervisningsøkt: Grunnleggende forståelse av bremsesystemet Atle

E Meeting 2

53

Referat Møte med studentene Digiskift 18.03.2019

 Side 1 av 2

Sted Kjeller i A-bygg NTNU-Gjøvik

Dato 18.03.2019 kl 11:00 – 15:00

Tilstede Eirik Hiis-Hauge, Haakon Bjørnås Aarstein, Sindre Blomberg

Garvik, Hallgeir Olsen, Atle Schaathun, Ottar Haslestad.

Fraværende Øivind Kolloen

Sider (inkludert vedlegg) 2

Formålet med møtet var å kvalitetsikre forståelsen av programmet til simulator.
I tillegg inngå en avtale mellom Jernbanedirektoratet og Bachelor-oppgave studentene ved NTNU. Denne
avtalen gir rett til et stipend etter levert og godkjent oppgave samt rett til refusjon av utgifter ved reiser osv i
forbindelse med oppgaven.

Hallgeir tok tog til Gjøvik og ankom ca kl 11:00. Demo av progresjon og forståelse samt eventuelle avklaringer
rundt programmet var hovedmålet.
Hallgeir er godt fornøyd med nivået på leveransen dette stadiet i oppgaven. Han returnerte til Oslo med et tog
som gikk fra Gjøvik ca kl 15:30.

Atle og Ottar ankom i bil ca kl 12:30. Det var avtalt møte med veileder Øivind Kolloen for en kort samtale og en
underskrift på avtalen, men han var dessverre syk denne dagen.
Studentene fikk modelltogvognene som har ankommet lokførerskolen, men fortsatt har vi ikke tilgjengelig en
RPS, tankvogn og Traxx-lok. Ottar har etterlyst kontaktperson hos Railpool for tegninger av lokomotivet.

Den nevnte avtalen mellom Jernbanedirektoratet og Bachelor-oppgave studentene ved NTNU ble underskrevet
av studentene, en person med myndighet fra NTNU og Ottar Haslestad.
Studentene hadde noen spørsmål rundt detaljer om bremsesystem. Hallgeir og Ottar skisserte på et ark og
forklarte prinsipper. Vi ble enige om at studentene formulerer spørsmål i en mail og Ottar skaffer svar på disse.
Idéen om en kort video som et hjelpemiddel for å forstå bremsesystemet ble revitalisert.

Atle og Ottar returnerte fra NTNU ca kl 13:30

 Side 2 av 2

Restanseliste

Tiltak Ansvarlig Frist

Klargjøre program for «møter» Atle og Haakon

Undersøke/skaffe tekniske tegninger Ottar og André

Sette seg inn i programmet Eirik, Haakon og

Sindre

Undervisningsøkt: Grunnleggende forståelse av bremsesystemet Atle

F Project Agreement

56

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f C

om
pu

te
r

Sc
ie

nc
e

B
ac

he
lo

r’
s

pr
oj

ec
t

Sindre B. Garvik
Haakon B. Aarstein
Eirik Hiis-Hauge

Learning in Virtual Reality

Bachelor’s project in Game Programming
Supervisor: Øivind Kolloen, Rune Hjelsvold

May 2019

	Preface
	Contents
	Project Plan
	Project Description
	Project Modules
	Development Environment
	Background
	Development Goals
	Module 1: Coupling
	Module 2: Physics
	Module 3: Network Capabilities
	Module 4: 3D Models
	Module 5: Automated Scenarios

	Roles
	Routines and Rules
	Development Model
	Meetings and Decision-making
	Documentation and Source Control
	Risk Analysis

	Program Overview
	Program Structure
	Program
	VrPerson
	Vehicle
	SimSimpleVehicle
	Coupling
	Handle
	AirCoupling
	AirValve
	InverseKinematics
	VehicleBrakeSystem
	Guardrail

	VrPerson Interactions

	Final State of the Project
	Modules and Cuts
	Module 1: Coupling
	Module 2: Physics
	Module 3: Network Capabilities
	Module 4: 3D Models
	Module 5: Automated Scenarios

	Summary

	jMonkeyEngine as an Engine
	Overview
	Editors
	jMonkey
	Unity

	Component Systems and Scene Graphs
	Asset Management
	Networking
	Conclusions

	Reorganizing the Existing Project
	Thoughts on the Existing Project
	Relocating VR Functions and Variables
	Rewriting the Coupling System
	Rewriting the Player Collision System
	Rewriting the Train Collision System

	Modelling
	Tools
	Process

	Networking
	Development
	Future Development
	Conclusions

	Conclusions
	Development Model
	Meetings and Feedback
	Development Process
	Final Thoughts

	Appendix
	Project Plan
	Status Report 1
	Status Report 2
	Meeting 1
	Meeting 2
	Project Agreement

